pmap.c revision 267964
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/10/sys/i386/i386/pmap.c 267964 2014-06-27 17:22:18Z jhb $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#else
124#include <sys/cpuset.h>
125#endif
126
127#include <vm/vm.h>
128#include <vm/vm_param.h>
129#include <vm/vm_kern.h>
130#include <vm/vm_page.h>
131#include <vm/vm_map.h>
132#include <vm/vm_object.h>
133#include <vm/vm_extern.h>
134#include <vm/vm_pageout.h>
135#include <vm/vm_pager.h>
136#include <vm/vm_radix.h>
137#include <vm/vm_reserv.h>
138#include <vm/uma.h>
139
140#ifdef DEV_APIC
141#include <sys/bus.h>
142#include <machine/intr_machdep.h>
143#include <machine/apicvar.h>
144#endif
145#include <machine/cpu.h>
146#include <machine/cputypes.h>
147#include <machine/md_var.h>
148#include <machine/pcb.h>
149#include <machine/specialreg.h>
150#ifdef SMP
151#include <machine/smp.h>
152#endif
153
154#ifdef XBOX
155#include <machine/xbox.h>
156#endif
157
158#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
159#define CPU_ENABLE_SSE
160#endif
161
162#ifndef PMAP_SHPGPERPROC
163#define PMAP_SHPGPERPROC 200
164#endif
165
166#if !defined(DIAGNOSTIC)
167#ifdef __GNUC_GNU_INLINE__
168#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
169#else
170#define PMAP_INLINE	extern inline
171#endif
172#else
173#define PMAP_INLINE
174#endif
175
176#ifdef PV_STATS
177#define PV_STAT(x)	do { x ; } while (0)
178#else
179#define PV_STAT(x)	do { } while (0)
180#endif
181
182#define	pa_index(pa)	((pa) >> PDRSHIFT)
183#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
184
185/*
186 * Get PDEs and PTEs for user/kernel address space
187 */
188#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
189#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
190
191#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
192#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
193#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
194#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
195#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
196
197#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
198    atomic_clear_int((u_int *)(pte), PG_W))
199#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
200
201struct pmap kernel_pmap_store;
202LIST_HEAD(pmaplist, pmap);
203static struct pmaplist allpmaps;
204static struct mtx allpmaps_lock;
205
206vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
207vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
208int pgeflag = 0;		/* PG_G or-in */
209int pseflag = 0;		/* PG_PS or-in */
210
211static int nkpt = NKPT;
212vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
213extern u_int32_t KERNend;
214extern u_int32_t KPTphys;
215
216#ifdef PAE
217pt_entry_t pg_nx;
218static uma_zone_t pdptzone;
219#endif
220
221static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
222
223static int pat_works = 1;
224SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
225    "Is page attribute table fully functional?");
226
227static int pg_ps_enabled = 1;
228SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
229    "Are large page mappings enabled?");
230
231#define	PAT_INDEX_SIZE	8
232static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
233
234static struct rwlock_padalign pvh_global_lock;
235
236/*
237 * Data for the pv entry allocation mechanism
238 */
239static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
240static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
241static struct md_page *pv_table;
242static int shpgperproc = PMAP_SHPGPERPROC;
243
244struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
245int pv_maxchunks;			/* How many chunks we have KVA for */
246vm_offset_t pv_vafree;			/* freelist stored in the PTE */
247
248/*
249 * All those kernel PT submaps that BSD is so fond of
250 */
251struct sysmaps {
252	struct	mtx lock;
253	pt_entry_t *CMAP1;
254	pt_entry_t *CMAP2;
255	caddr_t	CADDR1;
256	caddr_t	CADDR2;
257};
258static struct sysmaps sysmaps_pcpu[MAXCPU];
259pt_entry_t *CMAP3;
260static pd_entry_t *KPTD;
261caddr_t ptvmmap = 0;
262caddr_t CADDR3;
263struct msgbuf *msgbufp = 0;
264
265/*
266 * Crashdump maps.
267 */
268static caddr_t crashdumpmap;
269
270static pt_entry_t *PMAP1 = 0, *PMAP2;
271static pt_entry_t *PADDR1 = 0, *PADDR2;
272#ifdef SMP
273static int PMAP1cpu;
274static int PMAP1changedcpu;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
276	   &PMAP1changedcpu, 0,
277	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
278#endif
279static int PMAP1changed;
280SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
281	   &PMAP1changed, 0,
282	   "Number of times pmap_pte_quick changed PMAP1");
283static int PMAP1unchanged;
284SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
285	   &PMAP1unchanged, 0,
286	   "Number of times pmap_pte_quick didn't change PMAP1");
287static struct mtx PMAP2mutex;
288
289static void	free_pv_chunk(struct pv_chunk *pc);
290static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
291static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
292static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
293static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
295static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
296static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
297		    vm_offset_t va);
298static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
299
300static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
301static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
302    vm_prot_t prot);
303static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
304    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
305static void pmap_flush_page(vm_page_t m);
306static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
307static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
308static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
309static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
310static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
311static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
312static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
313static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
314static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
315static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
316    vm_prot_t prot);
317static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
318static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
319    struct spglist *free);
320static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
321    struct spglist *free);
322static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
323static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
324    struct spglist *free);
325static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
326					vm_offset_t va);
327static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
328static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
329    vm_page_t m);
330static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
331    pd_entry_t newpde);
332static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
333
334static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
335
336static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
337static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
338static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
339static void pmap_pte_release(pt_entry_t *pte);
340static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
341#ifdef PAE
342static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
343#endif
344static void pmap_set_pg(void);
345
346static __inline void pagezero(void *page);
347
348CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
349CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
350
351/*
352 * If you get an error here, then you set KVA_PAGES wrong! See the
353 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
354 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
355 */
356CTASSERT(KERNBASE % (1 << 24) == 0);
357
358/*
359 *	Bootstrap the system enough to run with virtual memory.
360 *
361 *	On the i386 this is called after mapping has already been enabled
362 *	and just syncs the pmap module with what has already been done.
363 *	[We can't call it easily with mapping off since the kernel is not
364 *	mapped with PA == VA, hence we would have to relocate every address
365 *	from the linked base (virtual) address "KERNBASE" to the actual
366 *	(physical) address starting relative to 0]
367 */
368void
369pmap_bootstrap(vm_paddr_t firstaddr)
370{
371	vm_offset_t va;
372	pt_entry_t *pte, *unused;
373	struct sysmaps *sysmaps;
374	int i;
375
376	/*
377	 * Initialize the first available kernel virtual address.  However,
378	 * using "firstaddr" may waste a few pages of the kernel virtual
379	 * address space, because locore may not have mapped every physical
380	 * page that it allocated.  Preferably, locore would provide a first
381	 * unused virtual address in addition to "firstaddr".
382	 */
383	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
384
385	virtual_end = VM_MAX_KERNEL_ADDRESS;
386
387	/*
388	 * Initialize the kernel pmap (which is statically allocated).
389	 */
390	PMAP_LOCK_INIT(kernel_pmap);
391	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
392#ifdef PAE
393	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
394#endif
395	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
396	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
397
398 	/*
399	 * Initialize the global pv list lock.
400	 */
401	rw_init(&pvh_global_lock, "pmap pv global");
402
403	LIST_INIT(&allpmaps);
404
405	/*
406	 * Request a spin mutex so that changes to allpmaps cannot be
407	 * preempted by smp_rendezvous_cpus().  Otherwise,
408	 * pmap_update_pde_kernel() could access allpmaps while it is
409	 * being changed.
410	 */
411	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
412	mtx_lock_spin(&allpmaps_lock);
413	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
414	mtx_unlock_spin(&allpmaps_lock);
415
416	/*
417	 * Reserve some special page table entries/VA space for temporary
418	 * mapping of pages.
419	 */
420#define	SYSMAP(c, p, v, n)	\
421	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
422
423	va = virtual_avail;
424	pte = vtopte(va);
425
426	/*
427	 * CMAP1/CMAP2 are used for zeroing and copying pages.
428	 * CMAP3 is used for the idle process page zeroing.
429	 */
430	for (i = 0; i < MAXCPU; i++) {
431		sysmaps = &sysmaps_pcpu[i];
432		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
433		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
434		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
435	}
436	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
437
438	/*
439	 * Crashdump maps.
440	 */
441	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
442
443	/*
444	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
445	 */
446	SYSMAP(caddr_t, unused, ptvmmap, 1)
447
448	/*
449	 * msgbufp is used to map the system message buffer.
450	 */
451	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
452
453	/*
454	 * KPTmap is used by pmap_kextract().
455	 *
456	 * KPTmap is first initialized by locore.  However, that initial
457	 * KPTmap can only support NKPT page table pages.  Here, a larger
458	 * KPTmap is created that can support KVA_PAGES page table pages.
459	 */
460	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
461
462	for (i = 0; i < NKPT; i++)
463		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
464
465	/*
466	 * Adjust the start of the KPTD and KPTmap so that the implementation
467	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
468	 */
469	KPTD -= KPTDI;
470	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
471
472	/*
473	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
474	 * respectively.
475	 */
476	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
477	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
478
479	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
480
481	virtual_avail = va;
482
483	/*
484	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
485	 * physical memory region that is used by the ACPI wakeup code.  This
486	 * mapping must not have PG_G set.
487	 */
488#ifdef XBOX
489	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
490	 * an early stadium, we cannot yet neatly map video memory ... :-(
491	 * Better fixes are very welcome! */
492	if (!arch_i386_is_xbox)
493#endif
494	for (i = 1; i < NKPT; i++)
495		PTD[i] = 0;
496
497	/* Initialize the PAT MSR if present. */
498	pmap_init_pat();
499
500	/* Turn on PG_G on kernel page(s) */
501	pmap_set_pg();
502}
503
504/*
505 * Setup the PAT MSR.
506 */
507void
508pmap_init_pat(void)
509{
510	int pat_table[PAT_INDEX_SIZE];
511	uint64_t pat_msr;
512	u_long cr0, cr4;
513	int i;
514
515	/* Set default PAT index table. */
516	for (i = 0; i < PAT_INDEX_SIZE; i++)
517		pat_table[i] = -1;
518	pat_table[PAT_WRITE_BACK] = 0;
519	pat_table[PAT_WRITE_THROUGH] = 1;
520	pat_table[PAT_UNCACHEABLE] = 3;
521	pat_table[PAT_WRITE_COMBINING] = 3;
522	pat_table[PAT_WRITE_PROTECTED] = 3;
523	pat_table[PAT_UNCACHED] = 3;
524
525	/* Bail if this CPU doesn't implement PAT. */
526	if ((cpu_feature & CPUID_PAT) == 0) {
527		for (i = 0; i < PAT_INDEX_SIZE; i++)
528			pat_index[i] = pat_table[i];
529		pat_works = 0;
530		return;
531	}
532
533	/*
534	 * Due to some Intel errata, we can only safely use the lower 4
535	 * PAT entries.
536	 *
537	 *   Intel Pentium III Processor Specification Update
538	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
539	 * or Mode C Paging)
540	 *
541	 *   Intel Pentium IV  Processor Specification Update
542	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
543	 */
544	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
545	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
546		pat_works = 0;
547
548	/* Initialize default PAT entries. */
549	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
550	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
551	    PAT_VALUE(2, PAT_UNCACHED) |
552	    PAT_VALUE(3, PAT_UNCACHEABLE) |
553	    PAT_VALUE(4, PAT_WRITE_BACK) |
554	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
555	    PAT_VALUE(6, PAT_UNCACHED) |
556	    PAT_VALUE(7, PAT_UNCACHEABLE);
557
558	if (pat_works) {
559		/*
560		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
561		 * Program 5 and 6 as WP and WC.
562		 * Leave 4 and 7 as WB and UC.
563		 */
564		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
565		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
566		    PAT_VALUE(6, PAT_WRITE_COMBINING);
567		pat_table[PAT_UNCACHED] = 2;
568		pat_table[PAT_WRITE_PROTECTED] = 5;
569		pat_table[PAT_WRITE_COMBINING] = 6;
570	} else {
571		/*
572		 * Just replace PAT Index 2 with WC instead of UC-.
573		 */
574		pat_msr &= ~PAT_MASK(2);
575		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
576		pat_table[PAT_WRITE_COMBINING] = 2;
577	}
578
579	/* Disable PGE. */
580	cr4 = rcr4();
581	load_cr4(cr4 & ~CR4_PGE);
582
583	/* Disable caches (CD = 1, NW = 0). */
584	cr0 = rcr0();
585	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
586
587	/* Flushes caches and TLBs. */
588	wbinvd();
589	invltlb();
590
591	/* Update PAT and index table. */
592	wrmsr(MSR_PAT, pat_msr);
593	for (i = 0; i < PAT_INDEX_SIZE; i++)
594		pat_index[i] = pat_table[i];
595
596	/* Flush caches and TLBs again. */
597	wbinvd();
598	invltlb();
599
600	/* Restore caches and PGE. */
601	load_cr0(cr0);
602	load_cr4(cr4);
603}
604
605/*
606 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
607 */
608static void
609pmap_set_pg(void)
610{
611	pt_entry_t *pte;
612	vm_offset_t va, endva;
613
614	if (pgeflag == 0)
615		return;
616
617	endva = KERNBASE + KERNend;
618
619	if (pseflag) {
620		va = KERNBASE + KERNLOAD;
621		while (va  < endva) {
622			pdir_pde(PTD, va) |= pgeflag;
623			invltlb();	/* Play it safe, invltlb() every time */
624			va += NBPDR;
625		}
626	} else {
627		va = (vm_offset_t)btext;
628		while (va < endva) {
629			pte = vtopte(va);
630			if (*pte)
631				*pte |= pgeflag;
632			invltlb();	/* Play it safe, invltlb() every time */
633			va += PAGE_SIZE;
634		}
635	}
636}
637
638/*
639 * Initialize a vm_page's machine-dependent fields.
640 */
641void
642pmap_page_init(vm_page_t m)
643{
644
645	TAILQ_INIT(&m->md.pv_list);
646	m->md.pat_mode = PAT_WRITE_BACK;
647}
648
649#ifdef PAE
650static void *
651pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
652{
653
654	/* Inform UMA that this allocator uses kernel_map/object. */
655	*flags = UMA_SLAB_KERNEL;
656	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
657	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
658}
659#endif
660
661/*
662 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
663 * Requirements:
664 *  - Must deal with pages in order to ensure that none of the PG_* bits
665 *    are ever set, PG_V in particular.
666 *  - Assumes we can write to ptes without pte_store() atomic ops, even
667 *    on PAE systems.  This should be ok.
668 *  - Assumes nothing will ever test these addresses for 0 to indicate
669 *    no mapping instead of correctly checking PG_V.
670 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
671 * Because PG_V is never set, there can be no mappings to invalidate.
672 */
673static vm_offset_t
674pmap_ptelist_alloc(vm_offset_t *head)
675{
676	pt_entry_t *pte;
677	vm_offset_t va;
678
679	va = *head;
680	if (va == 0)
681		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
682	pte = vtopte(va);
683	*head = *pte;
684	if (*head & PG_V)
685		panic("pmap_ptelist_alloc: va with PG_V set!");
686	*pte = 0;
687	return (va);
688}
689
690static void
691pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
692{
693	pt_entry_t *pte;
694
695	if (va & PG_V)
696		panic("pmap_ptelist_free: freeing va with PG_V set!");
697	pte = vtopte(va);
698	*pte = *head;		/* virtual! PG_V is 0 though */
699	*head = va;
700}
701
702static void
703pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
704{
705	int i;
706	vm_offset_t va;
707
708	*head = 0;
709	for (i = npages - 1; i >= 0; i--) {
710		va = (vm_offset_t)base + i * PAGE_SIZE;
711		pmap_ptelist_free(head, va);
712	}
713}
714
715
716/*
717 *	Initialize the pmap module.
718 *	Called by vm_init, to initialize any structures that the pmap
719 *	system needs to map virtual memory.
720 */
721void
722pmap_init(void)
723{
724	vm_page_t mpte;
725	vm_size_t s;
726	int i, pv_npg;
727
728	/*
729	 * Initialize the vm page array entries for the kernel pmap's
730	 * page table pages.
731	 */
732	for (i = 0; i < NKPT; i++) {
733		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
734		KASSERT(mpte >= vm_page_array &&
735		    mpte < &vm_page_array[vm_page_array_size],
736		    ("pmap_init: page table page is out of range"));
737		mpte->pindex = i + KPTDI;
738		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
739	}
740
741	/*
742	 * Initialize the address space (zone) for the pv entries.  Set a
743	 * high water mark so that the system can recover from excessive
744	 * numbers of pv entries.
745	 */
746	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
747	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
748	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
749	pv_entry_max = roundup(pv_entry_max, _NPCPV);
750	pv_entry_high_water = 9 * (pv_entry_max / 10);
751
752	/*
753	 * If the kernel is running on a virtual machine, then it must assume
754	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
755	 * be prepared for the hypervisor changing the vendor and family that
756	 * are reported by CPUID.  Consequently, the workaround for AMD Family
757	 * 10h Erratum 383 is enabled if the processor's feature set does not
758	 * include at least one feature that is only supported by older Intel
759	 * or newer AMD processors.
760	 */
761	if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
762	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
763	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
764	    AMDID2_FMA4)) == 0)
765		workaround_erratum383 = 1;
766
767	/*
768	 * Are large page mappings supported and enabled?
769	 */
770	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
771	if (pseflag == 0)
772		pg_ps_enabled = 0;
773	else if (pg_ps_enabled) {
774		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
775		    ("pmap_init: can't assign to pagesizes[1]"));
776		pagesizes[1] = NBPDR;
777	}
778
779	/*
780	 * Calculate the size of the pv head table for superpages.
781	 */
782	for (i = 0; phys_avail[i + 1]; i += 2);
783	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
784
785	/*
786	 * Allocate memory for the pv head table for superpages.
787	 */
788	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
789	s = round_page(s);
790	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
791	    M_WAITOK | M_ZERO);
792	for (i = 0; i < pv_npg; i++)
793		TAILQ_INIT(&pv_table[i].pv_list);
794
795	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
796	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
797	if (pv_chunkbase == NULL)
798		panic("pmap_init: not enough kvm for pv chunks");
799	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
800#ifdef PAE
801	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
802	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
803	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
804	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
805#endif
806}
807
808
809SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
810	"Max number of PV entries");
811SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
812	"Page share factor per proc");
813
814static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
815    "2/4MB page mapping counters");
816
817static u_long pmap_pde_demotions;
818SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
819    &pmap_pde_demotions, 0, "2/4MB page demotions");
820
821static u_long pmap_pde_mappings;
822SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
823    &pmap_pde_mappings, 0, "2/4MB page mappings");
824
825static u_long pmap_pde_p_failures;
826SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
827    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
828
829static u_long pmap_pde_promotions;
830SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
831    &pmap_pde_promotions, 0, "2/4MB page promotions");
832
833/***************************************************
834 * Low level helper routines.....
835 ***************************************************/
836
837/*
838 * Determine the appropriate bits to set in a PTE or PDE for a specified
839 * caching mode.
840 */
841int
842pmap_cache_bits(int mode, boolean_t is_pde)
843{
844	int cache_bits, pat_flag, pat_idx;
845
846	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
847		panic("Unknown caching mode %d\n", mode);
848
849	/* The PAT bit is different for PTE's and PDE's. */
850	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
851
852	/* Map the caching mode to a PAT index. */
853	pat_idx = pat_index[mode];
854
855	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
856	cache_bits = 0;
857	if (pat_idx & 0x4)
858		cache_bits |= pat_flag;
859	if (pat_idx & 0x2)
860		cache_bits |= PG_NC_PCD;
861	if (pat_idx & 0x1)
862		cache_bits |= PG_NC_PWT;
863	return (cache_bits);
864}
865
866/*
867 * The caller is responsible for maintaining TLB consistency.
868 */
869static void
870pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
871{
872	pd_entry_t *pde;
873	pmap_t pmap;
874	boolean_t PTD_updated;
875
876	PTD_updated = FALSE;
877	mtx_lock_spin(&allpmaps_lock);
878	LIST_FOREACH(pmap, &allpmaps, pm_list) {
879		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
880		    PG_FRAME))
881			PTD_updated = TRUE;
882		pde = pmap_pde(pmap, va);
883		pde_store(pde, newpde);
884	}
885	mtx_unlock_spin(&allpmaps_lock);
886	KASSERT(PTD_updated,
887	    ("pmap_kenter_pde: current page table is not in allpmaps"));
888}
889
890/*
891 * After changing the page size for the specified virtual address in the page
892 * table, flush the corresponding entries from the processor's TLB.  Only the
893 * calling processor's TLB is affected.
894 *
895 * The calling thread must be pinned to a processor.
896 */
897static void
898pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
899{
900	u_long cr4;
901
902	if ((newpde & PG_PS) == 0)
903		/* Demotion: flush a specific 2MB page mapping. */
904		invlpg(va);
905	else if ((newpde & PG_G) == 0)
906		/*
907		 * Promotion: flush every 4KB page mapping from the TLB
908		 * because there are too many to flush individually.
909		 */
910		invltlb();
911	else {
912		/*
913		 * Promotion: flush every 4KB page mapping from the TLB,
914		 * including any global (PG_G) mappings.
915		 */
916		cr4 = rcr4();
917		load_cr4(cr4 & ~CR4_PGE);
918		/*
919		 * Although preemption at this point could be detrimental to
920		 * performance, it would not lead to an error.  PG_G is simply
921		 * ignored if CR4.PGE is clear.  Moreover, in case this block
922		 * is re-entered, the load_cr4() either above or below will
923		 * modify CR4.PGE flushing the TLB.
924		 */
925		load_cr4(cr4 | CR4_PGE);
926	}
927}
928#ifdef SMP
929/*
930 * For SMP, these functions have to use the IPI mechanism for coherence.
931 *
932 * N.B.: Before calling any of the following TLB invalidation functions,
933 * the calling processor must ensure that all stores updating a non-
934 * kernel page table are globally performed.  Otherwise, another
935 * processor could cache an old, pre-update entry without being
936 * invalidated.  This can happen one of two ways: (1) The pmap becomes
937 * active on another processor after its pm_active field is checked by
938 * one of the following functions but before a store updating the page
939 * table is globally performed. (2) The pmap becomes active on another
940 * processor before its pm_active field is checked but due to
941 * speculative loads one of the following functions stills reads the
942 * pmap as inactive on the other processor.
943 *
944 * The kernel page table is exempt because its pm_active field is
945 * immutable.  The kernel page table is always active on every
946 * processor.
947 */
948void
949pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
950{
951	cpuset_t other_cpus;
952	u_int cpuid;
953
954	sched_pin();
955	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
956		invlpg(va);
957		smp_invlpg(va);
958	} else {
959		cpuid = PCPU_GET(cpuid);
960		other_cpus = all_cpus;
961		CPU_CLR(cpuid, &other_cpus);
962		if (CPU_ISSET(cpuid, &pmap->pm_active))
963			invlpg(va);
964		CPU_AND(&other_cpus, &pmap->pm_active);
965		if (!CPU_EMPTY(&other_cpus))
966			smp_masked_invlpg(other_cpus, va);
967	}
968	sched_unpin();
969}
970
971void
972pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
973{
974	cpuset_t other_cpus;
975	vm_offset_t addr;
976	u_int cpuid;
977
978	sched_pin();
979	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
980		for (addr = sva; addr < eva; addr += PAGE_SIZE)
981			invlpg(addr);
982		smp_invlpg_range(sva, eva);
983	} else {
984		cpuid = PCPU_GET(cpuid);
985		other_cpus = all_cpus;
986		CPU_CLR(cpuid, &other_cpus);
987		if (CPU_ISSET(cpuid, &pmap->pm_active))
988			for (addr = sva; addr < eva; addr += PAGE_SIZE)
989				invlpg(addr);
990		CPU_AND(&other_cpus, &pmap->pm_active);
991		if (!CPU_EMPTY(&other_cpus))
992			smp_masked_invlpg_range(other_cpus, sva, eva);
993	}
994	sched_unpin();
995}
996
997void
998pmap_invalidate_all(pmap_t pmap)
999{
1000	cpuset_t other_cpus;
1001	u_int cpuid;
1002
1003	sched_pin();
1004	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1005		invltlb();
1006		smp_invltlb();
1007	} else {
1008		cpuid = PCPU_GET(cpuid);
1009		other_cpus = all_cpus;
1010		CPU_CLR(cpuid, &other_cpus);
1011		if (CPU_ISSET(cpuid, &pmap->pm_active))
1012			invltlb();
1013		CPU_AND(&other_cpus, &pmap->pm_active);
1014		if (!CPU_EMPTY(&other_cpus))
1015			smp_masked_invltlb(other_cpus);
1016	}
1017	sched_unpin();
1018}
1019
1020void
1021pmap_invalidate_cache(void)
1022{
1023
1024	sched_pin();
1025	wbinvd();
1026	smp_cache_flush();
1027	sched_unpin();
1028}
1029
1030struct pde_action {
1031	cpuset_t invalidate;	/* processors that invalidate their TLB */
1032	vm_offset_t va;
1033	pd_entry_t *pde;
1034	pd_entry_t newpde;
1035	u_int store;		/* processor that updates the PDE */
1036};
1037
1038static void
1039pmap_update_pde_kernel(void *arg)
1040{
1041	struct pde_action *act = arg;
1042	pd_entry_t *pde;
1043	pmap_t pmap;
1044
1045	if (act->store == PCPU_GET(cpuid)) {
1046
1047		/*
1048		 * Elsewhere, this operation requires allpmaps_lock for
1049		 * synchronization.  Here, it does not because it is being
1050		 * performed in the context of an all_cpus rendezvous.
1051		 */
1052		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1053			pde = pmap_pde(pmap, act->va);
1054			pde_store(pde, act->newpde);
1055		}
1056	}
1057}
1058
1059static void
1060pmap_update_pde_user(void *arg)
1061{
1062	struct pde_action *act = arg;
1063
1064	if (act->store == PCPU_GET(cpuid))
1065		pde_store(act->pde, act->newpde);
1066}
1067
1068static void
1069pmap_update_pde_teardown(void *arg)
1070{
1071	struct pde_action *act = arg;
1072
1073	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1074		pmap_update_pde_invalidate(act->va, act->newpde);
1075}
1076
1077/*
1078 * Change the page size for the specified virtual address in a way that
1079 * prevents any possibility of the TLB ever having two entries that map the
1080 * same virtual address using different page sizes.  This is the recommended
1081 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1082 * machine check exception for a TLB state that is improperly diagnosed as a
1083 * hardware error.
1084 */
1085static void
1086pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1087{
1088	struct pde_action act;
1089	cpuset_t active, other_cpus;
1090	u_int cpuid;
1091
1092	sched_pin();
1093	cpuid = PCPU_GET(cpuid);
1094	other_cpus = all_cpus;
1095	CPU_CLR(cpuid, &other_cpus);
1096	if (pmap == kernel_pmap)
1097		active = all_cpus;
1098	else
1099		active = pmap->pm_active;
1100	if (CPU_OVERLAP(&active, &other_cpus)) {
1101		act.store = cpuid;
1102		act.invalidate = active;
1103		act.va = va;
1104		act.pde = pde;
1105		act.newpde = newpde;
1106		CPU_SET(cpuid, &active);
1107		smp_rendezvous_cpus(active,
1108		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1109		    pmap_update_pde_kernel : pmap_update_pde_user,
1110		    pmap_update_pde_teardown, &act);
1111	} else {
1112		if (pmap == kernel_pmap)
1113			pmap_kenter_pde(va, newpde);
1114		else
1115			pde_store(pde, newpde);
1116		if (CPU_ISSET(cpuid, &active))
1117			pmap_update_pde_invalidate(va, newpde);
1118	}
1119	sched_unpin();
1120}
1121#else /* !SMP */
1122/*
1123 * Normal, non-SMP, 486+ invalidation functions.
1124 * We inline these within pmap.c for speed.
1125 */
1126PMAP_INLINE void
1127pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1128{
1129
1130	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1131		invlpg(va);
1132}
1133
1134PMAP_INLINE void
1135pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1136{
1137	vm_offset_t addr;
1138
1139	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1140		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1141			invlpg(addr);
1142}
1143
1144PMAP_INLINE void
1145pmap_invalidate_all(pmap_t pmap)
1146{
1147
1148	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1149		invltlb();
1150}
1151
1152PMAP_INLINE void
1153pmap_invalidate_cache(void)
1154{
1155
1156	wbinvd();
1157}
1158
1159static void
1160pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1161{
1162
1163	if (pmap == kernel_pmap)
1164		pmap_kenter_pde(va, newpde);
1165	else
1166		pde_store(pde, newpde);
1167	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1168		pmap_update_pde_invalidate(va, newpde);
1169}
1170#endif /* !SMP */
1171
1172#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1173
1174void
1175pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1176{
1177
1178	KASSERT((sva & PAGE_MASK) == 0,
1179	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1180	KASSERT((eva & PAGE_MASK) == 0,
1181	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1182
1183	if (cpu_feature & CPUID_SS)
1184		; /* If "Self Snoop" is supported, do nothing. */
1185	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1186	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1187
1188#ifdef DEV_APIC
1189		/*
1190		 * XXX: Some CPUs fault, hang, or trash the local APIC
1191		 * registers if we use CLFLUSH on the local APIC
1192		 * range.  The local APIC is always uncached, so we
1193		 * don't need to flush for that range anyway.
1194		 */
1195		if (pmap_kextract(sva) == lapic_paddr)
1196			return;
1197#endif
1198		/*
1199		 * Otherwise, do per-cache line flush.  Use the mfence
1200		 * instruction to insure that previous stores are
1201		 * included in the write-back.  The processor
1202		 * propagates flush to other processors in the cache
1203		 * coherence domain.
1204		 */
1205		mfence();
1206		for (; sva < eva; sva += cpu_clflush_line_size)
1207			clflush(sva);
1208		mfence();
1209	} else {
1210
1211		/*
1212		 * No targeted cache flush methods are supported by CPU,
1213		 * or the supplied range is bigger than 2MB.
1214		 * Globally invalidate cache.
1215		 */
1216		pmap_invalidate_cache();
1217	}
1218}
1219
1220void
1221pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1222{
1223	int i;
1224
1225	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1226	    (cpu_feature & CPUID_CLFSH) == 0) {
1227		pmap_invalidate_cache();
1228	} else {
1229		for (i = 0; i < count; i++)
1230			pmap_flush_page(pages[i]);
1231	}
1232}
1233
1234/*
1235 * Are we current address space or kernel?  N.B. We return FALSE when
1236 * a pmap's page table is in use because a kernel thread is borrowing
1237 * it.  The borrowed page table can change spontaneously, making any
1238 * dependence on its continued use subject to a race condition.
1239 */
1240static __inline int
1241pmap_is_current(pmap_t pmap)
1242{
1243
1244	return (pmap == kernel_pmap ||
1245	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1246	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1247}
1248
1249/*
1250 * If the given pmap is not the current or kernel pmap, the returned pte must
1251 * be released by passing it to pmap_pte_release().
1252 */
1253pt_entry_t *
1254pmap_pte(pmap_t pmap, vm_offset_t va)
1255{
1256	pd_entry_t newpf;
1257	pd_entry_t *pde;
1258
1259	pde = pmap_pde(pmap, va);
1260	if (*pde & PG_PS)
1261		return (pde);
1262	if (*pde != 0) {
1263		/* are we current address space or kernel? */
1264		if (pmap_is_current(pmap))
1265			return (vtopte(va));
1266		mtx_lock(&PMAP2mutex);
1267		newpf = *pde & PG_FRAME;
1268		if ((*PMAP2 & PG_FRAME) != newpf) {
1269			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1270			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1271		}
1272		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1273	}
1274	return (NULL);
1275}
1276
1277/*
1278 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1279 * being NULL.
1280 */
1281static __inline void
1282pmap_pte_release(pt_entry_t *pte)
1283{
1284
1285	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1286		mtx_unlock(&PMAP2mutex);
1287}
1288
1289static __inline void
1290invlcaddr(void *caddr)
1291{
1292
1293	invlpg((u_int)caddr);
1294}
1295
1296/*
1297 * Super fast pmap_pte routine best used when scanning
1298 * the pv lists.  This eliminates many coarse-grained
1299 * invltlb calls.  Note that many of the pv list
1300 * scans are across different pmaps.  It is very wasteful
1301 * to do an entire invltlb for checking a single mapping.
1302 *
1303 * If the given pmap is not the current pmap, pvh_global_lock
1304 * must be held and curthread pinned to a CPU.
1305 */
1306static pt_entry_t *
1307pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1308{
1309	pd_entry_t newpf;
1310	pd_entry_t *pde;
1311
1312	pde = pmap_pde(pmap, va);
1313	if (*pde & PG_PS)
1314		return (pde);
1315	if (*pde != 0) {
1316		/* are we current address space or kernel? */
1317		if (pmap_is_current(pmap))
1318			return (vtopte(va));
1319		rw_assert(&pvh_global_lock, RA_WLOCKED);
1320		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1321		newpf = *pde & PG_FRAME;
1322		if ((*PMAP1 & PG_FRAME) != newpf) {
1323			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1324#ifdef SMP
1325			PMAP1cpu = PCPU_GET(cpuid);
1326#endif
1327			invlcaddr(PADDR1);
1328			PMAP1changed++;
1329		} else
1330#ifdef SMP
1331		if (PMAP1cpu != PCPU_GET(cpuid)) {
1332			PMAP1cpu = PCPU_GET(cpuid);
1333			invlcaddr(PADDR1);
1334			PMAP1changedcpu++;
1335		} else
1336#endif
1337			PMAP1unchanged++;
1338		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1339	}
1340	return (0);
1341}
1342
1343/*
1344 *	Routine:	pmap_extract
1345 *	Function:
1346 *		Extract the physical page address associated
1347 *		with the given map/virtual_address pair.
1348 */
1349vm_paddr_t
1350pmap_extract(pmap_t pmap, vm_offset_t va)
1351{
1352	vm_paddr_t rtval;
1353	pt_entry_t *pte;
1354	pd_entry_t pde;
1355
1356	rtval = 0;
1357	PMAP_LOCK(pmap);
1358	pde = pmap->pm_pdir[va >> PDRSHIFT];
1359	if (pde != 0) {
1360		if ((pde & PG_PS) != 0)
1361			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1362		else {
1363			pte = pmap_pte(pmap, va);
1364			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1365			pmap_pte_release(pte);
1366		}
1367	}
1368	PMAP_UNLOCK(pmap);
1369	return (rtval);
1370}
1371
1372/*
1373 *	Routine:	pmap_extract_and_hold
1374 *	Function:
1375 *		Atomically extract and hold the physical page
1376 *		with the given pmap and virtual address pair
1377 *		if that mapping permits the given protection.
1378 */
1379vm_page_t
1380pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1381{
1382	pd_entry_t pde;
1383	pt_entry_t pte, *ptep;
1384	vm_page_t m;
1385	vm_paddr_t pa;
1386
1387	pa = 0;
1388	m = NULL;
1389	PMAP_LOCK(pmap);
1390retry:
1391	pde = *pmap_pde(pmap, va);
1392	if (pde != 0) {
1393		if (pde & PG_PS) {
1394			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1395				if (vm_page_pa_tryrelock(pmap, (pde &
1396				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1397					goto retry;
1398				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1399				    (va & PDRMASK));
1400				vm_page_hold(m);
1401			}
1402		} else {
1403			ptep = pmap_pte(pmap, va);
1404			pte = *ptep;
1405			pmap_pte_release(ptep);
1406			if (pte != 0 &&
1407			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1408				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1409				    &pa))
1410					goto retry;
1411				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1412				vm_page_hold(m);
1413			}
1414		}
1415	}
1416	PA_UNLOCK_COND(pa);
1417	PMAP_UNLOCK(pmap);
1418	return (m);
1419}
1420
1421/***************************************************
1422 * Low level mapping routines.....
1423 ***************************************************/
1424
1425/*
1426 * Add a wired page to the kva.
1427 * Note: not SMP coherent.
1428 *
1429 * This function may be used before pmap_bootstrap() is called.
1430 */
1431PMAP_INLINE void
1432pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1433{
1434	pt_entry_t *pte;
1435
1436	pte = vtopte(va);
1437	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1438}
1439
1440static __inline void
1441pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1442{
1443	pt_entry_t *pte;
1444
1445	pte = vtopte(va);
1446	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1447}
1448
1449/*
1450 * Remove a page from the kernel pagetables.
1451 * Note: not SMP coherent.
1452 *
1453 * This function may be used before pmap_bootstrap() is called.
1454 */
1455PMAP_INLINE void
1456pmap_kremove(vm_offset_t va)
1457{
1458	pt_entry_t *pte;
1459
1460	pte = vtopte(va);
1461	pte_clear(pte);
1462}
1463
1464/*
1465 *	Used to map a range of physical addresses into kernel
1466 *	virtual address space.
1467 *
1468 *	The value passed in '*virt' is a suggested virtual address for
1469 *	the mapping. Architectures which can support a direct-mapped
1470 *	physical to virtual region can return the appropriate address
1471 *	within that region, leaving '*virt' unchanged. Other
1472 *	architectures should map the pages starting at '*virt' and
1473 *	update '*virt' with the first usable address after the mapped
1474 *	region.
1475 */
1476vm_offset_t
1477pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1478{
1479	vm_offset_t va, sva;
1480	vm_paddr_t superpage_offset;
1481	pd_entry_t newpde;
1482
1483	va = *virt;
1484	/*
1485	 * Does the physical address range's size and alignment permit at
1486	 * least one superpage mapping to be created?
1487	 */
1488	superpage_offset = start & PDRMASK;
1489	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1490		/*
1491		 * Increase the starting virtual address so that its alignment
1492		 * does not preclude the use of superpage mappings.
1493		 */
1494		if ((va & PDRMASK) < superpage_offset)
1495			va = (va & ~PDRMASK) + superpage_offset;
1496		else if ((va & PDRMASK) > superpage_offset)
1497			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1498	}
1499	sva = va;
1500	while (start < end) {
1501		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1502		    pseflag) {
1503			KASSERT((va & PDRMASK) == 0,
1504			    ("pmap_map: misaligned va %#x", va));
1505			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1506			pmap_kenter_pde(va, newpde);
1507			va += NBPDR;
1508			start += NBPDR;
1509		} else {
1510			pmap_kenter(va, start);
1511			va += PAGE_SIZE;
1512			start += PAGE_SIZE;
1513		}
1514	}
1515	pmap_invalidate_range(kernel_pmap, sva, va);
1516	*virt = va;
1517	return (sva);
1518}
1519
1520
1521/*
1522 * Add a list of wired pages to the kva
1523 * this routine is only used for temporary
1524 * kernel mappings that do not need to have
1525 * page modification or references recorded.
1526 * Note that old mappings are simply written
1527 * over.  The page *must* be wired.
1528 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1529 */
1530void
1531pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1532{
1533	pt_entry_t *endpte, oldpte, pa, *pte;
1534	vm_page_t m;
1535
1536	oldpte = 0;
1537	pte = vtopte(sva);
1538	endpte = pte + count;
1539	while (pte < endpte) {
1540		m = *ma++;
1541		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1542		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1543			oldpte |= *pte;
1544			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1545		}
1546		pte++;
1547	}
1548	if (__predict_false((oldpte & PG_V) != 0))
1549		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1550		    PAGE_SIZE);
1551}
1552
1553/*
1554 * This routine tears out page mappings from the
1555 * kernel -- it is meant only for temporary mappings.
1556 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1557 */
1558void
1559pmap_qremove(vm_offset_t sva, int count)
1560{
1561	vm_offset_t va;
1562
1563	va = sva;
1564	while (count-- > 0) {
1565		pmap_kremove(va);
1566		va += PAGE_SIZE;
1567	}
1568	pmap_invalidate_range(kernel_pmap, sva, va);
1569}
1570
1571/***************************************************
1572 * Page table page management routines.....
1573 ***************************************************/
1574static __inline void
1575pmap_free_zero_pages(struct spglist *free)
1576{
1577	vm_page_t m;
1578
1579	while ((m = SLIST_FIRST(free)) != NULL) {
1580		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1581		/* Preserve the page's PG_ZERO setting. */
1582		vm_page_free_toq(m);
1583	}
1584}
1585
1586/*
1587 * Schedule the specified unused page table page to be freed.  Specifically,
1588 * add the page to the specified list of pages that will be released to the
1589 * physical memory manager after the TLB has been updated.
1590 */
1591static __inline void
1592pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1593    boolean_t set_PG_ZERO)
1594{
1595
1596	if (set_PG_ZERO)
1597		m->flags |= PG_ZERO;
1598	else
1599		m->flags &= ~PG_ZERO;
1600	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1601}
1602
1603/*
1604 * Inserts the specified page table page into the specified pmap's collection
1605 * of idle page table pages.  Each of a pmap's page table pages is responsible
1606 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1607 * ordered by this virtual address range.
1608 */
1609static __inline int
1610pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1611{
1612
1613	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1614	return (vm_radix_insert(&pmap->pm_root, mpte));
1615}
1616
1617/*
1618 * Looks for a page table page mapping the specified virtual address in the
1619 * specified pmap's collection of idle page table pages.  Returns NULL if there
1620 * is no page table page corresponding to the specified virtual address.
1621 */
1622static __inline vm_page_t
1623pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1624{
1625
1626	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1627	return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
1628}
1629
1630/*
1631 * Removes the specified page table page from the specified pmap's collection
1632 * of idle page table pages.  The specified page table page must be a member of
1633 * the pmap's collection.
1634 */
1635static __inline void
1636pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1637{
1638
1639	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1640	vm_radix_remove(&pmap->pm_root, mpte->pindex);
1641}
1642
1643/*
1644 * Decrements a page table page's wire count, which is used to record the
1645 * number of valid page table entries within the page.  If the wire count
1646 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1647 * page table page was unmapped and FALSE otherwise.
1648 */
1649static inline boolean_t
1650pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1651{
1652
1653	--m->wire_count;
1654	if (m->wire_count == 0) {
1655		_pmap_unwire_ptp(pmap, m, free);
1656		return (TRUE);
1657	} else
1658		return (FALSE);
1659}
1660
1661static void
1662_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1663{
1664	vm_offset_t pteva;
1665
1666	/*
1667	 * unmap the page table page
1668	 */
1669	pmap->pm_pdir[m->pindex] = 0;
1670	--pmap->pm_stats.resident_count;
1671
1672	/*
1673	 * This is a release store so that the ordinary store unmapping
1674	 * the page table page is globally performed before TLB shoot-
1675	 * down is begun.
1676	 */
1677	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1678
1679	/*
1680	 * Do an invltlb to make the invalidated mapping
1681	 * take effect immediately.
1682	 */
1683	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1684	pmap_invalidate_page(pmap, pteva);
1685
1686	/*
1687	 * Put page on a list so that it is released after
1688	 * *ALL* TLB shootdown is done
1689	 */
1690	pmap_add_delayed_free_list(m, free, TRUE);
1691}
1692
1693/*
1694 * After removing a page table entry, this routine is used to
1695 * conditionally free the page, and manage the hold/wire counts.
1696 */
1697static int
1698pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1699{
1700	pd_entry_t ptepde;
1701	vm_page_t mpte;
1702
1703	if (va >= VM_MAXUSER_ADDRESS)
1704		return (0);
1705	ptepde = *pmap_pde(pmap, va);
1706	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1707	return (pmap_unwire_ptp(pmap, mpte, free));
1708}
1709
1710/*
1711 * Initialize the pmap for the swapper process.
1712 */
1713void
1714pmap_pinit0(pmap_t pmap)
1715{
1716
1717	PMAP_LOCK_INIT(pmap);
1718	/*
1719	 * Since the page table directory is shared with the kernel pmap,
1720	 * which is already included in the list "allpmaps", this pmap does
1721	 * not need to be inserted into that list.
1722	 */
1723	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1724#ifdef PAE
1725	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1726#endif
1727	pmap->pm_root.rt_root = 0;
1728	CPU_ZERO(&pmap->pm_active);
1729	PCPU_SET(curpmap, pmap);
1730	TAILQ_INIT(&pmap->pm_pvchunk);
1731	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1732}
1733
1734/*
1735 * Initialize a preallocated and zeroed pmap structure,
1736 * such as one in a vmspace structure.
1737 */
1738int
1739pmap_pinit(pmap_t pmap)
1740{
1741	vm_page_t m, ptdpg[NPGPTD];
1742	vm_paddr_t pa;
1743	int i;
1744
1745	/*
1746	 * No need to allocate page table space yet but we do need a valid
1747	 * page directory table.
1748	 */
1749	if (pmap->pm_pdir == NULL) {
1750		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1751		if (pmap->pm_pdir == NULL) {
1752			PMAP_LOCK_DESTROY(pmap);
1753			return (0);
1754		}
1755#ifdef PAE
1756		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1757		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1758		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1759		    ("pmap_pinit: pdpt misaligned"));
1760		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1761		    ("pmap_pinit: pdpt above 4g"));
1762#endif
1763		pmap->pm_root.rt_root = 0;
1764	}
1765	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1766	    ("pmap_pinit: pmap has reserved page table page(s)"));
1767
1768	/*
1769	 * allocate the page directory page(s)
1770	 */
1771	for (i = 0; i < NPGPTD;) {
1772		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1773		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1774		if (m == NULL)
1775			VM_WAIT;
1776		else {
1777			ptdpg[i++] = m;
1778		}
1779	}
1780
1781	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1782
1783	for (i = 0; i < NPGPTD; i++)
1784		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1785			pagezero(pmap->pm_pdir + (i * NPDEPG));
1786
1787	mtx_lock_spin(&allpmaps_lock);
1788	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1789	/* Copy the kernel page table directory entries. */
1790	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1791	mtx_unlock_spin(&allpmaps_lock);
1792
1793	/* install self-referential address mapping entry(s) */
1794	for (i = 0; i < NPGPTD; i++) {
1795		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1796		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1797#ifdef PAE
1798		pmap->pm_pdpt[i] = pa | PG_V;
1799#endif
1800	}
1801
1802	CPU_ZERO(&pmap->pm_active);
1803	TAILQ_INIT(&pmap->pm_pvchunk);
1804	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1805
1806	return (1);
1807}
1808
1809/*
1810 * this routine is called if the page table page is not
1811 * mapped correctly.
1812 */
1813static vm_page_t
1814_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1815{
1816	vm_paddr_t ptepa;
1817	vm_page_t m;
1818
1819	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1820	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1821	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1822
1823	/*
1824	 * Allocate a page table page.
1825	 */
1826	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1827	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1828		if (flags & M_WAITOK) {
1829			PMAP_UNLOCK(pmap);
1830			rw_wunlock(&pvh_global_lock);
1831			VM_WAIT;
1832			rw_wlock(&pvh_global_lock);
1833			PMAP_LOCK(pmap);
1834		}
1835
1836		/*
1837		 * Indicate the need to retry.  While waiting, the page table
1838		 * page may have been allocated.
1839		 */
1840		return (NULL);
1841	}
1842	if ((m->flags & PG_ZERO) == 0)
1843		pmap_zero_page(m);
1844
1845	/*
1846	 * Map the pagetable page into the process address space, if
1847	 * it isn't already there.
1848	 */
1849
1850	pmap->pm_stats.resident_count++;
1851
1852	ptepa = VM_PAGE_TO_PHYS(m);
1853	pmap->pm_pdir[ptepindex] =
1854		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1855
1856	return (m);
1857}
1858
1859static vm_page_t
1860pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1861{
1862	u_int ptepindex;
1863	pd_entry_t ptepa;
1864	vm_page_t m;
1865
1866	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1867	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1868	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1869
1870	/*
1871	 * Calculate pagetable page index
1872	 */
1873	ptepindex = va >> PDRSHIFT;
1874retry:
1875	/*
1876	 * Get the page directory entry
1877	 */
1878	ptepa = pmap->pm_pdir[ptepindex];
1879
1880	/*
1881	 * This supports switching from a 4MB page to a
1882	 * normal 4K page.
1883	 */
1884	if (ptepa & PG_PS) {
1885		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1886		ptepa = pmap->pm_pdir[ptepindex];
1887	}
1888
1889	/*
1890	 * If the page table page is mapped, we just increment the
1891	 * hold count, and activate it.
1892	 */
1893	if (ptepa) {
1894		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1895		m->wire_count++;
1896	} else {
1897		/*
1898		 * Here if the pte page isn't mapped, or if it has
1899		 * been deallocated.
1900		 */
1901		m = _pmap_allocpte(pmap, ptepindex, flags);
1902		if (m == NULL && (flags & M_WAITOK))
1903			goto retry;
1904	}
1905	return (m);
1906}
1907
1908
1909/***************************************************
1910* Pmap allocation/deallocation routines.
1911 ***************************************************/
1912
1913#ifdef SMP
1914/*
1915 * Deal with a SMP shootdown of other users of the pmap that we are
1916 * trying to dispose of.  This can be a bit hairy.
1917 */
1918static cpuset_t *lazymask;
1919static u_int lazyptd;
1920static volatile u_int lazywait;
1921
1922void pmap_lazyfix_action(void);
1923
1924void
1925pmap_lazyfix_action(void)
1926{
1927
1928#ifdef COUNT_IPIS
1929	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1930#endif
1931	if (rcr3() == lazyptd)
1932		load_cr3(curpcb->pcb_cr3);
1933	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1934	atomic_store_rel_int(&lazywait, 1);
1935}
1936
1937static void
1938pmap_lazyfix_self(u_int cpuid)
1939{
1940
1941	if (rcr3() == lazyptd)
1942		load_cr3(curpcb->pcb_cr3);
1943	CPU_CLR_ATOMIC(cpuid, lazymask);
1944}
1945
1946
1947static void
1948pmap_lazyfix(pmap_t pmap)
1949{
1950	cpuset_t mymask, mask;
1951	u_int cpuid, spins;
1952	int lsb;
1953
1954	mask = pmap->pm_active;
1955	while (!CPU_EMPTY(&mask)) {
1956		spins = 50000000;
1957
1958		/* Find least significant set bit. */
1959		lsb = CPU_FFS(&mask);
1960		MPASS(lsb != 0);
1961		lsb--;
1962		CPU_SETOF(lsb, &mask);
1963		mtx_lock_spin(&smp_ipi_mtx);
1964#ifdef PAE
1965		lazyptd = vtophys(pmap->pm_pdpt);
1966#else
1967		lazyptd = vtophys(pmap->pm_pdir);
1968#endif
1969		cpuid = PCPU_GET(cpuid);
1970
1971		/* Use a cpuset just for having an easy check. */
1972		CPU_SETOF(cpuid, &mymask);
1973		if (!CPU_CMP(&mask, &mymask)) {
1974			lazymask = &pmap->pm_active;
1975			pmap_lazyfix_self(cpuid);
1976		} else {
1977			atomic_store_rel_int((u_int *)&lazymask,
1978			    (u_int)&pmap->pm_active);
1979			atomic_store_rel_int(&lazywait, 0);
1980			ipi_selected(mask, IPI_LAZYPMAP);
1981			while (lazywait == 0) {
1982				ia32_pause();
1983				if (--spins == 0)
1984					break;
1985			}
1986		}
1987		mtx_unlock_spin(&smp_ipi_mtx);
1988		if (spins == 0)
1989			printf("pmap_lazyfix: spun for 50000000\n");
1990		mask = pmap->pm_active;
1991	}
1992}
1993
1994#else	/* SMP */
1995
1996/*
1997 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1998 * unlikely to have to even execute this code, including the fact
1999 * that the cleanup is deferred until the parent does a wait(2), which
2000 * means that another userland process has run.
2001 */
2002static void
2003pmap_lazyfix(pmap_t pmap)
2004{
2005	u_int cr3;
2006
2007	cr3 = vtophys(pmap->pm_pdir);
2008	if (cr3 == rcr3()) {
2009		load_cr3(curpcb->pcb_cr3);
2010		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
2011	}
2012}
2013#endif	/* SMP */
2014
2015/*
2016 * Release any resources held by the given physical map.
2017 * Called when a pmap initialized by pmap_pinit is being released.
2018 * Should only be called if the map contains no valid mappings.
2019 */
2020void
2021pmap_release(pmap_t pmap)
2022{
2023	vm_page_t m, ptdpg[NPGPTD];
2024	int i;
2025
2026	KASSERT(pmap->pm_stats.resident_count == 0,
2027	    ("pmap_release: pmap resident count %ld != 0",
2028	    pmap->pm_stats.resident_count));
2029	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2030	    ("pmap_release: pmap has reserved page table page(s)"));
2031
2032	pmap_lazyfix(pmap);
2033	mtx_lock_spin(&allpmaps_lock);
2034	LIST_REMOVE(pmap, pm_list);
2035	mtx_unlock_spin(&allpmaps_lock);
2036
2037	for (i = 0; i < NPGPTD; i++)
2038		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2039		    PG_FRAME);
2040
2041	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2042	    sizeof(*pmap->pm_pdir));
2043
2044	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2045
2046	for (i = 0; i < NPGPTD; i++) {
2047		m = ptdpg[i];
2048#ifdef PAE
2049		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2050		    ("pmap_release: got wrong ptd page"));
2051#endif
2052		m->wire_count--;
2053		atomic_subtract_int(&cnt.v_wire_count, 1);
2054		vm_page_free_zero(m);
2055	}
2056}
2057
2058static int
2059kvm_size(SYSCTL_HANDLER_ARGS)
2060{
2061	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2062
2063	return (sysctl_handle_long(oidp, &ksize, 0, req));
2064}
2065SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2066    0, 0, kvm_size, "IU", "Size of KVM");
2067
2068static int
2069kvm_free(SYSCTL_HANDLER_ARGS)
2070{
2071	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2072
2073	return (sysctl_handle_long(oidp, &kfree, 0, req));
2074}
2075SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2076    0, 0, kvm_free, "IU", "Amount of KVM free");
2077
2078/*
2079 * grow the number of kernel page table entries, if needed
2080 */
2081void
2082pmap_growkernel(vm_offset_t addr)
2083{
2084	vm_paddr_t ptppaddr;
2085	vm_page_t nkpg;
2086	pd_entry_t newpdir;
2087
2088	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2089	addr = roundup2(addr, NBPDR);
2090	if (addr - 1 >= kernel_map->max_offset)
2091		addr = kernel_map->max_offset;
2092	while (kernel_vm_end < addr) {
2093		if (pdir_pde(PTD, kernel_vm_end)) {
2094			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2095			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2096				kernel_vm_end = kernel_map->max_offset;
2097				break;
2098			}
2099			continue;
2100		}
2101
2102		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2103		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2104		    VM_ALLOC_ZERO);
2105		if (nkpg == NULL)
2106			panic("pmap_growkernel: no memory to grow kernel");
2107
2108		nkpt++;
2109
2110		if ((nkpg->flags & PG_ZERO) == 0)
2111			pmap_zero_page(nkpg);
2112		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2113		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2114		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2115
2116		pmap_kenter_pde(kernel_vm_end, newpdir);
2117		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2118		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2119			kernel_vm_end = kernel_map->max_offset;
2120			break;
2121		}
2122	}
2123}
2124
2125
2126/***************************************************
2127 * page management routines.
2128 ***************************************************/
2129
2130CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2131CTASSERT(_NPCM == 11);
2132CTASSERT(_NPCPV == 336);
2133
2134static __inline struct pv_chunk *
2135pv_to_chunk(pv_entry_t pv)
2136{
2137
2138	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2139}
2140
2141#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2142
2143#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2144#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2145
2146static const uint32_t pc_freemask[_NPCM] = {
2147	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2148	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2149	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2150	PC_FREE0_9, PC_FREE10
2151};
2152
2153SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2154	"Current number of pv entries");
2155
2156#ifdef PV_STATS
2157static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2158
2159SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2160	"Current number of pv entry chunks");
2161SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2162	"Current number of pv entry chunks allocated");
2163SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2164	"Current number of pv entry chunks frees");
2165SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2166	"Number of times tried to get a chunk page but failed.");
2167
2168static long pv_entry_frees, pv_entry_allocs;
2169static int pv_entry_spare;
2170
2171SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2172	"Current number of pv entry frees");
2173SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2174	"Current number of pv entry allocs");
2175SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2176	"Current number of spare pv entries");
2177#endif
2178
2179/*
2180 * We are in a serious low memory condition.  Resort to
2181 * drastic measures to free some pages so we can allocate
2182 * another pv entry chunk.
2183 */
2184static vm_page_t
2185pmap_pv_reclaim(pmap_t locked_pmap)
2186{
2187	struct pch newtail;
2188	struct pv_chunk *pc;
2189	struct md_page *pvh;
2190	pd_entry_t *pde;
2191	pmap_t pmap;
2192	pt_entry_t *pte, tpte;
2193	pv_entry_t pv;
2194	vm_offset_t va;
2195	vm_page_t m, m_pc;
2196	struct spglist free;
2197	uint32_t inuse;
2198	int bit, field, freed;
2199
2200	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2201	pmap = NULL;
2202	m_pc = NULL;
2203	SLIST_INIT(&free);
2204	TAILQ_INIT(&newtail);
2205	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2206	    SLIST_EMPTY(&free))) {
2207		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2208		if (pmap != pc->pc_pmap) {
2209			if (pmap != NULL) {
2210				pmap_invalidate_all(pmap);
2211				if (pmap != locked_pmap)
2212					PMAP_UNLOCK(pmap);
2213			}
2214			pmap = pc->pc_pmap;
2215			/* Avoid deadlock and lock recursion. */
2216			if (pmap > locked_pmap)
2217				PMAP_LOCK(pmap);
2218			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2219				pmap = NULL;
2220				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2221				continue;
2222			}
2223		}
2224
2225		/*
2226		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2227		 */
2228		freed = 0;
2229		for (field = 0; field < _NPCM; field++) {
2230			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2231			    inuse != 0; inuse &= ~(1UL << bit)) {
2232				bit = bsfl(inuse);
2233				pv = &pc->pc_pventry[field * 32 + bit];
2234				va = pv->pv_va;
2235				pde = pmap_pde(pmap, va);
2236				if ((*pde & PG_PS) != 0)
2237					continue;
2238				pte = pmap_pte(pmap, va);
2239				tpte = *pte;
2240				if ((tpte & PG_W) == 0)
2241					tpte = pte_load_clear(pte);
2242				pmap_pte_release(pte);
2243				if ((tpte & PG_W) != 0)
2244					continue;
2245				KASSERT(tpte != 0,
2246				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2247				    pmap, va));
2248				if ((tpte & PG_G) != 0)
2249					pmap_invalidate_page(pmap, va);
2250				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2251				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2252					vm_page_dirty(m);
2253				if ((tpte & PG_A) != 0)
2254					vm_page_aflag_set(m, PGA_REFERENCED);
2255				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2256				if (TAILQ_EMPTY(&m->md.pv_list) &&
2257				    (m->flags & PG_FICTITIOUS) == 0) {
2258					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2259					if (TAILQ_EMPTY(&pvh->pv_list)) {
2260						vm_page_aflag_clear(m,
2261						    PGA_WRITEABLE);
2262					}
2263				}
2264				pc->pc_map[field] |= 1UL << bit;
2265				pmap_unuse_pt(pmap, va, &free);
2266				freed++;
2267			}
2268		}
2269		if (freed == 0) {
2270			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2271			continue;
2272		}
2273		/* Every freed mapping is for a 4 KB page. */
2274		pmap->pm_stats.resident_count -= freed;
2275		PV_STAT(pv_entry_frees += freed);
2276		PV_STAT(pv_entry_spare += freed);
2277		pv_entry_count -= freed;
2278		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2279		for (field = 0; field < _NPCM; field++)
2280			if (pc->pc_map[field] != pc_freemask[field]) {
2281				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2282				    pc_list);
2283				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2284
2285				/*
2286				 * One freed pv entry in locked_pmap is
2287				 * sufficient.
2288				 */
2289				if (pmap == locked_pmap)
2290					goto out;
2291				break;
2292			}
2293		if (field == _NPCM) {
2294			PV_STAT(pv_entry_spare -= _NPCPV);
2295			PV_STAT(pc_chunk_count--);
2296			PV_STAT(pc_chunk_frees++);
2297			/* Entire chunk is free; return it. */
2298			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2299			pmap_qremove((vm_offset_t)pc, 1);
2300			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2301			break;
2302		}
2303	}
2304out:
2305	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2306	if (pmap != NULL) {
2307		pmap_invalidate_all(pmap);
2308		if (pmap != locked_pmap)
2309			PMAP_UNLOCK(pmap);
2310	}
2311	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2312		m_pc = SLIST_FIRST(&free);
2313		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2314		/* Recycle a freed page table page. */
2315		m_pc->wire_count = 1;
2316		atomic_add_int(&cnt.v_wire_count, 1);
2317	}
2318	pmap_free_zero_pages(&free);
2319	return (m_pc);
2320}
2321
2322/*
2323 * free the pv_entry back to the free list
2324 */
2325static void
2326free_pv_entry(pmap_t pmap, pv_entry_t pv)
2327{
2328	struct pv_chunk *pc;
2329	int idx, field, bit;
2330
2331	rw_assert(&pvh_global_lock, RA_WLOCKED);
2332	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2333	PV_STAT(pv_entry_frees++);
2334	PV_STAT(pv_entry_spare++);
2335	pv_entry_count--;
2336	pc = pv_to_chunk(pv);
2337	idx = pv - &pc->pc_pventry[0];
2338	field = idx / 32;
2339	bit = idx % 32;
2340	pc->pc_map[field] |= 1ul << bit;
2341	for (idx = 0; idx < _NPCM; idx++)
2342		if (pc->pc_map[idx] != pc_freemask[idx]) {
2343			/*
2344			 * 98% of the time, pc is already at the head of the
2345			 * list.  If it isn't already, move it to the head.
2346			 */
2347			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2348			    pc)) {
2349				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2350				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2351				    pc_list);
2352			}
2353			return;
2354		}
2355	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2356	free_pv_chunk(pc);
2357}
2358
2359static void
2360free_pv_chunk(struct pv_chunk *pc)
2361{
2362	vm_page_t m;
2363
2364 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2365	PV_STAT(pv_entry_spare -= _NPCPV);
2366	PV_STAT(pc_chunk_count--);
2367	PV_STAT(pc_chunk_frees++);
2368	/* entire chunk is free, return it */
2369	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2370	pmap_qremove((vm_offset_t)pc, 1);
2371	vm_page_unwire(m, 0);
2372	vm_page_free(m);
2373	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2374}
2375
2376/*
2377 * get a new pv_entry, allocating a block from the system
2378 * when needed.
2379 */
2380static pv_entry_t
2381get_pv_entry(pmap_t pmap, boolean_t try)
2382{
2383	static const struct timeval printinterval = { 60, 0 };
2384	static struct timeval lastprint;
2385	int bit, field;
2386	pv_entry_t pv;
2387	struct pv_chunk *pc;
2388	vm_page_t m;
2389
2390	rw_assert(&pvh_global_lock, RA_WLOCKED);
2391	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2392	PV_STAT(pv_entry_allocs++);
2393	pv_entry_count++;
2394	if (pv_entry_count > pv_entry_high_water)
2395		if (ratecheck(&lastprint, &printinterval))
2396			printf("Approaching the limit on PV entries, consider "
2397			    "increasing either the vm.pmap.shpgperproc or the "
2398			    "vm.pmap.pv_entry_max tunable.\n");
2399retry:
2400	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2401	if (pc != NULL) {
2402		for (field = 0; field < _NPCM; field++) {
2403			if (pc->pc_map[field]) {
2404				bit = bsfl(pc->pc_map[field]);
2405				break;
2406			}
2407		}
2408		if (field < _NPCM) {
2409			pv = &pc->pc_pventry[field * 32 + bit];
2410			pc->pc_map[field] &= ~(1ul << bit);
2411			/* If this was the last item, move it to tail */
2412			for (field = 0; field < _NPCM; field++)
2413				if (pc->pc_map[field] != 0) {
2414					PV_STAT(pv_entry_spare--);
2415					return (pv);	/* not full, return */
2416				}
2417			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2418			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2419			PV_STAT(pv_entry_spare--);
2420			return (pv);
2421		}
2422	}
2423	/*
2424	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2425	 * global lock.  If "pv_vafree" is currently non-empty, it will
2426	 * remain non-empty until pmap_ptelist_alloc() completes.
2427	 */
2428	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2429	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2430		if (try) {
2431			pv_entry_count--;
2432			PV_STAT(pc_chunk_tryfail++);
2433			return (NULL);
2434		}
2435		m = pmap_pv_reclaim(pmap);
2436		if (m == NULL)
2437			goto retry;
2438	}
2439	PV_STAT(pc_chunk_count++);
2440	PV_STAT(pc_chunk_allocs++);
2441	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2442	pmap_qenter((vm_offset_t)pc, &m, 1);
2443	pc->pc_pmap = pmap;
2444	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2445	for (field = 1; field < _NPCM; field++)
2446		pc->pc_map[field] = pc_freemask[field];
2447	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2448	pv = &pc->pc_pventry[0];
2449	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2450	PV_STAT(pv_entry_spare += _NPCPV - 1);
2451	return (pv);
2452}
2453
2454static __inline pv_entry_t
2455pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2456{
2457	pv_entry_t pv;
2458
2459	rw_assert(&pvh_global_lock, RA_WLOCKED);
2460	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2461		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2462			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2463			break;
2464		}
2465	}
2466	return (pv);
2467}
2468
2469static void
2470pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2471{
2472	struct md_page *pvh;
2473	pv_entry_t pv;
2474	vm_offset_t va_last;
2475	vm_page_t m;
2476
2477	rw_assert(&pvh_global_lock, RA_WLOCKED);
2478	KASSERT((pa & PDRMASK) == 0,
2479	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2480
2481	/*
2482	 * Transfer the 4mpage's pv entry for this mapping to the first
2483	 * page's pv list.
2484	 */
2485	pvh = pa_to_pvh(pa);
2486	va = trunc_4mpage(va);
2487	pv = pmap_pvh_remove(pvh, pmap, va);
2488	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2489	m = PHYS_TO_VM_PAGE(pa);
2490	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2491	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2492	va_last = va + NBPDR - PAGE_SIZE;
2493	do {
2494		m++;
2495		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2496		    ("pmap_pv_demote_pde: page %p is not managed", m));
2497		va += PAGE_SIZE;
2498		pmap_insert_entry(pmap, va, m);
2499	} while (va < va_last);
2500}
2501
2502static void
2503pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2504{
2505	struct md_page *pvh;
2506	pv_entry_t pv;
2507	vm_offset_t va_last;
2508	vm_page_t m;
2509
2510	rw_assert(&pvh_global_lock, RA_WLOCKED);
2511	KASSERT((pa & PDRMASK) == 0,
2512	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2513
2514	/*
2515	 * Transfer the first page's pv entry for this mapping to the
2516	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2517	 * to get_pv_entry(), a transfer avoids the possibility that
2518	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2519	 * removes one of the mappings that is being promoted.
2520	 */
2521	m = PHYS_TO_VM_PAGE(pa);
2522	va = trunc_4mpage(va);
2523	pv = pmap_pvh_remove(&m->md, pmap, va);
2524	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2525	pvh = pa_to_pvh(pa);
2526	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2527	/* Free the remaining NPTEPG - 1 pv entries. */
2528	va_last = va + NBPDR - PAGE_SIZE;
2529	do {
2530		m++;
2531		va += PAGE_SIZE;
2532		pmap_pvh_free(&m->md, pmap, va);
2533	} while (va < va_last);
2534}
2535
2536static void
2537pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2538{
2539	pv_entry_t pv;
2540
2541	pv = pmap_pvh_remove(pvh, pmap, va);
2542	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2543	free_pv_entry(pmap, pv);
2544}
2545
2546static void
2547pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2548{
2549	struct md_page *pvh;
2550
2551	rw_assert(&pvh_global_lock, RA_WLOCKED);
2552	pmap_pvh_free(&m->md, pmap, va);
2553	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2554		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2555		if (TAILQ_EMPTY(&pvh->pv_list))
2556			vm_page_aflag_clear(m, PGA_WRITEABLE);
2557	}
2558}
2559
2560/*
2561 * Create a pv entry for page at pa for
2562 * (pmap, va).
2563 */
2564static void
2565pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2566{
2567	pv_entry_t pv;
2568
2569	rw_assert(&pvh_global_lock, RA_WLOCKED);
2570	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2571	pv = get_pv_entry(pmap, FALSE);
2572	pv->pv_va = va;
2573	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2574}
2575
2576/*
2577 * Conditionally create a pv entry.
2578 */
2579static boolean_t
2580pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2581{
2582	pv_entry_t pv;
2583
2584	rw_assert(&pvh_global_lock, RA_WLOCKED);
2585	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2586	if (pv_entry_count < pv_entry_high_water &&
2587	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2588		pv->pv_va = va;
2589		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2590		return (TRUE);
2591	} else
2592		return (FALSE);
2593}
2594
2595/*
2596 * Create the pv entries for each of the pages within a superpage.
2597 */
2598static boolean_t
2599pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2600{
2601	struct md_page *pvh;
2602	pv_entry_t pv;
2603
2604	rw_assert(&pvh_global_lock, RA_WLOCKED);
2605	if (pv_entry_count < pv_entry_high_water &&
2606	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2607		pv->pv_va = va;
2608		pvh = pa_to_pvh(pa);
2609		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2610		return (TRUE);
2611	} else
2612		return (FALSE);
2613}
2614
2615/*
2616 * Fills a page table page with mappings to consecutive physical pages.
2617 */
2618static void
2619pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2620{
2621	pt_entry_t *pte;
2622
2623	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2624		*pte = newpte;
2625		newpte += PAGE_SIZE;
2626	}
2627}
2628
2629/*
2630 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2631 * 2- or 4MB page mapping is invalidated.
2632 */
2633static boolean_t
2634pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2635{
2636	pd_entry_t newpde, oldpde;
2637	pt_entry_t *firstpte, newpte;
2638	vm_paddr_t mptepa;
2639	vm_page_t mpte;
2640	struct spglist free;
2641
2642	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2643	oldpde = *pde;
2644	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2645	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2646	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
2647	    NULL)
2648		pmap_remove_pt_page(pmap, mpte);
2649	else {
2650		KASSERT((oldpde & PG_W) == 0,
2651		    ("pmap_demote_pde: page table page for a wired mapping"
2652		    " is missing"));
2653
2654		/*
2655		 * Invalidate the 2- or 4MB page mapping and return
2656		 * "failure" if the mapping was never accessed or the
2657		 * allocation of the new page table page fails.
2658		 */
2659		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2660		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2661		    VM_ALLOC_WIRED)) == NULL) {
2662			SLIST_INIT(&free);
2663			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2664			pmap_invalidate_page(pmap, trunc_4mpage(va));
2665			pmap_free_zero_pages(&free);
2666			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2667			    " in pmap %p", va, pmap);
2668			return (FALSE);
2669		}
2670		if (va < VM_MAXUSER_ADDRESS)
2671			pmap->pm_stats.resident_count++;
2672	}
2673	mptepa = VM_PAGE_TO_PHYS(mpte);
2674
2675	/*
2676	 * If the page mapping is in the kernel's address space, then the
2677	 * KPTmap can provide access to the page table page.  Otherwise,
2678	 * temporarily map the page table page (mpte) into the kernel's
2679	 * address space at either PADDR1 or PADDR2.
2680	 */
2681	if (va >= KERNBASE)
2682		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2683	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2684		if ((*PMAP1 & PG_FRAME) != mptepa) {
2685			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2686#ifdef SMP
2687			PMAP1cpu = PCPU_GET(cpuid);
2688#endif
2689			invlcaddr(PADDR1);
2690			PMAP1changed++;
2691		} else
2692#ifdef SMP
2693		if (PMAP1cpu != PCPU_GET(cpuid)) {
2694			PMAP1cpu = PCPU_GET(cpuid);
2695			invlcaddr(PADDR1);
2696			PMAP1changedcpu++;
2697		} else
2698#endif
2699			PMAP1unchanged++;
2700		firstpte = PADDR1;
2701	} else {
2702		mtx_lock(&PMAP2mutex);
2703		if ((*PMAP2 & PG_FRAME) != mptepa) {
2704			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2705			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2706		}
2707		firstpte = PADDR2;
2708	}
2709	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2710	KASSERT((oldpde & PG_A) != 0,
2711	    ("pmap_demote_pde: oldpde is missing PG_A"));
2712	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2713	    ("pmap_demote_pde: oldpde is missing PG_M"));
2714	newpte = oldpde & ~PG_PS;
2715	if ((newpte & PG_PDE_PAT) != 0)
2716		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2717
2718	/*
2719	 * If the page table page is new, initialize it.
2720	 */
2721	if (mpte->wire_count == 1) {
2722		mpte->wire_count = NPTEPG;
2723		pmap_fill_ptp(firstpte, newpte);
2724	}
2725	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2726	    ("pmap_demote_pde: firstpte and newpte map different physical"
2727	    " addresses"));
2728
2729	/*
2730	 * If the mapping has changed attributes, update the page table
2731	 * entries.
2732	 */
2733	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2734		pmap_fill_ptp(firstpte, newpte);
2735
2736	/*
2737	 * Demote the mapping.  This pmap is locked.  The old PDE has
2738	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2739	 * set.  Thus, there is no danger of a race with another
2740	 * processor changing the setting of PG_A and/or PG_M between
2741	 * the read above and the store below.
2742	 */
2743	if (workaround_erratum383)
2744		pmap_update_pde(pmap, va, pde, newpde);
2745	else if (pmap == kernel_pmap)
2746		pmap_kenter_pde(va, newpde);
2747	else
2748		pde_store(pde, newpde);
2749	if (firstpte == PADDR2)
2750		mtx_unlock(&PMAP2mutex);
2751
2752	/*
2753	 * Invalidate the recursive mapping of the page table page.
2754	 */
2755	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2756
2757	/*
2758	 * Demote the pv entry.  This depends on the earlier demotion
2759	 * of the mapping.  Specifically, the (re)creation of a per-
2760	 * page pv entry might trigger the execution of pmap_collect(),
2761	 * which might reclaim a newly (re)created per-page pv entry
2762	 * and destroy the associated mapping.  In order to destroy
2763	 * the mapping, the PDE must have already changed from mapping
2764	 * the 2mpage to referencing the page table page.
2765	 */
2766	if ((oldpde & PG_MANAGED) != 0)
2767		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2768
2769	pmap_pde_demotions++;
2770	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2771	    " in pmap %p", va, pmap);
2772	return (TRUE);
2773}
2774
2775/*
2776 * Removes a 2- or 4MB page mapping from the kernel pmap.
2777 */
2778static void
2779pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2780{
2781	pd_entry_t newpde;
2782	vm_paddr_t mptepa;
2783	vm_page_t mpte;
2784
2785	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2786	mpte = pmap_lookup_pt_page(pmap, va);
2787	if (mpte == NULL)
2788		panic("pmap_remove_kernel_pde: Missing pt page.");
2789
2790	pmap_remove_pt_page(pmap, mpte);
2791	mptepa = VM_PAGE_TO_PHYS(mpte);
2792	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2793
2794	/*
2795	 * Initialize the page table page.
2796	 */
2797	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2798
2799	/*
2800	 * Remove the mapping.
2801	 */
2802	if (workaround_erratum383)
2803		pmap_update_pde(pmap, va, pde, newpde);
2804	else
2805		pmap_kenter_pde(va, newpde);
2806
2807	/*
2808	 * Invalidate the recursive mapping of the page table page.
2809	 */
2810	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2811}
2812
2813/*
2814 * pmap_remove_pde: do the things to unmap a superpage in a process
2815 */
2816static void
2817pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2818    struct spglist *free)
2819{
2820	struct md_page *pvh;
2821	pd_entry_t oldpde;
2822	vm_offset_t eva, va;
2823	vm_page_t m, mpte;
2824
2825	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2826	KASSERT((sva & PDRMASK) == 0,
2827	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2828	oldpde = pte_load_clear(pdq);
2829	if (oldpde & PG_W)
2830		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2831
2832	/*
2833	 * Machines that don't support invlpg, also don't support
2834	 * PG_G.
2835	 */
2836	if (oldpde & PG_G)
2837		pmap_invalidate_page(kernel_pmap, sva);
2838	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2839	if (oldpde & PG_MANAGED) {
2840		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2841		pmap_pvh_free(pvh, pmap, sva);
2842		eva = sva + NBPDR;
2843		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2844		    va < eva; va += PAGE_SIZE, m++) {
2845			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2846				vm_page_dirty(m);
2847			if (oldpde & PG_A)
2848				vm_page_aflag_set(m, PGA_REFERENCED);
2849			if (TAILQ_EMPTY(&m->md.pv_list) &&
2850			    TAILQ_EMPTY(&pvh->pv_list))
2851				vm_page_aflag_clear(m, PGA_WRITEABLE);
2852		}
2853	}
2854	if (pmap == kernel_pmap) {
2855		pmap_remove_kernel_pde(pmap, pdq, sva);
2856	} else {
2857		mpte = pmap_lookup_pt_page(pmap, sva);
2858		if (mpte != NULL) {
2859			pmap_remove_pt_page(pmap, mpte);
2860			pmap->pm_stats.resident_count--;
2861			KASSERT(mpte->wire_count == NPTEPG,
2862			    ("pmap_remove_pde: pte page wire count error"));
2863			mpte->wire_count = 0;
2864			pmap_add_delayed_free_list(mpte, free, FALSE);
2865			atomic_subtract_int(&cnt.v_wire_count, 1);
2866		}
2867	}
2868}
2869
2870/*
2871 * pmap_remove_pte: do the things to unmap a page in a process
2872 */
2873static int
2874pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2875    struct spglist *free)
2876{
2877	pt_entry_t oldpte;
2878	vm_page_t m;
2879
2880	rw_assert(&pvh_global_lock, RA_WLOCKED);
2881	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2882	oldpte = pte_load_clear(ptq);
2883	KASSERT(oldpte != 0,
2884	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2885	if (oldpte & PG_W)
2886		pmap->pm_stats.wired_count -= 1;
2887	/*
2888	 * Machines that don't support invlpg, also don't support
2889	 * PG_G.
2890	 */
2891	if (oldpte & PG_G)
2892		pmap_invalidate_page(kernel_pmap, va);
2893	pmap->pm_stats.resident_count -= 1;
2894	if (oldpte & PG_MANAGED) {
2895		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2896		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2897			vm_page_dirty(m);
2898		if (oldpte & PG_A)
2899			vm_page_aflag_set(m, PGA_REFERENCED);
2900		pmap_remove_entry(pmap, m, va);
2901	}
2902	return (pmap_unuse_pt(pmap, va, free));
2903}
2904
2905/*
2906 * Remove a single page from a process address space
2907 */
2908static void
2909pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2910{
2911	pt_entry_t *pte;
2912
2913	rw_assert(&pvh_global_lock, RA_WLOCKED);
2914	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2915	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2916	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2917		return;
2918	pmap_remove_pte(pmap, pte, va, free);
2919	pmap_invalidate_page(pmap, va);
2920}
2921
2922/*
2923 *	Remove the given range of addresses from the specified map.
2924 *
2925 *	It is assumed that the start and end are properly
2926 *	rounded to the page size.
2927 */
2928void
2929pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2930{
2931	vm_offset_t pdnxt;
2932	pd_entry_t ptpaddr;
2933	pt_entry_t *pte;
2934	struct spglist free;
2935	int anyvalid;
2936
2937	/*
2938	 * Perform an unsynchronized read.  This is, however, safe.
2939	 */
2940	if (pmap->pm_stats.resident_count == 0)
2941		return;
2942
2943	anyvalid = 0;
2944	SLIST_INIT(&free);
2945
2946	rw_wlock(&pvh_global_lock);
2947	sched_pin();
2948	PMAP_LOCK(pmap);
2949
2950	/*
2951	 * special handling of removing one page.  a very
2952	 * common operation and easy to short circuit some
2953	 * code.
2954	 */
2955	if ((sva + PAGE_SIZE == eva) &&
2956	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2957		pmap_remove_page(pmap, sva, &free);
2958		goto out;
2959	}
2960
2961	for (; sva < eva; sva = pdnxt) {
2962		u_int pdirindex;
2963
2964		/*
2965		 * Calculate index for next page table.
2966		 */
2967		pdnxt = (sva + NBPDR) & ~PDRMASK;
2968		if (pdnxt < sva)
2969			pdnxt = eva;
2970		if (pmap->pm_stats.resident_count == 0)
2971			break;
2972
2973		pdirindex = sva >> PDRSHIFT;
2974		ptpaddr = pmap->pm_pdir[pdirindex];
2975
2976		/*
2977		 * Weed out invalid mappings. Note: we assume that the page
2978		 * directory table is always allocated, and in kernel virtual.
2979		 */
2980		if (ptpaddr == 0)
2981			continue;
2982
2983		/*
2984		 * Check for large page.
2985		 */
2986		if ((ptpaddr & PG_PS) != 0) {
2987			/*
2988			 * Are we removing the entire large page?  If not,
2989			 * demote the mapping and fall through.
2990			 */
2991			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2992				/*
2993				 * The TLB entry for a PG_G mapping is
2994				 * invalidated by pmap_remove_pde().
2995				 */
2996				if ((ptpaddr & PG_G) == 0)
2997					anyvalid = 1;
2998				pmap_remove_pde(pmap,
2999				    &pmap->pm_pdir[pdirindex], sva, &free);
3000				continue;
3001			} else if (!pmap_demote_pde(pmap,
3002			    &pmap->pm_pdir[pdirindex], sva)) {
3003				/* The large page mapping was destroyed. */
3004				continue;
3005			}
3006		}
3007
3008		/*
3009		 * Limit our scan to either the end of the va represented
3010		 * by the current page table page, or to the end of the
3011		 * range being removed.
3012		 */
3013		if (pdnxt > eva)
3014			pdnxt = eva;
3015
3016		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3017		    sva += PAGE_SIZE) {
3018			if (*pte == 0)
3019				continue;
3020
3021			/*
3022			 * The TLB entry for a PG_G mapping is invalidated
3023			 * by pmap_remove_pte().
3024			 */
3025			if ((*pte & PG_G) == 0)
3026				anyvalid = 1;
3027			if (pmap_remove_pte(pmap, pte, sva, &free))
3028				break;
3029		}
3030	}
3031out:
3032	sched_unpin();
3033	if (anyvalid)
3034		pmap_invalidate_all(pmap);
3035	rw_wunlock(&pvh_global_lock);
3036	PMAP_UNLOCK(pmap);
3037	pmap_free_zero_pages(&free);
3038}
3039
3040/*
3041 *	Routine:	pmap_remove_all
3042 *	Function:
3043 *		Removes this physical page from
3044 *		all physical maps in which it resides.
3045 *		Reflects back modify bits to the pager.
3046 *
3047 *	Notes:
3048 *		Original versions of this routine were very
3049 *		inefficient because they iteratively called
3050 *		pmap_remove (slow...)
3051 */
3052
3053void
3054pmap_remove_all(vm_page_t m)
3055{
3056	struct md_page *pvh;
3057	pv_entry_t pv;
3058	pmap_t pmap;
3059	pt_entry_t *pte, tpte;
3060	pd_entry_t *pde;
3061	vm_offset_t va;
3062	struct spglist free;
3063
3064	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3065	    ("pmap_remove_all: page %p is not managed", m));
3066	SLIST_INIT(&free);
3067	rw_wlock(&pvh_global_lock);
3068	sched_pin();
3069	if ((m->flags & PG_FICTITIOUS) != 0)
3070		goto small_mappings;
3071	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3072	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3073		va = pv->pv_va;
3074		pmap = PV_PMAP(pv);
3075		PMAP_LOCK(pmap);
3076		pde = pmap_pde(pmap, va);
3077		(void)pmap_demote_pde(pmap, pde, va);
3078		PMAP_UNLOCK(pmap);
3079	}
3080small_mappings:
3081	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3082		pmap = PV_PMAP(pv);
3083		PMAP_LOCK(pmap);
3084		pmap->pm_stats.resident_count--;
3085		pde = pmap_pde(pmap, pv->pv_va);
3086		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3087		    " a 4mpage in page %p's pv list", m));
3088		pte = pmap_pte_quick(pmap, pv->pv_va);
3089		tpte = pte_load_clear(pte);
3090		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3091		    pmap, pv->pv_va));
3092		if (tpte & PG_W)
3093			pmap->pm_stats.wired_count--;
3094		if (tpte & PG_A)
3095			vm_page_aflag_set(m, PGA_REFERENCED);
3096
3097		/*
3098		 * Update the vm_page_t clean and reference bits.
3099		 */
3100		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3101			vm_page_dirty(m);
3102		pmap_unuse_pt(pmap, pv->pv_va, &free);
3103		pmap_invalidate_page(pmap, pv->pv_va);
3104		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3105		free_pv_entry(pmap, pv);
3106		PMAP_UNLOCK(pmap);
3107	}
3108	vm_page_aflag_clear(m, PGA_WRITEABLE);
3109	sched_unpin();
3110	rw_wunlock(&pvh_global_lock);
3111	pmap_free_zero_pages(&free);
3112}
3113
3114/*
3115 * pmap_protect_pde: do the things to protect a 4mpage in a process
3116 */
3117static boolean_t
3118pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3119{
3120	pd_entry_t newpde, oldpde;
3121	vm_offset_t eva, va;
3122	vm_page_t m;
3123	boolean_t anychanged;
3124
3125	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3126	KASSERT((sva & PDRMASK) == 0,
3127	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3128	anychanged = FALSE;
3129retry:
3130	oldpde = newpde = *pde;
3131	if (oldpde & PG_MANAGED) {
3132		eva = sva + NBPDR;
3133		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3134		    va < eva; va += PAGE_SIZE, m++)
3135			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3136				vm_page_dirty(m);
3137	}
3138	if ((prot & VM_PROT_WRITE) == 0)
3139		newpde &= ~(PG_RW | PG_M);
3140#ifdef PAE
3141	if ((prot & VM_PROT_EXECUTE) == 0)
3142		newpde |= pg_nx;
3143#endif
3144	if (newpde != oldpde) {
3145		if (!pde_cmpset(pde, oldpde, newpde))
3146			goto retry;
3147		if (oldpde & PG_G)
3148			pmap_invalidate_page(pmap, sva);
3149		else
3150			anychanged = TRUE;
3151	}
3152	return (anychanged);
3153}
3154
3155/*
3156 *	Set the physical protection on the
3157 *	specified range of this map as requested.
3158 */
3159void
3160pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3161{
3162	vm_offset_t pdnxt;
3163	pd_entry_t ptpaddr;
3164	pt_entry_t *pte;
3165	boolean_t anychanged, pv_lists_locked;
3166
3167	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3168		pmap_remove(pmap, sva, eva);
3169		return;
3170	}
3171
3172#ifdef PAE
3173	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3174	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3175		return;
3176#else
3177	if (prot & VM_PROT_WRITE)
3178		return;
3179#endif
3180
3181	if (pmap_is_current(pmap))
3182		pv_lists_locked = FALSE;
3183	else {
3184		pv_lists_locked = TRUE;
3185resume:
3186		rw_wlock(&pvh_global_lock);
3187		sched_pin();
3188	}
3189	anychanged = FALSE;
3190
3191	PMAP_LOCK(pmap);
3192	for (; sva < eva; sva = pdnxt) {
3193		pt_entry_t obits, pbits;
3194		u_int pdirindex;
3195
3196		pdnxt = (sva + NBPDR) & ~PDRMASK;
3197		if (pdnxt < sva)
3198			pdnxt = eva;
3199
3200		pdirindex = sva >> PDRSHIFT;
3201		ptpaddr = pmap->pm_pdir[pdirindex];
3202
3203		/*
3204		 * Weed out invalid mappings. Note: we assume that the page
3205		 * directory table is always allocated, and in kernel virtual.
3206		 */
3207		if (ptpaddr == 0)
3208			continue;
3209
3210		/*
3211		 * Check for large page.
3212		 */
3213		if ((ptpaddr & PG_PS) != 0) {
3214			/*
3215			 * Are we protecting the entire large page?  If not,
3216			 * demote the mapping and fall through.
3217			 */
3218			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3219				/*
3220				 * The TLB entry for a PG_G mapping is
3221				 * invalidated by pmap_protect_pde().
3222				 */
3223				if (pmap_protect_pde(pmap,
3224				    &pmap->pm_pdir[pdirindex], sva, prot))
3225					anychanged = TRUE;
3226				continue;
3227			} else {
3228				if (!pv_lists_locked) {
3229					pv_lists_locked = TRUE;
3230					if (!rw_try_wlock(&pvh_global_lock)) {
3231						if (anychanged)
3232							pmap_invalidate_all(
3233							    pmap);
3234						PMAP_UNLOCK(pmap);
3235						goto resume;
3236					}
3237					sched_pin();
3238				}
3239				if (!pmap_demote_pde(pmap,
3240				    &pmap->pm_pdir[pdirindex], sva)) {
3241					/*
3242					 * The large page mapping was
3243					 * destroyed.
3244					 */
3245					continue;
3246				}
3247			}
3248		}
3249
3250		if (pdnxt > eva)
3251			pdnxt = eva;
3252
3253		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3254		    sva += PAGE_SIZE) {
3255			vm_page_t m;
3256
3257retry:
3258			/*
3259			 * Regardless of whether a pte is 32 or 64 bits in
3260			 * size, PG_RW, PG_A, and PG_M are among the least
3261			 * significant 32 bits.
3262			 */
3263			obits = pbits = *pte;
3264			if ((pbits & PG_V) == 0)
3265				continue;
3266
3267			if ((prot & VM_PROT_WRITE) == 0) {
3268				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3269				    (PG_MANAGED | PG_M | PG_RW)) {
3270					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3271					vm_page_dirty(m);
3272				}
3273				pbits &= ~(PG_RW | PG_M);
3274			}
3275#ifdef PAE
3276			if ((prot & VM_PROT_EXECUTE) == 0)
3277				pbits |= pg_nx;
3278#endif
3279
3280			if (pbits != obits) {
3281#ifdef PAE
3282				if (!atomic_cmpset_64(pte, obits, pbits))
3283					goto retry;
3284#else
3285				if (!atomic_cmpset_int((u_int *)pte, obits,
3286				    pbits))
3287					goto retry;
3288#endif
3289				if (obits & PG_G)
3290					pmap_invalidate_page(pmap, sva);
3291				else
3292					anychanged = TRUE;
3293			}
3294		}
3295	}
3296	if (anychanged)
3297		pmap_invalidate_all(pmap);
3298	if (pv_lists_locked) {
3299		sched_unpin();
3300		rw_wunlock(&pvh_global_lock);
3301	}
3302	PMAP_UNLOCK(pmap);
3303}
3304
3305/*
3306 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3307 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3308 * For promotion to occur, two conditions must be met: (1) the 4KB page
3309 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3310 * mappings must have identical characteristics.
3311 *
3312 * Managed (PG_MANAGED) mappings within the kernel address space are not
3313 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3314 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3315 * pmap.
3316 */
3317static void
3318pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3319{
3320	pd_entry_t newpde;
3321	pt_entry_t *firstpte, oldpte, pa, *pte;
3322	vm_offset_t oldpteva;
3323	vm_page_t mpte;
3324
3325	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3326
3327	/*
3328	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3329	 * either invalid, unused, or does not map the first 4KB physical page
3330	 * within a 2- or 4MB page.
3331	 */
3332	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3333setpde:
3334	newpde = *firstpte;
3335	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3336		pmap_pde_p_failures++;
3337		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3338		    " in pmap %p", va, pmap);
3339		return;
3340	}
3341	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3342		pmap_pde_p_failures++;
3343		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3344		    " in pmap %p", va, pmap);
3345		return;
3346	}
3347	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3348		/*
3349		 * When PG_M is already clear, PG_RW can be cleared without
3350		 * a TLB invalidation.
3351		 */
3352		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3353		    ~PG_RW))
3354			goto setpde;
3355		newpde &= ~PG_RW;
3356	}
3357
3358	/*
3359	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3360	 * PTE maps an unexpected 4KB physical page or does not have identical
3361	 * characteristics to the first PTE.
3362	 */
3363	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3364	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3365setpte:
3366		oldpte = *pte;
3367		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3368			pmap_pde_p_failures++;
3369			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3370			    " in pmap %p", va, pmap);
3371			return;
3372		}
3373		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3374			/*
3375			 * When PG_M is already clear, PG_RW can be cleared
3376			 * without a TLB invalidation.
3377			 */
3378			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3379			    oldpte & ~PG_RW))
3380				goto setpte;
3381			oldpte &= ~PG_RW;
3382			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3383			    (va & ~PDRMASK);
3384			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3385			    " in pmap %p", oldpteva, pmap);
3386		}
3387		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3388			pmap_pde_p_failures++;
3389			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3390			    " in pmap %p", va, pmap);
3391			return;
3392		}
3393		pa -= PAGE_SIZE;
3394	}
3395
3396	/*
3397	 * Save the page table page in its current state until the PDE
3398	 * mapping the superpage is demoted by pmap_demote_pde() or
3399	 * destroyed by pmap_remove_pde().
3400	 */
3401	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3402	KASSERT(mpte >= vm_page_array &&
3403	    mpte < &vm_page_array[vm_page_array_size],
3404	    ("pmap_promote_pde: page table page is out of range"));
3405	KASSERT(mpte->pindex == va >> PDRSHIFT,
3406	    ("pmap_promote_pde: page table page's pindex is wrong"));
3407	if (pmap_insert_pt_page(pmap, mpte)) {
3408		pmap_pde_p_failures++;
3409		CTR2(KTR_PMAP,
3410		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3411		    pmap);
3412		return;
3413	}
3414
3415	/*
3416	 * Promote the pv entries.
3417	 */
3418	if ((newpde & PG_MANAGED) != 0)
3419		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3420
3421	/*
3422	 * Propagate the PAT index to its proper position.
3423	 */
3424	if ((newpde & PG_PTE_PAT) != 0)
3425		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3426
3427	/*
3428	 * Map the superpage.
3429	 */
3430	if (workaround_erratum383)
3431		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3432	else if (pmap == kernel_pmap)
3433		pmap_kenter_pde(va, PG_PS | newpde);
3434	else
3435		pde_store(pde, PG_PS | newpde);
3436
3437	pmap_pde_promotions++;
3438	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3439	    " in pmap %p", va, pmap);
3440}
3441
3442/*
3443 *	Insert the given physical page (p) at
3444 *	the specified virtual address (v) in the
3445 *	target physical map with the protection requested.
3446 *
3447 *	If specified, the page will be wired down, meaning
3448 *	that the related pte can not be reclaimed.
3449 *
3450 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3451 *	or lose information.  That is, this routine must actually
3452 *	insert this page into the given map NOW.
3453 */
3454void
3455pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3456    vm_prot_t prot, boolean_t wired)
3457{
3458	pd_entry_t *pde;
3459	pt_entry_t *pte;
3460	pt_entry_t newpte, origpte;
3461	pv_entry_t pv;
3462	vm_paddr_t opa, pa;
3463	vm_page_t mpte, om;
3464	boolean_t invlva;
3465
3466	va = trunc_page(va);
3467	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3468	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3469	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3470	    va));
3471	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3472		VM_OBJECT_ASSERT_WLOCKED(m->object);
3473
3474	mpte = NULL;
3475
3476	rw_wlock(&pvh_global_lock);
3477	PMAP_LOCK(pmap);
3478	sched_pin();
3479
3480	/*
3481	 * In the case that a page table page is not
3482	 * resident, we are creating it here.
3483	 */
3484	if (va < VM_MAXUSER_ADDRESS) {
3485		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3486	}
3487
3488	pde = pmap_pde(pmap, va);
3489	if ((*pde & PG_PS) != 0)
3490		panic("pmap_enter: attempted pmap_enter on 4MB page");
3491	pte = pmap_pte_quick(pmap, va);
3492
3493	/*
3494	 * Page Directory table entry not valid, we need a new PT page
3495	 */
3496	if (pte == NULL) {
3497		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3498			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3499	}
3500
3501	pa = VM_PAGE_TO_PHYS(m);
3502	om = NULL;
3503	origpte = *pte;
3504	opa = origpte & PG_FRAME;
3505
3506	/*
3507	 * Mapping has not changed, must be protection or wiring change.
3508	 */
3509	if (origpte && (opa == pa)) {
3510		/*
3511		 * Wiring change, just update stats. We don't worry about
3512		 * wiring PT pages as they remain resident as long as there
3513		 * are valid mappings in them. Hence, if a user page is wired,
3514		 * the PT page will be also.
3515		 */
3516		if (wired && ((origpte & PG_W) == 0))
3517			pmap->pm_stats.wired_count++;
3518		else if (!wired && (origpte & PG_W))
3519			pmap->pm_stats.wired_count--;
3520
3521		/*
3522		 * Remove extra pte reference
3523		 */
3524		if (mpte)
3525			mpte->wire_count--;
3526
3527		if (origpte & PG_MANAGED) {
3528			om = m;
3529			pa |= PG_MANAGED;
3530		}
3531		goto validate;
3532	}
3533
3534	pv = NULL;
3535
3536	/*
3537	 * Mapping has changed, invalidate old range and fall through to
3538	 * handle validating new mapping.
3539	 */
3540	if (opa) {
3541		if (origpte & PG_W)
3542			pmap->pm_stats.wired_count--;
3543		if (origpte & PG_MANAGED) {
3544			om = PHYS_TO_VM_PAGE(opa);
3545			pv = pmap_pvh_remove(&om->md, pmap, va);
3546		}
3547		if (mpte != NULL) {
3548			mpte->wire_count--;
3549			KASSERT(mpte->wire_count > 0,
3550			    ("pmap_enter: missing reference to page table page,"
3551			     " va: 0x%x", va));
3552		}
3553	} else
3554		pmap->pm_stats.resident_count++;
3555
3556	/*
3557	 * Enter on the PV list if part of our managed memory.
3558	 */
3559	if ((m->oflags & VPO_UNMANAGED) == 0) {
3560		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3561		    ("pmap_enter: managed mapping within the clean submap"));
3562		if (pv == NULL)
3563			pv = get_pv_entry(pmap, FALSE);
3564		pv->pv_va = va;
3565		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3566		pa |= PG_MANAGED;
3567	} else if (pv != NULL)
3568		free_pv_entry(pmap, pv);
3569
3570	/*
3571	 * Increment counters
3572	 */
3573	if (wired)
3574		pmap->pm_stats.wired_count++;
3575
3576validate:
3577	/*
3578	 * Now validate mapping with desired protection/wiring.
3579	 */
3580	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3581	if ((prot & VM_PROT_WRITE) != 0) {
3582		newpte |= PG_RW;
3583		if ((newpte & PG_MANAGED) != 0)
3584			vm_page_aflag_set(m, PGA_WRITEABLE);
3585	}
3586#ifdef PAE
3587	if ((prot & VM_PROT_EXECUTE) == 0)
3588		newpte |= pg_nx;
3589#endif
3590	if (wired)
3591		newpte |= PG_W;
3592	if (va < VM_MAXUSER_ADDRESS)
3593		newpte |= PG_U;
3594	if (pmap == kernel_pmap)
3595		newpte |= pgeflag;
3596
3597	/*
3598	 * if the mapping or permission bits are different, we need
3599	 * to update the pte.
3600	 */
3601	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3602		newpte |= PG_A;
3603		if ((access & VM_PROT_WRITE) != 0)
3604			newpte |= PG_M;
3605		if (origpte & PG_V) {
3606			invlva = FALSE;
3607			origpte = pte_load_store(pte, newpte);
3608			if (origpte & PG_A) {
3609				if (origpte & PG_MANAGED)
3610					vm_page_aflag_set(om, PGA_REFERENCED);
3611				if (opa != VM_PAGE_TO_PHYS(m))
3612					invlva = TRUE;
3613#ifdef PAE
3614				if ((origpte & PG_NX) == 0 &&
3615				    (newpte & PG_NX) != 0)
3616					invlva = TRUE;
3617#endif
3618			}
3619			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3620				if ((origpte & PG_MANAGED) != 0)
3621					vm_page_dirty(om);
3622				if ((prot & VM_PROT_WRITE) == 0)
3623					invlva = TRUE;
3624			}
3625			if ((origpte & PG_MANAGED) != 0 &&
3626			    TAILQ_EMPTY(&om->md.pv_list) &&
3627			    ((om->flags & PG_FICTITIOUS) != 0 ||
3628			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3629				vm_page_aflag_clear(om, PGA_WRITEABLE);
3630			if (invlva)
3631				pmap_invalidate_page(pmap, va);
3632		} else
3633			pte_store(pte, newpte);
3634	}
3635
3636	/*
3637	 * If both the page table page and the reservation are fully
3638	 * populated, then attempt promotion.
3639	 */
3640	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3641	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3642	    vm_reserv_level_iffullpop(m) == 0)
3643		pmap_promote_pde(pmap, pde, va);
3644
3645	sched_unpin();
3646	rw_wunlock(&pvh_global_lock);
3647	PMAP_UNLOCK(pmap);
3648}
3649
3650/*
3651 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3652 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3653 * blocking, (2) a mapping already exists at the specified virtual address, or
3654 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3655 */
3656static boolean_t
3657pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3658{
3659	pd_entry_t *pde, newpde;
3660
3661	rw_assert(&pvh_global_lock, RA_WLOCKED);
3662	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3663	pde = pmap_pde(pmap, va);
3664	if (*pde != 0) {
3665		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3666		    " in pmap %p", va, pmap);
3667		return (FALSE);
3668	}
3669	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3670	    PG_PS | PG_V;
3671	if ((m->oflags & VPO_UNMANAGED) == 0) {
3672		newpde |= PG_MANAGED;
3673
3674		/*
3675		 * Abort this mapping if its PV entry could not be created.
3676		 */
3677		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3678			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3679			    " in pmap %p", va, pmap);
3680			return (FALSE);
3681		}
3682	}
3683#ifdef PAE
3684	if ((prot & VM_PROT_EXECUTE) == 0)
3685		newpde |= pg_nx;
3686#endif
3687	if (va < VM_MAXUSER_ADDRESS)
3688		newpde |= PG_U;
3689
3690	/*
3691	 * Increment counters.
3692	 */
3693	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3694
3695	/*
3696	 * Map the superpage.
3697	 */
3698	pde_store(pde, newpde);
3699
3700	pmap_pde_mappings++;
3701	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3702	    " in pmap %p", va, pmap);
3703	return (TRUE);
3704}
3705
3706/*
3707 * Maps a sequence of resident pages belonging to the same object.
3708 * The sequence begins with the given page m_start.  This page is
3709 * mapped at the given virtual address start.  Each subsequent page is
3710 * mapped at a virtual address that is offset from start by the same
3711 * amount as the page is offset from m_start within the object.  The
3712 * last page in the sequence is the page with the largest offset from
3713 * m_start that can be mapped at a virtual address less than the given
3714 * virtual address end.  Not every virtual page between start and end
3715 * is mapped; only those for which a resident page exists with the
3716 * corresponding offset from m_start are mapped.
3717 */
3718void
3719pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3720    vm_page_t m_start, vm_prot_t prot)
3721{
3722	vm_offset_t va;
3723	vm_page_t m, mpte;
3724	vm_pindex_t diff, psize;
3725
3726	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3727
3728	psize = atop(end - start);
3729	mpte = NULL;
3730	m = m_start;
3731	rw_wlock(&pvh_global_lock);
3732	PMAP_LOCK(pmap);
3733	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3734		va = start + ptoa(diff);
3735		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3736		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3737		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3738		    pmap_enter_pde(pmap, va, m, prot))
3739			m = &m[NBPDR / PAGE_SIZE - 1];
3740		else
3741			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3742			    mpte);
3743		m = TAILQ_NEXT(m, listq);
3744	}
3745	rw_wunlock(&pvh_global_lock);
3746	PMAP_UNLOCK(pmap);
3747}
3748
3749/*
3750 * this code makes some *MAJOR* assumptions:
3751 * 1. Current pmap & pmap exists.
3752 * 2. Not wired.
3753 * 3. Read access.
3754 * 4. No page table pages.
3755 * but is *MUCH* faster than pmap_enter...
3756 */
3757
3758void
3759pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3760{
3761
3762	rw_wlock(&pvh_global_lock);
3763	PMAP_LOCK(pmap);
3764	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3765	rw_wunlock(&pvh_global_lock);
3766	PMAP_UNLOCK(pmap);
3767}
3768
3769static vm_page_t
3770pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3771    vm_prot_t prot, vm_page_t mpte)
3772{
3773	pt_entry_t *pte;
3774	vm_paddr_t pa;
3775	struct spglist free;
3776
3777	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3778	    (m->oflags & VPO_UNMANAGED) != 0,
3779	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3780	rw_assert(&pvh_global_lock, RA_WLOCKED);
3781	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3782
3783	/*
3784	 * In the case that a page table page is not
3785	 * resident, we are creating it here.
3786	 */
3787	if (va < VM_MAXUSER_ADDRESS) {
3788		u_int ptepindex;
3789		pd_entry_t ptepa;
3790
3791		/*
3792		 * Calculate pagetable page index
3793		 */
3794		ptepindex = va >> PDRSHIFT;
3795		if (mpte && (mpte->pindex == ptepindex)) {
3796			mpte->wire_count++;
3797		} else {
3798			/*
3799			 * Get the page directory entry
3800			 */
3801			ptepa = pmap->pm_pdir[ptepindex];
3802
3803			/*
3804			 * If the page table page is mapped, we just increment
3805			 * the hold count, and activate it.
3806			 */
3807			if (ptepa) {
3808				if (ptepa & PG_PS)
3809					return (NULL);
3810				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3811				mpte->wire_count++;
3812			} else {
3813				mpte = _pmap_allocpte(pmap, ptepindex,
3814				    M_NOWAIT);
3815				if (mpte == NULL)
3816					return (mpte);
3817			}
3818		}
3819	} else {
3820		mpte = NULL;
3821	}
3822
3823	/*
3824	 * This call to vtopte makes the assumption that we are
3825	 * entering the page into the current pmap.  In order to support
3826	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3827	 * But that isn't as quick as vtopte.
3828	 */
3829	pte = vtopte(va);
3830	if (*pte) {
3831		if (mpte != NULL) {
3832			mpte->wire_count--;
3833			mpte = NULL;
3834		}
3835		return (mpte);
3836	}
3837
3838	/*
3839	 * Enter on the PV list if part of our managed memory.
3840	 */
3841	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3842	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3843		if (mpte != NULL) {
3844			SLIST_INIT(&free);
3845			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3846				pmap_invalidate_page(pmap, va);
3847				pmap_free_zero_pages(&free);
3848			}
3849
3850			mpte = NULL;
3851		}
3852		return (mpte);
3853	}
3854
3855	/*
3856	 * Increment counters
3857	 */
3858	pmap->pm_stats.resident_count++;
3859
3860	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3861#ifdef PAE
3862	if ((prot & VM_PROT_EXECUTE) == 0)
3863		pa |= pg_nx;
3864#endif
3865
3866	/*
3867	 * Now validate mapping with RO protection
3868	 */
3869	if ((m->oflags & VPO_UNMANAGED) != 0)
3870		pte_store(pte, pa | PG_V | PG_U);
3871	else
3872		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3873	return (mpte);
3874}
3875
3876/*
3877 * Make a temporary mapping for a physical address.  This is only intended
3878 * to be used for panic dumps.
3879 */
3880void *
3881pmap_kenter_temporary(vm_paddr_t pa, int i)
3882{
3883	vm_offset_t va;
3884
3885	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3886	pmap_kenter(va, pa);
3887	invlpg(va);
3888	return ((void *)crashdumpmap);
3889}
3890
3891/*
3892 * This code maps large physical mmap regions into the
3893 * processor address space.  Note that some shortcuts
3894 * are taken, but the code works.
3895 */
3896void
3897pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3898    vm_pindex_t pindex, vm_size_t size)
3899{
3900	pd_entry_t *pde;
3901	vm_paddr_t pa, ptepa;
3902	vm_page_t p;
3903	int pat_mode;
3904
3905	VM_OBJECT_ASSERT_WLOCKED(object);
3906	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3907	    ("pmap_object_init_pt: non-device object"));
3908	if (pseflag &&
3909	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3910		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3911			return;
3912		p = vm_page_lookup(object, pindex);
3913		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3914		    ("pmap_object_init_pt: invalid page %p", p));
3915		pat_mode = p->md.pat_mode;
3916
3917		/*
3918		 * Abort the mapping if the first page is not physically
3919		 * aligned to a 2/4MB page boundary.
3920		 */
3921		ptepa = VM_PAGE_TO_PHYS(p);
3922		if (ptepa & (NBPDR - 1))
3923			return;
3924
3925		/*
3926		 * Skip the first page.  Abort the mapping if the rest of
3927		 * the pages are not physically contiguous or have differing
3928		 * memory attributes.
3929		 */
3930		p = TAILQ_NEXT(p, listq);
3931		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3932		    pa += PAGE_SIZE) {
3933			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3934			    ("pmap_object_init_pt: invalid page %p", p));
3935			if (pa != VM_PAGE_TO_PHYS(p) ||
3936			    pat_mode != p->md.pat_mode)
3937				return;
3938			p = TAILQ_NEXT(p, listq);
3939		}
3940
3941		/*
3942		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3943		 * "size" is a multiple of 2/4M, adding the PAT setting to
3944		 * "pa" will not affect the termination of this loop.
3945		 */
3946		PMAP_LOCK(pmap);
3947		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3948		    size; pa += NBPDR) {
3949			pde = pmap_pde(pmap, addr);
3950			if (*pde == 0) {
3951				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3952				    PG_U | PG_RW | PG_V);
3953				pmap->pm_stats.resident_count += NBPDR /
3954				    PAGE_SIZE;
3955				pmap_pde_mappings++;
3956			}
3957			/* Else continue on if the PDE is already valid. */
3958			addr += NBPDR;
3959		}
3960		PMAP_UNLOCK(pmap);
3961	}
3962}
3963
3964/*
3965 *	Routine:	pmap_change_wiring
3966 *	Function:	Change the wiring attribute for a map/virtual-address
3967 *			pair.
3968 *	In/out conditions:
3969 *			The mapping must already exist in the pmap.
3970 */
3971void
3972pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3973{
3974	pd_entry_t *pde;
3975	pt_entry_t *pte;
3976	boolean_t are_queues_locked;
3977
3978	are_queues_locked = FALSE;
3979retry:
3980	PMAP_LOCK(pmap);
3981	pde = pmap_pde(pmap, va);
3982	if ((*pde & PG_PS) != 0) {
3983		if (!wired != ((*pde & PG_W) == 0)) {
3984			if (!are_queues_locked) {
3985				are_queues_locked = TRUE;
3986				if (!rw_try_wlock(&pvh_global_lock)) {
3987					PMAP_UNLOCK(pmap);
3988					rw_wlock(&pvh_global_lock);
3989					goto retry;
3990				}
3991			}
3992			if (!pmap_demote_pde(pmap, pde, va))
3993				panic("pmap_change_wiring: demotion failed");
3994		} else
3995			goto out;
3996	}
3997	pte = pmap_pte(pmap, va);
3998
3999	if (wired && !pmap_pte_w(pte))
4000		pmap->pm_stats.wired_count++;
4001	else if (!wired && pmap_pte_w(pte))
4002		pmap->pm_stats.wired_count--;
4003
4004	/*
4005	 * Wiring is not a hardware characteristic so there is no need to
4006	 * invalidate TLB.
4007	 */
4008	pmap_pte_set_w(pte, wired);
4009	pmap_pte_release(pte);
4010out:
4011	if (are_queues_locked)
4012		rw_wunlock(&pvh_global_lock);
4013	PMAP_UNLOCK(pmap);
4014}
4015
4016
4017
4018/*
4019 *	Copy the range specified by src_addr/len
4020 *	from the source map to the range dst_addr/len
4021 *	in the destination map.
4022 *
4023 *	This routine is only advisory and need not do anything.
4024 */
4025
4026void
4027pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4028    vm_offset_t src_addr)
4029{
4030	struct spglist free;
4031	vm_offset_t addr;
4032	vm_offset_t end_addr = src_addr + len;
4033	vm_offset_t pdnxt;
4034
4035	if (dst_addr != src_addr)
4036		return;
4037
4038	if (!pmap_is_current(src_pmap))
4039		return;
4040
4041	rw_wlock(&pvh_global_lock);
4042	if (dst_pmap < src_pmap) {
4043		PMAP_LOCK(dst_pmap);
4044		PMAP_LOCK(src_pmap);
4045	} else {
4046		PMAP_LOCK(src_pmap);
4047		PMAP_LOCK(dst_pmap);
4048	}
4049	sched_pin();
4050	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4051		pt_entry_t *src_pte, *dst_pte;
4052		vm_page_t dstmpte, srcmpte;
4053		pd_entry_t srcptepaddr;
4054		u_int ptepindex;
4055
4056		KASSERT(addr < UPT_MIN_ADDRESS,
4057		    ("pmap_copy: invalid to pmap_copy page tables"));
4058
4059		pdnxt = (addr + NBPDR) & ~PDRMASK;
4060		if (pdnxt < addr)
4061			pdnxt = end_addr;
4062		ptepindex = addr >> PDRSHIFT;
4063
4064		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4065		if (srcptepaddr == 0)
4066			continue;
4067
4068		if (srcptepaddr & PG_PS) {
4069			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4070				continue;
4071			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4072			    ((srcptepaddr & PG_MANAGED) == 0 ||
4073			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4074			    PG_PS_FRAME))) {
4075				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4076				    ~PG_W;
4077				dst_pmap->pm_stats.resident_count +=
4078				    NBPDR / PAGE_SIZE;
4079			}
4080			continue;
4081		}
4082
4083		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4084		KASSERT(srcmpte->wire_count > 0,
4085		    ("pmap_copy: source page table page is unused"));
4086
4087		if (pdnxt > end_addr)
4088			pdnxt = end_addr;
4089
4090		src_pte = vtopte(addr);
4091		while (addr < pdnxt) {
4092			pt_entry_t ptetemp;
4093			ptetemp = *src_pte;
4094			/*
4095			 * we only virtual copy managed pages
4096			 */
4097			if ((ptetemp & PG_MANAGED) != 0) {
4098				dstmpte = pmap_allocpte(dst_pmap, addr,
4099				    M_NOWAIT);
4100				if (dstmpte == NULL)
4101					goto out;
4102				dst_pte = pmap_pte_quick(dst_pmap, addr);
4103				if (*dst_pte == 0 &&
4104				    pmap_try_insert_pv_entry(dst_pmap, addr,
4105				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4106					/*
4107					 * Clear the wired, modified, and
4108					 * accessed (referenced) bits
4109					 * during the copy.
4110					 */
4111					*dst_pte = ptetemp & ~(PG_W | PG_M |
4112					    PG_A);
4113					dst_pmap->pm_stats.resident_count++;
4114	 			} else {
4115					SLIST_INIT(&free);
4116					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4117					    &free)) {
4118						pmap_invalidate_page(dst_pmap,
4119						    addr);
4120						pmap_free_zero_pages(&free);
4121					}
4122					goto out;
4123				}
4124				if (dstmpte->wire_count >= srcmpte->wire_count)
4125					break;
4126			}
4127			addr += PAGE_SIZE;
4128			src_pte++;
4129		}
4130	}
4131out:
4132	sched_unpin();
4133	rw_wunlock(&pvh_global_lock);
4134	PMAP_UNLOCK(src_pmap);
4135	PMAP_UNLOCK(dst_pmap);
4136}
4137
4138static __inline void
4139pagezero(void *page)
4140{
4141#if defined(I686_CPU)
4142	if (cpu_class == CPUCLASS_686) {
4143#if defined(CPU_ENABLE_SSE)
4144		if (cpu_feature & CPUID_SSE2)
4145			sse2_pagezero(page);
4146		else
4147#endif
4148			i686_pagezero(page);
4149	} else
4150#endif
4151		bzero(page, PAGE_SIZE);
4152}
4153
4154/*
4155 *	pmap_zero_page zeros the specified hardware page by mapping
4156 *	the page into KVM and using bzero to clear its contents.
4157 */
4158void
4159pmap_zero_page(vm_page_t m)
4160{
4161	struct sysmaps *sysmaps;
4162
4163	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4164	mtx_lock(&sysmaps->lock);
4165	if (*sysmaps->CMAP2)
4166		panic("pmap_zero_page: CMAP2 busy");
4167	sched_pin();
4168	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4169	    pmap_cache_bits(m->md.pat_mode, 0);
4170	invlcaddr(sysmaps->CADDR2);
4171	pagezero(sysmaps->CADDR2);
4172	*sysmaps->CMAP2 = 0;
4173	sched_unpin();
4174	mtx_unlock(&sysmaps->lock);
4175}
4176
4177/*
4178 *	pmap_zero_page_area zeros the specified hardware page by mapping
4179 *	the page into KVM and using bzero to clear its contents.
4180 *
4181 *	off and size may not cover an area beyond a single hardware page.
4182 */
4183void
4184pmap_zero_page_area(vm_page_t m, int off, int size)
4185{
4186	struct sysmaps *sysmaps;
4187
4188	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4189	mtx_lock(&sysmaps->lock);
4190	if (*sysmaps->CMAP2)
4191		panic("pmap_zero_page_area: CMAP2 busy");
4192	sched_pin();
4193	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4194	    pmap_cache_bits(m->md.pat_mode, 0);
4195	invlcaddr(sysmaps->CADDR2);
4196	if (off == 0 && size == PAGE_SIZE)
4197		pagezero(sysmaps->CADDR2);
4198	else
4199		bzero((char *)sysmaps->CADDR2 + off, size);
4200	*sysmaps->CMAP2 = 0;
4201	sched_unpin();
4202	mtx_unlock(&sysmaps->lock);
4203}
4204
4205/*
4206 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4207 *	the page into KVM and using bzero to clear its contents.  This
4208 *	is intended to be called from the vm_pagezero process only and
4209 *	outside of Giant.
4210 */
4211void
4212pmap_zero_page_idle(vm_page_t m)
4213{
4214
4215	if (*CMAP3)
4216		panic("pmap_zero_page_idle: CMAP3 busy");
4217	sched_pin();
4218	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4219	    pmap_cache_bits(m->md.pat_mode, 0);
4220	invlcaddr(CADDR3);
4221	pagezero(CADDR3);
4222	*CMAP3 = 0;
4223	sched_unpin();
4224}
4225
4226/*
4227 *	pmap_copy_page copies the specified (machine independent)
4228 *	page by mapping the page into virtual memory and using
4229 *	bcopy to copy the page, one machine dependent page at a
4230 *	time.
4231 */
4232void
4233pmap_copy_page(vm_page_t src, vm_page_t dst)
4234{
4235	struct sysmaps *sysmaps;
4236
4237	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4238	mtx_lock(&sysmaps->lock);
4239	if (*sysmaps->CMAP1)
4240		panic("pmap_copy_page: CMAP1 busy");
4241	if (*sysmaps->CMAP2)
4242		panic("pmap_copy_page: CMAP2 busy");
4243	sched_pin();
4244	invlpg((u_int)sysmaps->CADDR1);
4245	invlpg((u_int)sysmaps->CADDR2);
4246	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4247	    pmap_cache_bits(src->md.pat_mode, 0);
4248	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4249	    pmap_cache_bits(dst->md.pat_mode, 0);
4250	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4251	*sysmaps->CMAP1 = 0;
4252	*sysmaps->CMAP2 = 0;
4253	sched_unpin();
4254	mtx_unlock(&sysmaps->lock);
4255}
4256
4257int unmapped_buf_allowed = 1;
4258
4259void
4260pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4261    vm_offset_t b_offset, int xfersize)
4262{
4263	struct sysmaps *sysmaps;
4264	vm_page_t a_pg, b_pg;
4265	char *a_cp, *b_cp;
4266	vm_offset_t a_pg_offset, b_pg_offset;
4267	int cnt;
4268
4269	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4270	mtx_lock(&sysmaps->lock);
4271	if (*sysmaps->CMAP1 != 0)
4272		panic("pmap_copy_pages: CMAP1 busy");
4273	if (*sysmaps->CMAP2 != 0)
4274		panic("pmap_copy_pages: CMAP2 busy");
4275	sched_pin();
4276	while (xfersize > 0) {
4277		invlpg((u_int)sysmaps->CADDR1);
4278		invlpg((u_int)sysmaps->CADDR2);
4279		a_pg = ma[a_offset >> PAGE_SHIFT];
4280		a_pg_offset = a_offset & PAGE_MASK;
4281		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4282		b_pg = mb[b_offset >> PAGE_SHIFT];
4283		b_pg_offset = b_offset & PAGE_MASK;
4284		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4285		*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4286		    pmap_cache_bits(b_pg->md.pat_mode, 0);
4287		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4288		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4289		a_cp = sysmaps->CADDR1 + a_pg_offset;
4290		b_cp = sysmaps->CADDR2 + b_pg_offset;
4291		bcopy(a_cp, b_cp, cnt);
4292		a_offset += cnt;
4293		b_offset += cnt;
4294		xfersize -= cnt;
4295	}
4296	*sysmaps->CMAP1 = 0;
4297	*sysmaps->CMAP2 = 0;
4298	sched_unpin();
4299	mtx_unlock(&sysmaps->lock);
4300}
4301
4302/*
4303 * Returns true if the pmap's pv is one of the first
4304 * 16 pvs linked to from this page.  This count may
4305 * be changed upwards or downwards in the future; it
4306 * is only necessary that true be returned for a small
4307 * subset of pmaps for proper page aging.
4308 */
4309boolean_t
4310pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4311{
4312	struct md_page *pvh;
4313	pv_entry_t pv;
4314	int loops = 0;
4315	boolean_t rv;
4316
4317	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4318	    ("pmap_page_exists_quick: page %p is not managed", m));
4319	rv = FALSE;
4320	rw_wlock(&pvh_global_lock);
4321	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4322		if (PV_PMAP(pv) == pmap) {
4323			rv = TRUE;
4324			break;
4325		}
4326		loops++;
4327		if (loops >= 16)
4328			break;
4329	}
4330	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4331		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4332		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4333			if (PV_PMAP(pv) == pmap) {
4334				rv = TRUE;
4335				break;
4336			}
4337			loops++;
4338			if (loops >= 16)
4339				break;
4340		}
4341	}
4342	rw_wunlock(&pvh_global_lock);
4343	return (rv);
4344}
4345
4346/*
4347 *	pmap_page_wired_mappings:
4348 *
4349 *	Return the number of managed mappings to the given physical page
4350 *	that are wired.
4351 */
4352int
4353pmap_page_wired_mappings(vm_page_t m)
4354{
4355	int count;
4356
4357	count = 0;
4358	if ((m->oflags & VPO_UNMANAGED) != 0)
4359		return (count);
4360	rw_wlock(&pvh_global_lock);
4361	count = pmap_pvh_wired_mappings(&m->md, count);
4362	if ((m->flags & PG_FICTITIOUS) == 0) {
4363	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4364	        count);
4365	}
4366	rw_wunlock(&pvh_global_lock);
4367	return (count);
4368}
4369
4370/*
4371 *	pmap_pvh_wired_mappings:
4372 *
4373 *	Return the updated number "count" of managed mappings that are wired.
4374 */
4375static int
4376pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4377{
4378	pmap_t pmap;
4379	pt_entry_t *pte;
4380	pv_entry_t pv;
4381
4382	rw_assert(&pvh_global_lock, RA_WLOCKED);
4383	sched_pin();
4384	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4385		pmap = PV_PMAP(pv);
4386		PMAP_LOCK(pmap);
4387		pte = pmap_pte_quick(pmap, pv->pv_va);
4388		if ((*pte & PG_W) != 0)
4389			count++;
4390		PMAP_UNLOCK(pmap);
4391	}
4392	sched_unpin();
4393	return (count);
4394}
4395
4396/*
4397 * Returns TRUE if the given page is mapped individually or as part of
4398 * a 4mpage.  Otherwise, returns FALSE.
4399 */
4400boolean_t
4401pmap_page_is_mapped(vm_page_t m)
4402{
4403	boolean_t rv;
4404
4405	if ((m->oflags & VPO_UNMANAGED) != 0)
4406		return (FALSE);
4407	rw_wlock(&pvh_global_lock);
4408	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4409	    ((m->flags & PG_FICTITIOUS) == 0 &&
4410	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4411	rw_wunlock(&pvh_global_lock);
4412	return (rv);
4413}
4414
4415/*
4416 * Remove all pages from specified address space
4417 * this aids process exit speeds.  Also, this code
4418 * is special cased for current process only, but
4419 * can have the more generic (and slightly slower)
4420 * mode enabled.  This is much faster than pmap_remove
4421 * in the case of running down an entire address space.
4422 */
4423void
4424pmap_remove_pages(pmap_t pmap)
4425{
4426	pt_entry_t *pte, tpte;
4427	vm_page_t m, mpte, mt;
4428	pv_entry_t pv;
4429	struct md_page *pvh;
4430	struct pv_chunk *pc, *npc;
4431	struct spglist free;
4432	int field, idx;
4433	int32_t bit;
4434	uint32_t inuse, bitmask;
4435	int allfree;
4436
4437	if (pmap != PCPU_GET(curpmap)) {
4438		printf("warning: pmap_remove_pages called with non-current pmap\n");
4439		return;
4440	}
4441	SLIST_INIT(&free);
4442	rw_wlock(&pvh_global_lock);
4443	PMAP_LOCK(pmap);
4444	sched_pin();
4445	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4446		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4447		    pc->pc_pmap));
4448		allfree = 1;
4449		for (field = 0; field < _NPCM; field++) {
4450			inuse = ~pc->pc_map[field] & pc_freemask[field];
4451			while (inuse != 0) {
4452				bit = bsfl(inuse);
4453				bitmask = 1UL << bit;
4454				idx = field * 32 + bit;
4455				pv = &pc->pc_pventry[idx];
4456				inuse &= ~bitmask;
4457
4458				pte = pmap_pde(pmap, pv->pv_va);
4459				tpte = *pte;
4460				if ((tpte & PG_PS) == 0) {
4461					pte = vtopte(pv->pv_va);
4462					tpte = *pte & ~PG_PTE_PAT;
4463				}
4464
4465				if (tpte == 0) {
4466					printf(
4467					    "TPTE at %p  IS ZERO @ VA %08x\n",
4468					    pte, pv->pv_va);
4469					panic("bad pte");
4470				}
4471
4472/*
4473 * We cannot remove wired pages from a process' mapping at this time
4474 */
4475				if (tpte & PG_W) {
4476					allfree = 0;
4477					continue;
4478				}
4479
4480				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4481				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4482				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4483				    m, (uintmax_t)m->phys_addr,
4484				    (uintmax_t)tpte));
4485
4486				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4487				    m < &vm_page_array[vm_page_array_size],
4488				    ("pmap_remove_pages: bad tpte %#jx",
4489				    (uintmax_t)tpte));
4490
4491				pte_clear(pte);
4492
4493				/*
4494				 * Update the vm_page_t clean/reference bits.
4495				 */
4496				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4497					if ((tpte & PG_PS) != 0) {
4498						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4499							vm_page_dirty(mt);
4500					} else
4501						vm_page_dirty(m);
4502				}
4503
4504				/* Mark free */
4505				PV_STAT(pv_entry_frees++);
4506				PV_STAT(pv_entry_spare++);
4507				pv_entry_count--;
4508				pc->pc_map[field] |= bitmask;
4509				if ((tpte & PG_PS) != 0) {
4510					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4511					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4512					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4513					if (TAILQ_EMPTY(&pvh->pv_list)) {
4514						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4515							if (TAILQ_EMPTY(&mt->md.pv_list))
4516								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4517					}
4518					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4519					if (mpte != NULL) {
4520						pmap_remove_pt_page(pmap, mpte);
4521						pmap->pm_stats.resident_count--;
4522						KASSERT(mpte->wire_count == NPTEPG,
4523						    ("pmap_remove_pages: pte page wire count error"));
4524						mpte->wire_count = 0;
4525						pmap_add_delayed_free_list(mpte, &free, FALSE);
4526						atomic_subtract_int(&cnt.v_wire_count, 1);
4527					}
4528				} else {
4529					pmap->pm_stats.resident_count--;
4530					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4531					if (TAILQ_EMPTY(&m->md.pv_list) &&
4532					    (m->flags & PG_FICTITIOUS) == 0) {
4533						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4534						if (TAILQ_EMPTY(&pvh->pv_list))
4535							vm_page_aflag_clear(m, PGA_WRITEABLE);
4536					}
4537					pmap_unuse_pt(pmap, pv->pv_va, &free);
4538				}
4539			}
4540		}
4541		if (allfree) {
4542			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4543			free_pv_chunk(pc);
4544		}
4545	}
4546	sched_unpin();
4547	pmap_invalidate_all(pmap);
4548	rw_wunlock(&pvh_global_lock);
4549	PMAP_UNLOCK(pmap);
4550	pmap_free_zero_pages(&free);
4551}
4552
4553/*
4554 *	pmap_is_modified:
4555 *
4556 *	Return whether or not the specified physical page was modified
4557 *	in any physical maps.
4558 */
4559boolean_t
4560pmap_is_modified(vm_page_t m)
4561{
4562	boolean_t rv;
4563
4564	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4565	    ("pmap_is_modified: page %p is not managed", m));
4566
4567	/*
4568	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4569	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4570	 * is clear, no PTEs can have PG_M set.
4571	 */
4572	VM_OBJECT_ASSERT_WLOCKED(m->object);
4573	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4574		return (FALSE);
4575	rw_wlock(&pvh_global_lock);
4576	rv = pmap_is_modified_pvh(&m->md) ||
4577	    ((m->flags & PG_FICTITIOUS) == 0 &&
4578	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4579	rw_wunlock(&pvh_global_lock);
4580	return (rv);
4581}
4582
4583/*
4584 * Returns TRUE if any of the given mappings were used to modify
4585 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4586 * mappings are supported.
4587 */
4588static boolean_t
4589pmap_is_modified_pvh(struct md_page *pvh)
4590{
4591	pv_entry_t pv;
4592	pt_entry_t *pte;
4593	pmap_t pmap;
4594	boolean_t rv;
4595
4596	rw_assert(&pvh_global_lock, RA_WLOCKED);
4597	rv = FALSE;
4598	sched_pin();
4599	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4600		pmap = PV_PMAP(pv);
4601		PMAP_LOCK(pmap);
4602		pte = pmap_pte_quick(pmap, pv->pv_va);
4603		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4604		PMAP_UNLOCK(pmap);
4605		if (rv)
4606			break;
4607	}
4608	sched_unpin();
4609	return (rv);
4610}
4611
4612/*
4613 *	pmap_is_prefaultable:
4614 *
4615 *	Return whether or not the specified virtual address is elgible
4616 *	for prefault.
4617 */
4618boolean_t
4619pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4620{
4621	pd_entry_t *pde;
4622	pt_entry_t *pte;
4623	boolean_t rv;
4624
4625	rv = FALSE;
4626	PMAP_LOCK(pmap);
4627	pde = pmap_pde(pmap, addr);
4628	if (*pde != 0 && (*pde & PG_PS) == 0) {
4629		pte = vtopte(addr);
4630		rv = *pte == 0;
4631	}
4632	PMAP_UNLOCK(pmap);
4633	return (rv);
4634}
4635
4636/*
4637 *	pmap_is_referenced:
4638 *
4639 *	Return whether or not the specified physical page was referenced
4640 *	in any physical maps.
4641 */
4642boolean_t
4643pmap_is_referenced(vm_page_t m)
4644{
4645	boolean_t rv;
4646
4647	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4648	    ("pmap_is_referenced: page %p is not managed", m));
4649	rw_wlock(&pvh_global_lock);
4650	rv = pmap_is_referenced_pvh(&m->md) ||
4651	    ((m->flags & PG_FICTITIOUS) == 0 &&
4652	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4653	rw_wunlock(&pvh_global_lock);
4654	return (rv);
4655}
4656
4657/*
4658 * Returns TRUE if any of the given mappings were referenced and FALSE
4659 * otherwise.  Both page and 4mpage mappings are supported.
4660 */
4661static boolean_t
4662pmap_is_referenced_pvh(struct md_page *pvh)
4663{
4664	pv_entry_t pv;
4665	pt_entry_t *pte;
4666	pmap_t pmap;
4667	boolean_t rv;
4668
4669	rw_assert(&pvh_global_lock, RA_WLOCKED);
4670	rv = FALSE;
4671	sched_pin();
4672	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4673		pmap = PV_PMAP(pv);
4674		PMAP_LOCK(pmap);
4675		pte = pmap_pte_quick(pmap, pv->pv_va);
4676		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4677		PMAP_UNLOCK(pmap);
4678		if (rv)
4679			break;
4680	}
4681	sched_unpin();
4682	return (rv);
4683}
4684
4685/*
4686 * Clear the write and modified bits in each of the given page's mappings.
4687 */
4688void
4689pmap_remove_write(vm_page_t m)
4690{
4691	struct md_page *pvh;
4692	pv_entry_t next_pv, pv;
4693	pmap_t pmap;
4694	pd_entry_t *pde;
4695	pt_entry_t oldpte, *pte;
4696	vm_offset_t va;
4697
4698	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4699	    ("pmap_remove_write: page %p is not managed", m));
4700
4701	/*
4702	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4703	 * set by another thread while the object is locked.  Thus,
4704	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4705	 */
4706	VM_OBJECT_ASSERT_WLOCKED(m->object);
4707	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4708		return;
4709	rw_wlock(&pvh_global_lock);
4710	sched_pin();
4711	if ((m->flags & PG_FICTITIOUS) != 0)
4712		goto small_mappings;
4713	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4714	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4715		va = pv->pv_va;
4716		pmap = PV_PMAP(pv);
4717		PMAP_LOCK(pmap);
4718		pde = pmap_pde(pmap, va);
4719		if ((*pde & PG_RW) != 0)
4720			(void)pmap_demote_pde(pmap, pde, va);
4721		PMAP_UNLOCK(pmap);
4722	}
4723small_mappings:
4724	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4725		pmap = PV_PMAP(pv);
4726		PMAP_LOCK(pmap);
4727		pde = pmap_pde(pmap, pv->pv_va);
4728		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4729		    " a 4mpage in page %p's pv list", m));
4730		pte = pmap_pte_quick(pmap, pv->pv_va);
4731retry:
4732		oldpte = *pte;
4733		if ((oldpte & PG_RW) != 0) {
4734			/*
4735			 * Regardless of whether a pte is 32 or 64 bits
4736			 * in size, PG_RW and PG_M are among the least
4737			 * significant 32 bits.
4738			 */
4739			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4740			    oldpte & ~(PG_RW | PG_M)))
4741				goto retry;
4742			if ((oldpte & PG_M) != 0)
4743				vm_page_dirty(m);
4744			pmap_invalidate_page(pmap, pv->pv_va);
4745		}
4746		PMAP_UNLOCK(pmap);
4747	}
4748	vm_page_aflag_clear(m, PGA_WRITEABLE);
4749	sched_unpin();
4750	rw_wunlock(&pvh_global_lock);
4751}
4752
4753#define	PMAP_TS_REFERENCED_MAX	5
4754
4755/*
4756 *	pmap_ts_referenced:
4757 *
4758 *	Return a count of reference bits for a page, clearing those bits.
4759 *	It is not necessary for every reference bit to be cleared, but it
4760 *	is necessary that 0 only be returned when there are truly no
4761 *	reference bits set.
4762 *
4763 *	XXX: The exact number of bits to check and clear is a matter that
4764 *	should be tested and standardized at some point in the future for
4765 *	optimal aging of shared pages.
4766 */
4767int
4768pmap_ts_referenced(vm_page_t m)
4769{
4770	struct md_page *pvh;
4771	pv_entry_t pv, pvf;
4772	pmap_t pmap;
4773	pd_entry_t *pde;
4774	pt_entry_t *pte;
4775	vm_paddr_t pa;
4776	int rtval = 0;
4777
4778	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4779	    ("pmap_ts_referenced: page %p is not managed", m));
4780	pa = VM_PAGE_TO_PHYS(m);
4781	pvh = pa_to_pvh(pa);
4782	rw_wlock(&pvh_global_lock);
4783	sched_pin();
4784	if ((m->flags & PG_FICTITIOUS) != 0 ||
4785	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4786		goto small_mappings;
4787	pv = pvf;
4788	do {
4789		pmap = PV_PMAP(pv);
4790		PMAP_LOCK(pmap);
4791		pde = pmap_pde(pmap, pv->pv_va);
4792		if ((*pde & PG_A) != 0) {
4793			/*
4794			 * Since this reference bit is shared by either 1024
4795			 * or 512 4KB pages, it should not be cleared every
4796			 * time it is tested.  Apply a simple "hash" function
4797			 * on the physical page number, the virtual superpage
4798			 * number, and the pmap address to select one 4KB page
4799			 * out of the 1024 or 512 on which testing the
4800			 * reference bit will result in clearing that bit.
4801			 * This function is designed to avoid the selection of
4802			 * the same 4KB page for every 2- or 4MB page mapping.
4803			 *
4804			 * On demotion, a mapping that hasn't been referenced
4805			 * is simply destroyed.  To avoid the possibility of a
4806			 * subsequent page fault on a demoted wired mapping,
4807			 * always leave its reference bit set.  Moreover,
4808			 * since the superpage is wired, the current state of
4809			 * its reference bit won't affect page replacement.
4810			 */
4811			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4812			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4813			    (*pde & PG_W) == 0) {
4814				atomic_clear_int((u_int *)pde, PG_A);
4815				pmap_invalidate_page(pmap, pv->pv_va);
4816			}
4817			rtval++;
4818		}
4819		PMAP_UNLOCK(pmap);
4820		/* Rotate the PV list if it has more than one entry. */
4821		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4822			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4823			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4824		}
4825		if (rtval >= PMAP_TS_REFERENCED_MAX)
4826			goto out;
4827	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4828small_mappings:
4829	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4830		goto out;
4831	pv = pvf;
4832	do {
4833		pmap = PV_PMAP(pv);
4834		PMAP_LOCK(pmap);
4835		pde = pmap_pde(pmap, pv->pv_va);
4836		KASSERT((*pde & PG_PS) == 0,
4837		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4838		    m));
4839		pte = pmap_pte_quick(pmap, pv->pv_va);
4840		if ((*pte & PG_A) != 0) {
4841			atomic_clear_int((u_int *)pte, PG_A);
4842			pmap_invalidate_page(pmap, pv->pv_va);
4843			rtval++;
4844		}
4845		PMAP_UNLOCK(pmap);
4846		/* Rotate the PV list if it has more than one entry. */
4847		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4848			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4849			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4850		}
4851	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4852	    PMAP_TS_REFERENCED_MAX);
4853out:
4854	sched_unpin();
4855	rw_wunlock(&pvh_global_lock);
4856	return (rtval);
4857}
4858
4859/*
4860 *	Apply the given advice to the specified range of addresses within the
4861 *	given pmap.  Depending on the advice, clear the referenced and/or
4862 *	modified flags in each mapping and set the mapped page's dirty field.
4863 */
4864void
4865pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4866{
4867	pd_entry_t oldpde, *pde;
4868	pt_entry_t *pte;
4869	vm_offset_t pdnxt;
4870	vm_page_t m;
4871	boolean_t anychanged, pv_lists_locked;
4872
4873	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4874		return;
4875	if (pmap_is_current(pmap))
4876		pv_lists_locked = FALSE;
4877	else {
4878		pv_lists_locked = TRUE;
4879resume:
4880		rw_wlock(&pvh_global_lock);
4881		sched_pin();
4882	}
4883	anychanged = FALSE;
4884	PMAP_LOCK(pmap);
4885	for (; sva < eva; sva = pdnxt) {
4886		pdnxt = (sva + NBPDR) & ~PDRMASK;
4887		if (pdnxt < sva)
4888			pdnxt = eva;
4889		pde = pmap_pde(pmap, sva);
4890		oldpde = *pde;
4891		if ((oldpde & PG_V) == 0)
4892			continue;
4893		else if ((oldpde & PG_PS) != 0) {
4894			if ((oldpde & PG_MANAGED) == 0)
4895				continue;
4896			if (!pv_lists_locked) {
4897				pv_lists_locked = TRUE;
4898				if (!rw_try_wlock(&pvh_global_lock)) {
4899					if (anychanged)
4900						pmap_invalidate_all(pmap);
4901					PMAP_UNLOCK(pmap);
4902					goto resume;
4903				}
4904				sched_pin();
4905			}
4906			if (!pmap_demote_pde(pmap, pde, sva)) {
4907				/*
4908				 * The large page mapping was destroyed.
4909				 */
4910				continue;
4911			}
4912
4913			/*
4914			 * Unless the page mappings are wired, remove the
4915			 * mapping to a single page so that a subsequent
4916			 * access may repromote.  Since the underlying page
4917			 * table page is fully populated, this removal never
4918			 * frees a page table page.
4919			 */
4920			if ((oldpde & PG_W) == 0) {
4921				pte = pmap_pte_quick(pmap, sva);
4922				KASSERT((*pte & PG_V) != 0,
4923				    ("pmap_advise: invalid PTE"));
4924				pmap_remove_pte(pmap, pte, sva, NULL);
4925				anychanged = TRUE;
4926			}
4927		}
4928		if (pdnxt > eva)
4929			pdnxt = eva;
4930		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4931		    sva += PAGE_SIZE) {
4932			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
4933			    PG_V))
4934				continue;
4935			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4936				if (advice == MADV_DONTNEED) {
4937					/*
4938					 * Future calls to pmap_is_modified()
4939					 * can be avoided by making the page
4940					 * dirty now.
4941					 */
4942					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4943					vm_page_dirty(m);
4944				}
4945				atomic_clear_int((u_int *)pte, PG_M | PG_A);
4946			} else if ((*pte & PG_A) != 0)
4947				atomic_clear_int((u_int *)pte, PG_A);
4948			else
4949				continue;
4950			if ((*pte & PG_G) != 0)
4951				pmap_invalidate_page(pmap, sva);
4952			else
4953				anychanged = TRUE;
4954		}
4955	}
4956	if (anychanged)
4957		pmap_invalidate_all(pmap);
4958	if (pv_lists_locked) {
4959		sched_unpin();
4960		rw_wunlock(&pvh_global_lock);
4961	}
4962	PMAP_UNLOCK(pmap);
4963}
4964
4965/*
4966 *	Clear the modify bits on the specified physical page.
4967 */
4968void
4969pmap_clear_modify(vm_page_t m)
4970{
4971	struct md_page *pvh;
4972	pv_entry_t next_pv, pv;
4973	pmap_t pmap;
4974	pd_entry_t oldpde, *pde;
4975	pt_entry_t oldpte, *pte;
4976	vm_offset_t va;
4977
4978	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4979	    ("pmap_clear_modify: page %p is not managed", m));
4980	VM_OBJECT_ASSERT_WLOCKED(m->object);
4981	KASSERT(!vm_page_xbusied(m),
4982	    ("pmap_clear_modify: page %p is exclusive busied", m));
4983
4984	/*
4985	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4986	 * If the object containing the page is locked and the page is not
4987	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4988	 */
4989	if ((m->aflags & PGA_WRITEABLE) == 0)
4990		return;
4991	rw_wlock(&pvh_global_lock);
4992	sched_pin();
4993	if ((m->flags & PG_FICTITIOUS) != 0)
4994		goto small_mappings;
4995	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4996	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4997		va = pv->pv_va;
4998		pmap = PV_PMAP(pv);
4999		PMAP_LOCK(pmap);
5000		pde = pmap_pde(pmap, va);
5001		oldpde = *pde;
5002		if ((oldpde & PG_RW) != 0) {
5003			if (pmap_demote_pde(pmap, pde, va)) {
5004				if ((oldpde & PG_W) == 0) {
5005					/*
5006					 * Write protect the mapping to a
5007					 * single page so that a subsequent
5008					 * write access may repromote.
5009					 */
5010					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5011					    PG_PS_FRAME);
5012					pte = pmap_pte_quick(pmap, va);
5013					oldpte = *pte;
5014					if ((oldpte & PG_V) != 0) {
5015						/*
5016						 * Regardless of whether a pte is 32 or 64 bits
5017						 * in size, PG_RW and PG_M are among the least
5018						 * significant 32 bits.
5019						 */
5020						while (!atomic_cmpset_int((u_int *)pte,
5021						    oldpte,
5022						    oldpte & ~(PG_M | PG_RW)))
5023							oldpte = *pte;
5024						vm_page_dirty(m);
5025						pmap_invalidate_page(pmap, va);
5026					}
5027				}
5028			}
5029		}
5030		PMAP_UNLOCK(pmap);
5031	}
5032small_mappings:
5033	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5034		pmap = PV_PMAP(pv);
5035		PMAP_LOCK(pmap);
5036		pde = pmap_pde(pmap, pv->pv_va);
5037		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5038		    " a 4mpage in page %p's pv list", m));
5039		pte = pmap_pte_quick(pmap, pv->pv_va);
5040		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5041			/*
5042			 * Regardless of whether a pte is 32 or 64 bits
5043			 * in size, PG_M is among the least significant
5044			 * 32 bits.
5045			 */
5046			atomic_clear_int((u_int *)pte, PG_M);
5047			pmap_invalidate_page(pmap, pv->pv_va);
5048		}
5049		PMAP_UNLOCK(pmap);
5050	}
5051	sched_unpin();
5052	rw_wunlock(&pvh_global_lock);
5053}
5054
5055/*
5056 * Miscellaneous support routines follow
5057 */
5058
5059/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5060static __inline void
5061pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5062{
5063	u_int opte, npte;
5064
5065	/*
5066	 * The cache mode bits are all in the low 32-bits of the
5067	 * PTE, so we can just spin on updating the low 32-bits.
5068	 */
5069	do {
5070		opte = *(u_int *)pte;
5071		npte = opte & ~PG_PTE_CACHE;
5072		npte |= cache_bits;
5073	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5074}
5075
5076/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5077static __inline void
5078pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5079{
5080	u_int opde, npde;
5081
5082	/*
5083	 * The cache mode bits are all in the low 32-bits of the
5084	 * PDE, so we can just spin on updating the low 32-bits.
5085	 */
5086	do {
5087		opde = *(u_int *)pde;
5088		npde = opde & ~PG_PDE_CACHE;
5089		npde |= cache_bits;
5090	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5091}
5092
5093/*
5094 * Map a set of physical memory pages into the kernel virtual
5095 * address space. Return a pointer to where it is mapped. This
5096 * routine is intended to be used for mapping device memory,
5097 * NOT real memory.
5098 */
5099void *
5100pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5101{
5102	vm_offset_t va, offset;
5103	vm_size_t tmpsize;
5104
5105	offset = pa & PAGE_MASK;
5106	size = round_page(offset + size);
5107	pa = pa & PG_FRAME;
5108
5109	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5110		va = KERNBASE + pa;
5111	else
5112		va = kva_alloc(size);
5113	if (!va)
5114		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5115
5116	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5117		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5118	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5119	pmap_invalidate_cache_range(va, va + size);
5120	return ((void *)(va + offset));
5121}
5122
5123void *
5124pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5125{
5126
5127	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5128}
5129
5130void *
5131pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5132{
5133
5134	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5135}
5136
5137void
5138pmap_unmapdev(vm_offset_t va, vm_size_t size)
5139{
5140	vm_offset_t base, offset;
5141
5142	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5143		return;
5144	base = trunc_page(va);
5145	offset = va & PAGE_MASK;
5146	size = round_page(offset + size);
5147	kva_free(base, size);
5148}
5149
5150/*
5151 * Sets the memory attribute for the specified page.
5152 */
5153void
5154pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5155{
5156
5157	m->md.pat_mode = ma;
5158	if ((m->flags & PG_FICTITIOUS) != 0)
5159		return;
5160
5161	/*
5162	 * If "m" is a normal page, flush it from the cache.
5163	 * See pmap_invalidate_cache_range().
5164	 *
5165	 * First, try to find an existing mapping of the page by sf
5166	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5167	 * flushes the cache.
5168	 */
5169	if (sf_buf_invalidate_cache(m))
5170		return;
5171
5172	/*
5173	 * If page is not mapped by sf buffer, but CPU does not
5174	 * support self snoop, map the page transient and do
5175	 * invalidation. In the worst case, whole cache is flushed by
5176	 * pmap_invalidate_cache_range().
5177	 */
5178	if ((cpu_feature & CPUID_SS) == 0)
5179		pmap_flush_page(m);
5180}
5181
5182static void
5183pmap_flush_page(vm_page_t m)
5184{
5185	struct sysmaps *sysmaps;
5186	vm_offset_t sva, eva;
5187
5188	if ((cpu_feature & CPUID_CLFSH) != 0) {
5189		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
5190		mtx_lock(&sysmaps->lock);
5191		if (*sysmaps->CMAP2)
5192			panic("pmap_flush_page: CMAP2 busy");
5193		sched_pin();
5194		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5195		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5196		invlcaddr(sysmaps->CADDR2);
5197		sva = (vm_offset_t)sysmaps->CADDR2;
5198		eva = sva + PAGE_SIZE;
5199
5200		/*
5201		 * Use mfence despite the ordering implied by
5202		 * mtx_{un,}lock() because clflush is not guaranteed
5203		 * to be ordered by any other instruction.
5204		 */
5205		mfence();
5206		for (; sva < eva; sva += cpu_clflush_line_size)
5207			clflush(sva);
5208		mfence();
5209		*sysmaps->CMAP2 = 0;
5210		sched_unpin();
5211		mtx_unlock(&sysmaps->lock);
5212	} else
5213		pmap_invalidate_cache();
5214}
5215
5216/*
5217 * Changes the specified virtual address range's memory type to that given by
5218 * the parameter "mode".  The specified virtual address range must be
5219 * completely contained within either the kernel map.
5220 *
5221 * Returns zero if the change completed successfully, and either EINVAL or
5222 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5223 * of the virtual address range was not mapped, and ENOMEM is returned if
5224 * there was insufficient memory available to complete the change.
5225 */
5226int
5227pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5228{
5229	vm_offset_t base, offset, tmpva;
5230	pd_entry_t *pde;
5231	pt_entry_t *pte;
5232	int cache_bits_pte, cache_bits_pde;
5233	boolean_t changed;
5234
5235	base = trunc_page(va);
5236	offset = va & PAGE_MASK;
5237	size = round_page(offset + size);
5238
5239	/*
5240	 * Only supported on kernel virtual addresses above the recursive map.
5241	 */
5242	if (base < VM_MIN_KERNEL_ADDRESS)
5243		return (EINVAL);
5244
5245	cache_bits_pde = pmap_cache_bits(mode, 1);
5246	cache_bits_pte = pmap_cache_bits(mode, 0);
5247	changed = FALSE;
5248
5249	/*
5250	 * Pages that aren't mapped aren't supported.  Also break down
5251	 * 2/4MB pages into 4KB pages if required.
5252	 */
5253	PMAP_LOCK(kernel_pmap);
5254	for (tmpva = base; tmpva < base + size; ) {
5255		pde = pmap_pde(kernel_pmap, tmpva);
5256		if (*pde == 0) {
5257			PMAP_UNLOCK(kernel_pmap);
5258			return (EINVAL);
5259		}
5260		if (*pde & PG_PS) {
5261			/*
5262			 * If the current 2/4MB page already has
5263			 * the required memory type, then we need not
5264			 * demote this page.  Just increment tmpva to
5265			 * the next 2/4MB page frame.
5266			 */
5267			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5268				tmpva = trunc_4mpage(tmpva) + NBPDR;
5269				continue;
5270			}
5271
5272			/*
5273			 * If the current offset aligns with a 2/4MB
5274			 * page frame and there is at least 2/4MB left
5275			 * within the range, then we need not break
5276			 * down this page into 4KB pages.
5277			 */
5278			if ((tmpva & PDRMASK) == 0 &&
5279			    tmpva + PDRMASK < base + size) {
5280				tmpva += NBPDR;
5281				continue;
5282			}
5283			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5284				PMAP_UNLOCK(kernel_pmap);
5285				return (ENOMEM);
5286			}
5287		}
5288		pte = vtopte(tmpva);
5289		if (*pte == 0) {
5290			PMAP_UNLOCK(kernel_pmap);
5291			return (EINVAL);
5292		}
5293		tmpva += PAGE_SIZE;
5294	}
5295	PMAP_UNLOCK(kernel_pmap);
5296
5297	/*
5298	 * Ok, all the pages exist, so run through them updating their
5299	 * cache mode if required.
5300	 */
5301	for (tmpva = base; tmpva < base + size; ) {
5302		pde = pmap_pde(kernel_pmap, tmpva);
5303		if (*pde & PG_PS) {
5304			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5305				pmap_pde_attr(pde, cache_bits_pde);
5306				changed = TRUE;
5307			}
5308			tmpva = trunc_4mpage(tmpva) + NBPDR;
5309		} else {
5310			pte = vtopte(tmpva);
5311			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5312				pmap_pte_attr(pte, cache_bits_pte);
5313				changed = TRUE;
5314			}
5315			tmpva += PAGE_SIZE;
5316		}
5317	}
5318
5319	/*
5320	 * Flush CPU caches to make sure any data isn't cached that
5321	 * shouldn't be, etc.
5322	 */
5323	if (changed) {
5324		pmap_invalidate_range(kernel_pmap, base, tmpva);
5325		pmap_invalidate_cache_range(base, tmpva);
5326	}
5327	return (0);
5328}
5329
5330/*
5331 * perform the pmap work for mincore
5332 */
5333int
5334pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5335{
5336	pd_entry_t *pdep;
5337	pt_entry_t *ptep, pte;
5338	vm_paddr_t pa;
5339	int val;
5340
5341	PMAP_LOCK(pmap);
5342retry:
5343	pdep = pmap_pde(pmap, addr);
5344	if (*pdep != 0) {
5345		if (*pdep & PG_PS) {
5346			pte = *pdep;
5347			/* Compute the physical address of the 4KB page. */
5348			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5349			    PG_FRAME;
5350			val = MINCORE_SUPER;
5351		} else {
5352			ptep = pmap_pte(pmap, addr);
5353			pte = *ptep;
5354			pmap_pte_release(ptep);
5355			pa = pte & PG_FRAME;
5356			val = 0;
5357		}
5358	} else {
5359		pte = 0;
5360		pa = 0;
5361		val = 0;
5362	}
5363	if ((pte & PG_V) != 0) {
5364		val |= MINCORE_INCORE;
5365		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5366			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5367		if ((pte & PG_A) != 0)
5368			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5369	}
5370	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5371	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5372	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5373		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5374		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5375			goto retry;
5376	} else
5377		PA_UNLOCK_COND(*locked_pa);
5378	PMAP_UNLOCK(pmap);
5379	return (val);
5380}
5381
5382void
5383pmap_activate(struct thread *td)
5384{
5385	pmap_t	pmap, oldpmap;
5386	u_int	cpuid;
5387	u_int32_t  cr3;
5388
5389	critical_enter();
5390	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5391	oldpmap = PCPU_GET(curpmap);
5392	cpuid = PCPU_GET(cpuid);
5393#if defined(SMP)
5394	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5395	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5396#else
5397	CPU_CLR(cpuid, &oldpmap->pm_active);
5398	CPU_SET(cpuid, &pmap->pm_active);
5399#endif
5400#ifdef PAE
5401	cr3 = vtophys(pmap->pm_pdpt);
5402#else
5403	cr3 = vtophys(pmap->pm_pdir);
5404#endif
5405	/*
5406	 * pmap_activate is for the current thread on the current cpu
5407	 */
5408	td->td_pcb->pcb_cr3 = cr3;
5409	load_cr3(cr3);
5410	PCPU_SET(curpmap, pmap);
5411	critical_exit();
5412}
5413
5414void
5415pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5416{
5417}
5418
5419/*
5420 *	Increase the starting virtual address of the given mapping if a
5421 *	different alignment might result in more superpage mappings.
5422 */
5423void
5424pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5425    vm_offset_t *addr, vm_size_t size)
5426{
5427	vm_offset_t superpage_offset;
5428
5429	if (size < NBPDR)
5430		return;
5431	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5432		offset += ptoa(object->pg_color);
5433	superpage_offset = offset & PDRMASK;
5434	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5435	    (*addr & PDRMASK) == superpage_offset)
5436		return;
5437	if ((*addr & PDRMASK) < superpage_offset)
5438		*addr = (*addr & ~PDRMASK) + superpage_offset;
5439	else
5440		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5441}
5442
5443
5444#if defined(PMAP_DEBUG)
5445pmap_pid_dump(int pid)
5446{
5447	pmap_t pmap;
5448	struct proc *p;
5449	int npte = 0;
5450	int index;
5451
5452	sx_slock(&allproc_lock);
5453	FOREACH_PROC_IN_SYSTEM(p) {
5454		if (p->p_pid != pid)
5455			continue;
5456
5457		if (p->p_vmspace) {
5458			int i,j;
5459			index = 0;
5460			pmap = vmspace_pmap(p->p_vmspace);
5461			for (i = 0; i < NPDEPTD; i++) {
5462				pd_entry_t *pde;
5463				pt_entry_t *pte;
5464				vm_offset_t base = i << PDRSHIFT;
5465
5466				pde = &pmap->pm_pdir[i];
5467				if (pde && pmap_pde_v(pde)) {
5468					for (j = 0; j < NPTEPG; j++) {
5469						vm_offset_t va = base + (j << PAGE_SHIFT);
5470						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5471							if (index) {
5472								index = 0;
5473								printf("\n");
5474							}
5475							sx_sunlock(&allproc_lock);
5476							return (npte);
5477						}
5478						pte = pmap_pte(pmap, va);
5479						if (pte && pmap_pte_v(pte)) {
5480							pt_entry_t pa;
5481							vm_page_t m;
5482							pa = *pte;
5483							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5484							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5485								va, pa, m->hold_count, m->wire_count, m->flags);
5486							npte++;
5487							index++;
5488							if (index >= 2) {
5489								index = 0;
5490								printf("\n");
5491							} else {
5492								printf(" ");
5493							}
5494						}
5495					}
5496				}
5497			}
5498		}
5499	}
5500	sx_sunlock(&allproc_lock);
5501	return (npte);
5502}
5503#endif
5504
5505#if defined(DEBUG)
5506
5507static void	pads(pmap_t pm);
5508void		pmap_pvdump(vm_paddr_t pa);
5509
5510/* print address space of pmap*/
5511static void
5512pads(pmap_t pm)
5513{
5514	int i, j;
5515	vm_paddr_t va;
5516	pt_entry_t *ptep;
5517
5518	if (pm == kernel_pmap)
5519		return;
5520	for (i = 0; i < NPDEPTD; i++)
5521		if (pm->pm_pdir[i])
5522			for (j = 0; j < NPTEPG; j++) {
5523				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5524				if (pm == kernel_pmap && va < KERNBASE)
5525					continue;
5526				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5527					continue;
5528				ptep = pmap_pte(pm, va);
5529				if (pmap_pte_v(ptep))
5530					printf("%x:%x ", va, *ptep);
5531			};
5532
5533}
5534
5535void
5536pmap_pvdump(vm_paddr_t pa)
5537{
5538	pv_entry_t pv;
5539	pmap_t pmap;
5540	vm_page_t m;
5541
5542	printf("pa %x", pa);
5543	m = PHYS_TO_VM_PAGE(pa);
5544	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5545		pmap = PV_PMAP(pv);
5546		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5547		pads(pmap);
5548	}
5549	printf(" ");
5550}
5551#endif
5552