machdep.c revision 287126
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/sys/i386/i386/machdep.c 287126 2015-08-25 14:39:40Z marcel $");
42
43#include "opt_apic.h"
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_npx.h"
56#include "opt_perfmon.h"
57#include "opt_platform.h"
58#include "opt_xbox.h"
59#include "opt_kdtrace.h"
60
61#include <sys/param.h>
62#include <sys/proc.h>
63#include <sys/systm.h>
64#include <sys/bio.h>
65#include <sys/buf.h>
66#include <sys/bus.h>
67#include <sys/callout.h>
68#include <sys/cons.h>
69#include <sys/cpu.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#ifdef PC98
116#include <pc98/pc98/pc98_machdep.h>
117#else
118#include <isa/rtc.h>
119#endif
120
121#include <net/netisr.h>
122
123#include <machine/bootinfo.h>
124#include <machine/clock.h>
125#include <machine/cpu.h>
126#include <machine/cputypes.h>
127#include <machine/intr_machdep.h>
128#include <x86/mca.h>
129#include <machine/md_var.h>
130#include <machine/metadata.h>
131#include <machine/mp_watchdog.h>
132#include <machine/pc/bios.h>
133#include <machine/pcb.h>
134#include <machine/pcb_ext.h>
135#include <machine/proc.h>
136#include <machine/reg.h>
137#include <machine/sigframe.h>
138#include <machine/specialreg.h>
139#include <machine/vm86.h>
140#ifdef PERFMON
141#include <machine/perfmon.h>
142#endif
143#ifdef SMP
144#include <machine/smp.h>
145#endif
146#ifdef FDT
147#include <x86/fdt.h>
148#endif
149
150#ifdef DEV_APIC
151#include <machine/apicvar.h>
152#endif
153
154#ifdef DEV_ISA
155#include <x86/isa/icu.h>
156#endif
157
158#ifdef XBOX
159#include <machine/xbox.h>
160
161int arch_i386_is_xbox = 0;
162uint32_t arch_i386_xbox_memsize = 0;
163#endif
164
165#ifdef XEN
166/* XEN includes */
167#include <xen/xen-os.h>
168#include <xen/hypervisor.h>
169#include <machine/xen/xenvar.h>
170#include <machine/xen/xenfunc.h>
171#include <xen/xen_intr.h>
172
173void Xhypervisor_callback(void);
174void failsafe_callback(void);
175
176extern trap_info_t trap_table[];
177struct proc_ldt default_proc_ldt;
178extern int init_first;
179int running_xen = 1;
180extern unsigned long physfree;
181#endif /* XEN */
182
183/* Sanity check for __curthread() */
184CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
185
186extern register_t init386(int first);
187extern void dblfault_handler(void);
188
189#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
190#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
191
192#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
193#define CPU_ENABLE_SSE
194#endif
195
196static void cpu_startup(void *);
197static void fpstate_drop(struct thread *td);
198static void get_fpcontext(struct thread *td, mcontext_t *mcp,
199    char *xfpusave, size_t xfpusave_len);
200static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
201    char *xfpustate, size_t xfpustate_len);
202#ifdef CPU_ENABLE_SSE
203static void set_fpregs_xmm(struct save87 *, struct savexmm *);
204static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
205#endif /* CPU_ENABLE_SSE */
206SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
207
208#ifdef DDB
209extern vm_offset_t ksym_start, ksym_end;
210#endif
211
212/* Intel ICH registers */
213#define ICH_PMBASE	0x400
214#define ICH_SMI_EN	ICH_PMBASE + 0x30
215
216int	_udatasel, _ucodesel;
217u_int	basemem;
218
219#ifdef PC98
220int	need_pre_dma_flush;	/* If 1, use wbinvd befor DMA transfer. */
221int	need_post_dma_flush;	/* If 1, use invd after DMA transfer. */
222
223static int	ispc98 = 1;
224SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
225#endif
226
227int cold = 1;
228
229#ifdef COMPAT_43
230static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
231#endif
232#ifdef COMPAT_FREEBSD4
233static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
234#endif
235
236long Maxmem = 0;
237long realmem = 0;
238
239#ifdef PAE
240FEATURE(pae, "Physical Address Extensions");
241#endif
242
243/*
244 * The number of PHYSMAP entries must be one less than the number of
245 * PHYSSEG entries because the PHYSMAP entry that spans the largest
246 * physical address that is accessible by ISA DMA is split into two
247 * PHYSSEG entries.
248 */
249#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
250
251vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
252vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
253
254/* must be 2 less so 0 0 can signal end of chunks */
255#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
256#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
257
258struct kva_md_info kmi;
259
260static struct trapframe proc0_tf;
261struct pcpu __pcpu[MAXCPU];
262
263struct mtx icu_lock;
264
265struct mem_range_softc mem_range_softc;
266
267static void
268cpu_startup(dummy)
269	void *dummy;
270{
271	uintmax_t memsize;
272	char *sysenv;
273
274#ifndef PC98
275	/*
276	 * On MacBooks, we need to disallow the legacy USB circuit to
277	 * generate an SMI# because this can cause several problems,
278	 * namely: incorrect CPU frequency detection and failure to
279	 * start the APs.
280	 * We do this by disabling a bit in the SMI_EN (SMI Control and
281	 * Enable register) of the Intel ICH LPC Interface Bridge.
282	 */
283	sysenv = getenv("smbios.system.product");
284	if (sysenv != NULL) {
285		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
286		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
287		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
288		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
289		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
290		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
291		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
292		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
293			if (bootverbose)
294				printf("Disabling LEGACY_USB_EN bit on "
295				    "Intel ICH.\n");
296			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
297		}
298		freeenv(sysenv);
299	}
300#endif /* !PC98 */
301
302	/*
303	 * Good {morning,afternoon,evening,night}.
304	 */
305	startrtclock();
306	printcpuinfo();
307	panicifcpuunsupported();
308#ifdef PERFMON
309	perfmon_init();
310#endif
311
312	/*
313	 * Display physical memory if SMBIOS reports reasonable amount.
314	 */
315	memsize = 0;
316	sysenv = getenv("smbios.memory.enabled");
317	if (sysenv != NULL) {
318		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
319		freeenv(sysenv);
320	}
321	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
322		memsize = ptoa((uintmax_t)Maxmem);
323	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
324	realmem = atop(memsize);
325
326	/*
327	 * Display any holes after the first chunk of extended memory.
328	 */
329	if (bootverbose) {
330		int indx;
331
332		printf("Physical memory chunk(s):\n");
333		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
334			vm_paddr_t size;
335
336			size = phys_avail[indx + 1] - phys_avail[indx];
337			printf(
338			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
339			    (uintmax_t)phys_avail[indx],
340			    (uintmax_t)phys_avail[indx + 1] - 1,
341			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
342		}
343	}
344
345	vm_ksubmap_init(&kmi);
346
347	printf("avail memory = %ju (%ju MB)\n",
348	    ptoa((uintmax_t)cnt.v_free_count),
349	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
350
351	/*
352	 * Set up buffers, so they can be used to read disk labels.
353	 */
354	bufinit();
355	vm_pager_bufferinit();
356#ifndef XEN
357	cpu_setregs();
358#endif
359}
360
361/*
362 * Send an interrupt to process.
363 *
364 * Stack is set up to allow sigcode stored
365 * at top to call routine, followed by call
366 * to sigreturn routine below.  After sigreturn
367 * resets the signal mask, the stack, and the
368 * frame pointer, it returns to the user
369 * specified pc, psl.
370 */
371#ifdef COMPAT_43
372static void
373osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
374{
375	struct osigframe sf, *fp;
376	struct proc *p;
377	struct thread *td;
378	struct sigacts *psp;
379	struct trapframe *regs;
380	int sig;
381	int oonstack;
382
383	td = curthread;
384	p = td->td_proc;
385	PROC_LOCK_ASSERT(p, MA_OWNED);
386	sig = ksi->ksi_signo;
387	psp = p->p_sigacts;
388	mtx_assert(&psp->ps_mtx, MA_OWNED);
389	regs = td->td_frame;
390	oonstack = sigonstack(regs->tf_esp);
391
392	/* Allocate space for the signal handler context. */
393	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
394	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
395		fp = (struct osigframe *)(td->td_sigstk.ss_sp +
396		    td->td_sigstk.ss_size - sizeof(struct osigframe));
397#if defined(COMPAT_43)
398		td->td_sigstk.ss_flags |= SS_ONSTACK;
399#endif
400	} else
401		fp = (struct osigframe *)regs->tf_esp - 1;
402
403	/* Translate the signal if appropriate. */
404	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
405		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
406
407	/* Build the argument list for the signal handler. */
408	sf.sf_signum = sig;
409	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
410	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
411	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
412		/* Signal handler installed with SA_SIGINFO. */
413		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
414		sf.sf_siginfo.si_signo = sig;
415		sf.sf_siginfo.si_code = ksi->ksi_code;
416		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
417		sf.sf_addr = 0;
418	} else {
419		/* Old FreeBSD-style arguments. */
420		sf.sf_arg2 = ksi->ksi_code;
421		sf.sf_addr = (register_t)ksi->ksi_addr;
422		sf.sf_ahu.sf_handler = catcher;
423	}
424	mtx_unlock(&psp->ps_mtx);
425	PROC_UNLOCK(p);
426
427	/* Save most if not all of trap frame. */
428	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
429	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
430	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
431	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
432	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
433	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
434	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
435	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
436	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
437	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
438	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
439	sf.sf_siginfo.si_sc.sc_gs = rgs();
440	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
441
442	/* Build the signal context to be used by osigreturn(). */
443	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
444	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
445	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
446	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
447	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
448	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
449	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
450	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
451
452	/*
453	 * If we're a vm86 process, we want to save the segment registers.
454	 * We also change eflags to be our emulated eflags, not the actual
455	 * eflags.
456	 */
457	if (regs->tf_eflags & PSL_VM) {
458		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
459		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
460		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
461
462		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
463		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
464		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
465		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
466
467		if (vm86->vm86_has_vme == 0)
468			sf.sf_siginfo.si_sc.sc_ps =
469			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
470			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
471
472		/* See sendsig() for comments. */
473		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
474	}
475
476	/*
477	 * Copy the sigframe out to the user's stack.
478	 */
479	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
480#ifdef DEBUG
481		printf("process %ld has trashed its stack\n", (long)p->p_pid);
482#endif
483		PROC_LOCK(p);
484		sigexit(td, SIGILL);
485	}
486
487	regs->tf_esp = (int)fp;
488	if (p->p_sysent->sv_sigcode_base != 0) {
489		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
490		    szosigcode;
491	} else {
492		/* a.out sysentvec does not use shared page */
493		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
494	}
495	regs->tf_eflags &= ~(PSL_T | PSL_D);
496	regs->tf_cs = _ucodesel;
497	regs->tf_ds = _udatasel;
498	regs->tf_es = _udatasel;
499	regs->tf_fs = _udatasel;
500	load_gs(_udatasel);
501	regs->tf_ss = _udatasel;
502	PROC_LOCK(p);
503	mtx_lock(&psp->ps_mtx);
504}
505#endif /* COMPAT_43 */
506
507#ifdef COMPAT_FREEBSD4
508static void
509freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
510{
511	struct sigframe4 sf, *sfp;
512	struct proc *p;
513	struct thread *td;
514	struct sigacts *psp;
515	struct trapframe *regs;
516	int sig;
517	int oonstack;
518
519	td = curthread;
520	p = td->td_proc;
521	PROC_LOCK_ASSERT(p, MA_OWNED);
522	sig = ksi->ksi_signo;
523	psp = p->p_sigacts;
524	mtx_assert(&psp->ps_mtx, MA_OWNED);
525	regs = td->td_frame;
526	oonstack = sigonstack(regs->tf_esp);
527
528	/* Save user context. */
529	bzero(&sf, sizeof(sf));
530	sf.sf_uc.uc_sigmask = *mask;
531	sf.sf_uc.uc_stack = td->td_sigstk;
532	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
533	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
534	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
535	sf.sf_uc.uc_mcontext.mc_gs = rgs();
536	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
537	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
538	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
539	bzero(sf.sf_uc.uc_mcontext.__spare__,
540	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
541	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
542
543	/* Allocate space for the signal handler context. */
544	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
545	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
546		sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
547		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
548#if defined(COMPAT_43)
549		td->td_sigstk.ss_flags |= SS_ONSTACK;
550#endif
551	} else
552		sfp = (struct sigframe4 *)regs->tf_esp - 1;
553
554	/* Translate the signal if appropriate. */
555	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
556		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
557
558	/* Build the argument list for the signal handler. */
559	sf.sf_signum = sig;
560	sf.sf_ucontext = (register_t)&sfp->sf_uc;
561	bzero(&sf.sf_si, sizeof(sf.sf_si));
562	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
563		/* Signal handler installed with SA_SIGINFO. */
564		sf.sf_siginfo = (register_t)&sfp->sf_si;
565		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
566
567		/* Fill in POSIX parts */
568		sf.sf_si.si_signo = sig;
569		sf.sf_si.si_code = ksi->ksi_code;
570		sf.sf_si.si_addr = ksi->ksi_addr;
571	} else {
572		/* Old FreeBSD-style arguments. */
573		sf.sf_siginfo = ksi->ksi_code;
574		sf.sf_addr = (register_t)ksi->ksi_addr;
575		sf.sf_ahu.sf_handler = catcher;
576	}
577	mtx_unlock(&psp->ps_mtx);
578	PROC_UNLOCK(p);
579
580	/*
581	 * If we're a vm86 process, we want to save the segment registers.
582	 * We also change eflags to be our emulated eflags, not the actual
583	 * eflags.
584	 */
585	if (regs->tf_eflags & PSL_VM) {
586		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
587		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
588
589		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
590		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
591		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
592		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
593
594		if (vm86->vm86_has_vme == 0)
595			sf.sf_uc.uc_mcontext.mc_eflags =
596			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
597			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
598
599		/*
600		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
601		 * syscalls made by the signal handler.  This just avoids
602		 * wasting time for our lazy fixup of such faults.  PSL_NT
603		 * does nothing in vm86 mode, but vm86 programs can set it
604		 * almost legitimately in probes for old cpu types.
605		 */
606		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
607	}
608
609	/*
610	 * Copy the sigframe out to the user's stack.
611	 */
612	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
613#ifdef DEBUG
614		printf("process %ld has trashed its stack\n", (long)p->p_pid);
615#endif
616		PROC_LOCK(p);
617		sigexit(td, SIGILL);
618	}
619
620	regs->tf_esp = (int)sfp;
621	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
622	    szfreebsd4_sigcode;
623	regs->tf_eflags &= ~(PSL_T | PSL_D);
624	regs->tf_cs = _ucodesel;
625	regs->tf_ds = _udatasel;
626	regs->tf_es = _udatasel;
627	regs->tf_fs = _udatasel;
628	regs->tf_ss = _udatasel;
629	PROC_LOCK(p);
630	mtx_lock(&psp->ps_mtx);
631}
632#endif	/* COMPAT_FREEBSD4 */
633
634void
635sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
636{
637	struct sigframe sf, *sfp;
638	struct proc *p;
639	struct thread *td;
640	struct sigacts *psp;
641	char *sp;
642	struct trapframe *regs;
643	struct segment_descriptor *sdp;
644	char *xfpusave;
645	size_t xfpusave_len;
646	int sig;
647	int oonstack;
648
649	td = curthread;
650	p = td->td_proc;
651	PROC_LOCK_ASSERT(p, MA_OWNED);
652	sig = ksi->ksi_signo;
653	psp = p->p_sigacts;
654	mtx_assert(&psp->ps_mtx, MA_OWNED);
655#ifdef COMPAT_FREEBSD4
656	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
657		freebsd4_sendsig(catcher, ksi, mask);
658		return;
659	}
660#endif
661#ifdef COMPAT_43
662	if (SIGISMEMBER(psp->ps_osigset, sig)) {
663		osendsig(catcher, ksi, mask);
664		return;
665	}
666#endif
667	regs = td->td_frame;
668	oonstack = sigonstack(regs->tf_esp);
669
670#ifdef CPU_ENABLE_SSE
671	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
672		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
673		xfpusave = __builtin_alloca(xfpusave_len);
674	} else {
675#else
676	{
677#endif
678		xfpusave_len = 0;
679		xfpusave = NULL;
680	}
681
682	/* Save user context. */
683	bzero(&sf, sizeof(sf));
684	sf.sf_uc.uc_sigmask = *mask;
685	sf.sf_uc.uc_stack = td->td_sigstk;
686	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
687	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
688	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
689	sf.sf_uc.uc_mcontext.mc_gs = rgs();
690	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
691	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
692	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
693	fpstate_drop(td);
694	/*
695	 * Unconditionally fill the fsbase and gsbase into the mcontext.
696	 */
697	sdp = &td->td_pcb->pcb_fsd;
698	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
699	    sdp->sd_lobase;
700	sdp = &td->td_pcb->pcb_gsd;
701	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
702	    sdp->sd_lobase;
703	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
704	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
705	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
706
707	/* Allocate space for the signal handler context. */
708	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
709	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
710		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
711#if defined(COMPAT_43)
712		td->td_sigstk.ss_flags |= SS_ONSTACK;
713#endif
714	} else
715		sp = (char *)regs->tf_esp - 128;
716	if (xfpusave != NULL) {
717		sp -= xfpusave_len;
718		sp = (char *)((unsigned int)sp & ~0x3F);
719		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
720	}
721	sp -= sizeof(struct sigframe);
722
723	/* Align to 16 bytes. */
724	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
725
726	/* Translate the signal if appropriate. */
727	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
728		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
729
730	/* Build the argument list for the signal handler. */
731	sf.sf_signum = sig;
732	sf.sf_ucontext = (register_t)&sfp->sf_uc;
733	bzero(&sf.sf_si, sizeof(sf.sf_si));
734	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
735		/* Signal handler installed with SA_SIGINFO. */
736		sf.sf_siginfo = (register_t)&sfp->sf_si;
737		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
738
739		/* Fill in POSIX parts */
740		sf.sf_si = ksi->ksi_info;
741		sf.sf_si.si_signo = sig; /* maybe a translated signal */
742	} else {
743		/* Old FreeBSD-style arguments. */
744		sf.sf_siginfo = ksi->ksi_code;
745		sf.sf_addr = (register_t)ksi->ksi_addr;
746		sf.sf_ahu.sf_handler = catcher;
747	}
748	mtx_unlock(&psp->ps_mtx);
749	PROC_UNLOCK(p);
750
751	/*
752	 * If we're a vm86 process, we want to save the segment registers.
753	 * We also change eflags to be our emulated eflags, not the actual
754	 * eflags.
755	 */
756	if (regs->tf_eflags & PSL_VM) {
757		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
758		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
759
760		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
761		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
762		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
763		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
764
765		if (vm86->vm86_has_vme == 0)
766			sf.sf_uc.uc_mcontext.mc_eflags =
767			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
768			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
769
770		/*
771		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
772		 * syscalls made by the signal handler.  This just avoids
773		 * wasting time for our lazy fixup of such faults.  PSL_NT
774		 * does nothing in vm86 mode, but vm86 programs can set it
775		 * almost legitimately in probes for old cpu types.
776		 */
777		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
778	}
779
780	/*
781	 * Copy the sigframe out to the user's stack.
782	 */
783	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
784	    (xfpusave != NULL && copyout(xfpusave,
785	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
786	    != 0)) {
787#ifdef DEBUG
788		printf("process %ld has trashed its stack\n", (long)p->p_pid);
789#endif
790		PROC_LOCK(p);
791		sigexit(td, SIGILL);
792	}
793
794	regs->tf_esp = (int)sfp;
795	regs->tf_eip = p->p_sysent->sv_sigcode_base;
796	if (regs->tf_eip == 0)
797		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
798	regs->tf_eflags &= ~(PSL_T | PSL_D);
799	regs->tf_cs = _ucodesel;
800	regs->tf_ds = _udatasel;
801	regs->tf_es = _udatasel;
802	regs->tf_fs = _udatasel;
803	regs->tf_ss = _udatasel;
804	PROC_LOCK(p);
805	mtx_lock(&psp->ps_mtx);
806}
807
808/*
809 * System call to cleanup state after a signal
810 * has been taken.  Reset signal mask and
811 * stack state from context left by sendsig (above).
812 * Return to previous pc and psl as specified by
813 * context left by sendsig. Check carefully to
814 * make sure that the user has not modified the
815 * state to gain improper privileges.
816 *
817 * MPSAFE
818 */
819#ifdef COMPAT_43
820int
821osigreturn(td, uap)
822	struct thread *td;
823	struct osigreturn_args /* {
824		struct osigcontext *sigcntxp;
825	} */ *uap;
826{
827	struct osigcontext sc;
828	struct trapframe *regs;
829	struct osigcontext *scp;
830	int eflags, error;
831	ksiginfo_t ksi;
832
833	regs = td->td_frame;
834	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
835	if (error != 0)
836		return (error);
837	scp = &sc;
838	eflags = scp->sc_ps;
839	if (eflags & PSL_VM) {
840		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
841		struct vm86_kernel *vm86;
842
843		/*
844		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
845		 * set up the vm86 area, and we can't enter vm86 mode.
846		 */
847		if (td->td_pcb->pcb_ext == 0)
848			return (EINVAL);
849		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
850		if (vm86->vm86_inited == 0)
851			return (EINVAL);
852
853		/* Go back to user mode if both flags are set. */
854		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
855			ksiginfo_init_trap(&ksi);
856			ksi.ksi_signo = SIGBUS;
857			ksi.ksi_code = BUS_OBJERR;
858			ksi.ksi_addr = (void *)regs->tf_eip;
859			trapsignal(td, &ksi);
860		}
861
862		if (vm86->vm86_has_vme) {
863			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
864			    (eflags & VME_USERCHANGE) | PSL_VM;
865		} else {
866			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
867			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
868			    (eflags & VM_USERCHANGE) | PSL_VM;
869		}
870		tf->tf_vm86_ds = scp->sc_ds;
871		tf->tf_vm86_es = scp->sc_es;
872		tf->tf_vm86_fs = scp->sc_fs;
873		tf->tf_vm86_gs = scp->sc_gs;
874		tf->tf_ds = _udatasel;
875		tf->tf_es = _udatasel;
876		tf->tf_fs = _udatasel;
877	} else {
878		/*
879		 * Don't allow users to change privileged or reserved flags.
880		 */
881		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
882	    		return (EINVAL);
883		}
884
885		/*
886		 * Don't allow users to load a valid privileged %cs.  Let the
887		 * hardware check for invalid selectors, excess privilege in
888		 * other selectors, invalid %eip's and invalid %esp's.
889		 */
890		if (!CS_SECURE(scp->sc_cs)) {
891			ksiginfo_init_trap(&ksi);
892			ksi.ksi_signo = SIGBUS;
893			ksi.ksi_code = BUS_OBJERR;
894			ksi.ksi_trapno = T_PROTFLT;
895			ksi.ksi_addr = (void *)regs->tf_eip;
896			trapsignal(td, &ksi);
897			return (EINVAL);
898		}
899		regs->tf_ds = scp->sc_ds;
900		regs->tf_es = scp->sc_es;
901		regs->tf_fs = scp->sc_fs;
902	}
903
904	/* Restore remaining registers. */
905	regs->tf_eax = scp->sc_eax;
906	regs->tf_ebx = scp->sc_ebx;
907	regs->tf_ecx = scp->sc_ecx;
908	regs->tf_edx = scp->sc_edx;
909	regs->tf_esi = scp->sc_esi;
910	regs->tf_edi = scp->sc_edi;
911	regs->tf_cs = scp->sc_cs;
912	regs->tf_ss = scp->sc_ss;
913	regs->tf_isp = scp->sc_isp;
914	regs->tf_ebp = scp->sc_fp;
915	regs->tf_esp = scp->sc_sp;
916	regs->tf_eip = scp->sc_pc;
917	regs->tf_eflags = eflags;
918
919#if defined(COMPAT_43)
920	if (scp->sc_onstack & 1)
921		td->td_sigstk.ss_flags |= SS_ONSTACK;
922	else
923		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
924#endif
925	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
926	    SIGPROCMASK_OLD);
927	return (EJUSTRETURN);
928}
929#endif /* COMPAT_43 */
930
931#ifdef COMPAT_FREEBSD4
932/*
933 * MPSAFE
934 */
935int
936freebsd4_sigreturn(td, uap)
937	struct thread *td;
938	struct freebsd4_sigreturn_args /* {
939		const ucontext4 *sigcntxp;
940	} */ *uap;
941{
942	struct ucontext4 uc;
943	struct trapframe *regs;
944	struct ucontext4 *ucp;
945	int cs, eflags, error;
946	ksiginfo_t ksi;
947
948	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
949	if (error != 0)
950		return (error);
951	ucp = &uc;
952	regs = td->td_frame;
953	eflags = ucp->uc_mcontext.mc_eflags;
954	if (eflags & PSL_VM) {
955		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
956		struct vm86_kernel *vm86;
957
958		/*
959		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
960		 * set up the vm86 area, and we can't enter vm86 mode.
961		 */
962		if (td->td_pcb->pcb_ext == 0)
963			return (EINVAL);
964		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
965		if (vm86->vm86_inited == 0)
966			return (EINVAL);
967
968		/* Go back to user mode if both flags are set. */
969		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
970			ksiginfo_init_trap(&ksi);
971			ksi.ksi_signo = SIGBUS;
972			ksi.ksi_code = BUS_OBJERR;
973			ksi.ksi_addr = (void *)regs->tf_eip;
974			trapsignal(td, &ksi);
975		}
976		if (vm86->vm86_has_vme) {
977			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
978			    (eflags & VME_USERCHANGE) | PSL_VM;
979		} else {
980			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
981			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
982			    (eflags & VM_USERCHANGE) | PSL_VM;
983		}
984		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
985		tf->tf_eflags = eflags;
986		tf->tf_vm86_ds = tf->tf_ds;
987		tf->tf_vm86_es = tf->tf_es;
988		tf->tf_vm86_fs = tf->tf_fs;
989		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
990		tf->tf_ds = _udatasel;
991		tf->tf_es = _udatasel;
992		tf->tf_fs = _udatasel;
993	} else {
994		/*
995		 * Don't allow users to change privileged or reserved flags.
996		 */
997		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
998			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
999			    td->td_proc->p_pid, td->td_name, eflags);
1000	    		return (EINVAL);
1001		}
1002
1003		/*
1004		 * Don't allow users to load a valid privileged %cs.  Let the
1005		 * hardware check for invalid selectors, excess privilege in
1006		 * other selectors, invalid %eip's and invalid %esp's.
1007		 */
1008		cs = ucp->uc_mcontext.mc_cs;
1009		if (!CS_SECURE(cs)) {
1010			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
1011			    td->td_proc->p_pid, td->td_name, cs);
1012			ksiginfo_init_trap(&ksi);
1013			ksi.ksi_signo = SIGBUS;
1014			ksi.ksi_code = BUS_OBJERR;
1015			ksi.ksi_trapno = T_PROTFLT;
1016			ksi.ksi_addr = (void *)regs->tf_eip;
1017			trapsignal(td, &ksi);
1018			return (EINVAL);
1019		}
1020
1021		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1022	}
1023
1024#if defined(COMPAT_43)
1025	if (ucp->uc_mcontext.mc_onstack & 1)
1026		td->td_sigstk.ss_flags |= SS_ONSTACK;
1027	else
1028		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1029#endif
1030	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1031	return (EJUSTRETURN);
1032}
1033#endif	/* COMPAT_FREEBSD4 */
1034
1035/*
1036 * MPSAFE
1037 */
1038int
1039sys_sigreturn(td, uap)
1040	struct thread *td;
1041	struct sigreturn_args /* {
1042		const struct __ucontext *sigcntxp;
1043	} */ *uap;
1044{
1045	ucontext_t uc;
1046	struct proc *p;
1047	struct trapframe *regs;
1048	ucontext_t *ucp;
1049	char *xfpustate;
1050	size_t xfpustate_len;
1051	int cs, eflags, error, ret;
1052	ksiginfo_t ksi;
1053
1054	p = td->td_proc;
1055
1056	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1057	if (error != 0)
1058		return (error);
1059	ucp = &uc;
1060	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
1061		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
1062		    td->td_name, ucp->uc_mcontext.mc_flags);
1063		return (EINVAL);
1064	}
1065	regs = td->td_frame;
1066	eflags = ucp->uc_mcontext.mc_eflags;
1067	if (eflags & PSL_VM) {
1068		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1069		struct vm86_kernel *vm86;
1070
1071		/*
1072		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1073		 * set up the vm86 area, and we can't enter vm86 mode.
1074		 */
1075		if (td->td_pcb->pcb_ext == 0)
1076			return (EINVAL);
1077		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1078		if (vm86->vm86_inited == 0)
1079			return (EINVAL);
1080
1081		/* Go back to user mode if both flags are set. */
1082		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1083			ksiginfo_init_trap(&ksi);
1084			ksi.ksi_signo = SIGBUS;
1085			ksi.ksi_code = BUS_OBJERR;
1086			ksi.ksi_addr = (void *)regs->tf_eip;
1087			trapsignal(td, &ksi);
1088		}
1089
1090		if (vm86->vm86_has_vme) {
1091			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1092			    (eflags & VME_USERCHANGE) | PSL_VM;
1093		} else {
1094			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1095			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1096			    (eflags & VM_USERCHANGE) | PSL_VM;
1097		}
1098		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1099		tf->tf_eflags = eflags;
1100		tf->tf_vm86_ds = tf->tf_ds;
1101		tf->tf_vm86_es = tf->tf_es;
1102		tf->tf_vm86_fs = tf->tf_fs;
1103		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1104		tf->tf_ds = _udatasel;
1105		tf->tf_es = _udatasel;
1106		tf->tf_fs = _udatasel;
1107	} else {
1108		/*
1109		 * Don't allow users to change privileged or reserved flags.
1110		 */
1111		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1112			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1113			    td->td_proc->p_pid, td->td_name, eflags);
1114	    		return (EINVAL);
1115		}
1116
1117		/*
1118		 * Don't allow users to load a valid privileged %cs.  Let the
1119		 * hardware check for invalid selectors, excess privilege in
1120		 * other selectors, invalid %eip's and invalid %esp's.
1121		 */
1122		cs = ucp->uc_mcontext.mc_cs;
1123		if (!CS_SECURE(cs)) {
1124			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1125			    td->td_proc->p_pid, td->td_name, cs);
1126			ksiginfo_init_trap(&ksi);
1127			ksi.ksi_signo = SIGBUS;
1128			ksi.ksi_code = BUS_OBJERR;
1129			ksi.ksi_trapno = T_PROTFLT;
1130			ksi.ksi_addr = (void *)regs->tf_eip;
1131			trapsignal(td, &ksi);
1132			return (EINVAL);
1133		}
1134
1135		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1136			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1137			if (xfpustate_len > cpu_max_ext_state_size -
1138			    sizeof(union savefpu)) {
1139				uprintf(
1140			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1141				    p->p_pid, td->td_name, xfpustate_len);
1142				return (EINVAL);
1143			}
1144			xfpustate = __builtin_alloca(xfpustate_len);
1145			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1146			    xfpustate, xfpustate_len);
1147			if (error != 0) {
1148				uprintf(
1149	"pid %d (%s): sigreturn copying xfpustate failed\n",
1150				    p->p_pid, td->td_name);
1151				return (error);
1152			}
1153		} else {
1154			xfpustate = NULL;
1155			xfpustate_len = 0;
1156		}
1157		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1158		    xfpustate_len);
1159		if (ret != 0)
1160			return (ret);
1161		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1162	}
1163
1164#if defined(COMPAT_43)
1165	if (ucp->uc_mcontext.mc_onstack & 1)
1166		td->td_sigstk.ss_flags |= SS_ONSTACK;
1167	else
1168		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1169#endif
1170
1171	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1172	return (EJUSTRETURN);
1173}
1174
1175/*
1176 * Machine dependent boot() routine
1177 *
1178 * I haven't seen anything to put here yet
1179 * Possibly some stuff might be grafted back here from boot()
1180 */
1181void
1182cpu_boot(int howto)
1183{
1184}
1185
1186/*
1187 * Flush the D-cache for non-DMA I/O so that the I-cache can
1188 * be made coherent later.
1189 */
1190void
1191cpu_flush_dcache(void *ptr, size_t len)
1192{
1193	/* Not applicable */
1194}
1195
1196/* Get current clock frequency for the given cpu id. */
1197int
1198cpu_est_clockrate(int cpu_id, uint64_t *rate)
1199{
1200	uint64_t tsc1, tsc2;
1201	uint64_t acnt, mcnt, perf;
1202	register_t reg;
1203
1204	if (pcpu_find(cpu_id) == NULL || rate == NULL)
1205		return (EINVAL);
1206	if ((cpu_feature & CPUID_TSC) == 0)
1207		return (EOPNOTSUPP);
1208
1209	/*
1210	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
1211	 * DELAY(9) based logic fails.
1212	 */
1213	if (tsc_is_invariant && !tsc_perf_stat)
1214		return (EOPNOTSUPP);
1215
1216#ifdef SMP
1217	if (smp_cpus > 1) {
1218		/* Schedule ourselves on the indicated cpu. */
1219		thread_lock(curthread);
1220		sched_bind(curthread, cpu_id);
1221		thread_unlock(curthread);
1222	}
1223#endif
1224
1225	/* Calibrate by measuring a short delay. */
1226	reg = intr_disable();
1227	if (tsc_is_invariant) {
1228		wrmsr(MSR_MPERF, 0);
1229		wrmsr(MSR_APERF, 0);
1230		tsc1 = rdtsc();
1231		DELAY(1000);
1232		mcnt = rdmsr(MSR_MPERF);
1233		acnt = rdmsr(MSR_APERF);
1234		tsc2 = rdtsc();
1235		intr_restore(reg);
1236		perf = 1000 * acnt / mcnt;
1237		*rate = (tsc2 - tsc1) * perf;
1238	} else {
1239		tsc1 = rdtsc();
1240		DELAY(1000);
1241		tsc2 = rdtsc();
1242		intr_restore(reg);
1243		*rate = (tsc2 - tsc1) * 1000;
1244	}
1245
1246#ifdef SMP
1247	if (smp_cpus > 1) {
1248		thread_lock(curthread);
1249		sched_unbind(curthread);
1250		thread_unlock(curthread);
1251	}
1252#endif
1253
1254	return (0);
1255}
1256
1257#ifdef XEN
1258
1259static void
1260idle_block(void)
1261{
1262
1263	HYPERVISOR_sched_op(SCHEDOP_block, 0);
1264}
1265
1266void
1267cpu_halt(void)
1268{
1269	HYPERVISOR_shutdown(SHUTDOWN_poweroff);
1270}
1271
1272int scheduler_running;
1273
1274static void
1275cpu_idle_hlt(sbintime_t sbt)
1276{
1277
1278	scheduler_running = 1;
1279	enable_intr();
1280	idle_block();
1281}
1282
1283#else
1284/*
1285 * Shutdown the CPU as much as possible
1286 */
1287void
1288cpu_halt(void)
1289{
1290	for (;;)
1291		halt();
1292}
1293
1294#endif
1295
1296void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
1297static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
1298static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
1299TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
1300SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
1301    0, "Use MONITOR/MWAIT for short idle");
1302
1303#define	STATE_RUNNING	0x0
1304#define	STATE_MWAIT	0x1
1305#define	STATE_SLEEPING	0x2
1306
1307#ifndef PC98
1308static void
1309cpu_idle_acpi(sbintime_t sbt)
1310{
1311	int *state;
1312
1313	state = (int *)PCPU_PTR(monitorbuf);
1314	*state = STATE_SLEEPING;
1315
1316	/* See comments in cpu_idle_hlt(). */
1317	disable_intr();
1318	if (sched_runnable())
1319		enable_intr();
1320	else if (cpu_idle_hook)
1321		cpu_idle_hook(sbt);
1322	else
1323		__asm __volatile("sti; hlt");
1324	*state = STATE_RUNNING;
1325}
1326#endif /* !PC98 */
1327
1328#ifndef XEN
1329static void
1330cpu_idle_hlt(sbintime_t sbt)
1331{
1332	int *state;
1333
1334	state = (int *)PCPU_PTR(monitorbuf);
1335	*state = STATE_SLEEPING;
1336
1337	/*
1338	 * Since we may be in a critical section from cpu_idle(), if
1339	 * an interrupt fires during that critical section we may have
1340	 * a pending preemption.  If the CPU halts, then that thread
1341	 * may not execute until a later interrupt awakens the CPU.
1342	 * To handle this race, check for a runnable thread after
1343	 * disabling interrupts and immediately return if one is
1344	 * found.  Also, we must absolutely guarentee that hlt is
1345	 * the next instruction after sti.  This ensures that any
1346	 * interrupt that fires after the call to disable_intr() will
1347	 * immediately awaken the CPU from hlt.  Finally, please note
1348	 * that on x86 this works fine because of interrupts enabled only
1349	 * after the instruction following sti takes place, while IF is set
1350	 * to 1 immediately, allowing hlt instruction to acknowledge the
1351	 * interrupt.
1352	 */
1353	disable_intr();
1354	if (sched_runnable())
1355		enable_intr();
1356	else
1357		__asm __volatile("sti; hlt");
1358	*state = STATE_RUNNING;
1359}
1360#endif
1361
1362static void
1363cpu_idle_mwait(sbintime_t sbt)
1364{
1365	int *state;
1366
1367	state = (int *)PCPU_PTR(monitorbuf);
1368	*state = STATE_MWAIT;
1369
1370	/* See comments in cpu_idle_hlt(). */
1371	disable_intr();
1372	if (sched_runnable()) {
1373		enable_intr();
1374		*state = STATE_RUNNING;
1375		return;
1376	}
1377	cpu_monitor(state, 0, 0);
1378	if (*state == STATE_MWAIT)
1379		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
1380	else
1381		enable_intr();
1382	*state = STATE_RUNNING;
1383}
1384
1385static void
1386cpu_idle_spin(sbintime_t sbt)
1387{
1388	int *state;
1389	int i;
1390
1391	state = (int *)PCPU_PTR(monitorbuf);
1392	*state = STATE_RUNNING;
1393
1394	/*
1395	 * The sched_runnable() call is racy but as long as there is
1396	 * a loop missing it one time will have just a little impact if any
1397	 * (and it is much better than missing the check at all).
1398	 */
1399	for (i = 0; i < 1000; i++) {
1400		if (sched_runnable())
1401			return;
1402		cpu_spinwait();
1403	}
1404}
1405
1406/*
1407 * C1E renders the local APIC timer dead, so we disable it by
1408 * reading the Interrupt Pending Message register and clearing
1409 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
1410 *
1411 * Reference:
1412 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
1413 *   #32559 revision 3.00+
1414 */
1415#define	MSR_AMDK8_IPM		0xc0010055
1416#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
1417#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
1418#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
1419
1420static void
1421cpu_probe_amdc1e(void)
1422{
1423
1424	/*
1425	 * Detect the presence of C1E capability mostly on latest
1426	 * dual-cores (or future) k8 family.
1427	 */
1428	if (cpu_vendor_id == CPU_VENDOR_AMD &&
1429	    (cpu_id & 0x00000f00) == 0x00000f00 &&
1430	    (cpu_id & 0x0fff0000) >=  0x00040000) {
1431		cpu_ident_amdc1e = 1;
1432	}
1433}
1434
1435#if defined(PC98) || defined(XEN)
1436void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
1437#else
1438void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
1439#endif
1440
1441void
1442cpu_idle(int busy)
1443{
1444#ifndef XEN
1445	uint64_t msr;
1446#endif
1447	sbintime_t sbt = -1;
1448
1449	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
1450	    busy, curcpu);
1451#if defined(MP_WATCHDOG) && !defined(XEN)
1452	ap_watchdog(PCPU_GET(cpuid));
1453#endif
1454#ifndef XEN
1455	/* If we are busy - try to use fast methods. */
1456	if (busy) {
1457		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
1458			cpu_idle_mwait(busy);
1459			goto out;
1460		}
1461	}
1462#endif
1463
1464	/* If we have time - switch timers into idle mode. */
1465	if (!busy) {
1466		critical_enter();
1467		sbt = cpu_idleclock();
1468	}
1469
1470#ifndef XEN
1471	/* Apply AMD APIC timer C1E workaround. */
1472	if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
1473		msr = rdmsr(MSR_AMDK8_IPM);
1474		if (msr & AMDK8_CMPHALT)
1475			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
1476	}
1477#endif
1478
1479	/* Call main idle method. */
1480	cpu_idle_fn(sbt);
1481
1482	/* Switch timers mack into active mode. */
1483	if (!busy) {
1484		cpu_activeclock();
1485		critical_exit();
1486	}
1487#ifndef XEN
1488out:
1489#endif
1490	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
1491	    busy, curcpu);
1492}
1493
1494int
1495cpu_idle_wakeup(int cpu)
1496{
1497	struct pcpu *pcpu;
1498	int *state;
1499
1500	pcpu = pcpu_find(cpu);
1501	state = (int *)pcpu->pc_monitorbuf;
1502	/*
1503	 * This doesn't need to be atomic since missing the race will
1504	 * simply result in unnecessary IPIs.
1505	 */
1506	if (*state == STATE_SLEEPING)
1507		return (0);
1508	if (*state == STATE_MWAIT)
1509		*state = STATE_RUNNING;
1510	return (1);
1511}
1512
1513/*
1514 * Ordered by speed/power consumption.
1515 */
1516struct {
1517	void	*id_fn;
1518	char	*id_name;
1519} idle_tbl[] = {
1520	{ cpu_idle_spin, "spin" },
1521	{ cpu_idle_mwait, "mwait" },
1522	{ cpu_idle_hlt, "hlt" },
1523#ifndef PC98
1524	{ cpu_idle_acpi, "acpi" },
1525#endif
1526	{ NULL, NULL }
1527};
1528
1529static int
1530idle_sysctl_available(SYSCTL_HANDLER_ARGS)
1531{
1532	char *avail, *p;
1533	int error;
1534	int i;
1535
1536	avail = malloc(256, M_TEMP, M_WAITOK);
1537	p = avail;
1538	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1539		if (strstr(idle_tbl[i].id_name, "mwait") &&
1540		    (cpu_feature2 & CPUID2_MON) == 0)
1541			continue;
1542#ifndef PC98
1543		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1544		    cpu_idle_hook == NULL)
1545			continue;
1546#endif
1547		p += sprintf(p, "%s%s", p != avail ? ", " : "",
1548		    idle_tbl[i].id_name);
1549	}
1550	error = sysctl_handle_string(oidp, avail, 0, req);
1551	free(avail, M_TEMP);
1552	return (error);
1553}
1554
1555SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
1556    0, 0, idle_sysctl_available, "A", "list of available idle functions");
1557
1558static int
1559idle_sysctl(SYSCTL_HANDLER_ARGS)
1560{
1561	char buf[16];
1562	int error;
1563	char *p;
1564	int i;
1565
1566	p = "unknown";
1567	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1568		if (idle_tbl[i].id_fn == cpu_idle_fn) {
1569			p = idle_tbl[i].id_name;
1570			break;
1571		}
1572	}
1573	strncpy(buf, p, sizeof(buf));
1574	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
1575	if (error != 0 || req->newptr == NULL)
1576		return (error);
1577	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1578		if (strstr(idle_tbl[i].id_name, "mwait") &&
1579		    (cpu_feature2 & CPUID2_MON) == 0)
1580			continue;
1581#ifndef PC98
1582		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1583		    cpu_idle_hook == NULL)
1584			continue;
1585#endif
1586		if (strcmp(idle_tbl[i].id_name, buf))
1587			continue;
1588		cpu_idle_fn = idle_tbl[i].id_fn;
1589		return (0);
1590	}
1591	return (EINVAL);
1592}
1593
1594SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
1595    idle_sysctl, "A", "currently selected idle function");
1596
1597/*
1598 * Reset registers to default values on exec.
1599 */
1600void
1601exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1602{
1603	struct trapframe *regs = td->td_frame;
1604	struct pcb *pcb = td->td_pcb;
1605
1606	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1607	pcb->pcb_gs = _udatasel;
1608	load_gs(_udatasel);
1609
1610	mtx_lock_spin(&dt_lock);
1611	if (td->td_proc->p_md.md_ldt)
1612		user_ldt_free(td);
1613	else
1614		mtx_unlock_spin(&dt_lock);
1615
1616	bzero((char *)regs, sizeof(struct trapframe));
1617	regs->tf_eip = imgp->entry_addr;
1618	regs->tf_esp = stack;
1619	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1620	regs->tf_ss = _udatasel;
1621	regs->tf_ds = _udatasel;
1622	regs->tf_es = _udatasel;
1623	regs->tf_fs = _udatasel;
1624	regs->tf_cs = _ucodesel;
1625
1626	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1627	regs->tf_ebx = imgp->ps_strings;
1628
1629        /*
1630         * Reset the hardware debug registers if they were in use.
1631         * They won't have any meaning for the newly exec'd process.
1632         */
1633        if (pcb->pcb_flags & PCB_DBREGS) {
1634                pcb->pcb_dr0 = 0;
1635                pcb->pcb_dr1 = 0;
1636                pcb->pcb_dr2 = 0;
1637                pcb->pcb_dr3 = 0;
1638                pcb->pcb_dr6 = 0;
1639                pcb->pcb_dr7 = 0;
1640                if (pcb == curpcb) {
1641		        /*
1642			 * Clear the debug registers on the running
1643			 * CPU, otherwise they will end up affecting
1644			 * the next process we switch to.
1645			 */
1646		        reset_dbregs();
1647                }
1648		pcb->pcb_flags &= ~PCB_DBREGS;
1649        }
1650
1651	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1652
1653	/*
1654	 * Drop the FP state if we hold it, so that the process gets a
1655	 * clean FP state if it uses the FPU again.
1656	 */
1657	fpstate_drop(td);
1658
1659	/*
1660	 * XXX - Linux emulator
1661	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1662	 * on it.
1663	 */
1664	td->td_retval[1] = 0;
1665}
1666
1667void
1668cpu_setregs(void)
1669{
1670	unsigned int cr0;
1671
1672	cr0 = rcr0();
1673
1674	/*
1675	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1676	 *
1677	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1678	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1679	 * bit to control the trap, because setting the CR0_EM bit does
1680	 * not cause WAIT instructions to trap.  It's important to trap
1681	 * WAIT instructions - otherwise the "wait" variants of no-wait
1682	 * control instructions would degenerate to the "no-wait" variants
1683	 * after FP context switches but work correctly otherwise.  It's
1684	 * particularly important to trap WAITs when there is no NPX -
1685	 * otherwise the "wait" variants would always degenerate.
1686	 *
1687	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1688	 * Setting it should fail or do nothing on lesser processors.
1689	 */
1690	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1691	load_cr0(cr0);
1692	load_gs(_udatasel);
1693}
1694
1695u_long bootdev;		/* not a struct cdev *- encoding is different */
1696SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1697	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1698
1699static char bootmethod[16] = "BIOS";
1700SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1701    "System firmware boot method");
1702
1703/*
1704 * Initialize 386 and configure to run kernel
1705 */
1706
1707/*
1708 * Initialize segments & interrupt table
1709 */
1710
1711int _default_ldt;
1712
1713#ifdef XEN
1714union descriptor *gdt;
1715union descriptor *ldt;
1716#else
1717union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1718union descriptor ldt[NLDT];		/* local descriptor table */
1719#endif
1720static struct gate_descriptor idt0[NIDT];
1721struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1722struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1723struct mtx dt_lock;			/* lock for GDT and LDT */
1724
1725static struct i386tss dblfault_tss;
1726static char dblfault_stack[PAGE_SIZE];
1727
1728extern  vm_offset_t	proc0kstack;
1729
1730
1731/*
1732 * software prototypes -- in more palatable form.
1733 *
1734 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1735 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1736 */
1737struct soft_segment_descriptor gdt_segs[] = {
1738/* GNULL_SEL	0 Null Descriptor */
1739{	.ssd_base = 0x0,
1740	.ssd_limit = 0x0,
1741	.ssd_type = 0,
1742	.ssd_dpl = SEL_KPL,
1743	.ssd_p = 0,
1744	.ssd_xx = 0, .ssd_xx1 = 0,
1745	.ssd_def32 = 0,
1746	.ssd_gran = 0		},
1747/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1748{	.ssd_base = 0x0,
1749	.ssd_limit = 0xfffff,
1750	.ssd_type = SDT_MEMRWA,
1751	.ssd_dpl = SEL_KPL,
1752	.ssd_p = 1,
1753	.ssd_xx = 0, .ssd_xx1 = 0,
1754	.ssd_def32 = 1,
1755	.ssd_gran = 1		},
1756/* GUFS_SEL	2 %fs Descriptor for user */
1757{	.ssd_base = 0x0,
1758	.ssd_limit = 0xfffff,
1759	.ssd_type = SDT_MEMRWA,
1760	.ssd_dpl = SEL_UPL,
1761	.ssd_p = 1,
1762	.ssd_xx = 0, .ssd_xx1 = 0,
1763	.ssd_def32 = 1,
1764	.ssd_gran = 1		},
1765/* GUGS_SEL	3 %gs Descriptor for user */
1766{	.ssd_base = 0x0,
1767	.ssd_limit = 0xfffff,
1768	.ssd_type = SDT_MEMRWA,
1769	.ssd_dpl = SEL_UPL,
1770	.ssd_p = 1,
1771	.ssd_xx = 0, .ssd_xx1 = 0,
1772	.ssd_def32 = 1,
1773	.ssd_gran = 1		},
1774/* GCODE_SEL	4 Code Descriptor for kernel */
1775{	.ssd_base = 0x0,
1776	.ssd_limit = 0xfffff,
1777	.ssd_type = SDT_MEMERA,
1778	.ssd_dpl = SEL_KPL,
1779	.ssd_p = 1,
1780	.ssd_xx = 0, .ssd_xx1 = 0,
1781	.ssd_def32 = 1,
1782	.ssd_gran = 1		},
1783/* GDATA_SEL	5 Data Descriptor for kernel */
1784{	.ssd_base = 0x0,
1785	.ssd_limit = 0xfffff,
1786	.ssd_type = SDT_MEMRWA,
1787	.ssd_dpl = SEL_KPL,
1788	.ssd_p = 1,
1789	.ssd_xx = 0, .ssd_xx1 = 0,
1790	.ssd_def32 = 1,
1791	.ssd_gran = 1		},
1792/* GUCODE_SEL	6 Code Descriptor for user */
1793{	.ssd_base = 0x0,
1794	.ssd_limit = 0xfffff,
1795	.ssd_type = SDT_MEMERA,
1796	.ssd_dpl = SEL_UPL,
1797	.ssd_p = 1,
1798	.ssd_xx = 0, .ssd_xx1 = 0,
1799	.ssd_def32 = 1,
1800	.ssd_gran = 1		},
1801/* GUDATA_SEL	7 Data Descriptor for user */
1802{	.ssd_base = 0x0,
1803	.ssd_limit = 0xfffff,
1804	.ssd_type = SDT_MEMRWA,
1805	.ssd_dpl = SEL_UPL,
1806	.ssd_p = 1,
1807	.ssd_xx = 0, .ssd_xx1 = 0,
1808	.ssd_def32 = 1,
1809	.ssd_gran = 1		},
1810/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1811{	.ssd_base = 0x400,
1812	.ssd_limit = 0xfffff,
1813	.ssd_type = SDT_MEMRWA,
1814	.ssd_dpl = SEL_KPL,
1815	.ssd_p = 1,
1816	.ssd_xx = 0, .ssd_xx1 = 0,
1817	.ssd_def32 = 1,
1818	.ssd_gran = 1		},
1819#ifndef XEN
1820/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1821{
1822	.ssd_base = 0x0,
1823	.ssd_limit = sizeof(struct i386tss)-1,
1824	.ssd_type = SDT_SYS386TSS,
1825	.ssd_dpl = 0,
1826	.ssd_p = 1,
1827	.ssd_xx = 0, .ssd_xx1 = 0,
1828	.ssd_def32 = 0,
1829	.ssd_gran = 0		},
1830/* GLDT_SEL	10 LDT Descriptor */
1831{	.ssd_base = (int) ldt,
1832	.ssd_limit = sizeof(ldt)-1,
1833	.ssd_type = SDT_SYSLDT,
1834	.ssd_dpl = SEL_UPL,
1835	.ssd_p = 1,
1836	.ssd_xx = 0, .ssd_xx1 = 0,
1837	.ssd_def32 = 0,
1838	.ssd_gran = 0		},
1839/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1840{	.ssd_base = (int) ldt,
1841	.ssd_limit = (512 * sizeof(union descriptor)-1),
1842	.ssd_type = SDT_SYSLDT,
1843	.ssd_dpl = 0,
1844	.ssd_p = 1,
1845	.ssd_xx = 0, .ssd_xx1 = 0,
1846	.ssd_def32 = 0,
1847	.ssd_gran = 0		},
1848/* GPANIC_SEL	12 Panic Tss Descriptor */
1849{	.ssd_base = (int) &dblfault_tss,
1850	.ssd_limit = sizeof(struct i386tss)-1,
1851	.ssd_type = SDT_SYS386TSS,
1852	.ssd_dpl = 0,
1853	.ssd_p = 1,
1854	.ssd_xx = 0, .ssd_xx1 = 0,
1855	.ssd_def32 = 0,
1856	.ssd_gran = 0		},
1857/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1858{	.ssd_base = 0,
1859	.ssd_limit = 0xfffff,
1860	.ssd_type = SDT_MEMERA,
1861	.ssd_dpl = 0,
1862	.ssd_p = 1,
1863	.ssd_xx = 0, .ssd_xx1 = 0,
1864	.ssd_def32 = 0,
1865	.ssd_gran = 1		},
1866/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1867{	.ssd_base = 0,
1868	.ssd_limit = 0xfffff,
1869	.ssd_type = SDT_MEMERA,
1870	.ssd_dpl = 0,
1871	.ssd_p = 1,
1872	.ssd_xx = 0, .ssd_xx1 = 0,
1873	.ssd_def32 = 0,
1874	.ssd_gran = 1		},
1875/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1876{	.ssd_base = 0,
1877	.ssd_limit = 0xfffff,
1878	.ssd_type = SDT_MEMRWA,
1879	.ssd_dpl = 0,
1880	.ssd_p = 1,
1881	.ssd_xx = 0, .ssd_xx1 = 0,
1882	.ssd_def32 = 1,
1883	.ssd_gran = 1		},
1884/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1885{	.ssd_base = 0,
1886	.ssd_limit = 0xfffff,
1887	.ssd_type = SDT_MEMRWA,
1888	.ssd_dpl = 0,
1889	.ssd_p = 1,
1890	.ssd_xx = 0, .ssd_xx1 = 0,
1891	.ssd_def32 = 0,
1892	.ssd_gran = 1		},
1893/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1894{	.ssd_base = 0,
1895	.ssd_limit = 0xfffff,
1896	.ssd_type = SDT_MEMRWA,
1897	.ssd_dpl = 0,
1898	.ssd_p = 1,
1899	.ssd_xx = 0, .ssd_xx1 = 0,
1900	.ssd_def32 = 0,
1901	.ssd_gran = 1		},
1902/* GNDIS_SEL	18 NDIS Descriptor */
1903{	.ssd_base = 0x0,
1904	.ssd_limit = 0x0,
1905	.ssd_type = 0,
1906	.ssd_dpl = 0,
1907	.ssd_p = 0,
1908	.ssd_xx = 0, .ssd_xx1 = 0,
1909	.ssd_def32 = 0,
1910	.ssd_gran = 0		},
1911#endif /* !XEN */
1912};
1913
1914static struct soft_segment_descriptor ldt_segs[] = {
1915	/* Null Descriptor - overwritten by call gate */
1916{	.ssd_base = 0x0,
1917	.ssd_limit = 0x0,
1918	.ssd_type = 0,
1919	.ssd_dpl = 0,
1920	.ssd_p = 0,
1921	.ssd_xx = 0, .ssd_xx1 = 0,
1922	.ssd_def32 = 0,
1923	.ssd_gran = 0		},
1924	/* Null Descriptor - overwritten by call gate */
1925{	.ssd_base = 0x0,
1926	.ssd_limit = 0x0,
1927	.ssd_type = 0,
1928	.ssd_dpl = 0,
1929	.ssd_p = 0,
1930	.ssd_xx = 0, .ssd_xx1 = 0,
1931	.ssd_def32 = 0,
1932	.ssd_gran = 0		},
1933	/* Null Descriptor - overwritten by call gate */
1934{	.ssd_base = 0x0,
1935	.ssd_limit = 0x0,
1936	.ssd_type = 0,
1937	.ssd_dpl = 0,
1938	.ssd_p = 0,
1939	.ssd_xx = 0, .ssd_xx1 = 0,
1940	.ssd_def32 = 0,
1941	.ssd_gran = 0		},
1942	/* Code Descriptor for user */
1943{	.ssd_base = 0x0,
1944	.ssd_limit = 0xfffff,
1945	.ssd_type = SDT_MEMERA,
1946	.ssd_dpl = SEL_UPL,
1947	.ssd_p = 1,
1948	.ssd_xx = 0, .ssd_xx1 = 0,
1949	.ssd_def32 = 1,
1950	.ssd_gran = 1		},
1951	/* Null Descriptor - overwritten by call gate */
1952{	.ssd_base = 0x0,
1953	.ssd_limit = 0x0,
1954	.ssd_type = 0,
1955	.ssd_dpl = 0,
1956	.ssd_p = 0,
1957	.ssd_xx = 0, .ssd_xx1 = 0,
1958	.ssd_def32 = 0,
1959	.ssd_gran = 0		},
1960	/* Data Descriptor for user */
1961{	.ssd_base = 0x0,
1962	.ssd_limit = 0xfffff,
1963	.ssd_type = SDT_MEMRWA,
1964	.ssd_dpl = SEL_UPL,
1965	.ssd_p = 1,
1966	.ssd_xx = 0, .ssd_xx1 = 0,
1967	.ssd_def32 = 1,
1968	.ssd_gran = 1		},
1969};
1970
1971void
1972setidt(idx, func, typ, dpl, selec)
1973	int idx;
1974	inthand_t *func;
1975	int typ;
1976	int dpl;
1977	int selec;
1978{
1979	struct gate_descriptor *ip;
1980
1981	ip = idt + idx;
1982	ip->gd_looffset = (int)func;
1983	ip->gd_selector = selec;
1984	ip->gd_stkcpy = 0;
1985	ip->gd_xx = 0;
1986	ip->gd_type = typ;
1987	ip->gd_dpl = dpl;
1988	ip->gd_p = 1;
1989	ip->gd_hioffset = ((int)func)>>16 ;
1990}
1991
1992extern inthand_t
1993	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1994	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1995	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1996	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1997	IDTVEC(xmm),
1998#ifdef KDTRACE_HOOKS
1999	IDTVEC(dtrace_ret),
2000#endif
2001#ifdef XENHVM
2002	IDTVEC(xen_intr_upcall),
2003#endif
2004	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
2005
2006#ifdef DDB
2007/*
2008 * Display the index and function name of any IDT entries that don't use
2009 * the default 'rsvd' entry point.
2010 */
2011DB_SHOW_COMMAND(idt, db_show_idt)
2012{
2013	struct gate_descriptor *ip;
2014	int idx;
2015	uintptr_t func;
2016
2017	ip = idt;
2018	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
2019		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
2020		if (func != (uintptr_t)&IDTVEC(rsvd)) {
2021			db_printf("%3d\t", idx);
2022			db_printsym(func, DB_STGY_PROC);
2023			db_printf("\n");
2024		}
2025		ip++;
2026	}
2027}
2028
2029/* Show privileged registers. */
2030DB_SHOW_COMMAND(sysregs, db_show_sysregs)
2031{
2032	uint64_t idtr, gdtr;
2033
2034	idtr = ridt();
2035	db_printf("idtr\t0x%08x/%04x\n",
2036	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
2037	gdtr = rgdt();
2038	db_printf("gdtr\t0x%08x/%04x\n",
2039	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
2040	db_printf("ldtr\t0x%04x\n", rldt());
2041	db_printf("tr\t0x%04x\n", rtr());
2042	db_printf("cr0\t0x%08x\n", rcr0());
2043	db_printf("cr2\t0x%08x\n", rcr2());
2044	db_printf("cr3\t0x%08x\n", rcr3());
2045	db_printf("cr4\t0x%08x\n", rcr4());
2046}
2047#endif
2048
2049void
2050sdtossd(sd, ssd)
2051	struct segment_descriptor *sd;
2052	struct soft_segment_descriptor *ssd;
2053{
2054	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
2055	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
2056	ssd->ssd_type  = sd->sd_type;
2057	ssd->ssd_dpl   = sd->sd_dpl;
2058	ssd->ssd_p     = sd->sd_p;
2059	ssd->ssd_def32 = sd->sd_def32;
2060	ssd->ssd_gran  = sd->sd_gran;
2061}
2062
2063#if !defined(PC98) && !defined(XEN)
2064static int
2065add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
2066{
2067	int i, insert_idx, physmap_idx;
2068
2069	physmap_idx = *physmap_idxp;
2070
2071	if (boothowto & RB_VERBOSE)
2072		printf("SMAP type=%02x base=%016llx len=%016llx\n",
2073		    smap->type, smap->base, smap->length);
2074
2075	if (smap->type != SMAP_TYPE_MEMORY)
2076		return (1);
2077
2078	if (smap->length == 0)
2079		return (1);
2080
2081#ifndef PAE
2082	if (smap->base > 0xffffffff) {
2083		printf("%uK of memory above 4GB ignored\n",
2084		    (u_int)(smap->length / 1024));
2085		return (1);
2086	}
2087#endif
2088
2089	/*
2090	 * Find insertion point while checking for overlap.  Start off by
2091	 * assuming the new entry will be added to the end.
2092	 */
2093	insert_idx = physmap_idx + 2;
2094	for (i = 0; i <= physmap_idx; i += 2) {
2095		if (smap->base < physmap[i + 1]) {
2096			if (smap->base + smap->length <= physmap[i]) {
2097				insert_idx = i;
2098				break;
2099			}
2100			if (boothowto & RB_VERBOSE)
2101				printf(
2102		    "Overlapping memory regions, ignoring second region\n");
2103			return (1);
2104		}
2105	}
2106
2107	/* See if we can prepend to the next entry. */
2108	if (insert_idx <= physmap_idx &&
2109	    smap->base + smap->length == physmap[insert_idx]) {
2110		physmap[insert_idx] = smap->base;
2111		return (1);
2112	}
2113
2114	/* See if we can append to the previous entry. */
2115	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
2116		physmap[insert_idx - 1] += smap->length;
2117		return (1);
2118	}
2119
2120	physmap_idx += 2;
2121	*physmap_idxp = physmap_idx;
2122	if (physmap_idx == PHYSMAP_SIZE) {
2123		printf(
2124		"Too many segments in the physical address map, giving up\n");
2125		return (0);
2126	}
2127
2128	/*
2129	 * Move the last 'N' entries down to make room for the new
2130	 * entry if needed.
2131	 */
2132	for (i = physmap_idx; i > insert_idx; i -= 2) {
2133		physmap[i] = physmap[i - 2];
2134		physmap[i + 1] = physmap[i - 1];
2135	}
2136
2137	/* Insert the new entry. */
2138	physmap[insert_idx] = smap->base;
2139	physmap[insert_idx + 1] = smap->base + smap->length;
2140	return (1);
2141}
2142#endif /* !PC98 && !XEN */
2143
2144#ifndef XEN
2145static void
2146basemem_setup(void)
2147{
2148	vm_paddr_t pa;
2149	pt_entry_t *pte;
2150	int i;
2151
2152	if (basemem > 640) {
2153		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
2154			basemem);
2155		basemem = 640;
2156	}
2157
2158	/*
2159	 * XXX if biosbasemem is now < 640, there is a `hole'
2160	 * between the end of base memory and the start of
2161	 * ISA memory.  The hole may be empty or it may
2162	 * contain BIOS code or data.  Map it read/write so
2163	 * that the BIOS can write to it.  (Memory from 0 to
2164	 * the physical end of the kernel is mapped read-only
2165	 * to begin with and then parts of it are remapped.
2166	 * The parts that aren't remapped form holes that
2167	 * remain read-only and are unused by the kernel.
2168	 * The base memory area is below the physical end of
2169	 * the kernel and right now forms a read-only hole.
2170	 * The part of it from PAGE_SIZE to
2171	 * (trunc_page(biosbasemem * 1024) - 1) will be
2172	 * remapped and used by the kernel later.)
2173	 *
2174	 * This code is similar to the code used in
2175	 * pmap_mapdev, but since no memory needs to be
2176	 * allocated we simply change the mapping.
2177	 */
2178	for (pa = trunc_page(basemem * 1024);
2179	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
2180		pmap_kenter(KERNBASE + pa, pa);
2181
2182	/*
2183	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
2184	 * the vm86 page table so that vm86 can scribble on them using
2185	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
2186	 * page 0, at least as initialized here?
2187	 */
2188	pte = (pt_entry_t *)vm86paddr;
2189	for (i = basemem / 4; i < 160; i++)
2190		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
2191}
2192#endif /* !XEN */
2193
2194/*
2195 * Populate the (physmap) array with base/bound pairs describing the
2196 * available physical memory in the system, then test this memory and
2197 * build the phys_avail array describing the actually-available memory.
2198 *
2199 * If we cannot accurately determine the physical memory map, then use
2200 * value from the 0xE801 call, and failing that, the RTC.
2201 *
2202 * Total memory size may be set by the kernel environment variable
2203 * hw.physmem or the compile-time define MAXMEM.
2204 *
2205 * XXX first should be vm_paddr_t.
2206 */
2207#ifdef PC98
2208static void
2209getmemsize(int first)
2210{
2211	int off, physmap_idx, pa_indx, da_indx;
2212	u_long physmem_tunable, memtest;
2213	vm_paddr_t physmap[PHYSMAP_SIZE];
2214	pt_entry_t *pte;
2215	quad_t dcons_addr, dcons_size;
2216	int i;
2217	int pg_n;
2218	u_int extmem;
2219	u_int under16;
2220	vm_paddr_t pa;
2221
2222	bzero(physmap, sizeof(physmap));
2223
2224	/* XXX - some of EPSON machines can't use PG_N */
2225	pg_n = PG_N;
2226	if (pc98_machine_type & M_EPSON_PC98) {
2227		switch (epson_machine_id) {
2228#ifdef WB_CACHE
2229		default:
2230#endif
2231		case EPSON_PC486_HX:
2232		case EPSON_PC486_HG:
2233		case EPSON_PC486_HA:
2234			pg_n = 0;
2235			break;
2236		}
2237	}
2238
2239	under16 = pc98_getmemsize(&basemem, &extmem);
2240	basemem_setup();
2241
2242	physmap[0] = 0;
2243	physmap[1] = basemem * 1024;
2244	physmap_idx = 2;
2245	physmap[physmap_idx] = 0x100000;
2246	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2247
2248	/*
2249	 * Now, physmap contains a map of physical memory.
2250	 */
2251
2252#ifdef SMP
2253	/* make hole for AP bootstrap code */
2254	physmap[1] = mp_bootaddress(physmap[1]);
2255#endif
2256
2257	/*
2258	 * Maxmem isn't the "maximum memory", it's one larger than the
2259	 * highest page of the physical address space.  It should be
2260	 * called something like "Maxphyspage".  We may adjust this
2261	 * based on ``hw.physmem'' and the results of the memory test.
2262	 */
2263	Maxmem = atop(physmap[physmap_idx + 1]);
2264
2265#ifdef MAXMEM
2266	Maxmem = MAXMEM / 4;
2267#endif
2268
2269	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2270		Maxmem = atop(physmem_tunable);
2271
2272	/*
2273	 * By default keep the memtest enabled.  Use a general name so that
2274	 * one could eventually do more with the code than just disable it.
2275	 */
2276	memtest = 1;
2277	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2278
2279	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2280	    (boothowto & RB_VERBOSE))
2281		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2282
2283	/*
2284	 * If Maxmem has been increased beyond what the system has detected,
2285	 * extend the last memory segment to the new limit.
2286	 */
2287	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2288		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2289
2290	/*
2291	 * We need to divide chunk if Maxmem is larger than 16MB and
2292	 * under 16MB area is not full of memory.
2293	 * (1) system area (15-16MB region) is cut off
2294	 * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
2295	 */
2296	if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
2297		/* 15M - 16M region is cut off, so need to divide chunk */
2298		physmap[physmap_idx + 1] = under16 * 1024;
2299		physmap_idx += 2;
2300		physmap[physmap_idx] = 0x1000000;
2301		physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
2302	}
2303
2304	/* call pmap initialization to make new kernel address space */
2305	pmap_bootstrap(first);
2306
2307	/*
2308	 * Size up each available chunk of physical memory.
2309	 */
2310	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2311	pa_indx = 0;
2312	da_indx = 1;
2313	phys_avail[pa_indx++] = physmap[0];
2314	phys_avail[pa_indx] = physmap[0];
2315	dump_avail[da_indx] = physmap[0];
2316	pte = CMAP3;
2317
2318	/*
2319	 * Get dcons buffer address
2320	 */
2321	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2322	    getenv_quad("dcons.size", &dcons_size) == 0)
2323		dcons_addr = 0;
2324
2325	/*
2326	 * physmap is in bytes, so when converting to page boundaries,
2327	 * round up the start address and round down the end address.
2328	 */
2329	for (i = 0; i <= physmap_idx; i += 2) {
2330		vm_paddr_t end;
2331
2332		end = ptoa((vm_paddr_t)Maxmem);
2333		if (physmap[i + 1] < end)
2334			end = trunc_page(physmap[i + 1]);
2335		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2336			int tmp, page_bad, full;
2337			int *ptr = (int *)CADDR3;
2338
2339			full = FALSE;
2340			/*
2341			 * block out kernel memory as not available.
2342			 */
2343			if (pa >= KERNLOAD && pa < first)
2344				goto do_dump_avail;
2345
2346			/*
2347			 * block out dcons buffer
2348			 */
2349			if (dcons_addr > 0
2350			    && pa >= trunc_page(dcons_addr)
2351			    && pa < dcons_addr + dcons_size)
2352				goto do_dump_avail;
2353
2354			page_bad = FALSE;
2355			if (memtest == 0)
2356				goto skip_memtest;
2357
2358			/*
2359			 * map page into kernel: valid, read/write,non-cacheable
2360			 */
2361			*pte = pa | PG_V | PG_RW | pg_n;
2362			invltlb();
2363
2364			tmp = *(int *)ptr;
2365			/*
2366			 * Test for alternating 1's and 0's
2367			 */
2368			*(volatile int *)ptr = 0xaaaaaaaa;
2369			if (*(volatile int *)ptr != 0xaaaaaaaa)
2370				page_bad = TRUE;
2371			/*
2372			 * Test for alternating 0's and 1's
2373			 */
2374			*(volatile int *)ptr = 0x55555555;
2375			if (*(volatile int *)ptr != 0x55555555)
2376				page_bad = TRUE;
2377			/*
2378			 * Test for all 1's
2379			 */
2380			*(volatile int *)ptr = 0xffffffff;
2381			if (*(volatile int *)ptr != 0xffffffff)
2382				page_bad = TRUE;
2383			/*
2384			 * Test for all 0's
2385			 */
2386			*(volatile int *)ptr = 0x0;
2387			if (*(volatile int *)ptr != 0x0)
2388				page_bad = TRUE;
2389			/*
2390			 * Restore original value.
2391			 */
2392			*(int *)ptr = tmp;
2393
2394skip_memtest:
2395			/*
2396			 * Adjust array of valid/good pages.
2397			 */
2398			if (page_bad == TRUE)
2399				continue;
2400			/*
2401			 * If this good page is a continuation of the
2402			 * previous set of good pages, then just increase
2403			 * the end pointer. Otherwise start a new chunk.
2404			 * Note that "end" points one higher than end,
2405			 * making the range >= start and < end.
2406			 * If we're also doing a speculative memory
2407			 * test and we at or past the end, bump up Maxmem
2408			 * so that we keep going. The first bad page
2409			 * will terminate the loop.
2410			 */
2411			if (phys_avail[pa_indx] == pa) {
2412				phys_avail[pa_indx] += PAGE_SIZE;
2413			} else {
2414				pa_indx++;
2415				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2416					printf(
2417		"Too many holes in the physical address space, giving up\n");
2418					pa_indx--;
2419					full = TRUE;
2420					goto do_dump_avail;
2421				}
2422				phys_avail[pa_indx++] = pa;	/* start */
2423				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2424			}
2425			physmem++;
2426do_dump_avail:
2427			if (dump_avail[da_indx] == pa) {
2428				dump_avail[da_indx] += PAGE_SIZE;
2429			} else {
2430				da_indx++;
2431				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2432					da_indx--;
2433					goto do_next;
2434				}
2435				dump_avail[da_indx++] = pa;	/* start */
2436				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2437			}
2438do_next:
2439			if (full)
2440				break;
2441		}
2442	}
2443	*pte = 0;
2444	invltlb();
2445
2446	/*
2447	 * XXX
2448	 * The last chunk must contain at least one page plus the message
2449	 * buffer to avoid complicating other code (message buffer address
2450	 * calculation, etc.).
2451	 */
2452	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2453	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2454		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2455		phys_avail[pa_indx--] = 0;
2456		phys_avail[pa_indx--] = 0;
2457	}
2458
2459	Maxmem = atop(phys_avail[pa_indx]);
2460
2461	/* Trim off space for the message buffer. */
2462	phys_avail[pa_indx] -= round_page(msgbufsize);
2463
2464	/* Map the message buffer. */
2465	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2466		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2467		    off);
2468
2469	PT_UPDATES_FLUSH();
2470}
2471#else /* PC98 */
2472static void
2473getmemsize(int first)
2474{
2475	int has_smap, off, physmap_idx, pa_indx, da_indx;
2476	u_long physmem_tunable, memtest;
2477	vm_paddr_t physmap[PHYSMAP_SIZE];
2478	pt_entry_t *pte;
2479	quad_t dcons_addr, dcons_size;
2480#ifndef XEN
2481	int hasbrokenint12, i, res;
2482	u_int extmem;
2483	struct vm86frame vmf;
2484	struct vm86context vmc;
2485	vm_paddr_t pa;
2486	struct bios_smap *smap, *smapbase, *smapend;
2487	u_int32_t smapsize;
2488	caddr_t kmdp;
2489#endif
2490
2491	has_smap = 0;
2492#if defined(XEN)
2493	Maxmem = xen_start_info->nr_pages - init_first;
2494	physmem = Maxmem;
2495	basemem = 0;
2496	physmap[0] = init_first << PAGE_SHIFT;
2497	physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
2498	physmap_idx = 0;
2499#else
2500#ifdef XBOX
2501	if (arch_i386_is_xbox) {
2502		/*
2503		 * We queried the memory size before, so chop off 4MB for
2504		 * the framebuffer and inform the OS of this.
2505		 */
2506		physmap[0] = 0;
2507		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2508		physmap_idx = 0;
2509		goto physmap_done;
2510	}
2511#endif
2512	bzero(&vmf, sizeof(vmf));
2513	bzero(physmap, sizeof(physmap));
2514	basemem = 0;
2515
2516	/*
2517	 * Check if the loader supplied an SMAP memory map.  If so,
2518	 * use that and do not make any VM86 calls.
2519	 */
2520	physmap_idx = 0;
2521	smapbase = NULL;
2522	kmdp = preload_search_by_type("elf kernel");
2523	if (kmdp == NULL)
2524		kmdp = preload_search_by_type("elf32 kernel");
2525	if (kmdp != NULL)
2526		smapbase = (struct bios_smap *)preload_search_info(kmdp,
2527		    MODINFO_METADATA | MODINFOMD_SMAP);
2528	if (smapbase != NULL) {
2529		/*
2530		 * subr_module.c says:
2531		 * "Consumer may safely assume that size value precedes data."
2532		 * ie: an int32_t immediately precedes SMAP.
2533		 */
2534		smapsize = *((u_int32_t *)smapbase - 1);
2535		smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
2536		has_smap = 1;
2537
2538		for (smap = smapbase; smap < smapend; smap++)
2539			if (!add_smap_entry(smap, physmap, &physmap_idx))
2540				break;
2541		goto have_smap;
2542	}
2543
2544	/*
2545	 * Some newer BIOSes have a broken INT 12H implementation
2546	 * which causes a kernel panic immediately.  In this case, we
2547	 * need use the SMAP to determine the base memory size.
2548	 */
2549	hasbrokenint12 = 0;
2550	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2551	if (hasbrokenint12 == 0) {
2552		/* Use INT12 to determine base memory size. */
2553		vm86_intcall(0x12, &vmf);
2554		basemem = vmf.vmf_ax;
2555		basemem_setup();
2556	}
2557
2558	/*
2559	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2560	 * the kernel page table so we can use it as a buffer.  The
2561	 * kernel will unmap this page later.
2562	 */
2563	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2564	vmc.npages = 0;
2565	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2566	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2567	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2568
2569	vmf.vmf_ebx = 0;
2570	do {
2571		vmf.vmf_eax = 0xE820;
2572		vmf.vmf_edx = SMAP_SIG;
2573		vmf.vmf_ecx = sizeof(struct bios_smap);
2574		i = vm86_datacall(0x15, &vmf, &vmc);
2575		if (i || vmf.vmf_eax != SMAP_SIG)
2576			break;
2577		has_smap = 1;
2578		if (!add_smap_entry(smap, physmap, &physmap_idx))
2579			break;
2580	} while (vmf.vmf_ebx != 0);
2581
2582have_smap:
2583	/*
2584	 * If we didn't fetch the "base memory" size from INT12,
2585	 * figure it out from the SMAP (or just guess).
2586	 */
2587	if (basemem == 0) {
2588		for (i = 0; i <= physmap_idx; i += 2) {
2589			if (physmap[i] == 0x00000000) {
2590				basemem = physmap[i + 1] / 1024;
2591				break;
2592			}
2593		}
2594
2595		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2596		if (basemem == 0)
2597			basemem = 640;
2598		basemem_setup();
2599	}
2600
2601	if (physmap[1] != 0)
2602		goto physmap_done;
2603
2604	/*
2605	 * If we failed to find an SMAP, figure out the extended
2606	 * memory size.  We will then build a simple memory map with
2607	 * two segments, one for "base memory" and the second for
2608	 * "extended memory".  Note that "extended memory" starts at a
2609	 * physical address of 1MB and that both basemem and extmem
2610	 * are in units of 1KB.
2611	 *
2612	 * First, try to fetch the extended memory size via INT 15:E801.
2613	 */
2614	vmf.vmf_ax = 0xE801;
2615	if (vm86_intcall(0x15, &vmf) == 0) {
2616		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2617	} else {
2618		/*
2619		 * If INT15:E801 fails, this is our last ditch effort
2620		 * to determine the extended memory size.  Currently
2621		 * we prefer the RTC value over INT15:88.
2622		 */
2623#if 0
2624		vmf.vmf_ah = 0x88;
2625		vm86_intcall(0x15, &vmf);
2626		extmem = vmf.vmf_ax;
2627#else
2628		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2629#endif
2630	}
2631
2632	/*
2633	 * Special hack for chipsets that still remap the 384k hole when
2634	 * there's 16MB of memory - this really confuses people that
2635	 * are trying to use bus mastering ISA controllers with the
2636	 * "16MB limit"; they only have 16MB, but the remapping puts
2637	 * them beyond the limit.
2638	 *
2639	 * If extended memory is between 15-16MB (16-17MB phys address range),
2640	 *	chop it to 15MB.
2641	 */
2642	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2643		extmem = 15 * 1024;
2644
2645	physmap[0] = 0;
2646	physmap[1] = basemem * 1024;
2647	physmap_idx = 2;
2648	physmap[physmap_idx] = 0x100000;
2649	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2650
2651physmap_done:
2652#endif
2653	/*
2654	 * Now, physmap contains a map of physical memory.
2655	 */
2656
2657#ifdef SMP
2658	/* make hole for AP bootstrap code */
2659	physmap[1] = mp_bootaddress(physmap[1]);
2660#endif
2661
2662	/*
2663	 * Maxmem isn't the "maximum memory", it's one larger than the
2664	 * highest page of the physical address space.  It should be
2665	 * called something like "Maxphyspage".  We may adjust this
2666	 * based on ``hw.physmem'' and the results of the memory test.
2667	 */
2668	Maxmem = atop(physmap[physmap_idx + 1]);
2669
2670#ifdef MAXMEM
2671	Maxmem = MAXMEM / 4;
2672#endif
2673
2674	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2675		Maxmem = atop(physmem_tunable);
2676
2677	/*
2678	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2679	 * the amount of memory in the system.
2680	 */
2681	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2682		Maxmem = atop(physmap[physmap_idx + 1]);
2683
2684	/*
2685	 * By default enable the memory test on real hardware, and disable
2686	 * it if we appear to be running in a VM.  This avoids touching all
2687	 * pages unnecessarily, which doesn't matter on real hardware but is
2688	 * bad for shared VM hosts.  Use a general name so that
2689	 * one could eventually do more with the code than just disable it.
2690	 */
2691	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2692	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2693
2694	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2695	    (boothowto & RB_VERBOSE))
2696		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2697
2698	/*
2699	 * If Maxmem has been increased beyond what the system has detected,
2700	 * extend the last memory segment to the new limit.
2701	 */
2702	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2703		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2704
2705	/* call pmap initialization to make new kernel address space */
2706	pmap_bootstrap(first);
2707
2708	/*
2709	 * Size up each available chunk of physical memory.
2710	 */
2711	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2712	pa_indx = 0;
2713	da_indx = 1;
2714	phys_avail[pa_indx++] = physmap[0];
2715	phys_avail[pa_indx] = physmap[0];
2716	dump_avail[da_indx] = physmap[0];
2717	pte = CMAP3;
2718
2719	/*
2720	 * Get dcons buffer address
2721	 */
2722	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2723	    getenv_quad("dcons.size", &dcons_size) == 0)
2724		dcons_addr = 0;
2725
2726#ifndef XEN
2727	/*
2728	 * physmap is in bytes, so when converting to page boundaries,
2729	 * round up the start address and round down the end address.
2730	 */
2731	for (i = 0; i <= physmap_idx; i += 2) {
2732		vm_paddr_t end;
2733
2734		end = ptoa((vm_paddr_t)Maxmem);
2735		if (physmap[i + 1] < end)
2736			end = trunc_page(physmap[i + 1]);
2737		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2738			int tmp, page_bad, full;
2739			int *ptr = (int *)CADDR3;
2740
2741			full = FALSE;
2742			/*
2743			 * block out kernel memory as not available.
2744			 */
2745			if (pa >= KERNLOAD && pa < first)
2746				goto do_dump_avail;
2747
2748			/*
2749			 * block out dcons buffer
2750			 */
2751			if (dcons_addr > 0
2752			    && pa >= trunc_page(dcons_addr)
2753			    && pa < dcons_addr + dcons_size)
2754				goto do_dump_avail;
2755
2756			page_bad = FALSE;
2757			if (memtest == 0)
2758				goto skip_memtest;
2759
2760			/*
2761			 * map page into kernel: valid, read/write,non-cacheable
2762			 */
2763			*pte = pa | PG_V | PG_RW | PG_N;
2764			invltlb();
2765
2766			tmp = *(int *)ptr;
2767			/*
2768			 * Test for alternating 1's and 0's
2769			 */
2770			*(volatile int *)ptr = 0xaaaaaaaa;
2771			if (*(volatile int *)ptr != 0xaaaaaaaa)
2772				page_bad = TRUE;
2773			/*
2774			 * Test for alternating 0's and 1's
2775			 */
2776			*(volatile int *)ptr = 0x55555555;
2777			if (*(volatile int *)ptr != 0x55555555)
2778				page_bad = TRUE;
2779			/*
2780			 * Test for all 1's
2781			 */
2782			*(volatile int *)ptr = 0xffffffff;
2783			if (*(volatile int *)ptr != 0xffffffff)
2784				page_bad = TRUE;
2785			/*
2786			 * Test for all 0's
2787			 */
2788			*(volatile int *)ptr = 0x0;
2789			if (*(volatile int *)ptr != 0x0)
2790				page_bad = TRUE;
2791			/*
2792			 * Restore original value.
2793			 */
2794			*(int *)ptr = tmp;
2795
2796skip_memtest:
2797			/*
2798			 * Adjust array of valid/good pages.
2799			 */
2800			if (page_bad == TRUE)
2801				continue;
2802			/*
2803			 * If this good page is a continuation of the
2804			 * previous set of good pages, then just increase
2805			 * the end pointer. Otherwise start a new chunk.
2806			 * Note that "end" points one higher than end,
2807			 * making the range >= start and < end.
2808			 * If we're also doing a speculative memory
2809			 * test and we at or past the end, bump up Maxmem
2810			 * so that we keep going. The first bad page
2811			 * will terminate the loop.
2812			 */
2813			if (phys_avail[pa_indx] == pa) {
2814				phys_avail[pa_indx] += PAGE_SIZE;
2815			} else {
2816				pa_indx++;
2817				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2818					printf(
2819		"Too many holes in the physical address space, giving up\n");
2820					pa_indx--;
2821					full = TRUE;
2822					goto do_dump_avail;
2823				}
2824				phys_avail[pa_indx++] = pa;	/* start */
2825				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2826			}
2827			physmem++;
2828do_dump_avail:
2829			if (dump_avail[da_indx] == pa) {
2830				dump_avail[da_indx] += PAGE_SIZE;
2831			} else {
2832				da_indx++;
2833				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2834					da_indx--;
2835					goto do_next;
2836				}
2837				dump_avail[da_indx++] = pa;	/* start */
2838				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2839			}
2840do_next:
2841			if (full)
2842				break;
2843		}
2844	}
2845	*pte = 0;
2846	invltlb();
2847#else
2848	phys_avail[0] = physfree;
2849	phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2850	dump_avail[0] = 0;
2851	dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2852
2853#endif
2854
2855	/*
2856	 * XXX
2857	 * The last chunk must contain at least one page plus the message
2858	 * buffer to avoid complicating other code (message buffer address
2859	 * calculation, etc.).
2860	 */
2861	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2862	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2863		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2864		phys_avail[pa_indx--] = 0;
2865		phys_avail[pa_indx--] = 0;
2866	}
2867
2868	Maxmem = atop(phys_avail[pa_indx]);
2869
2870	/* Trim off space for the message buffer. */
2871	phys_avail[pa_indx] -= round_page(msgbufsize);
2872
2873	/* Map the message buffer. */
2874	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2875		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2876		    off);
2877
2878	PT_UPDATES_FLUSH();
2879}
2880#endif /* PC98 */
2881
2882#ifdef XEN
2883#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
2884
2885register_t
2886init386(first)
2887	int first;
2888{
2889	unsigned long gdtmachpfn;
2890	int error, gsel_tss, metadata_missing, x, pa;
2891	struct pcpu *pc;
2892#ifdef CPU_ENABLE_SSE
2893	struct xstate_hdr *xhdr;
2894#endif
2895	struct callback_register event = {
2896		.type = CALLBACKTYPE_event,
2897		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
2898	};
2899	struct callback_register failsafe = {
2900		.type = CALLBACKTYPE_failsafe,
2901		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
2902	};
2903
2904	thread0.td_kstack = proc0kstack;
2905	thread0.td_kstack_pages = KSTACK_PAGES;
2906
2907	/*
2908 	 * This may be done better later if it gets more high level
2909 	 * components in it. If so just link td->td_proc here.
2910	 */
2911	proc_linkup0(&proc0, &thread0);
2912
2913	metadata_missing = 0;
2914	if (xen_start_info->mod_start) {
2915		preload_metadata = (caddr_t)xen_start_info->mod_start;
2916		preload_bootstrap_relocate(KERNBASE);
2917	} else {
2918		metadata_missing = 1;
2919	}
2920	if (envmode == 1)
2921		kern_envp = static_env;
2922	else if ((caddr_t)xen_start_info->cmd_line)
2923	        kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
2924
2925	boothowto |= xen_boothowto(kern_envp);
2926
2927	/* Init basic tunables, hz etc */
2928	init_param1();
2929
2930	/*
2931	 * XEN occupies a portion of the upper virtual address space
2932	 * At its base it manages an array mapping machine page frames
2933	 * to physical page frames - hence we need to be able to
2934	 * access 4GB - (64MB  - 4MB + 64k)
2935	 */
2936	gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2937	gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2938	gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2939	gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2940	gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2941	gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2942	gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2943	gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2944
2945	pc = &__pcpu[0];
2946	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2947	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2948
2949	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
2950	bzero(gdt, PAGE_SIZE);
2951	for (x = 0; x < NGDT; x++)
2952		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2953
2954	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2955
2956	gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
2957	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
2958	PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);
2959	lgdt(&r_gdt);
2960	gdtset = 1;
2961
2962	if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
2963		panic("set_trap_table failed - error %d\n", error);
2964	}
2965
2966	error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
2967	if (error == 0)
2968		error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
2969#if	CONFIG_XEN_COMPAT <= 0x030002
2970	if (error == -ENOXENSYS)
2971		HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
2972		    (unsigned long)Xhypervisor_callback,
2973		    GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
2974#endif
2975	pcpu_init(pc, 0, sizeof(struct pcpu));
2976	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2977		pmap_kenter(pa + KERNBASE, pa);
2978	dpcpu_init((void *)(first + KERNBASE), 0);
2979	first += DPCPU_SIZE;
2980	physfree += DPCPU_SIZE;
2981	init_first += DPCPU_SIZE / PAGE_SIZE;
2982
2983	PCPU_SET(prvspace, pc);
2984	PCPU_SET(curthread, &thread0);
2985
2986	/*
2987	 * Initialize mutexes.
2988	 *
2989	 * icu_lock: in order to allow an interrupt to occur in a critical
2990	 * 	     section, to set pcpu->ipending (etc...) properly, we
2991	 *	     must be able to get the icu lock, so it can't be
2992	 *	     under witness.
2993	 */
2994	mutex_init();
2995	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2996
2997	/* make ldt memory segments */
2998	PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
2999	bzero(ldt, PAGE_SIZE);
3000	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
3001	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
3002	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
3003		ssdtosd(&ldt_segs[x], &ldt[x].sd);
3004
3005	default_proc_ldt.ldt_base = (caddr_t)ldt;
3006	default_proc_ldt.ldt_len = 6;
3007	_default_ldt = (int)&default_proc_ldt;
3008	PCPU_SET(currentldt, _default_ldt);
3009	PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
3010	xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
3011
3012#if defined(XEN_PRIVILEGED)
3013	/*
3014	 * Initialize the i8254 before the console so that console
3015	 * initialization can use DELAY().
3016	 */
3017	i8254_init();
3018#endif
3019
3020	/*
3021	 * Initialize the console before we print anything out.
3022	 */
3023	cninit();
3024
3025	if (metadata_missing)
3026		printf("WARNING: loader(8) metadata is missing!\n");
3027
3028#ifdef DEV_ISA
3029#ifdef DEV_ATPIC
3030	elcr_probe();
3031	atpic_startup();
3032#else
3033	/* Reset and mask the atpics and leave them shut down. */
3034	atpic_reset();
3035
3036	/*
3037	 * Point the ICU spurious interrupt vectors at the APIC spurious
3038	 * interrupt handler.
3039	 */
3040	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3041	    GSEL(GCODE_SEL, SEL_KPL));
3042	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3043	    GSEL(GCODE_SEL, SEL_KPL));
3044#endif
3045#endif
3046
3047#ifdef DDB
3048	ksym_start = bootinfo.bi_symtab;
3049	ksym_end = bootinfo.bi_esymtab;
3050#endif
3051
3052	kdb_init();
3053
3054#ifdef KDB
3055	if (boothowto & RB_KDB)
3056		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3057#endif
3058
3059	finishidentcpu();	/* Final stage of CPU initialization */
3060	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3061	    GSEL(GCODE_SEL, SEL_KPL));
3062	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3063	    GSEL(GCODE_SEL, SEL_KPL));
3064	initializecpu();	/* Initialize CPU registers */
3065	initializecpucache();
3066
3067	/* pointer to selector slot for %fs/%gs */
3068	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3069
3070	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3071	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3072	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3073	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3074#if defined(PAE) || defined(PAE_TABLES)
3075	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3076#else
3077	dblfault_tss.tss_cr3 = (int)IdlePTD;
3078#endif
3079	dblfault_tss.tss_eip = (int)dblfault_handler;
3080	dblfault_tss.tss_eflags = PSL_KERNEL;
3081	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3082	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3083	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3084	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3085	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3086
3087	vm86_initialize();
3088	getmemsize(first);
3089	init_param2(physmem);
3090
3091	/* now running on new page tables, configured,and u/iom is accessible */
3092
3093	msgbufinit(msgbufp, msgbufsize);
3094#ifdef DEV_NPX
3095	npxinit(true);
3096#endif
3097	/*
3098	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
3099	 * area size.  Zero out the extended state header in fpu save
3100	 * area.
3101	 */
3102	thread0.td_pcb = get_pcb_td(&thread0);
3103	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
3104#ifdef CPU_ENABLE_SSE
3105	if (use_xsave) {
3106		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
3107		    1);
3108		xhdr->xstate_bv = xsave_mask;
3109	}
3110#endif
3111	PCPU_SET(curpcb, thread0.td_pcb);
3112	/* make an initial tss so cpu can get interrupt stack on syscall! */
3113	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3114	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
3115	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3116	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3117	HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
3118	    PCPU_GET(common_tss.tss_esp0));
3119
3120	/* transfer to user mode */
3121
3122	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3123	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3124
3125	/* setup proc 0's pcb */
3126	thread0.td_pcb->pcb_flags = 0;
3127#if defined(PAE) || defined(PAE_TABLES)
3128	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3129#else
3130	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3131#endif
3132	thread0.td_pcb->pcb_ext = 0;
3133	thread0.td_frame = &proc0_tf;
3134	thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
3135	thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
3136
3137	cpu_probe_amdc1e();
3138
3139	/* Location of kernel stack for locore */
3140	return ((register_t)thread0.td_pcb);
3141}
3142
3143#else
3144register_t
3145init386(first)
3146	int first;
3147{
3148	struct gate_descriptor *gdp;
3149	int gsel_tss, metadata_missing, x, pa;
3150	struct pcpu *pc;
3151#ifdef CPU_ENABLE_SSE
3152	struct xstate_hdr *xhdr;
3153#endif
3154
3155	thread0.td_kstack = proc0kstack;
3156	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
3157
3158	/*
3159 	 * This may be done better later if it gets more high level
3160 	 * components in it. If so just link td->td_proc here.
3161	 */
3162	proc_linkup0(&proc0, &thread0);
3163
3164#ifdef PC98
3165	/*
3166	 * Initialize DMAC
3167	 */
3168	pc98_init_dmac();
3169#endif
3170
3171	metadata_missing = 0;
3172	if (bootinfo.bi_modulep) {
3173		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
3174		preload_bootstrap_relocate(KERNBASE);
3175	} else {
3176		metadata_missing = 1;
3177	}
3178	if (envmode == 1)
3179		kern_envp = static_env;
3180	else if (bootinfo.bi_envp)
3181		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
3182
3183	/* Init basic tunables, hz etc */
3184	init_param1();
3185
3186	/*
3187	 * Make gdt memory segments.  All segments cover the full 4GB
3188	 * of address space and permissions are enforced at page level.
3189	 */
3190	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
3191	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
3192	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
3193	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
3194	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
3195	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
3196
3197	pc = &__pcpu[0];
3198	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
3199	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
3200	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
3201
3202	for (x = 0; x < NGDT; x++)
3203		ssdtosd(&gdt_segs[x], &gdt[x].sd);
3204
3205	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
3206	r_gdt.rd_base =  (int) gdt;
3207	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
3208	lgdt(&r_gdt);
3209
3210	pcpu_init(pc, 0, sizeof(struct pcpu));
3211	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
3212		pmap_kenter(pa + KERNBASE, pa);
3213	dpcpu_init((void *)(first + KERNBASE), 0);
3214	first += DPCPU_SIZE;
3215	PCPU_SET(prvspace, pc);
3216	PCPU_SET(curthread, &thread0);
3217
3218	/*
3219	 * Initialize mutexes.
3220	 *
3221	 * icu_lock: in order to allow an interrupt to occur in a critical
3222	 * 	     section, to set pcpu->ipending (etc...) properly, we
3223	 *	     must be able to get the icu lock, so it can't be
3224	 *	     under witness.
3225	 */
3226	mutex_init();
3227	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
3228
3229	/* make ldt memory segments */
3230	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
3231	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
3232	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
3233		ssdtosd(&ldt_segs[x], &ldt[x].sd);
3234
3235	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
3236	lldt(_default_ldt);
3237	PCPU_SET(currentldt, _default_ldt);
3238
3239	/* exceptions */
3240	for (x = 0; x < NIDT; x++)
3241		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
3242		    GSEL(GCODE_SEL, SEL_KPL));
3243	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
3244	    GSEL(GCODE_SEL, SEL_KPL));
3245	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
3246	    GSEL(GCODE_SEL, SEL_KPL));
3247	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
3248	    GSEL(GCODE_SEL, SEL_KPL));
3249 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
3250	    GSEL(GCODE_SEL, SEL_KPL));
3251	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
3252	    GSEL(GCODE_SEL, SEL_KPL));
3253	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
3254	    GSEL(GCODE_SEL, SEL_KPL));
3255	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3256	    GSEL(GCODE_SEL, SEL_KPL));
3257	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
3258	    , GSEL(GCODE_SEL, SEL_KPL));
3259	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
3260	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
3261	    GSEL(GCODE_SEL, SEL_KPL));
3262	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
3263	    GSEL(GCODE_SEL, SEL_KPL));
3264	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
3265	    GSEL(GCODE_SEL, SEL_KPL));
3266	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
3267	    GSEL(GCODE_SEL, SEL_KPL));
3268	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3269	    GSEL(GCODE_SEL, SEL_KPL));
3270	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
3271	    GSEL(GCODE_SEL, SEL_KPL));
3272	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
3273	    GSEL(GCODE_SEL, SEL_KPL));
3274	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
3275	    GSEL(GCODE_SEL, SEL_KPL));
3276	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
3277	    GSEL(GCODE_SEL, SEL_KPL));
3278	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
3279	    GSEL(GCODE_SEL, SEL_KPL));
3280 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
3281	    GSEL(GCODE_SEL, SEL_KPL));
3282#ifdef KDTRACE_HOOKS
3283	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
3284	    GSEL(GCODE_SEL, SEL_KPL));
3285#endif
3286#ifdef XENHVM
3287	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
3288	    GSEL(GCODE_SEL, SEL_KPL));
3289#endif
3290
3291	r_idt.rd_limit = sizeof(idt0) - 1;
3292	r_idt.rd_base = (int) idt;
3293	lidt(&r_idt);
3294
3295#ifdef XBOX
3296	/*
3297	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
3298	 * This should be 0x10de / 0x02a5.
3299	 *
3300	 * This is exactly what Linux does.
3301	 */
3302	outl(0xcf8, 0x80000000);
3303	if (inl(0xcfc) == 0x02a510de) {
3304		arch_i386_is_xbox = 1;
3305		pic16l_setled(XBOX_LED_GREEN);
3306
3307		/*
3308		 * We are an XBOX, but we may have either 64MB or 128MB of
3309		 * memory. The PCI host bridge should be programmed for this,
3310		 * so we just query it.
3311		 */
3312		outl(0xcf8, 0x80000084);
3313		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
3314	}
3315#endif /* XBOX */
3316
3317	/*
3318	 * Initialize the i8254 before the console so that console
3319	 * initialization can use DELAY().
3320	 */
3321	i8254_init();
3322
3323	finishidentcpu();	/* Final stage of CPU initialization */
3324	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3325	    GSEL(GCODE_SEL, SEL_KPL));
3326	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3327	    GSEL(GCODE_SEL, SEL_KPL));
3328	initializecpu();	/* Initialize CPU registers */
3329	initializecpucache();
3330
3331	/* pointer to selector slot for %fs/%gs */
3332	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3333
3334	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3335	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3336	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3337	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3338#if defined(PAE) || defined(PAE_TABLES)
3339	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3340#else
3341	dblfault_tss.tss_cr3 = (int)IdlePTD;
3342#endif
3343	dblfault_tss.tss_eip = (int)dblfault_handler;
3344	dblfault_tss.tss_eflags = PSL_KERNEL;
3345	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3346	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3347	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3348	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3349	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3350
3351	vm86_initialize();
3352	getmemsize(first);
3353	init_param2(physmem);
3354
3355	/* now running on new page tables, configured,and u/iom is accessible */
3356
3357	/*
3358	 * Initialize the console before we print anything out.
3359	 */
3360	cninit();
3361
3362	if (metadata_missing)
3363		printf("WARNING: loader(8) metadata is missing!\n");
3364
3365#ifdef DEV_ISA
3366#ifdef DEV_ATPIC
3367#ifndef PC98
3368	elcr_probe();
3369#endif
3370	atpic_startup();
3371#else
3372	/* Reset and mask the atpics and leave them shut down. */
3373	atpic_reset();
3374
3375	/*
3376	 * Point the ICU spurious interrupt vectors at the APIC spurious
3377	 * interrupt handler.
3378	 */
3379	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3380	    GSEL(GCODE_SEL, SEL_KPL));
3381	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3382	    GSEL(GCODE_SEL, SEL_KPL));
3383#endif
3384#endif
3385
3386#ifdef DDB
3387	ksym_start = bootinfo.bi_symtab;
3388	ksym_end = bootinfo.bi_esymtab;
3389#endif
3390
3391	kdb_init();
3392
3393#ifdef KDB
3394	if (boothowto & RB_KDB)
3395		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3396#endif
3397
3398	msgbufinit(msgbufp, msgbufsize);
3399#ifdef DEV_NPX
3400	npxinit(true);
3401#endif
3402	/*
3403	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
3404	 * area size.  Zero out the extended state header in fpu save
3405	 * area.
3406	 */
3407	thread0.td_pcb = get_pcb_td(&thread0);
3408	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
3409#ifdef CPU_ENABLE_SSE
3410	if (use_xsave) {
3411		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
3412		    1);
3413		xhdr->xstate_bv = xsave_mask;
3414	}
3415#endif
3416	PCPU_SET(curpcb, thread0.td_pcb);
3417	/* make an initial tss so cpu can get interrupt stack on syscall! */
3418	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3419	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
3420	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3421	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3422	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
3423	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
3424	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
3425	ltr(gsel_tss);
3426
3427	/* make a call gate to reenter kernel with */
3428	gdp = &ldt[LSYS5CALLS_SEL].gd;
3429
3430	x = (int) &IDTVEC(lcall_syscall);
3431	gdp->gd_looffset = x;
3432	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
3433	gdp->gd_stkcpy = 1;
3434	gdp->gd_type = SDT_SYS386CGT;
3435	gdp->gd_dpl = SEL_UPL;
3436	gdp->gd_p = 1;
3437	gdp->gd_hioffset = x >> 16;
3438
3439	/* XXX does this work? */
3440	/* XXX yes! */
3441	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
3442	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
3443
3444	/* transfer to user mode */
3445
3446	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3447	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3448
3449	/* setup proc 0's pcb */
3450	thread0.td_pcb->pcb_flags = 0;
3451#if defined(PAE) || defined(PAE_TABLES)
3452	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3453#else
3454	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3455#endif
3456	thread0.td_pcb->pcb_ext = 0;
3457	thread0.td_frame = &proc0_tf;
3458
3459	cpu_probe_amdc1e();
3460
3461#ifdef FDT
3462	x86_init_fdt();
3463#endif
3464
3465	/* Location of kernel stack for locore */
3466	return ((register_t)thread0.td_pcb);
3467}
3468#endif
3469
3470void
3471cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
3472{
3473
3474	pcpu->pc_acpi_id = 0xffffffff;
3475}
3476
3477#ifndef PC98
3478static int
3479smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
3480{
3481	struct bios_smap *smapbase;
3482	struct bios_smap_xattr smap;
3483	caddr_t kmdp;
3484	uint32_t *smapattr;
3485	int count, error, i;
3486
3487	/* Retrieve the system memory map from the loader. */
3488	kmdp = preload_search_by_type("elf kernel");
3489	if (kmdp == NULL)
3490		kmdp = preload_search_by_type("elf32 kernel");
3491	if (kmdp == NULL)
3492		return (0);
3493	smapbase = (struct bios_smap *)preload_search_info(kmdp,
3494	    MODINFO_METADATA | MODINFOMD_SMAP);
3495	if (smapbase == NULL)
3496		return (0);
3497	smapattr = (uint32_t *)preload_search_info(kmdp,
3498	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
3499	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
3500	error = 0;
3501	for (i = 0; i < count; i++) {
3502		smap.base = smapbase[i].base;
3503		smap.length = smapbase[i].length;
3504		smap.type = smapbase[i].type;
3505		if (smapattr != NULL)
3506			smap.xattr = smapattr[i];
3507		else
3508			smap.xattr = 0;
3509		error = SYSCTL_OUT(req, &smap, sizeof(smap));
3510	}
3511	return (error);
3512}
3513SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
3514    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
3515#endif /* !PC98 */
3516
3517void
3518spinlock_enter(void)
3519{
3520	struct thread *td;
3521	register_t flags;
3522
3523	td = curthread;
3524	if (td->td_md.md_spinlock_count == 0) {
3525		flags = intr_disable();
3526		td->td_md.md_spinlock_count = 1;
3527		td->td_md.md_saved_flags = flags;
3528	} else
3529		td->td_md.md_spinlock_count++;
3530	critical_enter();
3531}
3532
3533void
3534spinlock_exit(void)
3535{
3536	struct thread *td;
3537	register_t flags;
3538
3539	td = curthread;
3540	critical_exit();
3541	flags = td->td_md.md_saved_flags;
3542	td->td_md.md_spinlock_count--;
3543	if (td->td_md.md_spinlock_count == 0)
3544		intr_restore(flags);
3545}
3546
3547#if defined(I586_CPU) && !defined(NO_F00F_HACK)
3548static void f00f_hack(void *unused);
3549SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
3550
3551static void
3552f00f_hack(void *unused)
3553{
3554	struct gate_descriptor *new_idt;
3555	vm_offset_t tmp;
3556
3557	if (!has_f00f_bug)
3558		return;
3559
3560	GIANT_REQUIRED;
3561
3562	printf("Intel Pentium detected, installing workaround for F00F bug\n");
3563
3564	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
3565	if (tmp == 0)
3566		panic("kmem_malloc returned 0");
3567
3568	/* Put the problematic entry (#6) at the end of the lower page. */
3569	new_idt = (struct gate_descriptor*)
3570	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
3571	bcopy(idt, new_idt, sizeof(idt0));
3572	r_idt.rd_base = (u_int)new_idt;
3573	lidt(&r_idt);
3574	idt = new_idt;
3575	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
3576}
3577#endif /* defined(I586_CPU) && !NO_F00F_HACK */
3578
3579/*
3580 * Construct a PCB from a trapframe. This is called from kdb_trap() where
3581 * we want to start a backtrace from the function that caused us to enter
3582 * the debugger. We have the context in the trapframe, but base the trace
3583 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
3584 * enough for a backtrace.
3585 */
3586void
3587makectx(struct trapframe *tf, struct pcb *pcb)
3588{
3589
3590	pcb->pcb_edi = tf->tf_edi;
3591	pcb->pcb_esi = tf->tf_esi;
3592	pcb->pcb_ebp = tf->tf_ebp;
3593	pcb->pcb_ebx = tf->tf_ebx;
3594	pcb->pcb_eip = tf->tf_eip;
3595	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
3596}
3597
3598int
3599ptrace_set_pc(struct thread *td, u_long addr)
3600{
3601
3602	td->td_frame->tf_eip = addr;
3603	return (0);
3604}
3605
3606int
3607ptrace_single_step(struct thread *td)
3608{
3609	td->td_frame->tf_eflags |= PSL_T;
3610	return (0);
3611}
3612
3613int
3614ptrace_clear_single_step(struct thread *td)
3615{
3616	td->td_frame->tf_eflags &= ~PSL_T;
3617	return (0);
3618}
3619
3620int
3621fill_regs(struct thread *td, struct reg *regs)
3622{
3623	struct pcb *pcb;
3624	struct trapframe *tp;
3625
3626	tp = td->td_frame;
3627	pcb = td->td_pcb;
3628	regs->r_gs = pcb->pcb_gs;
3629	return (fill_frame_regs(tp, regs));
3630}
3631
3632int
3633fill_frame_regs(struct trapframe *tp, struct reg *regs)
3634{
3635	regs->r_fs = tp->tf_fs;
3636	regs->r_es = tp->tf_es;
3637	regs->r_ds = tp->tf_ds;
3638	regs->r_edi = tp->tf_edi;
3639	regs->r_esi = tp->tf_esi;
3640	regs->r_ebp = tp->tf_ebp;
3641	regs->r_ebx = tp->tf_ebx;
3642	regs->r_edx = tp->tf_edx;
3643	regs->r_ecx = tp->tf_ecx;
3644	regs->r_eax = tp->tf_eax;
3645	regs->r_eip = tp->tf_eip;
3646	regs->r_cs = tp->tf_cs;
3647	regs->r_eflags = tp->tf_eflags;
3648	regs->r_esp = tp->tf_esp;
3649	regs->r_ss = tp->tf_ss;
3650	return (0);
3651}
3652
3653int
3654set_regs(struct thread *td, struct reg *regs)
3655{
3656	struct pcb *pcb;
3657	struct trapframe *tp;
3658
3659	tp = td->td_frame;
3660	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
3661	    !CS_SECURE(regs->r_cs))
3662		return (EINVAL);
3663	pcb = td->td_pcb;
3664	tp->tf_fs = regs->r_fs;
3665	tp->tf_es = regs->r_es;
3666	tp->tf_ds = regs->r_ds;
3667	tp->tf_edi = regs->r_edi;
3668	tp->tf_esi = regs->r_esi;
3669	tp->tf_ebp = regs->r_ebp;
3670	tp->tf_ebx = regs->r_ebx;
3671	tp->tf_edx = regs->r_edx;
3672	tp->tf_ecx = regs->r_ecx;
3673	tp->tf_eax = regs->r_eax;
3674	tp->tf_eip = regs->r_eip;
3675	tp->tf_cs = regs->r_cs;
3676	tp->tf_eflags = regs->r_eflags;
3677	tp->tf_esp = regs->r_esp;
3678	tp->tf_ss = regs->r_ss;
3679	pcb->pcb_gs = regs->r_gs;
3680	return (0);
3681}
3682
3683#ifdef CPU_ENABLE_SSE
3684static void
3685fill_fpregs_xmm(sv_xmm, sv_87)
3686	struct savexmm *sv_xmm;
3687	struct save87 *sv_87;
3688{
3689	register struct env87 *penv_87 = &sv_87->sv_env;
3690	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3691	int i;
3692
3693	bzero(sv_87, sizeof(*sv_87));
3694
3695	/* FPU control/status */
3696	penv_87->en_cw = penv_xmm->en_cw;
3697	penv_87->en_sw = penv_xmm->en_sw;
3698	penv_87->en_tw = penv_xmm->en_tw;
3699	penv_87->en_fip = penv_xmm->en_fip;
3700	penv_87->en_fcs = penv_xmm->en_fcs;
3701	penv_87->en_opcode = penv_xmm->en_opcode;
3702	penv_87->en_foo = penv_xmm->en_foo;
3703	penv_87->en_fos = penv_xmm->en_fos;
3704
3705	/* FPU registers */
3706	for (i = 0; i < 8; ++i)
3707		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
3708}
3709
3710static void
3711set_fpregs_xmm(sv_87, sv_xmm)
3712	struct save87 *sv_87;
3713	struct savexmm *sv_xmm;
3714{
3715	register struct env87 *penv_87 = &sv_87->sv_env;
3716	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3717	int i;
3718
3719	/* FPU control/status */
3720	penv_xmm->en_cw = penv_87->en_cw;
3721	penv_xmm->en_sw = penv_87->en_sw;
3722	penv_xmm->en_tw = penv_87->en_tw;
3723	penv_xmm->en_fip = penv_87->en_fip;
3724	penv_xmm->en_fcs = penv_87->en_fcs;
3725	penv_xmm->en_opcode = penv_87->en_opcode;
3726	penv_xmm->en_foo = penv_87->en_foo;
3727	penv_xmm->en_fos = penv_87->en_fos;
3728
3729	/* FPU registers */
3730	for (i = 0; i < 8; ++i)
3731		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
3732}
3733#endif /* CPU_ENABLE_SSE */
3734
3735int
3736fill_fpregs(struct thread *td, struct fpreg *fpregs)
3737{
3738
3739	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3740	    P_SHOULDSTOP(td->td_proc),
3741	    ("not suspended thread %p", td));
3742#ifdef DEV_NPX
3743	npxgetregs(td);
3744#else
3745	bzero(fpregs, sizeof(*fpregs));
3746#endif
3747#ifdef CPU_ENABLE_SSE
3748	if (cpu_fxsr)
3749		fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
3750		    (struct save87 *)fpregs);
3751	else
3752#endif /* CPU_ENABLE_SSE */
3753		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
3754		    sizeof(*fpregs));
3755	return (0);
3756}
3757
3758int
3759set_fpregs(struct thread *td, struct fpreg *fpregs)
3760{
3761
3762#ifdef CPU_ENABLE_SSE
3763	if (cpu_fxsr)
3764		set_fpregs_xmm((struct save87 *)fpregs,
3765		    &get_pcb_user_save_td(td)->sv_xmm);
3766	else
3767#endif /* CPU_ENABLE_SSE */
3768		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
3769		    sizeof(*fpregs));
3770#ifdef DEV_NPX
3771	npxuserinited(td);
3772#endif
3773	return (0);
3774}
3775
3776/*
3777 * Get machine context.
3778 */
3779int
3780get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3781{
3782	struct trapframe *tp;
3783	struct segment_descriptor *sdp;
3784
3785	tp = td->td_frame;
3786
3787	PROC_LOCK(curthread->td_proc);
3788	mcp->mc_onstack = sigonstack(tp->tf_esp);
3789	PROC_UNLOCK(curthread->td_proc);
3790	mcp->mc_gs = td->td_pcb->pcb_gs;
3791	mcp->mc_fs = tp->tf_fs;
3792	mcp->mc_es = tp->tf_es;
3793	mcp->mc_ds = tp->tf_ds;
3794	mcp->mc_edi = tp->tf_edi;
3795	mcp->mc_esi = tp->tf_esi;
3796	mcp->mc_ebp = tp->tf_ebp;
3797	mcp->mc_isp = tp->tf_isp;
3798	mcp->mc_eflags = tp->tf_eflags;
3799	if (flags & GET_MC_CLEAR_RET) {
3800		mcp->mc_eax = 0;
3801		mcp->mc_edx = 0;
3802		mcp->mc_eflags &= ~PSL_C;
3803	} else {
3804		mcp->mc_eax = tp->tf_eax;
3805		mcp->mc_edx = tp->tf_edx;
3806	}
3807	mcp->mc_ebx = tp->tf_ebx;
3808	mcp->mc_ecx = tp->tf_ecx;
3809	mcp->mc_eip = tp->tf_eip;
3810	mcp->mc_cs = tp->tf_cs;
3811	mcp->mc_esp = tp->tf_esp;
3812	mcp->mc_ss = tp->tf_ss;
3813	mcp->mc_len = sizeof(*mcp);
3814	get_fpcontext(td, mcp, NULL, 0);
3815	sdp = &td->td_pcb->pcb_fsd;
3816	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3817	sdp = &td->td_pcb->pcb_gsd;
3818	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3819	mcp->mc_flags = 0;
3820	mcp->mc_xfpustate = 0;
3821	mcp->mc_xfpustate_len = 0;
3822	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3823	return (0);
3824}
3825
3826/*
3827 * Set machine context.
3828 *
3829 * However, we don't set any but the user modifiable flags, and we won't
3830 * touch the cs selector.
3831 */
3832int
3833set_mcontext(struct thread *td, mcontext_t *mcp)
3834{
3835	struct trapframe *tp;
3836	char *xfpustate;
3837	int eflags, ret;
3838
3839	tp = td->td_frame;
3840	if (mcp->mc_len != sizeof(*mcp) ||
3841	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
3842		return (EINVAL);
3843	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3844	    (tp->tf_eflags & ~PSL_USERCHANGE);
3845	if (mcp->mc_flags & _MC_HASFPXSTATE) {
3846		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
3847		    sizeof(union savefpu))
3848			return (EINVAL);
3849		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
3850		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
3851		    mcp->mc_xfpustate_len);
3852		if (ret != 0)
3853			return (ret);
3854	} else
3855		xfpustate = NULL;
3856	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
3857	if (ret != 0)
3858		return (ret);
3859	tp->tf_fs = mcp->mc_fs;
3860	tp->tf_es = mcp->mc_es;
3861	tp->tf_ds = mcp->mc_ds;
3862	tp->tf_edi = mcp->mc_edi;
3863	tp->tf_esi = mcp->mc_esi;
3864	tp->tf_ebp = mcp->mc_ebp;
3865	tp->tf_ebx = mcp->mc_ebx;
3866	tp->tf_edx = mcp->mc_edx;
3867	tp->tf_ecx = mcp->mc_ecx;
3868	tp->tf_eax = mcp->mc_eax;
3869	tp->tf_eip = mcp->mc_eip;
3870	tp->tf_eflags = eflags;
3871	tp->tf_esp = mcp->mc_esp;
3872	tp->tf_ss = mcp->mc_ss;
3873	td->td_pcb->pcb_gs = mcp->mc_gs;
3874	return (0);
3875}
3876
3877static void
3878get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
3879    size_t xfpusave_len)
3880{
3881#ifdef CPU_ENABLE_SSE
3882	size_t max_len, len;
3883#endif
3884
3885#ifndef DEV_NPX
3886	mcp->mc_fpformat = _MC_FPFMT_NODEV;
3887	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
3888	bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
3889#else
3890	mcp->mc_ownedfp = npxgetregs(td);
3891	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
3892	    sizeof(mcp->mc_fpstate));
3893	mcp->mc_fpformat = npxformat();
3894#ifdef CPU_ENABLE_SSE
3895	if (!use_xsave || xfpusave_len == 0)
3896		return;
3897	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
3898	len = xfpusave_len;
3899	if (len > max_len) {
3900		len = max_len;
3901		bzero(xfpusave + max_len, len - max_len);
3902	}
3903	mcp->mc_flags |= _MC_HASFPXSTATE;
3904	mcp->mc_xfpustate_len = len;
3905	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3906#endif
3907#endif
3908}
3909
3910static int
3911set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3912    size_t xfpustate_len)
3913{
3914	union savefpu *fpstate;
3915	int error;
3916
3917	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3918		return (0);
3919	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3920	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3921		return (EINVAL);
3922	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3923		/* We don't care what state is left in the FPU or PCB. */
3924		fpstate_drop(td);
3925		error = 0;
3926	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3927	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3928#ifdef DEV_NPX
3929		fpstate = (union savefpu *)&mcp->mc_fpstate;
3930#ifdef CPU_ENABLE_SSE
3931		if (cpu_fxsr)
3932			fpstate->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
3933#endif
3934		error = npxsetregs(td, fpstate, xfpustate, xfpustate_len);
3935#else
3936		error = EINVAL;
3937#endif
3938	} else
3939		return (EINVAL);
3940	return (error);
3941}
3942
3943static void
3944fpstate_drop(struct thread *td)
3945{
3946
3947	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3948	critical_enter();
3949#ifdef DEV_NPX
3950	if (PCPU_GET(fpcurthread) == td)
3951		npxdrop();
3952#endif
3953	/*
3954	 * XXX force a full drop of the npx.  The above only drops it if we
3955	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3956	 *
3957	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3958	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3959	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3960	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3961	 * have too many layers.
3962	 */
3963	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3964	    PCB_NPXUSERINITDONE);
3965	critical_exit();
3966}
3967
3968int
3969fill_dbregs(struct thread *td, struct dbreg *dbregs)
3970{
3971	struct pcb *pcb;
3972
3973	if (td == NULL) {
3974		dbregs->dr[0] = rdr0();
3975		dbregs->dr[1] = rdr1();
3976		dbregs->dr[2] = rdr2();
3977		dbregs->dr[3] = rdr3();
3978		dbregs->dr[4] = rdr4();
3979		dbregs->dr[5] = rdr5();
3980		dbregs->dr[6] = rdr6();
3981		dbregs->dr[7] = rdr7();
3982	} else {
3983		pcb = td->td_pcb;
3984		dbregs->dr[0] = pcb->pcb_dr0;
3985		dbregs->dr[1] = pcb->pcb_dr1;
3986		dbregs->dr[2] = pcb->pcb_dr2;
3987		dbregs->dr[3] = pcb->pcb_dr3;
3988		dbregs->dr[4] = 0;
3989		dbregs->dr[5] = 0;
3990		dbregs->dr[6] = pcb->pcb_dr6;
3991		dbregs->dr[7] = pcb->pcb_dr7;
3992	}
3993	return (0);
3994}
3995
3996int
3997set_dbregs(struct thread *td, struct dbreg *dbregs)
3998{
3999	struct pcb *pcb;
4000	int i;
4001
4002	if (td == NULL) {
4003		load_dr0(dbregs->dr[0]);
4004		load_dr1(dbregs->dr[1]);
4005		load_dr2(dbregs->dr[2]);
4006		load_dr3(dbregs->dr[3]);
4007		load_dr4(dbregs->dr[4]);
4008		load_dr5(dbregs->dr[5]);
4009		load_dr6(dbregs->dr[6]);
4010		load_dr7(dbregs->dr[7]);
4011	} else {
4012		/*
4013		 * Don't let an illegal value for dr7 get set.	Specifically,
4014		 * check for undefined settings.  Setting these bit patterns
4015		 * result in undefined behaviour and can lead to an unexpected
4016		 * TRCTRAP.
4017		 */
4018		for (i = 0; i < 4; i++) {
4019			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
4020				return (EINVAL);
4021			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
4022				return (EINVAL);
4023		}
4024
4025		pcb = td->td_pcb;
4026
4027		/*
4028		 * Don't let a process set a breakpoint that is not within the
4029		 * process's address space.  If a process could do this, it
4030		 * could halt the system by setting a breakpoint in the kernel
4031		 * (if ddb was enabled).  Thus, we need to check to make sure
4032		 * that no breakpoints are being enabled for addresses outside
4033		 * process's address space.
4034		 *
4035		 * XXX - what about when the watched area of the user's
4036		 * address space is written into from within the kernel
4037		 * ... wouldn't that still cause a breakpoint to be generated
4038		 * from within kernel mode?
4039		 */
4040
4041		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
4042			/* dr0 is enabled */
4043			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
4044				return (EINVAL);
4045		}
4046
4047		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
4048			/* dr1 is enabled */
4049			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
4050				return (EINVAL);
4051		}
4052
4053		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
4054			/* dr2 is enabled */
4055			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
4056				return (EINVAL);
4057		}
4058
4059		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
4060			/* dr3 is enabled */
4061			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
4062				return (EINVAL);
4063		}
4064
4065		pcb->pcb_dr0 = dbregs->dr[0];
4066		pcb->pcb_dr1 = dbregs->dr[1];
4067		pcb->pcb_dr2 = dbregs->dr[2];
4068		pcb->pcb_dr3 = dbregs->dr[3];
4069		pcb->pcb_dr6 = dbregs->dr[6];
4070		pcb->pcb_dr7 = dbregs->dr[7];
4071
4072		pcb->pcb_flags |= PCB_DBREGS;
4073	}
4074
4075	return (0);
4076}
4077
4078/*
4079 * Return > 0 if a hardware breakpoint has been hit, and the
4080 * breakpoint was in user space.  Return 0, otherwise.
4081 */
4082int
4083user_dbreg_trap(void)
4084{
4085        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
4086        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
4087        int nbp;            /* number of breakpoints that triggered */
4088        caddr_t addr[4];    /* breakpoint addresses */
4089        int i;
4090
4091        dr7 = rdr7();
4092        if ((dr7 & 0x000000ff) == 0) {
4093                /*
4094                 * all GE and LE bits in the dr7 register are zero,
4095                 * thus the trap couldn't have been caused by the
4096                 * hardware debug registers
4097                 */
4098                return 0;
4099        }
4100
4101        nbp = 0;
4102        dr6 = rdr6();
4103        bp = dr6 & 0x0000000f;
4104
4105        if (!bp) {
4106                /*
4107                 * None of the breakpoint bits are set meaning this
4108                 * trap was not caused by any of the debug registers
4109                 */
4110                return 0;
4111        }
4112
4113        /*
4114         * at least one of the breakpoints were hit, check to see
4115         * which ones and if any of them are user space addresses
4116         */
4117
4118        if (bp & 0x01) {
4119                addr[nbp++] = (caddr_t)rdr0();
4120        }
4121        if (bp & 0x02) {
4122                addr[nbp++] = (caddr_t)rdr1();
4123        }
4124        if (bp & 0x04) {
4125                addr[nbp++] = (caddr_t)rdr2();
4126        }
4127        if (bp & 0x08) {
4128                addr[nbp++] = (caddr_t)rdr3();
4129        }
4130
4131        for (i = 0; i < nbp; i++) {
4132                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
4133                        /*
4134                         * addr[i] is in user space
4135                         */
4136                        return nbp;
4137                }
4138        }
4139
4140        /*
4141         * None of the breakpoints are in user space.
4142         */
4143        return 0;
4144}
4145
4146#ifdef KDB
4147
4148/*
4149 * Provide inb() and outb() as functions.  They are normally only available as
4150 * inline functions, thus cannot be called from the debugger.
4151 */
4152
4153/* silence compiler warnings */
4154u_char inb_(u_short);
4155void outb_(u_short, u_char);
4156
4157u_char
4158inb_(u_short port)
4159{
4160	return inb(port);
4161}
4162
4163void
4164outb_(u_short port, u_char data)
4165{
4166	outb(port, data);
4167}
4168
4169#endif /* KDB */
4170