machdep.c revision 276070
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/sys/i386/i386/machdep.c 276070 2014-12-22 18:40:59Z jhb $");
42
43#include "opt_apic.h"
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_npx.h"
56#include "opt_perfmon.h"
57#include "opt_platform.h"
58#include "opt_xbox.h"
59#include "opt_kdtrace.h"
60
61#include <sys/param.h>
62#include <sys/proc.h>
63#include <sys/systm.h>
64#include <sys/bio.h>
65#include <sys/buf.h>
66#include <sys/bus.h>
67#include <sys/callout.h>
68#include <sys/cons.h>
69#include <sys/cpu.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <isa/rtc.h>
116
117#include <net/netisr.h>
118
119#include <machine/bootinfo.h>
120#include <machine/clock.h>
121#include <machine/cpu.h>
122#include <machine/cputypes.h>
123#include <machine/intr_machdep.h>
124#include <x86/mca.h>
125#include <machine/md_var.h>
126#include <machine/metadata.h>
127#include <machine/mp_watchdog.h>
128#include <machine/pc/bios.h>
129#include <machine/pcb.h>
130#include <machine/pcb_ext.h>
131#include <machine/proc.h>
132#include <machine/reg.h>
133#include <machine/sigframe.h>
134#include <machine/specialreg.h>
135#include <machine/vm86.h>
136#ifdef PERFMON
137#include <machine/perfmon.h>
138#endif
139#ifdef SMP
140#include <machine/smp.h>
141#endif
142#ifdef FDT
143#include <x86/fdt.h>
144#endif
145
146#ifdef DEV_APIC
147#include <machine/apicvar.h>
148#endif
149
150#ifdef DEV_ISA
151#include <x86/isa/icu.h>
152#endif
153
154#ifdef XBOX
155#include <machine/xbox.h>
156
157int arch_i386_is_xbox = 0;
158uint32_t arch_i386_xbox_memsize = 0;
159#endif
160
161#ifdef XEN
162/* XEN includes */
163#include <xen/xen-os.h>
164#include <xen/hypervisor.h>
165#include <machine/xen/xenvar.h>
166#include <machine/xen/xenfunc.h>
167#include <xen/xen_intr.h>
168
169void Xhypervisor_callback(void);
170void failsafe_callback(void);
171
172extern trap_info_t trap_table[];
173struct proc_ldt default_proc_ldt;
174extern int init_first;
175int running_xen = 1;
176extern unsigned long physfree;
177#endif /* XEN */
178
179/* Sanity check for __curthread() */
180CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
181
182extern void init386(int first);
183extern void dblfault_handler(void);
184
185#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
186#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
187
188#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
189#define CPU_ENABLE_SSE
190#endif
191
192static void cpu_startup(void *);
193static void fpstate_drop(struct thread *td);
194static void get_fpcontext(struct thread *td, mcontext_t *mcp);
195static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
196#ifdef CPU_ENABLE_SSE
197static void set_fpregs_xmm(struct save87 *, struct savexmm *);
198static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
199#endif /* CPU_ENABLE_SSE */
200SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
201
202#ifdef DDB
203extern vm_offset_t ksym_start, ksym_end;
204#endif
205
206/* Intel ICH registers */
207#define ICH_PMBASE	0x400
208#define ICH_SMI_EN	ICH_PMBASE + 0x30
209
210int	_udatasel, _ucodesel;
211u_int	basemem;
212
213int cold = 1;
214
215#ifdef COMPAT_43
216static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
217#endif
218#ifdef COMPAT_FREEBSD4
219static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
220#endif
221
222long Maxmem = 0;
223long realmem = 0;
224
225#ifdef PAE
226FEATURE(pae, "Physical Address Extensions");
227#endif
228
229/*
230 * The number of PHYSMAP entries must be one less than the number of
231 * PHYSSEG entries because the PHYSMAP entry that spans the largest
232 * physical address that is accessible by ISA DMA is split into two
233 * PHYSSEG entries.
234 */
235#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
236
237vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
238vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
239
240/* must be 2 less so 0 0 can signal end of chunks */
241#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
242#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
243
244struct kva_md_info kmi;
245
246static struct trapframe proc0_tf;
247struct pcpu __pcpu[MAXCPU];
248
249struct mtx icu_lock;
250
251struct mem_range_softc mem_range_softc;
252
253static void
254cpu_startup(dummy)
255	void *dummy;
256{
257	uintmax_t memsize;
258	char *sysenv;
259
260	/*
261	 * On MacBooks, we need to disallow the legacy USB circuit to
262	 * generate an SMI# because this can cause several problems,
263	 * namely: incorrect CPU frequency detection and failure to
264	 * start the APs.
265	 * We do this by disabling a bit in the SMI_EN (SMI Control and
266	 * Enable register) of the Intel ICH LPC Interface Bridge.
267	 */
268	sysenv = getenv("smbios.system.product");
269	if (sysenv != NULL) {
270		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
271		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
272		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
273		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
274		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
275		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
276		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
277		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
278			if (bootverbose)
279				printf("Disabling LEGACY_USB_EN bit on "
280				    "Intel ICH.\n");
281			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
282		}
283		freeenv(sysenv);
284	}
285
286	/*
287	 * Good {morning,afternoon,evening,night}.
288	 */
289	startrtclock();
290	printcpuinfo();
291	panicifcpuunsupported();
292#ifdef PERFMON
293	perfmon_init();
294#endif
295
296	/*
297	 * Display physical memory if SMBIOS reports reasonable amount.
298	 */
299	memsize = 0;
300	sysenv = getenv("smbios.memory.enabled");
301	if (sysenv != NULL) {
302		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
303		freeenv(sysenv);
304	}
305	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
306		memsize = ptoa((uintmax_t)Maxmem);
307	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
308	realmem = atop(memsize);
309
310	/*
311	 * Display any holes after the first chunk of extended memory.
312	 */
313	if (bootverbose) {
314		int indx;
315
316		printf("Physical memory chunk(s):\n");
317		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
318			vm_paddr_t size;
319
320			size = phys_avail[indx + 1] - phys_avail[indx];
321			printf(
322			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
323			    (uintmax_t)phys_avail[indx],
324			    (uintmax_t)phys_avail[indx + 1] - 1,
325			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
326		}
327	}
328
329	vm_ksubmap_init(&kmi);
330
331	printf("avail memory = %ju (%ju MB)\n",
332	    ptoa((uintmax_t)cnt.v_free_count),
333	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
334
335	/*
336	 * Set up buffers, so they can be used to read disk labels.
337	 */
338	bufinit();
339	vm_pager_bufferinit();
340#ifndef XEN
341	cpu_setregs();
342#endif
343}
344
345/*
346 * Send an interrupt to process.
347 *
348 * Stack is set up to allow sigcode stored
349 * at top to call routine, followed by kcall
350 * to sigreturn routine below.  After sigreturn
351 * resets the signal mask, the stack, and the
352 * frame pointer, it returns to the user
353 * specified pc, psl.
354 */
355#ifdef COMPAT_43
356static void
357osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
358{
359	struct osigframe sf, *fp;
360	struct proc *p;
361	struct thread *td;
362	struct sigacts *psp;
363	struct trapframe *regs;
364	int sig;
365	int oonstack;
366
367	td = curthread;
368	p = td->td_proc;
369	PROC_LOCK_ASSERT(p, MA_OWNED);
370	sig = ksi->ksi_signo;
371	psp = p->p_sigacts;
372	mtx_assert(&psp->ps_mtx, MA_OWNED);
373	regs = td->td_frame;
374	oonstack = sigonstack(regs->tf_esp);
375
376	/* Allocate space for the signal handler context. */
377	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
378	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
379		fp = (struct osigframe *)(td->td_sigstk.ss_sp +
380		    td->td_sigstk.ss_size - sizeof(struct osigframe));
381#if defined(COMPAT_43)
382		td->td_sigstk.ss_flags |= SS_ONSTACK;
383#endif
384	} else
385		fp = (struct osigframe *)regs->tf_esp - 1;
386
387	/* Translate the signal if appropriate. */
388	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
389		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
390
391	/* Build the argument list for the signal handler. */
392	sf.sf_signum = sig;
393	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
394	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
395	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
396		/* Signal handler installed with SA_SIGINFO. */
397		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
398		sf.sf_siginfo.si_signo = sig;
399		sf.sf_siginfo.si_code = ksi->ksi_code;
400		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
401		sf.sf_addr = 0;
402	} else {
403		/* Old FreeBSD-style arguments. */
404		sf.sf_arg2 = ksi->ksi_code;
405		sf.sf_addr = (register_t)ksi->ksi_addr;
406		sf.sf_ahu.sf_handler = catcher;
407	}
408	mtx_unlock(&psp->ps_mtx);
409	PROC_UNLOCK(p);
410
411	/* Save most if not all of trap frame. */
412	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
413	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
414	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
415	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
416	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
417	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
418	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
419	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
420	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
421	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
422	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
423	sf.sf_siginfo.si_sc.sc_gs = rgs();
424	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
425
426	/* Build the signal context to be used by osigreturn(). */
427	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
428	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
429	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
430	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
431	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
432	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
433	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
434	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
435
436	/*
437	 * If we're a vm86 process, we want to save the segment registers.
438	 * We also change eflags to be our emulated eflags, not the actual
439	 * eflags.
440	 */
441	if (regs->tf_eflags & PSL_VM) {
442		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
443		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
444		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
445
446		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
447		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
448		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
449		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
450
451		if (vm86->vm86_has_vme == 0)
452			sf.sf_siginfo.si_sc.sc_ps =
453			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
454			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
455
456		/* See sendsig() for comments. */
457		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
458	}
459
460	/*
461	 * Copy the sigframe out to the user's stack.
462	 */
463	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
464#ifdef DEBUG
465		printf("process %ld has trashed its stack\n", (long)p->p_pid);
466#endif
467		PROC_LOCK(p);
468		sigexit(td, SIGILL);
469	}
470
471	regs->tf_esp = (int)fp;
472	if (p->p_sysent->sv_sigcode_base != 0) {
473		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
474		    szosigcode;
475	} else {
476		/* a.out sysentvec does not use shared page */
477		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
478	}
479	regs->tf_eflags &= ~(PSL_T | PSL_D);
480	regs->tf_cs = _ucodesel;
481	regs->tf_ds = _udatasel;
482	regs->tf_es = _udatasel;
483	regs->tf_fs = _udatasel;
484	load_gs(_udatasel);
485	regs->tf_ss = _udatasel;
486	PROC_LOCK(p);
487	mtx_lock(&psp->ps_mtx);
488}
489#endif /* COMPAT_43 */
490
491#ifdef COMPAT_FREEBSD4
492static void
493freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
494{
495	struct sigframe4 sf, *sfp;
496	struct proc *p;
497	struct thread *td;
498	struct sigacts *psp;
499	struct trapframe *regs;
500	int sig;
501	int oonstack;
502
503	td = curthread;
504	p = td->td_proc;
505	PROC_LOCK_ASSERT(p, MA_OWNED);
506	sig = ksi->ksi_signo;
507	psp = p->p_sigacts;
508	mtx_assert(&psp->ps_mtx, MA_OWNED);
509	regs = td->td_frame;
510	oonstack = sigonstack(regs->tf_esp);
511
512	/* Save user context. */
513	bzero(&sf, sizeof(sf));
514	sf.sf_uc.uc_sigmask = *mask;
515	sf.sf_uc.uc_stack = td->td_sigstk;
516	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
517	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
518	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
519	sf.sf_uc.uc_mcontext.mc_gs = rgs();
520	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
521	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
522	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
523	bzero(sf.sf_uc.uc_mcontext.__spare__,
524	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
525	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
526
527	/* Allocate space for the signal handler context. */
528	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
529	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
530		sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
531		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
532#if defined(COMPAT_43)
533		td->td_sigstk.ss_flags |= SS_ONSTACK;
534#endif
535	} else
536		sfp = (struct sigframe4 *)regs->tf_esp - 1;
537
538	/* Translate the signal if appropriate. */
539	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
540		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
541
542	/* Build the argument list for the signal handler. */
543	sf.sf_signum = sig;
544	sf.sf_ucontext = (register_t)&sfp->sf_uc;
545	bzero(&sf.sf_si, sizeof(sf.sf_si));
546	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
547		/* Signal handler installed with SA_SIGINFO. */
548		sf.sf_siginfo = (register_t)&sfp->sf_si;
549		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
550
551		/* Fill in POSIX parts */
552		sf.sf_si.si_signo = sig;
553		sf.sf_si.si_code = ksi->ksi_code;
554		sf.sf_si.si_addr = ksi->ksi_addr;
555	} else {
556		/* Old FreeBSD-style arguments. */
557		sf.sf_siginfo = ksi->ksi_code;
558		sf.sf_addr = (register_t)ksi->ksi_addr;
559		sf.sf_ahu.sf_handler = catcher;
560	}
561	mtx_unlock(&psp->ps_mtx);
562	PROC_UNLOCK(p);
563
564	/*
565	 * If we're a vm86 process, we want to save the segment registers.
566	 * We also change eflags to be our emulated eflags, not the actual
567	 * eflags.
568	 */
569	if (regs->tf_eflags & PSL_VM) {
570		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
571		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
572
573		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
574		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
575		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
576		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
577
578		if (vm86->vm86_has_vme == 0)
579			sf.sf_uc.uc_mcontext.mc_eflags =
580			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
581			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
582
583		/*
584		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
585		 * syscalls made by the signal handler.  This just avoids
586		 * wasting time for our lazy fixup of such faults.  PSL_NT
587		 * does nothing in vm86 mode, but vm86 programs can set it
588		 * almost legitimately in probes for old cpu types.
589		 */
590		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
591	}
592
593	/*
594	 * Copy the sigframe out to the user's stack.
595	 */
596	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
597#ifdef DEBUG
598		printf("process %ld has trashed its stack\n", (long)p->p_pid);
599#endif
600		PROC_LOCK(p);
601		sigexit(td, SIGILL);
602	}
603
604	regs->tf_esp = (int)sfp;
605	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
606	    szfreebsd4_sigcode;
607	regs->tf_eflags &= ~(PSL_T | PSL_D);
608	regs->tf_cs = _ucodesel;
609	regs->tf_ds = _udatasel;
610	regs->tf_es = _udatasel;
611	regs->tf_fs = _udatasel;
612	regs->tf_ss = _udatasel;
613	PROC_LOCK(p);
614	mtx_lock(&psp->ps_mtx);
615}
616#endif	/* COMPAT_FREEBSD4 */
617
618void
619sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
620{
621	struct sigframe sf, *sfp;
622	struct proc *p;
623	struct thread *td;
624	struct sigacts *psp;
625	char *sp;
626	struct trapframe *regs;
627	struct segment_descriptor *sdp;
628	int sig;
629	int oonstack;
630
631	td = curthread;
632	p = td->td_proc;
633	PROC_LOCK_ASSERT(p, MA_OWNED);
634	sig = ksi->ksi_signo;
635	psp = p->p_sigacts;
636	mtx_assert(&psp->ps_mtx, MA_OWNED);
637#ifdef COMPAT_FREEBSD4
638	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
639		freebsd4_sendsig(catcher, ksi, mask);
640		return;
641	}
642#endif
643#ifdef COMPAT_43
644	if (SIGISMEMBER(psp->ps_osigset, sig)) {
645		osendsig(catcher, ksi, mask);
646		return;
647	}
648#endif
649	regs = td->td_frame;
650	oonstack = sigonstack(regs->tf_esp);
651
652	/* Save user context. */
653	bzero(&sf, sizeof(sf));
654	sf.sf_uc.uc_sigmask = *mask;
655	sf.sf_uc.uc_stack = td->td_sigstk;
656	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
657	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
658	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
659	sf.sf_uc.uc_mcontext.mc_gs = rgs();
660	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
661	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
662	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
663	fpstate_drop(td);
664	/*
665	 * Unconditionally fill the fsbase and gsbase into the mcontext.
666	 */
667	sdp = &td->td_pcb->pcb_fsd;
668	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
669	    sdp->sd_lobase;
670	sdp = &td->td_pcb->pcb_gsd;
671	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
672	    sdp->sd_lobase;
673	sf.sf_uc.uc_mcontext.mc_flags = 0;
674	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
675	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
676	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
677
678	/* Allocate space for the signal handler context. */
679	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
680	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
681		sp = td->td_sigstk.ss_sp +
682		    td->td_sigstk.ss_size - sizeof(struct sigframe);
683#if defined(COMPAT_43)
684		td->td_sigstk.ss_flags |= SS_ONSTACK;
685#endif
686	} else
687		sp = (char *)regs->tf_esp - sizeof(struct sigframe);
688	/* Align to 16 bytes. */
689	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
690
691	/* Translate the signal if appropriate. */
692	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
693		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
694
695	/* Build the argument list for the signal handler. */
696	sf.sf_signum = sig;
697	sf.sf_ucontext = (register_t)&sfp->sf_uc;
698	bzero(&sf.sf_si, sizeof(sf.sf_si));
699	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
700		/* Signal handler installed with SA_SIGINFO. */
701		sf.sf_siginfo = (register_t)&sfp->sf_si;
702		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
703
704		/* Fill in POSIX parts */
705		sf.sf_si = ksi->ksi_info;
706		sf.sf_si.si_signo = sig; /* maybe a translated signal */
707	} else {
708		/* Old FreeBSD-style arguments. */
709		sf.sf_siginfo = ksi->ksi_code;
710		sf.sf_addr = (register_t)ksi->ksi_addr;
711		sf.sf_ahu.sf_handler = catcher;
712	}
713	mtx_unlock(&psp->ps_mtx);
714	PROC_UNLOCK(p);
715
716	/*
717	 * If we're a vm86 process, we want to save the segment registers.
718	 * We also change eflags to be our emulated eflags, not the actual
719	 * eflags.
720	 */
721	if (regs->tf_eflags & PSL_VM) {
722		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
723		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
724
725		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
726		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
727		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
728		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
729
730		if (vm86->vm86_has_vme == 0)
731			sf.sf_uc.uc_mcontext.mc_eflags =
732			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
733			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
734
735		/*
736		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
737		 * syscalls made by the signal handler.  This just avoids
738		 * wasting time for our lazy fixup of such faults.  PSL_NT
739		 * does nothing in vm86 mode, but vm86 programs can set it
740		 * almost legitimately in probes for old cpu types.
741		 */
742		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
743	}
744
745	/*
746	 * Copy the sigframe out to the user's stack.
747	 */
748	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
749#ifdef DEBUG
750		printf("process %ld has trashed its stack\n", (long)p->p_pid);
751#endif
752		PROC_LOCK(p);
753		sigexit(td, SIGILL);
754	}
755
756	regs->tf_esp = (int)sfp;
757	regs->tf_eip = p->p_sysent->sv_sigcode_base;
758	if (regs->tf_eip == 0)
759		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
760	regs->tf_eflags &= ~(PSL_T | PSL_D);
761	regs->tf_cs = _ucodesel;
762	regs->tf_ds = _udatasel;
763	regs->tf_es = _udatasel;
764	regs->tf_fs = _udatasel;
765	regs->tf_ss = _udatasel;
766	PROC_LOCK(p);
767	mtx_lock(&psp->ps_mtx);
768}
769
770/*
771 * System call to cleanup state after a signal
772 * has been taken.  Reset signal mask and
773 * stack state from context left by sendsig (above).
774 * Return to previous pc and psl as specified by
775 * context left by sendsig. Check carefully to
776 * make sure that the user has not modified the
777 * state to gain improper privileges.
778 *
779 * MPSAFE
780 */
781#ifdef COMPAT_43
782int
783osigreturn(td, uap)
784	struct thread *td;
785	struct osigreturn_args /* {
786		struct osigcontext *sigcntxp;
787	} */ *uap;
788{
789	struct osigcontext sc;
790	struct trapframe *regs;
791	struct osigcontext *scp;
792	int eflags, error;
793	ksiginfo_t ksi;
794
795	regs = td->td_frame;
796	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
797	if (error != 0)
798		return (error);
799	scp = &sc;
800	eflags = scp->sc_ps;
801	if (eflags & PSL_VM) {
802		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
803		struct vm86_kernel *vm86;
804
805		/*
806		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
807		 * set up the vm86 area, and we can't enter vm86 mode.
808		 */
809		if (td->td_pcb->pcb_ext == 0)
810			return (EINVAL);
811		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
812		if (vm86->vm86_inited == 0)
813			return (EINVAL);
814
815		/* Go back to user mode if both flags are set. */
816		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
817			ksiginfo_init_trap(&ksi);
818			ksi.ksi_signo = SIGBUS;
819			ksi.ksi_code = BUS_OBJERR;
820			ksi.ksi_addr = (void *)regs->tf_eip;
821			trapsignal(td, &ksi);
822		}
823
824		if (vm86->vm86_has_vme) {
825			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
826			    (eflags & VME_USERCHANGE) | PSL_VM;
827		} else {
828			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
829			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
830			    (eflags & VM_USERCHANGE) | PSL_VM;
831		}
832		tf->tf_vm86_ds = scp->sc_ds;
833		tf->tf_vm86_es = scp->sc_es;
834		tf->tf_vm86_fs = scp->sc_fs;
835		tf->tf_vm86_gs = scp->sc_gs;
836		tf->tf_ds = _udatasel;
837		tf->tf_es = _udatasel;
838		tf->tf_fs = _udatasel;
839	} else {
840		/*
841		 * Don't allow users to change privileged or reserved flags.
842		 */
843		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
844	    		return (EINVAL);
845		}
846
847		/*
848		 * Don't allow users to load a valid privileged %cs.  Let the
849		 * hardware check for invalid selectors, excess privilege in
850		 * other selectors, invalid %eip's and invalid %esp's.
851		 */
852		if (!CS_SECURE(scp->sc_cs)) {
853			ksiginfo_init_trap(&ksi);
854			ksi.ksi_signo = SIGBUS;
855			ksi.ksi_code = BUS_OBJERR;
856			ksi.ksi_trapno = T_PROTFLT;
857			ksi.ksi_addr = (void *)regs->tf_eip;
858			trapsignal(td, &ksi);
859			return (EINVAL);
860		}
861		regs->tf_ds = scp->sc_ds;
862		regs->tf_es = scp->sc_es;
863		regs->tf_fs = scp->sc_fs;
864	}
865
866	/* Restore remaining registers. */
867	regs->tf_eax = scp->sc_eax;
868	regs->tf_ebx = scp->sc_ebx;
869	regs->tf_ecx = scp->sc_ecx;
870	regs->tf_edx = scp->sc_edx;
871	regs->tf_esi = scp->sc_esi;
872	regs->tf_edi = scp->sc_edi;
873	regs->tf_cs = scp->sc_cs;
874	regs->tf_ss = scp->sc_ss;
875	regs->tf_isp = scp->sc_isp;
876	regs->tf_ebp = scp->sc_fp;
877	regs->tf_esp = scp->sc_sp;
878	regs->tf_eip = scp->sc_pc;
879	regs->tf_eflags = eflags;
880
881#if defined(COMPAT_43)
882	if (scp->sc_onstack & 1)
883		td->td_sigstk.ss_flags |= SS_ONSTACK;
884	else
885		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
886#endif
887	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
888	    SIGPROCMASK_OLD);
889	return (EJUSTRETURN);
890}
891#endif /* COMPAT_43 */
892
893#ifdef COMPAT_FREEBSD4
894/*
895 * MPSAFE
896 */
897int
898freebsd4_sigreturn(td, uap)
899	struct thread *td;
900	struct freebsd4_sigreturn_args /* {
901		const ucontext4 *sigcntxp;
902	} */ *uap;
903{
904	struct ucontext4 uc;
905	struct trapframe *regs;
906	struct ucontext4 *ucp;
907	int cs, eflags, error;
908	ksiginfo_t ksi;
909
910	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
911	if (error != 0)
912		return (error);
913	ucp = &uc;
914	regs = td->td_frame;
915	eflags = ucp->uc_mcontext.mc_eflags;
916	if (eflags & PSL_VM) {
917		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
918		struct vm86_kernel *vm86;
919
920		/*
921		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
922		 * set up the vm86 area, and we can't enter vm86 mode.
923		 */
924		if (td->td_pcb->pcb_ext == 0)
925			return (EINVAL);
926		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
927		if (vm86->vm86_inited == 0)
928			return (EINVAL);
929
930		/* Go back to user mode if both flags are set. */
931		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
932			ksiginfo_init_trap(&ksi);
933			ksi.ksi_signo = SIGBUS;
934			ksi.ksi_code = BUS_OBJERR;
935			ksi.ksi_addr = (void *)regs->tf_eip;
936			trapsignal(td, &ksi);
937		}
938		if (vm86->vm86_has_vme) {
939			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
940			    (eflags & VME_USERCHANGE) | PSL_VM;
941		} else {
942			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
943			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
944			    (eflags & VM_USERCHANGE) | PSL_VM;
945		}
946		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
947		tf->tf_eflags = eflags;
948		tf->tf_vm86_ds = tf->tf_ds;
949		tf->tf_vm86_es = tf->tf_es;
950		tf->tf_vm86_fs = tf->tf_fs;
951		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
952		tf->tf_ds = _udatasel;
953		tf->tf_es = _udatasel;
954		tf->tf_fs = _udatasel;
955	} else {
956		/*
957		 * Don't allow users to change privileged or reserved flags.
958		 */
959		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
960			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
961			    td->td_proc->p_pid, td->td_name, eflags);
962	    		return (EINVAL);
963		}
964
965		/*
966		 * Don't allow users to load a valid privileged %cs.  Let the
967		 * hardware check for invalid selectors, excess privilege in
968		 * other selectors, invalid %eip's and invalid %esp's.
969		 */
970		cs = ucp->uc_mcontext.mc_cs;
971		if (!CS_SECURE(cs)) {
972			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
973			    td->td_proc->p_pid, td->td_name, cs);
974			ksiginfo_init_trap(&ksi);
975			ksi.ksi_signo = SIGBUS;
976			ksi.ksi_code = BUS_OBJERR;
977			ksi.ksi_trapno = T_PROTFLT;
978			ksi.ksi_addr = (void *)regs->tf_eip;
979			trapsignal(td, &ksi);
980			return (EINVAL);
981		}
982
983		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
984	}
985
986#if defined(COMPAT_43)
987	if (ucp->uc_mcontext.mc_onstack & 1)
988		td->td_sigstk.ss_flags |= SS_ONSTACK;
989	else
990		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
991#endif
992	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
993	return (EJUSTRETURN);
994}
995#endif	/* COMPAT_FREEBSD4 */
996
997/*
998 * MPSAFE
999 */
1000int
1001sys_sigreturn(td, uap)
1002	struct thread *td;
1003	struct sigreturn_args /* {
1004		const struct __ucontext *sigcntxp;
1005	} */ *uap;
1006{
1007	ucontext_t uc;
1008	struct trapframe *regs;
1009	ucontext_t *ucp;
1010	int cs, eflags, error, ret;
1011	ksiginfo_t ksi;
1012
1013	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1014	if (error != 0)
1015		return (error);
1016	ucp = &uc;
1017	regs = td->td_frame;
1018	eflags = ucp->uc_mcontext.mc_eflags;
1019	if (eflags & PSL_VM) {
1020		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1021		struct vm86_kernel *vm86;
1022
1023		/*
1024		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1025		 * set up the vm86 area, and we can't enter vm86 mode.
1026		 */
1027		if (td->td_pcb->pcb_ext == 0)
1028			return (EINVAL);
1029		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1030		if (vm86->vm86_inited == 0)
1031			return (EINVAL);
1032
1033		/* Go back to user mode if both flags are set. */
1034		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1035			ksiginfo_init_trap(&ksi);
1036			ksi.ksi_signo = SIGBUS;
1037			ksi.ksi_code = BUS_OBJERR;
1038			ksi.ksi_addr = (void *)regs->tf_eip;
1039			trapsignal(td, &ksi);
1040		}
1041
1042		if (vm86->vm86_has_vme) {
1043			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1044			    (eflags & VME_USERCHANGE) | PSL_VM;
1045		} else {
1046			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1047			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1048			    (eflags & VM_USERCHANGE) | PSL_VM;
1049		}
1050		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1051		tf->tf_eflags = eflags;
1052		tf->tf_vm86_ds = tf->tf_ds;
1053		tf->tf_vm86_es = tf->tf_es;
1054		tf->tf_vm86_fs = tf->tf_fs;
1055		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1056		tf->tf_ds = _udatasel;
1057		tf->tf_es = _udatasel;
1058		tf->tf_fs = _udatasel;
1059	} else {
1060		/*
1061		 * Don't allow users to change privileged or reserved flags.
1062		 */
1063		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1064			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1065			    td->td_proc->p_pid, td->td_name, eflags);
1066	    		return (EINVAL);
1067		}
1068
1069		/*
1070		 * Don't allow users to load a valid privileged %cs.  Let the
1071		 * hardware check for invalid selectors, excess privilege in
1072		 * other selectors, invalid %eip's and invalid %esp's.
1073		 */
1074		cs = ucp->uc_mcontext.mc_cs;
1075		if (!CS_SECURE(cs)) {
1076			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1077			    td->td_proc->p_pid, td->td_name, cs);
1078			ksiginfo_init_trap(&ksi);
1079			ksi.ksi_signo = SIGBUS;
1080			ksi.ksi_code = BUS_OBJERR;
1081			ksi.ksi_trapno = T_PROTFLT;
1082			ksi.ksi_addr = (void *)regs->tf_eip;
1083			trapsignal(td, &ksi);
1084			return (EINVAL);
1085		}
1086
1087		ret = set_fpcontext(td, &ucp->uc_mcontext);
1088		if (ret != 0)
1089			return (ret);
1090		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1091	}
1092
1093#if defined(COMPAT_43)
1094	if (ucp->uc_mcontext.mc_onstack & 1)
1095		td->td_sigstk.ss_flags |= SS_ONSTACK;
1096	else
1097		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1098#endif
1099
1100	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1101	return (EJUSTRETURN);
1102}
1103
1104/*
1105 * Machine dependent boot() routine
1106 *
1107 * I haven't seen anything to put here yet
1108 * Possibly some stuff might be grafted back here from boot()
1109 */
1110void
1111cpu_boot(int howto)
1112{
1113}
1114
1115/*
1116 * Flush the D-cache for non-DMA I/O so that the I-cache can
1117 * be made coherent later.
1118 */
1119void
1120cpu_flush_dcache(void *ptr, size_t len)
1121{
1122	/* Not applicable */
1123}
1124
1125/* Get current clock frequency for the given cpu id. */
1126int
1127cpu_est_clockrate(int cpu_id, uint64_t *rate)
1128{
1129	uint64_t tsc1, tsc2;
1130	uint64_t acnt, mcnt, perf;
1131	register_t reg;
1132
1133	if (pcpu_find(cpu_id) == NULL || rate == NULL)
1134		return (EINVAL);
1135	if ((cpu_feature & CPUID_TSC) == 0)
1136		return (EOPNOTSUPP);
1137
1138	/*
1139	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
1140	 * DELAY(9) based logic fails.
1141	 */
1142	if (tsc_is_invariant && !tsc_perf_stat)
1143		return (EOPNOTSUPP);
1144
1145#ifdef SMP
1146	if (smp_cpus > 1) {
1147		/* Schedule ourselves on the indicated cpu. */
1148		thread_lock(curthread);
1149		sched_bind(curthread, cpu_id);
1150		thread_unlock(curthread);
1151	}
1152#endif
1153
1154	/* Calibrate by measuring a short delay. */
1155	reg = intr_disable();
1156	if (tsc_is_invariant) {
1157		wrmsr(MSR_MPERF, 0);
1158		wrmsr(MSR_APERF, 0);
1159		tsc1 = rdtsc();
1160		DELAY(1000);
1161		mcnt = rdmsr(MSR_MPERF);
1162		acnt = rdmsr(MSR_APERF);
1163		tsc2 = rdtsc();
1164		intr_restore(reg);
1165		perf = 1000 * acnt / mcnt;
1166		*rate = (tsc2 - tsc1) * perf;
1167	} else {
1168		tsc1 = rdtsc();
1169		DELAY(1000);
1170		tsc2 = rdtsc();
1171		intr_restore(reg);
1172		*rate = (tsc2 - tsc1) * 1000;
1173	}
1174
1175#ifdef SMP
1176	if (smp_cpus > 1) {
1177		thread_lock(curthread);
1178		sched_unbind(curthread);
1179		thread_unlock(curthread);
1180	}
1181#endif
1182
1183	return (0);
1184}
1185
1186#ifdef XEN
1187
1188static void
1189idle_block(void)
1190{
1191
1192	HYPERVISOR_sched_op(SCHEDOP_block, 0);
1193}
1194
1195void
1196cpu_halt(void)
1197{
1198	HYPERVISOR_shutdown(SHUTDOWN_poweroff);
1199}
1200
1201int scheduler_running;
1202
1203static void
1204cpu_idle_hlt(sbintime_t sbt)
1205{
1206
1207	scheduler_running = 1;
1208	enable_intr();
1209	idle_block();
1210}
1211
1212#else
1213/*
1214 * Shutdown the CPU as much as possible
1215 */
1216void
1217cpu_halt(void)
1218{
1219	for (;;)
1220		halt();
1221}
1222
1223#endif
1224
1225void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
1226static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
1227static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
1228TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
1229SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
1230    0, "Use MONITOR/MWAIT for short idle");
1231
1232#define	STATE_RUNNING	0x0
1233#define	STATE_MWAIT	0x1
1234#define	STATE_SLEEPING	0x2
1235
1236static void
1237cpu_idle_acpi(sbintime_t sbt)
1238{
1239	int *state;
1240
1241	state = (int *)PCPU_PTR(monitorbuf);
1242	*state = STATE_SLEEPING;
1243
1244	/* See comments in cpu_idle_hlt(). */
1245	disable_intr();
1246	if (sched_runnable())
1247		enable_intr();
1248	else if (cpu_idle_hook)
1249		cpu_idle_hook(sbt);
1250	else
1251		__asm __volatile("sti; hlt");
1252	*state = STATE_RUNNING;
1253}
1254
1255#ifndef XEN
1256static void
1257cpu_idle_hlt(sbintime_t sbt)
1258{
1259	int *state;
1260
1261	state = (int *)PCPU_PTR(monitorbuf);
1262	*state = STATE_SLEEPING;
1263
1264	/*
1265	 * Since we may be in a critical section from cpu_idle(), if
1266	 * an interrupt fires during that critical section we may have
1267	 * a pending preemption.  If the CPU halts, then that thread
1268	 * may not execute until a later interrupt awakens the CPU.
1269	 * To handle this race, check for a runnable thread after
1270	 * disabling interrupts and immediately return if one is
1271	 * found.  Also, we must absolutely guarentee that hlt is
1272	 * the next instruction after sti.  This ensures that any
1273	 * interrupt that fires after the call to disable_intr() will
1274	 * immediately awaken the CPU from hlt.  Finally, please note
1275	 * that on x86 this works fine because of interrupts enabled only
1276	 * after the instruction following sti takes place, while IF is set
1277	 * to 1 immediately, allowing hlt instruction to acknowledge the
1278	 * interrupt.
1279	 */
1280	disable_intr();
1281	if (sched_runnable())
1282		enable_intr();
1283	else
1284		__asm __volatile("sti; hlt");
1285	*state = STATE_RUNNING;
1286}
1287#endif
1288
1289/*
1290 * MWAIT cpu power states.  Lower 4 bits are sub-states.
1291 */
1292#define	MWAIT_C0	0xf0
1293#define	MWAIT_C1	0x00
1294#define	MWAIT_C2	0x10
1295#define	MWAIT_C3	0x20
1296#define	MWAIT_C4	0x30
1297
1298static void
1299cpu_idle_mwait(sbintime_t sbt)
1300{
1301	int *state;
1302
1303	state = (int *)PCPU_PTR(monitorbuf);
1304	*state = STATE_MWAIT;
1305
1306	/* See comments in cpu_idle_hlt(). */
1307	disable_intr();
1308	if (sched_runnable()) {
1309		enable_intr();
1310		*state = STATE_RUNNING;
1311		return;
1312	}
1313	cpu_monitor(state, 0, 0);
1314	if (*state == STATE_MWAIT)
1315		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
1316	else
1317		enable_intr();
1318	*state = STATE_RUNNING;
1319}
1320
1321static void
1322cpu_idle_spin(sbintime_t sbt)
1323{
1324	int *state;
1325	int i;
1326
1327	state = (int *)PCPU_PTR(monitorbuf);
1328	*state = STATE_RUNNING;
1329
1330	/*
1331	 * The sched_runnable() call is racy but as long as there is
1332	 * a loop missing it one time will have just a little impact if any
1333	 * (and it is much better than missing the check at all).
1334	 */
1335	for (i = 0; i < 1000; i++) {
1336		if (sched_runnable())
1337			return;
1338		cpu_spinwait();
1339	}
1340}
1341
1342/*
1343 * C1E renders the local APIC timer dead, so we disable it by
1344 * reading the Interrupt Pending Message register and clearing
1345 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
1346 *
1347 * Reference:
1348 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
1349 *   #32559 revision 3.00+
1350 */
1351#define	MSR_AMDK8_IPM		0xc0010055
1352#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
1353#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
1354#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
1355
1356static void
1357cpu_probe_amdc1e(void)
1358{
1359
1360	/*
1361	 * Detect the presence of C1E capability mostly on latest
1362	 * dual-cores (or future) k8 family.
1363	 */
1364	if (cpu_vendor_id == CPU_VENDOR_AMD &&
1365	    (cpu_id & 0x00000f00) == 0x00000f00 &&
1366	    (cpu_id & 0x0fff0000) >=  0x00040000) {
1367		cpu_ident_amdc1e = 1;
1368	}
1369}
1370
1371#ifdef XEN
1372void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
1373#else
1374void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
1375#endif
1376
1377void
1378cpu_idle(int busy)
1379{
1380#ifndef XEN
1381	uint64_t msr;
1382#endif
1383	sbintime_t sbt = -1;
1384
1385	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
1386	    busy, curcpu);
1387#if defined(MP_WATCHDOG) && !defined(XEN)
1388	ap_watchdog(PCPU_GET(cpuid));
1389#endif
1390#ifndef XEN
1391	/* If we are busy - try to use fast methods. */
1392	if (busy) {
1393		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
1394			cpu_idle_mwait(busy);
1395			goto out;
1396		}
1397	}
1398#endif
1399
1400	/* If we have time - switch timers into idle mode. */
1401	if (!busy) {
1402		critical_enter();
1403		sbt = cpu_idleclock();
1404	}
1405
1406#ifndef XEN
1407	/* Apply AMD APIC timer C1E workaround. */
1408	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
1409		msr = rdmsr(MSR_AMDK8_IPM);
1410		if (msr & AMDK8_CMPHALT)
1411			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
1412	}
1413#endif
1414
1415	/* Call main idle method. */
1416	cpu_idle_fn(sbt);
1417
1418	/* Switch timers mack into active mode. */
1419	if (!busy) {
1420		cpu_activeclock();
1421		critical_exit();
1422	}
1423#ifndef XEN
1424out:
1425#endif
1426	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
1427	    busy, curcpu);
1428}
1429
1430int
1431cpu_idle_wakeup(int cpu)
1432{
1433	struct pcpu *pcpu;
1434	int *state;
1435
1436	pcpu = pcpu_find(cpu);
1437	state = (int *)pcpu->pc_monitorbuf;
1438	/*
1439	 * This doesn't need to be atomic since missing the race will
1440	 * simply result in unnecessary IPIs.
1441	 */
1442	if (*state == STATE_SLEEPING)
1443		return (0);
1444	if (*state == STATE_MWAIT)
1445		*state = STATE_RUNNING;
1446	return (1);
1447}
1448
1449/*
1450 * Ordered by speed/power consumption.
1451 */
1452struct {
1453	void	*id_fn;
1454	char	*id_name;
1455} idle_tbl[] = {
1456	{ cpu_idle_spin, "spin" },
1457	{ cpu_idle_mwait, "mwait" },
1458	{ cpu_idle_hlt, "hlt" },
1459	{ cpu_idle_acpi, "acpi" },
1460	{ NULL, NULL }
1461};
1462
1463static int
1464idle_sysctl_available(SYSCTL_HANDLER_ARGS)
1465{
1466	char *avail, *p;
1467	int error;
1468	int i;
1469
1470	avail = malloc(256, M_TEMP, M_WAITOK);
1471	p = avail;
1472	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1473		if (strstr(idle_tbl[i].id_name, "mwait") &&
1474		    (cpu_feature2 & CPUID2_MON) == 0)
1475			continue;
1476		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1477		    cpu_idle_hook == NULL)
1478			continue;
1479		p += sprintf(p, "%s%s", p != avail ? ", " : "",
1480		    idle_tbl[i].id_name);
1481	}
1482	error = sysctl_handle_string(oidp, avail, 0, req);
1483	free(avail, M_TEMP);
1484	return (error);
1485}
1486
1487SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
1488    0, 0, idle_sysctl_available, "A", "list of available idle functions");
1489
1490static int
1491idle_sysctl(SYSCTL_HANDLER_ARGS)
1492{
1493	char buf[16];
1494	int error;
1495	char *p;
1496	int i;
1497
1498	p = "unknown";
1499	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1500		if (idle_tbl[i].id_fn == cpu_idle_fn) {
1501			p = idle_tbl[i].id_name;
1502			break;
1503		}
1504	}
1505	strncpy(buf, p, sizeof(buf));
1506	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
1507	if (error != 0 || req->newptr == NULL)
1508		return (error);
1509	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1510		if (strstr(idle_tbl[i].id_name, "mwait") &&
1511		    (cpu_feature2 & CPUID2_MON) == 0)
1512			continue;
1513		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1514		    cpu_idle_hook == NULL)
1515			continue;
1516		if (strcmp(idle_tbl[i].id_name, buf))
1517			continue;
1518		cpu_idle_fn = idle_tbl[i].id_fn;
1519		return (0);
1520	}
1521	return (EINVAL);
1522}
1523
1524SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
1525    idle_sysctl, "A", "currently selected idle function");
1526
1527/*
1528 * Reset registers to default values on exec.
1529 */
1530void
1531exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1532{
1533	struct trapframe *regs = td->td_frame;
1534	struct pcb *pcb = td->td_pcb;
1535
1536	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1537	pcb->pcb_gs = _udatasel;
1538	load_gs(_udatasel);
1539
1540	mtx_lock_spin(&dt_lock);
1541	if (td->td_proc->p_md.md_ldt)
1542		user_ldt_free(td);
1543	else
1544		mtx_unlock_spin(&dt_lock);
1545
1546	bzero((char *)regs, sizeof(struct trapframe));
1547	regs->tf_eip = imgp->entry_addr;
1548	regs->tf_esp = stack;
1549	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1550	regs->tf_ss = _udatasel;
1551	regs->tf_ds = _udatasel;
1552	regs->tf_es = _udatasel;
1553	regs->tf_fs = _udatasel;
1554	regs->tf_cs = _ucodesel;
1555
1556	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1557	regs->tf_ebx = imgp->ps_strings;
1558
1559        /*
1560         * Reset the hardware debug registers if they were in use.
1561         * They won't have any meaning for the newly exec'd process.
1562         */
1563        if (pcb->pcb_flags & PCB_DBREGS) {
1564                pcb->pcb_dr0 = 0;
1565                pcb->pcb_dr1 = 0;
1566                pcb->pcb_dr2 = 0;
1567                pcb->pcb_dr3 = 0;
1568                pcb->pcb_dr6 = 0;
1569                pcb->pcb_dr7 = 0;
1570                if (pcb == curpcb) {
1571		        /*
1572			 * Clear the debug registers on the running
1573			 * CPU, otherwise they will end up affecting
1574			 * the next process we switch to.
1575			 */
1576		        reset_dbregs();
1577                }
1578                pcb->pcb_flags &= ~PCB_DBREGS;
1579        }
1580
1581	/*
1582	 * Initialize the math emulator (if any) for the current process.
1583	 * Actually, just clear the bit that says that the emulator has
1584	 * been initialized.  Initialization is delayed until the process
1585	 * traps to the emulator (if it is done at all) mainly because
1586	 * emulators don't provide an entry point for initialization.
1587	 */
1588	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1589	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1590
1591	/*
1592	 * Drop the FP state if we hold it, so that the process gets a
1593	 * clean FP state if it uses the FPU again.
1594	 */
1595	fpstate_drop(td);
1596
1597	/*
1598	 * XXX - Linux emulator
1599	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1600	 * on it.
1601	 */
1602	td->td_retval[1] = 0;
1603}
1604
1605void
1606cpu_setregs(void)
1607{
1608	unsigned int cr0;
1609
1610	cr0 = rcr0();
1611
1612	/*
1613	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1614	 *
1615	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1616	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1617	 * bit to control the trap, because setting the CR0_EM bit does
1618	 * not cause WAIT instructions to trap.  It's important to trap
1619	 * WAIT instructions - otherwise the "wait" variants of no-wait
1620	 * control instructions would degenerate to the "no-wait" variants
1621	 * after FP context switches but work correctly otherwise.  It's
1622	 * particularly important to trap WAITs when there is no NPX -
1623	 * otherwise the "wait" variants would always degenerate.
1624	 *
1625	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1626	 * Setting it should fail or do nothing on lesser processors.
1627	 */
1628	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1629	load_cr0(cr0);
1630	load_gs(_udatasel);
1631}
1632
1633u_long bootdev;		/* not a struct cdev *- encoding is different */
1634SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1635	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1636
1637static char bootmethod[16] = "BIOS";
1638SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1639    "System firmware boot method");
1640
1641/*
1642 * Initialize 386 and configure to run kernel
1643 */
1644
1645/*
1646 * Initialize segments & interrupt table
1647 */
1648
1649int _default_ldt;
1650
1651#ifdef XEN
1652union descriptor *gdt;
1653union descriptor *ldt;
1654#else
1655union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1656union descriptor ldt[NLDT];		/* local descriptor table */
1657#endif
1658static struct gate_descriptor idt0[NIDT];
1659struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1660struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1661struct mtx dt_lock;			/* lock for GDT and LDT */
1662
1663static struct i386tss dblfault_tss;
1664static char dblfault_stack[PAGE_SIZE];
1665
1666extern  vm_offset_t	proc0kstack;
1667
1668
1669/*
1670 * software prototypes -- in more palatable form.
1671 *
1672 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1673 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1674 */
1675struct soft_segment_descriptor gdt_segs[] = {
1676/* GNULL_SEL	0 Null Descriptor */
1677{	.ssd_base = 0x0,
1678	.ssd_limit = 0x0,
1679	.ssd_type = 0,
1680	.ssd_dpl = SEL_KPL,
1681	.ssd_p = 0,
1682	.ssd_xx = 0, .ssd_xx1 = 0,
1683	.ssd_def32 = 0,
1684	.ssd_gran = 0		},
1685/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1686{	.ssd_base = 0x0,
1687	.ssd_limit = 0xfffff,
1688	.ssd_type = SDT_MEMRWA,
1689	.ssd_dpl = SEL_KPL,
1690	.ssd_p = 1,
1691	.ssd_xx = 0, .ssd_xx1 = 0,
1692	.ssd_def32 = 1,
1693	.ssd_gran = 1		},
1694/* GUFS_SEL	2 %fs Descriptor for user */
1695{	.ssd_base = 0x0,
1696	.ssd_limit = 0xfffff,
1697	.ssd_type = SDT_MEMRWA,
1698	.ssd_dpl = SEL_UPL,
1699	.ssd_p = 1,
1700	.ssd_xx = 0, .ssd_xx1 = 0,
1701	.ssd_def32 = 1,
1702	.ssd_gran = 1		},
1703/* GUGS_SEL	3 %gs Descriptor for user */
1704{	.ssd_base = 0x0,
1705	.ssd_limit = 0xfffff,
1706	.ssd_type = SDT_MEMRWA,
1707	.ssd_dpl = SEL_UPL,
1708	.ssd_p = 1,
1709	.ssd_xx = 0, .ssd_xx1 = 0,
1710	.ssd_def32 = 1,
1711	.ssd_gran = 1		},
1712/* GCODE_SEL	4 Code Descriptor for kernel */
1713{	.ssd_base = 0x0,
1714	.ssd_limit = 0xfffff,
1715	.ssd_type = SDT_MEMERA,
1716	.ssd_dpl = SEL_KPL,
1717	.ssd_p = 1,
1718	.ssd_xx = 0, .ssd_xx1 = 0,
1719	.ssd_def32 = 1,
1720	.ssd_gran = 1		},
1721/* GDATA_SEL	5 Data Descriptor for kernel */
1722{	.ssd_base = 0x0,
1723	.ssd_limit = 0xfffff,
1724	.ssd_type = SDT_MEMRWA,
1725	.ssd_dpl = SEL_KPL,
1726	.ssd_p = 1,
1727	.ssd_xx = 0, .ssd_xx1 = 0,
1728	.ssd_def32 = 1,
1729	.ssd_gran = 1		},
1730/* GUCODE_SEL	6 Code Descriptor for user */
1731{	.ssd_base = 0x0,
1732	.ssd_limit = 0xfffff,
1733	.ssd_type = SDT_MEMERA,
1734	.ssd_dpl = SEL_UPL,
1735	.ssd_p = 1,
1736	.ssd_xx = 0, .ssd_xx1 = 0,
1737	.ssd_def32 = 1,
1738	.ssd_gran = 1		},
1739/* GUDATA_SEL	7 Data Descriptor for user */
1740{	.ssd_base = 0x0,
1741	.ssd_limit = 0xfffff,
1742	.ssd_type = SDT_MEMRWA,
1743	.ssd_dpl = SEL_UPL,
1744	.ssd_p = 1,
1745	.ssd_xx = 0, .ssd_xx1 = 0,
1746	.ssd_def32 = 1,
1747	.ssd_gran = 1		},
1748/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1749{	.ssd_base = 0x400,
1750	.ssd_limit = 0xfffff,
1751	.ssd_type = SDT_MEMRWA,
1752	.ssd_dpl = SEL_KPL,
1753	.ssd_p = 1,
1754	.ssd_xx = 0, .ssd_xx1 = 0,
1755	.ssd_def32 = 1,
1756	.ssd_gran = 1		},
1757#ifndef XEN
1758/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1759{
1760	.ssd_base = 0x0,
1761	.ssd_limit = sizeof(struct i386tss)-1,
1762	.ssd_type = SDT_SYS386TSS,
1763	.ssd_dpl = 0,
1764	.ssd_p = 1,
1765	.ssd_xx = 0, .ssd_xx1 = 0,
1766	.ssd_def32 = 0,
1767	.ssd_gran = 0		},
1768/* GLDT_SEL	10 LDT Descriptor */
1769{	.ssd_base = (int) ldt,
1770	.ssd_limit = sizeof(ldt)-1,
1771	.ssd_type = SDT_SYSLDT,
1772	.ssd_dpl = SEL_UPL,
1773	.ssd_p = 1,
1774	.ssd_xx = 0, .ssd_xx1 = 0,
1775	.ssd_def32 = 0,
1776	.ssd_gran = 0		},
1777/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1778{	.ssd_base = (int) ldt,
1779	.ssd_limit = (512 * sizeof(union descriptor)-1),
1780	.ssd_type = SDT_SYSLDT,
1781	.ssd_dpl = 0,
1782	.ssd_p = 1,
1783	.ssd_xx = 0, .ssd_xx1 = 0,
1784	.ssd_def32 = 0,
1785	.ssd_gran = 0		},
1786/* GPANIC_SEL	12 Panic Tss Descriptor */
1787{	.ssd_base = (int) &dblfault_tss,
1788	.ssd_limit = sizeof(struct i386tss)-1,
1789	.ssd_type = SDT_SYS386TSS,
1790	.ssd_dpl = 0,
1791	.ssd_p = 1,
1792	.ssd_xx = 0, .ssd_xx1 = 0,
1793	.ssd_def32 = 0,
1794	.ssd_gran = 0		},
1795/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1796{	.ssd_base = 0,
1797	.ssd_limit = 0xfffff,
1798	.ssd_type = SDT_MEMERA,
1799	.ssd_dpl = 0,
1800	.ssd_p = 1,
1801	.ssd_xx = 0, .ssd_xx1 = 0,
1802	.ssd_def32 = 0,
1803	.ssd_gran = 1		},
1804/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1805{	.ssd_base = 0,
1806	.ssd_limit = 0xfffff,
1807	.ssd_type = SDT_MEMERA,
1808	.ssd_dpl = 0,
1809	.ssd_p = 1,
1810	.ssd_xx = 0, .ssd_xx1 = 0,
1811	.ssd_def32 = 0,
1812	.ssd_gran = 1		},
1813/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1814{	.ssd_base = 0,
1815	.ssd_limit = 0xfffff,
1816	.ssd_type = SDT_MEMRWA,
1817	.ssd_dpl = 0,
1818	.ssd_p = 1,
1819	.ssd_xx = 0, .ssd_xx1 = 0,
1820	.ssd_def32 = 1,
1821	.ssd_gran = 1		},
1822/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1823{	.ssd_base = 0,
1824	.ssd_limit = 0xfffff,
1825	.ssd_type = SDT_MEMRWA,
1826	.ssd_dpl = 0,
1827	.ssd_p = 1,
1828	.ssd_xx = 0, .ssd_xx1 = 0,
1829	.ssd_def32 = 0,
1830	.ssd_gran = 1		},
1831/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1832{	.ssd_base = 0,
1833	.ssd_limit = 0xfffff,
1834	.ssd_type = SDT_MEMRWA,
1835	.ssd_dpl = 0,
1836	.ssd_p = 1,
1837	.ssd_xx = 0, .ssd_xx1 = 0,
1838	.ssd_def32 = 0,
1839	.ssd_gran = 1		},
1840/* GNDIS_SEL	18 NDIS Descriptor */
1841{	.ssd_base = 0x0,
1842	.ssd_limit = 0x0,
1843	.ssd_type = 0,
1844	.ssd_dpl = 0,
1845	.ssd_p = 0,
1846	.ssd_xx = 0, .ssd_xx1 = 0,
1847	.ssd_def32 = 0,
1848	.ssd_gran = 0		},
1849#endif /* !XEN */
1850};
1851
1852static struct soft_segment_descriptor ldt_segs[] = {
1853	/* Null Descriptor - overwritten by call gate */
1854{	.ssd_base = 0x0,
1855	.ssd_limit = 0x0,
1856	.ssd_type = 0,
1857	.ssd_dpl = 0,
1858	.ssd_p = 0,
1859	.ssd_xx = 0, .ssd_xx1 = 0,
1860	.ssd_def32 = 0,
1861	.ssd_gran = 0		},
1862	/* Null Descriptor - overwritten by call gate */
1863{	.ssd_base = 0x0,
1864	.ssd_limit = 0x0,
1865	.ssd_type = 0,
1866	.ssd_dpl = 0,
1867	.ssd_p = 0,
1868	.ssd_xx = 0, .ssd_xx1 = 0,
1869	.ssd_def32 = 0,
1870	.ssd_gran = 0		},
1871	/* Null Descriptor - overwritten by call gate */
1872{	.ssd_base = 0x0,
1873	.ssd_limit = 0x0,
1874	.ssd_type = 0,
1875	.ssd_dpl = 0,
1876	.ssd_p = 0,
1877	.ssd_xx = 0, .ssd_xx1 = 0,
1878	.ssd_def32 = 0,
1879	.ssd_gran = 0		},
1880	/* Code Descriptor for user */
1881{	.ssd_base = 0x0,
1882	.ssd_limit = 0xfffff,
1883	.ssd_type = SDT_MEMERA,
1884	.ssd_dpl = SEL_UPL,
1885	.ssd_p = 1,
1886	.ssd_xx = 0, .ssd_xx1 = 0,
1887	.ssd_def32 = 1,
1888	.ssd_gran = 1		},
1889	/* Null Descriptor - overwritten by call gate */
1890{	.ssd_base = 0x0,
1891	.ssd_limit = 0x0,
1892	.ssd_type = 0,
1893	.ssd_dpl = 0,
1894	.ssd_p = 0,
1895	.ssd_xx = 0, .ssd_xx1 = 0,
1896	.ssd_def32 = 0,
1897	.ssd_gran = 0		},
1898	/* Data Descriptor for user */
1899{	.ssd_base = 0x0,
1900	.ssd_limit = 0xfffff,
1901	.ssd_type = SDT_MEMRWA,
1902	.ssd_dpl = SEL_UPL,
1903	.ssd_p = 1,
1904	.ssd_xx = 0, .ssd_xx1 = 0,
1905	.ssd_def32 = 1,
1906	.ssd_gran = 1		},
1907};
1908
1909void
1910setidt(idx, func, typ, dpl, selec)
1911	int idx;
1912	inthand_t *func;
1913	int typ;
1914	int dpl;
1915	int selec;
1916{
1917	struct gate_descriptor *ip;
1918
1919	ip = idt + idx;
1920	ip->gd_looffset = (int)func;
1921	ip->gd_selector = selec;
1922	ip->gd_stkcpy = 0;
1923	ip->gd_xx = 0;
1924	ip->gd_type = typ;
1925	ip->gd_dpl = dpl;
1926	ip->gd_p = 1;
1927	ip->gd_hioffset = ((int)func)>>16 ;
1928}
1929
1930extern inthand_t
1931	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1932	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1933	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1934	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1935	IDTVEC(xmm),
1936#ifdef KDTRACE_HOOKS
1937	IDTVEC(dtrace_ret),
1938#endif
1939#ifdef XENHVM
1940	IDTVEC(xen_intr_upcall),
1941#endif
1942	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1943
1944#ifdef DDB
1945/*
1946 * Display the index and function name of any IDT entries that don't use
1947 * the default 'rsvd' entry point.
1948 */
1949DB_SHOW_COMMAND(idt, db_show_idt)
1950{
1951	struct gate_descriptor *ip;
1952	int idx;
1953	uintptr_t func;
1954
1955	ip = idt;
1956	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1957		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1958		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1959			db_printf("%3d\t", idx);
1960			db_printsym(func, DB_STGY_PROC);
1961			db_printf("\n");
1962		}
1963		ip++;
1964	}
1965}
1966
1967/* Show privileged registers. */
1968DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1969{
1970	uint64_t idtr, gdtr;
1971
1972	idtr = ridt();
1973	db_printf("idtr\t0x%08x/%04x\n",
1974	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1975	gdtr = rgdt();
1976	db_printf("gdtr\t0x%08x/%04x\n",
1977	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1978	db_printf("ldtr\t0x%04x\n", rldt());
1979	db_printf("tr\t0x%04x\n", rtr());
1980	db_printf("cr0\t0x%08x\n", rcr0());
1981	db_printf("cr2\t0x%08x\n", rcr2());
1982	db_printf("cr3\t0x%08x\n", rcr3());
1983	db_printf("cr4\t0x%08x\n", rcr4());
1984}
1985#endif
1986
1987void
1988sdtossd(sd, ssd)
1989	struct segment_descriptor *sd;
1990	struct soft_segment_descriptor *ssd;
1991{
1992	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1993	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1994	ssd->ssd_type  = sd->sd_type;
1995	ssd->ssd_dpl   = sd->sd_dpl;
1996	ssd->ssd_p     = sd->sd_p;
1997	ssd->ssd_def32 = sd->sd_def32;
1998	ssd->ssd_gran  = sd->sd_gran;
1999}
2000
2001#ifndef XEN
2002static int
2003add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
2004{
2005	int i, insert_idx, physmap_idx;
2006
2007	physmap_idx = *physmap_idxp;
2008
2009	if (boothowto & RB_VERBOSE)
2010		printf("SMAP type=%02x base=%016llx len=%016llx\n",
2011		    smap->type, smap->base, smap->length);
2012
2013	if (smap->type != SMAP_TYPE_MEMORY)
2014		return (1);
2015
2016	if (smap->length == 0)
2017		return (1);
2018
2019#ifndef PAE
2020	if (smap->base > 0xffffffff) {
2021		printf("%uK of memory above 4GB ignored\n",
2022		    (u_int)(smap->length / 1024));
2023		return (1);
2024	}
2025#endif
2026
2027	/*
2028	 * Find insertion point while checking for overlap.  Start off by
2029	 * assuming the new entry will be added to the end.
2030	 */
2031	insert_idx = physmap_idx + 2;
2032	for (i = 0; i <= physmap_idx; i += 2) {
2033		if (smap->base < physmap[i + 1]) {
2034			if (smap->base + smap->length <= physmap[i]) {
2035				insert_idx = i;
2036				break;
2037			}
2038			if (boothowto & RB_VERBOSE)
2039				printf(
2040		    "Overlapping memory regions, ignoring second region\n");
2041			return (1);
2042		}
2043	}
2044
2045	/* See if we can prepend to the next entry. */
2046	if (insert_idx <= physmap_idx &&
2047	    smap->base + smap->length == physmap[insert_idx]) {
2048		physmap[insert_idx] = smap->base;
2049		return (1);
2050	}
2051
2052	/* See if we can append to the previous entry. */
2053	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
2054		physmap[insert_idx - 1] += smap->length;
2055		return (1);
2056	}
2057
2058	physmap_idx += 2;
2059	*physmap_idxp = physmap_idx;
2060	if (physmap_idx == PHYSMAP_SIZE) {
2061		printf(
2062		"Too many segments in the physical address map, giving up\n");
2063		return (0);
2064	}
2065
2066	/*
2067	 * Move the last 'N' entries down to make room for the new
2068	 * entry if needed.
2069	 */
2070	for (i = physmap_idx; i > insert_idx; i -= 2) {
2071		physmap[i] = physmap[i - 2];
2072		physmap[i + 1] = physmap[i - 1];
2073	}
2074
2075	/* Insert the new entry. */
2076	physmap[insert_idx] = smap->base;
2077	physmap[insert_idx + 1] = smap->base + smap->length;
2078	return (1);
2079}
2080
2081static void
2082basemem_setup(void)
2083{
2084	vm_paddr_t pa;
2085	pt_entry_t *pte;
2086	int i;
2087
2088	if (basemem > 640) {
2089		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
2090			basemem);
2091		basemem = 640;
2092	}
2093
2094	/*
2095	 * XXX if biosbasemem is now < 640, there is a `hole'
2096	 * between the end of base memory and the start of
2097	 * ISA memory.  The hole may be empty or it may
2098	 * contain BIOS code or data.  Map it read/write so
2099	 * that the BIOS can write to it.  (Memory from 0 to
2100	 * the physical end of the kernel is mapped read-only
2101	 * to begin with and then parts of it are remapped.
2102	 * The parts that aren't remapped form holes that
2103	 * remain read-only and are unused by the kernel.
2104	 * The base memory area is below the physical end of
2105	 * the kernel and right now forms a read-only hole.
2106	 * The part of it from PAGE_SIZE to
2107	 * (trunc_page(biosbasemem * 1024) - 1) will be
2108	 * remapped and used by the kernel later.)
2109	 *
2110	 * This code is similar to the code used in
2111	 * pmap_mapdev, but since no memory needs to be
2112	 * allocated we simply change the mapping.
2113	 */
2114	for (pa = trunc_page(basemem * 1024);
2115	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
2116		pmap_kenter(KERNBASE + pa, pa);
2117
2118	/*
2119	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
2120	 * the vm86 page table so that vm86 can scribble on them using
2121	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
2122	 * page 0, at least as initialized here?
2123	 */
2124	pte = (pt_entry_t *)vm86paddr;
2125	for (i = basemem / 4; i < 160; i++)
2126		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
2127}
2128#endif
2129
2130/*
2131 * Populate the (physmap) array with base/bound pairs describing the
2132 * available physical memory in the system, then test this memory and
2133 * build the phys_avail array describing the actually-available memory.
2134 *
2135 * If we cannot accurately determine the physical memory map, then use
2136 * value from the 0xE801 call, and failing that, the RTC.
2137 *
2138 * Total memory size may be set by the kernel environment variable
2139 * hw.physmem or the compile-time define MAXMEM.
2140 *
2141 * XXX first should be vm_paddr_t.
2142 */
2143static void
2144getmemsize(int first)
2145{
2146	int has_smap, off, physmap_idx, pa_indx, da_indx;
2147	u_long physmem_tunable, memtest;
2148	vm_paddr_t physmap[PHYSMAP_SIZE];
2149	pt_entry_t *pte;
2150	quad_t dcons_addr, dcons_size;
2151#ifndef XEN
2152	int hasbrokenint12, i, res;
2153	u_int extmem;
2154	struct vm86frame vmf;
2155	struct vm86context vmc;
2156	vm_paddr_t pa;
2157	struct bios_smap *smap, *smapbase, *smapend;
2158	u_int32_t smapsize;
2159	caddr_t kmdp;
2160#endif
2161
2162	has_smap = 0;
2163#if defined(XEN)
2164	Maxmem = xen_start_info->nr_pages - init_first;
2165	physmem = Maxmem;
2166	basemem = 0;
2167	physmap[0] = init_first << PAGE_SHIFT;
2168	physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
2169	physmap_idx = 0;
2170#else
2171#ifdef XBOX
2172	if (arch_i386_is_xbox) {
2173		/*
2174		 * We queried the memory size before, so chop off 4MB for
2175		 * the framebuffer and inform the OS of this.
2176		 */
2177		physmap[0] = 0;
2178		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2179		physmap_idx = 0;
2180		goto physmap_done;
2181	}
2182#endif
2183	bzero(&vmf, sizeof(vmf));
2184	bzero(physmap, sizeof(physmap));
2185	basemem = 0;
2186
2187	/*
2188	 * Check if the loader supplied an SMAP memory map.  If so,
2189	 * use that and do not make any VM86 calls.
2190	 */
2191	physmap_idx = 0;
2192	smapbase = NULL;
2193	kmdp = preload_search_by_type("elf kernel");
2194	if (kmdp == NULL)
2195		kmdp = preload_search_by_type("elf32 kernel");
2196	if (kmdp != NULL)
2197		smapbase = (struct bios_smap *)preload_search_info(kmdp,
2198		    MODINFO_METADATA | MODINFOMD_SMAP);
2199	if (smapbase != NULL) {
2200		/*
2201		 * subr_module.c says:
2202		 * "Consumer may safely assume that size value precedes data."
2203		 * ie: an int32_t immediately precedes SMAP.
2204		 */
2205		smapsize = *((u_int32_t *)smapbase - 1);
2206		smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
2207		has_smap = 1;
2208
2209		for (smap = smapbase; smap < smapend; smap++)
2210			if (!add_smap_entry(smap, physmap, &physmap_idx))
2211				break;
2212		goto have_smap;
2213	}
2214
2215	/*
2216	 * Some newer BIOSes have a broken INT 12H implementation
2217	 * which causes a kernel panic immediately.  In this case, we
2218	 * need use the SMAP to determine the base memory size.
2219	 */
2220	hasbrokenint12 = 0;
2221	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2222	if (hasbrokenint12 == 0) {
2223		/* Use INT12 to determine base memory size. */
2224		vm86_intcall(0x12, &vmf);
2225		basemem = vmf.vmf_ax;
2226		basemem_setup();
2227	}
2228
2229	/*
2230	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2231	 * the kernel page table so we can use it as a buffer.  The
2232	 * kernel will unmap this page later.
2233	 */
2234	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2235	vmc.npages = 0;
2236	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2237	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2238	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2239
2240	vmf.vmf_ebx = 0;
2241	do {
2242		vmf.vmf_eax = 0xE820;
2243		vmf.vmf_edx = SMAP_SIG;
2244		vmf.vmf_ecx = sizeof(struct bios_smap);
2245		i = vm86_datacall(0x15, &vmf, &vmc);
2246		if (i || vmf.vmf_eax != SMAP_SIG)
2247			break;
2248		has_smap = 1;
2249		if (!add_smap_entry(smap, physmap, &physmap_idx))
2250			break;
2251	} while (vmf.vmf_ebx != 0);
2252
2253have_smap:
2254	/*
2255	 * If we didn't fetch the "base memory" size from INT12,
2256	 * figure it out from the SMAP (or just guess).
2257	 */
2258	if (basemem == 0) {
2259		for (i = 0; i <= physmap_idx; i += 2) {
2260			if (physmap[i] == 0x00000000) {
2261				basemem = physmap[i + 1] / 1024;
2262				break;
2263			}
2264		}
2265
2266		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2267		if (basemem == 0)
2268			basemem = 640;
2269		basemem_setup();
2270	}
2271
2272	if (physmap[1] != 0)
2273		goto physmap_done;
2274
2275	/*
2276	 * If we failed to find an SMAP, figure out the extended
2277	 * memory size.  We will then build a simple memory map with
2278	 * two segments, one for "base memory" and the second for
2279	 * "extended memory".  Note that "extended memory" starts at a
2280	 * physical address of 1MB and that both basemem and extmem
2281	 * are in units of 1KB.
2282	 *
2283	 * First, try to fetch the extended memory size via INT 15:E801.
2284	 */
2285	vmf.vmf_ax = 0xE801;
2286	if (vm86_intcall(0x15, &vmf) == 0) {
2287		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2288	} else {
2289		/*
2290		 * If INT15:E801 fails, this is our last ditch effort
2291		 * to determine the extended memory size.  Currently
2292		 * we prefer the RTC value over INT15:88.
2293		 */
2294#if 0
2295		vmf.vmf_ah = 0x88;
2296		vm86_intcall(0x15, &vmf);
2297		extmem = vmf.vmf_ax;
2298#else
2299		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2300#endif
2301	}
2302
2303	/*
2304	 * Special hack for chipsets that still remap the 384k hole when
2305	 * there's 16MB of memory - this really confuses people that
2306	 * are trying to use bus mastering ISA controllers with the
2307	 * "16MB limit"; they only have 16MB, but the remapping puts
2308	 * them beyond the limit.
2309	 *
2310	 * If extended memory is between 15-16MB (16-17MB phys address range),
2311	 *	chop it to 15MB.
2312	 */
2313	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2314		extmem = 15 * 1024;
2315
2316	physmap[0] = 0;
2317	physmap[1] = basemem * 1024;
2318	physmap_idx = 2;
2319	physmap[physmap_idx] = 0x100000;
2320	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2321
2322physmap_done:
2323#endif
2324	/*
2325	 * Now, physmap contains a map of physical memory.
2326	 */
2327
2328#ifdef SMP
2329	/* make hole for AP bootstrap code */
2330	physmap[1] = mp_bootaddress(physmap[1]);
2331#endif
2332
2333	/*
2334	 * Maxmem isn't the "maximum memory", it's one larger than the
2335	 * highest page of the physical address space.  It should be
2336	 * called something like "Maxphyspage".  We may adjust this
2337	 * based on ``hw.physmem'' and the results of the memory test.
2338	 */
2339	Maxmem = atop(physmap[physmap_idx + 1]);
2340
2341#ifdef MAXMEM
2342	Maxmem = MAXMEM / 4;
2343#endif
2344
2345	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2346		Maxmem = atop(physmem_tunable);
2347
2348	/*
2349	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2350	 * the amount of memory in the system.
2351	 */
2352	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2353		Maxmem = atop(physmap[physmap_idx + 1]);
2354
2355	/*
2356	 * By default enable the memory test on real hardware, and disable
2357	 * it if we appear to be running in a VM.  This avoids touching all
2358	 * pages unnecessarily, which doesn't matter on real hardware but is
2359	 * bad for shared VM hosts.  Use a general name so that
2360	 * one could eventually do more with the code than just disable it.
2361	 */
2362	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2363	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2364
2365	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2366	    (boothowto & RB_VERBOSE))
2367		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2368
2369	/*
2370	 * If Maxmem has been increased beyond what the system has detected,
2371	 * extend the last memory segment to the new limit.
2372	 */
2373	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2374		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2375
2376	/* call pmap initialization to make new kernel address space */
2377	pmap_bootstrap(first);
2378
2379	/*
2380	 * Size up each available chunk of physical memory.
2381	 */
2382	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2383	pa_indx = 0;
2384	da_indx = 1;
2385	phys_avail[pa_indx++] = physmap[0];
2386	phys_avail[pa_indx] = physmap[0];
2387	dump_avail[da_indx] = physmap[0];
2388	pte = CMAP3;
2389
2390	/*
2391	 * Get dcons buffer address
2392	 */
2393	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2394	    getenv_quad("dcons.size", &dcons_size) == 0)
2395		dcons_addr = 0;
2396
2397#ifndef XEN
2398	/*
2399	 * physmap is in bytes, so when converting to page boundaries,
2400	 * round up the start address and round down the end address.
2401	 */
2402	for (i = 0; i <= physmap_idx; i += 2) {
2403		vm_paddr_t end;
2404
2405		end = ptoa((vm_paddr_t)Maxmem);
2406		if (physmap[i + 1] < end)
2407			end = trunc_page(physmap[i + 1]);
2408		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2409			int tmp, page_bad, full;
2410			int *ptr = (int *)CADDR3;
2411
2412			full = FALSE;
2413			/*
2414			 * block out kernel memory as not available.
2415			 */
2416			if (pa >= KERNLOAD && pa < first)
2417				goto do_dump_avail;
2418
2419			/*
2420			 * block out dcons buffer
2421			 */
2422			if (dcons_addr > 0
2423			    && pa >= trunc_page(dcons_addr)
2424			    && pa < dcons_addr + dcons_size)
2425				goto do_dump_avail;
2426
2427			page_bad = FALSE;
2428			if (memtest == 0)
2429				goto skip_memtest;
2430
2431			/*
2432			 * map page into kernel: valid, read/write,non-cacheable
2433			 */
2434			*pte = pa | PG_V | PG_RW | PG_N;
2435			invltlb();
2436
2437			tmp = *(int *)ptr;
2438			/*
2439			 * Test for alternating 1's and 0's
2440			 */
2441			*(volatile int *)ptr = 0xaaaaaaaa;
2442			if (*(volatile int *)ptr != 0xaaaaaaaa)
2443				page_bad = TRUE;
2444			/*
2445			 * Test for alternating 0's and 1's
2446			 */
2447			*(volatile int *)ptr = 0x55555555;
2448			if (*(volatile int *)ptr != 0x55555555)
2449				page_bad = TRUE;
2450			/*
2451			 * Test for all 1's
2452			 */
2453			*(volatile int *)ptr = 0xffffffff;
2454			if (*(volatile int *)ptr != 0xffffffff)
2455				page_bad = TRUE;
2456			/*
2457			 * Test for all 0's
2458			 */
2459			*(volatile int *)ptr = 0x0;
2460			if (*(volatile int *)ptr != 0x0)
2461				page_bad = TRUE;
2462			/*
2463			 * Restore original value.
2464			 */
2465			*(int *)ptr = tmp;
2466
2467skip_memtest:
2468			/*
2469			 * Adjust array of valid/good pages.
2470			 */
2471			if (page_bad == TRUE)
2472				continue;
2473			/*
2474			 * If this good page is a continuation of the
2475			 * previous set of good pages, then just increase
2476			 * the end pointer. Otherwise start a new chunk.
2477			 * Note that "end" points one higher than end,
2478			 * making the range >= start and < end.
2479			 * If we're also doing a speculative memory
2480			 * test and we at or past the end, bump up Maxmem
2481			 * so that we keep going. The first bad page
2482			 * will terminate the loop.
2483			 */
2484			if (phys_avail[pa_indx] == pa) {
2485				phys_avail[pa_indx] += PAGE_SIZE;
2486			} else {
2487				pa_indx++;
2488				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2489					printf(
2490		"Too many holes in the physical address space, giving up\n");
2491					pa_indx--;
2492					full = TRUE;
2493					goto do_dump_avail;
2494				}
2495				phys_avail[pa_indx++] = pa;	/* start */
2496				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2497			}
2498			physmem++;
2499do_dump_avail:
2500			if (dump_avail[da_indx] == pa) {
2501				dump_avail[da_indx] += PAGE_SIZE;
2502			} else {
2503				da_indx++;
2504				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2505					da_indx--;
2506					goto do_next;
2507				}
2508				dump_avail[da_indx++] = pa;	/* start */
2509				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2510			}
2511do_next:
2512			if (full)
2513				break;
2514		}
2515	}
2516	*pte = 0;
2517	invltlb();
2518#else
2519	phys_avail[0] = physfree;
2520	phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2521	dump_avail[0] = 0;
2522	dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2523
2524#endif
2525
2526	/*
2527	 * XXX
2528	 * The last chunk must contain at least one page plus the message
2529	 * buffer to avoid complicating other code (message buffer address
2530	 * calculation, etc.).
2531	 */
2532	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2533	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2534		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2535		phys_avail[pa_indx--] = 0;
2536		phys_avail[pa_indx--] = 0;
2537	}
2538
2539	Maxmem = atop(phys_avail[pa_indx]);
2540
2541	/* Trim off space for the message buffer. */
2542	phys_avail[pa_indx] -= round_page(msgbufsize);
2543
2544	/* Map the message buffer. */
2545	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2546		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2547		    off);
2548
2549	PT_UPDATES_FLUSH();
2550}
2551
2552#ifdef XEN
2553#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
2554
2555void
2556init386(first)
2557	int first;
2558{
2559	unsigned long gdtmachpfn;
2560	int error, gsel_tss, metadata_missing, x, pa;
2561	size_t kstack0_sz;
2562	struct pcpu *pc;
2563	struct callback_register event = {
2564		.type = CALLBACKTYPE_event,
2565		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
2566	};
2567	struct callback_register failsafe = {
2568		.type = CALLBACKTYPE_failsafe,
2569		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
2570	};
2571
2572	thread0.td_kstack = proc0kstack;
2573	thread0.td_kstack_pages = KSTACK_PAGES;
2574	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
2575	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
2576
2577	/*
2578 	 * This may be done better later if it gets more high level
2579 	 * components in it. If so just link td->td_proc here.
2580	 */
2581	proc_linkup0(&proc0, &thread0);
2582
2583	metadata_missing = 0;
2584	if (xen_start_info->mod_start) {
2585		preload_metadata = (caddr_t)xen_start_info->mod_start;
2586		preload_bootstrap_relocate(KERNBASE);
2587	} else {
2588		metadata_missing = 1;
2589	}
2590	if (envmode == 1)
2591		kern_envp = static_env;
2592	else if ((caddr_t)xen_start_info->cmd_line)
2593	        kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
2594
2595	boothowto |= xen_boothowto(kern_envp);
2596
2597	/* Init basic tunables, hz etc */
2598	init_param1();
2599
2600	/*
2601	 * XEN occupies a portion of the upper virtual address space
2602	 * At its base it manages an array mapping machine page frames
2603	 * to physical page frames - hence we need to be able to
2604	 * access 4GB - (64MB  - 4MB + 64k)
2605	 */
2606	gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2607	gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2608	gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2609	gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2610	gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2611	gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2612	gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2613	gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2614
2615	pc = &__pcpu[0];
2616	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2617	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2618
2619	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
2620	bzero(gdt, PAGE_SIZE);
2621	for (x = 0; x < NGDT; x++)
2622		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2623
2624	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2625
2626	gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
2627	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
2628	PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);
2629	lgdt(&r_gdt);
2630	gdtset = 1;
2631
2632	if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
2633		panic("set_trap_table failed - error %d\n", error);
2634	}
2635
2636	error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
2637	if (error == 0)
2638		error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
2639#if	CONFIG_XEN_COMPAT <= 0x030002
2640	if (error == -ENOXENSYS)
2641		HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
2642		    (unsigned long)Xhypervisor_callback,
2643		    GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
2644#endif
2645	pcpu_init(pc, 0, sizeof(struct pcpu));
2646	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2647		pmap_kenter(pa + KERNBASE, pa);
2648	dpcpu_init((void *)(first + KERNBASE), 0);
2649	first += DPCPU_SIZE;
2650	physfree += DPCPU_SIZE;
2651	init_first += DPCPU_SIZE / PAGE_SIZE;
2652
2653	PCPU_SET(prvspace, pc);
2654	PCPU_SET(curthread, &thread0);
2655	PCPU_SET(curpcb, thread0.td_pcb);
2656
2657	/*
2658	 * Initialize mutexes.
2659	 *
2660	 * icu_lock: in order to allow an interrupt to occur in a critical
2661	 * 	     section, to set pcpu->ipending (etc...) properly, we
2662	 *	     must be able to get the icu lock, so it can't be
2663	 *	     under witness.
2664	 */
2665	mutex_init();
2666	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2667
2668	/* make ldt memory segments */
2669	PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
2670	bzero(ldt, PAGE_SIZE);
2671	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2672	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2673	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2674		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2675
2676	default_proc_ldt.ldt_base = (caddr_t)ldt;
2677	default_proc_ldt.ldt_len = 6;
2678	_default_ldt = (int)&default_proc_ldt;
2679	PCPU_SET(currentldt, _default_ldt);
2680	PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
2681	xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
2682
2683#if defined(XEN_PRIVILEGED)
2684	/*
2685	 * Initialize the i8254 before the console so that console
2686	 * initialization can use DELAY().
2687	 */
2688	i8254_init();
2689#endif
2690
2691	/*
2692	 * Initialize the console before we print anything out.
2693	 */
2694	cninit();
2695
2696	if (metadata_missing)
2697		printf("WARNING: loader(8) metadata is missing!\n");
2698
2699#ifdef DEV_ISA
2700#ifdef DEV_ATPIC
2701	elcr_probe();
2702	atpic_startup();
2703#else
2704	/* Reset and mask the atpics and leave them shut down. */
2705	atpic_reset();
2706
2707	/*
2708	 * Point the ICU spurious interrupt vectors at the APIC spurious
2709	 * interrupt handler.
2710	 */
2711	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2712	    GSEL(GCODE_SEL, SEL_KPL));
2713	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2714	    GSEL(GCODE_SEL, SEL_KPL));
2715#endif
2716#endif
2717
2718#ifdef DDB
2719	ksym_start = bootinfo.bi_symtab;
2720	ksym_end = bootinfo.bi_esymtab;
2721#endif
2722
2723	kdb_init();
2724
2725#ifdef KDB
2726	if (boothowto & RB_KDB)
2727		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2728#endif
2729
2730	finishidentcpu();	/* Final stage of CPU initialization */
2731	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2732	    GSEL(GCODE_SEL, SEL_KPL));
2733	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2734	    GSEL(GCODE_SEL, SEL_KPL));
2735	initializecpu();	/* Initialize CPU registers */
2736
2737	/* make an initial tss so cpu can get interrupt stack on syscall! */
2738	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2739	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2740	    kstack0_sz - sizeof(struct pcb) - 16);
2741	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2742	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2743	HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
2744	    PCPU_GET(common_tss.tss_esp0));
2745
2746	/* pointer to selector slot for %fs/%gs */
2747	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2748
2749	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2750	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2751	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2752	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2753#ifdef PAE
2754	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2755#else
2756	dblfault_tss.tss_cr3 = (int)IdlePTD;
2757#endif
2758	dblfault_tss.tss_eip = (int)dblfault_handler;
2759	dblfault_tss.tss_eflags = PSL_KERNEL;
2760	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2761	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2762	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2763	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2764	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2765
2766	vm86_initialize();
2767	getmemsize(first);
2768	init_param2(physmem);
2769
2770	/* now running on new page tables, configured,and u/iom is accessible */
2771
2772	msgbufinit(msgbufp, msgbufsize);
2773	/* transfer to user mode */
2774
2775	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2776	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2777
2778	/* setup proc 0's pcb */
2779	thread0.td_pcb->pcb_flags = 0;
2780#ifdef PAE
2781	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2782#else
2783	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2784#endif
2785	thread0.td_pcb->pcb_ext = 0;
2786	thread0.td_frame = &proc0_tf;
2787	thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
2788	thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
2789
2790	cpu_probe_amdc1e();
2791}
2792
2793#else
2794void
2795init386(first)
2796	int first;
2797{
2798	struct gate_descriptor *gdp;
2799	int gsel_tss, metadata_missing, x, pa;
2800	size_t kstack0_sz;
2801	struct pcpu *pc;
2802
2803	thread0.td_kstack = proc0kstack;
2804	thread0.td_kstack_pages = KSTACK_PAGES;
2805	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
2806	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
2807
2808	/*
2809 	 * This may be done better later if it gets more high level
2810 	 * components in it. If so just link td->td_proc here.
2811	 */
2812	proc_linkup0(&proc0, &thread0);
2813
2814	metadata_missing = 0;
2815	if (bootinfo.bi_modulep) {
2816		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2817		preload_bootstrap_relocate(KERNBASE);
2818	} else {
2819		metadata_missing = 1;
2820	}
2821	if (envmode == 1)
2822		kern_envp = static_env;
2823	else if (bootinfo.bi_envp)
2824		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2825
2826	/* Init basic tunables, hz etc */
2827	init_param1();
2828
2829	/*
2830	 * Make gdt memory segments.  All segments cover the full 4GB
2831	 * of address space and permissions are enforced at page level.
2832	 */
2833	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2834	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2835	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2836	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2837	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2838	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2839
2840	pc = &__pcpu[0];
2841	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2842	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2843	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2844
2845	for (x = 0; x < NGDT; x++)
2846		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2847
2848	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2849	r_gdt.rd_base =  (int) gdt;
2850	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2851	lgdt(&r_gdt);
2852
2853	pcpu_init(pc, 0, sizeof(struct pcpu));
2854	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2855		pmap_kenter(pa + KERNBASE, pa);
2856	dpcpu_init((void *)(first + KERNBASE), 0);
2857	first += DPCPU_SIZE;
2858	PCPU_SET(prvspace, pc);
2859	PCPU_SET(curthread, &thread0);
2860	PCPU_SET(curpcb, thread0.td_pcb);
2861
2862	/*
2863	 * Initialize mutexes.
2864	 *
2865	 * icu_lock: in order to allow an interrupt to occur in a critical
2866	 * 	     section, to set pcpu->ipending (etc...) properly, we
2867	 *	     must be able to get the icu lock, so it can't be
2868	 *	     under witness.
2869	 */
2870	mutex_init();
2871	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2872
2873	/* make ldt memory segments */
2874	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2875	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2876	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2877		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2878
2879	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2880	lldt(_default_ldt);
2881	PCPU_SET(currentldt, _default_ldt);
2882
2883	/* exceptions */
2884	for (x = 0; x < NIDT; x++)
2885		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2886		    GSEL(GCODE_SEL, SEL_KPL));
2887	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2888	    GSEL(GCODE_SEL, SEL_KPL));
2889	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2890	    GSEL(GCODE_SEL, SEL_KPL));
2891	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2892	    GSEL(GCODE_SEL, SEL_KPL));
2893 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2894	    GSEL(GCODE_SEL, SEL_KPL));
2895	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2896	    GSEL(GCODE_SEL, SEL_KPL));
2897	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2898	    GSEL(GCODE_SEL, SEL_KPL));
2899	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2900	    GSEL(GCODE_SEL, SEL_KPL));
2901	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2902	    , GSEL(GCODE_SEL, SEL_KPL));
2903	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2904	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2905	    GSEL(GCODE_SEL, SEL_KPL));
2906	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2907	    GSEL(GCODE_SEL, SEL_KPL));
2908	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2909	    GSEL(GCODE_SEL, SEL_KPL));
2910	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2911	    GSEL(GCODE_SEL, SEL_KPL));
2912	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2913	    GSEL(GCODE_SEL, SEL_KPL));
2914	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2915	    GSEL(GCODE_SEL, SEL_KPL));
2916	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2917	    GSEL(GCODE_SEL, SEL_KPL));
2918	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2919	    GSEL(GCODE_SEL, SEL_KPL));
2920	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2921	    GSEL(GCODE_SEL, SEL_KPL));
2922	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2923	    GSEL(GCODE_SEL, SEL_KPL));
2924 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2925	    GSEL(GCODE_SEL, SEL_KPL));
2926#ifdef KDTRACE_HOOKS
2927	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
2928	    GSEL(GCODE_SEL, SEL_KPL));
2929#endif
2930#ifdef XENHVM
2931	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
2932	    GSEL(GCODE_SEL, SEL_KPL));
2933#endif
2934
2935	r_idt.rd_limit = sizeof(idt0) - 1;
2936	r_idt.rd_base = (int) idt;
2937	lidt(&r_idt);
2938
2939#ifdef XBOX
2940	/*
2941	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2942	 * This should be 0x10de / 0x02a5.
2943	 *
2944	 * This is exactly what Linux does.
2945	 */
2946	outl(0xcf8, 0x80000000);
2947	if (inl(0xcfc) == 0x02a510de) {
2948		arch_i386_is_xbox = 1;
2949		pic16l_setled(XBOX_LED_GREEN);
2950
2951		/*
2952		 * We are an XBOX, but we may have either 64MB or 128MB of
2953		 * memory. The PCI host bridge should be programmed for this,
2954		 * so we just query it.
2955		 */
2956		outl(0xcf8, 0x80000084);
2957		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2958	}
2959#endif /* XBOX */
2960
2961	/*
2962	 * Initialize the i8254 before the console so that console
2963	 * initialization can use DELAY().
2964	 */
2965	i8254_init();
2966
2967	/*
2968	 * Initialize the console before we print anything out.
2969	 */
2970	cninit();
2971
2972	if (metadata_missing)
2973		printf("WARNING: loader(8) metadata is missing!\n");
2974
2975#ifdef DEV_ISA
2976#ifdef DEV_ATPIC
2977	elcr_probe();
2978	atpic_startup();
2979#else
2980	/* Reset and mask the atpics and leave them shut down. */
2981	atpic_reset();
2982
2983	/*
2984	 * Point the ICU spurious interrupt vectors at the APIC spurious
2985	 * interrupt handler.
2986	 */
2987	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2988	    GSEL(GCODE_SEL, SEL_KPL));
2989	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2990	    GSEL(GCODE_SEL, SEL_KPL));
2991#endif
2992#endif
2993
2994#ifdef DDB
2995	ksym_start = bootinfo.bi_symtab;
2996	ksym_end = bootinfo.bi_esymtab;
2997#endif
2998
2999	kdb_init();
3000
3001#ifdef KDB
3002	if (boothowto & RB_KDB)
3003		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3004#endif
3005
3006	finishidentcpu();	/* Final stage of CPU initialization */
3007	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3008	    GSEL(GCODE_SEL, SEL_KPL));
3009	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3010	    GSEL(GCODE_SEL, SEL_KPL));
3011	initializecpu();	/* Initialize CPU registers */
3012
3013	/* make an initial tss so cpu can get interrupt stack on syscall! */
3014	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3015	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
3016	    kstack0_sz - sizeof(struct pcb) - 16);
3017	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3018	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3019	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
3020	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
3021	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
3022	ltr(gsel_tss);
3023
3024	/* pointer to selector slot for %fs/%gs */
3025	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3026
3027	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3028	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3029	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3030	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3031#ifdef PAE
3032	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3033#else
3034	dblfault_tss.tss_cr3 = (int)IdlePTD;
3035#endif
3036	dblfault_tss.tss_eip = (int)dblfault_handler;
3037	dblfault_tss.tss_eflags = PSL_KERNEL;
3038	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3039	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3040	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3041	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3042	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3043
3044	vm86_initialize();
3045	getmemsize(first);
3046	init_param2(physmem);
3047
3048	/* now running on new page tables, configured,and u/iom is accessible */
3049
3050	msgbufinit(msgbufp, msgbufsize);
3051
3052	/* make a call gate to reenter kernel with */
3053	gdp = &ldt[LSYS5CALLS_SEL].gd;
3054
3055	x = (int) &IDTVEC(lcall_syscall);
3056	gdp->gd_looffset = x;
3057	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
3058	gdp->gd_stkcpy = 1;
3059	gdp->gd_type = SDT_SYS386CGT;
3060	gdp->gd_dpl = SEL_UPL;
3061	gdp->gd_p = 1;
3062	gdp->gd_hioffset = x >> 16;
3063
3064	/* XXX does this work? */
3065	/* XXX yes! */
3066	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
3067	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
3068
3069	/* transfer to user mode */
3070
3071	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3072	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3073
3074	/* setup proc 0's pcb */
3075	thread0.td_pcb->pcb_flags = 0;
3076#ifdef PAE
3077	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3078#else
3079	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3080#endif
3081	thread0.td_pcb->pcb_ext = 0;
3082	thread0.td_frame = &proc0_tf;
3083
3084	cpu_probe_amdc1e();
3085
3086#ifdef FDT
3087	x86_init_fdt();
3088#endif
3089}
3090#endif
3091
3092void
3093cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
3094{
3095
3096	pcpu->pc_acpi_id = 0xffffffff;
3097}
3098
3099static int
3100smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
3101{
3102	struct bios_smap *smapbase;
3103	struct bios_smap_xattr smap;
3104	caddr_t kmdp;
3105	uint32_t *smapattr;
3106	int count, error, i;
3107
3108	/* Retrieve the system memory map from the loader. */
3109	kmdp = preload_search_by_type("elf kernel");
3110	if (kmdp == NULL)
3111		kmdp = preload_search_by_type("elf32 kernel");
3112	if (kmdp == NULL)
3113		return (0);
3114	smapbase = (struct bios_smap *)preload_search_info(kmdp,
3115	    MODINFO_METADATA | MODINFOMD_SMAP);
3116	if (smapbase == NULL)
3117		return (0);
3118	smapattr = (uint32_t *)preload_search_info(kmdp,
3119	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
3120	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
3121	error = 0;
3122	for (i = 0; i < count; i++) {
3123		smap.base = smapbase[i].base;
3124		smap.length = smapbase[i].length;
3125		smap.type = smapbase[i].type;
3126		if (smapattr != NULL)
3127			smap.xattr = smapattr[i];
3128		else
3129			smap.xattr = 0;
3130		error = SYSCTL_OUT(req, &smap, sizeof(smap));
3131	}
3132	return (error);
3133}
3134SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
3135    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
3136
3137void
3138spinlock_enter(void)
3139{
3140	struct thread *td;
3141	register_t flags;
3142
3143	td = curthread;
3144	if (td->td_md.md_spinlock_count == 0) {
3145		flags = intr_disable();
3146		td->td_md.md_spinlock_count = 1;
3147		td->td_md.md_saved_flags = flags;
3148	} else
3149		td->td_md.md_spinlock_count++;
3150	critical_enter();
3151}
3152
3153void
3154spinlock_exit(void)
3155{
3156	struct thread *td;
3157	register_t flags;
3158
3159	td = curthread;
3160	critical_exit();
3161	flags = td->td_md.md_saved_flags;
3162	td->td_md.md_spinlock_count--;
3163	if (td->td_md.md_spinlock_count == 0)
3164		intr_restore(flags);
3165}
3166
3167#if defined(I586_CPU) && !defined(NO_F00F_HACK)
3168static void f00f_hack(void *unused);
3169SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
3170
3171static void
3172f00f_hack(void *unused)
3173{
3174	struct gate_descriptor *new_idt;
3175	vm_offset_t tmp;
3176
3177	if (!has_f00f_bug)
3178		return;
3179
3180	GIANT_REQUIRED;
3181
3182	printf("Intel Pentium detected, installing workaround for F00F bug\n");
3183
3184	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
3185	if (tmp == 0)
3186		panic("kmem_malloc returned 0");
3187
3188	/* Put the problematic entry (#6) at the end of the lower page. */
3189	new_idt = (struct gate_descriptor*)
3190	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
3191	bcopy(idt, new_idt, sizeof(idt0));
3192	r_idt.rd_base = (u_int)new_idt;
3193	lidt(&r_idt);
3194	idt = new_idt;
3195	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
3196}
3197#endif /* defined(I586_CPU) && !NO_F00F_HACK */
3198
3199/*
3200 * Construct a PCB from a trapframe. This is called from kdb_trap() where
3201 * we want to start a backtrace from the function that caused us to enter
3202 * the debugger. We have the context in the trapframe, but base the trace
3203 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
3204 * enough for a backtrace.
3205 */
3206void
3207makectx(struct trapframe *tf, struct pcb *pcb)
3208{
3209
3210	pcb->pcb_edi = tf->tf_edi;
3211	pcb->pcb_esi = tf->tf_esi;
3212	pcb->pcb_ebp = tf->tf_ebp;
3213	pcb->pcb_ebx = tf->tf_ebx;
3214	pcb->pcb_eip = tf->tf_eip;
3215	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
3216}
3217
3218int
3219ptrace_set_pc(struct thread *td, u_long addr)
3220{
3221
3222	td->td_frame->tf_eip = addr;
3223	return (0);
3224}
3225
3226int
3227ptrace_single_step(struct thread *td)
3228{
3229	td->td_frame->tf_eflags |= PSL_T;
3230	return (0);
3231}
3232
3233int
3234ptrace_clear_single_step(struct thread *td)
3235{
3236	td->td_frame->tf_eflags &= ~PSL_T;
3237	return (0);
3238}
3239
3240int
3241fill_regs(struct thread *td, struct reg *regs)
3242{
3243	struct pcb *pcb;
3244	struct trapframe *tp;
3245
3246	tp = td->td_frame;
3247	pcb = td->td_pcb;
3248	regs->r_gs = pcb->pcb_gs;
3249	return (fill_frame_regs(tp, regs));
3250}
3251
3252int
3253fill_frame_regs(struct trapframe *tp, struct reg *regs)
3254{
3255	regs->r_fs = tp->tf_fs;
3256	regs->r_es = tp->tf_es;
3257	regs->r_ds = tp->tf_ds;
3258	regs->r_edi = tp->tf_edi;
3259	regs->r_esi = tp->tf_esi;
3260	regs->r_ebp = tp->tf_ebp;
3261	regs->r_ebx = tp->tf_ebx;
3262	regs->r_edx = tp->tf_edx;
3263	regs->r_ecx = tp->tf_ecx;
3264	regs->r_eax = tp->tf_eax;
3265	regs->r_eip = tp->tf_eip;
3266	regs->r_cs = tp->tf_cs;
3267	regs->r_eflags = tp->tf_eflags;
3268	regs->r_esp = tp->tf_esp;
3269	regs->r_ss = tp->tf_ss;
3270	return (0);
3271}
3272
3273int
3274set_regs(struct thread *td, struct reg *regs)
3275{
3276	struct pcb *pcb;
3277	struct trapframe *tp;
3278
3279	tp = td->td_frame;
3280	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
3281	    !CS_SECURE(regs->r_cs))
3282		return (EINVAL);
3283	pcb = td->td_pcb;
3284	tp->tf_fs = regs->r_fs;
3285	tp->tf_es = regs->r_es;
3286	tp->tf_ds = regs->r_ds;
3287	tp->tf_edi = regs->r_edi;
3288	tp->tf_esi = regs->r_esi;
3289	tp->tf_ebp = regs->r_ebp;
3290	tp->tf_ebx = regs->r_ebx;
3291	tp->tf_edx = regs->r_edx;
3292	tp->tf_ecx = regs->r_ecx;
3293	tp->tf_eax = regs->r_eax;
3294	tp->tf_eip = regs->r_eip;
3295	tp->tf_cs = regs->r_cs;
3296	tp->tf_eflags = regs->r_eflags;
3297	tp->tf_esp = regs->r_esp;
3298	tp->tf_ss = regs->r_ss;
3299	pcb->pcb_gs = regs->r_gs;
3300	return (0);
3301}
3302
3303#ifdef CPU_ENABLE_SSE
3304static void
3305fill_fpregs_xmm(sv_xmm, sv_87)
3306	struct savexmm *sv_xmm;
3307	struct save87 *sv_87;
3308{
3309	register struct env87 *penv_87 = &sv_87->sv_env;
3310	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3311	int i;
3312
3313	bzero(sv_87, sizeof(*sv_87));
3314
3315	/* FPU control/status */
3316	penv_87->en_cw = penv_xmm->en_cw;
3317	penv_87->en_sw = penv_xmm->en_sw;
3318	penv_87->en_tw = penv_xmm->en_tw;
3319	penv_87->en_fip = penv_xmm->en_fip;
3320	penv_87->en_fcs = penv_xmm->en_fcs;
3321	penv_87->en_opcode = penv_xmm->en_opcode;
3322	penv_87->en_foo = penv_xmm->en_foo;
3323	penv_87->en_fos = penv_xmm->en_fos;
3324
3325	/* FPU registers */
3326	for (i = 0; i < 8; ++i)
3327		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
3328}
3329
3330static void
3331set_fpregs_xmm(sv_87, sv_xmm)
3332	struct save87 *sv_87;
3333	struct savexmm *sv_xmm;
3334{
3335	register struct env87 *penv_87 = &sv_87->sv_env;
3336	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3337	int i;
3338
3339	/* FPU control/status */
3340	penv_xmm->en_cw = penv_87->en_cw;
3341	penv_xmm->en_sw = penv_87->en_sw;
3342	penv_xmm->en_tw = penv_87->en_tw;
3343	penv_xmm->en_fip = penv_87->en_fip;
3344	penv_xmm->en_fcs = penv_87->en_fcs;
3345	penv_xmm->en_opcode = penv_87->en_opcode;
3346	penv_xmm->en_foo = penv_87->en_foo;
3347	penv_xmm->en_fos = penv_87->en_fos;
3348
3349	/* FPU registers */
3350	for (i = 0; i < 8; ++i)
3351		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
3352}
3353#endif /* CPU_ENABLE_SSE */
3354
3355int
3356fill_fpregs(struct thread *td, struct fpreg *fpregs)
3357{
3358
3359	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3360	    P_SHOULDSTOP(td->td_proc),
3361	    ("not suspended thread %p", td));
3362#ifdef DEV_NPX
3363	npxgetregs(td);
3364#else
3365	bzero(fpregs, sizeof(*fpregs));
3366#endif
3367#ifdef CPU_ENABLE_SSE
3368	if (cpu_fxsr)
3369		fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
3370		    (struct save87 *)fpregs);
3371	else
3372#endif /* CPU_ENABLE_SSE */
3373		bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
3374		    sizeof(*fpregs));
3375	return (0);
3376}
3377
3378int
3379set_fpregs(struct thread *td, struct fpreg *fpregs)
3380{
3381
3382#ifdef CPU_ENABLE_SSE
3383	if (cpu_fxsr)
3384		set_fpregs_xmm((struct save87 *)fpregs,
3385		    &td->td_pcb->pcb_user_save.sv_xmm);
3386	else
3387#endif /* CPU_ENABLE_SSE */
3388		bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
3389		    sizeof(*fpregs));
3390#ifdef DEV_NPX
3391	npxuserinited(td);
3392#endif
3393	return (0);
3394}
3395
3396/*
3397 * Get machine context.
3398 */
3399int
3400get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3401{
3402	struct trapframe *tp;
3403	struct segment_descriptor *sdp;
3404
3405	tp = td->td_frame;
3406
3407	PROC_LOCK(curthread->td_proc);
3408	mcp->mc_onstack = sigonstack(tp->tf_esp);
3409	PROC_UNLOCK(curthread->td_proc);
3410	mcp->mc_gs = td->td_pcb->pcb_gs;
3411	mcp->mc_fs = tp->tf_fs;
3412	mcp->mc_es = tp->tf_es;
3413	mcp->mc_ds = tp->tf_ds;
3414	mcp->mc_edi = tp->tf_edi;
3415	mcp->mc_esi = tp->tf_esi;
3416	mcp->mc_ebp = tp->tf_ebp;
3417	mcp->mc_isp = tp->tf_isp;
3418	mcp->mc_eflags = tp->tf_eflags;
3419	if (flags & GET_MC_CLEAR_RET) {
3420		mcp->mc_eax = 0;
3421		mcp->mc_edx = 0;
3422		mcp->mc_eflags &= ~PSL_C;
3423	} else {
3424		mcp->mc_eax = tp->tf_eax;
3425		mcp->mc_edx = tp->tf_edx;
3426	}
3427	mcp->mc_ebx = tp->tf_ebx;
3428	mcp->mc_ecx = tp->tf_ecx;
3429	mcp->mc_eip = tp->tf_eip;
3430	mcp->mc_cs = tp->tf_cs;
3431	mcp->mc_esp = tp->tf_esp;
3432	mcp->mc_ss = tp->tf_ss;
3433	mcp->mc_len = sizeof(*mcp);
3434	get_fpcontext(td, mcp);
3435	sdp = &td->td_pcb->pcb_fsd;
3436	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3437	sdp = &td->td_pcb->pcb_gsd;
3438	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3439	mcp->mc_flags = 0;
3440	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3441	return (0);
3442}
3443
3444/*
3445 * Set machine context.
3446 *
3447 * However, we don't set any but the user modifiable flags, and we won't
3448 * touch the cs selector.
3449 */
3450int
3451set_mcontext(struct thread *td, const mcontext_t *mcp)
3452{
3453	struct trapframe *tp;
3454	int eflags, ret;
3455
3456	tp = td->td_frame;
3457	if (mcp->mc_len != sizeof(*mcp))
3458		return (EINVAL);
3459	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3460	    (tp->tf_eflags & ~PSL_USERCHANGE);
3461	if ((ret = set_fpcontext(td, mcp)) == 0) {
3462		tp->tf_fs = mcp->mc_fs;
3463		tp->tf_es = mcp->mc_es;
3464		tp->tf_ds = mcp->mc_ds;
3465		tp->tf_edi = mcp->mc_edi;
3466		tp->tf_esi = mcp->mc_esi;
3467		tp->tf_ebp = mcp->mc_ebp;
3468		tp->tf_ebx = mcp->mc_ebx;
3469		tp->tf_edx = mcp->mc_edx;
3470		tp->tf_ecx = mcp->mc_ecx;
3471		tp->tf_eax = mcp->mc_eax;
3472		tp->tf_eip = mcp->mc_eip;
3473		tp->tf_eflags = eflags;
3474		tp->tf_esp = mcp->mc_esp;
3475		tp->tf_ss = mcp->mc_ss;
3476		td->td_pcb->pcb_gs = mcp->mc_gs;
3477		ret = 0;
3478	}
3479	return (ret);
3480}
3481
3482static void
3483get_fpcontext(struct thread *td, mcontext_t *mcp)
3484{
3485
3486#ifndef DEV_NPX
3487	mcp->mc_fpformat = _MC_FPFMT_NODEV;
3488	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
3489	bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
3490#else
3491	mcp->mc_ownedfp = npxgetregs(td);
3492	bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0],
3493	    sizeof(mcp->mc_fpstate));
3494	mcp->mc_fpformat = npxformat();
3495#endif
3496}
3497
3498static int
3499set_fpcontext(struct thread *td, const mcontext_t *mcp)
3500{
3501
3502	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3503		return (0);
3504	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3505	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3506		return (EINVAL);
3507	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
3508		/* We don't care what state is left in the FPU or PCB. */
3509		fpstate_drop(td);
3510	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3511	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3512#ifdef DEV_NPX
3513#ifdef CPU_ENABLE_SSE
3514		if (cpu_fxsr)
3515			((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
3516			    en_mxcsr &= cpu_mxcsr_mask;
3517#endif
3518		npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
3519#endif
3520	} else
3521		return (EINVAL);
3522	return (0);
3523}
3524
3525static void
3526fpstate_drop(struct thread *td)
3527{
3528
3529	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3530	critical_enter();
3531#ifdef DEV_NPX
3532	if (PCPU_GET(fpcurthread) == td)
3533		npxdrop();
3534#endif
3535	/*
3536	 * XXX force a full drop of the npx.  The above only drops it if we
3537	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3538	 *
3539	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3540	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3541	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3542	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3543	 * have too many layers.
3544	 */
3545	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3546	    PCB_NPXUSERINITDONE);
3547	critical_exit();
3548}
3549
3550int
3551fill_dbregs(struct thread *td, struct dbreg *dbregs)
3552{
3553	struct pcb *pcb;
3554
3555	if (td == NULL) {
3556		dbregs->dr[0] = rdr0();
3557		dbregs->dr[1] = rdr1();
3558		dbregs->dr[2] = rdr2();
3559		dbregs->dr[3] = rdr3();
3560		dbregs->dr[4] = rdr4();
3561		dbregs->dr[5] = rdr5();
3562		dbregs->dr[6] = rdr6();
3563		dbregs->dr[7] = rdr7();
3564	} else {
3565		pcb = td->td_pcb;
3566		dbregs->dr[0] = pcb->pcb_dr0;
3567		dbregs->dr[1] = pcb->pcb_dr1;
3568		dbregs->dr[2] = pcb->pcb_dr2;
3569		dbregs->dr[3] = pcb->pcb_dr3;
3570		dbregs->dr[4] = 0;
3571		dbregs->dr[5] = 0;
3572		dbregs->dr[6] = pcb->pcb_dr6;
3573		dbregs->dr[7] = pcb->pcb_dr7;
3574	}
3575	return (0);
3576}
3577
3578int
3579set_dbregs(struct thread *td, struct dbreg *dbregs)
3580{
3581	struct pcb *pcb;
3582	int i;
3583
3584	if (td == NULL) {
3585		load_dr0(dbregs->dr[0]);
3586		load_dr1(dbregs->dr[1]);
3587		load_dr2(dbregs->dr[2]);
3588		load_dr3(dbregs->dr[3]);
3589		load_dr4(dbregs->dr[4]);
3590		load_dr5(dbregs->dr[5]);
3591		load_dr6(dbregs->dr[6]);
3592		load_dr7(dbregs->dr[7]);
3593	} else {
3594		/*
3595		 * Don't let an illegal value for dr7 get set.	Specifically,
3596		 * check for undefined settings.  Setting these bit patterns
3597		 * result in undefined behaviour and can lead to an unexpected
3598		 * TRCTRAP.
3599		 */
3600		for (i = 0; i < 4; i++) {
3601			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3602				return (EINVAL);
3603			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3604				return (EINVAL);
3605		}
3606
3607		pcb = td->td_pcb;
3608
3609		/*
3610		 * Don't let a process set a breakpoint that is not within the
3611		 * process's address space.  If a process could do this, it
3612		 * could halt the system by setting a breakpoint in the kernel
3613		 * (if ddb was enabled).  Thus, we need to check to make sure
3614		 * that no breakpoints are being enabled for addresses outside
3615		 * process's address space.
3616		 *
3617		 * XXX - what about when the watched area of the user's
3618		 * address space is written into from within the kernel
3619		 * ... wouldn't that still cause a breakpoint to be generated
3620		 * from within kernel mode?
3621		 */
3622
3623		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3624			/* dr0 is enabled */
3625			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3626				return (EINVAL);
3627		}
3628
3629		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3630			/* dr1 is enabled */
3631			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3632				return (EINVAL);
3633		}
3634
3635		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3636			/* dr2 is enabled */
3637			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3638				return (EINVAL);
3639		}
3640
3641		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3642			/* dr3 is enabled */
3643			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3644				return (EINVAL);
3645		}
3646
3647		pcb->pcb_dr0 = dbregs->dr[0];
3648		pcb->pcb_dr1 = dbregs->dr[1];
3649		pcb->pcb_dr2 = dbregs->dr[2];
3650		pcb->pcb_dr3 = dbregs->dr[3];
3651		pcb->pcb_dr6 = dbregs->dr[6];
3652		pcb->pcb_dr7 = dbregs->dr[7];
3653
3654		pcb->pcb_flags |= PCB_DBREGS;
3655	}
3656
3657	return (0);
3658}
3659
3660/*
3661 * Return > 0 if a hardware breakpoint has been hit, and the
3662 * breakpoint was in user space.  Return 0, otherwise.
3663 */
3664int
3665user_dbreg_trap(void)
3666{
3667        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
3668        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3669        int nbp;            /* number of breakpoints that triggered */
3670        caddr_t addr[4];    /* breakpoint addresses */
3671        int i;
3672
3673        dr7 = rdr7();
3674        if ((dr7 & 0x000000ff) == 0) {
3675                /*
3676                 * all GE and LE bits in the dr7 register are zero,
3677                 * thus the trap couldn't have been caused by the
3678                 * hardware debug registers
3679                 */
3680                return 0;
3681        }
3682
3683        nbp = 0;
3684        dr6 = rdr6();
3685        bp = dr6 & 0x0000000f;
3686
3687        if (!bp) {
3688                /*
3689                 * None of the breakpoint bits are set meaning this
3690                 * trap was not caused by any of the debug registers
3691                 */
3692                return 0;
3693        }
3694
3695        /*
3696         * at least one of the breakpoints were hit, check to see
3697         * which ones and if any of them are user space addresses
3698         */
3699
3700        if (bp & 0x01) {
3701                addr[nbp++] = (caddr_t)rdr0();
3702        }
3703        if (bp & 0x02) {
3704                addr[nbp++] = (caddr_t)rdr1();
3705        }
3706        if (bp & 0x04) {
3707                addr[nbp++] = (caddr_t)rdr2();
3708        }
3709        if (bp & 0x08) {
3710                addr[nbp++] = (caddr_t)rdr3();
3711        }
3712
3713        for (i = 0; i < nbp; i++) {
3714                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3715                        /*
3716                         * addr[i] is in user space
3717                         */
3718                        return nbp;
3719                }
3720        }
3721
3722        /*
3723         * None of the breakpoints are in user space.
3724         */
3725        return 0;
3726}
3727
3728#ifdef KDB
3729
3730/*
3731 * Provide inb() and outb() as functions.  They are normally only available as
3732 * inline functions, thus cannot be called from the debugger.
3733 */
3734
3735/* silence compiler warnings */
3736u_char inb_(u_short);
3737void outb_(u_short, u_char);
3738
3739u_char
3740inb_(u_short port)
3741{
3742	return inb(port);
3743}
3744
3745void
3746outb_(u_short port, u_char data)
3747{
3748	outb(port, data);
3749}
3750
3751#endif /* KDB */
3752