machdep.c revision 272913
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/sys/i386/i386/machdep.c 272913 2014-10-10 20:47:23Z jhb $");
42
43#include "opt_apic.h"
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_npx.h"
56#include "opt_perfmon.h"
57#include "opt_platform.h"
58#include "opt_xbox.h"
59#include "opt_kdtrace.h"
60
61#include <sys/param.h>
62#include <sys/proc.h>
63#include <sys/systm.h>
64#include <sys/bio.h>
65#include <sys/buf.h>
66#include <sys/bus.h>
67#include <sys/callout.h>
68#include <sys/cons.h>
69#include <sys/cpu.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <isa/rtc.h>
116
117#include <net/netisr.h>
118
119#include <machine/bootinfo.h>
120#include <machine/clock.h>
121#include <machine/cpu.h>
122#include <machine/cputypes.h>
123#include <machine/intr_machdep.h>
124#include <x86/mca.h>
125#include <machine/md_var.h>
126#include <machine/metadata.h>
127#include <machine/mp_watchdog.h>
128#include <machine/pc/bios.h>
129#include <machine/pcb.h>
130#include <machine/pcb_ext.h>
131#include <machine/proc.h>
132#include <machine/reg.h>
133#include <machine/sigframe.h>
134#include <machine/specialreg.h>
135#include <machine/vm86.h>
136#ifdef PERFMON
137#include <machine/perfmon.h>
138#endif
139#ifdef SMP
140#include <machine/smp.h>
141#endif
142#ifdef FDT
143#include <x86/fdt.h>
144#endif
145
146#ifdef DEV_APIC
147#include <machine/apicvar.h>
148#endif
149
150#ifdef DEV_ISA
151#include <x86/isa/icu.h>
152#endif
153
154#ifdef XBOX
155#include <machine/xbox.h>
156
157int arch_i386_is_xbox = 0;
158uint32_t arch_i386_xbox_memsize = 0;
159#endif
160
161#ifdef XEN
162/* XEN includes */
163#include <xen/xen-os.h>
164#include <xen/hypervisor.h>
165#include <machine/xen/xenvar.h>
166#include <machine/xen/xenfunc.h>
167#include <xen/xen_intr.h>
168
169void Xhypervisor_callback(void);
170void failsafe_callback(void);
171
172extern trap_info_t trap_table[];
173struct proc_ldt default_proc_ldt;
174extern int init_first;
175int running_xen = 1;
176extern unsigned long physfree;
177#endif /* XEN */
178
179/* Sanity check for __curthread() */
180CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
181
182extern void init386(int first);
183extern void dblfault_handler(void);
184
185extern void printcpuinfo(void);	/* XXX header file */
186extern void finishidentcpu(void);
187extern void panicifcpuunsupported(void);
188
189#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
190#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
191
192#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
193#define CPU_ENABLE_SSE
194#endif
195
196static void cpu_startup(void *);
197static void fpstate_drop(struct thread *td);
198static void get_fpcontext(struct thread *td, mcontext_t *mcp);
199static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
200#ifdef CPU_ENABLE_SSE
201static void set_fpregs_xmm(struct save87 *, struct savexmm *);
202static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
203#endif /* CPU_ENABLE_SSE */
204SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
205
206#ifdef DDB
207extern vm_offset_t ksym_start, ksym_end;
208#endif
209
210/* Intel ICH registers */
211#define ICH_PMBASE	0x400
212#define ICH_SMI_EN	ICH_PMBASE + 0x30
213
214int	_udatasel, _ucodesel;
215u_int	basemem;
216
217int cold = 1;
218
219#ifdef COMPAT_43
220static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
221#endif
222#ifdef COMPAT_FREEBSD4
223static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
224#endif
225
226long Maxmem = 0;
227long realmem = 0;
228
229#ifdef PAE
230FEATURE(pae, "Physical Address Extensions");
231#endif
232
233/*
234 * The number of PHYSMAP entries must be one less than the number of
235 * PHYSSEG entries because the PHYSMAP entry that spans the largest
236 * physical address that is accessible by ISA DMA is split into two
237 * PHYSSEG entries.
238 */
239#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
240
241vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
242vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
243
244/* must be 2 less so 0 0 can signal end of chunks */
245#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
246#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
247
248struct kva_md_info kmi;
249
250static struct trapframe proc0_tf;
251struct pcpu __pcpu[MAXCPU];
252
253struct mtx icu_lock;
254
255struct mem_range_softc mem_range_softc;
256
257static void
258cpu_startup(dummy)
259	void *dummy;
260{
261	uintmax_t memsize;
262	char *sysenv;
263
264	/*
265	 * On MacBooks, we need to disallow the legacy USB circuit to
266	 * generate an SMI# because this can cause several problems,
267	 * namely: incorrect CPU frequency detection and failure to
268	 * start the APs.
269	 * We do this by disabling a bit in the SMI_EN (SMI Control and
270	 * Enable register) of the Intel ICH LPC Interface Bridge.
271	 */
272	sysenv = getenv("smbios.system.product");
273	if (sysenv != NULL) {
274		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
275		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
276		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
277		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
278		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
279		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
280		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
281		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
282			if (bootverbose)
283				printf("Disabling LEGACY_USB_EN bit on "
284				    "Intel ICH.\n");
285			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
286		}
287		freeenv(sysenv);
288	}
289
290	/*
291	 * Good {morning,afternoon,evening,night}.
292	 */
293	startrtclock();
294	printcpuinfo();
295	panicifcpuunsupported();
296#ifdef PERFMON
297	perfmon_init();
298#endif
299
300	/*
301	 * Display physical memory if SMBIOS reports reasonable amount.
302	 */
303	memsize = 0;
304	sysenv = getenv("smbios.memory.enabled");
305	if (sysenv != NULL) {
306		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
307		freeenv(sysenv);
308	}
309	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
310		memsize = ptoa((uintmax_t)Maxmem);
311	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
312	realmem = atop(memsize);
313
314	/*
315	 * Display any holes after the first chunk of extended memory.
316	 */
317	if (bootverbose) {
318		int indx;
319
320		printf("Physical memory chunk(s):\n");
321		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
322			vm_paddr_t size;
323
324			size = phys_avail[indx + 1] - phys_avail[indx];
325			printf(
326			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
327			    (uintmax_t)phys_avail[indx],
328			    (uintmax_t)phys_avail[indx + 1] - 1,
329			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
330		}
331	}
332
333	vm_ksubmap_init(&kmi);
334
335	printf("avail memory = %ju (%ju MB)\n",
336	    ptoa((uintmax_t)cnt.v_free_count),
337	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
338
339	/*
340	 * Set up buffers, so they can be used to read disk labels.
341	 */
342	bufinit();
343	vm_pager_bufferinit();
344#ifndef XEN
345	cpu_setregs();
346#endif
347}
348
349/*
350 * Send an interrupt to process.
351 *
352 * Stack is set up to allow sigcode stored
353 * at top to call routine, followed by kcall
354 * to sigreturn routine below.  After sigreturn
355 * resets the signal mask, the stack, and the
356 * frame pointer, it returns to the user
357 * specified pc, psl.
358 */
359#ifdef COMPAT_43
360static void
361osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
362{
363	struct osigframe sf, *fp;
364	struct proc *p;
365	struct thread *td;
366	struct sigacts *psp;
367	struct trapframe *regs;
368	int sig;
369	int oonstack;
370
371	td = curthread;
372	p = td->td_proc;
373	PROC_LOCK_ASSERT(p, MA_OWNED);
374	sig = ksi->ksi_signo;
375	psp = p->p_sigacts;
376	mtx_assert(&psp->ps_mtx, MA_OWNED);
377	regs = td->td_frame;
378	oonstack = sigonstack(regs->tf_esp);
379
380	/* Allocate space for the signal handler context. */
381	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
382	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
383		fp = (struct osigframe *)(td->td_sigstk.ss_sp +
384		    td->td_sigstk.ss_size - sizeof(struct osigframe));
385#if defined(COMPAT_43)
386		td->td_sigstk.ss_flags |= SS_ONSTACK;
387#endif
388	} else
389		fp = (struct osigframe *)regs->tf_esp - 1;
390
391	/* Translate the signal if appropriate. */
392	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
393		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
394
395	/* Build the argument list for the signal handler. */
396	sf.sf_signum = sig;
397	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
398	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
399	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
400		/* Signal handler installed with SA_SIGINFO. */
401		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
402		sf.sf_siginfo.si_signo = sig;
403		sf.sf_siginfo.si_code = ksi->ksi_code;
404		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
405		sf.sf_addr = 0;
406	} else {
407		/* Old FreeBSD-style arguments. */
408		sf.sf_arg2 = ksi->ksi_code;
409		sf.sf_addr = (register_t)ksi->ksi_addr;
410		sf.sf_ahu.sf_handler = catcher;
411	}
412	mtx_unlock(&psp->ps_mtx);
413	PROC_UNLOCK(p);
414
415	/* Save most if not all of trap frame. */
416	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
417	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
418	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
419	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
420	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
421	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
422	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
423	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
424	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
425	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
426	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
427	sf.sf_siginfo.si_sc.sc_gs = rgs();
428	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
429
430	/* Build the signal context to be used by osigreturn(). */
431	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
432	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
433	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
434	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
435	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
436	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
437	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
438	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
439
440	/*
441	 * If we're a vm86 process, we want to save the segment registers.
442	 * We also change eflags to be our emulated eflags, not the actual
443	 * eflags.
444	 */
445	if (regs->tf_eflags & PSL_VM) {
446		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
447		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
448		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
449
450		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
451		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
452		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
453		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
454
455		if (vm86->vm86_has_vme == 0)
456			sf.sf_siginfo.si_sc.sc_ps =
457			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
458			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
459
460		/* See sendsig() for comments. */
461		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
462	}
463
464	/*
465	 * Copy the sigframe out to the user's stack.
466	 */
467	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
468#ifdef DEBUG
469		printf("process %ld has trashed its stack\n", (long)p->p_pid);
470#endif
471		PROC_LOCK(p);
472		sigexit(td, SIGILL);
473	}
474
475	regs->tf_esp = (int)fp;
476	if (p->p_sysent->sv_sigcode_base != 0) {
477		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
478		    szosigcode;
479	} else {
480		/* a.out sysentvec does not use shared page */
481		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
482	}
483	regs->tf_eflags &= ~(PSL_T | PSL_D);
484	regs->tf_cs = _ucodesel;
485	regs->tf_ds = _udatasel;
486	regs->tf_es = _udatasel;
487	regs->tf_fs = _udatasel;
488	load_gs(_udatasel);
489	regs->tf_ss = _udatasel;
490	PROC_LOCK(p);
491	mtx_lock(&psp->ps_mtx);
492}
493#endif /* COMPAT_43 */
494
495#ifdef COMPAT_FREEBSD4
496static void
497freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
498{
499	struct sigframe4 sf, *sfp;
500	struct proc *p;
501	struct thread *td;
502	struct sigacts *psp;
503	struct trapframe *regs;
504	int sig;
505	int oonstack;
506
507	td = curthread;
508	p = td->td_proc;
509	PROC_LOCK_ASSERT(p, MA_OWNED);
510	sig = ksi->ksi_signo;
511	psp = p->p_sigacts;
512	mtx_assert(&psp->ps_mtx, MA_OWNED);
513	regs = td->td_frame;
514	oonstack = sigonstack(regs->tf_esp);
515
516	/* Save user context. */
517	bzero(&sf, sizeof(sf));
518	sf.sf_uc.uc_sigmask = *mask;
519	sf.sf_uc.uc_stack = td->td_sigstk;
520	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
521	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
522	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
523	sf.sf_uc.uc_mcontext.mc_gs = rgs();
524	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
525	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
526	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
527	bzero(sf.sf_uc.uc_mcontext.__spare__,
528	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
529	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
530
531	/* Allocate space for the signal handler context. */
532	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
533	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
534		sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
535		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
536#if defined(COMPAT_43)
537		td->td_sigstk.ss_flags |= SS_ONSTACK;
538#endif
539	} else
540		sfp = (struct sigframe4 *)regs->tf_esp - 1;
541
542	/* Translate the signal if appropriate. */
543	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
544		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
545
546	/* Build the argument list for the signal handler. */
547	sf.sf_signum = sig;
548	sf.sf_ucontext = (register_t)&sfp->sf_uc;
549	bzero(&sf.sf_si, sizeof(sf.sf_si));
550	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
551		/* Signal handler installed with SA_SIGINFO. */
552		sf.sf_siginfo = (register_t)&sfp->sf_si;
553		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
554
555		/* Fill in POSIX parts */
556		sf.sf_si.si_signo = sig;
557		sf.sf_si.si_code = ksi->ksi_code;
558		sf.sf_si.si_addr = ksi->ksi_addr;
559	} else {
560		/* Old FreeBSD-style arguments. */
561		sf.sf_siginfo = ksi->ksi_code;
562		sf.sf_addr = (register_t)ksi->ksi_addr;
563		sf.sf_ahu.sf_handler = catcher;
564	}
565	mtx_unlock(&psp->ps_mtx);
566	PROC_UNLOCK(p);
567
568	/*
569	 * If we're a vm86 process, we want to save the segment registers.
570	 * We also change eflags to be our emulated eflags, not the actual
571	 * eflags.
572	 */
573	if (regs->tf_eflags & PSL_VM) {
574		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
575		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
576
577		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
578		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
579		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
580		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
581
582		if (vm86->vm86_has_vme == 0)
583			sf.sf_uc.uc_mcontext.mc_eflags =
584			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
585			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
586
587		/*
588		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
589		 * syscalls made by the signal handler.  This just avoids
590		 * wasting time for our lazy fixup of such faults.  PSL_NT
591		 * does nothing in vm86 mode, but vm86 programs can set it
592		 * almost legitimately in probes for old cpu types.
593		 */
594		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
595	}
596
597	/*
598	 * Copy the sigframe out to the user's stack.
599	 */
600	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
601#ifdef DEBUG
602		printf("process %ld has trashed its stack\n", (long)p->p_pid);
603#endif
604		PROC_LOCK(p);
605		sigexit(td, SIGILL);
606	}
607
608	regs->tf_esp = (int)sfp;
609	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
610	    szfreebsd4_sigcode;
611	regs->tf_eflags &= ~(PSL_T | PSL_D);
612	regs->tf_cs = _ucodesel;
613	regs->tf_ds = _udatasel;
614	regs->tf_es = _udatasel;
615	regs->tf_fs = _udatasel;
616	regs->tf_ss = _udatasel;
617	PROC_LOCK(p);
618	mtx_lock(&psp->ps_mtx);
619}
620#endif	/* COMPAT_FREEBSD4 */
621
622void
623sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
624{
625	struct sigframe sf, *sfp;
626	struct proc *p;
627	struct thread *td;
628	struct sigacts *psp;
629	char *sp;
630	struct trapframe *regs;
631	struct segment_descriptor *sdp;
632	int sig;
633	int oonstack;
634
635	td = curthread;
636	p = td->td_proc;
637	PROC_LOCK_ASSERT(p, MA_OWNED);
638	sig = ksi->ksi_signo;
639	psp = p->p_sigacts;
640	mtx_assert(&psp->ps_mtx, MA_OWNED);
641#ifdef COMPAT_FREEBSD4
642	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
643		freebsd4_sendsig(catcher, ksi, mask);
644		return;
645	}
646#endif
647#ifdef COMPAT_43
648	if (SIGISMEMBER(psp->ps_osigset, sig)) {
649		osendsig(catcher, ksi, mask);
650		return;
651	}
652#endif
653	regs = td->td_frame;
654	oonstack = sigonstack(regs->tf_esp);
655
656	/* Save user context. */
657	bzero(&sf, sizeof(sf));
658	sf.sf_uc.uc_sigmask = *mask;
659	sf.sf_uc.uc_stack = td->td_sigstk;
660	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
661	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
662	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
663	sf.sf_uc.uc_mcontext.mc_gs = rgs();
664	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
665	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
666	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
667	fpstate_drop(td);
668	/*
669	 * Unconditionally fill the fsbase and gsbase into the mcontext.
670	 */
671	sdp = &td->td_pcb->pcb_fsd;
672	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
673	    sdp->sd_lobase;
674	sdp = &td->td_pcb->pcb_gsd;
675	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
676	    sdp->sd_lobase;
677	sf.sf_uc.uc_mcontext.mc_flags = 0;
678	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
679	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
680	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
681
682	/* Allocate space for the signal handler context. */
683	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
684	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
685		sp = td->td_sigstk.ss_sp +
686		    td->td_sigstk.ss_size - sizeof(struct sigframe);
687#if defined(COMPAT_43)
688		td->td_sigstk.ss_flags |= SS_ONSTACK;
689#endif
690	} else
691		sp = (char *)regs->tf_esp - sizeof(struct sigframe);
692	/* Align to 16 bytes. */
693	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
694
695	/* Translate the signal if appropriate. */
696	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
697		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
698
699	/* Build the argument list for the signal handler. */
700	sf.sf_signum = sig;
701	sf.sf_ucontext = (register_t)&sfp->sf_uc;
702	bzero(&sf.sf_si, sizeof(sf.sf_si));
703	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
704		/* Signal handler installed with SA_SIGINFO. */
705		sf.sf_siginfo = (register_t)&sfp->sf_si;
706		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
707
708		/* Fill in POSIX parts */
709		sf.sf_si = ksi->ksi_info;
710		sf.sf_si.si_signo = sig; /* maybe a translated signal */
711	} else {
712		/* Old FreeBSD-style arguments. */
713		sf.sf_siginfo = ksi->ksi_code;
714		sf.sf_addr = (register_t)ksi->ksi_addr;
715		sf.sf_ahu.sf_handler = catcher;
716	}
717	mtx_unlock(&psp->ps_mtx);
718	PROC_UNLOCK(p);
719
720	/*
721	 * If we're a vm86 process, we want to save the segment registers.
722	 * We also change eflags to be our emulated eflags, not the actual
723	 * eflags.
724	 */
725	if (regs->tf_eflags & PSL_VM) {
726		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
727		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
728
729		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
730		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
731		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
732		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
733
734		if (vm86->vm86_has_vme == 0)
735			sf.sf_uc.uc_mcontext.mc_eflags =
736			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
737			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
738
739		/*
740		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
741		 * syscalls made by the signal handler.  This just avoids
742		 * wasting time for our lazy fixup of such faults.  PSL_NT
743		 * does nothing in vm86 mode, but vm86 programs can set it
744		 * almost legitimately in probes for old cpu types.
745		 */
746		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
747	}
748
749	/*
750	 * Copy the sigframe out to the user's stack.
751	 */
752	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
753#ifdef DEBUG
754		printf("process %ld has trashed its stack\n", (long)p->p_pid);
755#endif
756		PROC_LOCK(p);
757		sigexit(td, SIGILL);
758	}
759
760	regs->tf_esp = (int)sfp;
761	regs->tf_eip = p->p_sysent->sv_sigcode_base;
762	if (regs->tf_eip == 0)
763		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
764	regs->tf_eflags &= ~(PSL_T | PSL_D);
765	regs->tf_cs = _ucodesel;
766	regs->tf_ds = _udatasel;
767	regs->tf_es = _udatasel;
768	regs->tf_fs = _udatasel;
769	regs->tf_ss = _udatasel;
770	PROC_LOCK(p);
771	mtx_lock(&psp->ps_mtx);
772}
773
774/*
775 * System call to cleanup state after a signal
776 * has been taken.  Reset signal mask and
777 * stack state from context left by sendsig (above).
778 * Return to previous pc and psl as specified by
779 * context left by sendsig. Check carefully to
780 * make sure that the user has not modified the
781 * state to gain improper privileges.
782 *
783 * MPSAFE
784 */
785#ifdef COMPAT_43
786int
787osigreturn(td, uap)
788	struct thread *td;
789	struct osigreturn_args /* {
790		struct osigcontext *sigcntxp;
791	} */ *uap;
792{
793	struct osigcontext sc;
794	struct trapframe *regs;
795	struct osigcontext *scp;
796	int eflags, error;
797	ksiginfo_t ksi;
798
799	regs = td->td_frame;
800	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
801	if (error != 0)
802		return (error);
803	scp = &sc;
804	eflags = scp->sc_ps;
805	if (eflags & PSL_VM) {
806		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
807		struct vm86_kernel *vm86;
808
809		/*
810		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
811		 * set up the vm86 area, and we can't enter vm86 mode.
812		 */
813		if (td->td_pcb->pcb_ext == 0)
814			return (EINVAL);
815		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
816		if (vm86->vm86_inited == 0)
817			return (EINVAL);
818
819		/* Go back to user mode if both flags are set. */
820		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
821			ksiginfo_init_trap(&ksi);
822			ksi.ksi_signo = SIGBUS;
823			ksi.ksi_code = BUS_OBJERR;
824			ksi.ksi_addr = (void *)regs->tf_eip;
825			trapsignal(td, &ksi);
826		}
827
828		if (vm86->vm86_has_vme) {
829			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
830			    (eflags & VME_USERCHANGE) | PSL_VM;
831		} else {
832			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
833			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
834			    (eflags & VM_USERCHANGE) | PSL_VM;
835		}
836		tf->tf_vm86_ds = scp->sc_ds;
837		tf->tf_vm86_es = scp->sc_es;
838		tf->tf_vm86_fs = scp->sc_fs;
839		tf->tf_vm86_gs = scp->sc_gs;
840		tf->tf_ds = _udatasel;
841		tf->tf_es = _udatasel;
842		tf->tf_fs = _udatasel;
843	} else {
844		/*
845		 * Don't allow users to change privileged or reserved flags.
846		 */
847		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
848	    		return (EINVAL);
849		}
850
851		/*
852		 * Don't allow users to load a valid privileged %cs.  Let the
853		 * hardware check for invalid selectors, excess privilege in
854		 * other selectors, invalid %eip's and invalid %esp's.
855		 */
856		if (!CS_SECURE(scp->sc_cs)) {
857			ksiginfo_init_trap(&ksi);
858			ksi.ksi_signo = SIGBUS;
859			ksi.ksi_code = BUS_OBJERR;
860			ksi.ksi_trapno = T_PROTFLT;
861			ksi.ksi_addr = (void *)regs->tf_eip;
862			trapsignal(td, &ksi);
863			return (EINVAL);
864		}
865		regs->tf_ds = scp->sc_ds;
866		regs->tf_es = scp->sc_es;
867		regs->tf_fs = scp->sc_fs;
868	}
869
870	/* Restore remaining registers. */
871	regs->tf_eax = scp->sc_eax;
872	regs->tf_ebx = scp->sc_ebx;
873	regs->tf_ecx = scp->sc_ecx;
874	regs->tf_edx = scp->sc_edx;
875	regs->tf_esi = scp->sc_esi;
876	regs->tf_edi = scp->sc_edi;
877	regs->tf_cs = scp->sc_cs;
878	regs->tf_ss = scp->sc_ss;
879	regs->tf_isp = scp->sc_isp;
880	regs->tf_ebp = scp->sc_fp;
881	regs->tf_esp = scp->sc_sp;
882	regs->tf_eip = scp->sc_pc;
883	regs->tf_eflags = eflags;
884
885#if defined(COMPAT_43)
886	if (scp->sc_onstack & 1)
887		td->td_sigstk.ss_flags |= SS_ONSTACK;
888	else
889		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
890#endif
891	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
892	    SIGPROCMASK_OLD);
893	return (EJUSTRETURN);
894}
895#endif /* COMPAT_43 */
896
897#ifdef COMPAT_FREEBSD4
898/*
899 * MPSAFE
900 */
901int
902freebsd4_sigreturn(td, uap)
903	struct thread *td;
904	struct freebsd4_sigreturn_args /* {
905		const ucontext4 *sigcntxp;
906	} */ *uap;
907{
908	struct ucontext4 uc;
909	struct trapframe *regs;
910	struct ucontext4 *ucp;
911	int cs, eflags, error;
912	ksiginfo_t ksi;
913
914	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
915	if (error != 0)
916		return (error);
917	ucp = &uc;
918	regs = td->td_frame;
919	eflags = ucp->uc_mcontext.mc_eflags;
920	if (eflags & PSL_VM) {
921		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
922		struct vm86_kernel *vm86;
923
924		/*
925		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
926		 * set up the vm86 area, and we can't enter vm86 mode.
927		 */
928		if (td->td_pcb->pcb_ext == 0)
929			return (EINVAL);
930		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
931		if (vm86->vm86_inited == 0)
932			return (EINVAL);
933
934		/* Go back to user mode if both flags are set. */
935		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
936			ksiginfo_init_trap(&ksi);
937			ksi.ksi_signo = SIGBUS;
938			ksi.ksi_code = BUS_OBJERR;
939			ksi.ksi_addr = (void *)regs->tf_eip;
940			trapsignal(td, &ksi);
941		}
942		if (vm86->vm86_has_vme) {
943			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
944			    (eflags & VME_USERCHANGE) | PSL_VM;
945		} else {
946			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
947			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
948			    (eflags & VM_USERCHANGE) | PSL_VM;
949		}
950		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
951		tf->tf_eflags = eflags;
952		tf->tf_vm86_ds = tf->tf_ds;
953		tf->tf_vm86_es = tf->tf_es;
954		tf->tf_vm86_fs = tf->tf_fs;
955		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
956		tf->tf_ds = _udatasel;
957		tf->tf_es = _udatasel;
958		tf->tf_fs = _udatasel;
959	} else {
960		/*
961		 * Don't allow users to change privileged or reserved flags.
962		 */
963		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
964			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
965			    td->td_proc->p_pid, td->td_name, eflags);
966	    		return (EINVAL);
967		}
968
969		/*
970		 * Don't allow users to load a valid privileged %cs.  Let the
971		 * hardware check for invalid selectors, excess privilege in
972		 * other selectors, invalid %eip's and invalid %esp's.
973		 */
974		cs = ucp->uc_mcontext.mc_cs;
975		if (!CS_SECURE(cs)) {
976			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
977			    td->td_proc->p_pid, td->td_name, cs);
978			ksiginfo_init_trap(&ksi);
979			ksi.ksi_signo = SIGBUS;
980			ksi.ksi_code = BUS_OBJERR;
981			ksi.ksi_trapno = T_PROTFLT;
982			ksi.ksi_addr = (void *)regs->tf_eip;
983			trapsignal(td, &ksi);
984			return (EINVAL);
985		}
986
987		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
988	}
989
990#if defined(COMPAT_43)
991	if (ucp->uc_mcontext.mc_onstack & 1)
992		td->td_sigstk.ss_flags |= SS_ONSTACK;
993	else
994		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
995#endif
996	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
997	return (EJUSTRETURN);
998}
999#endif	/* COMPAT_FREEBSD4 */
1000
1001/*
1002 * MPSAFE
1003 */
1004int
1005sys_sigreturn(td, uap)
1006	struct thread *td;
1007	struct sigreturn_args /* {
1008		const struct __ucontext *sigcntxp;
1009	} */ *uap;
1010{
1011	ucontext_t uc;
1012	struct trapframe *regs;
1013	ucontext_t *ucp;
1014	int cs, eflags, error, ret;
1015	ksiginfo_t ksi;
1016
1017	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1018	if (error != 0)
1019		return (error);
1020	ucp = &uc;
1021	regs = td->td_frame;
1022	eflags = ucp->uc_mcontext.mc_eflags;
1023	if (eflags & PSL_VM) {
1024		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1025		struct vm86_kernel *vm86;
1026
1027		/*
1028		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1029		 * set up the vm86 area, and we can't enter vm86 mode.
1030		 */
1031		if (td->td_pcb->pcb_ext == 0)
1032			return (EINVAL);
1033		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1034		if (vm86->vm86_inited == 0)
1035			return (EINVAL);
1036
1037		/* Go back to user mode if both flags are set. */
1038		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1039			ksiginfo_init_trap(&ksi);
1040			ksi.ksi_signo = SIGBUS;
1041			ksi.ksi_code = BUS_OBJERR;
1042			ksi.ksi_addr = (void *)regs->tf_eip;
1043			trapsignal(td, &ksi);
1044		}
1045
1046		if (vm86->vm86_has_vme) {
1047			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1048			    (eflags & VME_USERCHANGE) | PSL_VM;
1049		} else {
1050			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1051			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1052			    (eflags & VM_USERCHANGE) | PSL_VM;
1053		}
1054		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1055		tf->tf_eflags = eflags;
1056		tf->tf_vm86_ds = tf->tf_ds;
1057		tf->tf_vm86_es = tf->tf_es;
1058		tf->tf_vm86_fs = tf->tf_fs;
1059		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1060		tf->tf_ds = _udatasel;
1061		tf->tf_es = _udatasel;
1062		tf->tf_fs = _udatasel;
1063	} else {
1064		/*
1065		 * Don't allow users to change privileged or reserved flags.
1066		 */
1067		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1068			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1069			    td->td_proc->p_pid, td->td_name, eflags);
1070	    		return (EINVAL);
1071		}
1072
1073		/*
1074		 * Don't allow users to load a valid privileged %cs.  Let the
1075		 * hardware check for invalid selectors, excess privilege in
1076		 * other selectors, invalid %eip's and invalid %esp's.
1077		 */
1078		cs = ucp->uc_mcontext.mc_cs;
1079		if (!CS_SECURE(cs)) {
1080			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1081			    td->td_proc->p_pid, td->td_name, cs);
1082			ksiginfo_init_trap(&ksi);
1083			ksi.ksi_signo = SIGBUS;
1084			ksi.ksi_code = BUS_OBJERR;
1085			ksi.ksi_trapno = T_PROTFLT;
1086			ksi.ksi_addr = (void *)regs->tf_eip;
1087			trapsignal(td, &ksi);
1088			return (EINVAL);
1089		}
1090
1091		ret = set_fpcontext(td, &ucp->uc_mcontext);
1092		if (ret != 0)
1093			return (ret);
1094		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1095	}
1096
1097#if defined(COMPAT_43)
1098	if (ucp->uc_mcontext.mc_onstack & 1)
1099		td->td_sigstk.ss_flags |= SS_ONSTACK;
1100	else
1101		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1102#endif
1103
1104	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1105	return (EJUSTRETURN);
1106}
1107
1108/*
1109 * Machine dependent boot() routine
1110 *
1111 * I haven't seen anything to put here yet
1112 * Possibly some stuff might be grafted back here from boot()
1113 */
1114void
1115cpu_boot(int howto)
1116{
1117}
1118
1119/*
1120 * Flush the D-cache for non-DMA I/O so that the I-cache can
1121 * be made coherent later.
1122 */
1123void
1124cpu_flush_dcache(void *ptr, size_t len)
1125{
1126	/* Not applicable */
1127}
1128
1129/* Get current clock frequency for the given cpu id. */
1130int
1131cpu_est_clockrate(int cpu_id, uint64_t *rate)
1132{
1133	uint64_t tsc1, tsc2;
1134	uint64_t acnt, mcnt, perf;
1135	register_t reg;
1136
1137	if (pcpu_find(cpu_id) == NULL || rate == NULL)
1138		return (EINVAL);
1139	if ((cpu_feature & CPUID_TSC) == 0)
1140		return (EOPNOTSUPP);
1141
1142	/*
1143	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
1144	 * DELAY(9) based logic fails.
1145	 */
1146	if (tsc_is_invariant && !tsc_perf_stat)
1147		return (EOPNOTSUPP);
1148
1149#ifdef SMP
1150	if (smp_cpus > 1) {
1151		/* Schedule ourselves on the indicated cpu. */
1152		thread_lock(curthread);
1153		sched_bind(curthread, cpu_id);
1154		thread_unlock(curthread);
1155	}
1156#endif
1157
1158	/* Calibrate by measuring a short delay. */
1159	reg = intr_disable();
1160	if (tsc_is_invariant) {
1161		wrmsr(MSR_MPERF, 0);
1162		wrmsr(MSR_APERF, 0);
1163		tsc1 = rdtsc();
1164		DELAY(1000);
1165		mcnt = rdmsr(MSR_MPERF);
1166		acnt = rdmsr(MSR_APERF);
1167		tsc2 = rdtsc();
1168		intr_restore(reg);
1169		perf = 1000 * acnt / mcnt;
1170		*rate = (tsc2 - tsc1) * perf;
1171	} else {
1172		tsc1 = rdtsc();
1173		DELAY(1000);
1174		tsc2 = rdtsc();
1175		intr_restore(reg);
1176		*rate = (tsc2 - tsc1) * 1000;
1177	}
1178
1179#ifdef SMP
1180	if (smp_cpus > 1) {
1181		thread_lock(curthread);
1182		sched_unbind(curthread);
1183		thread_unlock(curthread);
1184	}
1185#endif
1186
1187	return (0);
1188}
1189
1190#ifdef XEN
1191
1192static void
1193idle_block(void)
1194{
1195
1196	HYPERVISOR_sched_op(SCHEDOP_block, 0);
1197}
1198
1199void
1200cpu_halt(void)
1201{
1202	HYPERVISOR_shutdown(SHUTDOWN_poweroff);
1203}
1204
1205int scheduler_running;
1206
1207static void
1208cpu_idle_hlt(sbintime_t sbt)
1209{
1210
1211	scheduler_running = 1;
1212	enable_intr();
1213	idle_block();
1214}
1215
1216#else
1217/*
1218 * Shutdown the CPU as much as possible
1219 */
1220void
1221cpu_halt(void)
1222{
1223	for (;;)
1224		halt();
1225}
1226
1227#endif
1228
1229void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
1230static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
1231static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
1232TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
1233SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
1234    0, "Use MONITOR/MWAIT for short idle");
1235
1236#define	STATE_RUNNING	0x0
1237#define	STATE_MWAIT	0x1
1238#define	STATE_SLEEPING	0x2
1239
1240static void
1241cpu_idle_acpi(sbintime_t sbt)
1242{
1243	int *state;
1244
1245	state = (int *)PCPU_PTR(monitorbuf);
1246	*state = STATE_SLEEPING;
1247
1248	/* See comments in cpu_idle_hlt(). */
1249	disable_intr();
1250	if (sched_runnable())
1251		enable_intr();
1252	else if (cpu_idle_hook)
1253		cpu_idle_hook(sbt);
1254	else
1255		__asm __volatile("sti; hlt");
1256	*state = STATE_RUNNING;
1257}
1258
1259#ifndef XEN
1260static void
1261cpu_idle_hlt(sbintime_t sbt)
1262{
1263	int *state;
1264
1265	state = (int *)PCPU_PTR(monitorbuf);
1266	*state = STATE_SLEEPING;
1267
1268	/*
1269	 * Since we may be in a critical section from cpu_idle(), if
1270	 * an interrupt fires during that critical section we may have
1271	 * a pending preemption.  If the CPU halts, then that thread
1272	 * may not execute until a later interrupt awakens the CPU.
1273	 * To handle this race, check for a runnable thread after
1274	 * disabling interrupts and immediately return if one is
1275	 * found.  Also, we must absolutely guarentee that hlt is
1276	 * the next instruction after sti.  This ensures that any
1277	 * interrupt that fires after the call to disable_intr() will
1278	 * immediately awaken the CPU from hlt.  Finally, please note
1279	 * that on x86 this works fine because of interrupts enabled only
1280	 * after the instruction following sti takes place, while IF is set
1281	 * to 1 immediately, allowing hlt instruction to acknowledge the
1282	 * interrupt.
1283	 */
1284	disable_intr();
1285	if (sched_runnable())
1286		enable_intr();
1287	else
1288		__asm __volatile("sti; hlt");
1289	*state = STATE_RUNNING;
1290}
1291#endif
1292
1293/*
1294 * MWAIT cpu power states.  Lower 4 bits are sub-states.
1295 */
1296#define	MWAIT_C0	0xf0
1297#define	MWAIT_C1	0x00
1298#define	MWAIT_C2	0x10
1299#define	MWAIT_C3	0x20
1300#define	MWAIT_C4	0x30
1301
1302static void
1303cpu_idle_mwait(sbintime_t sbt)
1304{
1305	int *state;
1306
1307	state = (int *)PCPU_PTR(monitorbuf);
1308	*state = STATE_MWAIT;
1309
1310	/* See comments in cpu_idle_hlt(). */
1311	disable_intr();
1312	if (sched_runnable()) {
1313		enable_intr();
1314		*state = STATE_RUNNING;
1315		return;
1316	}
1317	cpu_monitor(state, 0, 0);
1318	if (*state == STATE_MWAIT)
1319		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
1320	else
1321		enable_intr();
1322	*state = STATE_RUNNING;
1323}
1324
1325static void
1326cpu_idle_spin(sbintime_t sbt)
1327{
1328	int *state;
1329	int i;
1330
1331	state = (int *)PCPU_PTR(monitorbuf);
1332	*state = STATE_RUNNING;
1333
1334	/*
1335	 * The sched_runnable() call is racy but as long as there is
1336	 * a loop missing it one time will have just a little impact if any
1337	 * (and it is much better than missing the check at all).
1338	 */
1339	for (i = 0; i < 1000; i++) {
1340		if (sched_runnable())
1341			return;
1342		cpu_spinwait();
1343	}
1344}
1345
1346/*
1347 * C1E renders the local APIC timer dead, so we disable it by
1348 * reading the Interrupt Pending Message register and clearing
1349 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
1350 *
1351 * Reference:
1352 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
1353 *   #32559 revision 3.00+
1354 */
1355#define	MSR_AMDK8_IPM		0xc0010055
1356#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
1357#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
1358#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
1359
1360static void
1361cpu_probe_amdc1e(void)
1362{
1363
1364	/*
1365	 * Detect the presence of C1E capability mostly on latest
1366	 * dual-cores (or future) k8 family.
1367	 */
1368	if (cpu_vendor_id == CPU_VENDOR_AMD &&
1369	    (cpu_id & 0x00000f00) == 0x00000f00 &&
1370	    (cpu_id & 0x0fff0000) >=  0x00040000) {
1371		cpu_ident_amdc1e = 1;
1372	}
1373}
1374
1375#ifdef XEN
1376void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
1377#else
1378void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
1379#endif
1380
1381void
1382cpu_idle(int busy)
1383{
1384#ifndef XEN
1385	uint64_t msr;
1386#endif
1387	sbintime_t sbt = -1;
1388
1389	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
1390	    busy, curcpu);
1391#if defined(MP_WATCHDOG) && !defined(XEN)
1392	ap_watchdog(PCPU_GET(cpuid));
1393#endif
1394#ifndef XEN
1395	/* If we are busy - try to use fast methods. */
1396	if (busy) {
1397		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
1398			cpu_idle_mwait(busy);
1399			goto out;
1400		}
1401	}
1402#endif
1403
1404	/* If we have time - switch timers into idle mode. */
1405	if (!busy) {
1406		critical_enter();
1407		sbt = cpu_idleclock();
1408	}
1409
1410#ifndef XEN
1411	/* Apply AMD APIC timer C1E workaround. */
1412	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
1413		msr = rdmsr(MSR_AMDK8_IPM);
1414		if (msr & AMDK8_CMPHALT)
1415			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
1416	}
1417#endif
1418
1419	/* Call main idle method. */
1420	cpu_idle_fn(sbt);
1421
1422	/* Switch timers mack into active mode. */
1423	if (!busy) {
1424		cpu_activeclock();
1425		critical_exit();
1426	}
1427#ifndef XEN
1428out:
1429#endif
1430	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
1431	    busy, curcpu);
1432}
1433
1434int
1435cpu_idle_wakeup(int cpu)
1436{
1437	struct pcpu *pcpu;
1438	int *state;
1439
1440	pcpu = pcpu_find(cpu);
1441	state = (int *)pcpu->pc_monitorbuf;
1442	/*
1443	 * This doesn't need to be atomic since missing the race will
1444	 * simply result in unnecessary IPIs.
1445	 */
1446	if (*state == STATE_SLEEPING)
1447		return (0);
1448	if (*state == STATE_MWAIT)
1449		*state = STATE_RUNNING;
1450	return (1);
1451}
1452
1453/*
1454 * Ordered by speed/power consumption.
1455 */
1456struct {
1457	void	*id_fn;
1458	char	*id_name;
1459} idle_tbl[] = {
1460	{ cpu_idle_spin, "spin" },
1461	{ cpu_idle_mwait, "mwait" },
1462	{ cpu_idle_hlt, "hlt" },
1463	{ cpu_idle_acpi, "acpi" },
1464	{ NULL, NULL }
1465};
1466
1467static int
1468idle_sysctl_available(SYSCTL_HANDLER_ARGS)
1469{
1470	char *avail, *p;
1471	int error;
1472	int i;
1473
1474	avail = malloc(256, M_TEMP, M_WAITOK);
1475	p = avail;
1476	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1477		if (strstr(idle_tbl[i].id_name, "mwait") &&
1478		    (cpu_feature2 & CPUID2_MON) == 0)
1479			continue;
1480		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1481		    cpu_idle_hook == NULL)
1482			continue;
1483		p += sprintf(p, "%s%s", p != avail ? ", " : "",
1484		    idle_tbl[i].id_name);
1485	}
1486	error = sysctl_handle_string(oidp, avail, 0, req);
1487	free(avail, M_TEMP);
1488	return (error);
1489}
1490
1491SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
1492    0, 0, idle_sysctl_available, "A", "list of available idle functions");
1493
1494static int
1495idle_sysctl(SYSCTL_HANDLER_ARGS)
1496{
1497	char buf[16];
1498	int error;
1499	char *p;
1500	int i;
1501
1502	p = "unknown";
1503	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1504		if (idle_tbl[i].id_fn == cpu_idle_fn) {
1505			p = idle_tbl[i].id_name;
1506			break;
1507		}
1508	}
1509	strncpy(buf, p, sizeof(buf));
1510	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
1511	if (error != 0 || req->newptr == NULL)
1512		return (error);
1513	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1514		if (strstr(idle_tbl[i].id_name, "mwait") &&
1515		    (cpu_feature2 & CPUID2_MON) == 0)
1516			continue;
1517		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1518		    cpu_idle_hook == NULL)
1519			continue;
1520		if (strcmp(idle_tbl[i].id_name, buf))
1521			continue;
1522		cpu_idle_fn = idle_tbl[i].id_fn;
1523		return (0);
1524	}
1525	return (EINVAL);
1526}
1527
1528SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
1529    idle_sysctl, "A", "currently selected idle function");
1530
1531/*
1532 * Reset registers to default values on exec.
1533 */
1534void
1535exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1536{
1537	struct trapframe *regs = td->td_frame;
1538	struct pcb *pcb = td->td_pcb;
1539
1540	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1541	pcb->pcb_gs = _udatasel;
1542	load_gs(_udatasel);
1543
1544	mtx_lock_spin(&dt_lock);
1545	if (td->td_proc->p_md.md_ldt)
1546		user_ldt_free(td);
1547	else
1548		mtx_unlock_spin(&dt_lock);
1549
1550	bzero((char *)regs, sizeof(struct trapframe));
1551	regs->tf_eip = imgp->entry_addr;
1552	regs->tf_esp = stack;
1553	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1554	regs->tf_ss = _udatasel;
1555	regs->tf_ds = _udatasel;
1556	regs->tf_es = _udatasel;
1557	regs->tf_fs = _udatasel;
1558	regs->tf_cs = _ucodesel;
1559
1560	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1561	regs->tf_ebx = imgp->ps_strings;
1562
1563        /*
1564         * Reset the hardware debug registers if they were in use.
1565         * They won't have any meaning for the newly exec'd process.
1566         */
1567        if (pcb->pcb_flags & PCB_DBREGS) {
1568                pcb->pcb_dr0 = 0;
1569                pcb->pcb_dr1 = 0;
1570                pcb->pcb_dr2 = 0;
1571                pcb->pcb_dr3 = 0;
1572                pcb->pcb_dr6 = 0;
1573                pcb->pcb_dr7 = 0;
1574                if (pcb == curpcb) {
1575		        /*
1576			 * Clear the debug registers on the running
1577			 * CPU, otherwise they will end up affecting
1578			 * the next process we switch to.
1579			 */
1580		        reset_dbregs();
1581                }
1582                pcb->pcb_flags &= ~PCB_DBREGS;
1583        }
1584
1585	/*
1586	 * Initialize the math emulator (if any) for the current process.
1587	 * Actually, just clear the bit that says that the emulator has
1588	 * been initialized.  Initialization is delayed until the process
1589	 * traps to the emulator (if it is done at all) mainly because
1590	 * emulators don't provide an entry point for initialization.
1591	 */
1592	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1593	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1594
1595	/*
1596	 * Drop the FP state if we hold it, so that the process gets a
1597	 * clean FP state if it uses the FPU again.
1598	 */
1599	fpstate_drop(td);
1600
1601	/*
1602	 * XXX - Linux emulator
1603	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1604	 * on it.
1605	 */
1606	td->td_retval[1] = 0;
1607}
1608
1609void
1610cpu_setregs(void)
1611{
1612	unsigned int cr0;
1613
1614	cr0 = rcr0();
1615
1616	/*
1617	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1618	 *
1619	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1620	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1621	 * bit to control the trap, because setting the CR0_EM bit does
1622	 * not cause WAIT instructions to trap.  It's important to trap
1623	 * WAIT instructions - otherwise the "wait" variants of no-wait
1624	 * control instructions would degenerate to the "no-wait" variants
1625	 * after FP context switches but work correctly otherwise.  It's
1626	 * particularly important to trap WAITs when there is no NPX -
1627	 * otherwise the "wait" variants would always degenerate.
1628	 *
1629	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1630	 * Setting it should fail or do nothing on lesser processors.
1631	 */
1632	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1633	load_cr0(cr0);
1634	load_gs(_udatasel);
1635}
1636
1637u_long bootdev;		/* not a struct cdev *- encoding is different */
1638SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1639	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1640
1641static char bootmethod[16] = "BIOS";
1642SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1643    "System firmware boot method");
1644
1645/*
1646 * Initialize 386 and configure to run kernel
1647 */
1648
1649/*
1650 * Initialize segments & interrupt table
1651 */
1652
1653int _default_ldt;
1654
1655#ifdef XEN
1656union descriptor *gdt;
1657union descriptor *ldt;
1658#else
1659union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1660union descriptor ldt[NLDT];		/* local descriptor table */
1661#endif
1662static struct gate_descriptor idt0[NIDT];
1663struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1664struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1665struct mtx dt_lock;			/* lock for GDT and LDT */
1666
1667#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1668extern int has_f00f_bug;
1669#endif
1670
1671static struct i386tss dblfault_tss;
1672static char dblfault_stack[PAGE_SIZE];
1673
1674extern  vm_offset_t	proc0kstack;
1675
1676
1677/*
1678 * software prototypes -- in more palatable form.
1679 *
1680 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1681 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1682 */
1683struct soft_segment_descriptor gdt_segs[] = {
1684/* GNULL_SEL	0 Null Descriptor */
1685{	.ssd_base = 0x0,
1686	.ssd_limit = 0x0,
1687	.ssd_type = 0,
1688	.ssd_dpl = SEL_KPL,
1689	.ssd_p = 0,
1690	.ssd_xx = 0, .ssd_xx1 = 0,
1691	.ssd_def32 = 0,
1692	.ssd_gran = 0		},
1693/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1694{	.ssd_base = 0x0,
1695	.ssd_limit = 0xfffff,
1696	.ssd_type = SDT_MEMRWA,
1697	.ssd_dpl = SEL_KPL,
1698	.ssd_p = 1,
1699	.ssd_xx = 0, .ssd_xx1 = 0,
1700	.ssd_def32 = 1,
1701	.ssd_gran = 1		},
1702/* GUFS_SEL	2 %fs Descriptor for user */
1703{	.ssd_base = 0x0,
1704	.ssd_limit = 0xfffff,
1705	.ssd_type = SDT_MEMRWA,
1706	.ssd_dpl = SEL_UPL,
1707	.ssd_p = 1,
1708	.ssd_xx = 0, .ssd_xx1 = 0,
1709	.ssd_def32 = 1,
1710	.ssd_gran = 1		},
1711/* GUGS_SEL	3 %gs Descriptor for user */
1712{	.ssd_base = 0x0,
1713	.ssd_limit = 0xfffff,
1714	.ssd_type = SDT_MEMRWA,
1715	.ssd_dpl = SEL_UPL,
1716	.ssd_p = 1,
1717	.ssd_xx = 0, .ssd_xx1 = 0,
1718	.ssd_def32 = 1,
1719	.ssd_gran = 1		},
1720/* GCODE_SEL	4 Code Descriptor for kernel */
1721{	.ssd_base = 0x0,
1722	.ssd_limit = 0xfffff,
1723	.ssd_type = SDT_MEMERA,
1724	.ssd_dpl = SEL_KPL,
1725	.ssd_p = 1,
1726	.ssd_xx = 0, .ssd_xx1 = 0,
1727	.ssd_def32 = 1,
1728	.ssd_gran = 1		},
1729/* GDATA_SEL	5 Data Descriptor for kernel */
1730{	.ssd_base = 0x0,
1731	.ssd_limit = 0xfffff,
1732	.ssd_type = SDT_MEMRWA,
1733	.ssd_dpl = SEL_KPL,
1734	.ssd_p = 1,
1735	.ssd_xx = 0, .ssd_xx1 = 0,
1736	.ssd_def32 = 1,
1737	.ssd_gran = 1		},
1738/* GUCODE_SEL	6 Code Descriptor for user */
1739{	.ssd_base = 0x0,
1740	.ssd_limit = 0xfffff,
1741	.ssd_type = SDT_MEMERA,
1742	.ssd_dpl = SEL_UPL,
1743	.ssd_p = 1,
1744	.ssd_xx = 0, .ssd_xx1 = 0,
1745	.ssd_def32 = 1,
1746	.ssd_gran = 1		},
1747/* GUDATA_SEL	7 Data Descriptor for user */
1748{	.ssd_base = 0x0,
1749	.ssd_limit = 0xfffff,
1750	.ssd_type = SDT_MEMRWA,
1751	.ssd_dpl = SEL_UPL,
1752	.ssd_p = 1,
1753	.ssd_xx = 0, .ssd_xx1 = 0,
1754	.ssd_def32 = 1,
1755	.ssd_gran = 1		},
1756/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1757{	.ssd_base = 0x400,
1758	.ssd_limit = 0xfffff,
1759	.ssd_type = SDT_MEMRWA,
1760	.ssd_dpl = SEL_KPL,
1761	.ssd_p = 1,
1762	.ssd_xx = 0, .ssd_xx1 = 0,
1763	.ssd_def32 = 1,
1764	.ssd_gran = 1		},
1765#ifndef XEN
1766/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1767{
1768	.ssd_base = 0x0,
1769	.ssd_limit = sizeof(struct i386tss)-1,
1770	.ssd_type = SDT_SYS386TSS,
1771	.ssd_dpl = 0,
1772	.ssd_p = 1,
1773	.ssd_xx = 0, .ssd_xx1 = 0,
1774	.ssd_def32 = 0,
1775	.ssd_gran = 0		},
1776/* GLDT_SEL	10 LDT Descriptor */
1777{	.ssd_base = (int) ldt,
1778	.ssd_limit = sizeof(ldt)-1,
1779	.ssd_type = SDT_SYSLDT,
1780	.ssd_dpl = SEL_UPL,
1781	.ssd_p = 1,
1782	.ssd_xx = 0, .ssd_xx1 = 0,
1783	.ssd_def32 = 0,
1784	.ssd_gran = 0		},
1785/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1786{	.ssd_base = (int) ldt,
1787	.ssd_limit = (512 * sizeof(union descriptor)-1),
1788	.ssd_type = SDT_SYSLDT,
1789	.ssd_dpl = 0,
1790	.ssd_p = 1,
1791	.ssd_xx = 0, .ssd_xx1 = 0,
1792	.ssd_def32 = 0,
1793	.ssd_gran = 0		},
1794/* GPANIC_SEL	12 Panic Tss Descriptor */
1795{	.ssd_base = (int) &dblfault_tss,
1796	.ssd_limit = sizeof(struct i386tss)-1,
1797	.ssd_type = SDT_SYS386TSS,
1798	.ssd_dpl = 0,
1799	.ssd_p = 1,
1800	.ssd_xx = 0, .ssd_xx1 = 0,
1801	.ssd_def32 = 0,
1802	.ssd_gran = 0		},
1803/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1804{	.ssd_base = 0,
1805	.ssd_limit = 0xfffff,
1806	.ssd_type = SDT_MEMERA,
1807	.ssd_dpl = 0,
1808	.ssd_p = 1,
1809	.ssd_xx = 0, .ssd_xx1 = 0,
1810	.ssd_def32 = 0,
1811	.ssd_gran = 1		},
1812/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1813{	.ssd_base = 0,
1814	.ssd_limit = 0xfffff,
1815	.ssd_type = SDT_MEMERA,
1816	.ssd_dpl = 0,
1817	.ssd_p = 1,
1818	.ssd_xx = 0, .ssd_xx1 = 0,
1819	.ssd_def32 = 0,
1820	.ssd_gran = 1		},
1821/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1822{	.ssd_base = 0,
1823	.ssd_limit = 0xfffff,
1824	.ssd_type = SDT_MEMRWA,
1825	.ssd_dpl = 0,
1826	.ssd_p = 1,
1827	.ssd_xx = 0, .ssd_xx1 = 0,
1828	.ssd_def32 = 1,
1829	.ssd_gran = 1		},
1830/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1831{	.ssd_base = 0,
1832	.ssd_limit = 0xfffff,
1833	.ssd_type = SDT_MEMRWA,
1834	.ssd_dpl = 0,
1835	.ssd_p = 1,
1836	.ssd_xx = 0, .ssd_xx1 = 0,
1837	.ssd_def32 = 0,
1838	.ssd_gran = 1		},
1839/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1840{	.ssd_base = 0,
1841	.ssd_limit = 0xfffff,
1842	.ssd_type = SDT_MEMRWA,
1843	.ssd_dpl = 0,
1844	.ssd_p = 1,
1845	.ssd_xx = 0, .ssd_xx1 = 0,
1846	.ssd_def32 = 0,
1847	.ssd_gran = 1		},
1848/* GNDIS_SEL	18 NDIS Descriptor */
1849{	.ssd_base = 0x0,
1850	.ssd_limit = 0x0,
1851	.ssd_type = 0,
1852	.ssd_dpl = 0,
1853	.ssd_p = 0,
1854	.ssd_xx = 0, .ssd_xx1 = 0,
1855	.ssd_def32 = 0,
1856	.ssd_gran = 0		},
1857#endif /* !XEN */
1858};
1859
1860static struct soft_segment_descriptor ldt_segs[] = {
1861	/* Null Descriptor - overwritten by call gate */
1862{	.ssd_base = 0x0,
1863	.ssd_limit = 0x0,
1864	.ssd_type = 0,
1865	.ssd_dpl = 0,
1866	.ssd_p = 0,
1867	.ssd_xx = 0, .ssd_xx1 = 0,
1868	.ssd_def32 = 0,
1869	.ssd_gran = 0		},
1870	/* Null Descriptor - overwritten by call gate */
1871{	.ssd_base = 0x0,
1872	.ssd_limit = 0x0,
1873	.ssd_type = 0,
1874	.ssd_dpl = 0,
1875	.ssd_p = 0,
1876	.ssd_xx = 0, .ssd_xx1 = 0,
1877	.ssd_def32 = 0,
1878	.ssd_gran = 0		},
1879	/* Null Descriptor - overwritten by call gate */
1880{	.ssd_base = 0x0,
1881	.ssd_limit = 0x0,
1882	.ssd_type = 0,
1883	.ssd_dpl = 0,
1884	.ssd_p = 0,
1885	.ssd_xx = 0, .ssd_xx1 = 0,
1886	.ssd_def32 = 0,
1887	.ssd_gran = 0		},
1888	/* Code Descriptor for user */
1889{	.ssd_base = 0x0,
1890	.ssd_limit = 0xfffff,
1891	.ssd_type = SDT_MEMERA,
1892	.ssd_dpl = SEL_UPL,
1893	.ssd_p = 1,
1894	.ssd_xx = 0, .ssd_xx1 = 0,
1895	.ssd_def32 = 1,
1896	.ssd_gran = 1		},
1897	/* Null Descriptor - overwritten by call gate */
1898{	.ssd_base = 0x0,
1899	.ssd_limit = 0x0,
1900	.ssd_type = 0,
1901	.ssd_dpl = 0,
1902	.ssd_p = 0,
1903	.ssd_xx = 0, .ssd_xx1 = 0,
1904	.ssd_def32 = 0,
1905	.ssd_gran = 0		},
1906	/* Data Descriptor for user */
1907{	.ssd_base = 0x0,
1908	.ssd_limit = 0xfffff,
1909	.ssd_type = SDT_MEMRWA,
1910	.ssd_dpl = SEL_UPL,
1911	.ssd_p = 1,
1912	.ssd_xx = 0, .ssd_xx1 = 0,
1913	.ssd_def32 = 1,
1914	.ssd_gran = 1		},
1915};
1916
1917void
1918setidt(idx, func, typ, dpl, selec)
1919	int idx;
1920	inthand_t *func;
1921	int typ;
1922	int dpl;
1923	int selec;
1924{
1925	struct gate_descriptor *ip;
1926
1927	ip = idt + idx;
1928	ip->gd_looffset = (int)func;
1929	ip->gd_selector = selec;
1930	ip->gd_stkcpy = 0;
1931	ip->gd_xx = 0;
1932	ip->gd_type = typ;
1933	ip->gd_dpl = dpl;
1934	ip->gd_p = 1;
1935	ip->gd_hioffset = ((int)func)>>16 ;
1936}
1937
1938extern inthand_t
1939	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1940	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1941	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1942	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1943	IDTVEC(xmm),
1944#ifdef KDTRACE_HOOKS
1945	IDTVEC(dtrace_ret),
1946#endif
1947#ifdef XENHVM
1948	IDTVEC(xen_intr_upcall),
1949#endif
1950	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1951
1952#ifdef DDB
1953/*
1954 * Display the index and function name of any IDT entries that don't use
1955 * the default 'rsvd' entry point.
1956 */
1957DB_SHOW_COMMAND(idt, db_show_idt)
1958{
1959	struct gate_descriptor *ip;
1960	int idx;
1961	uintptr_t func;
1962
1963	ip = idt;
1964	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1965		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1966		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1967			db_printf("%3d\t", idx);
1968			db_printsym(func, DB_STGY_PROC);
1969			db_printf("\n");
1970		}
1971		ip++;
1972	}
1973}
1974
1975/* Show privileged registers. */
1976DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1977{
1978	uint64_t idtr, gdtr;
1979
1980	idtr = ridt();
1981	db_printf("idtr\t0x%08x/%04x\n",
1982	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1983	gdtr = rgdt();
1984	db_printf("gdtr\t0x%08x/%04x\n",
1985	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1986	db_printf("ldtr\t0x%04x\n", rldt());
1987	db_printf("tr\t0x%04x\n", rtr());
1988	db_printf("cr0\t0x%08x\n", rcr0());
1989	db_printf("cr2\t0x%08x\n", rcr2());
1990	db_printf("cr3\t0x%08x\n", rcr3());
1991	db_printf("cr4\t0x%08x\n", rcr4());
1992}
1993#endif
1994
1995void
1996sdtossd(sd, ssd)
1997	struct segment_descriptor *sd;
1998	struct soft_segment_descriptor *ssd;
1999{
2000	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
2001	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
2002	ssd->ssd_type  = sd->sd_type;
2003	ssd->ssd_dpl   = sd->sd_dpl;
2004	ssd->ssd_p     = sd->sd_p;
2005	ssd->ssd_def32 = sd->sd_def32;
2006	ssd->ssd_gran  = sd->sd_gran;
2007}
2008
2009#ifndef XEN
2010static int
2011add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
2012{
2013	int i, insert_idx, physmap_idx;
2014
2015	physmap_idx = *physmap_idxp;
2016
2017	if (boothowto & RB_VERBOSE)
2018		printf("SMAP type=%02x base=%016llx len=%016llx\n",
2019		    smap->type, smap->base, smap->length);
2020
2021	if (smap->type != SMAP_TYPE_MEMORY)
2022		return (1);
2023
2024	if (smap->length == 0)
2025		return (1);
2026
2027#ifndef PAE
2028	if (smap->base > 0xffffffff) {
2029		printf("%uK of memory above 4GB ignored\n",
2030		    (u_int)(smap->length / 1024));
2031		return (1);
2032	}
2033#endif
2034
2035	/*
2036	 * Find insertion point while checking for overlap.  Start off by
2037	 * assuming the new entry will be added to the end.
2038	 */
2039	insert_idx = physmap_idx + 2;
2040	for (i = 0; i <= physmap_idx; i += 2) {
2041		if (smap->base < physmap[i + 1]) {
2042			if (smap->base + smap->length <= physmap[i]) {
2043				insert_idx = i;
2044				break;
2045			}
2046			if (boothowto & RB_VERBOSE)
2047				printf(
2048		    "Overlapping memory regions, ignoring second region\n");
2049			return (1);
2050		}
2051	}
2052
2053	/* See if we can prepend to the next entry. */
2054	if (insert_idx <= physmap_idx &&
2055	    smap->base + smap->length == physmap[insert_idx]) {
2056		physmap[insert_idx] = smap->base;
2057		return (1);
2058	}
2059
2060	/* See if we can append to the previous entry. */
2061	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
2062		physmap[insert_idx - 1] += smap->length;
2063		return (1);
2064	}
2065
2066	physmap_idx += 2;
2067	*physmap_idxp = physmap_idx;
2068	if (physmap_idx == PHYSMAP_SIZE) {
2069		printf(
2070		"Too many segments in the physical address map, giving up\n");
2071		return (0);
2072	}
2073
2074	/*
2075	 * Move the last 'N' entries down to make room for the new
2076	 * entry if needed.
2077	 */
2078	for (i = physmap_idx; i > insert_idx; i -= 2) {
2079		physmap[i] = physmap[i - 2];
2080		physmap[i + 1] = physmap[i - 1];
2081	}
2082
2083	/* Insert the new entry. */
2084	physmap[insert_idx] = smap->base;
2085	physmap[insert_idx + 1] = smap->base + smap->length;
2086	return (1);
2087}
2088
2089static void
2090basemem_setup(void)
2091{
2092	vm_paddr_t pa;
2093	pt_entry_t *pte;
2094	int i;
2095
2096	if (basemem > 640) {
2097		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
2098			basemem);
2099		basemem = 640;
2100	}
2101
2102	/*
2103	 * XXX if biosbasemem is now < 640, there is a `hole'
2104	 * between the end of base memory and the start of
2105	 * ISA memory.  The hole may be empty or it may
2106	 * contain BIOS code or data.  Map it read/write so
2107	 * that the BIOS can write to it.  (Memory from 0 to
2108	 * the physical end of the kernel is mapped read-only
2109	 * to begin with and then parts of it are remapped.
2110	 * The parts that aren't remapped form holes that
2111	 * remain read-only and are unused by the kernel.
2112	 * The base memory area is below the physical end of
2113	 * the kernel and right now forms a read-only hole.
2114	 * The part of it from PAGE_SIZE to
2115	 * (trunc_page(biosbasemem * 1024) - 1) will be
2116	 * remapped and used by the kernel later.)
2117	 *
2118	 * This code is similar to the code used in
2119	 * pmap_mapdev, but since no memory needs to be
2120	 * allocated we simply change the mapping.
2121	 */
2122	for (pa = trunc_page(basemem * 1024);
2123	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
2124		pmap_kenter(KERNBASE + pa, pa);
2125
2126	/*
2127	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
2128	 * the vm86 page table so that vm86 can scribble on them using
2129	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
2130	 * page 0, at least as initialized here?
2131	 */
2132	pte = (pt_entry_t *)vm86paddr;
2133	for (i = basemem / 4; i < 160; i++)
2134		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
2135}
2136#endif
2137
2138/*
2139 * Populate the (physmap) array with base/bound pairs describing the
2140 * available physical memory in the system, then test this memory and
2141 * build the phys_avail array describing the actually-available memory.
2142 *
2143 * If we cannot accurately determine the physical memory map, then use
2144 * value from the 0xE801 call, and failing that, the RTC.
2145 *
2146 * Total memory size may be set by the kernel environment variable
2147 * hw.physmem or the compile-time define MAXMEM.
2148 *
2149 * XXX first should be vm_paddr_t.
2150 */
2151static void
2152getmemsize(int first)
2153{
2154	int has_smap, off, physmap_idx, pa_indx, da_indx;
2155	u_long physmem_tunable, memtest;
2156	vm_paddr_t physmap[PHYSMAP_SIZE];
2157	pt_entry_t *pte;
2158	quad_t dcons_addr, dcons_size;
2159#ifndef XEN
2160	int hasbrokenint12, i, res;
2161	u_int extmem;
2162	struct vm86frame vmf;
2163	struct vm86context vmc;
2164	vm_paddr_t pa;
2165	struct bios_smap *smap, *smapbase, *smapend;
2166	u_int32_t smapsize;
2167	caddr_t kmdp;
2168#endif
2169
2170	has_smap = 0;
2171#if defined(XEN)
2172	Maxmem = xen_start_info->nr_pages - init_first;
2173	physmem = Maxmem;
2174	basemem = 0;
2175	physmap[0] = init_first << PAGE_SHIFT;
2176	physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
2177	physmap_idx = 0;
2178#else
2179#ifdef XBOX
2180	if (arch_i386_is_xbox) {
2181		/*
2182		 * We queried the memory size before, so chop off 4MB for
2183		 * the framebuffer and inform the OS of this.
2184		 */
2185		physmap[0] = 0;
2186		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2187		physmap_idx = 0;
2188		goto physmap_done;
2189	}
2190#endif
2191	bzero(&vmf, sizeof(vmf));
2192	bzero(physmap, sizeof(physmap));
2193	basemem = 0;
2194
2195	/*
2196	 * Check if the loader supplied an SMAP memory map.  If so,
2197	 * use that and do not make any VM86 calls.
2198	 */
2199	physmap_idx = 0;
2200	smapbase = NULL;
2201	kmdp = preload_search_by_type("elf kernel");
2202	if (kmdp == NULL)
2203		kmdp = preload_search_by_type("elf32 kernel");
2204	if (kmdp != NULL)
2205		smapbase = (struct bios_smap *)preload_search_info(kmdp,
2206		    MODINFO_METADATA | MODINFOMD_SMAP);
2207	if (smapbase != NULL) {
2208		/*
2209		 * subr_module.c says:
2210		 * "Consumer may safely assume that size value precedes data."
2211		 * ie: an int32_t immediately precedes SMAP.
2212		 */
2213		smapsize = *((u_int32_t *)smapbase - 1);
2214		smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
2215		has_smap = 1;
2216
2217		for (smap = smapbase; smap < smapend; smap++)
2218			if (!add_smap_entry(smap, physmap, &physmap_idx))
2219				break;
2220		goto have_smap;
2221	}
2222
2223	/*
2224	 * Some newer BIOSes have a broken INT 12H implementation
2225	 * which causes a kernel panic immediately.  In this case, we
2226	 * need use the SMAP to determine the base memory size.
2227	 */
2228	hasbrokenint12 = 0;
2229	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2230	if (hasbrokenint12 == 0) {
2231		/* Use INT12 to determine base memory size. */
2232		vm86_intcall(0x12, &vmf);
2233		basemem = vmf.vmf_ax;
2234		basemem_setup();
2235	}
2236
2237	/*
2238	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2239	 * the kernel page table so we can use it as a buffer.  The
2240	 * kernel will unmap this page later.
2241	 */
2242	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2243	vmc.npages = 0;
2244	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2245	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2246	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2247
2248	vmf.vmf_ebx = 0;
2249	do {
2250		vmf.vmf_eax = 0xE820;
2251		vmf.vmf_edx = SMAP_SIG;
2252		vmf.vmf_ecx = sizeof(struct bios_smap);
2253		i = vm86_datacall(0x15, &vmf, &vmc);
2254		if (i || vmf.vmf_eax != SMAP_SIG)
2255			break;
2256		has_smap = 1;
2257		if (!add_smap_entry(smap, physmap, &physmap_idx))
2258			break;
2259	} while (vmf.vmf_ebx != 0);
2260
2261have_smap:
2262	/*
2263	 * If we didn't fetch the "base memory" size from INT12,
2264	 * figure it out from the SMAP (or just guess).
2265	 */
2266	if (basemem == 0) {
2267		for (i = 0; i <= physmap_idx; i += 2) {
2268			if (physmap[i] == 0x00000000) {
2269				basemem = physmap[i + 1] / 1024;
2270				break;
2271			}
2272		}
2273
2274		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2275		if (basemem == 0)
2276			basemem = 640;
2277		basemem_setup();
2278	}
2279
2280	if (physmap[1] != 0)
2281		goto physmap_done;
2282
2283	/*
2284	 * If we failed to find an SMAP, figure out the extended
2285	 * memory size.  We will then build a simple memory map with
2286	 * two segments, one for "base memory" and the second for
2287	 * "extended memory".  Note that "extended memory" starts at a
2288	 * physical address of 1MB and that both basemem and extmem
2289	 * are in units of 1KB.
2290	 *
2291	 * First, try to fetch the extended memory size via INT 15:E801.
2292	 */
2293	vmf.vmf_ax = 0xE801;
2294	if (vm86_intcall(0x15, &vmf) == 0) {
2295		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2296	} else {
2297		/*
2298		 * If INT15:E801 fails, this is our last ditch effort
2299		 * to determine the extended memory size.  Currently
2300		 * we prefer the RTC value over INT15:88.
2301		 */
2302#if 0
2303		vmf.vmf_ah = 0x88;
2304		vm86_intcall(0x15, &vmf);
2305		extmem = vmf.vmf_ax;
2306#else
2307		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2308#endif
2309	}
2310
2311	/*
2312	 * Special hack for chipsets that still remap the 384k hole when
2313	 * there's 16MB of memory - this really confuses people that
2314	 * are trying to use bus mastering ISA controllers with the
2315	 * "16MB limit"; they only have 16MB, but the remapping puts
2316	 * them beyond the limit.
2317	 *
2318	 * If extended memory is between 15-16MB (16-17MB phys address range),
2319	 *	chop it to 15MB.
2320	 */
2321	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2322		extmem = 15 * 1024;
2323
2324	physmap[0] = 0;
2325	physmap[1] = basemem * 1024;
2326	physmap_idx = 2;
2327	physmap[physmap_idx] = 0x100000;
2328	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2329
2330physmap_done:
2331#endif
2332	/*
2333	 * Now, physmap contains a map of physical memory.
2334	 */
2335
2336#ifdef SMP
2337	/* make hole for AP bootstrap code */
2338	physmap[1] = mp_bootaddress(physmap[1]);
2339#endif
2340
2341	/*
2342	 * Maxmem isn't the "maximum memory", it's one larger than the
2343	 * highest page of the physical address space.  It should be
2344	 * called something like "Maxphyspage".  We may adjust this
2345	 * based on ``hw.physmem'' and the results of the memory test.
2346	 */
2347	Maxmem = atop(physmap[physmap_idx + 1]);
2348
2349#ifdef MAXMEM
2350	Maxmem = MAXMEM / 4;
2351#endif
2352
2353	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2354		Maxmem = atop(physmem_tunable);
2355
2356	/*
2357	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2358	 * the amount of memory in the system.
2359	 */
2360	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2361		Maxmem = atop(physmap[physmap_idx + 1]);
2362
2363	/*
2364	 * By default enable the memory test on real hardware, and disable
2365	 * it if we appear to be running in a VM.  This avoids touching all
2366	 * pages unnecessarily, which doesn't matter on real hardware but is
2367	 * bad for shared VM hosts.  Use a general name so that
2368	 * one could eventually do more with the code than just disable it.
2369	 */
2370	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2371	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2372
2373	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2374	    (boothowto & RB_VERBOSE))
2375		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2376
2377	/*
2378	 * If Maxmem has been increased beyond what the system has detected,
2379	 * extend the last memory segment to the new limit.
2380	 */
2381	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2382		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2383
2384	/* call pmap initialization to make new kernel address space */
2385	pmap_bootstrap(first);
2386
2387	/*
2388	 * Size up each available chunk of physical memory.
2389	 */
2390	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2391	pa_indx = 0;
2392	da_indx = 1;
2393	phys_avail[pa_indx++] = physmap[0];
2394	phys_avail[pa_indx] = physmap[0];
2395	dump_avail[da_indx] = physmap[0];
2396	pte = CMAP3;
2397
2398	/*
2399	 * Get dcons buffer address
2400	 */
2401	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2402	    getenv_quad("dcons.size", &dcons_size) == 0)
2403		dcons_addr = 0;
2404
2405#ifndef XEN
2406	/*
2407	 * physmap is in bytes, so when converting to page boundaries,
2408	 * round up the start address and round down the end address.
2409	 */
2410	for (i = 0; i <= physmap_idx; i += 2) {
2411		vm_paddr_t end;
2412
2413		end = ptoa((vm_paddr_t)Maxmem);
2414		if (physmap[i + 1] < end)
2415			end = trunc_page(physmap[i + 1]);
2416		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2417			int tmp, page_bad, full;
2418			int *ptr = (int *)CADDR3;
2419
2420			full = FALSE;
2421			/*
2422			 * block out kernel memory as not available.
2423			 */
2424			if (pa >= KERNLOAD && pa < first)
2425				goto do_dump_avail;
2426
2427			/*
2428			 * block out dcons buffer
2429			 */
2430			if (dcons_addr > 0
2431			    && pa >= trunc_page(dcons_addr)
2432			    && pa < dcons_addr + dcons_size)
2433				goto do_dump_avail;
2434
2435			page_bad = FALSE;
2436			if (memtest == 0)
2437				goto skip_memtest;
2438
2439			/*
2440			 * map page into kernel: valid, read/write,non-cacheable
2441			 */
2442			*pte = pa | PG_V | PG_RW | PG_N;
2443			invltlb();
2444
2445			tmp = *(int *)ptr;
2446			/*
2447			 * Test for alternating 1's and 0's
2448			 */
2449			*(volatile int *)ptr = 0xaaaaaaaa;
2450			if (*(volatile int *)ptr != 0xaaaaaaaa)
2451				page_bad = TRUE;
2452			/*
2453			 * Test for alternating 0's and 1's
2454			 */
2455			*(volatile int *)ptr = 0x55555555;
2456			if (*(volatile int *)ptr != 0x55555555)
2457				page_bad = TRUE;
2458			/*
2459			 * Test for all 1's
2460			 */
2461			*(volatile int *)ptr = 0xffffffff;
2462			if (*(volatile int *)ptr != 0xffffffff)
2463				page_bad = TRUE;
2464			/*
2465			 * Test for all 0's
2466			 */
2467			*(volatile int *)ptr = 0x0;
2468			if (*(volatile int *)ptr != 0x0)
2469				page_bad = TRUE;
2470			/*
2471			 * Restore original value.
2472			 */
2473			*(int *)ptr = tmp;
2474
2475skip_memtest:
2476			/*
2477			 * Adjust array of valid/good pages.
2478			 */
2479			if (page_bad == TRUE)
2480				continue;
2481			/*
2482			 * If this good page is a continuation of the
2483			 * previous set of good pages, then just increase
2484			 * the end pointer. Otherwise start a new chunk.
2485			 * Note that "end" points one higher than end,
2486			 * making the range >= start and < end.
2487			 * If we're also doing a speculative memory
2488			 * test and we at or past the end, bump up Maxmem
2489			 * so that we keep going. The first bad page
2490			 * will terminate the loop.
2491			 */
2492			if (phys_avail[pa_indx] == pa) {
2493				phys_avail[pa_indx] += PAGE_SIZE;
2494			} else {
2495				pa_indx++;
2496				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2497					printf(
2498		"Too many holes in the physical address space, giving up\n");
2499					pa_indx--;
2500					full = TRUE;
2501					goto do_dump_avail;
2502				}
2503				phys_avail[pa_indx++] = pa;	/* start */
2504				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2505			}
2506			physmem++;
2507do_dump_avail:
2508			if (dump_avail[da_indx] == pa) {
2509				dump_avail[da_indx] += PAGE_SIZE;
2510			} else {
2511				da_indx++;
2512				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2513					da_indx--;
2514					goto do_next;
2515				}
2516				dump_avail[da_indx++] = pa;	/* start */
2517				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2518			}
2519do_next:
2520			if (full)
2521				break;
2522		}
2523	}
2524	*pte = 0;
2525	invltlb();
2526#else
2527	phys_avail[0] = physfree;
2528	phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2529	dump_avail[0] = 0;
2530	dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2531
2532#endif
2533
2534	/*
2535	 * XXX
2536	 * The last chunk must contain at least one page plus the message
2537	 * buffer to avoid complicating other code (message buffer address
2538	 * calculation, etc.).
2539	 */
2540	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2541	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2542		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2543		phys_avail[pa_indx--] = 0;
2544		phys_avail[pa_indx--] = 0;
2545	}
2546
2547	Maxmem = atop(phys_avail[pa_indx]);
2548
2549	/* Trim off space for the message buffer. */
2550	phys_avail[pa_indx] -= round_page(msgbufsize);
2551
2552	/* Map the message buffer. */
2553	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2554		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2555		    off);
2556
2557	PT_UPDATES_FLUSH();
2558}
2559
2560#ifdef XEN
2561#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
2562
2563void
2564init386(first)
2565	int first;
2566{
2567	unsigned long gdtmachpfn;
2568	int error, gsel_tss, metadata_missing, x, pa;
2569	size_t kstack0_sz;
2570	struct pcpu *pc;
2571	struct callback_register event = {
2572		.type = CALLBACKTYPE_event,
2573		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
2574	};
2575	struct callback_register failsafe = {
2576		.type = CALLBACKTYPE_failsafe,
2577		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
2578	};
2579
2580	thread0.td_kstack = proc0kstack;
2581	thread0.td_kstack_pages = KSTACK_PAGES;
2582	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
2583	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
2584
2585	/*
2586 	 * This may be done better later if it gets more high level
2587 	 * components in it. If so just link td->td_proc here.
2588	 */
2589	proc_linkup0(&proc0, &thread0);
2590
2591	metadata_missing = 0;
2592	if (xen_start_info->mod_start) {
2593		preload_metadata = (caddr_t)xen_start_info->mod_start;
2594		preload_bootstrap_relocate(KERNBASE);
2595	} else {
2596		metadata_missing = 1;
2597	}
2598	if (envmode == 1)
2599		kern_envp = static_env;
2600	else if ((caddr_t)xen_start_info->cmd_line)
2601	        kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
2602
2603	boothowto |= xen_boothowto(kern_envp);
2604
2605	/* Init basic tunables, hz etc */
2606	init_param1();
2607
2608	/*
2609	 * XEN occupies a portion of the upper virtual address space
2610	 * At its base it manages an array mapping machine page frames
2611	 * to physical page frames - hence we need to be able to
2612	 * access 4GB - (64MB  - 4MB + 64k)
2613	 */
2614	gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2615	gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2616	gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2617	gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2618	gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2619	gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2620	gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2621	gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2622
2623	pc = &__pcpu[0];
2624	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2625	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2626
2627	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
2628	bzero(gdt, PAGE_SIZE);
2629	for (x = 0; x < NGDT; x++)
2630		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2631
2632	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2633
2634	gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
2635	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
2636	PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);
2637	lgdt(&r_gdt);
2638	gdtset = 1;
2639
2640	if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
2641		panic("set_trap_table failed - error %d\n", error);
2642	}
2643
2644	error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
2645	if (error == 0)
2646		error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
2647#if	CONFIG_XEN_COMPAT <= 0x030002
2648	if (error == -ENOXENSYS)
2649		HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
2650		    (unsigned long)Xhypervisor_callback,
2651		    GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
2652#endif
2653	pcpu_init(pc, 0, sizeof(struct pcpu));
2654	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2655		pmap_kenter(pa + KERNBASE, pa);
2656	dpcpu_init((void *)(first + KERNBASE), 0);
2657	first += DPCPU_SIZE;
2658	physfree += DPCPU_SIZE;
2659	init_first += DPCPU_SIZE / PAGE_SIZE;
2660
2661	PCPU_SET(prvspace, pc);
2662	PCPU_SET(curthread, &thread0);
2663	PCPU_SET(curpcb, thread0.td_pcb);
2664
2665	/*
2666	 * Initialize mutexes.
2667	 *
2668	 * icu_lock: in order to allow an interrupt to occur in a critical
2669	 * 	     section, to set pcpu->ipending (etc...) properly, we
2670	 *	     must be able to get the icu lock, so it can't be
2671	 *	     under witness.
2672	 */
2673	mutex_init();
2674	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2675
2676	/* make ldt memory segments */
2677	PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
2678	bzero(ldt, PAGE_SIZE);
2679	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2680	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2681	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2682		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2683
2684	default_proc_ldt.ldt_base = (caddr_t)ldt;
2685	default_proc_ldt.ldt_len = 6;
2686	_default_ldt = (int)&default_proc_ldt;
2687	PCPU_SET(currentldt, _default_ldt);
2688	PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
2689	xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
2690
2691#if defined(XEN_PRIVILEGED)
2692	/*
2693	 * Initialize the i8254 before the console so that console
2694	 * initialization can use DELAY().
2695	 */
2696	i8254_init();
2697#endif
2698
2699	/*
2700	 * Initialize the console before we print anything out.
2701	 */
2702	cninit();
2703
2704	if (metadata_missing)
2705		printf("WARNING: loader(8) metadata is missing!\n");
2706
2707#ifdef DEV_ISA
2708#ifdef DEV_ATPIC
2709	elcr_probe();
2710	atpic_startup();
2711#else
2712	/* Reset and mask the atpics and leave them shut down. */
2713	atpic_reset();
2714
2715	/*
2716	 * Point the ICU spurious interrupt vectors at the APIC spurious
2717	 * interrupt handler.
2718	 */
2719	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2720	    GSEL(GCODE_SEL, SEL_KPL));
2721	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2722	    GSEL(GCODE_SEL, SEL_KPL));
2723#endif
2724#endif
2725
2726#ifdef DDB
2727	ksym_start = bootinfo.bi_symtab;
2728	ksym_end = bootinfo.bi_esymtab;
2729#endif
2730
2731	kdb_init();
2732
2733#ifdef KDB
2734	if (boothowto & RB_KDB)
2735		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2736#endif
2737
2738	finishidentcpu();	/* Final stage of CPU initialization */
2739	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2740	    GSEL(GCODE_SEL, SEL_KPL));
2741	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2742	    GSEL(GCODE_SEL, SEL_KPL));
2743	initializecpu();	/* Initialize CPU registers */
2744
2745	/* make an initial tss so cpu can get interrupt stack on syscall! */
2746	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2747	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2748	    kstack0_sz - sizeof(struct pcb) - 16);
2749	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2750	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2751	HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
2752	    PCPU_GET(common_tss.tss_esp0));
2753
2754	/* pointer to selector slot for %fs/%gs */
2755	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2756
2757	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2758	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2759	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2760	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2761#ifdef PAE
2762	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2763#else
2764	dblfault_tss.tss_cr3 = (int)IdlePTD;
2765#endif
2766	dblfault_tss.tss_eip = (int)dblfault_handler;
2767	dblfault_tss.tss_eflags = PSL_KERNEL;
2768	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2769	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2770	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2771	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2772	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2773
2774	vm86_initialize();
2775	getmemsize(first);
2776	init_param2(physmem);
2777
2778	/* now running on new page tables, configured,and u/iom is accessible */
2779
2780	msgbufinit(msgbufp, msgbufsize);
2781	/* transfer to user mode */
2782
2783	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2784	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2785
2786	/* setup proc 0's pcb */
2787	thread0.td_pcb->pcb_flags = 0;
2788#ifdef PAE
2789	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2790#else
2791	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2792#endif
2793	thread0.td_pcb->pcb_ext = 0;
2794	thread0.td_frame = &proc0_tf;
2795	thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
2796	thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
2797
2798	cpu_probe_amdc1e();
2799}
2800
2801#else
2802void
2803init386(first)
2804	int first;
2805{
2806	struct gate_descriptor *gdp;
2807	int gsel_tss, metadata_missing, x, pa;
2808	size_t kstack0_sz;
2809	struct pcpu *pc;
2810
2811	thread0.td_kstack = proc0kstack;
2812	thread0.td_kstack_pages = KSTACK_PAGES;
2813	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
2814	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
2815
2816	/*
2817 	 * This may be done better later if it gets more high level
2818 	 * components in it. If so just link td->td_proc here.
2819	 */
2820	proc_linkup0(&proc0, &thread0);
2821
2822	metadata_missing = 0;
2823	if (bootinfo.bi_modulep) {
2824		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2825		preload_bootstrap_relocate(KERNBASE);
2826	} else {
2827		metadata_missing = 1;
2828	}
2829	if (envmode == 1)
2830		kern_envp = static_env;
2831	else if (bootinfo.bi_envp)
2832		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2833
2834	/* Init basic tunables, hz etc */
2835	init_param1();
2836
2837	/*
2838	 * Make gdt memory segments.  All segments cover the full 4GB
2839	 * of address space and permissions are enforced at page level.
2840	 */
2841	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2842	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2843	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2844	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2845	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2846	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2847
2848	pc = &__pcpu[0];
2849	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2850	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2851	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2852
2853	for (x = 0; x < NGDT; x++)
2854		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2855
2856	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2857	r_gdt.rd_base =  (int) gdt;
2858	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2859	lgdt(&r_gdt);
2860
2861	pcpu_init(pc, 0, sizeof(struct pcpu));
2862	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2863		pmap_kenter(pa + KERNBASE, pa);
2864	dpcpu_init((void *)(first + KERNBASE), 0);
2865	first += DPCPU_SIZE;
2866	PCPU_SET(prvspace, pc);
2867	PCPU_SET(curthread, &thread0);
2868	PCPU_SET(curpcb, thread0.td_pcb);
2869
2870	/*
2871	 * Initialize mutexes.
2872	 *
2873	 * icu_lock: in order to allow an interrupt to occur in a critical
2874	 * 	     section, to set pcpu->ipending (etc...) properly, we
2875	 *	     must be able to get the icu lock, so it can't be
2876	 *	     under witness.
2877	 */
2878	mutex_init();
2879	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2880
2881	/* make ldt memory segments */
2882	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2883	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2884	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2885		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2886
2887	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2888	lldt(_default_ldt);
2889	PCPU_SET(currentldt, _default_ldt);
2890
2891	/* exceptions */
2892	for (x = 0; x < NIDT; x++)
2893		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2894		    GSEL(GCODE_SEL, SEL_KPL));
2895	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2896	    GSEL(GCODE_SEL, SEL_KPL));
2897	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2898	    GSEL(GCODE_SEL, SEL_KPL));
2899	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2900	    GSEL(GCODE_SEL, SEL_KPL));
2901 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2902	    GSEL(GCODE_SEL, SEL_KPL));
2903	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2904	    GSEL(GCODE_SEL, SEL_KPL));
2905	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2906	    GSEL(GCODE_SEL, SEL_KPL));
2907	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2908	    GSEL(GCODE_SEL, SEL_KPL));
2909	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2910	    , GSEL(GCODE_SEL, SEL_KPL));
2911	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2912	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2913	    GSEL(GCODE_SEL, SEL_KPL));
2914	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2915	    GSEL(GCODE_SEL, SEL_KPL));
2916	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2917	    GSEL(GCODE_SEL, SEL_KPL));
2918	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2919	    GSEL(GCODE_SEL, SEL_KPL));
2920	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2921	    GSEL(GCODE_SEL, SEL_KPL));
2922	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2923	    GSEL(GCODE_SEL, SEL_KPL));
2924	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2925	    GSEL(GCODE_SEL, SEL_KPL));
2926	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2927	    GSEL(GCODE_SEL, SEL_KPL));
2928	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2929	    GSEL(GCODE_SEL, SEL_KPL));
2930	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2931	    GSEL(GCODE_SEL, SEL_KPL));
2932 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2933	    GSEL(GCODE_SEL, SEL_KPL));
2934#ifdef KDTRACE_HOOKS
2935	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
2936	    GSEL(GCODE_SEL, SEL_KPL));
2937#endif
2938#ifdef XENHVM
2939	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
2940	    GSEL(GCODE_SEL, SEL_KPL));
2941#endif
2942
2943	r_idt.rd_limit = sizeof(idt0) - 1;
2944	r_idt.rd_base = (int) idt;
2945	lidt(&r_idt);
2946
2947#ifdef XBOX
2948	/*
2949	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2950	 * This should be 0x10de / 0x02a5.
2951	 *
2952	 * This is exactly what Linux does.
2953	 */
2954	outl(0xcf8, 0x80000000);
2955	if (inl(0xcfc) == 0x02a510de) {
2956		arch_i386_is_xbox = 1;
2957		pic16l_setled(XBOX_LED_GREEN);
2958
2959		/*
2960		 * We are an XBOX, but we may have either 64MB or 128MB of
2961		 * memory. The PCI host bridge should be programmed for this,
2962		 * so we just query it.
2963		 */
2964		outl(0xcf8, 0x80000084);
2965		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2966	}
2967#endif /* XBOX */
2968
2969	/*
2970	 * Initialize the i8254 before the console so that console
2971	 * initialization can use DELAY().
2972	 */
2973	i8254_init();
2974
2975	/*
2976	 * Initialize the console before we print anything out.
2977	 */
2978	cninit();
2979
2980	if (metadata_missing)
2981		printf("WARNING: loader(8) metadata is missing!\n");
2982
2983#ifdef DEV_ISA
2984#ifdef DEV_ATPIC
2985	elcr_probe();
2986	atpic_startup();
2987#else
2988	/* Reset and mask the atpics and leave them shut down. */
2989	atpic_reset();
2990
2991	/*
2992	 * Point the ICU spurious interrupt vectors at the APIC spurious
2993	 * interrupt handler.
2994	 */
2995	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2996	    GSEL(GCODE_SEL, SEL_KPL));
2997	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2998	    GSEL(GCODE_SEL, SEL_KPL));
2999#endif
3000#endif
3001
3002#ifdef DDB
3003	ksym_start = bootinfo.bi_symtab;
3004	ksym_end = bootinfo.bi_esymtab;
3005#endif
3006
3007	kdb_init();
3008
3009#ifdef KDB
3010	if (boothowto & RB_KDB)
3011		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3012#endif
3013
3014	finishidentcpu();	/* Final stage of CPU initialization */
3015	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3016	    GSEL(GCODE_SEL, SEL_KPL));
3017	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3018	    GSEL(GCODE_SEL, SEL_KPL));
3019	initializecpu();	/* Initialize CPU registers */
3020
3021	/* make an initial tss so cpu can get interrupt stack on syscall! */
3022	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3023	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
3024	    kstack0_sz - sizeof(struct pcb) - 16);
3025	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3026	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3027	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
3028	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
3029	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
3030	ltr(gsel_tss);
3031
3032	/* pointer to selector slot for %fs/%gs */
3033	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3034
3035	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3036	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3037	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3038	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3039#ifdef PAE
3040	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3041#else
3042	dblfault_tss.tss_cr3 = (int)IdlePTD;
3043#endif
3044	dblfault_tss.tss_eip = (int)dblfault_handler;
3045	dblfault_tss.tss_eflags = PSL_KERNEL;
3046	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3047	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3048	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3049	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3050	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3051
3052	vm86_initialize();
3053	getmemsize(first);
3054	init_param2(physmem);
3055
3056	/* now running on new page tables, configured,and u/iom is accessible */
3057
3058	msgbufinit(msgbufp, msgbufsize);
3059
3060	/* make a call gate to reenter kernel with */
3061	gdp = &ldt[LSYS5CALLS_SEL].gd;
3062
3063	x = (int) &IDTVEC(lcall_syscall);
3064	gdp->gd_looffset = x;
3065	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
3066	gdp->gd_stkcpy = 1;
3067	gdp->gd_type = SDT_SYS386CGT;
3068	gdp->gd_dpl = SEL_UPL;
3069	gdp->gd_p = 1;
3070	gdp->gd_hioffset = x >> 16;
3071
3072	/* XXX does this work? */
3073	/* XXX yes! */
3074	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
3075	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
3076
3077	/* transfer to user mode */
3078
3079	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3080	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3081
3082	/* setup proc 0's pcb */
3083	thread0.td_pcb->pcb_flags = 0;
3084#ifdef PAE
3085	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3086#else
3087	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3088#endif
3089	thread0.td_pcb->pcb_ext = 0;
3090	thread0.td_frame = &proc0_tf;
3091
3092	cpu_probe_amdc1e();
3093
3094#ifdef FDT
3095	x86_init_fdt();
3096#endif
3097}
3098#endif
3099
3100void
3101cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
3102{
3103
3104	pcpu->pc_acpi_id = 0xffffffff;
3105}
3106
3107static int
3108smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
3109{
3110	struct bios_smap *smapbase;
3111	struct bios_smap_xattr smap;
3112	caddr_t kmdp;
3113	uint32_t *smapattr;
3114	int count, error, i;
3115
3116	/* Retrieve the system memory map from the loader. */
3117	kmdp = preload_search_by_type("elf kernel");
3118	if (kmdp == NULL)
3119		kmdp = preload_search_by_type("elf32 kernel");
3120	smapbase = (struct bios_smap *)preload_search_info(kmdp,
3121	    MODINFO_METADATA | MODINFOMD_SMAP);
3122	if (smapbase == NULL)
3123		return (0);
3124	smapattr = (uint32_t *)preload_search_info(kmdp,
3125	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
3126	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
3127	error = 0;
3128	for (i = 0; i < count; i++) {
3129		smap.base = smapbase[i].base;
3130		smap.length = smapbase[i].length;
3131		smap.type = smapbase[i].type;
3132		if (smapattr != NULL)
3133			smap.xattr = smapattr[i];
3134		else
3135			smap.xattr = 0;
3136		error = SYSCTL_OUT(req, &smap, sizeof(smap));
3137	}
3138	return (error);
3139}
3140SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
3141    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
3142
3143void
3144spinlock_enter(void)
3145{
3146	struct thread *td;
3147	register_t flags;
3148
3149	td = curthread;
3150	if (td->td_md.md_spinlock_count == 0) {
3151		flags = intr_disable();
3152		td->td_md.md_spinlock_count = 1;
3153		td->td_md.md_saved_flags = flags;
3154	} else
3155		td->td_md.md_spinlock_count++;
3156	critical_enter();
3157}
3158
3159void
3160spinlock_exit(void)
3161{
3162	struct thread *td;
3163	register_t flags;
3164
3165	td = curthread;
3166	critical_exit();
3167	flags = td->td_md.md_saved_flags;
3168	td->td_md.md_spinlock_count--;
3169	if (td->td_md.md_spinlock_count == 0)
3170		intr_restore(flags);
3171}
3172
3173#if defined(I586_CPU) && !defined(NO_F00F_HACK)
3174static void f00f_hack(void *unused);
3175SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
3176
3177static void
3178f00f_hack(void *unused)
3179{
3180	struct gate_descriptor *new_idt;
3181	vm_offset_t tmp;
3182
3183	if (!has_f00f_bug)
3184		return;
3185
3186	GIANT_REQUIRED;
3187
3188	printf("Intel Pentium detected, installing workaround for F00F bug\n");
3189
3190	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
3191	if (tmp == 0)
3192		panic("kmem_malloc returned 0");
3193
3194	/* Put the problematic entry (#6) at the end of the lower page. */
3195	new_idt = (struct gate_descriptor*)
3196	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
3197	bcopy(idt, new_idt, sizeof(idt0));
3198	r_idt.rd_base = (u_int)new_idt;
3199	lidt(&r_idt);
3200	idt = new_idt;
3201	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
3202}
3203#endif /* defined(I586_CPU) && !NO_F00F_HACK */
3204
3205/*
3206 * Construct a PCB from a trapframe. This is called from kdb_trap() where
3207 * we want to start a backtrace from the function that caused us to enter
3208 * the debugger. We have the context in the trapframe, but base the trace
3209 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
3210 * enough for a backtrace.
3211 */
3212void
3213makectx(struct trapframe *tf, struct pcb *pcb)
3214{
3215
3216	pcb->pcb_edi = tf->tf_edi;
3217	pcb->pcb_esi = tf->tf_esi;
3218	pcb->pcb_ebp = tf->tf_ebp;
3219	pcb->pcb_ebx = tf->tf_ebx;
3220	pcb->pcb_eip = tf->tf_eip;
3221	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
3222}
3223
3224int
3225ptrace_set_pc(struct thread *td, u_long addr)
3226{
3227
3228	td->td_frame->tf_eip = addr;
3229	return (0);
3230}
3231
3232int
3233ptrace_single_step(struct thread *td)
3234{
3235	td->td_frame->tf_eflags |= PSL_T;
3236	return (0);
3237}
3238
3239int
3240ptrace_clear_single_step(struct thread *td)
3241{
3242	td->td_frame->tf_eflags &= ~PSL_T;
3243	return (0);
3244}
3245
3246int
3247fill_regs(struct thread *td, struct reg *regs)
3248{
3249	struct pcb *pcb;
3250	struct trapframe *tp;
3251
3252	tp = td->td_frame;
3253	pcb = td->td_pcb;
3254	regs->r_gs = pcb->pcb_gs;
3255	return (fill_frame_regs(tp, regs));
3256}
3257
3258int
3259fill_frame_regs(struct trapframe *tp, struct reg *regs)
3260{
3261	regs->r_fs = tp->tf_fs;
3262	regs->r_es = tp->tf_es;
3263	regs->r_ds = tp->tf_ds;
3264	regs->r_edi = tp->tf_edi;
3265	regs->r_esi = tp->tf_esi;
3266	regs->r_ebp = tp->tf_ebp;
3267	regs->r_ebx = tp->tf_ebx;
3268	regs->r_edx = tp->tf_edx;
3269	regs->r_ecx = tp->tf_ecx;
3270	regs->r_eax = tp->tf_eax;
3271	regs->r_eip = tp->tf_eip;
3272	regs->r_cs = tp->tf_cs;
3273	regs->r_eflags = tp->tf_eflags;
3274	regs->r_esp = tp->tf_esp;
3275	regs->r_ss = tp->tf_ss;
3276	return (0);
3277}
3278
3279int
3280set_regs(struct thread *td, struct reg *regs)
3281{
3282	struct pcb *pcb;
3283	struct trapframe *tp;
3284
3285	tp = td->td_frame;
3286	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
3287	    !CS_SECURE(regs->r_cs))
3288		return (EINVAL);
3289	pcb = td->td_pcb;
3290	tp->tf_fs = regs->r_fs;
3291	tp->tf_es = regs->r_es;
3292	tp->tf_ds = regs->r_ds;
3293	tp->tf_edi = regs->r_edi;
3294	tp->tf_esi = regs->r_esi;
3295	tp->tf_ebp = regs->r_ebp;
3296	tp->tf_ebx = regs->r_ebx;
3297	tp->tf_edx = regs->r_edx;
3298	tp->tf_ecx = regs->r_ecx;
3299	tp->tf_eax = regs->r_eax;
3300	tp->tf_eip = regs->r_eip;
3301	tp->tf_cs = regs->r_cs;
3302	tp->tf_eflags = regs->r_eflags;
3303	tp->tf_esp = regs->r_esp;
3304	tp->tf_ss = regs->r_ss;
3305	pcb->pcb_gs = regs->r_gs;
3306	return (0);
3307}
3308
3309#ifdef CPU_ENABLE_SSE
3310static void
3311fill_fpregs_xmm(sv_xmm, sv_87)
3312	struct savexmm *sv_xmm;
3313	struct save87 *sv_87;
3314{
3315	register struct env87 *penv_87 = &sv_87->sv_env;
3316	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3317	int i;
3318
3319	bzero(sv_87, sizeof(*sv_87));
3320
3321	/* FPU control/status */
3322	penv_87->en_cw = penv_xmm->en_cw;
3323	penv_87->en_sw = penv_xmm->en_sw;
3324	penv_87->en_tw = penv_xmm->en_tw;
3325	penv_87->en_fip = penv_xmm->en_fip;
3326	penv_87->en_fcs = penv_xmm->en_fcs;
3327	penv_87->en_opcode = penv_xmm->en_opcode;
3328	penv_87->en_foo = penv_xmm->en_foo;
3329	penv_87->en_fos = penv_xmm->en_fos;
3330
3331	/* FPU registers */
3332	for (i = 0; i < 8; ++i)
3333		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
3334}
3335
3336static void
3337set_fpregs_xmm(sv_87, sv_xmm)
3338	struct save87 *sv_87;
3339	struct savexmm *sv_xmm;
3340{
3341	register struct env87 *penv_87 = &sv_87->sv_env;
3342	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3343	int i;
3344
3345	/* FPU control/status */
3346	penv_xmm->en_cw = penv_87->en_cw;
3347	penv_xmm->en_sw = penv_87->en_sw;
3348	penv_xmm->en_tw = penv_87->en_tw;
3349	penv_xmm->en_fip = penv_87->en_fip;
3350	penv_xmm->en_fcs = penv_87->en_fcs;
3351	penv_xmm->en_opcode = penv_87->en_opcode;
3352	penv_xmm->en_foo = penv_87->en_foo;
3353	penv_xmm->en_fos = penv_87->en_fos;
3354
3355	/* FPU registers */
3356	for (i = 0; i < 8; ++i)
3357		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
3358}
3359#endif /* CPU_ENABLE_SSE */
3360
3361int
3362fill_fpregs(struct thread *td, struct fpreg *fpregs)
3363{
3364
3365	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3366	    P_SHOULDSTOP(td->td_proc),
3367	    ("not suspended thread %p", td));
3368#ifdef DEV_NPX
3369	npxgetregs(td);
3370#else
3371	bzero(fpregs, sizeof(*fpregs));
3372#endif
3373#ifdef CPU_ENABLE_SSE
3374	if (cpu_fxsr)
3375		fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
3376		    (struct save87 *)fpregs);
3377	else
3378#endif /* CPU_ENABLE_SSE */
3379		bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
3380		    sizeof(*fpregs));
3381	return (0);
3382}
3383
3384int
3385set_fpregs(struct thread *td, struct fpreg *fpregs)
3386{
3387
3388#ifdef CPU_ENABLE_SSE
3389	if (cpu_fxsr)
3390		set_fpregs_xmm((struct save87 *)fpregs,
3391		    &td->td_pcb->pcb_user_save.sv_xmm);
3392	else
3393#endif /* CPU_ENABLE_SSE */
3394		bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
3395		    sizeof(*fpregs));
3396#ifdef DEV_NPX
3397	npxuserinited(td);
3398#endif
3399	return (0);
3400}
3401
3402/*
3403 * Get machine context.
3404 */
3405int
3406get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3407{
3408	struct trapframe *tp;
3409	struct segment_descriptor *sdp;
3410
3411	tp = td->td_frame;
3412
3413	PROC_LOCK(curthread->td_proc);
3414	mcp->mc_onstack = sigonstack(tp->tf_esp);
3415	PROC_UNLOCK(curthread->td_proc);
3416	mcp->mc_gs = td->td_pcb->pcb_gs;
3417	mcp->mc_fs = tp->tf_fs;
3418	mcp->mc_es = tp->tf_es;
3419	mcp->mc_ds = tp->tf_ds;
3420	mcp->mc_edi = tp->tf_edi;
3421	mcp->mc_esi = tp->tf_esi;
3422	mcp->mc_ebp = tp->tf_ebp;
3423	mcp->mc_isp = tp->tf_isp;
3424	mcp->mc_eflags = tp->tf_eflags;
3425	if (flags & GET_MC_CLEAR_RET) {
3426		mcp->mc_eax = 0;
3427		mcp->mc_edx = 0;
3428		mcp->mc_eflags &= ~PSL_C;
3429	} else {
3430		mcp->mc_eax = tp->tf_eax;
3431		mcp->mc_edx = tp->tf_edx;
3432	}
3433	mcp->mc_ebx = tp->tf_ebx;
3434	mcp->mc_ecx = tp->tf_ecx;
3435	mcp->mc_eip = tp->tf_eip;
3436	mcp->mc_cs = tp->tf_cs;
3437	mcp->mc_esp = tp->tf_esp;
3438	mcp->mc_ss = tp->tf_ss;
3439	mcp->mc_len = sizeof(*mcp);
3440	get_fpcontext(td, mcp);
3441	sdp = &td->td_pcb->pcb_fsd;
3442	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3443	sdp = &td->td_pcb->pcb_gsd;
3444	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3445	mcp->mc_flags = 0;
3446	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3447	return (0);
3448}
3449
3450/*
3451 * Set machine context.
3452 *
3453 * However, we don't set any but the user modifiable flags, and we won't
3454 * touch the cs selector.
3455 */
3456int
3457set_mcontext(struct thread *td, const mcontext_t *mcp)
3458{
3459	struct trapframe *tp;
3460	int eflags, ret;
3461
3462	tp = td->td_frame;
3463	if (mcp->mc_len != sizeof(*mcp))
3464		return (EINVAL);
3465	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3466	    (tp->tf_eflags & ~PSL_USERCHANGE);
3467	if ((ret = set_fpcontext(td, mcp)) == 0) {
3468		tp->tf_fs = mcp->mc_fs;
3469		tp->tf_es = mcp->mc_es;
3470		tp->tf_ds = mcp->mc_ds;
3471		tp->tf_edi = mcp->mc_edi;
3472		tp->tf_esi = mcp->mc_esi;
3473		tp->tf_ebp = mcp->mc_ebp;
3474		tp->tf_ebx = mcp->mc_ebx;
3475		tp->tf_edx = mcp->mc_edx;
3476		tp->tf_ecx = mcp->mc_ecx;
3477		tp->tf_eax = mcp->mc_eax;
3478		tp->tf_eip = mcp->mc_eip;
3479		tp->tf_eflags = eflags;
3480		tp->tf_esp = mcp->mc_esp;
3481		tp->tf_ss = mcp->mc_ss;
3482		td->td_pcb->pcb_gs = mcp->mc_gs;
3483		ret = 0;
3484	}
3485	return (ret);
3486}
3487
3488static void
3489get_fpcontext(struct thread *td, mcontext_t *mcp)
3490{
3491
3492#ifndef DEV_NPX
3493	mcp->mc_fpformat = _MC_FPFMT_NODEV;
3494	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
3495	bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
3496#else
3497	mcp->mc_ownedfp = npxgetregs(td);
3498	bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0],
3499	    sizeof(mcp->mc_fpstate));
3500	mcp->mc_fpformat = npxformat();
3501#endif
3502}
3503
3504static int
3505set_fpcontext(struct thread *td, const mcontext_t *mcp)
3506{
3507
3508	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3509		return (0);
3510	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3511	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3512		return (EINVAL);
3513	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
3514		/* We don't care what state is left in the FPU or PCB. */
3515		fpstate_drop(td);
3516	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3517	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3518#ifdef DEV_NPX
3519#ifdef CPU_ENABLE_SSE
3520		if (cpu_fxsr)
3521			((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
3522			    en_mxcsr &= cpu_mxcsr_mask;
3523#endif
3524		npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
3525#endif
3526	} else
3527		return (EINVAL);
3528	return (0);
3529}
3530
3531static void
3532fpstate_drop(struct thread *td)
3533{
3534
3535	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3536	critical_enter();
3537#ifdef DEV_NPX
3538	if (PCPU_GET(fpcurthread) == td)
3539		npxdrop();
3540#endif
3541	/*
3542	 * XXX force a full drop of the npx.  The above only drops it if we
3543	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3544	 *
3545	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3546	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3547	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3548	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3549	 * have too many layers.
3550	 */
3551	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3552	    PCB_NPXUSERINITDONE);
3553	critical_exit();
3554}
3555
3556int
3557fill_dbregs(struct thread *td, struct dbreg *dbregs)
3558{
3559	struct pcb *pcb;
3560
3561	if (td == NULL) {
3562		dbregs->dr[0] = rdr0();
3563		dbregs->dr[1] = rdr1();
3564		dbregs->dr[2] = rdr2();
3565		dbregs->dr[3] = rdr3();
3566		dbregs->dr[4] = rdr4();
3567		dbregs->dr[5] = rdr5();
3568		dbregs->dr[6] = rdr6();
3569		dbregs->dr[7] = rdr7();
3570	} else {
3571		pcb = td->td_pcb;
3572		dbregs->dr[0] = pcb->pcb_dr0;
3573		dbregs->dr[1] = pcb->pcb_dr1;
3574		dbregs->dr[2] = pcb->pcb_dr2;
3575		dbregs->dr[3] = pcb->pcb_dr3;
3576		dbregs->dr[4] = 0;
3577		dbregs->dr[5] = 0;
3578		dbregs->dr[6] = pcb->pcb_dr6;
3579		dbregs->dr[7] = pcb->pcb_dr7;
3580	}
3581	return (0);
3582}
3583
3584int
3585set_dbregs(struct thread *td, struct dbreg *dbregs)
3586{
3587	struct pcb *pcb;
3588	int i;
3589
3590	if (td == NULL) {
3591		load_dr0(dbregs->dr[0]);
3592		load_dr1(dbregs->dr[1]);
3593		load_dr2(dbregs->dr[2]);
3594		load_dr3(dbregs->dr[3]);
3595		load_dr4(dbregs->dr[4]);
3596		load_dr5(dbregs->dr[5]);
3597		load_dr6(dbregs->dr[6]);
3598		load_dr7(dbregs->dr[7]);
3599	} else {
3600		/*
3601		 * Don't let an illegal value for dr7 get set.	Specifically,
3602		 * check for undefined settings.  Setting these bit patterns
3603		 * result in undefined behaviour and can lead to an unexpected
3604		 * TRCTRAP.
3605		 */
3606		for (i = 0; i < 4; i++) {
3607			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3608				return (EINVAL);
3609			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3610				return (EINVAL);
3611		}
3612
3613		pcb = td->td_pcb;
3614
3615		/*
3616		 * Don't let a process set a breakpoint that is not within the
3617		 * process's address space.  If a process could do this, it
3618		 * could halt the system by setting a breakpoint in the kernel
3619		 * (if ddb was enabled).  Thus, we need to check to make sure
3620		 * that no breakpoints are being enabled for addresses outside
3621		 * process's address space.
3622		 *
3623		 * XXX - what about when the watched area of the user's
3624		 * address space is written into from within the kernel
3625		 * ... wouldn't that still cause a breakpoint to be generated
3626		 * from within kernel mode?
3627		 */
3628
3629		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3630			/* dr0 is enabled */
3631			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3632				return (EINVAL);
3633		}
3634
3635		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3636			/* dr1 is enabled */
3637			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3638				return (EINVAL);
3639		}
3640
3641		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3642			/* dr2 is enabled */
3643			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3644				return (EINVAL);
3645		}
3646
3647		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3648			/* dr3 is enabled */
3649			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3650				return (EINVAL);
3651		}
3652
3653		pcb->pcb_dr0 = dbregs->dr[0];
3654		pcb->pcb_dr1 = dbregs->dr[1];
3655		pcb->pcb_dr2 = dbregs->dr[2];
3656		pcb->pcb_dr3 = dbregs->dr[3];
3657		pcb->pcb_dr6 = dbregs->dr[6];
3658		pcb->pcb_dr7 = dbregs->dr[7];
3659
3660		pcb->pcb_flags |= PCB_DBREGS;
3661	}
3662
3663	return (0);
3664}
3665
3666/*
3667 * Return > 0 if a hardware breakpoint has been hit, and the
3668 * breakpoint was in user space.  Return 0, otherwise.
3669 */
3670int
3671user_dbreg_trap(void)
3672{
3673        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
3674        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3675        int nbp;            /* number of breakpoints that triggered */
3676        caddr_t addr[4];    /* breakpoint addresses */
3677        int i;
3678
3679        dr7 = rdr7();
3680        if ((dr7 & 0x000000ff) == 0) {
3681                /*
3682                 * all GE and LE bits in the dr7 register are zero,
3683                 * thus the trap couldn't have been caused by the
3684                 * hardware debug registers
3685                 */
3686                return 0;
3687        }
3688
3689        nbp = 0;
3690        dr6 = rdr6();
3691        bp = dr6 & 0x0000000f;
3692
3693        if (!bp) {
3694                /*
3695                 * None of the breakpoint bits are set meaning this
3696                 * trap was not caused by any of the debug registers
3697                 */
3698                return 0;
3699        }
3700
3701        /*
3702         * at least one of the breakpoints were hit, check to see
3703         * which ones and if any of them are user space addresses
3704         */
3705
3706        if (bp & 0x01) {
3707                addr[nbp++] = (caddr_t)rdr0();
3708        }
3709        if (bp & 0x02) {
3710                addr[nbp++] = (caddr_t)rdr1();
3711        }
3712        if (bp & 0x04) {
3713                addr[nbp++] = (caddr_t)rdr2();
3714        }
3715        if (bp & 0x08) {
3716                addr[nbp++] = (caddr_t)rdr3();
3717        }
3718
3719        for (i = 0; i < nbp; i++) {
3720                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3721                        /*
3722                         * addr[i] is in user space
3723                         */
3724                        return nbp;
3725                }
3726        }
3727
3728        /*
3729         * None of the breakpoints are in user space.
3730         */
3731        return 0;
3732}
3733
3734#ifdef KDB
3735
3736/*
3737 * Provide inb() and outb() as functions.  They are normally only available as
3738 * inline functions, thus cannot be called from the debugger.
3739 */
3740
3741/* silence compiler warnings */
3742u_char inb_(u_short);
3743void outb_(u_short, u_char);
3744
3745u_char
3746inb_(u_short port)
3747{
3748	return inb(port);
3749}
3750
3751void
3752outb_(u_short port, u_char data)
3753{
3754	outb(port, data);
3755}
3756
3757#endif /* KDB */
3758