machdep.c revision 280973
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/sys/i386/i386/machdep.c 280973 2015-04-02 01:02:42Z jhb $");
42
43#include "opt_apic.h"
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_npx.h"
56#include "opt_perfmon.h"
57#include "opt_platform.h"
58#include "opt_xbox.h"
59#include "opt_kdtrace.h"
60
61#include <sys/param.h>
62#include <sys/proc.h>
63#include <sys/systm.h>
64#include <sys/bio.h>
65#include <sys/buf.h>
66#include <sys/bus.h>
67#include <sys/callout.h>
68#include <sys/cons.h>
69#include <sys/cpu.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#ifdef PC98
116#include <pc98/pc98/pc98_machdep.h>
117#else
118#include <isa/rtc.h>
119#endif
120
121#include <net/netisr.h>
122
123#include <machine/bootinfo.h>
124#include <machine/clock.h>
125#include <machine/cpu.h>
126#include <machine/cputypes.h>
127#include <machine/intr_machdep.h>
128#include <x86/mca.h>
129#include <machine/md_var.h>
130#include <machine/metadata.h>
131#include <machine/mp_watchdog.h>
132#include <machine/pc/bios.h>
133#include <machine/pcb.h>
134#include <machine/pcb_ext.h>
135#include <machine/proc.h>
136#include <machine/reg.h>
137#include <machine/sigframe.h>
138#include <machine/specialreg.h>
139#include <machine/vm86.h>
140#ifdef PERFMON
141#include <machine/perfmon.h>
142#endif
143#ifdef SMP
144#include <machine/smp.h>
145#endif
146#ifdef FDT
147#include <x86/fdt.h>
148#endif
149
150#ifdef DEV_APIC
151#include <machine/apicvar.h>
152#endif
153
154#ifdef DEV_ISA
155#include <x86/isa/icu.h>
156#endif
157
158#ifdef XBOX
159#include <machine/xbox.h>
160
161int arch_i386_is_xbox = 0;
162uint32_t arch_i386_xbox_memsize = 0;
163#endif
164
165#ifdef XEN
166/* XEN includes */
167#include <xen/xen-os.h>
168#include <xen/hypervisor.h>
169#include <machine/xen/xenvar.h>
170#include <machine/xen/xenfunc.h>
171#include <xen/xen_intr.h>
172
173void Xhypervisor_callback(void);
174void failsafe_callback(void);
175
176extern trap_info_t trap_table[];
177struct proc_ldt default_proc_ldt;
178extern int init_first;
179int running_xen = 1;
180extern unsigned long physfree;
181#endif /* XEN */
182
183/* Sanity check for __curthread() */
184CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
185
186extern register_t init386(int first);
187extern void dblfault_handler(void);
188
189#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
190#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
191
192#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
193#define CPU_ENABLE_SSE
194#endif
195
196static void cpu_startup(void *);
197static void fpstate_drop(struct thread *td);
198static void get_fpcontext(struct thread *td, mcontext_t *mcp,
199    char *xfpusave, size_t xfpusave_len);
200static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
201    char *xfpustate, size_t xfpustate_len);
202#ifdef CPU_ENABLE_SSE
203static void set_fpregs_xmm(struct save87 *, struct savexmm *);
204static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
205#endif /* CPU_ENABLE_SSE */
206SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
207
208#ifdef DDB
209extern vm_offset_t ksym_start, ksym_end;
210#endif
211
212/* Intel ICH registers */
213#define ICH_PMBASE	0x400
214#define ICH_SMI_EN	ICH_PMBASE + 0x30
215
216int	_udatasel, _ucodesel;
217u_int	basemem;
218
219#ifdef PC98
220int	need_pre_dma_flush;	/* If 1, use wbinvd befor DMA transfer. */
221int	need_post_dma_flush;	/* If 1, use invd after DMA transfer. */
222
223static int	ispc98 = 1;
224SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
225#endif
226
227int cold = 1;
228
229#ifdef COMPAT_43
230static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
231#endif
232#ifdef COMPAT_FREEBSD4
233static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
234#endif
235
236long Maxmem = 0;
237long realmem = 0;
238
239#ifdef PAE
240FEATURE(pae, "Physical Address Extensions");
241#endif
242
243/*
244 * The number of PHYSMAP entries must be one less than the number of
245 * PHYSSEG entries because the PHYSMAP entry that spans the largest
246 * physical address that is accessible by ISA DMA is split into two
247 * PHYSSEG entries.
248 */
249#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
250
251vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
252vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
253
254/* must be 2 less so 0 0 can signal end of chunks */
255#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
256#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
257
258struct kva_md_info kmi;
259
260static struct trapframe proc0_tf;
261struct pcpu __pcpu[MAXCPU];
262
263struct mtx icu_lock;
264
265struct mem_range_softc mem_range_softc;
266
267static void
268cpu_startup(dummy)
269	void *dummy;
270{
271	uintmax_t memsize;
272	char *sysenv;
273
274#ifndef PC98
275	/*
276	 * On MacBooks, we need to disallow the legacy USB circuit to
277	 * generate an SMI# because this can cause several problems,
278	 * namely: incorrect CPU frequency detection and failure to
279	 * start the APs.
280	 * We do this by disabling a bit in the SMI_EN (SMI Control and
281	 * Enable register) of the Intel ICH LPC Interface Bridge.
282	 */
283	sysenv = getenv("smbios.system.product");
284	if (sysenv != NULL) {
285		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
286		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
287		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
288		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
289		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
290		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
291		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
292		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
293			if (bootverbose)
294				printf("Disabling LEGACY_USB_EN bit on "
295				    "Intel ICH.\n");
296			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
297		}
298		freeenv(sysenv);
299	}
300#endif /* !PC98 */
301
302	/*
303	 * Good {morning,afternoon,evening,night}.
304	 */
305	startrtclock();
306	printcpuinfo();
307	panicifcpuunsupported();
308#ifdef PERFMON
309	perfmon_init();
310#endif
311
312	/*
313	 * Display physical memory if SMBIOS reports reasonable amount.
314	 */
315	memsize = 0;
316	sysenv = getenv("smbios.memory.enabled");
317	if (sysenv != NULL) {
318		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
319		freeenv(sysenv);
320	}
321	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
322		memsize = ptoa((uintmax_t)Maxmem);
323	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
324	realmem = atop(memsize);
325
326	/*
327	 * Display any holes after the first chunk of extended memory.
328	 */
329	if (bootverbose) {
330		int indx;
331
332		printf("Physical memory chunk(s):\n");
333		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
334			vm_paddr_t size;
335
336			size = phys_avail[indx + 1] - phys_avail[indx];
337			printf(
338			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
339			    (uintmax_t)phys_avail[indx],
340			    (uintmax_t)phys_avail[indx + 1] - 1,
341			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
342		}
343	}
344
345	vm_ksubmap_init(&kmi);
346
347	printf("avail memory = %ju (%ju MB)\n",
348	    ptoa((uintmax_t)cnt.v_free_count),
349	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
350
351	/*
352	 * Set up buffers, so they can be used to read disk labels.
353	 */
354	bufinit();
355	vm_pager_bufferinit();
356#ifndef XEN
357	cpu_setregs();
358#endif
359}
360
361/*
362 * Send an interrupt to process.
363 *
364 * Stack is set up to allow sigcode stored
365 * at top to call routine, followed by call
366 * to sigreturn routine below.  After sigreturn
367 * resets the signal mask, the stack, and the
368 * frame pointer, it returns to the user
369 * specified pc, psl.
370 */
371#ifdef COMPAT_43
372static void
373osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
374{
375	struct osigframe sf, *fp;
376	struct proc *p;
377	struct thread *td;
378	struct sigacts *psp;
379	struct trapframe *regs;
380	int sig;
381	int oonstack;
382
383	td = curthread;
384	p = td->td_proc;
385	PROC_LOCK_ASSERT(p, MA_OWNED);
386	sig = ksi->ksi_signo;
387	psp = p->p_sigacts;
388	mtx_assert(&psp->ps_mtx, MA_OWNED);
389	regs = td->td_frame;
390	oonstack = sigonstack(regs->tf_esp);
391
392	/* Allocate space for the signal handler context. */
393	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
394	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
395		fp = (struct osigframe *)(td->td_sigstk.ss_sp +
396		    td->td_sigstk.ss_size - sizeof(struct osigframe));
397#if defined(COMPAT_43)
398		td->td_sigstk.ss_flags |= SS_ONSTACK;
399#endif
400	} else
401		fp = (struct osigframe *)regs->tf_esp - 1;
402
403	/* Translate the signal if appropriate. */
404	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
405		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
406
407	/* Build the argument list for the signal handler. */
408	sf.sf_signum = sig;
409	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
410	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
411	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
412		/* Signal handler installed with SA_SIGINFO. */
413		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
414		sf.sf_siginfo.si_signo = sig;
415		sf.sf_siginfo.si_code = ksi->ksi_code;
416		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
417		sf.sf_addr = 0;
418	} else {
419		/* Old FreeBSD-style arguments. */
420		sf.sf_arg2 = ksi->ksi_code;
421		sf.sf_addr = (register_t)ksi->ksi_addr;
422		sf.sf_ahu.sf_handler = catcher;
423	}
424	mtx_unlock(&psp->ps_mtx);
425	PROC_UNLOCK(p);
426
427	/* Save most if not all of trap frame. */
428	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
429	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
430	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
431	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
432	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
433	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
434	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
435	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
436	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
437	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
438	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
439	sf.sf_siginfo.si_sc.sc_gs = rgs();
440	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
441
442	/* Build the signal context to be used by osigreturn(). */
443	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
444	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
445	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
446	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
447	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
448	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
449	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
450	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
451
452	/*
453	 * If we're a vm86 process, we want to save the segment registers.
454	 * We also change eflags to be our emulated eflags, not the actual
455	 * eflags.
456	 */
457	if (regs->tf_eflags & PSL_VM) {
458		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
459		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
460		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
461
462		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
463		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
464		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
465		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
466
467		if (vm86->vm86_has_vme == 0)
468			sf.sf_siginfo.si_sc.sc_ps =
469			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
470			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
471
472		/* See sendsig() for comments. */
473		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
474	}
475
476	/*
477	 * Copy the sigframe out to the user's stack.
478	 */
479	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
480#ifdef DEBUG
481		printf("process %ld has trashed its stack\n", (long)p->p_pid);
482#endif
483		PROC_LOCK(p);
484		sigexit(td, SIGILL);
485	}
486
487	regs->tf_esp = (int)fp;
488	if (p->p_sysent->sv_sigcode_base != 0) {
489		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
490		    szosigcode;
491	} else {
492		/* a.out sysentvec does not use shared page */
493		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
494	}
495	regs->tf_eflags &= ~(PSL_T | PSL_D);
496	regs->tf_cs = _ucodesel;
497	regs->tf_ds = _udatasel;
498	regs->tf_es = _udatasel;
499	regs->tf_fs = _udatasel;
500	load_gs(_udatasel);
501	regs->tf_ss = _udatasel;
502	PROC_LOCK(p);
503	mtx_lock(&psp->ps_mtx);
504}
505#endif /* COMPAT_43 */
506
507#ifdef COMPAT_FREEBSD4
508static void
509freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
510{
511	struct sigframe4 sf, *sfp;
512	struct proc *p;
513	struct thread *td;
514	struct sigacts *psp;
515	struct trapframe *regs;
516	int sig;
517	int oonstack;
518
519	td = curthread;
520	p = td->td_proc;
521	PROC_LOCK_ASSERT(p, MA_OWNED);
522	sig = ksi->ksi_signo;
523	psp = p->p_sigacts;
524	mtx_assert(&psp->ps_mtx, MA_OWNED);
525	regs = td->td_frame;
526	oonstack = sigonstack(regs->tf_esp);
527
528	/* Save user context. */
529	bzero(&sf, sizeof(sf));
530	sf.sf_uc.uc_sigmask = *mask;
531	sf.sf_uc.uc_stack = td->td_sigstk;
532	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
533	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
534	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
535	sf.sf_uc.uc_mcontext.mc_gs = rgs();
536	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
537	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
538	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
539	bzero(sf.sf_uc.uc_mcontext.__spare__,
540	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
541	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
542
543	/* Allocate space for the signal handler context. */
544	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
545	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
546		sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
547		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
548#if defined(COMPAT_43)
549		td->td_sigstk.ss_flags |= SS_ONSTACK;
550#endif
551	} else
552		sfp = (struct sigframe4 *)regs->tf_esp - 1;
553
554	/* Translate the signal if appropriate. */
555	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
556		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
557
558	/* Build the argument list for the signal handler. */
559	sf.sf_signum = sig;
560	sf.sf_ucontext = (register_t)&sfp->sf_uc;
561	bzero(&sf.sf_si, sizeof(sf.sf_si));
562	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
563		/* Signal handler installed with SA_SIGINFO. */
564		sf.sf_siginfo = (register_t)&sfp->sf_si;
565		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
566
567		/* Fill in POSIX parts */
568		sf.sf_si.si_signo = sig;
569		sf.sf_si.si_code = ksi->ksi_code;
570		sf.sf_si.si_addr = ksi->ksi_addr;
571	} else {
572		/* Old FreeBSD-style arguments. */
573		sf.sf_siginfo = ksi->ksi_code;
574		sf.sf_addr = (register_t)ksi->ksi_addr;
575		sf.sf_ahu.sf_handler = catcher;
576	}
577	mtx_unlock(&psp->ps_mtx);
578	PROC_UNLOCK(p);
579
580	/*
581	 * If we're a vm86 process, we want to save the segment registers.
582	 * We also change eflags to be our emulated eflags, not the actual
583	 * eflags.
584	 */
585	if (regs->tf_eflags & PSL_VM) {
586		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
587		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
588
589		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
590		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
591		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
592		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
593
594		if (vm86->vm86_has_vme == 0)
595			sf.sf_uc.uc_mcontext.mc_eflags =
596			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
597			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
598
599		/*
600		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
601		 * syscalls made by the signal handler.  This just avoids
602		 * wasting time for our lazy fixup of such faults.  PSL_NT
603		 * does nothing in vm86 mode, but vm86 programs can set it
604		 * almost legitimately in probes for old cpu types.
605		 */
606		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
607	}
608
609	/*
610	 * Copy the sigframe out to the user's stack.
611	 */
612	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
613#ifdef DEBUG
614		printf("process %ld has trashed its stack\n", (long)p->p_pid);
615#endif
616		PROC_LOCK(p);
617		sigexit(td, SIGILL);
618	}
619
620	regs->tf_esp = (int)sfp;
621	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
622	    szfreebsd4_sigcode;
623	regs->tf_eflags &= ~(PSL_T | PSL_D);
624	regs->tf_cs = _ucodesel;
625	regs->tf_ds = _udatasel;
626	regs->tf_es = _udatasel;
627	regs->tf_fs = _udatasel;
628	regs->tf_ss = _udatasel;
629	PROC_LOCK(p);
630	mtx_lock(&psp->ps_mtx);
631}
632#endif	/* COMPAT_FREEBSD4 */
633
634void
635sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
636{
637	struct sigframe sf, *sfp;
638	struct proc *p;
639	struct thread *td;
640	struct sigacts *psp;
641	char *sp;
642	struct trapframe *regs;
643	struct segment_descriptor *sdp;
644	char *xfpusave;
645	size_t xfpusave_len;
646	int sig;
647	int oonstack;
648
649	td = curthread;
650	p = td->td_proc;
651	PROC_LOCK_ASSERT(p, MA_OWNED);
652	sig = ksi->ksi_signo;
653	psp = p->p_sigacts;
654	mtx_assert(&psp->ps_mtx, MA_OWNED);
655#ifdef COMPAT_FREEBSD4
656	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
657		freebsd4_sendsig(catcher, ksi, mask);
658		return;
659	}
660#endif
661#ifdef COMPAT_43
662	if (SIGISMEMBER(psp->ps_osigset, sig)) {
663		osendsig(catcher, ksi, mask);
664		return;
665	}
666#endif
667	regs = td->td_frame;
668	oonstack = sigonstack(regs->tf_esp);
669
670#ifdef CPU_ENABLE_SSE
671	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
672		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
673		xfpusave = __builtin_alloca(xfpusave_len);
674	} else {
675#else
676	{
677#endif
678		xfpusave_len = 0;
679		xfpusave = NULL;
680	}
681
682	/* Save user context. */
683	bzero(&sf, sizeof(sf));
684	sf.sf_uc.uc_sigmask = *mask;
685	sf.sf_uc.uc_stack = td->td_sigstk;
686	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
687	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
688	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
689	sf.sf_uc.uc_mcontext.mc_gs = rgs();
690	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
691	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
692	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
693	fpstate_drop(td);
694	/*
695	 * Unconditionally fill the fsbase and gsbase into the mcontext.
696	 */
697	sdp = &td->td_pcb->pcb_fsd;
698	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
699	    sdp->sd_lobase;
700	sdp = &td->td_pcb->pcb_gsd;
701	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
702	    sdp->sd_lobase;
703	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
704	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
705	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
706
707	/* Allocate space for the signal handler context. */
708	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
709	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
710		sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
711#if defined(COMPAT_43)
712		td->td_sigstk.ss_flags |= SS_ONSTACK;
713#endif
714	} else
715		sp = (char *)regs->tf_esp - 128;
716	if (xfpusave != NULL) {
717		sp -= xfpusave_len;
718		sp = (char *)((unsigned int)sp & ~0x3F);
719		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
720	}
721	sp -= sizeof(struct sigframe);
722
723	/* Align to 16 bytes. */
724	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
725
726	/* Translate the signal if appropriate. */
727	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
728		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
729
730	/* Build the argument list for the signal handler. */
731	sf.sf_signum = sig;
732	sf.sf_ucontext = (register_t)&sfp->sf_uc;
733	bzero(&sf.sf_si, sizeof(sf.sf_si));
734	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
735		/* Signal handler installed with SA_SIGINFO. */
736		sf.sf_siginfo = (register_t)&sfp->sf_si;
737		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
738
739		/* Fill in POSIX parts */
740		sf.sf_si = ksi->ksi_info;
741		sf.sf_si.si_signo = sig; /* maybe a translated signal */
742	} else {
743		/* Old FreeBSD-style arguments. */
744		sf.sf_siginfo = ksi->ksi_code;
745		sf.sf_addr = (register_t)ksi->ksi_addr;
746		sf.sf_ahu.sf_handler = catcher;
747	}
748	mtx_unlock(&psp->ps_mtx);
749	PROC_UNLOCK(p);
750
751	/*
752	 * If we're a vm86 process, we want to save the segment registers.
753	 * We also change eflags to be our emulated eflags, not the actual
754	 * eflags.
755	 */
756	if (regs->tf_eflags & PSL_VM) {
757		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
758		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
759
760		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
761		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
762		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
763		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
764
765		if (vm86->vm86_has_vme == 0)
766			sf.sf_uc.uc_mcontext.mc_eflags =
767			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
768			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
769
770		/*
771		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
772		 * syscalls made by the signal handler.  This just avoids
773		 * wasting time for our lazy fixup of such faults.  PSL_NT
774		 * does nothing in vm86 mode, but vm86 programs can set it
775		 * almost legitimately in probes for old cpu types.
776		 */
777		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
778	}
779
780	/*
781	 * Copy the sigframe out to the user's stack.
782	 */
783	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
784	    (xfpusave != NULL && copyout(xfpusave,
785	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
786	    != 0)) {
787#ifdef DEBUG
788		printf("process %ld has trashed its stack\n", (long)p->p_pid);
789#endif
790		PROC_LOCK(p);
791		sigexit(td, SIGILL);
792	}
793
794	regs->tf_esp = (int)sfp;
795	regs->tf_eip = p->p_sysent->sv_sigcode_base;
796	if (regs->tf_eip == 0)
797		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
798	regs->tf_eflags &= ~(PSL_T | PSL_D);
799	regs->tf_cs = _ucodesel;
800	regs->tf_ds = _udatasel;
801	regs->tf_es = _udatasel;
802	regs->tf_fs = _udatasel;
803	regs->tf_ss = _udatasel;
804	PROC_LOCK(p);
805	mtx_lock(&psp->ps_mtx);
806}
807
808/*
809 * System call to cleanup state after a signal
810 * has been taken.  Reset signal mask and
811 * stack state from context left by sendsig (above).
812 * Return to previous pc and psl as specified by
813 * context left by sendsig. Check carefully to
814 * make sure that the user has not modified the
815 * state to gain improper privileges.
816 *
817 * MPSAFE
818 */
819#ifdef COMPAT_43
820int
821osigreturn(td, uap)
822	struct thread *td;
823	struct osigreturn_args /* {
824		struct osigcontext *sigcntxp;
825	} */ *uap;
826{
827	struct osigcontext sc;
828	struct trapframe *regs;
829	struct osigcontext *scp;
830	int eflags, error;
831	ksiginfo_t ksi;
832
833	regs = td->td_frame;
834	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
835	if (error != 0)
836		return (error);
837	scp = &sc;
838	eflags = scp->sc_ps;
839	if (eflags & PSL_VM) {
840		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
841		struct vm86_kernel *vm86;
842
843		/*
844		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
845		 * set up the vm86 area, and we can't enter vm86 mode.
846		 */
847		if (td->td_pcb->pcb_ext == 0)
848			return (EINVAL);
849		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
850		if (vm86->vm86_inited == 0)
851			return (EINVAL);
852
853		/* Go back to user mode if both flags are set. */
854		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
855			ksiginfo_init_trap(&ksi);
856			ksi.ksi_signo = SIGBUS;
857			ksi.ksi_code = BUS_OBJERR;
858			ksi.ksi_addr = (void *)regs->tf_eip;
859			trapsignal(td, &ksi);
860		}
861
862		if (vm86->vm86_has_vme) {
863			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
864			    (eflags & VME_USERCHANGE) | PSL_VM;
865		} else {
866			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
867			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
868			    (eflags & VM_USERCHANGE) | PSL_VM;
869		}
870		tf->tf_vm86_ds = scp->sc_ds;
871		tf->tf_vm86_es = scp->sc_es;
872		tf->tf_vm86_fs = scp->sc_fs;
873		tf->tf_vm86_gs = scp->sc_gs;
874		tf->tf_ds = _udatasel;
875		tf->tf_es = _udatasel;
876		tf->tf_fs = _udatasel;
877	} else {
878		/*
879		 * Don't allow users to change privileged or reserved flags.
880		 */
881		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
882	    		return (EINVAL);
883		}
884
885		/*
886		 * Don't allow users to load a valid privileged %cs.  Let the
887		 * hardware check for invalid selectors, excess privilege in
888		 * other selectors, invalid %eip's and invalid %esp's.
889		 */
890		if (!CS_SECURE(scp->sc_cs)) {
891			ksiginfo_init_trap(&ksi);
892			ksi.ksi_signo = SIGBUS;
893			ksi.ksi_code = BUS_OBJERR;
894			ksi.ksi_trapno = T_PROTFLT;
895			ksi.ksi_addr = (void *)regs->tf_eip;
896			trapsignal(td, &ksi);
897			return (EINVAL);
898		}
899		regs->tf_ds = scp->sc_ds;
900		regs->tf_es = scp->sc_es;
901		regs->tf_fs = scp->sc_fs;
902	}
903
904	/* Restore remaining registers. */
905	regs->tf_eax = scp->sc_eax;
906	regs->tf_ebx = scp->sc_ebx;
907	regs->tf_ecx = scp->sc_ecx;
908	regs->tf_edx = scp->sc_edx;
909	regs->tf_esi = scp->sc_esi;
910	regs->tf_edi = scp->sc_edi;
911	regs->tf_cs = scp->sc_cs;
912	regs->tf_ss = scp->sc_ss;
913	regs->tf_isp = scp->sc_isp;
914	regs->tf_ebp = scp->sc_fp;
915	regs->tf_esp = scp->sc_sp;
916	regs->tf_eip = scp->sc_pc;
917	regs->tf_eflags = eflags;
918
919#if defined(COMPAT_43)
920	if (scp->sc_onstack & 1)
921		td->td_sigstk.ss_flags |= SS_ONSTACK;
922	else
923		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
924#endif
925	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
926	    SIGPROCMASK_OLD);
927	return (EJUSTRETURN);
928}
929#endif /* COMPAT_43 */
930
931#ifdef COMPAT_FREEBSD4
932/*
933 * MPSAFE
934 */
935int
936freebsd4_sigreturn(td, uap)
937	struct thread *td;
938	struct freebsd4_sigreturn_args /* {
939		const ucontext4 *sigcntxp;
940	} */ *uap;
941{
942	struct ucontext4 uc;
943	struct trapframe *regs;
944	struct ucontext4 *ucp;
945	int cs, eflags, error;
946	ksiginfo_t ksi;
947
948	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
949	if (error != 0)
950		return (error);
951	ucp = &uc;
952	regs = td->td_frame;
953	eflags = ucp->uc_mcontext.mc_eflags;
954	if (eflags & PSL_VM) {
955		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
956		struct vm86_kernel *vm86;
957
958		/*
959		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
960		 * set up the vm86 area, and we can't enter vm86 mode.
961		 */
962		if (td->td_pcb->pcb_ext == 0)
963			return (EINVAL);
964		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
965		if (vm86->vm86_inited == 0)
966			return (EINVAL);
967
968		/* Go back to user mode if both flags are set. */
969		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
970			ksiginfo_init_trap(&ksi);
971			ksi.ksi_signo = SIGBUS;
972			ksi.ksi_code = BUS_OBJERR;
973			ksi.ksi_addr = (void *)regs->tf_eip;
974			trapsignal(td, &ksi);
975		}
976		if (vm86->vm86_has_vme) {
977			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
978			    (eflags & VME_USERCHANGE) | PSL_VM;
979		} else {
980			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
981			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
982			    (eflags & VM_USERCHANGE) | PSL_VM;
983		}
984		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
985		tf->tf_eflags = eflags;
986		tf->tf_vm86_ds = tf->tf_ds;
987		tf->tf_vm86_es = tf->tf_es;
988		tf->tf_vm86_fs = tf->tf_fs;
989		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
990		tf->tf_ds = _udatasel;
991		tf->tf_es = _udatasel;
992		tf->tf_fs = _udatasel;
993	} else {
994		/*
995		 * Don't allow users to change privileged or reserved flags.
996		 */
997		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
998			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
999			    td->td_proc->p_pid, td->td_name, eflags);
1000	    		return (EINVAL);
1001		}
1002
1003		/*
1004		 * Don't allow users to load a valid privileged %cs.  Let the
1005		 * hardware check for invalid selectors, excess privilege in
1006		 * other selectors, invalid %eip's and invalid %esp's.
1007		 */
1008		cs = ucp->uc_mcontext.mc_cs;
1009		if (!CS_SECURE(cs)) {
1010			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
1011			    td->td_proc->p_pid, td->td_name, cs);
1012			ksiginfo_init_trap(&ksi);
1013			ksi.ksi_signo = SIGBUS;
1014			ksi.ksi_code = BUS_OBJERR;
1015			ksi.ksi_trapno = T_PROTFLT;
1016			ksi.ksi_addr = (void *)regs->tf_eip;
1017			trapsignal(td, &ksi);
1018			return (EINVAL);
1019		}
1020
1021		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1022	}
1023
1024#if defined(COMPAT_43)
1025	if (ucp->uc_mcontext.mc_onstack & 1)
1026		td->td_sigstk.ss_flags |= SS_ONSTACK;
1027	else
1028		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1029#endif
1030	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1031	return (EJUSTRETURN);
1032}
1033#endif	/* COMPAT_FREEBSD4 */
1034
1035/*
1036 * MPSAFE
1037 */
1038int
1039sys_sigreturn(td, uap)
1040	struct thread *td;
1041	struct sigreturn_args /* {
1042		const struct __ucontext *sigcntxp;
1043	} */ *uap;
1044{
1045	ucontext_t uc;
1046	struct proc *p;
1047	struct trapframe *regs;
1048	ucontext_t *ucp;
1049	char *xfpustate;
1050	size_t xfpustate_len;
1051	int cs, eflags, error, ret;
1052	ksiginfo_t ksi;
1053
1054	p = td->td_proc;
1055
1056	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1057	if (error != 0)
1058		return (error);
1059	ucp = &uc;
1060	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
1061		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
1062		    td->td_name, ucp->uc_mcontext.mc_flags);
1063		return (EINVAL);
1064	}
1065	regs = td->td_frame;
1066	eflags = ucp->uc_mcontext.mc_eflags;
1067	if (eflags & PSL_VM) {
1068		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1069		struct vm86_kernel *vm86;
1070
1071		/*
1072		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1073		 * set up the vm86 area, and we can't enter vm86 mode.
1074		 */
1075		if (td->td_pcb->pcb_ext == 0)
1076			return (EINVAL);
1077		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1078		if (vm86->vm86_inited == 0)
1079			return (EINVAL);
1080
1081		/* Go back to user mode if both flags are set. */
1082		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1083			ksiginfo_init_trap(&ksi);
1084			ksi.ksi_signo = SIGBUS;
1085			ksi.ksi_code = BUS_OBJERR;
1086			ksi.ksi_addr = (void *)regs->tf_eip;
1087			trapsignal(td, &ksi);
1088		}
1089
1090		if (vm86->vm86_has_vme) {
1091			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1092			    (eflags & VME_USERCHANGE) | PSL_VM;
1093		} else {
1094			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1095			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1096			    (eflags & VM_USERCHANGE) | PSL_VM;
1097		}
1098		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1099		tf->tf_eflags = eflags;
1100		tf->tf_vm86_ds = tf->tf_ds;
1101		tf->tf_vm86_es = tf->tf_es;
1102		tf->tf_vm86_fs = tf->tf_fs;
1103		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1104		tf->tf_ds = _udatasel;
1105		tf->tf_es = _udatasel;
1106		tf->tf_fs = _udatasel;
1107	} else {
1108		/*
1109		 * Don't allow users to change privileged or reserved flags.
1110		 */
1111		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1112			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1113			    td->td_proc->p_pid, td->td_name, eflags);
1114	    		return (EINVAL);
1115		}
1116
1117		/*
1118		 * Don't allow users to load a valid privileged %cs.  Let the
1119		 * hardware check for invalid selectors, excess privilege in
1120		 * other selectors, invalid %eip's and invalid %esp's.
1121		 */
1122		cs = ucp->uc_mcontext.mc_cs;
1123		if (!CS_SECURE(cs)) {
1124			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1125			    td->td_proc->p_pid, td->td_name, cs);
1126			ksiginfo_init_trap(&ksi);
1127			ksi.ksi_signo = SIGBUS;
1128			ksi.ksi_code = BUS_OBJERR;
1129			ksi.ksi_trapno = T_PROTFLT;
1130			ksi.ksi_addr = (void *)regs->tf_eip;
1131			trapsignal(td, &ksi);
1132			return (EINVAL);
1133		}
1134
1135		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1136			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1137			if (xfpustate_len > cpu_max_ext_state_size -
1138			    sizeof(union savefpu)) {
1139				uprintf(
1140			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1141				    p->p_pid, td->td_name, xfpustate_len);
1142				return (EINVAL);
1143			}
1144			xfpustate = __builtin_alloca(xfpustate_len);
1145			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1146			    xfpustate, xfpustate_len);
1147			if (error != 0) {
1148				uprintf(
1149	"pid %d (%s): sigreturn copying xfpustate failed\n",
1150				    p->p_pid, td->td_name);
1151				return (error);
1152			}
1153		} else {
1154			xfpustate = NULL;
1155			xfpustate_len = 0;
1156		}
1157		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1158		    xfpustate_len);
1159		if (ret != 0)
1160			return (ret);
1161		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1162	}
1163
1164#if defined(COMPAT_43)
1165	if (ucp->uc_mcontext.mc_onstack & 1)
1166		td->td_sigstk.ss_flags |= SS_ONSTACK;
1167	else
1168		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1169#endif
1170
1171	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1172	return (EJUSTRETURN);
1173}
1174
1175/*
1176 * Machine dependent boot() routine
1177 *
1178 * I haven't seen anything to put here yet
1179 * Possibly some stuff might be grafted back here from boot()
1180 */
1181void
1182cpu_boot(int howto)
1183{
1184}
1185
1186/*
1187 * Flush the D-cache for non-DMA I/O so that the I-cache can
1188 * be made coherent later.
1189 */
1190void
1191cpu_flush_dcache(void *ptr, size_t len)
1192{
1193	/* Not applicable */
1194}
1195
1196/* Get current clock frequency for the given cpu id. */
1197int
1198cpu_est_clockrate(int cpu_id, uint64_t *rate)
1199{
1200	uint64_t tsc1, tsc2;
1201	uint64_t acnt, mcnt, perf;
1202	register_t reg;
1203
1204	if (pcpu_find(cpu_id) == NULL || rate == NULL)
1205		return (EINVAL);
1206	if ((cpu_feature & CPUID_TSC) == 0)
1207		return (EOPNOTSUPP);
1208
1209	/*
1210	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
1211	 * DELAY(9) based logic fails.
1212	 */
1213	if (tsc_is_invariant && !tsc_perf_stat)
1214		return (EOPNOTSUPP);
1215
1216#ifdef SMP
1217	if (smp_cpus > 1) {
1218		/* Schedule ourselves on the indicated cpu. */
1219		thread_lock(curthread);
1220		sched_bind(curthread, cpu_id);
1221		thread_unlock(curthread);
1222	}
1223#endif
1224
1225	/* Calibrate by measuring a short delay. */
1226	reg = intr_disable();
1227	if (tsc_is_invariant) {
1228		wrmsr(MSR_MPERF, 0);
1229		wrmsr(MSR_APERF, 0);
1230		tsc1 = rdtsc();
1231		DELAY(1000);
1232		mcnt = rdmsr(MSR_MPERF);
1233		acnt = rdmsr(MSR_APERF);
1234		tsc2 = rdtsc();
1235		intr_restore(reg);
1236		perf = 1000 * acnt / mcnt;
1237		*rate = (tsc2 - tsc1) * perf;
1238	} else {
1239		tsc1 = rdtsc();
1240		DELAY(1000);
1241		tsc2 = rdtsc();
1242		intr_restore(reg);
1243		*rate = (tsc2 - tsc1) * 1000;
1244	}
1245
1246#ifdef SMP
1247	if (smp_cpus > 1) {
1248		thread_lock(curthread);
1249		sched_unbind(curthread);
1250		thread_unlock(curthread);
1251	}
1252#endif
1253
1254	return (0);
1255}
1256
1257#ifdef XEN
1258
1259static void
1260idle_block(void)
1261{
1262
1263	HYPERVISOR_sched_op(SCHEDOP_block, 0);
1264}
1265
1266void
1267cpu_halt(void)
1268{
1269	HYPERVISOR_shutdown(SHUTDOWN_poweroff);
1270}
1271
1272int scheduler_running;
1273
1274static void
1275cpu_idle_hlt(sbintime_t sbt)
1276{
1277
1278	scheduler_running = 1;
1279	enable_intr();
1280	idle_block();
1281}
1282
1283#else
1284/*
1285 * Shutdown the CPU as much as possible
1286 */
1287void
1288cpu_halt(void)
1289{
1290	for (;;)
1291		halt();
1292}
1293
1294#endif
1295
1296void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
1297static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
1298static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
1299TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
1300SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
1301    0, "Use MONITOR/MWAIT for short idle");
1302
1303#define	STATE_RUNNING	0x0
1304#define	STATE_MWAIT	0x1
1305#define	STATE_SLEEPING	0x2
1306
1307#ifndef PC98
1308static void
1309cpu_idle_acpi(sbintime_t sbt)
1310{
1311	int *state;
1312
1313	state = (int *)PCPU_PTR(monitorbuf);
1314	*state = STATE_SLEEPING;
1315
1316	/* See comments in cpu_idle_hlt(). */
1317	disable_intr();
1318	if (sched_runnable())
1319		enable_intr();
1320	else if (cpu_idle_hook)
1321		cpu_idle_hook(sbt);
1322	else
1323		__asm __volatile("sti; hlt");
1324	*state = STATE_RUNNING;
1325}
1326#endif /* !PC98 */
1327
1328#ifndef XEN
1329static void
1330cpu_idle_hlt(sbintime_t sbt)
1331{
1332	int *state;
1333
1334	state = (int *)PCPU_PTR(monitorbuf);
1335	*state = STATE_SLEEPING;
1336
1337	/*
1338	 * Since we may be in a critical section from cpu_idle(), if
1339	 * an interrupt fires during that critical section we may have
1340	 * a pending preemption.  If the CPU halts, then that thread
1341	 * may not execute until a later interrupt awakens the CPU.
1342	 * To handle this race, check for a runnable thread after
1343	 * disabling interrupts and immediately return if one is
1344	 * found.  Also, we must absolutely guarentee that hlt is
1345	 * the next instruction after sti.  This ensures that any
1346	 * interrupt that fires after the call to disable_intr() will
1347	 * immediately awaken the CPU from hlt.  Finally, please note
1348	 * that on x86 this works fine because of interrupts enabled only
1349	 * after the instruction following sti takes place, while IF is set
1350	 * to 1 immediately, allowing hlt instruction to acknowledge the
1351	 * interrupt.
1352	 */
1353	disable_intr();
1354	if (sched_runnable())
1355		enable_intr();
1356	else
1357		__asm __volatile("sti; hlt");
1358	*state = STATE_RUNNING;
1359}
1360#endif
1361
1362/*
1363 * MWAIT cpu power states.  Lower 4 bits are sub-states.
1364 */
1365#define	MWAIT_C0	0xf0
1366#define	MWAIT_C1	0x00
1367#define	MWAIT_C2	0x10
1368#define	MWAIT_C3	0x20
1369#define	MWAIT_C4	0x30
1370
1371static void
1372cpu_idle_mwait(sbintime_t sbt)
1373{
1374	int *state;
1375
1376	state = (int *)PCPU_PTR(monitorbuf);
1377	*state = STATE_MWAIT;
1378
1379	/* See comments in cpu_idle_hlt(). */
1380	disable_intr();
1381	if (sched_runnable()) {
1382		enable_intr();
1383		*state = STATE_RUNNING;
1384		return;
1385	}
1386	cpu_monitor(state, 0, 0);
1387	if (*state == STATE_MWAIT)
1388		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
1389	else
1390		enable_intr();
1391	*state = STATE_RUNNING;
1392}
1393
1394static void
1395cpu_idle_spin(sbintime_t sbt)
1396{
1397	int *state;
1398	int i;
1399
1400	state = (int *)PCPU_PTR(monitorbuf);
1401	*state = STATE_RUNNING;
1402
1403	/*
1404	 * The sched_runnable() call is racy but as long as there is
1405	 * a loop missing it one time will have just a little impact if any
1406	 * (and it is much better than missing the check at all).
1407	 */
1408	for (i = 0; i < 1000; i++) {
1409		if (sched_runnable())
1410			return;
1411		cpu_spinwait();
1412	}
1413}
1414
1415/*
1416 * C1E renders the local APIC timer dead, so we disable it by
1417 * reading the Interrupt Pending Message register and clearing
1418 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
1419 *
1420 * Reference:
1421 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
1422 *   #32559 revision 3.00+
1423 */
1424#define	MSR_AMDK8_IPM		0xc0010055
1425#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
1426#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
1427#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
1428
1429static void
1430cpu_probe_amdc1e(void)
1431{
1432
1433	/*
1434	 * Detect the presence of C1E capability mostly on latest
1435	 * dual-cores (or future) k8 family.
1436	 */
1437	if (cpu_vendor_id == CPU_VENDOR_AMD &&
1438	    (cpu_id & 0x00000f00) == 0x00000f00 &&
1439	    (cpu_id & 0x0fff0000) >=  0x00040000) {
1440		cpu_ident_amdc1e = 1;
1441	}
1442}
1443
1444#if defined(PC98) || defined(XEN)
1445void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
1446#else
1447void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
1448#endif
1449
1450void
1451cpu_idle(int busy)
1452{
1453#ifndef XEN
1454	uint64_t msr;
1455#endif
1456	sbintime_t sbt = -1;
1457
1458	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
1459	    busy, curcpu);
1460#if defined(MP_WATCHDOG) && !defined(XEN)
1461	ap_watchdog(PCPU_GET(cpuid));
1462#endif
1463#ifndef XEN
1464	/* If we are busy - try to use fast methods. */
1465	if (busy) {
1466		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
1467			cpu_idle_mwait(busy);
1468			goto out;
1469		}
1470	}
1471#endif
1472
1473	/* If we have time - switch timers into idle mode. */
1474	if (!busy) {
1475		critical_enter();
1476		sbt = cpu_idleclock();
1477	}
1478
1479#ifndef XEN
1480	/* Apply AMD APIC timer C1E workaround. */
1481	if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
1482		msr = rdmsr(MSR_AMDK8_IPM);
1483		if (msr & AMDK8_CMPHALT)
1484			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
1485	}
1486#endif
1487
1488	/* Call main idle method. */
1489	cpu_idle_fn(sbt);
1490
1491	/* Switch timers mack into active mode. */
1492	if (!busy) {
1493		cpu_activeclock();
1494		critical_exit();
1495	}
1496#ifndef XEN
1497out:
1498#endif
1499	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
1500	    busy, curcpu);
1501}
1502
1503int
1504cpu_idle_wakeup(int cpu)
1505{
1506	struct pcpu *pcpu;
1507	int *state;
1508
1509	pcpu = pcpu_find(cpu);
1510	state = (int *)pcpu->pc_monitorbuf;
1511	/*
1512	 * This doesn't need to be atomic since missing the race will
1513	 * simply result in unnecessary IPIs.
1514	 */
1515	if (*state == STATE_SLEEPING)
1516		return (0);
1517	if (*state == STATE_MWAIT)
1518		*state = STATE_RUNNING;
1519	return (1);
1520}
1521
1522/*
1523 * Ordered by speed/power consumption.
1524 */
1525struct {
1526	void	*id_fn;
1527	char	*id_name;
1528} idle_tbl[] = {
1529	{ cpu_idle_spin, "spin" },
1530	{ cpu_idle_mwait, "mwait" },
1531	{ cpu_idle_hlt, "hlt" },
1532#ifndef PC98
1533	{ cpu_idle_acpi, "acpi" },
1534#endif
1535	{ NULL, NULL }
1536};
1537
1538static int
1539idle_sysctl_available(SYSCTL_HANDLER_ARGS)
1540{
1541	char *avail, *p;
1542	int error;
1543	int i;
1544
1545	avail = malloc(256, M_TEMP, M_WAITOK);
1546	p = avail;
1547	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1548		if (strstr(idle_tbl[i].id_name, "mwait") &&
1549		    (cpu_feature2 & CPUID2_MON) == 0)
1550			continue;
1551#ifndef PC98
1552		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1553		    cpu_idle_hook == NULL)
1554			continue;
1555#endif
1556		p += sprintf(p, "%s%s", p != avail ? ", " : "",
1557		    idle_tbl[i].id_name);
1558	}
1559	error = sysctl_handle_string(oidp, avail, 0, req);
1560	free(avail, M_TEMP);
1561	return (error);
1562}
1563
1564SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
1565    0, 0, idle_sysctl_available, "A", "list of available idle functions");
1566
1567static int
1568idle_sysctl(SYSCTL_HANDLER_ARGS)
1569{
1570	char buf[16];
1571	int error;
1572	char *p;
1573	int i;
1574
1575	p = "unknown";
1576	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1577		if (idle_tbl[i].id_fn == cpu_idle_fn) {
1578			p = idle_tbl[i].id_name;
1579			break;
1580		}
1581	}
1582	strncpy(buf, p, sizeof(buf));
1583	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
1584	if (error != 0 || req->newptr == NULL)
1585		return (error);
1586	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1587		if (strstr(idle_tbl[i].id_name, "mwait") &&
1588		    (cpu_feature2 & CPUID2_MON) == 0)
1589			continue;
1590#ifndef PC98
1591		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1592		    cpu_idle_hook == NULL)
1593			continue;
1594#endif
1595		if (strcmp(idle_tbl[i].id_name, buf))
1596			continue;
1597		cpu_idle_fn = idle_tbl[i].id_fn;
1598		return (0);
1599	}
1600	return (EINVAL);
1601}
1602
1603SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
1604    idle_sysctl, "A", "currently selected idle function");
1605
1606/*
1607 * Reset registers to default values on exec.
1608 */
1609void
1610exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1611{
1612	struct trapframe *regs = td->td_frame;
1613	struct pcb *pcb = td->td_pcb;
1614
1615	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1616	pcb->pcb_gs = _udatasel;
1617	load_gs(_udatasel);
1618
1619	mtx_lock_spin(&dt_lock);
1620	if (td->td_proc->p_md.md_ldt)
1621		user_ldt_free(td);
1622	else
1623		mtx_unlock_spin(&dt_lock);
1624
1625	bzero((char *)regs, sizeof(struct trapframe));
1626	regs->tf_eip = imgp->entry_addr;
1627	regs->tf_esp = stack;
1628	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1629	regs->tf_ss = _udatasel;
1630	regs->tf_ds = _udatasel;
1631	regs->tf_es = _udatasel;
1632	regs->tf_fs = _udatasel;
1633	regs->tf_cs = _ucodesel;
1634
1635	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1636	regs->tf_ebx = imgp->ps_strings;
1637
1638        /*
1639         * Reset the hardware debug registers if they were in use.
1640         * They won't have any meaning for the newly exec'd process.
1641         */
1642        if (pcb->pcb_flags & PCB_DBREGS) {
1643                pcb->pcb_dr0 = 0;
1644                pcb->pcb_dr1 = 0;
1645                pcb->pcb_dr2 = 0;
1646                pcb->pcb_dr3 = 0;
1647                pcb->pcb_dr6 = 0;
1648                pcb->pcb_dr7 = 0;
1649                if (pcb == curpcb) {
1650		        /*
1651			 * Clear the debug registers on the running
1652			 * CPU, otherwise they will end up affecting
1653			 * the next process we switch to.
1654			 */
1655		        reset_dbregs();
1656                }
1657		pcb->pcb_flags &= ~PCB_DBREGS;
1658        }
1659
1660	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1661
1662	/*
1663	 * Drop the FP state if we hold it, so that the process gets a
1664	 * clean FP state if it uses the FPU again.
1665	 */
1666	fpstate_drop(td);
1667
1668	/*
1669	 * XXX - Linux emulator
1670	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1671	 * on it.
1672	 */
1673	td->td_retval[1] = 0;
1674}
1675
1676void
1677cpu_setregs(void)
1678{
1679	unsigned int cr0;
1680
1681	cr0 = rcr0();
1682
1683	/*
1684	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1685	 *
1686	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1687	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1688	 * bit to control the trap, because setting the CR0_EM bit does
1689	 * not cause WAIT instructions to trap.  It's important to trap
1690	 * WAIT instructions - otherwise the "wait" variants of no-wait
1691	 * control instructions would degenerate to the "no-wait" variants
1692	 * after FP context switches but work correctly otherwise.  It's
1693	 * particularly important to trap WAITs when there is no NPX -
1694	 * otherwise the "wait" variants would always degenerate.
1695	 *
1696	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1697	 * Setting it should fail or do nothing on lesser processors.
1698	 */
1699	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1700	load_cr0(cr0);
1701	load_gs(_udatasel);
1702}
1703
1704u_long bootdev;		/* not a struct cdev *- encoding is different */
1705SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1706	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1707
1708static char bootmethod[16] = "BIOS";
1709SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1710    "System firmware boot method");
1711
1712/*
1713 * Initialize 386 and configure to run kernel
1714 */
1715
1716/*
1717 * Initialize segments & interrupt table
1718 */
1719
1720int _default_ldt;
1721
1722#ifdef XEN
1723union descriptor *gdt;
1724union descriptor *ldt;
1725#else
1726union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1727union descriptor ldt[NLDT];		/* local descriptor table */
1728#endif
1729static struct gate_descriptor idt0[NIDT];
1730struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1731struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1732struct mtx dt_lock;			/* lock for GDT and LDT */
1733
1734static struct i386tss dblfault_tss;
1735static char dblfault_stack[PAGE_SIZE];
1736
1737extern  vm_offset_t	proc0kstack;
1738
1739
1740/*
1741 * software prototypes -- in more palatable form.
1742 *
1743 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1744 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1745 */
1746struct soft_segment_descriptor gdt_segs[] = {
1747/* GNULL_SEL	0 Null Descriptor */
1748{	.ssd_base = 0x0,
1749	.ssd_limit = 0x0,
1750	.ssd_type = 0,
1751	.ssd_dpl = SEL_KPL,
1752	.ssd_p = 0,
1753	.ssd_xx = 0, .ssd_xx1 = 0,
1754	.ssd_def32 = 0,
1755	.ssd_gran = 0		},
1756/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1757{	.ssd_base = 0x0,
1758	.ssd_limit = 0xfffff,
1759	.ssd_type = SDT_MEMRWA,
1760	.ssd_dpl = SEL_KPL,
1761	.ssd_p = 1,
1762	.ssd_xx = 0, .ssd_xx1 = 0,
1763	.ssd_def32 = 1,
1764	.ssd_gran = 1		},
1765/* GUFS_SEL	2 %fs Descriptor for user */
1766{	.ssd_base = 0x0,
1767	.ssd_limit = 0xfffff,
1768	.ssd_type = SDT_MEMRWA,
1769	.ssd_dpl = SEL_UPL,
1770	.ssd_p = 1,
1771	.ssd_xx = 0, .ssd_xx1 = 0,
1772	.ssd_def32 = 1,
1773	.ssd_gran = 1		},
1774/* GUGS_SEL	3 %gs Descriptor for user */
1775{	.ssd_base = 0x0,
1776	.ssd_limit = 0xfffff,
1777	.ssd_type = SDT_MEMRWA,
1778	.ssd_dpl = SEL_UPL,
1779	.ssd_p = 1,
1780	.ssd_xx = 0, .ssd_xx1 = 0,
1781	.ssd_def32 = 1,
1782	.ssd_gran = 1		},
1783/* GCODE_SEL	4 Code Descriptor for kernel */
1784{	.ssd_base = 0x0,
1785	.ssd_limit = 0xfffff,
1786	.ssd_type = SDT_MEMERA,
1787	.ssd_dpl = SEL_KPL,
1788	.ssd_p = 1,
1789	.ssd_xx = 0, .ssd_xx1 = 0,
1790	.ssd_def32 = 1,
1791	.ssd_gran = 1		},
1792/* GDATA_SEL	5 Data Descriptor for kernel */
1793{	.ssd_base = 0x0,
1794	.ssd_limit = 0xfffff,
1795	.ssd_type = SDT_MEMRWA,
1796	.ssd_dpl = SEL_KPL,
1797	.ssd_p = 1,
1798	.ssd_xx = 0, .ssd_xx1 = 0,
1799	.ssd_def32 = 1,
1800	.ssd_gran = 1		},
1801/* GUCODE_SEL	6 Code Descriptor for user */
1802{	.ssd_base = 0x0,
1803	.ssd_limit = 0xfffff,
1804	.ssd_type = SDT_MEMERA,
1805	.ssd_dpl = SEL_UPL,
1806	.ssd_p = 1,
1807	.ssd_xx = 0, .ssd_xx1 = 0,
1808	.ssd_def32 = 1,
1809	.ssd_gran = 1		},
1810/* GUDATA_SEL	7 Data Descriptor for user */
1811{	.ssd_base = 0x0,
1812	.ssd_limit = 0xfffff,
1813	.ssd_type = SDT_MEMRWA,
1814	.ssd_dpl = SEL_UPL,
1815	.ssd_p = 1,
1816	.ssd_xx = 0, .ssd_xx1 = 0,
1817	.ssd_def32 = 1,
1818	.ssd_gran = 1		},
1819/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1820{	.ssd_base = 0x400,
1821	.ssd_limit = 0xfffff,
1822	.ssd_type = SDT_MEMRWA,
1823	.ssd_dpl = SEL_KPL,
1824	.ssd_p = 1,
1825	.ssd_xx = 0, .ssd_xx1 = 0,
1826	.ssd_def32 = 1,
1827	.ssd_gran = 1		},
1828#ifndef XEN
1829/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1830{
1831	.ssd_base = 0x0,
1832	.ssd_limit = sizeof(struct i386tss)-1,
1833	.ssd_type = SDT_SYS386TSS,
1834	.ssd_dpl = 0,
1835	.ssd_p = 1,
1836	.ssd_xx = 0, .ssd_xx1 = 0,
1837	.ssd_def32 = 0,
1838	.ssd_gran = 0		},
1839/* GLDT_SEL	10 LDT Descriptor */
1840{	.ssd_base = (int) ldt,
1841	.ssd_limit = sizeof(ldt)-1,
1842	.ssd_type = SDT_SYSLDT,
1843	.ssd_dpl = SEL_UPL,
1844	.ssd_p = 1,
1845	.ssd_xx = 0, .ssd_xx1 = 0,
1846	.ssd_def32 = 0,
1847	.ssd_gran = 0		},
1848/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1849{	.ssd_base = (int) ldt,
1850	.ssd_limit = (512 * sizeof(union descriptor)-1),
1851	.ssd_type = SDT_SYSLDT,
1852	.ssd_dpl = 0,
1853	.ssd_p = 1,
1854	.ssd_xx = 0, .ssd_xx1 = 0,
1855	.ssd_def32 = 0,
1856	.ssd_gran = 0		},
1857/* GPANIC_SEL	12 Panic Tss Descriptor */
1858{	.ssd_base = (int) &dblfault_tss,
1859	.ssd_limit = sizeof(struct i386tss)-1,
1860	.ssd_type = SDT_SYS386TSS,
1861	.ssd_dpl = 0,
1862	.ssd_p = 1,
1863	.ssd_xx = 0, .ssd_xx1 = 0,
1864	.ssd_def32 = 0,
1865	.ssd_gran = 0		},
1866/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1867{	.ssd_base = 0,
1868	.ssd_limit = 0xfffff,
1869	.ssd_type = SDT_MEMERA,
1870	.ssd_dpl = 0,
1871	.ssd_p = 1,
1872	.ssd_xx = 0, .ssd_xx1 = 0,
1873	.ssd_def32 = 0,
1874	.ssd_gran = 1		},
1875/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1876{	.ssd_base = 0,
1877	.ssd_limit = 0xfffff,
1878	.ssd_type = SDT_MEMERA,
1879	.ssd_dpl = 0,
1880	.ssd_p = 1,
1881	.ssd_xx = 0, .ssd_xx1 = 0,
1882	.ssd_def32 = 0,
1883	.ssd_gran = 1		},
1884/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1885{	.ssd_base = 0,
1886	.ssd_limit = 0xfffff,
1887	.ssd_type = SDT_MEMRWA,
1888	.ssd_dpl = 0,
1889	.ssd_p = 1,
1890	.ssd_xx = 0, .ssd_xx1 = 0,
1891	.ssd_def32 = 1,
1892	.ssd_gran = 1		},
1893/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1894{	.ssd_base = 0,
1895	.ssd_limit = 0xfffff,
1896	.ssd_type = SDT_MEMRWA,
1897	.ssd_dpl = 0,
1898	.ssd_p = 1,
1899	.ssd_xx = 0, .ssd_xx1 = 0,
1900	.ssd_def32 = 0,
1901	.ssd_gran = 1		},
1902/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1903{	.ssd_base = 0,
1904	.ssd_limit = 0xfffff,
1905	.ssd_type = SDT_MEMRWA,
1906	.ssd_dpl = 0,
1907	.ssd_p = 1,
1908	.ssd_xx = 0, .ssd_xx1 = 0,
1909	.ssd_def32 = 0,
1910	.ssd_gran = 1		},
1911/* GNDIS_SEL	18 NDIS Descriptor */
1912{	.ssd_base = 0x0,
1913	.ssd_limit = 0x0,
1914	.ssd_type = 0,
1915	.ssd_dpl = 0,
1916	.ssd_p = 0,
1917	.ssd_xx = 0, .ssd_xx1 = 0,
1918	.ssd_def32 = 0,
1919	.ssd_gran = 0		},
1920#endif /* !XEN */
1921};
1922
1923static struct soft_segment_descriptor ldt_segs[] = {
1924	/* Null Descriptor - overwritten by call gate */
1925{	.ssd_base = 0x0,
1926	.ssd_limit = 0x0,
1927	.ssd_type = 0,
1928	.ssd_dpl = 0,
1929	.ssd_p = 0,
1930	.ssd_xx = 0, .ssd_xx1 = 0,
1931	.ssd_def32 = 0,
1932	.ssd_gran = 0		},
1933	/* Null Descriptor - overwritten by call gate */
1934{	.ssd_base = 0x0,
1935	.ssd_limit = 0x0,
1936	.ssd_type = 0,
1937	.ssd_dpl = 0,
1938	.ssd_p = 0,
1939	.ssd_xx = 0, .ssd_xx1 = 0,
1940	.ssd_def32 = 0,
1941	.ssd_gran = 0		},
1942	/* Null Descriptor - overwritten by call gate */
1943{	.ssd_base = 0x0,
1944	.ssd_limit = 0x0,
1945	.ssd_type = 0,
1946	.ssd_dpl = 0,
1947	.ssd_p = 0,
1948	.ssd_xx = 0, .ssd_xx1 = 0,
1949	.ssd_def32 = 0,
1950	.ssd_gran = 0		},
1951	/* Code Descriptor for user */
1952{	.ssd_base = 0x0,
1953	.ssd_limit = 0xfffff,
1954	.ssd_type = SDT_MEMERA,
1955	.ssd_dpl = SEL_UPL,
1956	.ssd_p = 1,
1957	.ssd_xx = 0, .ssd_xx1 = 0,
1958	.ssd_def32 = 1,
1959	.ssd_gran = 1		},
1960	/* Null Descriptor - overwritten by call gate */
1961{	.ssd_base = 0x0,
1962	.ssd_limit = 0x0,
1963	.ssd_type = 0,
1964	.ssd_dpl = 0,
1965	.ssd_p = 0,
1966	.ssd_xx = 0, .ssd_xx1 = 0,
1967	.ssd_def32 = 0,
1968	.ssd_gran = 0		},
1969	/* Data Descriptor for user */
1970{	.ssd_base = 0x0,
1971	.ssd_limit = 0xfffff,
1972	.ssd_type = SDT_MEMRWA,
1973	.ssd_dpl = SEL_UPL,
1974	.ssd_p = 1,
1975	.ssd_xx = 0, .ssd_xx1 = 0,
1976	.ssd_def32 = 1,
1977	.ssd_gran = 1		},
1978};
1979
1980void
1981setidt(idx, func, typ, dpl, selec)
1982	int idx;
1983	inthand_t *func;
1984	int typ;
1985	int dpl;
1986	int selec;
1987{
1988	struct gate_descriptor *ip;
1989
1990	ip = idt + idx;
1991	ip->gd_looffset = (int)func;
1992	ip->gd_selector = selec;
1993	ip->gd_stkcpy = 0;
1994	ip->gd_xx = 0;
1995	ip->gd_type = typ;
1996	ip->gd_dpl = dpl;
1997	ip->gd_p = 1;
1998	ip->gd_hioffset = ((int)func)>>16 ;
1999}
2000
2001extern inthand_t
2002	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
2003	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
2004	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
2005	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
2006	IDTVEC(xmm),
2007#ifdef KDTRACE_HOOKS
2008	IDTVEC(dtrace_ret),
2009#endif
2010#ifdef XENHVM
2011	IDTVEC(xen_intr_upcall),
2012#endif
2013	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
2014
2015#ifdef DDB
2016/*
2017 * Display the index and function name of any IDT entries that don't use
2018 * the default 'rsvd' entry point.
2019 */
2020DB_SHOW_COMMAND(idt, db_show_idt)
2021{
2022	struct gate_descriptor *ip;
2023	int idx;
2024	uintptr_t func;
2025
2026	ip = idt;
2027	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
2028		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
2029		if (func != (uintptr_t)&IDTVEC(rsvd)) {
2030			db_printf("%3d\t", idx);
2031			db_printsym(func, DB_STGY_PROC);
2032			db_printf("\n");
2033		}
2034		ip++;
2035	}
2036}
2037
2038/* Show privileged registers. */
2039DB_SHOW_COMMAND(sysregs, db_show_sysregs)
2040{
2041	uint64_t idtr, gdtr;
2042
2043	idtr = ridt();
2044	db_printf("idtr\t0x%08x/%04x\n",
2045	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
2046	gdtr = rgdt();
2047	db_printf("gdtr\t0x%08x/%04x\n",
2048	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
2049	db_printf("ldtr\t0x%04x\n", rldt());
2050	db_printf("tr\t0x%04x\n", rtr());
2051	db_printf("cr0\t0x%08x\n", rcr0());
2052	db_printf("cr2\t0x%08x\n", rcr2());
2053	db_printf("cr3\t0x%08x\n", rcr3());
2054	db_printf("cr4\t0x%08x\n", rcr4());
2055}
2056#endif
2057
2058void
2059sdtossd(sd, ssd)
2060	struct segment_descriptor *sd;
2061	struct soft_segment_descriptor *ssd;
2062{
2063	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
2064	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
2065	ssd->ssd_type  = sd->sd_type;
2066	ssd->ssd_dpl   = sd->sd_dpl;
2067	ssd->ssd_p     = sd->sd_p;
2068	ssd->ssd_def32 = sd->sd_def32;
2069	ssd->ssd_gran  = sd->sd_gran;
2070}
2071
2072#if !defined(PC98) && !defined(XEN)
2073static int
2074add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
2075{
2076	int i, insert_idx, physmap_idx;
2077
2078	physmap_idx = *physmap_idxp;
2079
2080	if (boothowto & RB_VERBOSE)
2081		printf("SMAP type=%02x base=%016llx len=%016llx\n",
2082		    smap->type, smap->base, smap->length);
2083
2084	if (smap->type != SMAP_TYPE_MEMORY)
2085		return (1);
2086
2087	if (smap->length == 0)
2088		return (1);
2089
2090#ifndef PAE
2091	if (smap->base > 0xffffffff) {
2092		printf("%uK of memory above 4GB ignored\n",
2093		    (u_int)(smap->length / 1024));
2094		return (1);
2095	}
2096#endif
2097
2098	/*
2099	 * Find insertion point while checking for overlap.  Start off by
2100	 * assuming the new entry will be added to the end.
2101	 */
2102	insert_idx = physmap_idx + 2;
2103	for (i = 0; i <= physmap_idx; i += 2) {
2104		if (smap->base < physmap[i + 1]) {
2105			if (smap->base + smap->length <= physmap[i]) {
2106				insert_idx = i;
2107				break;
2108			}
2109			if (boothowto & RB_VERBOSE)
2110				printf(
2111		    "Overlapping memory regions, ignoring second region\n");
2112			return (1);
2113		}
2114	}
2115
2116	/* See if we can prepend to the next entry. */
2117	if (insert_idx <= physmap_idx &&
2118	    smap->base + smap->length == physmap[insert_idx]) {
2119		physmap[insert_idx] = smap->base;
2120		return (1);
2121	}
2122
2123	/* See if we can append to the previous entry. */
2124	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
2125		physmap[insert_idx - 1] += smap->length;
2126		return (1);
2127	}
2128
2129	physmap_idx += 2;
2130	*physmap_idxp = physmap_idx;
2131	if (physmap_idx == PHYSMAP_SIZE) {
2132		printf(
2133		"Too many segments in the physical address map, giving up\n");
2134		return (0);
2135	}
2136
2137	/*
2138	 * Move the last 'N' entries down to make room for the new
2139	 * entry if needed.
2140	 */
2141	for (i = physmap_idx; i > insert_idx; i -= 2) {
2142		physmap[i] = physmap[i - 2];
2143		physmap[i + 1] = physmap[i - 1];
2144	}
2145
2146	/* Insert the new entry. */
2147	physmap[insert_idx] = smap->base;
2148	physmap[insert_idx + 1] = smap->base + smap->length;
2149	return (1);
2150}
2151#endif /* !PC98 && !XEN */
2152
2153#ifndef XEN
2154static void
2155basemem_setup(void)
2156{
2157	vm_paddr_t pa;
2158	pt_entry_t *pte;
2159	int i;
2160
2161	if (basemem > 640) {
2162		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
2163			basemem);
2164		basemem = 640;
2165	}
2166
2167	/*
2168	 * XXX if biosbasemem is now < 640, there is a `hole'
2169	 * between the end of base memory and the start of
2170	 * ISA memory.  The hole may be empty or it may
2171	 * contain BIOS code or data.  Map it read/write so
2172	 * that the BIOS can write to it.  (Memory from 0 to
2173	 * the physical end of the kernel is mapped read-only
2174	 * to begin with and then parts of it are remapped.
2175	 * The parts that aren't remapped form holes that
2176	 * remain read-only and are unused by the kernel.
2177	 * The base memory area is below the physical end of
2178	 * the kernel and right now forms a read-only hole.
2179	 * The part of it from PAGE_SIZE to
2180	 * (trunc_page(biosbasemem * 1024) - 1) will be
2181	 * remapped and used by the kernel later.)
2182	 *
2183	 * This code is similar to the code used in
2184	 * pmap_mapdev, but since no memory needs to be
2185	 * allocated we simply change the mapping.
2186	 */
2187	for (pa = trunc_page(basemem * 1024);
2188	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
2189		pmap_kenter(KERNBASE + pa, pa);
2190
2191	/*
2192	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
2193	 * the vm86 page table so that vm86 can scribble on them using
2194	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
2195	 * page 0, at least as initialized here?
2196	 */
2197	pte = (pt_entry_t *)vm86paddr;
2198	for (i = basemem / 4; i < 160; i++)
2199		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
2200}
2201#endif /* !XEN */
2202
2203/*
2204 * Populate the (physmap) array with base/bound pairs describing the
2205 * available physical memory in the system, then test this memory and
2206 * build the phys_avail array describing the actually-available memory.
2207 *
2208 * If we cannot accurately determine the physical memory map, then use
2209 * value from the 0xE801 call, and failing that, the RTC.
2210 *
2211 * Total memory size may be set by the kernel environment variable
2212 * hw.physmem or the compile-time define MAXMEM.
2213 *
2214 * XXX first should be vm_paddr_t.
2215 */
2216#ifdef PC98
2217static void
2218getmemsize(int first)
2219{
2220	int off, physmap_idx, pa_indx, da_indx;
2221	u_long physmem_tunable, memtest;
2222	vm_paddr_t physmap[PHYSMAP_SIZE];
2223	pt_entry_t *pte;
2224	quad_t dcons_addr, dcons_size;
2225	int i;
2226	int pg_n;
2227	u_int extmem;
2228	u_int under16;
2229	vm_paddr_t pa;
2230
2231	bzero(physmap, sizeof(physmap));
2232
2233	/* XXX - some of EPSON machines can't use PG_N */
2234	pg_n = PG_N;
2235	if (pc98_machine_type & M_EPSON_PC98) {
2236		switch (epson_machine_id) {
2237#ifdef WB_CACHE
2238		default:
2239#endif
2240		case EPSON_PC486_HX:
2241		case EPSON_PC486_HG:
2242		case EPSON_PC486_HA:
2243			pg_n = 0;
2244			break;
2245		}
2246	}
2247
2248	under16 = pc98_getmemsize(&basemem, &extmem);
2249	basemem_setup();
2250
2251	physmap[0] = 0;
2252	physmap[1] = basemem * 1024;
2253	physmap_idx = 2;
2254	physmap[physmap_idx] = 0x100000;
2255	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2256
2257	/*
2258	 * Now, physmap contains a map of physical memory.
2259	 */
2260
2261#ifdef SMP
2262	/* make hole for AP bootstrap code */
2263	physmap[1] = mp_bootaddress(physmap[1]);
2264#endif
2265
2266	/*
2267	 * Maxmem isn't the "maximum memory", it's one larger than the
2268	 * highest page of the physical address space.  It should be
2269	 * called something like "Maxphyspage".  We may adjust this
2270	 * based on ``hw.physmem'' and the results of the memory test.
2271	 */
2272	Maxmem = atop(physmap[physmap_idx + 1]);
2273
2274#ifdef MAXMEM
2275	Maxmem = MAXMEM / 4;
2276#endif
2277
2278	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2279		Maxmem = atop(physmem_tunable);
2280
2281	/*
2282	 * By default keep the memtest enabled.  Use a general name so that
2283	 * one could eventually do more with the code than just disable it.
2284	 */
2285	memtest = 1;
2286	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2287
2288	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2289	    (boothowto & RB_VERBOSE))
2290		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2291
2292	/*
2293	 * If Maxmem has been increased beyond what the system has detected,
2294	 * extend the last memory segment to the new limit.
2295	 */
2296	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2297		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2298
2299	/*
2300	 * We need to divide chunk if Maxmem is larger than 16MB and
2301	 * under 16MB area is not full of memory.
2302	 * (1) system area (15-16MB region) is cut off
2303	 * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
2304	 */
2305	if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
2306		/* 15M - 16M region is cut off, so need to divide chunk */
2307		physmap[physmap_idx + 1] = under16 * 1024;
2308		physmap_idx += 2;
2309		physmap[physmap_idx] = 0x1000000;
2310		physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
2311	}
2312
2313	/* call pmap initialization to make new kernel address space */
2314	pmap_bootstrap(first);
2315
2316	/*
2317	 * Size up each available chunk of physical memory.
2318	 */
2319	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2320	pa_indx = 0;
2321	da_indx = 1;
2322	phys_avail[pa_indx++] = physmap[0];
2323	phys_avail[pa_indx] = physmap[0];
2324	dump_avail[da_indx] = physmap[0];
2325	pte = CMAP3;
2326
2327	/*
2328	 * Get dcons buffer address
2329	 */
2330	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2331	    getenv_quad("dcons.size", &dcons_size) == 0)
2332		dcons_addr = 0;
2333
2334	/*
2335	 * physmap is in bytes, so when converting to page boundaries,
2336	 * round up the start address and round down the end address.
2337	 */
2338	for (i = 0; i <= physmap_idx; i += 2) {
2339		vm_paddr_t end;
2340
2341		end = ptoa((vm_paddr_t)Maxmem);
2342		if (physmap[i + 1] < end)
2343			end = trunc_page(physmap[i + 1]);
2344		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2345			int tmp, page_bad, full;
2346			int *ptr = (int *)CADDR3;
2347
2348			full = FALSE;
2349			/*
2350			 * block out kernel memory as not available.
2351			 */
2352			if (pa >= KERNLOAD && pa < first)
2353				goto do_dump_avail;
2354
2355			/*
2356			 * block out dcons buffer
2357			 */
2358			if (dcons_addr > 0
2359			    && pa >= trunc_page(dcons_addr)
2360			    && pa < dcons_addr + dcons_size)
2361				goto do_dump_avail;
2362
2363			page_bad = FALSE;
2364			if (memtest == 0)
2365				goto skip_memtest;
2366
2367			/*
2368			 * map page into kernel: valid, read/write,non-cacheable
2369			 */
2370			*pte = pa | PG_V | PG_RW | pg_n;
2371			invltlb();
2372
2373			tmp = *(int *)ptr;
2374			/*
2375			 * Test for alternating 1's and 0's
2376			 */
2377			*(volatile int *)ptr = 0xaaaaaaaa;
2378			if (*(volatile int *)ptr != 0xaaaaaaaa)
2379				page_bad = TRUE;
2380			/*
2381			 * Test for alternating 0's and 1's
2382			 */
2383			*(volatile int *)ptr = 0x55555555;
2384			if (*(volatile int *)ptr != 0x55555555)
2385				page_bad = TRUE;
2386			/*
2387			 * Test for all 1's
2388			 */
2389			*(volatile int *)ptr = 0xffffffff;
2390			if (*(volatile int *)ptr != 0xffffffff)
2391				page_bad = TRUE;
2392			/*
2393			 * Test for all 0's
2394			 */
2395			*(volatile int *)ptr = 0x0;
2396			if (*(volatile int *)ptr != 0x0)
2397				page_bad = TRUE;
2398			/*
2399			 * Restore original value.
2400			 */
2401			*(int *)ptr = tmp;
2402
2403skip_memtest:
2404			/*
2405			 * Adjust array of valid/good pages.
2406			 */
2407			if (page_bad == TRUE)
2408				continue;
2409			/*
2410			 * If this good page is a continuation of the
2411			 * previous set of good pages, then just increase
2412			 * the end pointer. Otherwise start a new chunk.
2413			 * Note that "end" points one higher than end,
2414			 * making the range >= start and < end.
2415			 * If we're also doing a speculative memory
2416			 * test and we at or past the end, bump up Maxmem
2417			 * so that we keep going. The first bad page
2418			 * will terminate the loop.
2419			 */
2420			if (phys_avail[pa_indx] == pa) {
2421				phys_avail[pa_indx] += PAGE_SIZE;
2422			} else {
2423				pa_indx++;
2424				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2425					printf(
2426		"Too many holes in the physical address space, giving up\n");
2427					pa_indx--;
2428					full = TRUE;
2429					goto do_dump_avail;
2430				}
2431				phys_avail[pa_indx++] = pa;	/* start */
2432				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2433			}
2434			physmem++;
2435do_dump_avail:
2436			if (dump_avail[da_indx] == pa) {
2437				dump_avail[da_indx] += PAGE_SIZE;
2438			} else {
2439				da_indx++;
2440				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2441					da_indx--;
2442					goto do_next;
2443				}
2444				dump_avail[da_indx++] = pa;	/* start */
2445				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2446			}
2447do_next:
2448			if (full)
2449				break;
2450		}
2451	}
2452	*pte = 0;
2453	invltlb();
2454
2455	/*
2456	 * XXX
2457	 * The last chunk must contain at least one page plus the message
2458	 * buffer to avoid complicating other code (message buffer address
2459	 * calculation, etc.).
2460	 */
2461	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2462	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2463		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2464		phys_avail[pa_indx--] = 0;
2465		phys_avail[pa_indx--] = 0;
2466	}
2467
2468	Maxmem = atop(phys_avail[pa_indx]);
2469
2470	/* Trim off space for the message buffer. */
2471	phys_avail[pa_indx] -= round_page(msgbufsize);
2472
2473	/* Map the message buffer. */
2474	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2475		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2476		    off);
2477
2478	PT_UPDATES_FLUSH();
2479}
2480#else /* PC98 */
2481static void
2482getmemsize(int first)
2483{
2484	int has_smap, off, physmap_idx, pa_indx, da_indx;
2485	u_long physmem_tunable, memtest;
2486	vm_paddr_t physmap[PHYSMAP_SIZE];
2487	pt_entry_t *pte;
2488	quad_t dcons_addr, dcons_size;
2489#ifndef XEN
2490	int hasbrokenint12, i, res;
2491	u_int extmem;
2492	struct vm86frame vmf;
2493	struct vm86context vmc;
2494	vm_paddr_t pa;
2495	struct bios_smap *smap, *smapbase, *smapend;
2496	u_int32_t smapsize;
2497	caddr_t kmdp;
2498#endif
2499
2500	has_smap = 0;
2501#if defined(XEN)
2502	Maxmem = xen_start_info->nr_pages - init_first;
2503	physmem = Maxmem;
2504	basemem = 0;
2505	physmap[0] = init_first << PAGE_SHIFT;
2506	physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
2507	physmap_idx = 0;
2508#else
2509#ifdef XBOX
2510	if (arch_i386_is_xbox) {
2511		/*
2512		 * We queried the memory size before, so chop off 4MB for
2513		 * the framebuffer and inform the OS of this.
2514		 */
2515		physmap[0] = 0;
2516		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2517		physmap_idx = 0;
2518		goto physmap_done;
2519	}
2520#endif
2521	bzero(&vmf, sizeof(vmf));
2522	bzero(physmap, sizeof(physmap));
2523	basemem = 0;
2524
2525	/*
2526	 * Check if the loader supplied an SMAP memory map.  If so,
2527	 * use that and do not make any VM86 calls.
2528	 */
2529	physmap_idx = 0;
2530	smapbase = NULL;
2531	kmdp = preload_search_by_type("elf kernel");
2532	if (kmdp == NULL)
2533		kmdp = preload_search_by_type("elf32 kernel");
2534	if (kmdp != NULL)
2535		smapbase = (struct bios_smap *)preload_search_info(kmdp,
2536		    MODINFO_METADATA | MODINFOMD_SMAP);
2537	if (smapbase != NULL) {
2538		/*
2539		 * subr_module.c says:
2540		 * "Consumer may safely assume that size value precedes data."
2541		 * ie: an int32_t immediately precedes SMAP.
2542		 */
2543		smapsize = *((u_int32_t *)smapbase - 1);
2544		smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
2545		has_smap = 1;
2546
2547		for (smap = smapbase; smap < smapend; smap++)
2548			if (!add_smap_entry(smap, physmap, &physmap_idx))
2549				break;
2550		goto have_smap;
2551	}
2552
2553	/*
2554	 * Some newer BIOSes have a broken INT 12H implementation
2555	 * which causes a kernel panic immediately.  In this case, we
2556	 * need use the SMAP to determine the base memory size.
2557	 */
2558	hasbrokenint12 = 0;
2559	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2560	if (hasbrokenint12 == 0) {
2561		/* Use INT12 to determine base memory size. */
2562		vm86_intcall(0x12, &vmf);
2563		basemem = vmf.vmf_ax;
2564		basemem_setup();
2565	}
2566
2567	/*
2568	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2569	 * the kernel page table so we can use it as a buffer.  The
2570	 * kernel will unmap this page later.
2571	 */
2572	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2573	vmc.npages = 0;
2574	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2575	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2576	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2577
2578	vmf.vmf_ebx = 0;
2579	do {
2580		vmf.vmf_eax = 0xE820;
2581		vmf.vmf_edx = SMAP_SIG;
2582		vmf.vmf_ecx = sizeof(struct bios_smap);
2583		i = vm86_datacall(0x15, &vmf, &vmc);
2584		if (i || vmf.vmf_eax != SMAP_SIG)
2585			break;
2586		has_smap = 1;
2587		if (!add_smap_entry(smap, physmap, &physmap_idx))
2588			break;
2589	} while (vmf.vmf_ebx != 0);
2590
2591have_smap:
2592	/*
2593	 * If we didn't fetch the "base memory" size from INT12,
2594	 * figure it out from the SMAP (or just guess).
2595	 */
2596	if (basemem == 0) {
2597		for (i = 0; i <= physmap_idx; i += 2) {
2598			if (physmap[i] == 0x00000000) {
2599				basemem = physmap[i + 1] / 1024;
2600				break;
2601			}
2602		}
2603
2604		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2605		if (basemem == 0)
2606			basemem = 640;
2607		basemem_setup();
2608	}
2609
2610	if (physmap[1] != 0)
2611		goto physmap_done;
2612
2613	/*
2614	 * If we failed to find an SMAP, figure out the extended
2615	 * memory size.  We will then build a simple memory map with
2616	 * two segments, one for "base memory" and the second for
2617	 * "extended memory".  Note that "extended memory" starts at a
2618	 * physical address of 1MB and that both basemem and extmem
2619	 * are in units of 1KB.
2620	 *
2621	 * First, try to fetch the extended memory size via INT 15:E801.
2622	 */
2623	vmf.vmf_ax = 0xE801;
2624	if (vm86_intcall(0x15, &vmf) == 0) {
2625		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2626	} else {
2627		/*
2628		 * If INT15:E801 fails, this is our last ditch effort
2629		 * to determine the extended memory size.  Currently
2630		 * we prefer the RTC value over INT15:88.
2631		 */
2632#if 0
2633		vmf.vmf_ah = 0x88;
2634		vm86_intcall(0x15, &vmf);
2635		extmem = vmf.vmf_ax;
2636#else
2637		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2638#endif
2639	}
2640
2641	/*
2642	 * Special hack for chipsets that still remap the 384k hole when
2643	 * there's 16MB of memory - this really confuses people that
2644	 * are trying to use bus mastering ISA controllers with the
2645	 * "16MB limit"; they only have 16MB, but the remapping puts
2646	 * them beyond the limit.
2647	 *
2648	 * If extended memory is between 15-16MB (16-17MB phys address range),
2649	 *	chop it to 15MB.
2650	 */
2651	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2652		extmem = 15 * 1024;
2653
2654	physmap[0] = 0;
2655	physmap[1] = basemem * 1024;
2656	physmap_idx = 2;
2657	physmap[physmap_idx] = 0x100000;
2658	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2659
2660physmap_done:
2661#endif
2662	/*
2663	 * Now, physmap contains a map of physical memory.
2664	 */
2665
2666#ifdef SMP
2667	/* make hole for AP bootstrap code */
2668	physmap[1] = mp_bootaddress(physmap[1]);
2669#endif
2670
2671	/*
2672	 * Maxmem isn't the "maximum memory", it's one larger than the
2673	 * highest page of the physical address space.  It should be
2674	 * called something like "Maxphyspage".  We may adjust this
2675	 * based on ``hw.physmem'' and the results of the memory test.
2676	 */
2677	Maxmem = atop(physmap[physmap_idx + 1]);
2678
2679#ifdef MAXMEM
2680	Maxmem = MAXMEM / 4;
2681#endif
2682
2683	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2684		Maxmem = atop(physmem_tunable);
2685
2686	/*
2687	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2688	 * the amount of memory in the system.
2689	 */
2690	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2691		Maxmem = atop(physmap[physmap_idx + 1]);
2692
2693	/*
2694	 * By default enable the memory test on real hardware, and disable
2695	 * it if we appear to be running in a VM.  This avoids touching all
2696	 * pages unnecessarily, which doesn't matter on real hardware but is
2697	 * bad for shared VM hosts.  Use a general name so that
2698	 * one could eventually do more with the code than just disable it.
2699	 */
2700	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2701	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2702
2703	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2704	    (boothowto & RB_VERBOSE))
2705		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2706
2707	/*
2708	 * If Maxmem has been increased beyond what the system has detected,
2709	 * extend the last memory segment to the new limit.
2710	 */
2711	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2712		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2713
2714	/* call pmap initialization to make new kernel address space */
2715	pmap_bootstrap(first);
2716
2717	/*
2718	 * Size up each available chunk of physical memory.
2719	 */
2720	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2721	pa_indx = 0;
2722	da_indx = 1;
2723	phys_avail[pa_indx++] = physmap[0];
2724	phys_avail[pa_indx] = physmap[0];
2725	dump_avail[da_indx] = physmap[0];
2726	pte = CMAP3;
2727
2728	/*
2729	 * Get dcons buffer address
2730	 */
2731	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2732	    getenv_quad("dcons.size", &dcons_size) == 0)
2733		dcons_addr = 0;
2734
2735#ifndef XEN
2736	/*
2737	 * physmap is in bytes, so when converting to page boundaries,
2738	 * round up the start address and round down the end address.
2739	 */
2740	for (i = 0; i <= physmap_idx; i += 2) {
2741		vm_paddr_t end;
2742
2743		end = ptoa((vm_paddr_t)Maxmem);
2744		if (physmap[i + 1] < end)
2745			end = trunc_page(physmap[i + 1]);
2746		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2747			int tmp, page_bad, full;
2748			int *ptr = (int *)CADDR3;
2749
2750			full = FALSE;
2751			/*
2752			 * block out kernel memory as not available.
2753			 */
2754			if (pa >= KERNLOAD && pa < first)
2755				goto do_dump_avail;
2756
2757			/*
2758			 * block out dcons buffer
2759			 */
2760			if (dcons_addr > 0
2761			    && pa >= trunc_page(dcons_addr)
2762			    && pa < dcons_addr + dcons_size)
2763				goto do_dump_avail;
2764
2765			page_bad = FALSE;
2766			if (memtest == 0)
2767				goto skip_memtest;
2768
2769			/*
2770			 * map page into kernel: valid, read/write,non-cacheable
2771			 */
2772			*pte = pa | PG_V | PG_RW | PG_N;
2773			invltlb();
2774
2775			tmp = *(int *)ptr;
2776			/*
2777			 * Test for alternating 1's and 0's
2778			 */
2779			*(volatile int *)ptr = 0xaaaaaaaa;
2780			if (*(volatile int *)ptr != 0xaaaaaaaa)
2781				page_bad = TRUE;
2782			/*
2783			 * Test for alternating 0's and 1's
2784			 */
2785			*(volatile int *)ptr = 0x55555555;
2786			if (*(volatile int *)ptr != 0x55555555)
2787				page_bad = TRUE;
2788			/*
2789			 * Test for all 1's
2790			 */
2791			*(volatile int *)ptr = 0xffffffff;
2792			if (*(volatile int *)ptr != 0xffffffff)
2793				page_bad = TRUE;
2794			/*
2795			 * Test for all 0's
2796			 */
2797			*(volatile int *)ptr = 0x0;
2798			if (*(volatile int *)ptr != 0x0)
2799				page_bad = TRUE;
2800			/*
2801			 * Restore original value.
2802			 */
2803			*(int *)ptr = tmp;
2804
2805skip_memtest:
2806			/*
2807			 * Adjust array of valid/good pages.
2808			 */
2809			if (page_bad == TRUE)
2810				continue;
2811			/*
2812			 * If this good page is a continuation of the
2813			 * previous set of good pages, then just increase
2814			 * the end pointer. Otherwise start a new chunk.
2815			 * Note that "end" points one higher than end,
2816			 * making the range >= start and < end.
2817			 * If we're also doing a speculative memory
2818			 * test and we at or past the end, bump up Maxmem
2819			 * so that we keep going. The first bad page
2820			 * will terminate the loop.
2821			 */
2822			if (phys_avail[pa_indx] == pa) {
2823				phys_avail[pa_indx] += PAGE_SIZE;
2824			} else {
2825				pa_indx++;
2826				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2827					printf(
2828		"Too many holes in the physical address space, giving up\n");
2829					pa_indx--;
2830					full = TRUE;
2831					goto do_dump_avail;
2832				}
2833				phys_avail[pa_indx++] = pa;	/* start */
2834				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2835			}
2836			physmem++;
2837do_dump_avail:
2838			if (dump_avail[da_indx] == pa) {
2839				dump_avail[da_indx] += PAGE_SIZE;
2840			} else {
2841				da_indx++;
2842				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2843					da_indx--;
2844					goto do_next;
2845				}
2846				dump_avail[da_indx++] = pa;	/* start */
2847				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2848			}
2849do_next:
2850			if (full)
2851				break;
2852		}
2853	}
2854	*pte = 0;
2855	invltlb();
2856#else
2857	phys_avail[0] = physfree;
2858	phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2859	dump_avail[0] = 0;
2860	dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2861
2862#endif
2863
2864	/*
2865	 * XXX
2866	 * The last chunk must contain at least one page plus the message
2867	 * buffer to avoid complicating other code (message buffer address
2868	 * calculation, etc.).
2869	 */
2870	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2871	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2872		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2873		phys_avail[pa_indx--] = 0;
2874		phys_avail[pa_indx--] = 0;
2875	}
2876
2877	Maxmem = atop(phys_avail[pa_indx]);
2878
2879	/* Trim off space for the message buffer. */
2880	phys_avail[pa_indx] -= round_page(msgbufsize);
2881
2882	/* Map the message buffer. */
2883	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2884		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2885		    off);
2886
2887	PT_UPDATES_FLUSH();
2888}
2889#endif /* PC98 */
2890
2891#ifdef XEN
2892#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
2893
2894register_t
2895init386(first)
2896	int first;
2897{
2898	unsigned long gdtmachpfn;
2899	int error, gsel_tss, metadata_missing, x, pa;
2900	struct pcpu *pc;
2901#ifdef CPU_ENABLE_SSE
2902	struct xstate_hdr *xhdr;
2903#endif
2904	struct callback_register event = {
2905		.type = CALLBACKTYPE_event,
2906		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
2907	};
2908	struct callback_register failsafe = {
2909		.type = CALLBACKTYPE_failsafe,
2910		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
2911	};
2912
2913	thread0.td_kstack = proc0kstack;
2914	thread0.td_kstack_pages = KSTACK_PAGES;
2915
2916	/*
2917 	 * This may be done better later if it gets more high level
2918 	 * components in it. If so just link td->td_proc here.
2919	 */
2920	proc_linkup0(&proc0, &thread0);
2921
2922	metadata_missing = 0;
2923	if (xen_start_info->mod_start) {
2924		preload_metadata = (caddr_t)xen_start_info->mod_start;
2925		preload_bootstrap_relocate(KERNBASE);
2926	} else {
2927		metadata_missing = 1;
2928	}
2929	if (envmode == 1)
2930		kern_envp = static_env;
2931	else if ((caddr_t)xen_start_info->cmd_line)
2932	        kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
2933
2934	boothowto |= xen_boothowto(kern_envp);
2935
2936	/* Init basic tunables, hz etc */
2937	init_param1();
2938
2939	/*
2940	 * XEN occupies a portion of the upper virtual address space
2941	 * At its base it manages an array mapping machine page frames
2942	 * to physical page frames - hence we need to be able to
2943	 * access 4GB - (64MB  - 4MB + 64k)
2944	 */
2945	gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2946	gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2947	gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2948	gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2949	gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2950	gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2951	gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2952	gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2953
2954	pc = &__pcpu[0];
2955	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2956	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2957
2958	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
2959	bzero(gdt, PAGE_SIZE);
2960	for (x = 0; x < NGDT; x++)
2961		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2962
2963	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2964
2965	gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
2966	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
2967	PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);
2968	lgdt(&r_gdt);
2969	gdtset = 1;
2970
2971	if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
2972		panic("set_trap_table failed - error %d\n", error);
2973	}
2974
2975	error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
2976	if (error == 0)
2977		error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
2978#if	CONFIG_XEN_COMPAT <= 0x030002
2979	if (error == -ENOXENSYS)
2980		HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
2981		    (unsigned long)Xhypervisor_callback,
2982		    GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
2983#endif
2984	pcpu_init(pc, 0, sizeof(struct pcpu));
2985	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2986		pmap_kenter(pa + KERNBASE, pa);
2987	dpcpu_init((void *)(first + KERNBASE), 0);
2988	first += DPCPU_SIZE;
2989	physfree += DPCPU_SIZE;
2990	init_first += DPCPU_SIZE / PAGE_SIZE;
2991
2992	PCPU_SET(prvspace, pc);
2993	PCPU_SET(curthread, &thread0);
2994
2995	/*
2996	 * Initialize mutexes.
2997	 *
2998	 * icu_lock: in order to allow an interrupt to occur in a critical
2999	 * 	     section, to set pcpu->ipending (etc...) properly, we
3000	 *	     must be able to get the icu lock, so it can't be
3001	 *	     under witness.
3002	 */
3003	mutex_init();
3004	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
3005
3006	/* make ldt memory segments */
3007	PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
3008	bzero(ldt, PAGE_SIZE);
3009	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
3010	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
3011	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
3012		ssdtosd(&ldt_segs[x], &ldt[x].sd);
3013
3014	default_proc_ldt.ldt_base = (caddr_t)ldt;
3015	default_proc_ldt.ldt_len = 6;
3016	_default_ldt = (int)&default_proc_ldt;
3017	PCPU_SET(currentldt, _default_ldt);
3018	PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
3019	xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
3020
3021#if defined(XEN_PRIVILEGED)
3022	/*
3023	 * Initialize the i8254 before the console so that console
3024	 * initialization can use DELAY().
3025	 */
3026	i8254_init();
3027#endif
3028
3029	/*
3030	 * Initialize the console before we print anything out.
3031	 */
3032	cninit();
3033
3034	if (metadata_missing)
3035		printf("WARNING: loader(8) metadata is missing!\n");
3036
3037#ifdef DEV_ISA
3038#ifdef DEV_ATPIC
3039	elcr_probe();
3040	atpic_startup();
3041#else
3042	/* Reset and mask the atpics and leave them shut down. */
3043	atpic_reset();
3044
3045	/*
3046	 * Point the ICU spurious interrupt vectors at the APIC spurious
3047	 * interrupt handler.
3048	 */
3049	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3050	    GSEL(GCODE_SEL, SEL_KPL));
3051	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3052	    GSEL(GCODE_SEL, SEL_KPL));
3053#endif
3054#endif
3055
3056#ifdef DDB
3057	ksym_start = bootinfo.bi_symtab;
3058	ksym_end = bootinfo.bi_esymtab;
3059#endif
3060
3061	kdb_init();
3062
3063#ifdef KDB
3064	if (boothowto & RB_KDB)
3065		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3066#endif
3067
3068	finishidentcpu();	/* Final stage of CPU initialization */
3069	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3070	    GSEL(GCODE_SEL, SEL_KPL));
3071	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3072	    GSEL(GCODE_SEL, SEL_KPL));
3073	initializecpu();	/* Initialize CPU registers */
3074	initializecpucache();
3075
3076	/* pointer to selector slot for %fs/%gs */
3077	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3078
3079	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3080	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3081	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3082	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3083#ifdef PAE
3084	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3085#else
3086	dblfault_tss.tss_cr3 = (int)IdlePTD;
3087#endif
3088	dblfault_tss.tss_eip = (int)dblfault_handler;
3089	dblfault_tss.tss_eflags = PSL_KERNEL;
3090	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3091	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3092	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3093	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3094	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3095
3096	vm86_initialize();
3097	getmemsize(first);
3098	init_param2(physmem);
3099
3100	/* now running on new page tables, configured,and u/iom is accessible */
3101
3102	msgbufinit(msgbufp, msgbufsize);
3103#ifdef DEV_NPX
3104	npxinit(true);
3105#endif
3106	/*
3107	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
3108	 * area size.  Zero out the extended state header in fpu save
3109	 * area.
3110	 */
3111	thread0.td_pcb = get_pcb_td(&thread0);
3112	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
3113#ifdef CPU_ENABLE_SSE
3114	if (use_xsave) {
3115		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
3116		    1);
3117		xhdr->xstate_bv = xsave_mask;
3118	}
3119#endif
3120	PCPU_SET(curpcb, thread0.td_pcb);
3121	/* make an initial tss so cpu can get interrupt stack on syscall! */
3122	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3123	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
3124	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3125	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3126	HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
3127	    PCPU_GET(common_tss.tss_esp0));
3128
3129	/* transfer to user mode */
3130
3131	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3132	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3133
3134	/* setup proc 0's pcb */
3135	thread0.td_pcb->pcb_flags = 0;
3136#ifdef PAE
3137	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3138#else
3139	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3140#endif
3141	thread0.td_pcb->pcb_ext = 0;
3142	thread0.td_frame = &proc0_tf;
3143	thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
3144	thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
3145
3146	cpu_probe_amdc1e();
3147
3148	/* Location of kernel stack for locore */
3149	return ((register_t)thread0.td_pcb);
3150}
3151
3152#else
3153register_t
3154init386(first)
3155	int first;
3156{
3157	struct gate_descriptor *gdp;
3158	int gsel_tss, metadata_missing, x, pa;
3159	struct pcpu *pc;
3160#ifdef CPU_ENABLE_SSE
3161	struct xstate_hdr *xhdr;
3162#endif
3163
3164	thread0.td_kstack = proc0kstack;
3165	thread0.td_kstack_pages = KSTACK_PAGES;
3166
3167	/*
3168 	 * This may be done better later if it gets more high level
3169 	 * components in it. If so just link td->td_proc here.
3170	 */
3171	proc_linkup0(&proc0, &thread0);
3172
3173#ifdef PC98
3174	/*
3175	 * Initialize DMAC
3176	 */
3177	pc98_init_dmac();
3178#endif
3179
3180	metadata_missing = 0;
3181	if (bootinfo.bi_modulep) {
3182		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
3183		preload_bootstrap_relocate(KERNBASE);
3184	} else {
3185		metadata_missing = 1;
3186	}
3187	if (envmode == 1)
3188		kern_envp = static_env;
3189	else if (bootinfo.bi_envp)
3190		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
3191
3192	/* Init basic tunables, hz etc */
3193	init_param1();
3194
3195	/*
3196	 * Make gdt memory segments.  All segments cover the full 4GB
3197	 * of address space and permissions are enforced at page level.
3198	 */
3199	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
3200	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
3201	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
3202	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
3203	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
3204	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
3205
3206	pc = &__pcpu[0];
3207	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
3208	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
3209	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
3210
3211	for (x = 0; x < NGDT; x++)
3212		ssdtosd(&gdt_segs[x], &gdt[x].sd);
3213
3214	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
3215	r_gdt.rd_base =  (int) gdt;
3216	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
3217	lgdt(&r_gdt);
3218
3219	pcpu_init(pc, 0, sizeof(struct pcpu));
3220	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
3221		pmap_kenter(pa + KERNBASE, pa);
3222	dpcpu_init((void *)(first + KERNBASE), 0);
3223	first += DPCPU_SIZE;
3224	PCPU_SET(prvspace, pc);
3225	PCPU_SET(curthread, &thread0);
3226
3227	/*
3228	 * Initialize mutexes.
3229	 *
3230	 * icu_lock: in order to allow an interrupt to occur in a critical
3231	 * 	     section, to set pcpu->ipending (etc...) properly, we
3232	 *	     must be able to get the icu lock, so it can't be
3233	 *	     under witness.
3234	 */
3235	mutex_init();
3236	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
3237
3238	/* make ldt memory segments */
3239	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
3240	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
3241	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
3242		ssdtosd(&ldt_segs[x], &ldt[x].sd);
3243
3244	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
3245	lldt(_default_ldt);
3246	PCPU_SET(currentldt, _default_ldt);
3247
3248	/* exceptions */
3249	for (x = 0; x < NIDT; x++)
3250		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
3251		    GSEL(GCODE_SEL, SEL_KPL));
3252	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
3253	    GSEL(GCODE_SEL, SEL_KPL));
3254	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
3255	    GSEL(GCODE_SEL, SEL_KPL));
3256	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
3257	    GSEL(GCODE_SEL, SEL_KPL));
3258 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
3259	    GSEL(GCODE_SEL, SEL_KPL));
3260	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
3261	    GSEL(GCODE_SEL, SEL_KPL));
3262	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
3263	    GSEL(GCODE_SEL, SEL_KPL));
3264	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3265	    GSEL(GCODE_SEL, SEL_KPL));
3266	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
3267	    , GSEL(GCODE_SEL, SEL_KPL));
3268	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
3269	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
3270	    GSEL(GCODE_SEL, SEL_KPL));
3271	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
3272	    GSEL(GCODE_SEL, SEL_KPL));
3273	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
3274	    GSEL(GCODE_SEL, SEL_KPL));
3275	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
3276	    GSEL(GCODE_SEL, SEL_KPL));
3277	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3278	    GSEL(GCODE_SEL, SEL_KPL));
3279	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
3280	    GSEL(GCODE_SEL, SEL_KPL));
3281	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
3282	    GSEL(GCODE_SEL, SEL_KPL));
3283	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
3284	    GSEL(GCODE_SEL, SEL_KPL));
3285	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
3286	    GSEL(GCODE_SEL, SEL_KPL));
3287	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
3288	    GSEL(GCODE_SEL, SEL_KPL));
3289 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
3290	    GSEL(GCODE_SEL, SEL_KPL));
3291#ifdef KDTRACE_HOOKS
3292	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
3293	    GSEL(GCODE_SEL, SEL_KPL));
3294#endif
3295#ifdef XENHVM
3296	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
3297	    GSEL(GCODE_SEL, SEL_KPL));
3298#endif
3299
3300	r_idt.rd_limit = sizeof(idt0) - 1;
3301	r_idt.rd_base = (int) idt;
3302	lidt(&r_idt);
3303
3304#ifdef XBOX
3305	/*
3306	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
3307	 * This should be 0x10de / 0x02a5.
3308	 *
3309	 * This is exactly what Linux does.
3310	 */
3311	outl(0xcf8, 0x80000000);
3312	if (inl(0xcfc) == 0x02a510de) {
3313		arch_i386_is_xbox = 1;
3314		pic16l_setled(XBOX_LED_GREEN);
3315
3316		/*
3317		 * We are an XBOX, but we may have either 64MB or 128MB of
3318		 * memory. The PCI host bridge should be programmed for this,
3319		 * so we just query it.
3320		 */
3321		outl(0xcf8, 0x80000084);
3322		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
3323	}
3324#endif /* XBOX */
3325
3326	/*
3327	 * Initialize the i8254 before the console so that console
3328	 * initialization can use DELAY().
3329	 */
3330	i8254_init();
3331
3332	/*
3333	 * Initialize the console before we print anything out.
3334	 */
3335	cninit();
3336
3337	if (metadata_missing)
3338		printf("WARNING: loader(8) metadata is missing!\n");
3339
3340#ifdef DEV_ISA
3341#ifdef DEV_ATPIC
3342#ifndef PC98
3343	elcr_probe();
3344#endif
3345	atpic_startup();
3346#else
3347	/* Reset and mask the atpics and leave them shut down. */
3348	atpic_reset();
3349
3350	/*
3351	 * Point the ICU spurious interrupt vectors at the APIC spurious
3352	 * interrupt handler.
3353	 */
3354	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3355	    GSEL(GCODE_SEL, SEL_KPL));
3356	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
3357	    GSEL(GCODE_SEL, SEL_KPL));
3358#endif
3359#endif
3360
3361#ifdef DDB
3362	ksym_start = bootinfo.bi_symtab;
3363	ksym_end = bootinfo.bi_esymtab;
3364#endif
3365
3366	kdb_init();
3367
3368#ifdef KDB
3369	if (boothowto & RB_KDB)
3370		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3371#endif
3372
3373	finishidentcpu();	/* Final stage of CPU initialization */
3374	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3375	    GSEL(GCODE_SEL, SEL_KPL));
3376	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3377	    GSEL(GCODE_SEL, SEL_KPL));
3378	initializecpu();	/* Initialize CPU registers */
3379	initializecpucache();
3380
3381	/* pointer to selector slot for %fs/%gs */
3382	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3383
3384	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3385	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3386	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3387	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3388#ifdef PAE
3389	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3390#else
3391	dblfault_tss.tss_cr3 = (int)IdlePTD;
3392#endif
3393	dblfault_tss.tss_eip = (int)dblfault_handler;
3394	dblfault_tss.tss_eflags = PSL_KERNEL;
3395	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3396	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3397	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3398	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3399	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3400
3401	vm86_initialize();
3402	getmemsize(first);
3403	init_param2(physmem);
3404
3405	/* now running on new page tables, configured,and u/iom is accessible */
3406
3407	msgbufinit(msgbufp, msgbufsize);
3408#ifdef DEV_NPX
3409	npxinit(true);
3410#endif
3411	/*
3412	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
3413	 * area size.  Zero out the extended state header in fpu save
3414	 * area.
3415	 */
3416	thread0.td_pcb = get_pcb_td(&thread0);
3417	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
3418#ifdef CPU_ENABLE_SSE
3419	if (use_xsave) {
3420		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
3421		    1);
3422		xhdr->xstate_bv = xsave_mask;
3423	}
3424#endif
3425	PCPU_SET(curpcb, thread0.td_pcb);
3426	/* make an initial tss so cpu can get interrupt stack on syscall! */
3427	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3428	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
3429	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3430	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3431	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
3432	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
3433	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
3434	ltr(gsel_tss);
3435
3436	/* make a call gate to reenter kernel with */
3437	gdp = &ldt[LSYS5CALLS_SEL].gd;
3438
3439	x = (int) &IDTVEC(lcall_syscall);
3440	gdp->gd_looffset = x;
3441	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
3442	gdp->gd_stkcpy = 1;
3443	gdp->gd_type = SDT_SYS386CGT;
3444	gdp->gd_dpl = SEL_UPL;
3445	gdp->gd_p = 1;
3446	gdp->gd_hioffset = x >> 16;
3447
3448	/* XXX does this work? */
3449	/* XXX yes! */
3450	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
3451	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
3452
3453	/* transfer to user mode */
3454
3455	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3456	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3457
3458	/* setup proc 0's pcb */
3459	thread0.td_pcb->pcb_flags = 0;
3460#ifdef PAE
3461	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3462#else
3463	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3464#endif
3465	thread0.td_pcb->pcb_ext = 0;
3466	thread0.td_frame = &proc0_tf;
3467
3468	cpu_probe_amdc1e();
3469
3470#ifdef FDT
3471	x86_init_fdt();
3472#endif
3473
3474	/* Location of kernel stack for locore */
3475	return ((register_t)thread0.td_pcb);
3476}
3477#endif
3478
3479void
3480cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
3481{
3482
3483	pcpu->pc_acpi_id = 0xffffffff;
3484}
3485
3486#ifndef PC98
3487static int
3488smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
3489{
3490	struct bios_smap *smapbase;
3491	struct bios_smap_xattr smap;
3492	caddr_t kmdp;
3493	uint32_t *smapattr;
3494	int count, error, i;
3495
3496	/* Retrieve the system memory map from the loader. */
3497	kmdp = preload_search_by_type("elf kernel");
3498	if (kmdp == NULL)
3499		kmdp = preload_search_by_type("elf32 kernel");
3500	if (kmdp == NULL)
3501		return (0);
3502	smapbase = (struct bios_smap *)preload_search_info(kmdp,
3503	    MODINFO_METADATA | MODINFOMD_SMAP);
3504	if (smapbase == NULL)
3505		return (0);
3506	smapattr = (uint32_t *)preload_search_info(kmdp,
3507	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
3508	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
3509	error = 0;
3510	for (i = 0; i < count; i++) {
3511		smap.base = smapbase[i].base;
3512		smap.length = smapbase[i].length;
3513		smap.type = smapbase[i].type;
3514		if (smapattr != NULL)
3515			smap.xattr = smapattr[i];
3516		else
3517			smap.xattr = 0;
3518		error = SYSCTL_OUT(req, &smap, sizeof(smap));
3519	}
3520	return (error);
3521}
3522SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
3523    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
3524#endif /* !PC98 */
3525
3526void
3527spinlock_enter(void)
3528{
3529	struct thread *td;
3530	register_t flags;
3531
3532	td = curthread;
3533	if (td->td_md.md_spinlock_count == 0) {
3534		flags = intr_disable();
3535		td->td_md.md_spinlock_count = 1;
3536		td->td_md.md_saved_flags = flags;
3537	} else
3538		td->td_md.md_spinlock_count++;
3539	critical_enter();
3540}
3541
3542void
3543spinlock_exit(void)
3544{
3545	struct thread *td;
3546	register_t flags;
3547
3548	td = curthread;
3549	critical_exit();
3550	flags = td->td_md.md_saved_flags;
3551	td->td_md.md_spinlock_count--;
3552	if (td->td_md.md_spinlock_count == 0)
3553		intr_restore(flags);
3554}
3555
3556#if defined(I586_CPU) && !defined(NO_F00F_HACK)
3557static void f00f_hack(void *unused);
3558SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
3559
3560static void
3561f00f_hack(void *unused)
3562{
3563	struct gate_descriptor *new_idt;
3564	vm_offset_t tmp;
3565
3566	if (!has_f00f_bug)
3567		return;
3568
3569	GIANT_REQUIRED;
3570
3571	printf("Intel Pentium detected, installing workaround for F00F bug\n");
3572
3573	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
3574	if (tmp == 0)
3575		panic("kmem_malloc returned 0");
3576
3577	/* Put the problematic entry (#6) at the end of the lower page. */
3578	new_idt = (struct gate_descriptor*)
3579	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
3580	bcopy(idt, new_idt, sizeof(idt0));
3581	r_idt.rd_base = (u_int)new_idt;
3582	lidt(&r_idt);
3583	idt = new_idt;
3584	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
3585}
3586#endif /* defined(I586_CPU) && !NO_F00F_HACK */
3587
3588/*
3589 * Construct a PCB from a trapframe. This is called from kdb_trap() where
3590 * we want to start a backtrace from the function that caused us to enter
3591 * the debugger. We have the context in the trapframe, but base the trace
3592 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
3593 * enough for a backtrace.
3594 */
3595void
3596makectx(struct trapframe *tf, struct pcb *pcb)
3597{
3598
3599	pcb->pcb_edi = tf->tf_edi;
3600	pcb->pcb_esi = tf->tf_esi;
3601	pcb->pcb_ebp = tf->tf_ebp;
3602	pcb->pcb_ebx = tf->tf_ebx;
3603	pcb->pcb_eip = tf->tf_eip;
3604	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
3605}
3606
3607int
3608ptrace_set_pc(struct thread *td, u_long addr)
3609{
3610
3611	td->td_frame->tf_eip = addr;
3612	return (0);
3613}
3614
3615int
3616ptrace_single_step(struct thread *td)
3617{
3618	td->td_frame->tf_eflags |= PSL_T;
3619	return (0);
3620}
3621
3622int
3623ptrace_clear_single_step(struct thread *td)
3624{
3625	td->td_frame->tf_eflags &= ~PSL_T;
3626	return (0);
3627}
3628
3629int
3630fill_regs(struct thread *td, struct reg *regs)
3631{
3632	struct pcb *pcb;
3633	struct trapframe *tp;
3634
3635	tp = td->td_frame;
3636	pcb = td->td_pcb;
3637	regs->r_gs = pcb->pcb_gs;
3638	return (fill_frame_regs(tp, regs));
3639}
3640
3641int
3642fill_frame_regs(struct trapframe *tp, struct reg *regs)
3643{
3644	regs->r_fs = tp->tf_fs;
3645	regs->r_es = tp->tf_es;
3646	regs->r_ds = tp->tf_ds;
3647	regs->r_edi = tp->tf_edi;
3648	regs->r_esi = tp->tf_esi;
3649	regs->r_ebp = tp->tf_ebp;
3650	regs->r_ebx = tp->tf_ebx;
3651	regs->r_edx = tp->tf_edx;
3652	regs->r_ecx = tp->tf_ecx;
3653	regs->r_eax = tp->tf_eax;
3654	regs->r_eip = tp->tf_eip;
3655	regs->r_cs = tp->tf_cs;
3656	regs->r_eflags = tp->tf_eflags;
3657	regs->r_esp = tp->tf_esp;
3658	regs->r_ss = tp->tf_ss;
3659	return (0);
3660}
3661
3662int
3663set_regs(struct thread *td, struct reg *regs)
3664{
3665	struct pcb *pcb;
3666	struct trapframe *tp;
3667
3668	tp = td->td_frame;
3669	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
3670	    !CS_SECURE(regs->r_cs))
3671		return (EINVAL);
3672	pcb = td->td_pcb;
3673	tp->tf_fs = regs->r_fs;
3674	tp->tf_es = regs->r_es;
3675	tp->tf_ds = regs->r_ds;
3676	tp->tf_edi = regs->r_edi;
3677	tp->tf_esi = regs->r_esi;
3678	tp->tf_ebp = regs->r_ebp;
3679	tp->tf_ebx = regs->r_ebx;
3680	tp->tf_edx = regs->r_edx;
3681	tp->tf_ecx = regs->r_ecx;
3682	tp->tf_eax = regs->r_eax;
3683	tp->tf_eip = regs->r_eip;
3684	tp->tf_cs = regs->r_cs;
3685	tp->tf_eflags = regs->r_eflags;
3686	tp->tf_esp = regs->r_esp;
3687	tp->tf_ss = regs->r_ss;
3688	pcb->pcb_gs = regs->r_gs;
3689	return (0);
3690}
3691
3692#ifdef CPU_ENABLE_SSE
3693static void
3694fill_fpregs_xmm(sv_xmm, sv_87)
3695	struct savexmm *sv_xmm;
3696	struct save87 *sv_87;
3697{
3698	register struct env87 *penv_87 = &sv_87->sv_env;
3699	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3700	int i;
3701
3702	bzero(sv_87, sizeof(*sv_87));
3703
3704	/* FPU control/status */
3705	penv_87->en_cw = penv_xmm->en_cw;
3706	penv_87->en_sw = penv_xmm->en_sw;
3707	penv_87->en_tw = penv_xmm->en_tw;
3708	penv_87->en_fip = penv_xmm->en_fip;
3709	penv_87->en_fcs = penv_xmm->en_fcs;
3710	penv_87->en_opcode = penv_xmm->en_opcode;
3711	penv_87->en_foo = penv_xmm->en_foo;
3712	penv_87->en_fos = penv_xmm->en_fos;
3713
3714	/* FPU registers */
3715	for (i = 0; i < 8; ++i)
3716		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
3717}
3718
3719static void
3720set_fpregs_xmm(sv_87, sv_xmm)
3721	struct save87 *sv_87;
3722	struct savexmm *sv_xmm;
3723{
3724	register struct env87 *penv_87 = &sv_87->sv_env;
3725	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3726	int i;
3727
3728	/* FPU control/status */
3729	penv_xmm->en_cw = penv_87->en_cw;
3730	penv_xmm->en_sw = penv_87->en_sw;
3731	penv_xmm->en_tw = penv_87->en_tw;
3732	penv_xmm->en_fip = penv_87->en_fip;
3733	penv_xmm->en_fcs = penv_87->en_fcs;
3734	penv_xmm->en_opcode = penv_87->en_opcode;
3735	penv_xmm->en_foo = penv_87->en_foo;
3736	penv_xmm->en_fos = penv_87->en_fos;
3737
3738	/* FPU registers */
3739	for (i = 0; i < 8; ++i)
3740		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
3741}
3742#endif /* CPU_ENABLE_SSE */
3743
3744int
3745fill_fpregs(struct thread *td, struct fpreg *fpregs)
3746{
3747
3748	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3749	    P_SHOULDSTOP(td->td_proc),
3750	    ("not suspended thread %p", td));
3751#ifdef DEV_NPX
3752	npxgetregs(td);
3753#else
3754	bzero(fpregs, sizeof(*fpregs));
3755#endif
3756#ifdef CPU_ENABLE_SSE
3757	if (cpu_fxsr)
3758		fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
3759		    (struct save87 *)fpregs);
3760	else
3761#endif /* CPU_ENABLE_SSE */
3762		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
3763		    sizeof(*fpregs));
3764	return (0);
3765}
3766
3767int
3768set_fpregs(struct thread *td, struct fpreg *fpregs)
3769{
3770
3771#ifdef CPU_ENABLE_SSE
3772	if (cpu_fxsr)
3773		set_fpregs_xmm((struct save87 *)fpregs,
3774		    &get_pcb_user_save_td(td)->sv_xmm);
3775	else
3776#endif /* CPU_ENABLE_SSE */
3777		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
3778		    sizeof(*fpregs));
3779#ifdef DEV_NPX
3780	npxuserinited(td);
3781#endif
3782	return (0);
3783}
3784
3785/*
3786 * Get machine context.
3787 */
3788int
3789get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3790{
3791	struct trapframe *tp;
3792	struct segment_descriptor *sdp;
3793
3794	tp = td->td_frame;
3795
3796	PROC_LOCK(curthread->td_proc);
3797	mcp->mc_onstack = sigonstack(tp->tf_esp);
3798	PROC_UNLOCK(curthread->td_proc);
3799	mcp->mc_gs = td->td_pcb->pcb_gs;
3800	mcp->mc_fs = tp->tf_fs;
3801	mcp->mc_es = tp->tf_es;
3802	mcp->mc_ds = tp->tf_ds;
3803	mcp->mc_edi = tp->tf_edi;
3804	mcp->mc_esi = tp->tf_esi;
3805	mcp->mc_ebp = tp->tf_ebp;
3806	mcp->mc_isp = tp->tf_isp;
3807	mcp->mc_eflags = tp->tf_eflags;
3808	if (flags & GET_MC_CLEAR_RET) {
3809		mcp->mc_eax = 0;
3810		mcp->mc_edx = 0;
3811		mcp->mc_eflags &= ~PSL_C;
3812	} else {
3813		mcp->mc_eax = tp->tf_eax;
3814		mcp->mc_edx = tp->tf_edx;
3815	}
3816	mcp->mc_ebx = tp->tf_ebx;
3817	mcp->mc_ecx = tp->tf_ecx;
3818	mcp->mc_eip = tp->tf_eip;
3819	mcp->mc_cs = tp->tf_cs;
3820	mcp->mc_esp = tp->tf_esp;
3821	mcp->mc_ss = tp->tf_ss;
3822	mcp->mc_len = sizeof(*mcp);
3823	get_fpcontext(td, mcp, NULL, 0);
3824	sdp = &td->td_pcb->pcb_fsd;
3825	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3826	sdp = &td->td_pcb->pcb_gsd;
3827	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3828	mcp->mc_flags = 0;
3829	mcp->mc_xfpustate = 0;
3830	mcp->mc_xfpustate_len = 0;
3831	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3832	return (0);
3833}
3834
3835/*
3836 * Set machine context.
3837 *
3838 * However, we don't set any but the user modifiable flags, and we won't
3839 * touch the cs selector.
3840 */
3841int
3842set_mcontext(struct thread *td, mcontext_t *mcp)
3843{
3844	struct trapframe *tp;
3845	char *xfpustate;
3846	int eflags, ret;
3847
3848	tp = td->td_frame;
3849	if (mcp->mc_len != sizeof(*mcp) ||
3850	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
3851		return (EINVAL);
3852	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3853	    (tp->tf_eflags & ~PSL_USERCHANGE);
3854	if (mcp->mc_flags & _MC_HASFPXSTATE) {
3855		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
3856		    sizeof(union savefpu))
3857			return (EINVAL);
3858		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
3859		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
3860		    mcp->mc_xfpustate_len);
3861		if (ret != 0)
3862			return (ret);
3863	} else
3864		xfpustate = NULL;
3865	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
3866	if (ret != 0)
3867		return (ret);
3868	tp->tf_fs = mcp->mc_fs;
3869	tp->tf_es = mcp->mc_es;
3870	tp->tf_ds = mcp->mc_ds;
3871	tp->tf_edi = mcp->mc_edi;
3872	tp->tf_esi = mcp->mc_esi;
3873	tp->tf_ebp = mcp->mc_ebp;
3874	tp->tf_ebx = mcp->mc_ebx;
3875	tp->tf_edx = mcp->mc_edx;
3876	tp->tf_ecx = mcp->mc_ecx;
3877	tp->tf_eax = mcp->mc_eax;
3878	tp->tf_eip = mcp->mc_eip;
3879	tp->tf_eflags = eflags;
3880	tp->tf_esp = mcp->mc_esp;
3881	tp->tf_ss = mcp->mc_ss;
3882	td->td_pcb->pcb_gs = mcp->mc_gs;
3883	return (0);
3884}
3885
3886static void
3887get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
3888    size_t xfpusave_len)
3889{
3890#ifdef CPU_ENABLE_SSE
3891	size_t max_len, len;
3892#endif
3893
3894#ifndef DEV_NPX
3895	mcp->mc_fpformat = _MC_FPFMT_NODEV;
3896	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
3897	bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
3898#else
3899	mcp->mc_ownedfp = npxgetregs(td);
3900	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
3901	    sizeof(mcp->mc_fpstate));
3902	mcp->mc_fpformat = npxformat();
3903#ifdef CPU_ENABLE_SSE
3904	if (!use_xsave || xfpusave_len == 0)
3905		return;
3906	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
3907	len = xfpusave_len;
3908	if (len > max_len) {
3909		len = max_len;
3910		bzero(xfpusave + max_len, len - max_len);
3911	}
3912	mcp->mc_flags |= _MC_HASFPXSTATE;
3913	mcp->mc_xfpustate_len = len;
3914	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3915#endif
3916#endif
3917}
3918
3919static int
3920set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3921    size_t xfpustate_len)
3922{
3923	union savefpu *fpstate;
3924	int error;
3925
3926	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3927		return (0);
3928	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3929	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3930		return (EINVAL);
3931	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3932		/* We don't care what state is left in the FPU or PCB. */
3933		fpstate_drop(td);
3934		error = 0;
3935	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3936	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3937#ifdef DEV_NPX
3938		fpstate = (union savefpu *)&mcp->mc_fpstate;
3939#ifdef CPU_ENABLE_SSE
3940		if (cpu_fxsr)
3941			fpstate->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
3942#endif
3943		error = npxsetregs(td, fpstate, xfpustate, xfpustate_len);
3944#else
3945		error = EINVAL;
3946#endif
3947	} else
3948		return (EINVAL);
3949	return (error);
3950}
3951
3952static void
3953fpstate_drop(struct thread *td)
3954{
3955
3956	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3957	critical_enter();
3958#ifdef DEV_NPX
3959	if (PCPU_GET(fpcurthread) == td)
3960		npxdrop();
3961#endif
3962	/*
3963	 * XXX force a full drop of the npx.  The above only drops it if we
3964	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3965	 *
3966	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3967	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3968	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3969	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3970	 * have too many layers.
3971	 */
3972	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3973	    PCB_NPXUSERINITDONE);
3974	critical_exit();
3975}
3976
3977int
3978fill_dbregs(struct thread *td, struct dbreg *dbregs)
3979{
3980	struct pcb *pcb;
3981
3982	if (td == NULL) {
3983		dbregs->dr[0] = rdr0();
3984		dbregs->dr[1] = rdr1();
3985		dbregs->dr[2] = rdr2();
3986		dbregs->dr[3] = rdr3();
3987		dbregs->dr[4] = rdr4();
3988		dbregs->dr[5] = rdr5();
3989		dbregs->dr[6] = rdr6();
3990		dbregs->dr[7] = rdr7();
3991	} else {
3992		pcb = td->td_pcb;
3993		dbregs->dr[0] = pcb->pcb_dr0;
3994		dbregs->dr[1] = pcb->pcb_dr1;
3995		dbregs->dr[2] = pcb->pcb_dr2;
3996		dbregs->dr[3] = pcb->pcb_dr3;
3997		dbregs->dr[4] = 0;
3998		dbregs->dr[5] = 0;
3999		dbregs->dr[6] = pcb->pcb_dr6;
4000		dbregs->dr[7] = pcb->pcb_dr7;
4001	}
4002	return (0);
4003}
4004
4005int
4006set_dbregs(struct thread *td, struct dbreg *dbregs)
4007{
4008	struct pcb *pcb;
4009	int i;
4010
4011	if (td == NULL) {
4012		load_dr0(dbregs->dr[0]);
4013		load_dr1(dbregs->dr[1]);
4014		load_dr2(dbregs->dr[2]);
4015		load_dr3(dbregs->dr[3]);
4016		load_dr4(dbregs->dr[4]);
4017		load_dr5(dbregs->dr[5]);
4018		load_dr6(dbregs->dr[6]);
4019		load_dr7(dbregs->dr[7]);
4020	} else {
4021		/*
4022		 * Don't let an illegal value for dr7 get set.	Specifically,
4023		 * check for undefined settings.  Setting these bit patterns
4024		 * result in undefined behaviour and can lead to an unexpected
4025		 * TRCTRAP.
4026		 */
4027		for (i = 0; i < 4; i++) {
4028			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
4029				return (EINVAL);
4030			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
4031				return (EINVAL);
4032		}
4033
4034		pcb = td->td_pcb;
4035
4036		/*
4037		 * Don't let a process set a breakpoint that is not within the
4038		 * process's address space.  If a process could do this, it
4039		 * could halt the system by setting a breakpoint in the kernel
4040		 * (if ddb was enabled).  Thus, we need to check to make sure
4041		 * that no breakpoints are being enabled for addresses outside
4042		 * process's address space.
4043		 *
4044		 * XXX - what about when the watched area of the user's
4045		 * address space is written into from within the kernel
4046		 * ... wouldn't that still cause a breakpoint to be generated
4047		 * from within kernel mode?
4048		 */
4049
4050		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
4051			/* dr0 is enabled */
4052			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
4053				return (EINVAL);
4054		}
4055
4056		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
4057			/* dr1 is enabled */
4058			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
4059				return (EINVAL);
4060		}
4061
4062		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
4063			/* dr2 is enabled */
4064			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
4065				return (EINVAL);
4066		}
4067
4068		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
4069			/* dr3 is enabled */
4070			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
4071				return (EINVAL);
4072		}
4073
4074		pcb->pcb_dr0 = dbregs->dr[0];
4075		pcb->pcb_dr1 = dbregs->dr[1];
4076		pcb->pcb_dr2 = dbregs->dr[2];
4077		pcb->pcb_dr3 = dbregs->dr[3];
4078		pcb->pcb_dr6 = dbregs->dr[6];
4079		pcb->pcb_dr7 = dbregs->dr[7];
4080
4081		pcb->pcb_flags |= PCB_DBREGS;
4082	}
4083
4084	return (0);
4085}
4086
4087/*
4088 * Return > 0 if a hardware breakpoint has been hit, and the
4089 * breakpoint was in user space.  Return 0, otherwise.
4090 */
4091int
4092user_dbreg_trap(void)
4093{
4094        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
4095        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
4096        int nbp;            /* number of breakpoints that triggered */
4097        caddr_t addr[4];    /* breakpoint addresses */
4098        int i;
4099
4100        dr7 = rdr7();
4101        if ((dr7 & 0x000000ff) == 0) {
4102                /*
4103                 * all GE and LE bits in the dr7 register are zero,
4104                 * thus the trap couldn't have been caused by the
4105                 * hardware debug registers
4106                 */
4107                return 0;
4108        }
4109
4110        nbp = 0;
4111        dr6 = rdr6();
4112        bp = dr6 & 0x0000000f;
4113
4114        if (!bp) {
4115                /*
4116                 * None of the breakpoint bits are set meaning this
4117                 * trap was not caused by any of the debug registers
4118                 */
4119                return 0;
4120        }
4121
4122        /*
4123         * at least one of the breakpoints were hit, check to see
4124         * which ones and if any of them are user space addresses
4125         */
4126
4127        if (bp & 0x01) {
4128                addr[nbp++] = (caddr_t)rdr0();
4129        }
4130        if (bp & 0x02) {
4131                addr[nbp++] = (caddr_t)rdr1();
4132        }
4133        if (bp & 0x04) {
4134                addr[nbp++] = (caddr_t)rdr2();
4135        }
4136        if (bp & 0x08) {
4137                addr[nbp++] = (caddr_t)rdr3();
4138        }
4139
4140        for (i = 0; i < nbp; i++) {
4141                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
4142                        /*
4143                         * addr[i] is in user space
4144                         */
4145                        return nbp;
4146                }
4147        }
4148
4149        /*
4150         * None of the breakpoints are in user space.
4151         */
4152        return 0;
4153}
4154
4155#ifdef KDB
4156
4157/*
4158 * Provide inb() and outb() as functions.  They are normally only available as
4159 * inline functions, thus cannot be called from the debugger.
4160 */
4161
4162/* silence compiler warnings */
4163u_char inb_(u_short);
4164void outb_(u_short, u_char);
4165
4166u_char
4167inb_(u_short port)
4168{
4169	return inb(port);
4170}
4171
4172void
4173outb_(u_short port, u_char data)
4174{
4175	outb(port, data);
4176}
4177
4178#endif /* KDB */
4179