pmap.c revision 270439
150477Speter/*-
216186Salex * Copyright (c) 1991 Regents of the University of California.
316186Salex * All rights reserved.
488064Sru * Copyright (c) 1994 John S. Dyson
588064Sru * All rights reserved.
616186Salex * Copyright (c) 1994 David Greenman
716186Salex * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/10/sys/i386/i386/pmap.c 270439 2014-08-24 07:53:15Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#else
124#include <sys/cpuset.h>
125#endif
126
127#include <vm/vm.h>
128#include <vm/vm_param.h>
129#include <vm/vm_kern.h>
130#include <vm/vm_page.h>
131#include <vm/vm_map.h>
132#include <vm/vm_object.h>
133#include <vm/vm_extern.h>
134#include <vm/vm_pageout.h>
135#include <vm/vm_pager.h>
136#include <vm/vm_radix.h>
137#include <vm/vm_reserv.h>
138#include <vm/uma.h>
139
140#ifdef DEV_APIC
141#include <sys/bus.h>
142#include <machine/intr_machdep.h>
143#include <machine/apicvar.h>
144#endif
145#include <machine/cpu.h>
146#include <machine/cputypes.h>
147#include <machine/md_var.h>
148#include <machine/pcb.h>
149#include <machine/specialreg.h>
150#ifdef SMP
151#include <machine/smp.h>
152#endif
153
154#ifdef XBOX
155#include <machine/xbox.h>
156#endif
157
158#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
159#define CPU_ENABLE_SSE
160#endif
161
162#ifndef PMAP_SHPGPERPROC
163#define PMAP_SHPGPERPROC 200
164#endif
165
166#if !defined(DIAGNOSTIC)
167#ifdef __GNUC_GNU_INLINE__
168#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
169#else
170#define PMAP_INLINE	extern inline
171#endif
172#else
173#define PMAP_INLINE
174#endif
175
176#ifdef PV_STATS
177#define PV_STAT(x)	do { x ; } while (0)
178#else
179#define PV_STAT(x)	do { } while (0)
180#endif
181
182#define	pa_index(pa)	((pa) >> PDRSHIFT)
183#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
184
185/*
186 * Get PDEs and PTEs for user/kernel address space
187 */
188#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
189#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
190
191#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
192#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
193#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
194#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
195#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
196
197#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
198    atomic_clear_int((u_int *)(pte), PG_W))
199#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
200
201struct pmap kernel_pmap_store;
202LIST_HEAD(pmaplist, pmap);
203static struct pmaplist allpmaps;
204static struct mtx allpmaps_lock;
205
206vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
207vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
208int pgeflag = 0;		/* PG_G or-in */
209int pseflag = 0;		/* PG_PS or-in */
210
211static int nkpt = NKPT;
212vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
213extern u_int32_t KERNend;
214extern u_int32_t KPTphys;
215
216#ifdef PAE
217pt_entry_t pg_nx;
218static uma_zone_t pdptzone;
219#endif
220
221static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
222
223static int pat_works = 1;
224SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
225    "Is page attribute table fully functional?");
226
227static int pg_ps_enabled = 1;
228SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
229    "Are large page mappings enabled?");
230
231#define	PAT_INDEX_SIZE	8
232static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
233
234static struct rwlock_padalign pvh_global_lock;
235
236/*
237 * Data for the pv entry allocation mechanism
238 */
239static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
240static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
241static struct md_page *pv_table;
242static int shpgperproc = PMAP_SHPGPERPROC;
243
244struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
245int pv_maxchunks;			/* How many chunks we have KVA for */
246vm_offset_t pv_vafree;			/* freelist stored in the PTE */
247
248/*
249 * All those kernel PT submaps that BSD is so fond of
250 */
251struct sysmaps {
252	struct	mtx lock;
253	pt_entry_t *CMAP1;
254	pt_entry_t *CMAP2;
255	caddr_t	CADDR1;
256	caddr_t	CADDR2;
257};
258static struct sysmaps sysmaps_pcpu[MAXCPU];
259pt_entry_t *CMAP3;
260static pd_entry_t *KPTD;
261caddr_t ptvmmap = 0;
262caddr_t CADDR3;
263struct msgbuf *msgbufp = 0;
264
265/*
266 * Crashdump maps.
267 */
268static caddr_t crashdumpmap;
269
270static pt_entry_t *PMAP1 = 0, *PMAP2;
271static pt_entry_t *PADDR1 = 0, *PADDR2;
272#ifdef SMP
273static int PMAP1cpu;
274static int PMAP1changedcpu;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
276	   &PMAP1changedcpu, 0,
277	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
278#endif
279static int PMAP1changed;
280SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
281	   &PMAP1changed, 0,
282	   "Number of times pmap_pte_quick changed PMAP1");
283static int PMAP1unchanged;
284SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
285	   &PMAP1unchanged, 0,
286	   "Number of times pmap_pte_quick didn't change PMAP1");
287static struct mtx PMAP2mutex;
288
289static void	free_pv_chunk(struct pv_chunk *pc);
290static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
291static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
292static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
293static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
295static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
296static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
297		    vm_offset_t va);
298static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
299
300static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
301static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
302    vm_prot_t prot);
303static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
304    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
305static void pmap_flush_page(vm_page_t m);
306static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
307static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
308static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
309static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
310static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
311static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
312static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
313static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
314static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
315static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
316    vm_prot_t prot);
317static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
318static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
319    struct spglist *free);
320static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
321    struct spglist *free);
322static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
323static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
324    struct spglist *free);
325static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
326					vm_offset_t va);
327static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
328static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
329    vm_page_t m);
330static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
331    pd_entry_t newpde);
332static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
333
334static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
335
336static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
337static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
338static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
339static void pmap_pte_release(pt_entry_t *pte);
340static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
341#ifdef PAE
342static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
343#endif
344static void pmap_set_pg(void);
345
346static __inline void pagezero(void *page);
347
348CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
349CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
350
351/*
352 * If you get an error here, then you set KVA_PAGES wrong! See the
353 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
354 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
355 */
356CTASSERT(KERNBASE % (1 << 24) == 0);
357
358/*
359 *	Bootstrap the system enough to run with virtual memory.
360 *
361 *	On the i386 this is called after mapping has already been enabled
362 *	and just syncs the pmap module with what has already been done.
363 *	[We can't call it easily with mapping off since the kernel is not
364 *	mapped with PA == VA, hence we would have to relocate every address
365 *	from the linked base (virtual) address "KERNBASE" to the actual
366 *	(physical) address starting relative to 0]
367 */
368void
369pmap_bootstrap(vm_paddr_t firstaddr)
370{
371	vm_offset_t va;
372	pt_entry_t *pte, *unused;
373	struct sysmaps *sysmaps;
374	int i;
375
376	/*
377	 * Initialize the first available kernel virtual address.  However,
378	 * using "firstaddr" may waste a few pages of the kernel virtual
379	 * address space, because locore may not have mapped every physical
380	 * page that it allocated.  Preferably, locore would provide a first
381	 * unused virtual address in addition to "firstaddr".
382	 */
383	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
384
385	virtual_end = VM_MAX_KERNEL_ADDRESS;
386
387	/*
388	 * Initialize the kernel pmap (which is statically allocated).
389	 */
390	PMAP_LOCK_INIT(kernel_pmap);
391	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
392#ifdef PAE
393	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
394#endif
395	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
396	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
397
398 	/*
399	 * Initialize the global pv list lock.
400	 */
401	rw_init(&pvh_global_lock, "pmap pv global");
402
403	LIST_INIT(&allpmaps);
404
405	/*
406	 * Request a spin mutex so that changes to allpmaps cannot be
407	 * preempted by smp_rendezvous_cpus().  Otherwise,
408	 * pmap_update_pde_kernel() could access allpmaps while it is
409	 * being changed.
410	 */
411	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
412	mtx_lock_spin(&allpmaps_lock);
413	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
414	mtx_unlock_spin(&allpmaps_lock);
415
416	/*
417	 * Reserve some special page table entries/VA space for temporary
418	 * mapping of pages.
419	 */
420#define	SYSMAP(c, p, v, n)	\
421	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
422
423	va = virtual_avail;
424	pte = vtopte(va);
425
426	/*
427	 * CMAP1/CMAP2 are used for zeroing and copying pages.
428	 * CMAP3 is used for the idle process page zeroing.
429	 */
430	for (i = 0; i < MAXCPU; i++) {
431		sysmaps = &sysmaps_pcpu[i];
432		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
433		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
434		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
435	}
436	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
437
438	/*
439	 * Crashdump maps.
440	 */
441	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
442
443	/*
444	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
445	 */
446	SYSMAP(caddr_t, unused, ptvmmap, 1)
447
448	/*
449	 * msgbufp is used to map the system message buffer.
450	 */
451	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
452
453	/*
454	 * KPTmap is used by pmap_kextract().
455	 *
456	 * KPTmap is first initialized by locore.  However, that initial
457	 * KPTmap can only support NKPT page table pages.  Here, a larger
458	 * KPTmap is created that can support KVA_PAGES page table pages.
459	 */
460	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
461
462	for (i = 0; i < NKPT; i++)
463		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
464
465	/*
466	 * Adjust the start of the KPTD and KPTmap so that the implementation
467	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
468	 */
469	KPTD -= KPTDI;
470	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
471
472	/*
473	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
474	 * respectively.
475	 */
476	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
477	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
478
479	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
480
481	virtual_avail = va;
482
483	/*
484	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
485	 * physical memory region that is used by the ACPI wakeup code.  This
486	 * mapping must not have PG_G set.
487	 */
488#ifdef XBOX
489	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
490	 * an early stadium, we cannot yet neatly map video memory ... :-(
491	 * Better fixes are very welcome! */
492	if (!arch_i386_is_xbox)
493#endif
494	for (i = 1; i < NKPT; i++)
495		PTD[i] = 0;
496
497	/* Initialize the PAT MSR if present. */
498	pmap_init_pat();
499
500	/* Turn on PG_G on kernel page(s) */
501	pmap_set_pg();
502}
503
504/*
505 * Setup the PAT MSR.
506 */
507void
508pmap_init_pat(void)
509{
510	int pat_table[PAT_INDEX_SIZE];
511	uint64_t pat_msr;
512	u_long cr0, cr4;
513	int i;
514
515	/* Set default PAT index table. */
516	for (i = 0; i < PAT_INDEX_SIZE; i++)
517		pat_table[i] = -1;
518	pat_table[PAT_WRITE_BACK] = 0;
519	pat_table[PAT_WRITE_THROUGH] = 1;
520	pat_table[PAT_UNCACHEABLE] = 3;
521	pat_table[PAT_WRITE_COMBINING] = 3;
522	pat_table[PAT_WRITE_PROTECTED] = 3;
523	pat_table[PAT_UNCACHED] = 3;
524
525	/* Bail if this CPU doesn't implement PAT. */
526	if ((cpu_feature & CPUID_PAT) == 0) {
527		for (i = 0; i < PAT_INDEX_SIZE; i++)
528			pat_index[i] = pat_table[i];
529		pat_works = 0;
530		return;
531	}
532
533	/*
534	 * Due to some Intel errata, we can only safely use the lower 4
535	 * PAT entries.
536	 *
537	 *   Intel Pentium III Processor Specification Update
538	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
539	 * or Mode C Paging)
540	 *
541	 *   Intel Pentium IV  Processor Specification Update
542	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
543	 */
544	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
545	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
546		pat_works = 0;
547
548	/* Initialize default PAT entries. */
549	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
550	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
551	    PAT_VALUE(2, PAT_UNCACHED) |
552	    PAT_VALUE(3, PAT_UNCACHEABLE) |
553	    PAT_VALUE(4, PAT_WRITE_BACK) |
554	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
555	    PAT_VALUE(6, PAT_UNCACHED) |
556	    PAT_VALUE(7, PAT_UNCACHEABLE);
557
558	if (pat_works) {
559		/*
560		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
561		 * Program 5 and 6 as WP and WC.
562		 * Leave 4 and 7 as WB and UC.
563		 */
564		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
565		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
566		    PAT_VALUE(6, PAT_WRITE_COMBINING);
567		pat_table[PAT_UNCACHED] = 2;
568		pat_table[PAT_WRITE_PROTECTED] = 5;
569		pat_table[PAT_WRITE_COMBINING] = 6;
570	} else {
571		/*
572		 * Just replace PAT Index 2 with WC instead of UC-.
573		 */
574		pat_msr &= ~PAT_MASK(2);
575		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
576		pat_table[PAT_WRITE_COMBINING] = 2;
577	}
578
579	/* Disable PGE. */
580	cr4 = rcr4();
581	load_cr4(cr4 & ~CR4_PGE);
582
583	/* Disable caches (CD = 1, NW = 0). */
584	cr0 = rcr0();
585	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
586
587	/* Flushes caches and TLBs. */
588	wbinvd();
589	invltlb();
590
591	/* Update PAT and index table. */
592	wrmsr(MSR_PAT, pat_msr);
593	for (i = 0; i < PAT_INDEX_SIZE; i++)
594		pat_index[i] = pat_table[i];
595
596	/* Flush caches and TLBs again. */
597	wbinvd();
598	invltlb();
599
600	/* Restore caches and PGE. */
601	load_cr0(cr0);
602	load_cr4(cr4);
603}
604
605/*
606 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
607 */
608static void
609pmap_set_pg(void)
610{
611	pt_entry_t *pte;
612	vm_offset_t va, endva;
613
614	if (pgeflag == 0)
615		return;
616
617	endva = KERNBASE + KERNend;
618
619	if (pseflag) {
620		va = KERNBASE + KERNLOAD;
621		while (va  < endva) {
622			pdir_pde(PTD, va) |= pgeflag;
623			invltlb();	/* Play it safe, invltlb() every time */
624			va += NBPDR;
625		}
626	} else {
627		va = (vm_offset_t)btext;
628		while (va < endva) {
629			pte = vtopte(va);
630			if (*pte)
631				*pte |= pgeflag;
632			invltlb();	/* Play it safe, invltlb() every time */
633			va += PAGE_SIZE;
634		}
635	}
636}
637
638/*
639 * Initialize a vm_page's machine-dependent fields.
640 */
641void
642pmap_page_init(vm_page_t m)
643{
644
645	TAILQ_INIT(&m->md.pv_list);
646	m->md.pat_mode = PAT_WRITE_BACK;
647}
648
649#ifdef PAE
650static void *
651pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
652{
653
654	/* Inform UMA that this allocator uses kernel_map/object. */
655	*flags = UMA_SLAB_KERNEL;
656	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
657	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
658}
659#endif
660
661/*
662 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
663 * Requirements:
664 *  - Must deal with pages in order to ensure that none of the PG_* bits
665 *    are ever set, PG_V in particular.
666 *  - Assumes we can write to ptes without pte_store() atomic ops, even
667 *    on PAE systems.  This should be ok.
668 *  - Assumes nothing will ever test these addresses for 0 to indicate
669 *    no mapping instead of correctly checking PG_V.
670 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
671 * Because PG_V is never set, there can be no mappings to invalidate.
672 */
673static vm_offset_t
674pmap_ptelist_alloc(vm_offset_t *head)
675{
676	pt_entry_t *pte;
677	vm_offset_t va;
678
679	va = *head;
680	if (va == 0)
681		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
682	pte = vtopte(va);
683	*head = *pte;
684	if (*head & PG_V)
685		panic("pmap_ptelist_alloc: va with PG_V set!");
686	*pte = 0;
687	return (va);
688}
689
690static void
691pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
692{
693	pt_entry_t *pte;
694
695	if (va & PG_V)
696		panic("pmap_ptelist_free: freeing va with PG_V set!");
697	pte = vtopte(va);
698	*pte = *head;		/* virtual! PG_V is 0 though */
699	*head = va;
700}
701
702static void
703pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
704{
705	int i;
706	vm_offset_t va;
707
708	*head = 0;
709	for (i = npages - 1; i >= 0; i--) {
710		va = (vm_offset_t)base + i * PAGE_SIZE;
711		pmap_ptelist_free(head, va);
712	}
713}
714
715
716/*
717 *	Initialize the pmap module.
718 *	Called by vm_init, to initialize any structures that the pmap
719 *	system needs to map virtual memory.
720 */
721void
722pmap_init(void)
723{
724	vm_page_t mpte;
725	vm_size_t s;
726	int i, pv_npg;
727
728	/*
729	 * Initialize the vm page array entries for the kernel pmap's
730	 * page table pages.
731	 */
732	for (i = 0; i < NKPT; i++) {
733		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
734		KASSERT(mpte >= vm_page_array &&
735		    mpte < &vm_page_array[vm_page_array_size],
736		    ("pmap_init: page table page is out of range"));
737		mpte->pindex = i + KPTDI;
738		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
739	}
740
741	/*
742	 * Initialize the address space (zone) for the pv entries.  Set a
743	 * high water mark so that the system can recover from excessive
744	 * numbers of pv entries.
745	 */
746	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
747	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
748	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
749	pv_entry_max = roundup(pv_entry_max, _NPCPV);
750	pv_entry_high_water = 9 * (pv_entry_max / 10);
751
752	/*
753	 * If the kernel is running on a virtual machine, then it must assume
754	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
755	 * be prepared for the hypervisor changing the vendor and family that
756	 * are reported by CPUID.  Consequently, the workaround for AMD Family
757	 * 10h Erratum 383 is enabled if the processor's feature set does not
758	 * include at least one feature that is only supported by older Intel
759	 * or newer AMD processors.
760	 */
761	if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
762	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
763	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
764	    AMDID2_FMA4)) == 0)
765		workaround_erratum383 = 1;
766
767	/*
768	 * Are large page mappings supported and enabled?
769	 */
770	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
771	if (pseflag == 0)
772		pg_ps_enabled = 0;
773	else if (pg_ps_enabled) {
774		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
775		    ("pmap_init: can't assign to pagesizes[1]"));
776		pagesizes[1] = NBPDR;
777	}
778
779	/*
780	 * Calculate the size of the pv head table for superpages.
781	 */
782	for (i = 0; phys_avail[i + 1]; i += 2);
783	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
784
785	/*
786	 * Allocate memory for the pv head table for superpages.
787	 */
788	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
789	s = round_page(s);
790	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
791	    M_WAITOK | M_ZERO);
792	for (i = 0; i < pv_npg; i++)
793		TAILQ_INIT(&pv_table[i].pv_list);
794
795	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
796	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
797	if (pv_chunkbase == NULL)
798		panic("pmap_init: not enough kvm for pv chunks");
799	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
800#ifdef PAE
801	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
802	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
803	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
804	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
805#endif
806}
807
808
809SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
810	"Max number of PV entries");
811SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
812	"Page share factor per proc");
813
814static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
815    "2/4MB page mapping counters");
816
817static u_long pmap_pde_demotions;
818SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
819    &pmap_pde_demotions, 0, "2/4MB page demotions");
820
821static u_long pmap_pde_mappings;
822SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
823    &pmap_pde_mappings, 0, "2/4MB page mappings");
824
825static u_long pmap_pde_p_failures;
826SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
827    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
828
829static u_long pmap_pde_promotions;
830SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
831    &pmap_pde_promotions, 0, "2/4MB page promotions");
832
833/***************************************************
834 * Low level helper routines.....
835 ***************************************************/
836
837/*
838 * Determine the appropriate bits to set in a PTE or PDE for a specified
839 * caching mode.
840 */
841int
842pmap_cache_bits(int mode, boolean_t is_pde)
843{
844	int cache_bits, pat_flag, pat_idx;
845
846	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
847		panic("Unknown caching mode %d\n", mode);
848
849	/* The PAT bit is different for PTE's and PDE's. */
850	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
851
852	/* Map the caching mode to a PAT index. */
853	pat_idx = pat_index[mode];
854
855	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
856	cache_bits = 0;
857	if (pat_idx & 0x4)
858		cache_bits |= pat_flag;
859	if (pat_idx & 0x2)
860		cache_bits |= PG_NC_PCD;
861	if (pat_idx & 0x1)
862		cache_bits |= PG_NC_PWT;
863	return (cache_bits);
864}
865
866/*
867 * The caller is responsible for maintaining TLB consistency.
868 */
869static void
870pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
871{
872	pd_entry_t *pde;
873	pmap_t pmap;
874	boolean_t PTD_updated;
875
876	PTD_updated = FALSE;
877	mtx_lock_spin(&allpmaps_lock);
878	LIST_FOREACH(pmap, &allpmaps, pm_list) {
879		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
880		    PG_FRAME))
881			PTD_updated = TRUE;
882		pde = pmap_pde(pmap, va);
883		pde_store(pde, newpde);
884	}
885	mtx_unlock_spin(&allpmaps_lock);
886	KASSERT(PTD_updated,
887	    ("pmap_kenter_pde: current page table is not in allpmaps"));
888}
889
890/*
891 * After changing the page size for the specified virtual address in the page
892 * table, flush the corresponding entries from the processor's TLB.  Only the
893 * calling processor's TLB is affected.
894 *
895 * The calling thread must be pinned to a processor.
896 */
897static void
898pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
899{
900	u_long cr4;
901
902	if ((newpde & PG_PS) == 0)
903		/* Demotion: flush a specific 2MB page mapping. */
904		invlpg(va);
905	else if ((newpde & PG_G) == 0)
906		/*
907		 * Promotion: flush every 4KB page mapping from the TLB
908		 * because there are too many to flush individually.
909		 */
910		invltlb();
911	else {
912		/*
913		 * Promotion: flush every 4KB page mapping from the TLB,
914		 * including any global (PG_G) mappings.
915		 */
916		cr4 = rcr4();
917		load_cr4(cr4 & ~CR4_PGE);
918		/*
919		 * Although preemption at this point could be detrimental to
920		 * performance, it would not lead to an error.  PG_G is simply
921		 * ignored if CR4.PGE is clear.  Moreover, in case this block
922		 * is re-entered, the load_cr4() either above or below will
923		 * modify CR4.PGE flushing the TLB.
924		 */
925		load_cr4(cr4 | CR4_PGE);
926	}
927}
928#ifdef SMP
929/*
930 * For SMP, these functions have to use the IPI mechanism for coherence.
931 *
932 * N.B.: Before calling any of the following TLB invalidation functions,
933 * the calling processor must ensure that all stores updating a non-
934 * kernel page table are globally performed.  Otherwise, another
935 * processor could cache an old, pre-update entry without being
936 * invalidated.  This can happen one of two ways: (1) The pmap becomes
937 * active on another processor after its pm_active field is checked by
938 * one of the following functions but before a store updating the page
939 * table is globally performed. (2) The pmap becomes active on another
940 * processor before its pm_active field is checked but due to
941 * speculative loads one of the following functions stills reads the
942 * pmap as inactive on the other processor.
943 *
944 * The kernel page table is exempt because its pm_active field is
945 * immutable.  The kernel page table is always active on every
946 * processor.
947 */
948void
949pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
950{
951	cpuset_t other_cpus;
952	u_int cpuid;
953
954	sched_pin();
955	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
956		invlpg(va);
957		smp_invlpg(va);
958	} else {
959		cpuid = PCPU_GET(cpuid);
960		other_cpus = all_cpus;
961		CPU_CLR(cpuid, &other_cpus);
962		if (CPU_ISSET(cpuid, &pmap->pm_active))
963			invlpg(va);
964		CPU_AND(&other_cpus, &pmap->pm_active);
965		if (!CPU_EMPTY(&other_cpus))
966			smp_masked_invlpg(other_cpus, va);
967	}
968	sched_unpin();
969}
970
971void
972pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
973{
974	cpuset_t other_cpus;
975	vm_offset_t addr;
976	u_int cpuid;
977
978	sched_pin();
979	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
980		for (addr = sva; addr < eva; addr += PAGE_SIZE)
981			invlpg(addr);
982		smp_invlpg_range(sva, eva);
983	} else {
984		cpuid = PCPU_GET(cpuid);
985		other_cpus = all_cpus;
986		CPU_CLR(cpuid, &other_cpus);
987		if (CPU_ISSET(cpuid, &pmap->pm_active))
988			for (addr = sva; addr < eva; addr += PAGE_SIZE)
989				invlpg(addr);
990		CPU_AND(&other_cpus, &pmap->pm_active);
991		if (!CPU_EMPTY(&other_cpus))
992			smp_masked_invlpg_range(other_cpus, sva, eva);
993	}
994	sched_unpin();
995}
996
997void
998pmap_invalidate_all(pmap_t pmap)
999{
1000	cpuset_t other_cpus;
1001	u_int cpuid;
1002
1003	sched_pin();
1004	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1005		invltlb();
1006		smp_invltlb();
1007	} else {
1008		cpuid = PCPU_GET(cpuid);
1009		other_cpus = all_cpus;
1010		CPU_CLR(cpuid, &other_cpus);
1011		if (CPU_ISSET(cpuid, &pmap->pm_active))
1012			invltlb();
1013		CPU_AND(&other_cpus, &pmap->pm_active);
1014		if (!CPU_EMPTY(&other_cpus))
1015			smp_masked_invltlb(other_cpus);
1016	}
1017	sched_unpin();
1018}
1019
1020void
1021pmap_invalidate_cache(void)
1022{
1023
1024	sched_pin();
1025	wbinvd();
1026	smp_cache_flush();
1027	sched_unpin();
1028}
1029
1030struct pde_action {
1031	cpuset_t invalidate;	/* processors that invalidate their TLB */
1032	vm_offset_t va;
1033	pd_entry_t *pde;
1034	pd_entry_t newpde;
1035	u_int store;		/* processor that updates the PDE */
1036};
1037
1038static void
1039pmap_update_pde_kernel(void *arg)
1040{
1041	struct pde_action *act = arg;
1042	pd_entry_t *pde;
1043	pmap_t pmap;
1044
1045	if (act->store == PCPU_GET(cpuid)) {
1046
1047		/*
1048		 * Elsewhere, this operation requires allpmaps_lock for
1049		 * synchronization.  Here, it does not because it is being
1050		 * performed in the context of an all_cpus rendezvous.
1051		 */
1052		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1053			pde = pmap_pde(pmap, act->va);
1054			pde_store(pde, act->newpde);
1055		}
1056	}
1057}
1058
1059static void
1060pmap_update_pde_user(void *arg)
1061{
1062	struct pde_action *act = arg;
1063
1064	if (act->store == PCPU_GET(cpuid))
1065		pde_store(act->pde, act->newpde);
1066}
1067
1068static void
1069pmap_update_pde_teardown(void *arg)
1070{
1071	struct pde_action *act = arg;
1072
1073	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1074		pmap_update_pde_invalidate(act->va, act->newpde);
1075}
1076
1077/*
1078 * Change the page size for the specified virtual address in a way that
1079 * prevents any possibility of the TLB ever having two entries that map the
1080 * same virtual address using different page sizes.  This is the recommended
1081 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1082 * machine check exception for a TLB state that is improperly diagnosed as a
1083 * hardware error.
1084 */
1085static void
1086pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1087{
1088	struct pde_action act;
1089	cpuset_t active, other_cpus;
1090	u_int cpuid;
1091
1092	sched_pin();
1093	cpuid = PCPU_GET(cpuid);
1094	other_cpus = all_cpus;
1095	CPU_CLR(cpuid, &other_cpus);
1096	if (pmap == kernel_pmap)
1097		active = all_cpus;
1098	else
1099		active = pmap->pm_active;
1100	if (CPU_OVERLAP(&active, &other_cpus)) {
1101		act.store = cpuid;
1102		act.invalidate = active;
1103		act.va = va;
1104		act.pde = pde;
1105		act.newpde = newpde;
1106		CPU_SET(cpuid, &active);
1107		smp_rendezvous_cpus(active,
1108		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1109		    pmap_update_pde_kernel : pmap_update_pde_user,
1110		    pmap_update_pde_teardown, &act);
1111	} else {
1112		if (pmap == kernel_pmap)
1113			pmap_kenter_pde(va, newpde);
1114		else
1115			pde_store(pde, newpde);
1116		if (CPU_ISSET(cpuid, &active))
1117			pmap_update_pde_invalidate(va, newpde);
1118	}
1119	sched_unpin();
1120}
1121#else /* !SMP */
1122/*
1123 * Normal, non-SMP, 486+ invalidation functions.
1124 * We inline these within pmap.c for speed.
1125 */
1126PMAP_INLINE void
1127pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1128{
1129
1130	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1131		invlpg(va);
1132}
1133
1134PMAP_INLINE void
1135pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1136{
1137	vm_offset_t addr;
1138
1139	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1140		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1141			invlpg(addr);
1142}
1143
1144PMAP_INLINE void
1145pmap_invalidate_all(pmap_t pmap)
1146{
1147
1148	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1149		invltlb();
1150}
1151
1152PMAP_INLINE void
1153pmap_invalidate_cache(void)
1154{
1155
1156	wbinvd();
1157}
1158
1159static void
1160pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1161{
1162
1163	if (pmap == kernel_pmap)
1164		pmap_kenter_pde(va, newpde);
1165	else
1166		pde_store(pde, newpde);
1167	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1168		pmap_update_pde_invalidate(va, newpde);
1169}
1170#endif /* !SMP */
1171
1172#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1173
1174void
1175pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1176{
1177
1178	KASSERT((sva & PAGE_MASK) == 0,
1179	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1180	KASSERT((eva & PAGE_MASK) == 0,
1181	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1182
1183	if (cpu_feature & CPUID_SS)
1184		; /* If "Self Snoop" is supported, do nothing. */
1185	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1186	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1187
1188#ifdef DEV_APIC
1189		/*
1190		 * XXX: Some CPUs fault, hang, or trash the local APIC
1191		 * registers if we use CLFLUSH on the local APIC
1192		 * range.  The local APIC is always uncached, so we
1193		 * don't need to flush for that range anyway.
1194		 */
1195		if (pmap_kextract(sva) == lapic_paddr)
1196			return;
1197#endif
1198		/*
1199		 * Otherwise, do per-cache line flush.  Use the mfence
1200		 * instruction to insure that previous stores are
1201		 * included in the write-back.  The processor
1202		 * propagates flush to other processors in the cache
1203		 * coherence domain.
1204		 */
1205		mfence();
1206		for (; sva < eva; sva += cpu_clflush_line_size)
1207			clflush(sva);
1208		mfence();
1209	} else {
1210
1211		/*
1212		 * No targeted cache flush methods are supported by CPU,
1213		 * or the supplied range is bigger than 2MB.
1214		 * Globally invalidate cache.
1215		 */
1216		pmap_invalidate_cache();
1217	}
1218}
1219
1220void
1221pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1222{
1223	int i;
1224
1225	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1226	    (cpu_feature & CPUID_CLFSH) == 0) {
1227		pmap_invalidate_cache();
1228	} else {
1229		for (i = 0; i < count; i++)
1230			pmap_flush_page(pages[i]);
1231	}
1232}
1233
1234/*
1235 * Are we current address space or kernel?  N.B. We return FALSE when
1236 * a pmap's page table is in use because a kernel thread is borrowing
1237 * it.  The borrowed page table can change spontaneously, making any
1238 * dependence on its continued use subject to a race condition.
1239 */
1240static __inline int
1241pmap_is_current(pmap_t pmap)
1242{
1243
1244	return (pmap == kernel_pmap ||
1245	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1246	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1247}
1248
1249/*
1250 * If the given pmap is not the current or kernel pmap, the returned pte must
1251 * be released by passing it to pmap_pte_release().
1252 */
1253pt_entry_t *
1254pmap_pte(pmap_t pmap, vm_offset_t va)
1255{
1256	pd_entry_t newpf;
1257	pd_entry_t *pde;
1258
1259	pde = pmap_pde(pmap, va);
1260	if (*pde & PG_PS)
1261		return (pde);
1262	if (*pde != 0) {
1263		/* are we current address space or kernel? */
1264		if (pmap_is_current(pmap))
1265			return (vtopte(va));
1266		mtx_lock(&PMAP2mutex);
1267		newpf = *pde & PG_FRAME;
1268		if ((*PMAP2 & PG_FRAME) != newpf) {
1269			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1270			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1271		}
1272		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1273	}
1274	return (NULL);
1275}
1276
1277/*
1278 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1279 * being NULL.
1280 */
1281static __inline void
1282pmap_pte_release(pt_entry_t *pte)
1283{
1284
1285	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1286		mtx_unlock(&PMAP2mutex);
1287}
1288
1289/*
1290 * NB:  The sequence of updating a page table followed by accesses to the
1291 * corresponding pages is subject to the situation described in the "AMD64
1292 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1293 * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1294 * right after modifying the PTE bits is crucial.
1295 */
1296static __inline void
1297invlcaddr(void *caddr)
1298{
1299
1300	invlpg((u_int)caddr);
1301}
1302
1303/*
1304 * Super fast pmap_pte routine best used when scanning
1305 * the pv lists.  This eliminates many coarse-grained
1306 * invltlb calls.  Note that many of the pv list
1307 * scans are across different pmaps.  It is very wasteful
1308 * to do an entire invltlb for checking a single mapping.
1309 *
1310 * If the given pmap is not the current pmap, pvh_global_lock
1311 * must be held and curthread pinned to a CPU.
1312 */
1313static pt_entry_t *
1314pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1315{
1316	pd_entry_t newpf;
1317	pd_entry_t *pde;
1318
1319	pde = pmap_pde(pmap, va);
1320	if (*pde & PG_PS)
1321		return (pde);
1322	if (*pde != 0) {
1323		/* are we current address space or kernel? */
1324		if (pmap_is_current(pmap))
1325			return (vtopte(va));
1326		rw_assert(&pvh_global_lock, RA_WLOCKED);
1327		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1328		newpf = *pde & PG_FRAME;
1329		if ((*PMAP1 & PG_FRAME) != newpf) {
1330			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1331#ifdef SMP
1332			PMAP1cpu = PCPU_GET(cpuid);
1333#endif
1334			invlcaddr(PADDR1);
1335			PMAP1changed++;
1336		} else
1337#ifdef SMP
1338		if (PMAP1cpu != PCPU_GET(cpuid)) {
1339			PMAP1cpu = PCPU_GET(cpuid);
1340			invlcaddr(PADDR1);
1341			PMAP1changedcpu++;
1342		} else
1343#endif
1344			PMAP1unchanged++;
1345		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1346	}
1347	return (0);
1348}
1349
1350/*
1351 *	Routine:	pmap_extract
1352 *	Function:
1353 *		Extract the physical page address associated
1354 *		with the given map/virtual_address pair.
1355 */
1356vm_paddr_t
1357pmap_extract(pmap_t pmap, vm_offset_t va)
1358{
1359	vm_paddr_t rtval;
1360	pt_entry_t *pte;
1361	pd_entry_t pde;
1362
1363	rtval = 0;
1364	PMAP_LOCK(pmap);
1365	pde = pmap->pm_pdir[va >> PDRSHIFT];
1366	if (pde != 0) {
1367		if ((pde & PG_PS) != 0)
1368			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1369		else {
1370			pte = pmap_pte(pmap, va);
1371			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1372			pmap_pte_release(pte);
1373		}
1374	}
1375	PMAP_UNLOCK(pmap);
1376	return (rtval);
1377}
1378
1379/*
1380 *	Routine:	pmap_extract_and_hold
1381 *	Function:
1382 *		Atomically extract and hold the physical page
1383 *		with the given pmap and virtual address pair
1384 *		if that mapping permits the given protection.
1385 */
1386vm_page_t
1387pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1388{
1389	pd_entry_t pde;
1390	pt_entry_t pte, *ptep;
1391	vm_page_t m;
1392	vm_paddr_t pa;
1393
1394	pa = 0;
1395	m = NULL;
1396	PMAP_LOCK(pmap);
1397retry:
1398	pde = *pmap_pde(pmap, va);
1399	if (pde != 0) {
1400		if (pde & PG_PS) {
1401			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1402				if (vm_page_pa_tryrelock(pmap, (pde &
1403				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1404					goto retry;
1405				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1406				    (va & PDRMASK));
1407				vm_page_hold(m);
1408			}
1409		} else {
1410			ptep = pmap_pte(pmap, va);
1411			pte = *ptep;
1412			pmap_pte_release(ptep);
1413			if (pte != 0 &&
1414			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1415				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1416				    &pa))
1417					goto retry;
1418				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1419				vm_page_hold(m);
1420			}
1421		}
1422	}
1423	PA_UNLOCK_COND(pa);
1424	PMAP_UNLOCK(pmap);
1425	return (m);
1426}
1427
1428/***************************************************
1429 * Low level mapping routines.....
1430 ***************************************************/
1431
1432/*
1433 * Add a wired page to the kva.
1434 * Note: not SMP coherent.
1435 *
1436 * This function may be used before pmap_bootstrap() is called.
1437 */
1438PMAP_INLINE void
1439pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1440{
1441	pt_entry_t *pte;
1442
1443	pte = vtopte(va);
1444	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1445}
1446
1447static __inline void
1448pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1449{
1450	pt_entry_t *pte;
1451
1452	pte = vtopte(va);
1453	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1454}
1455
1456/*
1457 * Remove a page from the kernel pagetables.
1458 * Note: not SMP coherent.
1459 *
1460 * This function may be used before pmap_bootstrap() is called.
1461 */
1462PMAP_INLINE void
1463pmap_kremove(vm_offset_t va)
1464{
1465	pt_entry_t *pte;
1466
1467	pte = vtopte(va);
1468	pte_clear(pte);
1469}
1470
1471/*
1472 *	Used to map a range of physical addresses into kernel
1473 *	virtual address space.
1474 *
1475 *	The value passed in '*virt' is a suggested virtual address for
1476 *	the mapping. Architectures which can support a direct-mapped
1477 *	physical to virtual region can return the appropriate address
1478 *	within that region, leaving '*virt' unchanged. Other
1479 *	architectures should map the pages starting at '*virt' and
1480 *	update '*virt' with the first usable address after the mapped
1481 *	region.
1482 */
1483vm_offset_t
1484pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1485{
1486	vm_offset_t va, sva;
1487	vm_paddr_t superpage_offset;
1488	pd_entry_t newpde;
1489
1490	va = *virt;
1491	/*
1492	 * Does the physical address range's size and alignment permit at
1493	 * least one superpage mapping to be created?
1494	 */
1495	superpage_offset = start & PDRMASK;
1496	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1497		/*
1498		 * Increase the starting virtual address so that its alignment
1499		 * does not preclude the use of superpage mappings.
1500		 */
1501		if ((va & PDRMASK) < superpage_offset)
1502			va = (va & ~PDRMASK) + superpage_offset;
1503		else if ((va & PDRMASK) > superpage_offset)
1504			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1505	}
1506	sva = va;
1507	while (start < end) {
1508		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1509		    pseflag) {
1510			KASSERT((va & PDRMASK) == 0,
1511			    ("pmap_map: misaligned va %#x", va));
1512			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1513			pmap_kenter_pde(va, newpde);
1514			va += NBPDR;
1515			start += NBPDR;
1516		} else {
1517			pmap_kenter(va, start);
1518			va += PAGE_SIZE;
1519			start += PAGE_SIZE;
1520		}
1521	}
1522	pmap_invalidate_range(kernel_pmap, sva, va);
1523	*virt = va;
1524	return (sva);
1525}
1526
1527
1528/*
1529 * Add a list of wired pages to the kva
1530 * this routine is only used for temporary
1531 * kernel mappings that do not need to have
1532 * page modification or references recorded.
1533 * Note that old mappings are simply written
1534 * over.  The page *must* be wired.
1535 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1536 */
1537void
1538pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1539{
1540	pt_entry_t *endpte, oldpte, pa, *pte;
1541	vm_page_t m;
1542
1543	oldpte = 0;
1544	pte = vtopte(sva);
1545	endpte = pte + count;
1546	while (pte < endpte) {
1547		m = *ma++;
1548		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1549		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1550			oldpte |= *pte;
1551			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1552		}
1553		pte++;
1554	}
1555	if (__predict_false((oldpte & PG_V) != 0))
1556		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1557		    PAGE_SIZE);
1558}
1559
1560/*
1561 * This routine tears out page mappings from the
1562 * kernel -- it is meant only for temporary mappings.
1563 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1564 */
1565void
1566pmap_qremove(vm_offset_t sva, int count)
1567{
1568	vm_offset_t va;
1569
1570	va = sva;
1571	while (count-- > 0) {
1572		pmap_kremove(va);
1573		va += PAGE_SIZE;
1574	}
1575	pmap_invalidate_range(kernel_pmap, sva, va);
1576}
1577
1578/***************************************************
1579 * Page table page management routines.....
1580 ***************************************************/
1581static __inline void
1582pmap_free_zero_pages(struct spglist *free)
1583{
1584	vm_page_t m;
1585
1586	while ((m = SLIST_FIRST(free)) != NULL) {
1587		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1588		/* Preserve the page's PG_ZERO setting. */
1589		vm_page_free_toq(m);
1590	}
1591}
1592
1593/*
1594 * Schedule the specified unused page table page to be freed.  Specifically,
1595 * add the page to the specified list of pages that will be released to the
1596 * physical memory manager after the TLB has been updated.
1597 */
1598static __inline void
1599pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1600    boolean_t set_PG_ZERO)
1601{
1602
1603	if (set_PG_ZERO)
1604		m->flags |= PG_ZERO;
1605	else
1606		m->flags &= ~PG_ZERO;
1607	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1608}
1609
1610/*
1611 * Inserts the specified page table page into the specified pmap's collection
1612 * of idle page table pages.  Each of a pmap's page table pages is responsible
1613 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1614 * ordered by this virtual address range.
1615 */
1616static __inline int
1617pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1618{
1619
1620	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1621	return (vm_radix_insert(&pmap->pm_root, mpte));
1622}
1623
1624/*
1625 * Looks for a page table page mapping the specified virtual address in the
1626 * specified pmap's collection of idle page table pages.  Returns NULL if there
1627 * is no page table page corresponding to the specified virtual address.
1628 */
1629static __inline vm_page_t
1630pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1631{
1632
1633	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1634	return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
1635}
1636
1637/*
1638 * Removes the specified page table page from the specified pmap's collection
1639 * of idle page table pages.  The specified page table page must be a member of
1640 * the pmap's collection.
1641 */
1642static __inline void
1643pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1644{
1645
1646	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1647	vm_radix_remove(&pmap->pm_root, mpte->pindex);
1648}
1649
1650/*
1651 * Decrements a page table page's wire count, which is used to record the
1652 * number of valid page table entries within the page.  If the wire count
1653 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1654 * page table page was unmapped and FALSE otherwise.
1655 */
1656static inline boolean_t
1657pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1658{
1659
1660	--m->wire_count;
1661	if (m->wire_count == 0) {
1662		_pmap_unwire_ptp(pmap, m, free);
1663		return (TRUE);
1664	} else
1665		return (FALSE);
1666}
1667
1668static void
1669_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1670{
1671	vm_offset_t pteva;
1672
1673	/*
1674	 * unmap the page table page
1675	 */
1676	pmap->pm_pdir[m->pindex] = 0;
1677	--pmap->pm_stats.resident_count;
1678
1679	/*
1680	 * This is a release store so that the ordinary store unmapping
1681	 * the page table page is globally performed before TLB shoot-
1682	 * down is begun.
1683	 */
1684	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1685
1686	/*
1687	 * Do an invltlb to make the invalidated mapping
1688	 * take effect immediately.
1689	 */
1690	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1691	pmap_invalidate_page(pmap, pteva);
1692
1693	/*
1694	 * Put page on a list so that it is released after
1695	 * *ALL* TLB shootdown is done
1696	 */
1697	pmap_add_delayed_free_list(m, free, TRUE);
1698}
1699
1700/*
1701 * After removing a page table entry, this routine is used to
1702 * conditionally free the page, and manage the hold/wire counts.
1703 */
1704static int
1705pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1706{
1707	pd_entry_t ptepde;
1708	vm_page_t mpte;
1709
1710	if (va >= VM_MAXUSER_ADDRESS)
1711		return (0);
1712	ptepde = *pmap_pde(pmap, va);
1713	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1714	return (pmap_unwire_ptp(pmap, mpte, free));
1715}
1716
1717/*
1718 * Initialize the pmap for the swapper process.
1719 */
1720void
1721pmap_pinit0(pmap_t pmap)
1722{
1723
1724	PMAP_LOCK_INIT(pmap);
1725	/*
1726	 * Since the page table directory is shared with the kernel pmap,
1727	 * which is already included in the list "allpmaps", this pmap does
1728	 * not need to be inserted into that list.
1729	 */
1730	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1731#ifdef PAE
1732	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1733#endif
1734	pmap->pm_root.rt_root = 0;
1735	CPU_ZERO(&pmap->pm_active);
1736	PCPU_SET(curpmap, pmap);
1737	TAILQ_INIT(&pmap->pm_pvchunk);
1738	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1739}
1740
1741/*
1742 * Initialize a preallocated and zeroed pmap structure,
1743 * such as one in a vmspace structure.
1744 */
1745int
1746pmap_pinit(pmap_t pmap)
1747{
1748	vm_page_t m, ptdpg[NPGPTD];
1749	vm_paddr_t pa;
1750	int i;
1751
1752	/*
1753	 * No need to allocate page table space yet but we do need a valid
1754	 * page directory table.
1755	 */
1756	if (pmap->pm_pdir == NULL) {
1757		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1758		if (pmap->pm_pdir == NULL) {
1759			PMAP_LOCK_DESTROY(pmap);
1760			return (0);
1761		}
1762#ifdef PAE
1763		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1764		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1765		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1766		    ("pmap_pinit: pdpt misaligned"));
1767		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1768		    ("pmap_pinit: pdpt above 4g"));
1769#endif
1770		pmap->pm_root.rt_root = 0;
1771	}
1772	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1773	    ("pmap_pinit: pmap has reserved page table page(s)"));
1774
1775	/*
1776	 * allocate the page directory page(s)
1777	 */
1778	for (i = 0; i < NPGPTD;) {
1779		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1780		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1781		if (m == NULL)
1782			VM_WAIT;
1783		else {
1784			ptdpg[i++] = m;
1785		}
1786	}
1787
1788	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1789
1790	for (i = 0; i < NPGPTD; i++)
1791		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1792			pagezero(pmap->pm_pdir + (i * NPDEPG));
1793
1794	mtx_lock_spin(&allpmaps_lock);
1795	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1796	/* Copy the kernel page table directory entries. */
1797	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1798	mtx_unlock_spin(&allpmaps_lock);
1799
1800	/* install self-referential address mapping entry(s) */
1801	for (i = 0; i < NPGPTD; i++) {
1802		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1803		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1804#ifdef PAE
1805		pmap->pm_pdpt[i] = pa | PG_V;
1806#endif
1807	}
1808
1809	CPU_ZERO(&pmap->pm_active);
1810	TAILQ_INIT(&pmap->pm_pvchunk);
1811	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1812
1813	return (1);
1814}
1815
1816/*
1817 * this routine is called if the page table page is not
1818 * mapped correctly.
1819 */
1820static vm_page_t
1821_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1822{
1823	vm_paddr_t ptepa;
1824	vm_page_t m;
1825
1826	/*
1827	 * Allocate a page table page.
1828	 */
1829	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1830	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1831		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1832			PMAP_UNLOCK(pmap);
1833			rw_wunlock(&pvh_global_lock);
1834			VM_WAIT;
1835			rw_wlock(&pvh_global_lock);
1836			PMAP_LOCK(pmap);
1837		}
1838
1839		/*
1840		 * Indicate the need to retry.  While waiting, the page table
1841		 * page may have been allocated.
1842		 */
1843		return (NULL);
1844	}
1845	if ((m->flags & PG_ZERO) == 0)
1846		pmap_zero_page(m);
1847
1848	/*
1849	 * Map the pagetable page into the process address space, if
1850	 * it isn't already there.
1851	 */
1852
1853	pmap->pm_stats.resident_count++;
1854
1855	ptepa = VM_PAGE_TO_PHYS(m);
1856	pmap->pm_pdir[ptepindex] =
1857		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1858
1859	return (m);
1860}
1861
1862static vm_page_t
1863pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1864{
1865	u_int ptepindex;
1866	pd_entry_t ptepa;
1867	vm_page_t m;
1868
1869	/*
1870	 * Calculate pagetable page index
1871	 */
1872	ptepindex = va >> PDRSHIFT;
1873retry:
1874	/*
1875	 * Get the page directory entry
1876	 */
1877	ptepa = pmap->pm_pdir[ptepindex];
1878
1879	/*
1880	 * This supports switching from a 4MB page to a
1881	 * normal 4K page.
1882	 */
1883	if (ptepa & PG_PS) {
1884		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1885		ptepa = pmap->pm_pdir[ptepindex];
1886	}
1887
1888	/*
1889	 * If the page table page is mapped, we just increment the
1890	 * hold count, and activate it.
1891	 */
1892	if (ptepa) {
1893		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1894		m->wire_count++;
1895	} else {
1896		/*
1897		 * Here if the pte page isn't mapped, or if it has
1898		 * been deallocated.
1899		 */
1900		m = _pmap_allocpte(pmap, ptepindex, flags);
1901		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1902			goto retry;
1903	}
1904	return (m);
1905}
1906
1907
1908/***************************************************
1909* Pmap allocation/deallocation routines.
1910 ***************************************************/
1911
1912#ifdef SMP
1913/*
1914 * Deal with a SMP shootdown of other users of the pmap that we are
1915 * trying to dispose of.  This can be a bit hairy.
1916 */
1917static cpuset_t *lazymask;
1918static u_int lazyptd;
1919static volatile u_int lazywait;
1920
1921void pmap_lazyfix_action(void);
1922
1923void
1924pmap_lazyfix_action(void)
1925{
1926
1927#ifdef COUNT_IPIS
1928	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1929#endif
1930	if (rcr3() == lazyptd)
1931		load_cr3(curpcb->pcb_cr3);
1932	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1933	atomic_store_rel_int(&lazywait, 1);
1934}
1935
1936static void
1937pmap_lazyfix_self(u_int cpuid)
1938{
1939
1940	if (rcr3() == lazyptd)
1941		load_cr3(curpcb->pcb_cr3);
1942	CPU_CLR_ATOMIC(cpuid, lazymask);
1943}
1944
1945
1946static void
1947pmap_lazyfix(pmap_t pmap)
1948{
1949	cpuset_t mymask, mask;
1950	u_int cpuid, spins;
1951	int lsb;
1952
1953	mask = pmap->pm_active;
1954	while (!CPU_EMPTY(&mask)) {
1955		spins = 50000000;
1956
1957		/* Find least significant set bit. */
1958		lsb = CPU_FFS(&mask);
1959		MPASS(lsb != 0);
1960		lsb--;
1961		CPU_SETOF(lsb, &mask);
1962		mtx_lock_spin(&smp_ipi_mtx);
1963#ifdef PAE
1964		lazyptd = vtophys(pmap->pm_pdpt);
1965#else
1966		lazyptd = vtophys(pmap->pm_pdir);
1967#endif
1968		cpuid = PCPU_GET(cpuid);
1969
1970		/* Use a cpuset just for having an easy check. */
1971		CPU_SETOF(cpuid, &mymask);
1972		if (!CPU_CMP(&mask, &mymask)) {
1973			lazymask = &pmap->pm_active;
1974			pmap_lazyfix_self(cpuid);
1975		} else {
1976			atomic_store_rel_int((u_int *)&lazymask,
1977			    (u_int)&pmap->pm_active);
1978			atomic_store_rel_int(&lazywait, 0);
1979			ipi_selected(mask, IPI_LAZYPMAP);
1980			while (lazywait == 0) {
1981				ia32_pause();
1982				if (--spins == 0)
1983					break;
1984			}
1985		}
1986		mtx_unlock_spin(&smp_ipi_mtx);
1987		if (spins == 0)
1988			printf("pmap_lazyfix: spun for 50000000\n");
1989		mask = pmap->pm_active;
1990	}
1991}
1992
1993#else	/* SMP */
1994
1995/*
1996 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1997 * unlikely to have to even execute this code, including the fact
1998 * that the cleanup is deferred until the parent does a wait(2), which
1999 * means that another userland process has run.
2000 */
2001static void
2002pmap_lazyfix(pmap_t pmap)
2003{
2004	u_int cr3;
2005
2006	cr3 = vtophys(pmap->pm_pdir);
2007	if (cr3 == rcr3()) {
2008		load_cr3(curpcb->pcb_cr3);
2009		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
2010	}
2011}
2012#endif	/* SMP */
2013
2014/*
2015 * Release any resources held by the given physical map.
2016 * Called when a pmap initialized by pmap_pinit is being released.
2017 * Should only be called if the map contains no valid mappings.
2018 */
2019void
2020pmap_release(pmap_t pmap)
2021{
2022	vm_page_t m, ptdpg[NPGPTD];
2023	int i;
2024
2025	KASSERT(pmap->pm_stats.resident_count == 0,
2026	    ("pmap_release: pmap resident count %ld != 0",
2027	    pmap->pm_stats.resident_count));
2028	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2029	    ("pmap_release: pmap has reserved page table page(s)"));
2030
2031	pmap_lazyfix(pmap);
2032	mtx_lock_spin(&allpmaps_lock);
2033	LIST_REMOVE(pmap, pm_list);
2034	mtx_unlock_spin(&allpmaps_lock);
2035
2036	for (i = 0; i < NPGPTD; i++)
2037		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2038		    PG_FRAME);
2039
2040	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2041	    sizeof(*pmap->pm_pdir));
2042
2043	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2044
2045	for (i = 0; i < NPGPTD; i++) {
2046		m = ptdpg[i];
2047#ifdef PAE
2048		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2049		    ("pmap_release: got wrong ptd page"));
2050#endif
2051		m->wire_count--;
2052		atomic_subtract_int(&cnt.v_wire_count, 1);
2053		vm_page_free_zero(m);
2054	}
2055}
2056
2057static int
2058kvm_size(SYSCTL_HANDLER_ARGS)
2059{
2060	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2061
2062	return (sysctl_handle_long(oidp, &ksize, 0, req));
2063}
2064SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2065    0, 0, kvm_size, "IU", "Size of KVM");
2066
2067static int
2068kvm_free(SYSCTL_HANDLER_ARGS)
2069{
2070	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2071
2072	return (sysctl_handle_long(oidp, &kfree, 0, req));
2073}
2074SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2075    0, 0, kvm_free, "IU", "Amount of KVM free");
2076
2077/*
2078 * grow the number of kernel page table entries, if needed
2079 */
2080void
2081pmap_growkernel(vm_offset_t addr)
2082{
2083	vm_paddr_t ptppaddr;
2084	vm_page_t nkpg;
2085	pd_entry_t newpdir;
2086
2087	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2088	addr = roundup2(addr, NBPDR);
2089	if (addr - 1 >= kernel_map->max_offset)
2090		addr = kernel_map->max_offset;
2091	while (kernel_vm_end < addr) {
2092		if (pdir_pde(PTD, kernel_vm_end)) {
2093			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2094			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2095				kernel_vm_end = kernel_map->max_offset;
2096				break;
2097			}
2098			continue;
2099		}
2100
2101		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2102		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2103		    VM_ALLOC_ZERO);
2104		if (nkpg == NULL)
2105			panic("pmap_growkernel: no memory to grow kernel");
2106
2107		nkpt++;
2108
2109		if ((nkpg->flags & PG_ZERO) == 0)
2110			pmap_zero_page(nkpg);
2111		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2112		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2113		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2114
2115		pmap_kenter_pde(kernel_vm_end, newpdir);
2116		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2117		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2118			kernel_vm_end = kernel_map->max_offset;
2119			break;
2120		}
2121	}
2122}
2123
2124
2125/***************************************************
2126 * page management routines.
2127 ***************************************************/
2128
2129CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2130CTASSERT(_NPCM == 11);
2131CTASSERT(_NPCPV == 336);
2132
2133static __inline struct pv_chunk *
2134pv_to_chunk(pv_entry_t pv)
2135{
2136
2137	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2138}
2139
2140#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2141
2142#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2143#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2144
2145static const uint32_t pc_freemask[_NPCM] = {
2146	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2147	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2148	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2149	PC_FREE0_9, PC_FREE10
2150};
2151
2152SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2153	"Current number of pv entries");
2154
2155#ifdef PV_STATS
2156static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2157
2158SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2159	"Current number of pv entry chunks");
2160SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2161	"Current number of pv entry chunks allocated");
2162SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2163	"Current number of pv entry chunks frees");
2164SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2165	"Number of times tried to get a chunk page but failed.");
2166
2167static long pv_entry_frees, pv_entry_allocs;
2168static int pv_entry_spare;
2169
2170SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2171	"Current number of pv entry frees");
2172SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2173	"Current number of pv entry allocs");
2174SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2175	"Current number of spare pv entries");
2176#endif
2177
2178/*
2179 * We are in a serious low memory condition.  Resort to
2180 * drastic measures to free some pages so we can allocate
2181 * another pv entry chunk.
2182 */
2183static vm_page_t
2184pmap_pv_reclaim(pmap_t locked_pmap)
2185{
2186	struct pch newtail;
2187	struct pv_chunk *pc;
2188	struct md_page *pvh;
2189	pd_entry_t *pde;
2190	pmap_t pmap;
2191	pt_entry_t *pte, tpte;
2192	pv_entry_t pv;
2193	vm_offset_t va;
2194	vm_page_t m, m_pc;
2195	struct spglist free;
2196	uint32_t inuse;
2197	int bit, field, freed;
2198
2199	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2200	pmap = NULL;
2201	m_pc = NULL;
2202	SLIST_INIT(&free);
2203	TAILQ_INIT(&newtail);
2204	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2205	    SLIST_EMPTY(&free))) {
2206		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2207		if (pmap != pc->pc_pmap) {
2208			if (pmap != NULL) {
2209				pmap_invalidate_all(pmap);
2210				if (pmap != locked_pmap)
2211					PMAP_UNLOCK(pmap);
2212			}
2213			pmap = pc->pc_pmap;
2214			/* Avoid deadlock and lock recursion. */
2215			if (pmap > locked_pmap)
2216				PMAP_LOCK(pmap);
2217			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2218				pmap = NULL;
2219				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2220				continue;
2221			}
2222		}
2223
2224		/*
2225		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2226		 */
2227		freed = 0;
2228		for (field = 0; field < _NPCM; field++) {
2229			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2230			    inuse != 0; inuse &= ~(1UL << bit)) {
2231				bit = bsfl(inuse);
2232				pv = &pc->pc_pventry[field * 32 + bit];
2233				va = pv->pv_va;
2234				pde = pmap_pde(pmap, va);
2235				if ((*pde & PG_PS) != 0)
2236					continue;
2237				pte = pmap_pte(pmap, va);
2238				tpte = *pte;
2239				if ((tpte & PG_W) == 0)
2240					tpte = pte_load_clear(pte);
2241				pmap_pte_release(pte);
2242				if ((tpte & PG_W) != 0)
2243					continue;
2244				KASSERT(tpte != 0,
2245				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2246				    pmap, va));
2247				if ((tpte & PG_G) != 0)
2248					pmap_invalidate_page(pmap, va);
2249				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2250				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2251					vm_page_dirty(m);
2252				if ((tpte & PG_A) != 0)
2253					vm_page_aflag_set(m, PGA_REFERENCED);
2254				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2255				if (TAILQ_EMPTY(&m->md.pv_list) &&
2256				    (m->flags & PG_FICTITIOUS) == 0) {
2257					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2258					if (TAILQ_EMPTY(&pvh->pv_list)) {
2259						vm_page_aflag_clear(m,
2260						    PGA_WRITEABLE);
2261					}
2262				}
2263				pc->pc_map[field] |= 1UL << bit;
2264				pmap_unuse_pt(pmap, va, &free);
2265				freed++;
2266			}
2267		}
2268		if (freed == 0) {
2269			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2270			continue;
2271		}
2272		/* Every freed mapping is for a 4 KB page. */
2273		pmap->pm_stats.resident_count -= freed;
2274		PV_STAT(pv_entry_frees += freed);
2275		PV_STAT(pv_entry_spare += freed);
2276		pv_entry_count -= freed;
2277		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2278		for (field = 0; field < _NPCM; field++)
2279			if (pc->pc_map[field] != pc_freemask[field]) {
2280				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2281				    pc_list);
2282				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2283
2284				/*
2285				 * One freed pv entry in locked_pmap is
2286				 * sufficient.
2287				 */
2288				if (pmap == locked_pmap)
2289					goto out;
2290				break;
2291			}
2292		if (field == _NPCM) {
2293			PV_STAT(pv_entry_spare -= _NPCPV);
2294			PV_STAT(pc_chunk_count--);
2295			PV_STAT(pc_chunk_frees++);
2296			/* Entire chunk is free; return it. */
2297			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2298			pmap_qremove((vm_offset_t)pc, 1);
2299			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2300			break;
2301		}
2302	}
2303out:
2304	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2305	if (pmap != NULL) {
2306		pmap_invalidate_all(pmap);
2307		if (pmap != locked_pmap)
2308			PMAP_UNLOCK(pmap);
2309	}
2310	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2311		m_pc = SLIST_FIRST(&free);
2312		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2313		/* Recycle a freed page table page. */
2314		m_pc->wire_count = 1;
2315		atomic_add_int(&cnt.v_wire_count, 1);
2316	}
2317	pmap_free_zero_pages(&free);
2318	return (m_pc);
2319}
2320
2321/*
2322 * free the pv_entry back to the free list
2323 */
2324static void
2325free_pv_entry(pmap_t pmap, pv_entry_t pv)
2326{
2327	struct pv_chunk *pc;
2328	int idx, field, bit;
2329
2330	rw_assert(&pvh_global_lock, RA_WLOCKED);
2331	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2332	PV_STAT(pv_entry_frees++);
2333	PV_STAT(pv_entry_spare++);
2334	pv_entry_count--;
2335	pc = pv_to_chunk(pv);
2336	idx = pv - &pc->pc_pventry[0];
2337	field = idx / 32;
2338	bit = idx % 32;
2339	pc->pc_map[field] |= 1ul << bit;
2340	for (idx = 0; idx < _NPCM; idx++)
2341		if (pc->pc_map[idx] != pc_freemask[idx]) {
2342			/*
2343			 * 98% of the time, pc is already at the head of the
2344			 * list.  If it isn't already, move it to the head.
2345			 */
2346			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2347			    pc)) {
2348				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2349				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2350				    pc_list);
2351			}
2352			return;
2353		}
2354	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2355	free_pv_chunk(pc);
2356}
2357
2358static void
2359free_pv_chunk(struct pv_chunk *pc)
2360{
2361	vm_page_t m;
2362
2363 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2364	PV_STAT(pv_entry_spare -= _NPCPV);
2365	PV_STAT(pc_chunk_count--);
2366	PV_STAT(pc_chunk_frees++);
2367	/* entire chunk is free, return it */
2368	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2369	pmap_qremove((vm_offset_t)pc, 1);
2370	vm_page_unwire(m, 0);
2371	vm_page_free(m);
2372	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2373}
2374
2375/*
2376 * get a new pv_entry, allocating a block from the system
2377 * when needed.
2378 */
2379static pv_entry_t
2380get_pv_entry(pmap_t pmap, boolean_t try)
2381{
2382	static const struct timeval printinterval = { 60, 0 };
2383	static struct timeval lastprint;
2384	int bit, field;
2385	pv_entry_t pv;
2386	struct pv_chunk *pc;
2387	vm_page_t m;
2388
2389	rw_assert(&pvh_global_lock, RA_WLOCKED);
2390	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2391	PV_STAT(pv_entry_allocs++);
2392	pv_entry_count++;
2393	if (pv_entry_count > pv_entry_high_water)
2394		if (ratecheck(&lastprint, &printinterval))
2395			printf("Approaching the limit on PV entries, consider "
2396			    "increasing either the vm.pmap.shpgperproc or the "
2397			    "vm.pmap.pv_entry_max tunable.\n");
2398retry:
2399	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2400	if (pc != NULL) {
2401		for (field = 0; field < _NPCM; field++) {
2402			if (pc->pc_map[field]) {
2403				bit = bsfl(pc->pc_map[field]);
2404				break;
2405			}
2406		}
2407		if (field < _NPCM) {
2408			pv = &pc->pc_pventry[field * 32 + bit];
2409			pc->pc_map[field] &= ~(1ul << bit);
2410			/* If this was the last item, move it to tail */
2411			for (field = 0; field < _NPCM; field++)
2412				if (pc->pc_map[field] != 0) {
2413					PV_STAT(pv_entry_spare--);
2414					return (pv);	/* not full, return */
2415				}
2416			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2417			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2418			PV_STAT(pv_entry_spare--);
2419			return (pv);
2420		}
2421	}
2422	/*
2423	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2424	 * global lock.  If "pv_vafree" is currently non-empty, it will
2425	 * remain non-empty until pmap_ptelist_alloc() completes.
2426	 */
2427	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2428	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2429		if (try) {
2430			pv_entry_count--;
2431			PV_STAT(pc_chunk_tryfail++);
2432			return (NULL);
2433		}
2434		m = pmap_pv_reclaim(pmap);
2435		if (m == NULL)
2436			goto retry;
2437	}
2438	PV_STAT(pc_chunk_count++);
2439	PV_STAT(pc_chunk_allocs++);
2440	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2441	pmap_qenter((vm_offset_t)pc, &m, 1);
2442	pc->pc_pmap = pmap;
2443	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2444	for (field = 1; field < _NPCM; field++)
2445		pc->pc_map[field] = pc_freemask[field];
2446	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2447	pv = &pc->pc_pventry[0];
2448	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2449	PV_STAT(pv_entry_spare += _NPCPV - 1);
2450	return (pv);
2451}
2452
2453static __inline pv_entry_t
2454pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2455{
2456	pv_entry_t pv;
2457
2458	rw_assert(&pvh_global_lock, RA_WLOCKED);
2459	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2460		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2461			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2462			break;
2463		}
2464	}
2465	return (pv);
2466}
2467
2468static void
2469pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2470{
2471	struct md_page *pvh;
2472	pv_entry_t pv;
2473	vm_offset_t va_last;
2474	vm_page_t m;
2475
2476	rw_assert(&pvh_global_lock, RA_WLOCKED);
2477	KASSERT((pa & PDRMASK) == 0,
2478	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2479
2480	/*
2481	 * Transfer the 4mpage's pv entry for this mapping to the first
2482	 * page's pv list.
2483	 */
2484	pvh = pa_to_pvh(pa);
2485	va = trunc_4mpage(va);
2486	pv = pmap_pvh_remove(pvh, pmap, va);
2487	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2488	m = PHYS_TO_VM_PAGE(pa);
2489	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2490	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2491	va_last = va + NBPDR - PAGE_SIZE;
2492	do {
2493		m++;
2494		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2495		    ("pmap_pv_demote_pde: page %p is not managed", m));
2496		va += PAGE_SIZE;
2497		pmap_insert_entry(pmap, va, m);
2498	} while (va < va_last);
2499}
2500
2501static void
2502pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2503{
2504	struct md_page *pvh;
2505	pv_entry_t pv;
2506	vm_offset_t va_last;
2507	vm_page_t m;
2508
2509	rw_assert(&pvh_global_lock, RA_WLOCKED);
2510	KASSERT((pa & PDRMASK) == 0,
2511	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2512
2513	/*
2514	 * Transfer the first page's pv entry for this mapping to the
2515	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2516	 * to get_pv_entry(), a transfer avoids the possibility that
2517	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2518	 * removes one of the mappings that is being promoted.
2519	 */
2520	m = PHYS_TO_VM_PAGE(pa);
2521	va = trunc_4mpage(va);
2522	pv = pmap_pvh_remove(&m->md, pmap, va);
2523	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2524	pvh = pa_to_pvh(pa);
2525	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2526	/* Free the remaining NPTEPG - 1 pv entries. */
2527	va_last = va + NBPDR - PAGE_SIZE;
2528	do {
2529		m++;
2530		va += PAGE_SIZE;
2531		pmap_pvh_free(&m->md, pmap, va);
2532	} while (va < va_last);
2533}
2534
2535static void
2536pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2537{
2538	pv_entry_t pv;
2539
2540	pv = pmap_pvh_remove(pvh, pmap, va);
2541	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2542	free_pv_entry(pmap, pv);
2543}
2544
2545static void
2546pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2547{
2548	struct md_page *pvh;
2549
2550	rw_assert(&pvh_global_lock, RA_WLOCKED);
2551	pmap_pvh_free(&m->md, pmap, va);
2552	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2553		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2554		if (TAILQ_EMPTY(&pvh->pv_list))
2555			vm_page_aflag_clear(m, PGA_WRITEABLE);
2556	}
2557}
2558
2559/*
2560 * Create a pv entry for page at pa for
2561 * (pmap, va).
2562 */
2563static void
2564pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2565{
2566	pv_entry_t pv;
2567
2568	rw_assert(&pvh_global_lock, RA_WLOCKED);
2569	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2570	pv = get_pv_entry(pmap, FALSE);
2571	pv->pv_va = va;
2572	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2573}
2574
2575/*
2576 * Conditionally create a pv entry.
2577 */
2578static boolean_t
2579pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2580{
2581	pv_entry_t pv;
2582
2583	rw_assert(&pvh_global_lock, RA_WLOCKED);
2584	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2585	if (pv_entry_count < pv_entry_high_water &&
2586	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2587		pv->pv_va = va;
2588		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2589		return (TRUE);
2590	} else
2591		return (FALSE);
2592}
2593
2594/*
2595 * Create the pv entries for each of the pages within a superpage.
2596 */
2597static boolean_t
2598pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2599{
2600	struct md_page *pvh;
2601	pv_entry_t pv;
2602
2603	rw_assert(&pvh_global_lock, RA_WLOCKED);
2604	if (pv_entry_count < pv_entry_high_water &&
2605	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2606		pv->pv_va = va;
2607		pvh = pa_to_pvh(pa);
2608		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2609		return (TRUE);
2610	} else
2611		return (FALSE);
2612}
2613
2614/*
2615 * Fills a page table page with mappings to consecutive physical pages.
2616 */
2617static void
2618pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2619{
2620	pt_entry_t *pte;
2621
2622	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2623		*pte = newpte;
2624		newpte += PAGE_SIZE;
2625	}
2626}
2627
2628/*
2629 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2630 * 2- or 4MB page mapping is invalidated.
2631 */
2632static boolean_t
2633pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2634{
2635	pd_entry_t newpde, oldpde;
2636	pt_entry_t *firstpte, newpte;
2637	vm_paddr_t mptepa;
2638	vm_page_t mpte;
2639	struct spglist free;
2640
2641	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2642	oldpde = *pde;
2643	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2644	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2645	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
2646	    NULL)
2647		pmap_remove_pt_page(pmap, mpte);
2648	else {
2649		KASSERT((oldpde & PG_W) == 0,
2650		    ("pmap_demote_pde: page table page for a wired mapping"
2651		    " is missing"));
2652
2653		/*
2654		 * Invalidate the 2- or 4MB page mapping and return
2655		 * "failure" if the mapping was never accessed or the
2656		 * allocation of the new page table page fails.
2657		 */
2658		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2659		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2660		    VM_ALLOC_WIRED)) == NULL) {
2661			SLIST_INIT(&free);
2662			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2663			pmap_invalidate_page(pmap, trunc_4mpage(va));
2664			pmap_free_zero_pages(&free);
2665			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2666			    " in pmap %p", va, pmap);
2667			return (FALSE);
2668		}
2669		if (va < VM_MAXUSER_ADDRESS)
2670			pmap->pm_stats.resident_count++;
2671	}
2672	mptepa = VM_PAGE_TO_PHYS(mpte);
2673
2674	/*
2675	 * If the page mapping is in the kernel's address space, then the
2676	 * KPTmap can provide access to the page table page.  Otherwise,
2677	 * temporarily map the page table page (mpte) into the kernel's
2678	 * address space at either PADDR1 or PADDR2.
2679	 */
2680	if (va >= KERNBASE)
2681		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2682	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2683		if ((*PMAP1 & PG_FRAME) != mptepa) {
2684			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2685#ifdef SMP
2686			PMAP1cpu = PCPU_GET(cpuid);
2687#endif
2688			invlcaddr(PADDR1);
2689			PMAP1changed++;
2690		} else
2691#ifdef SMP
2692		if (PMAP1cpu != PCPU_GET(cpuid)) {
2693			PMAP1cpu = PCPU_GET(cpuid);
2694			invlcaddr(PADDR1);
2695			PMAP1changedcpu++;
2696		} else
2697#endif
2698			PMAP1unchanged++;
2699		firstpte = PADDR1;
2700	} else {
2701		mtx_lock(&PMAP2mutex);
2702		if ((*PMAP2 & PG_FRAME) != mptepa) {
2703			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2704			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2705		}
2706		firstpte = PADDR2;
2707	}
2708	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2709	KASSERT((oldpde & PG_A) != 0,
2710	    ("pmap_demote_pde: oldpde is missing PG_A"));
2711	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2712	    ("pmap_demote_pde: oldpde is missing PG_M"));
2713	newpte = oldpde & ~PG_PS;
2714	if ((newpte & PG_PDE_PAT) != 0)
2715		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2716
2717	/*
2718	 * If the page table page is new, initialize it.
2719	 */
2720	if (mpte->wire_count == 1) {
2721		mpte->wire_count = NPTEPG;
2722		pmap_fill_ptp(firstpte, newpte);
2723	}
2724	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2725	    ("pmap_demote_pde: firstpte and newpte map different physical"
2726	    " addresses"));
2727
2728	/*
2729	 * If the mapping has changed attributes, update the page table
2730	 * entries.
2731	 */
2732	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2733		pmap_fill_ptp(firstpte, newpte);
2734
2735	/*
2736	 * Demote the mapping.  This pmap is locked.  The old PDE has
2737	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2738	 * set.  Thus, there is no danger of a race with another
2739	 * processor changing the setting of PG_A and/or PG_M between
2740	 * the read above and the store below.
2741	 */
2742	if (workaround_erratum383)
2743		pmap_update_pde(pmap, va, pde, newpde);
2744	else if (pmap == kernel_pmap)
2745		pmap_kenter_pde(va, newpde);
2746	else
2747		pde_store(pde, newpde);
2748	if (firstpte == PADDR2)
2749		mtx_unlock(&PMAP2mutex);
2750
2751	/*
2752	 * Invalidate the recursive mapping of the page table page.
2753	 */
2754	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2755
2756	/*
2757	 * Demote the pv entry.  This depends on the earlier demotion
2758	 * of the mapping.  Specifically, the (re)creation of a per-
2759	 * page pv entry might trigger the execution of pmap_collect(),
2760	 * which might reclaim a newly (re)created per-page pv entry
2761	 * and destroy the associated mapping.  In order to destroy
2762	 * the mapping, the PDE must have already changed from mapping
2763	 * the 2mpage to referencing the page table page.
2764	 */
2765	if ((oldpde & PG_MANAGED) != 0)
2766		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2767
2768	pmap_pde_demotions++;
2769	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2770	    " in pmap %p", va, pmap);
2771	return (TRUE);
2772}
2773
2774/*
2775 * Removes a 2- or 4MB page mapping from the kernel pmap.
2776 */
2777static void
2778pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2779{
2780	pd_entry_t newpde;
2781	vm_paddr_t mptepa;
2782	vm_page_t mpte;
2783
2784	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2785	mpte = pmap_lookup_pt_page(pmap, va);
2786	if (mpte == NULL)
2787		panic("pmap_remove_kernel_pde: Missing pt page.");
2788
2789	pmap_remove_pt_page(pmap, mpte);
2790	mptepa = VM_PAGE_TO_PHYS(mpte);
2791	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2792
2793	/*
2794	 * Initialize the page table page.
2795	 */
2796	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2797
2798	/*
2799	 * Remove the mapping.
2800	 */
2801	if (workaround_erratum383)
2802		pmap_update_pde(pmap, va, pde, newpde);
2803	else
2804		pmap_kenter_pde(va, newpde);
2805
2806	/*
2807	 * Invalidate the recursive mapping of the page table page.
2808	 */
2809	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2810}
2811
2812/*
2813 * pmap_remove_pde: do the things to unmap a superpage in a process
2814 */
2815static void
2816pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2817    struct spglist *free)
2818{
2819	struct md_page *pvh;
2820	pd_entry_t oldpde;
2821	vm_offset_t eva, va;
2822	vm_page_t m, mpte;
2823
2824	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2825	KASSERT((sva & PDRMASK) == 0,
2826	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2827	oldpde = pte_load_clear(pdq);
2828	if (oldpde & PG_W)
2829		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2830
2831	/*
2832	 * Machines that don't support invlpg, also don't support
2833	 * PG_G.
2834	 */
2835	if (oldpde & PG_G)
2836		pmap_invalidate_page(kernel_pmap, sva);
2837	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2838	if (oldpde & PG_MANAGED) {
2839		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2840		pmap_pvh_free(pvh, pmap, sva);
2841		eva = sva + NBPDR;
2842		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2843		    va < eva; va += PAGE_SIZE, m++) {
2844			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2845				vm_page_dirty(m);
2846			if (oldpde & PG_A)
2847				vm_page_aflag_set(m, PGA_REFERENCED);
2848			if (TAILQ_EMPTY(&m->md.pv_list) &&
2849			    TAILQ_EMPTY(&pvh->pv_list))
2850				vm_page_aflag_clear(m, PGA_WRITEABLE);
2851		}
2852	}
2853	if (pmap == kernel_pmap) {
2854		pmap_remove_kernel_pde(pmap, pdq, sva);
2855	} else {
2856		mpte = pmap_lookup_pt_page(pmap, sva);
2857		if (mpte != NULL) {
2858			pmap_remove_pt_page(pmap, mpte);
2859			pmap->pm_stats.resident_count--;
2860			KASSERT(mpte->wire_count == NPTEPG,
2861			    ("pmap_remove_pde: pte page wire count error"));
2862			mpte->wire_count = 0;
2863			pmap_add_delayed_free_list(mpte, free, FALSE);
2864			atomic_subtract_int(&cnt.v_wire_count, 1);
2865		}
2866	}
2867}
2868
2869/*
2870 * pmap_remove_pte: do the things to unmap a page in a process
2871 */
2872static int
2873pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2874    struct spglist *free)
2875{
2876	pt_entry_t oldpte;
2877	vm_page_t m;
2878
2879	rw_assert(&pvh_global_lock, RA_WLOCKED);
2880	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2881	oldpte = pte_load_clear(ptq);
2882	KASSERT(oldpte != 0,
2883	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2884	if (oldpte & PG_W)
2885		pmap->pm_stats.wired_count -= 1;
2886	/*
2887	 * Machines that don't support invlpg, also don't support
2888	 * PG_G.
2889	 */
2890	if (oldpte & PG_G)
2891		pmap_invalidate_page(kernel_pmap, va);
2892	pmap->pm_stats.resident_count -= 1;
2893	if (oldpte & PG_MANAGED) {
2894		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2895		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2896			vm_page_dirty(m);
2897		if (oldpte & PG_A)
2898			vm_page_aflag_set(m, PGA_REFERENCED);
2899		pmap_remove_entry(pmap, m, va);
2900	}
2901	return (pmap_unuse_pt(pmap, va, free));
2902}
2903
2904/*
2905 * Remove a single page from a process address space
2906 */
2907static void
2908pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2909{
2910	pt_entry_t *pte;
2911
2912	rw_assert(&pvh_global_lock, RA_WLOCKED);
2913	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2914	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2915	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2916		return;
2917	pmap_remove_pte(pmap, pte, va, free);
2918	pmap_invalidate_page(pmap, va);
2919}
2920
2921/*
2922 *	Remove the given range of addresses from the specified map.
2923 *
2924 *	It is assumed that the start and end are properly
2925 *	rounded to the page size.
2926 */
2927void
2928pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2929{
2930	vm_offset_t pdnxt;
2931	pd_entry_t ptpaddr;
2932	pt_entry_t *pte;
2933	struct spglist free;
2934	int anyvalid;
2935
2936	/*
2937	 * Perform an unsynchronized read.  This is, however, safe.
2938	 */
2939	if (pmap->pm_stats.resident_count == 0)
2940		return;
2941
2942	anyvalid = 0;
2943	SLIST_INIT(&free);
2944
2945	rw_wlock(&pvh_global_lock);
2946	sched_pin();
2947	PMAP_LOCK(pmap);
2948
2949	/*
2950	 * special handling of removing one page.  a very
2951	 * common operation and easy to short circuit some
2952	 * code.
2953	 */
2954	if ((sva + PAGE_SIZE == eva) &&
2955	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2956		pmap_remove_page(pmap, sva, &free);
2957		goto out;
2958	}
2959
2960	for (; sva < eva; sva = pdnxt) {
2961		u_int pdirindex;
2962
2963		/*
2964		 * Calculate index for next page table.
2965		 */
2966		pdnxt = (sva + NBPDR) & ~PDRMASK;
2967		if (pdnxt < sva)
2968			pdnxt = eva;
2969		if (pmap->pm_stats.resident_count == 0)
2970			break;
2971
2972		pdirindex = sva >> PDRSHIFT;
2973		ptpaddr = pmap->pm_pdir[pdirindex];
2974
2975		/*
2976		 * Weed out invalid mappings. Note: we assume that the page
2977		 * directory table is always allocated, and in kernel virtual.
2978		 */
2979		if (ptpaddr == 0)
2980			continue;
2981
2982		/*
2983		 * Check for large page.
2984		 */
2985		if ((ptpaddr & PG_PS) != 0) {
2986			/*
2987			 * Are we removing the entire large page?  If not,
2988			 * demote the mapping and fall through.
2989			 */
2990			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2991				/*
2992				 * The TLB entry for a PG_G mapping is
2993				 * invalidated by pmap_remove_pde().
2994				 */
2995				if ((ptpaddr & PG_G) == 0)
2996					anyvalid = 1;
2997				pmap_remove_pde(pmap,
2998				    &pmap->pm_pdir[pdirindex], sva, &free);
2999				continue;
3000			} else if (!pmap_demote_pde(pmap,
3001			    &pmap->pm_pdir[pdirindex], sva)) {
3002				/* The large page mapping was destroyed. */
3003				continue;
3004			}
3005		}
3006
3007		/*
3008		 * Limit our scan to either the end of the va represented
3009		 * by the current page table page, or to the end of the
3010		 * range being removed.
3011		 */
3012		if (pdnxt > eva)
3013			pdnxt = eva;
3014
3015		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3016		    sva += PAGE_SIZE) {
3017			if (*pte == 0)
3018				continue;
3019
3020			/*
3021			 * The TLB entry for a PG_G mapping is invalidated
3022			 * by pmap_remove_pte().
3023			 */
3024			if ((*pte & PG_G) == 0)
3025				anyvalid = 1;
3026			if (pmap_remove_pte(pmap, pte, sva, &free))
3027				break;
3028		}
3029	}
3030out:
3031	sched_unpin();
3032	if (anyvalid)
3033		pmap_invalidate_all(pmap);
3034	rw_wunlock(&pvh_global_lock);
3035	PMAP_UNLOCK(pmap);
3036	pmap_free_zero_pages(&free);
3037}
3038
3039/*
3040 *	Routine:	pmap_remove_all
3041 *	Function:
3042 *		Removes this physical page from
3043 *		all physical maps in which it resides.
3044 *		Reflects back modify bits to the pager.
3045 *
3046 *	Notes:
3047 *		Original versions of this routine were very
3048 *		inefficient because they iteratively called
3049 *		pmap_remove (slow...)
3050 */
3051
3052void
3053pmap_remove_all(vm_page_t m)
3054{
3055	struct md_page *pvh;
3056	pv_entry_t pv;
3057	pmap_t pmap;
3058	pt_entry_t *pte, tpte;
3059	pd_entry_t *pde;
3060	vm_offset_t va;
3061	struct spglist free;
3062
3063	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3064	    ("pmap_remove_all: page %p is not managed", m));
3065	SLIST_INIT(&free);
3066	rw_wlock(&pvh_global_lock);
3067	sched_pin();
3068	if ((m->flags & PG_FICTITIOUS) != 0)
3069		goto small_mappings;
3070	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3071	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3072		va = pv->pv_va;
3073		pmap = PV_PMAP(pv);
3074		PMAP_LOCK(pmap);
3075		pde = pmap_pde(pmap, va);
3076		(void)pmap_demote_pde(pmap, pde, va);
3077		PMAP_UNLOCK(pmap);
3078	}
3079small_mappings:
3080	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3081		pmap = PV_PMAP(pv);
3082		PMAP_LOCK(pmap);
3083		pmap->pm_stats.resident_count--;
3084		pde = pmap_pde(pmap, pv->pv_va);
3085		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3086		    " a 4mpage in page %p's pv list", m));
3087		pte = pmap_pte_quick(pmap, pv->pv_va);
3088		tpte = pte_load_clear(pte);
3089		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3090		    pmap, pv->pv_va));
3091		if (tpte & PG_W)
3092			pmap->pm_stats.wired_count--;
3093		if (tpte & PG_A)
3094			vm_page_aflag_set(m, PGA_REFERENCED);
3095
3096		/*
3097		 * Update the vm_page_t clean and reference bits.
3098		 */
3099		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3100			vm_page_dirty(m);
3101		pmap_unuse_pt(pmap, pv->pv_va, &free);
3102		pmap_invalidate_page(pmap, pv->pv_va);
3103		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3104		free_pv_entry(pmap, pv);
3105		PMAP_UNLOCK(pmap);
3106	}
3107	vm_page_aflag_clear(m, PGA_WRITEABLE);
3108	sched_unpin();
3109	rw_wunlock(&pvh_global_lock);
3110	pmap_free_zero_pages(&free);
3111}
3112
3113/*
3114 * pmap_protect_pde: do the things to protect a 4mpage in a process
3115 */
3116static boolean_t
3117pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3118{
3119	pd_entry_t newpde, oldpde;
3120	vm_offset_t eva, va;
3121	vm_page_t m;
3122	boolean_t anychanged;
3123
3124	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3125	KASSERT((sva & PDRMASK) == 0,
3126	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3127	anychanged = FALSE;
3128retry:
3129	oldpde = newpde = *pde;
3130	if (oldpde & PG_MANAGED) {
3131		eva = sva + NBPDR;
3132		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3133		    va < eva; va += PAGE_SIZE, m++)
3134			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3135				vm_page_dirty(m);
3136	}
3137	if ((prot & VM_PROT_WRITE) == 0)
3138		newpde &= ~(PG_RW | PG_M);
3139#ifdef PAE
3140	if ((prot & VM_PROT_EXECUTE) == 0)
3141		newpde |= pg_nx;
3142#endif
3143	if (newpde != oldpde) {
3144		if (!pde_cmpset(pde, oldpde, newpde))
3145			goto retry;
3146		if (oldpde & PG_G)
3147			pmap_invalidate_page(pmap, sva);
3148		else
3149			anychanged = TRUE;
3150	}
3151	return (anychanged);
3152}
3153
3154/*
3155 *	Set the physical protection on the
3156 *	specified range of this map as requested.
3157 */
3158void
3159pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3160{
3161	vm_offset_t pdnxt;
3162	pd_entry_t ptpaddr;
3163	pt_entry_t *pte;
3164	boolean_t anychanged, pv_lists_locked;
3165
3166	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3167		pmap_remove(pmap, sva, eva);
3168		return;
3169	}
3170
3171#ifdef PAE
3172	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3173	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3174		return;
3175#else
3176	if (prot & VM_PROT_WRITE)
3177		return;
3178#endif
3179
3180	if (pmap_is_current(pmap))
3181		pv_lists_locked = FALSE;
3182	else {
3183		pv_lists_locked = TRUE;
3184resume:
3185		rw_wlock(&pvh_global_lock);
3186		sched_pin();
3187	}
3188	anychanged = FALSE;
3189
3190	PMAP_LOCK(pmap);
3191	for (; sva < eva; sva = pdnxt) {
3192		pt_entry_t obits, pbits;
3193		u_int pdirindex;
3194
3195		pdnxt = (sva + NBPDR) & ~PDRMASK;
3196		if (pdnxt < sva)
3197			pdnxt = eva;
3198
3199		pdirindex = sva >> PDRSHIFT;
3200		ptpaddr = pmap->pm_pdir[pdirindex];
3201
3202		/*
3203		 * Weed out invalid mappings. Note: we assume that the page
3204		 * directory table is always allocated, and in kernel virtual.
3205		 */
3206		if (ptpaddr == 0)
3207			continue;
3208
3209		/*
3210		 * Check for large page.
3211		 */
3212		if ((ptpaddr & PG_PS) != 0) {
3213			/*
3214			 * Are we protecting the entire large page?  If not,
3215			 * demote the mapping and fall through.
3216			 */
3217			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3218				/*
3219				 * The TLB entry for a PG_G mapping is
3220				 * invalidated by pmap_protect_pde().
3221				 */
3222				if (pmap_protect_pde(pmap,
3223				    &pmap->pm_pdir[pdirindex], sva, prot))
3224					anychanged = TRUE;
3225				continue;
3226			} else {
3227				if (!pv_lists_locked) {
3228					pv_lists_locked = TRUE;
3229					if (!rw_try_wlock(&pvh_global_lock)) {
3230						if (anychanged)
3231							pmap_invalidate_all(
3232							    pmap);
3233						PMAP_UNLOCK(pmap);
3234						goto resume;
3235					}
3236					sched_pin();
3237				}
3238				if (!pmap_demote_pde(pmap,
3239				    &pmap->pm_pdir[pdirindex], sva)) {
3240					/*
3241					 * The large page mapping was
3242					 * destroyed.
3243					 */
3244					continue;
3245				}
3246			}
3247		}
3248
3249		if (pdnxt > eva)
3250			pdnxt = eva;
3251
3252		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3253		    sva += PAGE_SIZE) {
3254			vm_page_t m;
3255
3256retry:
3257			/*
3258			 * Regardless of whether a pte is 32 or 64 bits in
3259			 * size, PG_RW, PG_A, and PG_M are among the least
3260			 * significant 32 bits.
3261			 */
3262			obits = pbits = *pte;
3263			if ((pbits & PG_V) == 0)
3264				continue;
3265
3266			if ((prot & VM_PROT_WRITE) == 0) {
3267				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3268				    (PG_MANAGED | PG_M | PG_RW)) {
3269					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3270					vm_page_dirty(m);
3271				}
3272				pbits &= ~(PG_RW | PG_M);
3273			}
3274#ifdef PAE
3275			if ((prot & VM_PROT_EXECUTE) == 0)
3276				pbits |= pg_nx;
3277#endif
3278
3279			if (pbits != obits) {
3280#ifdef PAE
3281				if (!atomic_cmpset_64(pte, obits, pbits))
3282					goto retry;
3283#else
3284				if (!atomic_cmpset_int((u_int *)pte, obits,
3285				    pbits))
3286					goto retry;
3287#endif
3288				if (obits & PG_G)
3289					pmap_invalidate_page(pmap, sva);
3290				else
3291					anychanged = TRUE;
3292			}
3293		}
3294	}
3295	if (anychanged)
3296		pmap_invalidate_all(pmap);
3297	if (pv_lists_locked) {
3298		sched_unpin();
3299		rw_wunlock(&pvh_global_lock);
3300	}
3301	PMAP_UNLOCK(pmap);
3302}
3303
3304/*
3305 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3306 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3307 * For promotion to occur, two conditions must be met: (1) the 4KB page
3308 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3309 * mappings must have identical characteristics.
3310 *
3311 * Managed (PG_MANAGED) mappings within the kernel address space are not
3312 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3313 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3314 * pmap.
3315 */
3316static void
3317pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3318{
3319	pd_entry_t newpde;
3320	pt_entry_t *firstpte, oldpte, pa, *pte;
3321	vm_offset_t oldpteva;
3322	vm_page_t mpte;
3323
3324	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3325
3326	/*
3327	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3328	 * either invalid, unused, or does not map the first 4KB physical page
3329	 * within a 2- or 4MB page.
3330	 */
3331	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3332setpde:
3333	newpde = *firstpte;
3334	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3335		pmap_pde_p_failures++;
3336		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3337		    " in pmap %p", va, pmap);
3338		return;
3339	}
3340	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3341		pmap_pde_p_failures++;
3342		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3343		    " in pmap %p", va, pmap);
3344		return;
3345	}
3346	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3347		/*
3348		 * When PG_M is already clear, PG_RW can be cleared without
3349		 * a TLB invalidation.
3350		 */
3351		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3352		    ~PG_RW))
3353			goto setpde;
3354		newpde &= ~PG_RW;
3355	}
3356
3357	/*
3358	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3359	 * PTE maps an unexpected 4KB physical page or does not have identical
3360	 * characteristics to the first PTE.
3361	 */
3362	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3363	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3364setpte:
3365		oldpte = *pte;
3366		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3367			pmap_pde_p_failures++;
3368			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3369			    " in pmap %p", va, pmap);
3370			return;
3371		}
3372		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3373			/*
3374			 * When PG_M is already clear, PG_RW can be cleared
3375			 * without a TLB invalidation.
3376			 */
3377			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3378			    oldpte & ~PG_RW))
3379				goto setpte;
3380			oldpte &= ~PG_RW;
3381			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3382			    (va & ~PDRMASK);
3383			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3384			    " in pmap %p", oldpteva, pmap);
3385		}
3386		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3387			pmap_pde_p_failures++;
3388			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3389			    " in pmap %p", va, pmap);
3390			return;
3391		}
3392		pa -= PAGE_SIZE;
3393	}
3394
3395	/*
3396	 * Save the page table page in its current state until the PDE
3397	 * mapping the superpage is demoted by pmap_demote_pde() or
3398	 * destroyed by pmap_remove_pde().
3399	 */
3400	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3401	KASSERT(mpte >= vm_page_array &&
3402	    mpte < &vm_page_array[vm_page_array_size],
3403	    ("pmap_promote_pde: page table page is out of range"));
3404	KASSERT(mpte->pindex == va >> PDRSHIFT,
3405	    ("pmap_promote_pde: page table page's pindex is wrong"));
3406	if (pmap_insert_pt_page(pmap, mpte)) {
3407		pmap_pde_p_failures++;
3408		CTR2(KTR_PMAP,
3409		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3410		    pmap);
3411		return;
3412	}
3413
3414	/*
3415	 * Promote the pv entries.
3416	 */
3417	if ((newpde & PG_MANAGED) != 0)
3418		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3419
3420	/*
3421	 * Propagate the PAT index to its proper position.
3422	 */
3423	if ((newpde & PG_PTE_PAT) != 0)
3424		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3425
3426	/*
3427	 * Map the superpage.
3428	 */
3429	if (workaround_erratum383)
3430		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3431	else if (pmap == kernel_pmap)
3432		pmap_kenter_pde(va, PG_PS | newpde);
3433	else
3434		pde_store(pde, PG_PS | newpde);
3435
3436	pmap_pde_promotions++;
3437	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3438	    " in pmap %p", va, pmap);
3439}
3440
3441/*
3442 *	Insert the given physical page (p) at
3443 *	the specified virtual address (v) in the
3444 *	target physical map with the protection requested.
3445 *
3446 *	If specified, the page will be wired down, meaning
3447 *	that the related pte can not be reclaimed.
3448 *
3449 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3450 *	or lose information.  That is, this routine must actually
3451 *	insert this page into the given map NOW.
3452 */
3453int
3454pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3455    u_int flags, int8_t psind)
3456{
3457	pd_entry_t *pde;
3458	pt_entry_t *pte;
3459	pt_entry_t newpte, origpte;
3460	pv_entry_t pv;
3461	vm_paddr_t opa, pa;
3462	vm_page_t mpte, om;
3463	boolean_t invlva, wired;
3464
3465	va = trunc_page(va);
3466	mpte = NULL;
3467	wired = (flags & PMAP_ENTER_WIRED) != 0;
3468
3469	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3470	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3471	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3472	    va));
3473	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3474		VM_OBJECT_ASSERT_LOCKED(m->object);
3475
3476	rw_wlock(&pvh_global_lock);
3477	PMAP_LOCK(pmap);
3478	sched_pin();
3479
3480	/*
3481	 * In the case that a page table page is not
3482	 * resident, we are creating it here.
3483	 */
3484	if (va < VM_MAXUSER_ADDRESS) {
3485		mpte = pmap_allocpte(pmap, va, flags);
3486		if (mpte == NULL) {
3487			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3488			    ("pmap_allocpte failed with sleep allowed"));
3489			sched_unpin();
3490			rw_wunlock(&pvh_global_lock);
3491			PMAP_UNLOCK(pmap);
3492			return (KERN_RESOURCE_SHORTAGE);
3493		}
3494	}
3495
3496	pde = pmap_pde(pmap, va);
3497	if ((*pde & PG_PS) != 0)
3498		panic("pmap_enter: attempted pmap_enter on 4MB page");
3499	pte = pmap_pte_quick(pmap, va);
3500
3501	/*
3502	 * Page Directory table entry not valid, we need a new PT page
3503	 */
3504	if (pte == NULL) {
3505		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3506			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3507	}
3508
3509	pa = VM_PAGE_TO_PHYS(m);
3510	om = NULL;
3511	origpte = *pte;
3512	opa = origpte & PG_FRAME;
3513
3514	/*
3515	 * Mapping has not changed, must be protection or wiring change.
3516	 */
3517	if (origpte && (opa == pa)) {
3518		/*
3519		 * Wiring change, just update stats. We don't worry about
3520		 * wiring PT pages as they remain resident as long as there
3521		 * are valid mappings in them. Hence, if a user page is wired,
3522		 * the PT page will be also.
3523		 */
3524		if (wired && ((origpte & PG_W) == 0))
3525			pmap->pm_stats.wired_count++;
3526		else if (!wired && (origpte & PG_W))
3527			pmap->pm_stats.wired_count--;
3528
3529		/*
3530		 * Remove extra pte reference
3531		 */
3532		if (mpte)
3533			mpte->wire_count--;
3534
3535		if (origpte & PG_MANAGED) {
3536			om = m;
3537			pa |= PG_MANAGED;
3538		}
3539		goto validate;
3540	}
3541
3542	pv = NULL;
3543
3544	/*
3545	 * Mapping has changed, invalidate old range and fall through to
3546	 * handle validating new mapping.
3547	 */
3548	if (opa) {
3549		if (origpte & PG_W)
3550			pmap->pm_stats.wired_count--;
3551		if (origpte & PG_MANAGED) {
3552			om = PHYS_TO_VM_PAGE(opa);
3553			pv = pmap_pvh_remove(&om->md, pmap, va);
3554		}
3555		if (mpte != NULL) {
3556			mpte->wire_count--;
3557			KASSERT(mpte->wire_count > 0,
3558			    ("pmap_enter: missing reference to page table page,"
3559			     " va: 0x%x", va));
3560		}
3561	} else
3562		pmap->pm_stats.resident_count++;
3563
3564	/*
3565	 * Enter on the PV list if part of our managed memory.
3566	 */
3567	if ((m->oflags & VPO_UNMANAGED) == 0) {
3568		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3569		    ("pmap_enter: managed mapping within the clean submap"));
3570		if (pv == NULL)
3571			pv = get_pv_entry(pmap, FALSE);
3572		pv->pv_va = va;
3573		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3574		pa |= PG_MANAGED;
3575	} else if (pv != NULL)
3576		free_pv_entry(pmap, pv);
3577
3578	/*
3579	 * Increment counters
3580	 */
3581	if (wired)
3582		pmap->pm_stats.wired_count++;
3583
3584validate:
3585	/*
3586	 * Now validate mapping with desired protection/wiring.
3587	 */
3588	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3589	if ((prot & VM_PROT_WRITE) != 0) {
3590		newpte |= PG_RW;
3591		if ((newpte & PG_MANAGED) != 0)
3592			vm_page_aflag_set(m, PGA_WRITEABLE);
3593	}
3594#ifdef PAE
3595	if ((prot & VM_PROT_EXECUTE) == 0)
3596		newpte |= pg_nx;
3597#endif
3598	if (wired)
3599		newpte |= PG_W;
3600	if (va < VM_MAXUSER_ADDRESS)
3601		newpte |= PG_U;
3602	if (pmap == kernel_pmap)
3603		newpte |= pgeflag;
3604
3605	/*
3606	 * if the mapping or permission bits are different, we need
3607	 * to update the pte.
3608	 */
3609	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3610		newpte |= PG_A;
3611		if ((flags & VM_PROT_WRITE) != 0)
3612			newpte |= PG_M;
3613		if (origpte & PG_V) {
3614			invlva = FALSE;
3615			origpte = pte_load_store(pte, newpte);
3616			if (origpte & PG_A) {
3617				if (origpte & PG_MANAGED)
3618					vm_page_aflag_set(om, PGA_REFERENCED);
3619				if (opa != VM_PAGE_TO_PHYS(m))
3620					invlva = TRUE;
3621#ifdef PAE
3622				if ((origpte & PG_NX) == 0 &&
3623				    (newpte & PG_NX) != 0)
3624					invlva = TRUE;
3625#endif
3626			}
3627			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3628				if ((origpte & PG_MANAGED) != 0)
3629					vm_page_dirty(om);
3630				if ((prot & VM_PROT_WRITE) == 0)
3631					invlva = TRUE;
3632			}
3633			if ((origpte & PG_MANAGED) != 0 &&
3634			    TAILQ_EMPTY(&om->md.pv_list) &&
3635			    ((om->flags & PG_FICTITIOUS) != 0 ||
3636			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3637				vm_page_aflag_clear(om, PGA_WRITEABLE);
3638			if (invlva)
3639				pmap_invalidate_page(pmap, va);
3640		} else
3641			pte_store(pte, newpte);
3642	}
3643
3644	/*
3645	 * If both the page table page and the reservation are fully
3646	 * populated, then attempt promotion.
3647	 */
3648	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3649	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3650	    vm_reserv_level_iffullpop(m) == 0)
3651		pmap_promote_pde(pmap, pde, va);
3652
3653	sched_unpin();
3654	rw_wunlock(&pvh_global_lock);
3655	PMAP_UNLOCK(pmap);
3656	return (KERN_SUCCESS);
3657}
3658
3659/*
3660 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3661 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3662 * blocking, (2) a mapping already exists at the specified virtual address, or
3663 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3664 */
3665static boolean_t
3666pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3667{
3668	pd_entry_t *pde, newpde;
3669
3670	rw_assert(&pvh_global_lock, RA_WLOCKED);
3671	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3672	pde = pmap_pde(pmap, va);
3673	if (*pde != 0) {
3674		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3675		    " in pmap %p", va, pmap);
3676		return (FALSE);
3677	}
3678	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3679	    PG_PS | PG_V;
3680	if ((m->oflags & VPO_UNMANAGED) == 0) {
3681		newpde |= PG_MANAGED;
3682
3683		/*
3684		 * Abort this mapping if its PV entry could not be created.
3685		 */
3686		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3687			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3688			    " in pmap %p", va, pmap);
3689			return (FALSE);
3690		}
3691	}
3692#ifdef PAE
3693	if ((prot & VM_PROT_EXECUTE) == 0)
3694		newpde |= pg_nx;
3695#endif
3696	if (va < VM_MAXUSER_ADDRESS)
3697		newpde |= PG_U;
3698
3699	/*
3700	 * Increment counters.
3701	 */
3702	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3703
3704	/*
3705	 * Map the superpage.
3706	 */
3707	pde_store(pde, newpde);
3708
3709	pmap_pde_mappings++;
3710	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3711	    " in pmap %p", va, pmap);
3712	return (TRUE);
3713}
3714
3715/*
3716 * Maps a sequence of resident pages belonging to the same object.
3717 * The sequence begins with the given page m_start.  This page is
3718 * mapped at the given virtual address start.  Each subsequent page is
3719 * mapped at a virtual address that is offset from start by the same
3720 * amount as the page is offset from m_start within the object.  The
3721 * last page in the sequence is the page with the largest offset from
3722 * m_start that can be mapped at a virtual address less than the given
3723 * virtual address end.  Not every virtual page between start and end
3724 * is mapped; only those for which a resident page exists with the
3725 * corresponding offset from m_start are mapped.
3726 */
3727void
3728pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3729    vm_page_t m_start, vm_prot_t prot)
3730{
3731	vm_offset_t va;
3732	vm_page_t m, mpte;
3733	vm_pindex_t diff, psize;
3734
3735	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3736
3737	psize = atop(end - start);
3738	mpte = NULL;
3739	m = m_start;
3740	rw_wlock(&pvh_global_lock);
3741	PMAP_LOCK(pmap);
3742	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3743		va = start + ptoa(diff);
3744		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3745		    m->psind == 1 && pg_ps_enabled &&
3746		    pmap_enter_pde(pmap, va, m, prot))
3747			m = &m[NBPDR / PAGE_SIZE - 1];
3748		else
3749			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3750			    mpte);
3751		m = TAILQ_NEXT(m, listq);
3752	}
3753	rw_wunlock(&pvh_global_lock);
3754	PMAP_UNLOCK(pmap);
3755}
3756
3757/*
3758 * this code makes some *MAJOR* assumptions:
3759 * 1. Current pmap & pmap exists.
3760 * 2. Not wired.
3761 * 3. Read access.
3762 * 4. No page table pages.
3763 * but is *MUCH* faster than pmap_enter...
3764 */
3765
3766void
3767pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3768{
3769
3770	rw_wlock(&pvh_global_lock);
3771	PMAP_LOCK(pmap);
3772	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3773	rw_wunlock(&pvh_global_lock);
3774	PMAP_UNLOCK(pmap);
3775}
3776
3777static vm_page_t
3778pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3779    vm_prot_t prot, vm_page_t mpte)
3780{
3781	pt_entry_t *pte;
3782	vm_paddr_t pa;
3783	struct spglist free;
3784
3785	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3786	    (m->oflags & VPO_UNMANAGED) != 0,
3787	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3788	rw_assert(&pvh_global_lock, RA_WLOCKED);
3789	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3790
3791	/*
3792	 * In the case that a page table page is not
3793	 * resident, we are creating it here.
3794	 */
3795	if (va < VM_MAXUSER_ADDRESS) {
3796		u_int ptepindex;
3797		pd_entry_t ptepa;
3798
3799		/*
3800		 * Calculate pagetable page index
3801		 */
3802		ptepindex = va >> PDRSHIFT;
3803		if (mpte && (mpte->pindex == ptepindex)) {
3804			mpte->wire_count++;
3805		} else {
3806			/*
3807			 * Get the page directory entry
3808			 */
3809			ptepa = pmap->pm_pdir[ptepindex];
3810
3811			/*
3812			 * If the page table page is mapped, we just increment
3813			 * the hold count, and activate it.
3814			 */
3815			if (ptepa) {
3816				if (ptepa & PG_PS)
3817					return (NULL);
3818				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3819				mpte->wire_count++;
3820			} else {
3821				mpte = _pmap_allocpte(pmap, ptepindex,
3822				    PMAP_ENTER_NOSLEEP);
3823				if (mpte == NULL)
3824					return (mpte);
3825			}
3826		}
3827	} else {
3828		mpte = NULL;
3829	}
3830
3831	/*
3832	 * This call to vtopte makes the assumption that we are
3833	 * entering the page into the current pmap.  In order to support
3834	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3835	 * But that isn't as quick as vtopte.
3836	 */
3837	pte = vtopte(va);
3838	if (*pte) {
3839		if (mpte != NULL) {
3840			mpte->wire_count--;
3841			mpte = NULL;
3842		}
3843		return (mpte);
3844	}
3845
3846	/*
3847	 * Enter on the PV list if part of our managed memory.
3848	 */
3849	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3850	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3851		if (mpte != NULL) {
3852			SLIST_INIT(&free);
3853			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3854				pmap_invalidate_page(pmap, va);
3855				pmap_free_zero_pages(&free);
3856			}
3857
3858			mpte = NULL;
3859		}
3860		return (mpte);
3861	}
3862
3863	/*
3864	 * Increment counters
3865	 */
3866	pmap->pm_stats.resident_count++;
3867
3868	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3869#ifdef PAE
3870	if ((prot & VM_PROT_EXECUTE) == 0)
3871		pa |= pg_nx;
3872#endif
3873
3874	/*
3875	 * Now validate mapping with RO protection
3876	 */
3877	if ((m->oflags & VPO_UNMANAGED) != 0)
3878		pte_store(pte, pa | PG_V | PG_U);
3879	else
3880		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3881	return (mpte);
3882}
3883
3884/*
3885 * Make a temporary mapping for a physical address.  This is only intended
3886 * to be used for panic dumps.
3887 */
3888void *
3889pmap_kenter_temporary(vm_paddr_t pa, int i)
3890{
3891	vm_offset_t va;
3892
3893	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3894	pmap_kenter(va, pa);
3895	invlpg(va);
3896	return ((void *)crashdumpmap);
3897}
3898
3899/*
3900 * This code maps large physical mmap regions into the
3901 * processor address space.  Note that some shortcuts
3902 * are taken, but the code works.
3903 */
3904void
3905pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3906    vm_pindex_t pindex, vm_size_t size)
3907{
3908	pd_entry_t *pde;
3909	vm_paddr_t pa, ptepa;
3910	vm_page_t p;
3911	int pat_mode;
3912
3913	VM_OBJECT_ASSERT_WLOCKED(object);
3914	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3915	    ("pmap_object_init_pt: non-device object"));
3916	if (pseflag &&
3917	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3918		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3919			return;
3920		p = vm_page_lookup(object, pindex);
3921		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3922		    ("pmap_object_init_pt: invalid page %p", p));
3923		pat_mode = p->md.pat_mode;
3924
3925		/*
3926		 * Abort the mapping if the first page is not physically
3927		 * aligned to a 2/4MB page boundary.
3928		 */
3929		ptepa = VM_PAGE_TO_PHYS(p);
3930		if (ptepa & (NBPDR - 1))
3931			return;
3932
3933		/*
3934		 * Skip the first page.  Abort the mapping if the rest of
3935		 * the pages are not physically contiguous or have differing
3936		 * memory attributes.
3937		 */
3938		p = TAILQ_NEXT(p, listq);
3939		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3940		    pa += PAGE_SIZE) {
3941			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3942			    ("pmap_object_init_pt: invalid page %p", p));
3943			if (pa != VM_PAGE_TO_PHYS(p) ||
3944			    pat_mode != p->md.pat_mode)
3945				return;
3946			p = TAILQ_NEXT(p, listq);
3947		}
3948
3949		/*
3950		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3951		 * "size" is a multiple of 2/4M, adding the PAT setting to
3952		 * "pa" will not affect the termination of this loop.
3953		 */
3954		PMAP_LOCK(pmap);
3955		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3956		    size; pa += NBPDR) {
3957			pde = pmap_pde(pmap, addr);
3958			if (*pde == 0) {
3959				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3960				    PG_U | PG_RW | PG_V);
3961				pmap->pm_stats.resident_count += NBPDR /
3962				    PAGE_SIZE;
3963				pmap_pde_mappings++;
3964			}
3965			/* Else continue on if the PDE is already valid. */
3966			addr += NBPDR;
3967		}
3968		PMAP_UNLOCK(pmap);
3969	}
3970}
3971
3972/*
3973 *	Routine:	pmap_change_wiring
3974 *	Function:	Change the wiring attribute for a map/virtual-address
3975 *			pair.
3976 *	In/out conditions:
3977 *			The mapping must already exist in the pmap.
3978 */
3979void
3980pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3981{
3982	pd_entry_t *pde;
3983	pt_entry_t *pte;
3984	boolean_t are_queues_locked;
3985
3986	are_queues_locked = FALSE;
3987retry:
3988	PMAP_LOCK(pmap);
3989	pde = pmap_pde(pmap, va);
3990	if ((*pde & PG_PS) != 0) {
3991		if (!wired != ((*pde & PG_W) == 0)) {
3992			if (!are_queues_locked) {
3993				are_queues_locked = TRUE;
3994				if (!rw_try_wlock(&pvh_global_lock)) {
3995					PMAP_UNLOCK(pmap);
3996					rw_wlock(&pvh_global_lock);
3997					goto retry;
3998				}
3999			}
4000			if (!pmap_demote_pde(pmap, pde, va))
4001				panic("pmap_change_wiring: demotion failed");
4002		} else
4003			goto out;
4004	}
4005	pte = pmap_pte(pmap, va);
4006
4007	if (wired && !pmap_pte_w(pte))
4008		pmap->pm_stats.wired_count++;
4009	else if (!wired && pmap_pte_w(pte))
4010		pmap->pm_stats.wired_count--;
4011
4012	/*
4013	 * Wiring is not a hardware characteristic so there is no need to
4014	 * invalidate TLB.
4015	 */
4016	pmap_pte_set_w(pte, wired);
4017	pmap_pte_release(pte);
4018out:
4019	if (are_queues_locked)
4020		rw_wunlock(&pvh_global_lock);
4021	PMAP_UNLOCK(pmap);
4022}
4023
4024
4025
4026/*
4027 *	Copy the range specified by src_addr/len
4028 *	from the source map to the range dst_addr/len
4029 *	in the destination map.
4030 *
4031 *	This routine is only advisory and need not do anything.
4032 */
4033
4034void
4035pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4036    vm_offset_t src_addr)
4037{
4038	struct spglist free;
4039	vm_offset_t addr;
4040	vm_offset_t end_addr = src_addr + len;
4041	vm_offset_t pdnxt;
4042
4043	if (dst_addr != src_addr)
4044		return;
4045
4046	if (!pmap_is_current(src_pmap))
4047		return;
4048
4049	rw_wlock(&pvh_global_lock);
4050	if (dst_pmap < src_pmap) {
4051		PMAP_LOCK(dst_pmap);
4052		PMAP_LOCK(src_pmap);
4053	} else {
4054		PMAP_LOCK(src_pmap);
4055		PMAP_LOCK(dst_pmap);
4056	}
4057	sched_pin();
4058	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4059		pt_entry_t *src_pte, *dst_pte;
4060		vm_page_t dstmpte, srcmpte;
4061		pd_entry_t srcptepaddr;
4062		u_int ptepindex;
4063
4064		KASSERT(addr < UPT_MIN_ADDRESS,
4065		    ("pmap_copy: invalid to pmap_copy page tables"));
4066
4067		pdnxt = (addr + NBPDR) & ~PDRMASK;
4068		if (pdnxt < addr)
4069			pdnxt = end_addr;
4070		ptepindex = addr >> PDRSHIFT;
4071
4072		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4073		if (srcptepaddr == 0)
4074			continue;
4075
4076		if (srcptepaddr & PG_PS) {
4077			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4078				continue;
4079			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4080			    ((srcptepaddr & PG_MANAGED) == 0 ||
4081			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4082			    PG_PS_FRAME))) {
4083				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4084				    ~PG_W;
4085				dst_pmap->pm_stats.resident_count +=
4086				    NBPDR / PAGE_SIZE;
4087			}
4088			continue;
4089		}
4090
4091		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4092		KASSERT(srcmpte->wire_count > 0,
4093		    ("pmap_copy: source page table page is unused"));
4094
4095		if (pdnxt > end_addr)
4096			pdnxt = end_addr;
4097
4098		src_pte = vtopte(addr);
4099		while (addr < pdnxt) {
4100			pt_entry_t ptetemp;
4101			ptetemp = *src_pte;
4102			/*
4103			 * we only virtual copy managed pages
4104			 */
4105			if ((ptetemp & PG_MANAGED) != 0) {
4106				dstmpte = pmap_allocpte(dst_pmap, addr,
4107				    PMAP_ENTER_NOSLEEP);
4108				if (dstmpte == NULL)
4109					goto out;
4110				dst_pte = pmap_pte_quick(dst_pmap, addr);
4111				if (*dst_pte == 0 &&
4112				    pmap_try_insert_pv_entry(dst_pmap, addr,
4113				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4114					/*
4115					 * Clear the wired, modified, and
4116					 * accessed (referenced) bits
4117					 * during the copy.
4118					 */
4119					*dst_pte = ptetemp & ~(PG_W | PG_M |
4120					    PG_A);
4121					dst_pmap->pm_stats.resident_count++;
4122	 			} else {
4123					SLIST_INIT(&free);
4124					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4125					    &free)) {
4126						pmap_invalidate_page(dst_pmap,
4127						    addr);
4128						pmap_free_zero_pages(&free);
4129					}
4130					goto out;
4131				}
4132				if (dstmpte->wire_count >= srcmpte->wire_count)
4133					break;
4134			}
4135			addr += PAGE_SIZE;
4136			src_pte++;
4137		}
4138	}
4139out:
4140	sched_unpin();
4141	rw_wunlock(&pvh_global_lock);
4142	PMAP_UNLOCK(src_pmap);
4143	PMAP_UNLOCK(dst_pmap);
4144}
4145
4146static __inline void
4147pagezero(void *page)
4148{
4149#if defined(I686_CPU)
4150	if (cpu_class == CPUCLASS_686) {
4151#if defined(CPU_ENABLE_SSE)
4152		if (cpu_feature & CPUID_SSE2)
4153			sse2_pagezero(page);
4154		else
4155#endif
4156			i686_pagezero(page);
4157	} else
4158#endif
4159		bzero(page, PAGE_SIZE);
4160}
4161
4162/*
4163 *	pmap_zero_page zeros the specified hardware page by mapping
4164 *	the page into KVM and using bzero to clear its contents.
4165 */
4166void
4167pmap_zero_page(vm_page_t m)
4168{
4169	struct sysmaps *sysmaps;
4170
4171	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4172	mtx_lock(&sysmaps->lock);
4173	if (*sysmaps->CMAP2)
4174		panic("pmap_zero_page: CMAP2 busy");
4175	sched_pin();
4176	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4177	    pmap_cache_bits(m->md.pat_mode, 0);
4178	invlcaddr(sysmaps->CADDR2);
4179	pagezero(sysmaps->CADDR2);
4180	*sysmaps->CMAP2 = 0;
4181	sched_unpin();
4182	mtx_unlock(&sysmaps->lock);
4183}
4184
4185/*
4186 *	pmap_zero_page_area zeros the specified hardware page by mapping
4187 *	the page into KVM and using bzero to clear its contents.
4188 *
4189 *	off and size may not cover an area beyond a single hardware page.
4190 */
4191void
4192pmap_zero_page_area(vm_page_t m, int off, int size)
4193{
4194	struct sysmaps *sysmaps;
4195
4196	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4197	mtx_lock(&sysmaps->lock);
4198	if (*sysmaps->CMAP2)
4199		panic("pmap_zero_page_area: CMAP2 busy");
4200	sched_pin();
4201	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4202	    pmap_cache_bits(m->md.pat_mode, 0);
4203	invlcaddr(sysmaps->CADDR2);
4204	if (off == 0 && size == PAGE_SIZE)
4205		pagezero(sysmaps->CADDR2);
4206	else
4207		bzero((char *)sysmaps->CADDR2 + off, size);
4208	*sysmaps->CMAP2 = 0;
4209	sched_unpin();
4210	mtx_unlock(&sysmaps->lock);
4211}
4212
4213/*
4214 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4215 *	the page into KVM and using bzero to clear its contents.  This
4216 *	is intended to be called from the vm_pagezero process only and
4217 *	outside of Giant.
4218 */
4219void
4220pmap_zero_page_idle(vm_page_t m)
4221{
4222
4223	if (*CMAP3)
4224		panic("pmap_zero_page_idle: CMAP3 busy");
4225	sched_pin();
4226	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4227	    pmap_cache_bits(m->md.pat_mode, 0);
4228	invlcaddr(CADDR3);
4229	pagezero(CADDR3);
4230	*CMAP3 = 0;
4231	sched_unpin();
4232}
4233
4234/*
4235 *	pmap_copy_page copies the specified (machine independent)
4236 *	page by mapping the page into virtual memory and using
4237 *	bcopy to copy the page, one machine dependent page at a
4238 *	time.
4239 */
4240void
4241pmap_copy_page(vm_page_t src, vm_page_t dst)
4242{
4243	struct sysmaps *sysmaps;
4244
4245	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4246	mtx_lock(&sysmaps->lock);
4247	if (*sysmaps->CMAP1)
4248		panic("pmap_copy_page: CMAP1 busy");
4249	if (*sysmaps->CMAP2)
4250		panic("pmap_copy_page: CMAP2 busy");
4251	sched_pin();
4252	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4253	    pmap_cache_bits(src->md.pat_mode, 0);
4254	invlcaddr(sysmaps->CADDR1);
4255	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4256	    pmap_cache_bits(dst->md.pat_mode, 0);
4257	invlcaddr(sysmaps->CADDR2);
4258	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4259	*sysmaps->CMAP1 = 0;
4260	*sysmaps->CMAP2 = 0;
4261	sched_unpin();
4262	mtx_unlock(&sysmaps->lock);
4263}
4264
4265int unmapped_buf_allowed = 1;
4266
4267void
4268pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4269    vm_offset_t b_offset, int xfersize)
4270{
4271	struct sysmaps *sysmaps;
4272	vm_page_t a_pg, b_pg;
4273	char *a_cp, *b_cp;
4274	vm_offset_t a_pg_offset, b_pg_offset;
4275	int cnt;
4276
4277	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4278	mtx_lock(&sysmaps->lock);
4279	if (*sysmaps->CMAP1 != 0)
4280		panic("pmap_copy_pages: CMAP1 busy");
4281	if (*sysmaps->CMAP2 != 0)
4282		panic("pmap_copy_pages: CMAP2 busy");
4283	sched_pin();
4284	while (xfersize > 0) {
4285		a_pg = ma[a_offset >> PAGE_SHIFT];
4286		a_pg_offset = a_offset & PAGE_MASK;
4287		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4288		b_pg = mb[b_offset >> PAGE_SHIFT];
4289		b_pg_offset = b_offset & PAGE_MASK;
4290		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4291		*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4292		    pmap_cache_bits(a_pg->md.pat_mode, 0);
4293		invlcaddr(sysmaps->CADDR1);
4294		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4295		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4296		invlcaddr(sysmaps->CADDR2);
4297		a_cp = sysmaps->CADDR1 + a_pg_offset;
4298		b_cp = sysmaps->CADDR2 + b_pg_offset;
4299		bcopy(a_cp, b_cp, cnt);
4300		a_offset += cnt;
4301		b_offset += cnt;
4302		xfersize -= cnt;
4303	}
4304	*sysmaps->CMAP1 = 0;
4305	*sysmaps->CMAP2 = 0;
4306	sched_unpin();
4307	mtx_unlock(&sysmaps->lock);
4308}
4309
4310/*
4311 * Returns true if the pmap's pv is one of the first
4312 * 16 pvs linked to from this page.  This count may
4313 * be changed upwards or downwards in the future; it
4314 * is only necessary that true be returned for a small
4315 * subset of pmaps for proper page aging.
4316 */
4317boolean_t
4318pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4319{
4320	struct md_page *pvh;
4321	pv_entry_t pv;
4322	int loops = 0;
4323	boolean_t rv;
4324
4325	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4326	    ("pmap_page_exists_quick: page %p is not managed", m));
4327	rv = FALSE;
4328	rw_wlock(&pvh_global_lock);
4329	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4330		if (PV_PMAP(pv) == pmap) {
4331			rv = TRUE;
4332			break;
4333		}
4334		loops++;
4335		if (loops >= 16)
4336			break;
4337	}
4338	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4339		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4340		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4341			if (PV_PMAP(pv) == pmap) {
4342				rv = TRUE;
4343				break;
4344			}
4345			loops++;
4346			if (loops >= 16)
4347				break;
4348		}
4349	}
4350	rw_wunlock(&pvh_global_lock);
4351	return (rv);
4352}
4353
4354/*
4355 *	pmap_page_wired_mappings:
4356 *
4357 *	Return the number of managed mappings to the given physical page
4358 *	that are wired.
4359 */
4360int
4361pmap_page_wired_mappings(vm_page_t m)
4362{
4363	int count;
4364
4365	count = 0;
4366	if ((m->oflags & VPO_UNMANAGED) != 0)
4367		return (count);
4368	rw_wlock(&pvh_global_lock);
4369	count = pmap_pvh_wired_mappings(&m->md, count);
4370	if ((m->flags & PG_FICTITIOUS) == 0) {
4371	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4372	        count);
4373	}
4374	rw_wunlock(&pvh_global_lock);
4375	return (count);
4376}
4377
4378/*
4379 *	pmap_pvh_wired_mappings:
4380 *
4381 *	Return the updated number "count" of managed mappings that are wired.
4382 */
4383static int
4384pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4385{
4386	pmap_t pmap;
4387	pt_entry_t *pte;
4388	pv_entry_t pv;
4389
4390	rw_assert(&pvh_global_lock, RA_WLOCKED);
4391	sched_pin();
4392	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4393		pmap = PV_PMAP(pv);
4394		PMAP_LOCK(pmap);
4395		pte = pmap_pte_quick(pmap, pv->pv_va);
4396		if ((*pte & PG_W) != 0)
4397			count++;
4398		PMAP_UNLOCK(pmap);
4399	}
4400	sched_unpin();
4401	return (count);
4402}
4403
4404/*
4405 * Returns TRUE if the given page is mapped individually or as part of
4406 * a 4mpage.  Otherwise, returns FALSE.
4407 */
4408boolean_t
4409pmap_page_is_mapped(vm_page_t m)
4410{
4411	boolean_t rv;
4412
4413	if ((m->oflags & VPO_UNMANAGED) != 0)
4414		return (FALSE);
4415	rw_wlock(&pvh_global_lock);
4416	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4417	    ((m->flags & PG_FICTITIOUS) == 0 &&
4418	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4419	rw_wunlock(&pvh_global_lock);
4420	return (rv);
4421}
4422
4423/*
4424 * Remove all pages from specified address space
4425 * this aids process exit speeds.  Also, this code
4426 * is special cased for current process only, but
4427 * can have the more generic (and slightly slower)
4428 * mode enabled.  This is much faster than pmap_remove
4429 * in the case of running down an entire address space.
4430 */
4431void
4432pmap_remove_pages(pmap_t pmap)
4433{
4434	pt_entry_t *pte, tpte;
4435	vm_page_t m, mpte, mt;
4436	pv_entry_t pv;
4437	struct md_page *pvh;
4438	struct pv_chunk *pc, *npc;
4439	struct spglist free;
4440	int field, idx;
4441	int32_t bit;
4442	uint32_t inuse, bitmask;
4443	int allfree;
4444
4445	if (pmap != PCPU_GET(curpmap)) {
4446		printf("warning: pmap_remove_pages called with non-current pmap\n");
4447		return;
4448	}
4449	SLIST_INIT(&free);
4450	rw_wlock(&pvh_global_lock);
4451	PMAP_LOCK(pmap);
4452	sched_pin();
4453	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4454		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4455		    pc->pc_pmap));
4456		allfree = 1;
4457		for (field = 0; field < _NPCM; field++) {
4458			inuse = ~pc->pc_map[field] & pc_freemask[field];
4459			while (inuse != 0) {
4460				bit = bsfl(inuse);
4461				bitmask = 1UL << bit;
4462				idx = field * 32 + bit;
4463				pv = &pc->pc_pventry[idx];
4464				inuse &= ~bitmask;
4465
4466				pte = pmap_pde(pmap, pv->pv_va);
4467				tpte = *pte;
4468				if ((tpte & PG_PS) == 0) {
4469					pte = vtopte(pv->pv_va);
4470					tpte = *pte & ~PG_PTE_PAT;
4471				}
4472
4473				if (tpte == 0) {
4474					printf(
4475					    "TPTE at %p  IS ZERO @ VA %08x\n",
4476					    pte, pv->pv_va);
4477					panic("bad pte");
4478				}
4479
4480/*
4481 * We cannot remove wired pages from a process' mapping at this time
4482 */
4483				if (tpte & PG_W) {
4484					allfree = 0;
4485					continue;
4486				}
4487
4488				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4489				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4490				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4491				    m, (uintmax_t)m->phys_addr,
4492				    (uintmax_t)tpte));
4493
4494				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4495				    m < &vm_page_array[vm_page_array_size],
4496				    ("pmap_remove_pages: bad tpte %#jx",
4497				    (uintmax_t)tpte));
4498
4499				pte_clear(pte);
4500
4501				/*
4502				 * Update the vm_page_t clean/reference bits.
4503				 */
4504				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4505					if ((tpte & PG_PS) != 0) {
4506						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4507							vm_page_dirty(mt);
4508					} else
4509						vm_page_dirty(m);
4510				}
4511
4512				/* Mark free */
4513				PV_STAT(pv_entry_frees++);
4514				PV_STAT(pv_entry_spare++);
4515				pv_entry_count--;
4516				pc->pc_map[field] |= bitmask;
4517				if ((tpte & PG_PS) != 0) {
4518					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4519					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4520					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4521					if (TAILQ_EMPTY(&pvh->pv_list)) {
4522						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4523							if (TAILQ_EMPTY(&mt->md.pv_list))
4524								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4525					}
4526					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4527					if (mpte != NULL) {
4528						pmap_remove_pt_page(pmap, mpte);
4529						pmap->pm_stats.resident_count--;
4530						KASSERT(mpte->wire_count == NPTEPG,
4531						    ("pmap_remove_pages: pte page wire count error"));
4532						mpte->wire_count = 0;
4533						pmap_add_delayed_free_list(mpte, &free, FALSE);
4534						atomic_subtract_int(&cnt.v_wire_count, 1);
4535					}
4536				} else {
4537					pmap->pm_stats.resident_count--;
4538					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4539					if (TAILQ_EMPTY(&m->md.pv_list) &&
4540					    (m->flags & PG_FICTITIOUS) == 0) {
4541						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4542						if (TAILQ_EMPTY(&pvh->pv_list))
4543							vm_page_aflag_clear(m, PGA_WRITEABLE);
4544					}
4545					pmap_unuse_pt(pmap, pv->pv_va, &free);
4546				}
4547			}
4548		}
4549		if (allfree) {
4550			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4551			free_pv_chunk(pc);
4552		}
4553	}
4554	sched_unpin();
4555	pmap_invalidate_all(pmap);
4556	rw_wunlock(&pvh_global_lock);
4557	PMAP_UNLOCK(pmap);
4558	pmap_free_zero_pages(&free);
4559}
4560
4561/*
4562 *	pmap_is_modified:
4563 *
4564 *	Return whether or not the specified physical page was modified
4565 *	in any physical maps.
4566 */
4567boolean_t
4568pmap_is_modified(vm_page_t m)
4569{
4570	boolean_t rv;
4571
4572	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4573	    ("pmap_is_modified: page %p is not managed", m));
4574
4575	/*
4576	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4577	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4578	 * is clear, no PTEs can have PG_M set.
4579	 */
4580	VM_OBJECT_ASSERT_WLOCKED(m->object);
4581	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4582		return (FALSE);
4583	rw_wlock(&pvh_global_lock);
4584	rv = pmap_is_modified_pvh(&m->md) ||
4585	    ((m->flags & PG_FICTITIOUS) == 0 &&
4586	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4587	rw_wunlock(&pvh_global_lock);
4588	return (rv);
4589}
4590
4591/*
4592 * Returns TRUE if any of the given mappings were used to modify
4593 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4594 * mappings are supported.
4595 */
4596static boolean_t
4597pmap_is_modified_pvh(struct md_page *pvh)
4598{
4599	pv_entry_t pv;
4600	pt_entry_t *pte;
4601	pmap_t pmap;
4602	boolean_t rv;
4603
4604	rw_assert(&pvh_global_lock, RA_WLOCKED);
4605	rv = FALSE;
4606	sched_pin();
4607	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4608		pmap = PV_PMAP(pv);
4609		PMAP_LOCK(pmap);
4610		pte = pmap_pte_quick(pmap, pv->pv_va);
4611		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4612		PMAP_UNLOCK(pmap);
4613		if (rv)
4614			break;
4615	}
4616	sched_unpin();
4617	return (rv);
4618}
4619
4620/*
4621 *	pmap_is_prefaultable:
4622 *
4623 *	Return whether or not the specified virtual address is elgible
4624 *	for prefault.
4625 */
4626boolean_t
4627pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4628{
4629	pd_entry_t *pde;
4630	pt_entry_t *pte;
4631	boolean_t rv;
4632
4633	rv = FALSE;
4634	PMAP_LOCK(pmap);
4635	pde = pmap_pde(pmap, addr);
4636	if (*pde != 0 && (*pde & PG_PS) == 0) {
4637		pte = vtopte(addr);
4638		rv = *pte == 0;
4639	}
4640	PMAP_UNLOCK(pmap);
4641	return (rv);
4642}
4643
4644/*
4645 *	pmap_is_referenced:
4646 *
4647 *	Return whether or not the specified physical page was referenced
4648 *	in any physical maps.
4649 */
4650boolean_t
4651pmap_is_referenced(vm_page_t m)
4652{
4653	boolean_t rv;
4654
4655	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4656	    ("pmap_is_referenced: page %p is not managed", m));
4657	rw_wlock(&pvh_global_lock);
4658	rv = pmap_is_referenced_pvh(&m->md) ||
4659	    ((m->flags & PG_FICTITIOUS) == 0 &&
4660	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4661	rw_wunlock(&pvh_global_lock);
4662	return (rv);
4663}
4664
4665/*
4666 * Returns TRUE if any of the given mappings were referenced and FALSE
4667 * otherwise.  Both page and 4mpage mappings are supported.
4668 */
4669static boolean_t
4670pmap_is_referenced_pvh(struct md_page *pvh)
4671{
4672	pv_entry_t pv;
4673	pt_entry_t *pte;
4674	pmap_t pmap;
4675	boolean_t rv;
4676
4677	rw_assert(&pvh_global_lock, RA_WLOCKED);
4678	rv = FALSE;
4679	sched_pin();
4680	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4681		pmap = PV_PMAP(pv);
4682		PMAP_LOCK(pmap);
4683		pte = pmap_pte_quick(pmap, pv->pv_va);
4684		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4685		PMAP_UNLOCK(pmap);
4686		if (rv)
4687			break;
4688	}
4689	sched_unpin();
4690	return (rv);
4691}
4692
4693/*
4694 * Clear the write and modified bits in each of the given page's mappings.
4695 */
4696void
4697pmap_remove_write(vm_page_t m)
4698{
4699	struct md_page *pvh;
4700	pv_entry_t next_pv, pv;
4701	pmap_t pmap;
4702	pd_entry_t *pde;
4703	pt_entry_t oldpte, *pte;
4704	vm_offset_t va;
4705
4706	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4707	    ("pmap_remove_write: page %p is not managed", m));
4708
4709	/*
4710	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4711	 * set by another thread while the object is locked.  Thus,
4712	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4713	 */
4714	VM_OBJECT_ASSERT_WLOCKED(m->object);
4715	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4716		return;
4717	rw_wlock(&pvh_global_lock);
4718	sched_pin();
4719	if ((m->flags & PG_FICTITIOUS) != 0)
4720		goto small_mappings;
4721	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4722	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4723		va = pv->pv_va;
4724		pmap = PV_PMAP(pv);
4725		PMAP_LOCK(pmap);
4726		pde = pmap_pde(pmap, va);
4727		if ((*pde & PG_RW) != 0)
4728			(void)pmap_demote_pde(pmap, pde, va);
4729		PMAP_UNLOCK(pmap);
4730	}
4731small_mappings:
4732	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4733		pmap = PV_PMAP(pv);
4734		PMAP_LOCK(pmap);
4735		pde = pmap_pde(pmap, pv->pv_va);
4736		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4737		    " a 4mpage in page %p's pv list", m));
4738		pte = pmap_pte_quick(pmap, pv->pv_va);
4739retry:
4740		oldpte = *pte;
4741		if ((oldpte & PG_RW) != 0) {
4742			/*
4743			 * Regardless of whether a pte is 32 or 64 bits
4744			 * in size, PG_RW and PG_M are among the least
4745			 * significant 32 bits.
4746			 */
4747			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4748			    oldpte & ~(PG_RW | PG_M)))
4749				goto retry;
4750			if ((oldpte & PG_M) != 0)
4751				vm_page_dirty(m);
4752			pmap_invalidate_page(pmap, pv->pv_va);
4753		}
4754		PMAP_UNLOCK(pmap);
4755	}
4756	vm_page_aflag_clear(m, PGA_WRITEABLE);
4757	sched_unpin();
4758	rw_wunlock(&pvh_global_lock);
4759}
4760
4761#define	PMAP_TS_REFERENCED_MAX	5
4762
4763/*
4764 *	pmap_ts_referenced:
4765 *
4766 *	Return a count of reference bits for a page, clearing those bits.
4767 *	It is not necessary for every reference bit to be cleared, but it
4768 *	is necessary that 0 only be returned when there are truly no
4769 *	reference bits set.
4770 *
4771 *	XXX: The exact number of bits to check and clear is a matter that
4772 *	should be tested and standardized at some point in the future for
4773 *	optimal aging of shared pages.
4774 */
4775int
4776pmap_ts_referenced(vm_page_t m)
4777{
4778	struct md_page *pvh;
4779	pv_entry_t pv, pvf;
4780	pmap_t pmap;
4781	pd_entry_t *pde;
4782	pt_entry_t *pte;
4783	vm_paddr_t pa;
4784	int rtval = 0;
4785
4786	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4787	    ("pmap_ts_referenced: page %p is not managed", m));
4788	pa = VM_PAGE_TO_PHYS(m);
4789	pvh = pa_to_pvh(pa);
4790	rw_wlock(&pvh_global_lock);
4791	sched_pin();
4792	if ((m->flags & PG_FICTITIOUS) != 0 ||
4793	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4794		goto small_mappings;
4795	pv = pvf;
4796	do {
4797		pmap = PV_PMAP(pv);
4798		PMAP_LOCK(pmap);
4799		pde = pmap_pde(pmap, pv->pv_va);
4800		if ((*pde & PG_A) != 0) {
4801			/*
4802			 * Since this reference bit is shared by either 1024
4803			 * or 512 4KB pages, it should not be cleared every
4804			 * time it is tested.  Apply a simple "hash" function
4805			 * on the physical page number, the virtual superpage
4806			 * number, and the pmap address to select one 4KB page
4807			 * out of the 1024 or 512 on which testing the
4808			 * reference bit will result in clearing that bit.
4809			 * This function is designed to avoid the selection of
4810			 * the same 4KB page for every 2- or 4MB page mapping.
4811			 *
4812			 * On demotion, a mapping that hasn't been referenced
4813			 * is simply destroyed.  To avoid the possibility of a
4814			 * subsequent page fault on a demoted wired mapping,
4815			 * always leave its reference bit set.  Moreover,
4816			 * since the superpage is wired, the current state of
4817			 * its reference bit won't affect page replacement.
4818			 */
4819			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4820			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4821			    (*pde & PG_W) == 0) {
4822				atomic_clear_int((u_int *)pde, PG_A);
4823				pmap_invalidate_page(pmap, pv->pv_va);
4824			}
4825			rtval++;
4826		}
4827		PMAP_UNLOCK(pmap);
4828		/* Rotate the PV list if it has more than one entry. */
4829		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4830			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4831			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4832		}
4833		if (rtval >= PMAP_TS_REFERENCED_MAX)
4834			goto out;
4835	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4836small_mappings:
4837	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4838		goto out;
4839	pv = pvf;
4840	do {
4841		pmap = PV_PMAP(pv);
4842		PMAP_LOCK(pmap);
4843		pde = pmap_pde(pmap, pv->pv_va);
4844		KASSERT((*pde & PG_PS) == 0,
4845		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4846		    m));
4847		pte = pmap_pte_quick(pmap, pv->pv_va);
4848		if ((*pte & PG_A) != 0) {
4849			atomic_clear_int((u_int *)pte, PG_A);
4850			pmap_invalidate_page(pmap, pv->pv_va);
4851			rtval++;
4852		}
4853		PMAP_UNLOCK(pmap);
4854		/* Rotate the PV list if it has more than one entry. */
4855		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4856			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4857			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4858		}
4859	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4860	    PMAP_TS_REFERENCED_MAX);
4861out:
4862	sched_unpin();
4863	rw_wunlock(&pvh_global_lock);
4864	return (rtval);
4865}
4866
4867/*
4868 *	Apply the given advice to the specified range of addresses within the
4869 *	given pmap.  Depending on the advice, clear the referenced and/or
4870 *	modified flags in each mapping and set the mapped page's dirty field.
4871 */
4872void
4873pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4874{
4875	pd_entry_t oldpde, *pde;
4876	pt_entry_t *pte;
4877	vm_offset_t pdnxt;
4878	vm_page_t m;
4879	boolean_t anychanged, pv_lists_locked;
4880
4881	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4882		return;
4883	if (pmap_is_current(pmap))
4884		pv_lists_locked = FALSE;
4885	else {
4886		pv_lists_locked = TRUE;
4887resume:
4888		rw_wlock(&pvh_global_lock);
4889		sched_pin();
4890	}
4891	anychanged = FALSE;
4892	PMAP_LOCK(pmap);
4893	for (; sva < eva; sva = pdnxt) {
4894		pdnxt = (sva + NBPDR) & ~PDRMASK;
4895		if (pdnxt < sva)
4896			pdnxt = eva;
4897		pde = pmap_pde(pmap, sva);
4898		oldpde = *pde;
4899		if ((oldpde & PG_V) == 0)
4900			continue;
4901		else if ((oldpde & PG_PS) != 0) {
4902			if ((oldpde & PG_MANAGED) == 0)
4903				continue;
4904			if (!pv_lists_locked) {
4905				pv_lists_locked = TRUE;
4906				if (!rw_try_wlock(&pvh_global_lock)) {
4907					if (anychanged)
4908						pmap_invalidate_all(pmap);
4909					PMAP_UNLOCK(pmap);
4910					goto resume;
4911				}
4912				sched_pin();
4913			}
4914			if (!pmap_demote_pde(pmap, pde, sva)) {
4915				/*
4916				 * The large page mapping was destroyed.
4917				 */
4918				continue;
4919			}
4920
4921			/*
4922			 * Unless the page mappings are wired, remove the
4923			 * mapping to a single page so that a subsequent
4924			 * access may repromote.  Since the underlying page
4925			 * table page is fully populated, this removal never
4926			 * frees a page table page.
4927			 */
4928			if ((oldpde & PG_W) == 0) {
4929				pte = pmap_pte_quick(pmap, sva);
4930				KASSERT((*pte & PG_V) != 0,
4931				    ("pmap_advise: invalid PTE"));
4932				pmap_remove_pte(pmap, pte, sva, NULL);
4933				anychanged = TRUE;
4934			}
4935		}
4936		if (pdnxt > eva)
4937			pdnxt = eva;
4938		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4939		    sva += PAGE_SIZE) {
4940			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
4941			    PG_V))
4942				continue;
4943			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4944				if (advice == MADV_DONTNEED) {
4945					/*
4946					 * Future calls to pmap_is_modified()
4947					 * can be avoided by making the page
4948					 * dirty now.
4949					 */
4950					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4951					vm_page_dirty(m);
4952				}
4953				atomic_clear_int((u_int *)pte, PG_M | PG_A);
4954			} else if ((*pte & PG_A) != 0)
4955				atomic_clear_int((u_int *)pte, PG_A);
4956			else
4957				continue;
4958			if ((*pte & PG_G) != 0)
4959				pmap_invalidate_page(pmap, sva);
4960			else
4961				anychanged = TRUE;
4962		}
4963	}
4964	if (anychanged)
4965		pmap_invalidate_all(pmap);
4966	if (pv_lists_locked) {
4967		sched_unpin();
4968		rw_wunlock(&pvh_global_lock);
4969	}
4970	PMAP_UNLOCK(pmap);
4971}
4972
4973/*
4974 *	Clear the modify bits on the specified physical page.
4975 */
4976void
4977pmap_clear_modify(vm_page_t m)
4978{
4979	struct md_page *pvh;
4980	pv_entry_t next_pv, pv;
4981	pmap_t pmap;
4982	pd_entry_t oldpde, *pde;
4983	pt_entry_t oldpte, *pte;
4984	vm_offset_t va;
4985
4986	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4987	    ("pmap_clear_modify: page %p is not managed", m));
4988	VM_OBJECT_ASSERT_WLOCKED(m->object);
4989	KASSERT(!vm_page_xbusied(m),
4990	    ("pmap_clear_modify: page %p is exclusive busied", m));
4991
4992	/*
4993	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4994	 * If the object containing the page is locked and the page is not
4995	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4996	 */
4997	if ((m->aflags & PGA_WRITEABLE) == 0)
4998		return;
4999	rw_wlock(&pvh_global_lock);
5000	sched_pin();
5001	if ((m->flags & PG_FICTITIOUS) != 0)
5002		goto small_mappings;
5003	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5004	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5005		va = pv->pv_va;
5006		pmap = PV_PMAP(pv);
5007		PMAP_LOCK(pmap);
5008		pde = pmap_pde(pmap, va);
5009		oldpde = *pde;
5010		if ((oldpde & PG_RW) != 0) {
5011			if (pmap_demote_pde(pmap, pde, va)) {
5012				if ((oldpde & PG_W) == 0) {
5013					/*
5014					 * Write protect the mapping to a
5015					 * single page so that a subsequent
5016					 * write access may repromote.
5017					 */
5018					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5019					    PG_PS_FRAME);
5020					pte = pmap_pte_quick(pmap, va);
5021					oldpte = *pte;
5022					if ((oldpte & PG_V) != 0) {
5023						/*
5024						 * Regardless of whether a pte is 32 or 64 bits
5025						 * in size, PG_RW and PG_M are among the least
5026						 * significant 32 bits.
5027						 */
5028						while (!atomic_cmpset_int((u_int *)pte,
5029						    oldpte,
5030						    oldpte & ~(PG_M | PG_RW)))
5031							oldpte = *pte;
5032						vm_page_dirty(m);
5033						pmap_invalidate_page(pmap, va);
5034					}
5035				}
5036			}
5037		}
5038		PMAP_UNLOCK(pmap);
5039	}
5040small_mappings:
5041	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5042		pmap = PV_PMAP(pv);
5043		PMAP_LOCK(pmap);
5044		pde = pmap_pde(pmap, pv->pv_va);
5045		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5046		    " a 4mpage in page %p's pv list", m));
5047		pte = pmap_pte_quick(pmap, pv->pv_va);
5048		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5049			/*
5050			 * Regardless of whether a pte is 32 or 64 bits
5051			 * in size, PG_M is among the least significant
5052			 * 32 bits.
5053			 */
5054			atomic_clear_int((u_int *)pte, PG_M);
5055			pmap_invalidate_page(pmap, pv->pv_va);
5056		}
5057		PMAP_UNLOCK(pmap);
5058	}
5059	sched_unpin();
5060	rw_wunlock(&pvh_global_lock);
5061}
5062
5063/*
5064 * Miscellaneous support routines follow
5065 */
5066
5067/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5068static __inline void
5069pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5070{
5071	u_int opte, npte;
5072
5073	/*
5074	 * The cache mode bits are all in the low 32-bits of the
5075	 * PTE, so we can just spin on updating the low 32-bits.
5076	 */
5077	do {
5078		opte = *(u_int *)pte;
5079		npte = opte & ~PG_PTE_CACHE;
5080		npte |= cache_bits;
5081	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5082}
5083
5084/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5085static __inline void
5086pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5087{
5088	u_int opde, npde;
5089
5090	/*
5091	 * The cache mode bits are all in the low 32-bits of the
5092	 * PDE, so we can just spin on updating the low 32-bits.
5093	 */
5094	do {
5095		opde = *(u_int *)pde;
5096		npde = opde & ~PG_PDE_CACHE;
5097		npde |= cache_bits;
5098	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5099}
5100
5101/*
5102 * Map a set of physical memory pages into the kernel virtual
5103 * address space. Return a pointer to where it is mapped. This
5104 * routine is intended to be used for mapping device memory,
5105 * NOT real memory.
5106 */
5107void *
5108pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5109{
5110	vm_offset_t va, offset;
5111	vm_size_t tmpsize;
5112
5113	offset = pa & PAGE_MASK;
5114	size = round_page(offset + size);
5115	pa = pa & PG_FRAME;
5116
5117	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5118		va = KERNBASE + pa;
5119	else
5120		va = kva_alloc(size);
5121	if (!va)
5122		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5123
5124	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5125		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5126	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5127	pmap_invalidate_cache_range(va, va + size);
5128	return ((void *)(va + offset));
5129}
5130
5131void *
5132pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5133{
5134
5135	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5136}
5137
5138void *
5139pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5140{
5141
5142	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5143}
5144
5145void
5146pmap_unmapdev(vm_offset_t va, vm_size_t size)
5147{
5148	vm_offset_t base, offset;
5149
5150	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5151		return;
5152	base = trunc_page(va);
5153	offset = va & PAGE_MASK;
5154	size = round_page(offset + size);
5155	kva_free(base, size);
5156}
5157
5158/*
5159 * Sets the memory attribute for the specified page.
5160 */
5161void
5162pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5163{
5164
5165	m->md.pat_mode = ma;
5166	if ((m->flags & PG_FICTITIOUS) != 0)
5167		return;
5168
5169	/*
5170	 * If "m" is a normal page, flush it from the cache.
5171	 * See pmap_invalidate_cache_range().
5172	 *
5173	 * First, try to find an existing mapping of the page by sf
5174	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5175	 * flushes the cache.
5176	 */
5177	if (sf_buf_invalidate_cache(m))
5178		return;
5179
5180	/*
5181	 * If page is not mapped by sf buffer, but CPU does not
5182	 * support self snoop, map the page transient and do
5183	 * invalidation. In the worst case, whole cache is flushed by
5184	 * pmap_invalidate_cache_range().
5185	 */
5186	if ((cpu_feature & CPUID_SS) == 0)
5187		pmap_flush_page(m);
5188}
5189
5190static void
5191pmap_flush_page(vm_page_t m)
5192{
5193	struct sysmaps *sysmaps;
5194	vm_offset_t sva, eva;
5195
5196	if ((cpu_feature & CPUID_CLFSH) != 0) {
5197		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
5198		mtx_lock(&sysmaps->lock);
5199		if (*sysmaps->CMAP2)
5200			panic("pmap_flush_page: CMAP2 busy");
5201		sched_pin();
5202		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5203		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5204		invlcaddr(sysmaps->CADDR2);
5205		sva = (vm_offset_t)sysmaps->CADDR2;
5206		eva = sva + PAGE_SIZE;
5207
5208		/*
5209		 * Use mfence despite the ordering implied by
5210		 * mtx_{un,}lock() because clflush is not guaranteed
5211		 * to be ordered by any other instruction.
5212		 */
5213		mfence();
5214		for (; sva < eva; sva += cpu_clflush_line_size)
5215			clflush(sva);
5216		mfence();
5217		*sysmaps->CMAP2 = 0;
5218		sched_unpin();
5219		mtx_unlock(&sysmaps->lock);
5220	} else
5221		pmap_invalidate_cache();
5222}
5223
5224/*
5225 * Changes the specified virtual address range's memory type to that given by
5226 * the parameter "mode".  The specified virtual address range must be
5227 * completely contained within either the kernel map.
5228 *
5229 * Returns zero if the change completed successfully, and either EINVAL or
5230 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5231 * of the virtual address range was not mapped, and ENOMEM is returned if
5232 * there was insufficient memory available to complete the change.
5233 */
5234int
5235pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5236{
5237	vm_offset_t base, offset, tmpva;
5238	pd_entry_t *pde;
5239	pt_entry_t *pte;
5240	int cache_bits_pte, cache_bits_pde;
5241	boolean_t changed;
5242
5243	base = trunc_page(va);
5244	offset = va & PAGE_MASK;
5245	size = round_page(offset + size);
5246
5247	/*
5248	 * Only supported on kernel virtual addresses above the recursive map.
5249	 */
5250	if (base < VM_MIN_KERNEL_ADDRESS)
5251		return (EINVAL);
5252
5253	cache_bits_pde = pmap_cache_bits(mode, 1);
5254	cache_bits_pte = pmap_cache_bits(mode, 0);
5255	changed = FALSE;
5256
5257	/*
5258	 * Pages that aren't mapped aren't supported.  Also break down
5259	 * 2/4MB pages into 4KB pages if required.
5260	 */
5261	PMAP_LOCK(kernel_pmap);
5262	for (tmpva = base; tmpva < base + size; ) {
5263		pde = pmap_pde(kernel_pmap, tmpva);
5264		if (*pde == 0) {
5265			PMAP_UNLOCK(kernel_pmap);
5266			return (EINVAL);
5267		}
5268		if (*pde & PG_PS) {
5269			/*
5270			 * If the current 2/4MB page already has
5271			 * the required memory type, then we need not
5272			 * demote this page.  Just increment tmpva to
5273			 * the next 2/4MB page frame.
5274			 */
5275			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5276				tmpva = trunc_4mpage(tmpva) + NBPDR;
5277				continue;
5278			}
5279
5280			/*
5281			 * If the current offset aligns with a 2/4MB
5282			 * page frame and there is at least 2/4MB left
5283			 * within the range, then we need not break
5284			 * down this page into 4KB pages.
5285			 */
5286			if ((tmpva & PDRMASK) == 0 &&
5287			    tmpva + PDRMASK < base + size) {
5288				tmpva += NBPDR;
5289				continue;
5290			}
5291			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5292				PMAP_UNLOCK(kernel_pmap);
5293				return (ENOMEM);
5294			}
5295		}
5296		pte = vtopte(tmpva);
5297		if (*pte == 0) {
5298			PMAP_UNLOCK(kernel_pmap);
5299			return (EINVAL);
5300		}
5301		tmpva += PAGE_SIZE;
5302	}
5303	PMAP_UNLOCK(kernel_pmap);
5304
5305	/*
5306	 * Ok, all the pages exist, so run through them updating their
5307	 * cache mode if required.
5308	 */
5309	for (tmpva = base; tmpva < base + size; ) {
5310		pde = pmap_pde(kernel_pmap, tmpva);
5311		if (*pde & PG_PS) {
5312			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5313				pmap_pde_attr(pde, cache_bits_pde);
5314				changed = TRUE;
5315			}
5316			tmpva = trunc_4mpage(tmpva) + NBPDR;
5317		} else {
5318			pte = vtopte(tmpva);
5319			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5320				pmap_pte_attr(pte, cache_bits_pte);
5321				changed = TRUE;
5322			}
5323			tmpva += PAGE_SIZE;
5324		}
5325	}
5326
5327	/*
5328	 * Flush CPU caches to make sure any data isn't cached that
5329	 * shouldn't be, etc.
5330	 */
5331	if (changed) {
5332		pmap_invalidate_range(kernel_pmap, base, tmpva);
5333		pmap_invalidate_cache_range(base, tmpva);
5334	}
5335	return (0);
5336}
5337
5338/*
5339 * perform the pmap work for mincore
5340 */
5341int
5342pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5343{
5344	pd_entry_t *pdep;
5345	pt_entry_t *ptep, pte;
5346	vm_paddr_t pa;
5347	int val;
5348
5349	PMAP_LOCK(pmap);
5350retry:
5351	pdep = pmap_pde(pmap, addr);
5352	if (*pdep != 0) {
5353		if (*pdep & PG_PS) {
5354			pte = *pdep;
5355			/* Compute the physical address of the 4KB page. */
5356			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5357			    PG_FRAME;
5358			val = MINCORE_SUPER;
5359		} else {
5360			ptep = pmap_pte(pmap, addr);
5361			pte = *ptep;
5362			pmap_pte_release(ptep);
5363			pa = pte & PG_FRAME;
5364			val = 0;
5365		}
5366	} else {
5367		pte = 0;
5368		pa = 0;
5369		val = 0;
5370	}
5371	if ((pte & PG_V) != 0) {
5372		val |= MINCORE_INCORE;
5373		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5374			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5375		if ((pte & PG_A) != 0)
5376			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5377	}
5378	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5379	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5380	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5381		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5382		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5383			goto retry;
5384	} else
5385		PA_UNLOCK_COND(*locked_pa);
5386	PMAP_UNLOCK(pmap);
5387	return (val);
5388}
5389
5390void
5391pmap_activate(struct thread *td)
5392{
5393	pmap_t	pmap, oldpmap;
5394	u_int	cpuid;
5395	u_int32_t  cr3;
5396
5397	critical_enter();
5398	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5399	oldpmap = PCPU_GET(curpmap);
5400	cpuid = PCPU_GET(cpuid);
5401#if defined(SMP)
5402	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5403	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5404#else
5405	CPU_CLR(cpuid, &oldpmap->pm_active);
5406	CPU_SET(cpuid, &pmap->pm_active);
5407#endif
5408#ifdef PAE
5409	cr3 = vtophys(pmap->pm_pdpt);
5410#else
5411	cr3 = vtophys(pmap->pm_pdir);
5412#endif
5413	/*
5414	 * pmap_activate is for the current thread on the current cpu
5415	 */
5416	td->td_pcb->pcb_cr3 = cr3;
5417	load_cr3(cr3);
5418	PCPU_SET(curpmap, pmap);
5419	critical_exit();
5420}
5421
5422void
5423pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5424{
5425}
5426
5427/*
5428 *	Increase the starting virtual address of the given mapping if a
5429 *	different alignment might result in more superpage mappings.
5430 */
5431void
5432pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5433    vm_offset_t *addr, vm_size_t size)
5434{
5435	vm_offset_t superpage_offset;
5436
5437	if (size < NBPDR)
5438		return;
5439	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5440		offset += ptoa(object->pg_color);
5441	superpage_offset = offset & PDRMASK;
5442	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5443	    (*addr & PDRMASK) == superpage_offset)
5444		return;
5445	if ((*addr & PDRMASK) < superpage_offset)
5446		*addr = (*addr & ~PDRMASK) + superpage_offset;
5447	else
5448		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5449}
5450
5451
5452#if defined(PMAP_DEBUG)
5453pmap_pid_dump(int pid)
5454{
5455	pmap_t pmap;
5456	struct proc *p;
5457	int npte = 0;
5458	int index;
5459
5460	sx_slock(&allproc_lock);
5461	FOREACH_PROC_IN_SYSTEM(p) {
5462		if (p->p_pid != pid)
5463			continue;
5464
5465		if (p->p_vmspace) {
5466			int i,j;
5467			index = 0;
5468			pmap = vmspace_pmap(p->p_vmspace);
5469			for (i = 0; i < NPDEPTD; i++) {
5470				pd_entry_t *pde;
5471				pt_entry_t *pte;
5472				vm_offset_t base = i << PDRSHIFT;
5473
5474				pde = &pmap->pm_pdir[i];
5475				if (pde && pmap_pde_v(pde)) {
5476					for (j = 0; j < NPTEPG; j++) {
5477						vm_offset_t va = base + (j << PAGE_SHIFT);
5478						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5479							if (index) {
5480								index = 0;
5481								printf("\n");
5482							}
5483							sx_sunlock(&allproc_lock);
5484							return (npte);
5485						}
5486						pte = pmap_pte(pmap, va);
5487						if (pte && pmap_pte_v(pte)) {
5488							pt_entry_t pa;
5489							vm_page_t m;
5490							pa = *pte;
5491							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5492							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5493								va, pa, m->hold_count, m->wire_count, m->flags);
5494							npte++;
5495							index++;
5496							if (index >= 2) {
5497								index = 0;
5498								printf("\n");
5499							} else {
5500								printf(" ");
5501							}
5502						}
5503					}
5504				}
5505			}
5506		}
5507	}
5508	sx_sunlock(&allproc_lock);
5509	return (npte);
5510}
5511#endif
5512
5513#if defined(DEBUG)
5514
5515static void	pads(pmap_t pm);
5516void		pmap_pvdump(vm_paddr_t pa);
5517
5518/* print address space of pmap*/
5519static void
5520pads(pmap_t pm)
5521{
5522	int i, j;
5523	vm_paddr_t va;
5524	pt_entry_t *ptep;
5525
5526	if (pm == kernel_pmap)
5527		return;
5528	for (i = 0; i < NPDEPTD; i++)
5529		if (pm->pm_pdir[i])
5530			for (j = 0; j < NPTEPG; j++) {
5531				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5532				if (pm == kernel_pmap && va < KERNBASE)
5533					continue;
5534				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5535					continue;
5536				ptep = pmap_pte(pm, va);
5537				if (pmap_pte_v(ptep))
5538					printf("%x:%x ", va, *ptep);
5539			};
5540
5541}
5542
5543void
5544pmap_pvdump(vm_paddr_t pa)
5545{
5546	pv_entry_t pv;
5547	pmap_t pmap;
5548	vm_page_t m;
5549
5550	printf("pa %x", pa);
5551	m = PHYS_TO_VM_PAGE(pa);
5552	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5553		pmap = PV_PMAP(pv);
5554		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5555		pads(pmap);
5556	}
5557	printf(" ");
5558}
5559#endif
5560