machdep.c revision 258559
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/10/sys/i386/i386/machdep.c 258559 2013-11-25 15:58:48Z emaste $");
42
43#include "opt_apic.h"
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_mp_watchdog.h"
55#include "opt_npx.h"
56#include "opt_perfmon.h"
57#include "opt_platform.h"
58#include "opt_xbox.h"
59#include "opt_kdtrace.h"
60
61#include <sys/param.h>
62#include <sys/proc.h>
63#include <sys/systm.h>
64#include <sys/bio.h>
65#include <sys/buf.h>
66#include <sys/bus.h>
67#include <sys/callout.h>
68#include <sys/cons.h>
69#include <sys/cpu.h>
70#include <sys/eventhandler.h>
71#include <sys/exec.h>
72#include <sys/imgact.h>
73#include <sys/kdb.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/linker.h>
77#include <sys/lock.h>
78#include <sys/malloc.h>
79#include <sys/memrange.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/pcpu.h>
83#include <sys/ptrace.h>
84#include <sys/reboot.h>
85#include <sys/rwlock.h>
86#include <sys/sched.h>
87#include <sys/signalvar.h>
88#ifdef SMP
89#include <sys/smp.h>
90#endif
91#include <sys/syscallsubr.h>
92#include <sys/sysctl.h>
93#include <sys/sysent.h>
94#include <sys/sysproto.h>
95#include <sys/ucontext.h>
96#include <sys/vmmeter.h>
97
98#include <vm/vm.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_pager.h>
105#include <vm/vm_param.h>
106
107#ifdef DDB
108#ifndef KDB
109#error KDB must be enabled in order for DDB to work!
110#endif
111#include <ddb/ddb.h>
112#include <ddb/db_sym.h>
113#endif
114
115#include <isa/rtc.h>
116
117#include <net/netisr.h>
118
119#include <machine/bootinfo.h>
120#include <machine/clock.h>
121#include <machine/cpu.h>
122#include <machine/cputypes.h>
123#include <machine/intr_machdep.h>
124#include <x86/mca.h>
125#include <machine/md_var.h>
126#include <machine/metadata.h>
127#include <machine/mp_watchdog.h>
128#include <machine/pc/bios.h>
129#include <machine/pcb.h>
130#include <machine/pcb_ext.h>
131#include <machine/proc.h>
132#include <machine/reg.h>
133#include <machine/sigframe.h>
134#include <machine/specialreg.h>
135#include <machine/vm86.h>
136#ifdef PERFMON
137#include <machine/perfmon.h>
138#endif
139#ifdef SMP
140#include <machine/smp.h>
141#endif
142#ifdef FDT
143#include <x86/fdt.h>
144#endif
145
146#ifdef DEV_APIC
147#include <machine/apicvar.h>
148#endif
149
150#ifdef DEV_ISA
151#include <x86/isa/icu.h>
152#endif
153
154#ifdef XBOX
155#include <machine/xbox.h>
156
157int arch_i386_is_xbox = 0;
158uint32_t arch_i386_xbox_memsize = 0;
159#endif
160
161#ifdef XEN
162/* XEN includes */
163#include <xen/xen-os.h>
164#include <xen/hypervisor.h>
165#include <machine/xen/xenvar.h>
166#include <machine/xen/xenfunc.h>
167#include <xen/xen_intr.h>
168
169void Xhypervisor_callback(void);
170void failsafe_callback(void);
171
172extern trap_info_t trap_table[];
173struct proc_ldt default_proc_ldt;
174extern int init_first;
175int running_xen = 1;
176extern unsigned long physfree;
177#endif /* XEN */
178
179/* Sanity check for __curthread() */
180CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
181
182extern void init386(int first);
183extern void dblfault_handler(void);
184
185extern void printcpuinfo(void);	/* XXX header file */
186extern void finishidentcpu(void);
187extern void panicifcpuunsupported(void);
188
189#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
190#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
191
192#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
193#define CPU_ENABLE_SSE
194#endif
195
196static void cpu_startup(void *);
197static void fpstate_drop(struct thread *td);
198static void get_fpcontext(struct thread *td, mcontext_t *mcp);
199static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
200#ifdef CPU_ENABLE_SSE
201static void set_fpregs_xmm(struct save87 *, struct savexmm *);
202static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
203#endif /* CPU_ENABLE_SSE */
204SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
205
206#ifdef DDB
207extern vm_offset_t ksym_start, ksym_end;
208#endif
209
210/* Intel ICH registers */
211#define ICH_PMBASE	0x400
212#define ICH_SMI_EN	ICH_PMBASE + 0x30
213
214int	_udatasel, _ucodesel;
215u_int	basemem;
216
217int cold = 1;
218
219#ifdef COMPAT_43
220static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
221#endif
222#ifdef COMPAT_FREEBSD4
223static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
224#endif
225
226long Maxmem = 0;
227long realmem = 0;
228
229#ifdef PAE
230FEATURE(pae, "Physical Address Extensions");
231#endif
232
233/*
234 * The number of PHYSMAP entries must be one less than the number of
235 * PHYSSEG entries because the PHYSMAP entry that spans the largest
236 * physical address that is accessible by ISA DMA is split into two
237 * PHYSSEG entries.
238 */
239#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
240
241vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
242vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
243
244/* must be 2 less so 0 0 can signal end of chunks */
245#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
246#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
247
248struct kva_md_info kmi;
249
250static struct trapframe proc0_tf;
251struct pcpu __pcpu[MAXCPU];
252
253struct mtx icu_lock;
254
255struct mem_range_softc mem_range_softc;
256
257static void
258cpu_startup(dummy)
259	void *dummy;
260{
261	uintmax_t memsize;
262	char *sysenv;
263
264	/*
265	 * On MacBooks, we need to disallow the legacy USB circuit to
266	 * generate an SMI# because this can cause several problems,
267	 * namely: incorrect CPU frequency detection and failure to
268	 * start the APs.
269	 * We do this by disabling a bit in the SMI_EN (SMI Control and
270	 * Enable register) of the Intel ICH LPC Interface Bridge.
271	 */
272	sysenv = getenv("smbios.system.product");
273	if (sysenv != NULL) {
274		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
275		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
276		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
277		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
278		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
279		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
280			if (bootverbose)
281				printf("Disabling LEGACY_USB_EN bit on "
282				    "Intel ICH.\n");
283			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
284		}
285		freeenv(sysenv);
286	}
287
288	/*
289	 * Good {morning,afternoon,evening,night}.
290	 */
291	startrtclock();
292	printcpuinfo();
293	panicifcpuunsupported();
294#ifdef PERFMON
295	perfmon_init();
296#endif
297	realmem = Maxmem;
298
299	/*
300	 * Display physical memory if SMBIOS reports reasonable amount.
301	 */
302	memsize = 0;
303	sysenv = getenv("smbios.memory.enabled");
304	if (sysenv != NULL) {
305		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
306		freeenv(sysenv);
307	}
308	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
309		memsize = ptoa((uintmax_t)Maxmem);
310	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
311
312	/*
313	 * Display any holes after the first chunk of extended memory.
314	 */
315	if (bootverbose) {
316		int indx;
317
318		printf("Physical memory chunk(s):\n");
319		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
320			vm_paddr_t size;
321
322			size = phys_avail[indx + 1] - phys_avail[indx];
323			printf(
324			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
325			    (uintmax_t)phys_avail[indx],
326			    (uintmax_t)phys_avail[indx + 1] - 1,
327			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
328		}
329	}
330
331	vm_ksubmap_init(&kmi);
332
333	printf("avail memory = %ju (%ju MB)\n",
334	    ptoa((uintmax_t)cnt.v_free_count),
335	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
336
337	/*
338	 * Set up buffers, so they can be used to read disk labels.
339	 */
340	bufinit();
341	vm_pager_bufferinit();
342#ifndef XEN
343	cpu_setregs();
344#endif
345}
346
347/*
348 * Send an interrupt to process.
349 *
350 * Stack is set up to allow sigcode stored
351 * at top to call routine, followed by kcall
352 * to sigreturn routine below.  After sigreturn
353 * resets the signal mask, the stack, and the
354 * frame pointer, it returns to the user
355 * specified pc, psl.
356 */
357#ifdef COMPAT_43
358static void
359osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
360{
361	struct osigframe sf, *fp;
362	struct proc *p;
363	struct thread *td;
364	struct sigacts *psp;
365	struct trapframe *regs;
366	int sig;
367	int oonstack;
368
369	td = curthread;
370	p = td->td_proc;
371	PROC_LOCK_ASSERT(p, MA_OWNED);
372	sig = ksi->ksi_signo;
373	psp = p->p_sigacts;
374	mtx_assert(&psp->ps_mtx, MA_OWNED);
375	regs = td->td_frame;
376	oonstack = sigonstack(regs->tf_esp);
377
378	/* Allocate space for the signal handler context. */
379	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
380	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
381		fp = (struct osigframe *)(td->td_sigstk.ss_sp +
382		    td->td_sigstk.ss_size - sizeof(struct osigframe));
383#if defined(COMPAT_43)
384		td->td_sigstk.ss_flags |= SS_ONSTACK;
385#endif
386	} else
387		fp = (struct osigframe *)regs->tf_esp - 1;
388
389	/* Translate the signal if appropriate. */
390	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
391		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
392
393	/* Build the argument list for the signal handler. */
394	sf.sf_signum = sig;
395	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
396	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
397	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
398		/* Signal handler installed with SA_SIGINFO. */
399		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
400		sf.sf_siginfo.si_signo = sig;
401		sf.sf_siginfo.si_code = ksi->ksi_code;
402		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
403		sf.sf_addr = 0;
404	} else {
405		/* Old FreeBSD-style arguments. */
406		sf.sf_arg2 = ksi->ksi_code;
407		sf.sf_addr = (register_t)ksi->ksi_addr;
408		sf.sf_ahu.sf_handler = catcher;
409	}
410	mtx_unlock(&psp->ps_mtx);
411	PROC_UNLOCK(p);
412
413	/* Save most if not all of trap frame. */
414	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
415	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
416	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
417	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
418	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
419	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
420	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
421	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
422	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
423	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
424	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
425	sf.sf_siginfo.si_sc.sc_gs = rgs();
426	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
427
428	/* Build the signal context to be used by osigreturn(). */
429	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
430	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
431	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
432	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
433	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
434	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
435	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
436	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
437
438	/*
439	 * If we're a vm86 process, we want to save the segment registers.
440	 * We also change eflags to be our emulated eflags, not the actual
441	 * eflags.
442	 */
443	if (regs->tf_eflags & PSL_VM) {
444		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
445		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
446		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
447
448		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
449		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
450		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
451		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
452
453		if (vm86->vm86_has_vme == 0)
454			sf.sf_siginfo.si_sc.sc_ps =
455			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
456			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
457
458		/* See sendsig() for comments. */
459		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
460	}
461
462	/*
463	 * Copy the sigframe out to the user's stack.
464	 */
465	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
466#ifdef DEBUG
467		printf("process %ld has trashed its stack\n", (long)p->p_pid);
468#endif
469		PROC_LOCK(p);
470		sigexit(td, SIGILL);
471	}
472
473	regs->tf_esp = (int)fp;
474	if (p->p_sysent->sv_sigcode_base != 0) {
475		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
476		    szosigcode;
477	} else {
478		/* a.out sysentvec does not use shared page */
479		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
480	}
481	regs->tf_eflags &= ~(PSL_T | PSL_D);
482	regs->tf_cs = _ucodesel;
483	regs->tf_ds = _udatasel;
484	regs->tf_es = _udatasel;
485	regs->tf_fs = _udatasel;
486	load_gs(_udatasel);
487	regs->tf_ss = _udatasel;
488	PROC_LOCK(p);
489	mtx_lock(&psp->ps_mtx);
490}
491#endif /* COMPAT_43 */
492
493#ifdef COMPAT_FREEBSD4
494static void
495freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
496{
497	struct sigframe4 sf, *sfp;
498	struct proc *p;
499	struct thread *td;
500	struct sigacts *psp;
501	struct trapframe *regs;
502	int sig;
503	int oonstack;
504
505	td = curthread;
506	p = td->td_proc;
507	PROC_LOCK_ASSERT(p, MA_OWNED);
508	sig = ksi->ksi_signo;
509	psp = p->p_sigacts;
510	mtx_assert(&psp->ps_mtx, MA_OWNED);
511	regs = td->td_frame;
512	oonstack = sigonstack(regs->tf_esp);
513
514	/* Save user context. */
515	bzero(&sf, sizeof(sf));
516	sf.sf_uc.uc_sigmask = *mask;
517	sf.sf_uc.uc_stack = td->td_sigstk;
518	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
519	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
520	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
521	sf.sf_uc.uc_mcontext.mc_gs = rgs();
522	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
523	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
524	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
525	bzero(sf.sf_uc.uc_mcontext.__spare__,
526	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
527	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
528
529	/* Allocate space for the signal handler context. */
530	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
531	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
532		sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
533		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
534#if defined(COMPAT_43)
535		td->td_sigstk.ss_flags |= SS_ONSTACK;
536#endif
537	} else
538		sfp = (struct sigframe4 *)regs->tf_esp - 1;
539
540	/* Translate the signal if appropriate. */
541	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
542		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
543
544	/* Build the argument list for the signal handler. */
545	sf.sf_signum = sig;
546	sf.sf_ucontext = (register_t)&sfp->sf_uc;
547	bzero(&sf.sf_si, sizeof(sf.sf_si));
548	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
549		/* Signal handler installed with SA_SIGINFO. */
550		sf.sf_siginfo = (register_t)&sfp->sf_si;
551		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
552
553		/* Fill in POSIX parts */
554		sf.sf_si.si_signo = sig;
555		sf.sf_si.si_code = ksi->ksi_code;
556		sf.sf_si.si_addr = ksi->ksi_addr;
557	} else {
558		/* Old FreeBSD-style arguments. */
559		sf.sf_siginfo = ksi->ksi_code;
560		sf.sf_addr = (register_t)ksi->ksi_addr;
561		sf.sf_ahu.sf_handler = catcher;
562	}
563	mtx_unlock(&psp->ps_mtx);
564	PROC_UNLOCK(p);
565
566	/*
567	 * If we're a vm86 process, we want to save the segment registers.
568	 * We also change eflags to be our emulated eflags, not the actual
569	 * eflags.
570	 */
571	if (regs->tf_eflags & PSL_VM) {
572		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
573		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
574
575		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
576		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
577		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
578		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
579
580		if (vm86->vm86_has_vme == 0)
581			sf.sf_uc.uc_mcontext.mc_eflags =
582			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
583			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
584
585		/*
586		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
587		 * syscalls made by the signal handler.  This just avoids
588		 * wasting time for our lazy fixup of such faults.  PSL_NT
589		 * does nothing in vm86 mode, but vm86 programs can set it
590		 * almost legitimately in probes for old cpu types.
591		 */
592		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
593	}
594
595	/*
596	 * Copy the sigframe out to the user's stack.
597	 */
598	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
599#ifdef DEBUG
600		printf("process %ld has trashed its stack\n", (long)p->p_pid);
601#endif
602		PROC_LOCK(p);
603		sigexit(td, SIGILL);
604	}
605
606	regs->tf_esp = (int)sfp;
607	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
608	    szfreebsd4_sigcode;
609	regs->tf_eflags &= ~(PSL_T | PSL_D);
610	regs->tf_cs = _ucodesel;
611	regs->tf_ds = _udatasel;
612	regs->tf_es = _udatasel;
613	regs->tf_fs = _udatasel;
614	regs->tf_ss = _udatasel;
615	PROC_LOCK(p);
616	mtx_lock(&psp->ps_mtx);
617}
618#endif	/* COMPAT_FREEBSD4 */
619
620void
621sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
622{
623	struct sigframe sf, *sfp;
624	struct proc *p;
625	struct thread *td;
626	struct sigacts *psp;
627	char *sp;
628	struct trapframe *regs;
629	struct segment_descriptor *sdp;
630	int sig;
631	int oonstack;
632
633	td = curthread;
634	p = td->td_proc;
635	PROC_LOCK_ASSERT(p, MA_OWNED);
636	sig = ksi->ksi_signo;
637	psp = p->p_sigacts;
638	mtx_assert(&psp->ps_mtx, MA_OWNED);
639#ifdef COMPAT_FREEBSD4
640	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
641		freebsd4_sendsig(catcher, ksi, mask);
642		return;
643	}
644#endif
645#ifdef COMPAT_43
646	if (SIGISMEMBER(psp->ps_osigset, sig)) {
647		osendsig(catcher, ksi, mask);
648		return;
649	}
650#endif
651	regs = td->td_frame;
652	oonstack = sigonstack(regs->tf_esp);
653
654	/* Save user context. */
655	bzero(&sf, sizeof(sf));
656	sf.sf_uc.uc_sigmask = *mask;
657	sf.sf_uc.uc_stack = td->td_sigstk;
658	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
659	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
660	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
661	sf.sf_uc.uc_mcontext.mc_gs = rgs();
662	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
663	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
664	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
665	fpstate_drop(td);
666	/*
667	 * Unconditionally fill the fsbase and gsbase into the mcontext.
668	 */
669	sdp = &td->td_pcb->pcb_fsd;
670	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
671	    sdp->sd_lobase;
672	sdp = &td->td_pcb->pcb_gsd;
673	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
674	    sdp->sd_lobase;
675	sf.sf_uc.uc_mcontext.mc_flags = 0;
676	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
677	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
678	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
679
680	/* Allocate space for the signal handler context. */
681	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
682	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
683		sp = td->td_sigstk.ss_sp +
684		    td->td_sigstk.ss_size - sizeof(struct sigframe);
685#if defined(COMPAT_43)
686		td->td_sigstk.ss_flags |= SS_ONSTACK;
687#endif
688	} else
689		sp = (char *)regs->tf_esp - sizeof(struct sigframe);
690	/* Align to 16 bytes. */
691	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
692
693	/* Translate the signal if appropriate. */
694	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
695		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
696
697	/* Build the argument list for the signal handler. */
698	sf.sf_signum = sig;
699	sf.sf_ucontext = (register_t)&sfp->sf_uc;
700	bzero(&sf.sf_si, sizeof(sf.sf_si));
701	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
702		/* Signal handler installed with SA_SIGINFO. */
703		sf.sf_siginfo = (register_t)&sfp->sf_si;
704		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
705
706		/* Fill in POSIX parts */
707		sf.sf_si = ksi->ksi_info;
708		sf.sf_si.si_signo = sig; /* maybe a translated signal */
709	} else {
710		/* Old FreeBSD-style arguments. */
711		sf.sf_siginfo = ksi->ksi_code;
712		sf.sf_addr = (register_t)ksi->ksi_addr;
713		sf.sf_ahu.sf_handler = catcher;
714	}
715	mtx_unlock(&psp->ps_mtx);
716	PROC_UNLOCK(p);
717
718	/*
719	 * If we're a vm86 process, we want to save the segment registers.
720	 * We also change eflags to be our emulated eflags, not the actual
721	 * eflags.
722	 */
723	if (regs->tf_eflags & PSL_VM) {
724		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
725		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
726
727		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
728		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
729		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
730		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
731
732		if (vm86->vm86_has_vme == 0)
733			sf.sf_uc.uc_mcontext.mc_eflags =
734			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
735			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
736
737		/*
738		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
739		 * syscalls made by the signal handler.  This just avoids
740		 * wasting time for our lazy fixup of such faults.  PSL_NT
741		 * does nothing in vm86 mode, but vm86 programs can set it
742		 * almost legitimately in probes for old cpu types.
743		 */
744		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
745	}
746
747	/*
748	 * Copy the sigframe out to the user's stack.
749	 */
750	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
751#ifdef DEBUG
752		printf("process %ld has trashed its stack\n", (long)p->p_pid);
753#endif
754		PROC_LOCK(p);
755		sigexit(td, SIGILL);
756	}
757
758	regs->tf_esp = (int)sfp;
759	regs->tf_eip = p->p_sysent->sv_sigcode_base;
760	if (regs->tf_eip == 0)
761		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
762	regs->tf_eflags &= ~(PSL_T | PSL_D);
763	regs->tf_cs = _ucodesel;
764	regs->tf_ds = _udatasel;
765	regs->tf_es = _udatasel;
766	regs->tf_fs = _udatasel;
767	regs->tf_ss = _udatasel;
768	PROC_LOCK(p);
769	mtx_lock(&psp->ps_mtx);
770}
771
772/*
773 * System call to cleanup state after a signal
774 * has been taken.  Reset signal mask and
775 * stack state from context left by sendsig (above).
776 * Return to previous pc and psl as specified by
777 * context left by sendsig. Check carefully to
778 * make sure that the user has not modified the
779 * state to gain improper privileges.
780 *
781 * MPSAFE
782 */
783#ifdef COMPAT_43
784int
785osigreturn(td, uap)
786	struct thread *td;
787	struct osigreturn_args /* {
788		struct osigcontext *sigcntxp;
789	} */ *uap;
790{
791	struct osigcontext sc;
792	struct trapframe *regs;
793	struct osigcontext *scp;
794	int eflags, error;
795	ksiginfo_t ksi;
796
797	regs = td->td_frame;
798	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
799	if (error != 0)
800		return (error);
801	scp = &sc;
802	eflags = scp->sc_ps;
803	if (eflags & PSL_VM) {
804		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
805		struct vm86_kernel *vm86;
806
807		/*
808		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
809		 * set up the vm86 area, and we can't enter vm86 mode.
810		 */
811		if (td->td_pcb->pcb_ext == 0)
812			return (EINVAL);
813		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
814		if (vm86->vm86_inited == 0)
815			return (EINVAL);
816
817		/* Go back to user mode if both flags are set. */
818		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
819			ksiginfo_init_trap(&ksi);
820			ksi.ksi_signo = SIGBUS;
821			ksi.ksi_code = BUS_OBJERR;
822			ksi.ksi_addr = (void *)regs->tf_eip;
823			trapsignal(td, &ksi);
824		}
825
826		if (vm86->vm86_has_vme) {
827			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
828			    (eflags & VME_USERCHANGE) | PSL_VM;
829		} else {
830			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
831			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
832			    (eflags & VM_USERCHANGE) | PSL_VM;
833		}
834		tf->tf_vm86_ds = scp->sc_ds;
835		tf->tf_vm86_es = scp->sc_es;
836		tf->tf_vm86_fs = scp->sc_fs;
837		tf->tf_vm86_gs = scp->sc_gs;
838		tf->tf_ds = _udatasel;
839		tf->tf_es = _udatasel;
840		tf->tf_fs = _udatasel;
841	} else {
842		/*
843		 * Don't allow users to change privileged or reserved flags.
844		 */
845		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
846	    		return (EINVAL);
847		}
848
849		/*
850		 * Don't allow users to load a valid privileged %cs.  Let the
851		 * hardware check for invalid selectors, excess privilege in
852		 * other selectors, invalid %eip's and invalid %esp's.
853		 */
854		if (!CS_SECURE(scp->sc_cs)) {
855			ksiginfo_init_trap(&ksi);
856			ksi.ksi_signo = SIGBUS;
857			ksi.ksi_code = BUS_OBJERR;
858			ksi.ksi_trapno = T_PROTFLT;
859			ksi.ksi_addr = (void *)regs->tf_eip;
860			trapsignal(td, &ksi);
861			return (EINVAL);
862		}
863		regs->tf_ds = scp->sc_ds;
864		regs->tf_es = scp->sc_es;
865		regs->tf_fs = scp->sc_fs;
866	}
867
868	/* Restore remaining registers. */
869	regs->tf_eax = scp->sc_eax;
870	regs->tf_ebx = scp->sc_ebx;
871	regs->tf_ecx = scp->sc_ecx;
872	regs->tf_edx = scp->sc_edx;
873	regs->tf_esi = scp->sc_esi;
874	regs->tf_edi = scp->sc_edi;
875	regs->tf_cs = scp->sc_cs;
876	regs->tf_ss = scp->sc_ss;
877	regs->tf_isp = scp->sc_isp;
878	regs->tf_ebp = scp->sc_fp;
879	regs->tf_esp = scp->sc_sp;
880	regs->tf_eip = scp->sc_pc;
881	regs->tf_eflags = eflags;
882
883#if defined(COMPAT_43)
884	if (scp->sc_onstack & 1)
885		td->td_sigstk.ss_flags |= SS_ONSTACK;
886	else
887		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
888#endif
889	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
890	    SIGPROCMASK_OLD);
891	return (EJUSTRETURN);
892}
893#endif /* COMPAT_43 */
894
895#ifdef COMPAT_FREEBSD4
896/*
897 * MPSAFE
898 */
899int
900freebsd4_sigreturn(td, uap)
901	struct thread *td;
902	struct freebsd4_sigreturn_args /* {
903		const ucontext4 *sigcntxp;
904	} */ *uap;
905{
906	struct ucontext4 uc;
907	struct trapframe *regs;
908	struct ucontext4 *ucp;
909	int cs, eflags, error;
910	ksiginfo_t ksi;
911
912	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
913	if (error != 0)
914		return (error);
915	ucp = &uc;
916	regs = td->td_frame;
917	eflags = ucp->uc_mcontext.mc_eflags;
918	if (eflags & PSL_VM) {
919		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
920		struct vm86_kernel *vm86;
921
922		/*
923		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
924		 * set up the vm86 area, and we can't enter vm86 mode.
925		 */
926		if (td->td_pcb->pcb_ext == 0)
927			return (EINVAL);
928		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
929		if (vm86->vm86_inited == 0)
930			return (EINVAL);
931
932		/* Go back to user mode if both flags are set. */
933		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
934			ksiginfo_init_trap(&ksi);
935			ksi.ksi_signo = SIGBUS;
936			ksi.ksi_code = BUS_OBJERR;
937			ksi.ksi_addr = (void *)regs->tf_eip;
938			trapsignal(td, &ksi);
939		}
940		if (vm86->vm86_has_vme) {
941			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
942			    (eflags & VME_USERCHANGE) | PSL_VM;
943		} else {
944			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
945			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
946			    (eflags & VM_USERCHANGE) | PSL_VM;
947		}
948		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
949		tf->tf_eflags = eflags;
950		tf->tf_vm86_ds = tf->tf_ds;
951		tf->tf_vm86_es = tf->tf_es;
952		tf->tf_vm86_fs = tf->tf_fs;
953		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
954		tf->tf_ds = _udatasel;
955		tf->tf_es = _udatasel;
956		tf->tf_fs = _udatasel;
957	} else {
958		/*
959		 * Don't allow users to change privileged or reserved flags.
960		 */
961		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
962			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
963			    td->td_proc->p_pid, td->td_name, eflags);
964	    		return (EINVAL);
965		}
966
967		/*
968		 * Don't allow users to load a valid privileged %cs.  Let the
969		 * hardware check for invalid selectors, excess privilege in
970		 * other selectors, invalid %eip's and invalid %esp's.
971		 */
972		cs = ucp->uc_mcontext.mc_cs;
973		if (!CS_SECURE(cs)) {
974			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
975			    td->td_proc->p_pid, td->td_name, cs);
976			ksiginfo_init_trap(&ksi);
977			ksi.ksi_signo = SIGBUS;
978			ksi.ksi_code = BUS_OBJERR;
979			ksi.ksi_trapno = T_PROTFLT;
980			ksi.ksi_addr = (void *)regs->tf_eip;
981			trapsignal(td, &ksi);
982			return (EINVAL);
983		}
984
985		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
986	}
987
988#if defined(COMPAT_43)
989	if (ucp->uc_mcontext.mc_onstack & 1)
990		td->td_sigstk.ss_flags |= SS_ONSTACK;
991	else
992		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
993#endif
994	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
995	return (EJUSTRETURN);
996}
997#endif	/* COMPAT_FREEBSD4 */
998
999/*
1000 * MPSAFE
1001 */
1002int
1003sys_sigreturn(td, uap)
1004	struct thread *td;
1005	struct sigreturn_args /* {
1006		const struct __ucontext *sigcntxp;
1007	} */ *uap;
1008{
1009	ucontext_t uc;
1010	struct trapframe *regs;
1011	ucontext_t *ucp;
1012	int cs, eflags, error, ret;
1013	ksiginfo_t ksi;
1014
1015	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1016	if (error != 0)
1017		return (error);
1018	ucp = &uc;
1019	regs = td->td_frame;
1020	eflags = ucp->uc_mcontext.mc_eflags;
1021	if (eflags & PSL_VM) {
1022		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1023		struct vm86_kernel *vm86;
1024
1025		/*
1026		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1027		 * set up the vm86 area, and we can't enter vm86 mode.
1028		 */
1029		if (td->td_pcb->pcb_ext == 0)
1030			return (EINVAL);
1031		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1032		if (vm86->vm86_inited == 0)
1033			return (EINVAL);
1034
1035		/* Go back to user mode if both flags are set. */
1036		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1037			ksiginfo_init_trap(&ksi);
1038			ksi.ksi_signo = SIGBUS;
1039			ksi.ksi_code = BUS_OBJERR;
1040			ksi.ksi_addr = (void *)regs->tf_eip;
1041			trapsignal(td, &ksi);
1042		}
1043
1044		if (vm86->vm86_has_vme) {
1045			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1046			    (eflags & VME_USERCHANGE) | PSL_VM;
1047		} else {
1048			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1049			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1050			    (eflags & VM_USERCHANGE) | PSL_VM;
1051		}
1052		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1053		tf->tf_eflags = eflags;
1054		tf->tf_vm86_ds = tf->tf_ds;
1055		tf->tf_vm86_es = tf->tf_es;
1056		tf->tf_vm86_fs = tf->tf_fs;
1057		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1058		tf->tf_ds = _udatasel;
1059		tf->tf_es = _udatasel;
1060		tf->tf_fs = _udatasel;
1061	} else {
1062		/*
1063		 * Don't allow users to change privileged or reserved flags.
1064		 */
1065		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1066			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1067			    td->td_proc->p_pid, td->td_name, eflags);
1068	    		return (EINVAL);
1069		}
1070
1071		/*
1072		 * Don't allow users to load a valid privileged %cs.  Let the
1073		 * hardware check for invalid selectors, excess privilege in
1074		 * other selectors, invalid %eip's and invalid %esp's.
1075		 */
1076		cs = ucp->uc_mcontext.mc_cs;
1077		if (!CS_SECURE(cs)) {
1078			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1079			    td->td_proc->p_pid, td->td_name, cs);
1080			ksiginfo_init_trap(&ksi);
1081			ksi.ksi_signo = SIGBUS;
1082			ksi.ksi_code = BUS_OBJERR;
1083			ksi.ksi_trapno = T_PROTFLT;
1084			ksi.ksi_addr = (void *)regs->tf_eip;
1085			trapsignal(td, &ksi);
1086			return (EINVAL);
1087		}
1088
1089		ret = set_fpcontext(td, &ucp->uc_mcontext);
1090		if (ret != 0)
1091			return (ret);
1092		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1093	}
1094
1095#if defined(COMPAT_43)
1096	if (ucp->uc_mcontext.mc_onstack & 1)
1097		td->td_sigstk.ss_flags |= SS_ONSTACK;
1098	else
1099		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1100#endif
1101
1102	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1103	return (EJUSTRETURN);
1104}
1105
1106/*
1107 * Machine dependent boot() routine
1108 *
1109 * I haven't seen anything to put here yet
1110 * Possibly some stuff might be grafted back here from boot()
1111 */
1112void
1113cpu_boot(int howto)
1114{
1115}
1116
1117/*
1118 * Flush the D-cache for non-DMA I/O so that the I-cache can
1119 * be made coherent later.
1120 */
1121void
1122cpu_flush_dcache(void *ptr, size_t len)
1123{
1124	/* Not applicable */
1125}
1126
1127/* Get current clock frequency for the given cpu id. */
1128int
1129cpu_est_clockrate(int cpu_id, uint64_t *rate)
1130{
1131	uint64_t tsc1, tsc2;
1132	uint64_t acnt, mcnt, perf;
1133	register_t reg;
1134
1135	if (pcpu_find(cpu_id) == NULL || rate == NULL)
1136		return (EINVAL);
1137	if ((cpu_feature & CPUID_TSC) == 0)
1138		return (EOPNOTSUPP);
1139
1140	/*
1141	 * If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
1142	 * DELAY(9) based logic fails.
1143	 */
1144	if (tsc_is_invariant && !tsc_perf_stat)
1145		return (EOPNOTSUPP);
1146
1147#ifdef SMP
1148	if (smp_cpus > 1) {
1149		/* Schedule ourselves on the indicated cpu. */
1150		thread_lock(curthread);
1151		sched_bind(curthread, cpu_id);
1152		thread_unlock(curthread);
1153	}
1154#endif
1155
1156	/* Calibrate by measuring a short delay. */
1157	reg = intr_disable();
1158	if (tsc_is_invariant) {
1159		wrmsr(MSR_MPERF, 0);
1160		wrmsr(MSR_APERF, 0);
1161		tsc1 = rdtsc();
1162		DELAY(1000);
1163		mcnt = rdmsr(MSR_MPERF);
1164		acnt = rdmsr(MSR_APERF);
1165		tsc2 = rdtsc();
1166		intr_restore(reg);
1167		perf = 1000 * acnt / mcnt;
1168		*rate = (tsc2 - tsc1) * perf;
1169	} else {
1170		tsc1 = rdtsc();
1171		DELAY(1000);
1172		tsc2 = rdtsc();
1173		intr_restore(reg);
1174		*rate = (tsc2 - tsc1) * 1000;
1175	}
1176
1177#ifdef SMP
1178	if (smp_cpus > 1) {
1179		thread_lock(curthread);
1180		sched_unbind(curthread);
1181		thread_unlock(curthread);
1182	}
1183#endif
1184
1185	return (0);
1186}
1187
1188#ifdef XEN
1189
1190static void
1191idle_block(void)
1192{
1193
1194	HYPERVISOR_sched_op(SCHEDOP_block, 0);
1195}
1196
1197void
1198cpu_halt(void)
1199{
1200	HYPERVISOR_shutdown(SHUTDOWN_poweroff);
1201}
1202
1203int scheduler_running;
1204
1205static void
1206cpu_idle_hlt(sbintime_t sbt)
1207{
1208
1209	scheduler_running = 1;
1210	enable_intr();
1211	idle_block();
1212}
1213
1214#else
1215/*
1216 * Shutdown the CPU as much as possible
1217 */
1218void
1219cpu_halt(void)
1220{
1221	for (;;)
1222		halt();
1223}
1224
1225#endif
1226
1227void (*cpu_idle_hook)(sbintime_t) = NULL;	/* ACPI idle hook. */
1228static int	cpu_ident_amdc1e = 0;	/* AMD C1E supported. */
1229static int	idle_mwait = 1;		/* Use MONITOR/MWAIT for short idle. */
1230TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
1231SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
1232    0, "Use MONITOR/MWAIT for short idle");
1233
1234#define	STATE_RUNNING	0x0
1235#define	STATE_MWAIT	0x1
1236#define	STATE_SLEEPING	0x2
1237
1238static void
1239cpu_idle_acpi(sbintime_t sbt)
1240{
1241	int *state;
1242
1243	state = (int *)PCPU_PTR(monitorbuf);
1244	*state = STATE_SLEEPING;
1245
1246	/* See comments in cpu_idle_hlt(). */
1247	disable_intr();
1248	if (sched_runnable())
1249		enable_intr();
1250	else if (cpu_idle_hook)
1251		cpu_idle_hook(sbt);
1252	else
1253		__asm __volatile("sti; hlt");
1254	*state = STATE_RUNNING;
1255}
1256
1257#ifndef XEN
1258static void
1259cpu_idle_hlt(sbintime_t sbt)
1260{
1261	int *state;
1262
1263	state = (int *)PCPU_PTR(monitorbuf);
1264	*state = STATE_SLEEPING;
1265
1266	/*
1267	 * Since we may be in a critical section from cpu_idle(), if
1268	 * an interrupt fires during that critical section we may have
1269	 * a pending preemption.  If the CPU halts, then that thread
1270	 * may not execute until a later interrupt awakens the CPU.
1271	 * To handle this race, check for a runnable thread after
1272	 * disabling interrupts and immediately return if one is
1273	 * found.  Also, we must absolutely guarentee that hlt is
1274	 * the next instruction after sti.  This ensures that any
1275	 * interrupt that fires after the call to disable_intr() will
1276	 * immediately awaken the CPU from hlt.  Finally, please note
1277	 * that on x86 this works fine because of interrupts enabled only
1278	 * after the instruction following sti takes place, while IF is set
1279	 * to 1 immediately, allowing hlt instruction to acknowledge the
1280	 * interrupt.
1281	 */
1282	disable_intr();
1283	if (sched_runnable())
1284		enable_intr();
1285	else
1286		__asm __volatile("sti; hlt");
1287	*state = STATE_RUNNING;
1288}
1289#endif
1290
1291/*
1292 * MWAIT cpu power states.  Lower 4 bits are sub-states.
1293 */
1294#define	MWAIT_C0	0xf0
1295#define	MWAIT_C1	0x00
1296#define	MWAIT_C2	0x10
1297#define	MWAIT_C3	0x20
1298#define	MWAIT_C4	0x30
1299
1300static void
1301cpu_idle_mwait(sbintime_t sbt)
1302{
1303	int *state;
1304
1305	state = (int *)PCPU_PTR(monitorbuf);
1306	*state = STATE_MWAIT;
1307
1308	/* See comments in cpu_idle_hlt(). */
1309	disable_intr();
1310	if (sched_runnable()) {
1311		enable_intr();
1312		*state = STATE_RUNNING;
1313		return;
1314	}
1315	cpu_monitor(state, 0, 0);
1316	if (*state == STATE_MWAIT)
1317		__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
1318	else
1319		enable_intr();
1320	*state = STATE_RUNNING;
1321}
1322
1323static void
1324cpu_idle_spin(sbintime_t sbt)
1325{
1326	int *state;
1327	int i;
1328
1329	state = (int *)PCPU_PTR(monitorbuf);
1330	*state = STATE_RUNNING;
1331
1332	/*
1333	 * The sched_runnable() call is racy but as long as there is
1334	 * a loop missing it one time will have just a little impact if any
1335	 * (and it is much better than missing the check at all).
1336	 */
1337	for (i = 0; i < 1000; i++) {
1338		if (sched_runnable())
1339			return;
1340		cpu_spinwait();
1341	}
1342}
1343
1344/*
1345 * C1E renders the local APIC timer dead, so we disable it by
1346 * reading the Interrupt Pending Message register and clearing
1347 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
1348 *
1349 * Reference:
1350 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
1351 *   #32559 revision 3.00+
1352 */
1353#define	MSR_AMDK8_IPM		0xc0010055
1354#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
1355#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
1356#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
1357
1358static void
1359cpu_probe_amdc1e(void)
1360{
1361
1362	/*
1363	 * Detect the presence of C1E capability mostly on latest
1364	 * dual-cores (or future) k8 family.
1365	 */
1366	if (cpu_vendor_id == CPU_VENDOR_AMD &&
1367	    (cpu_id & 0x00000f00) == 0x00000f00 &&
1368	    (cpu_id & 0x0fff0000) >=  0x00040000) {
1369		cpu_ident_amdc1e = 1;
1370	}
1371}
1372
1373#ifdef XEN
1374void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
1375#else
1376void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
1377#endif
1378
1379void
1380cpu_idle(int busy)
1381{
1382#ifndef XEN
1383	uint64_t msr;
1384#endif
1385	sbintime_t sbt = -1;
1386
1387	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
1388	    busy, curcpu);
1389#if defined(MP_WATCHDOG) && !defined(XEN)
1390	ap_watchdog(PCPU_GET(cpuid));
1391#endif
1392#ifndef XEN
1393	/* If we are busy - try to use fast methods. */
1394	if (busy) {
1395		if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
1396			cpu_idle_mwait(busy);
1397			goto out;
1398		}
1399	}
1400#endif
1401
1402	/* If we have time - switch timers into idle mode. */
1403	if (!busy) {
1404		critical_enter();
1405		sbt = cpu_idleclock();
1406	}
1407
1408#ifndef XEN
1409	/* Apply AMD APIC timer C1E workaround. */
1410	if (cpu_ident_amdc1e && cpu_disable_deep_sleep) {
1411		msr = rdmsr(MSR_AMDK8_IPM);
1412		if (msr & AMDK8_CMPHALT)
1413			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
1414	}
1415#endif
1416
1417	/* Call main idle method. */
1418	cpu_idle_fn(sbt);
1419
1420	/* Switch timers mack into active mode. */
1421	if (!busy) {
1422		cpu_activeclock();
1423		critical_exit();
1424	}
1425#ifndef XEN
1426out:
1427#endif
1428	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
1429	    busy, curcpu);
1430}
1431
1432int
1433cpu_idle_wakeup(int cpu)
1434{
1435	struct pcpu *pcpu;
1436	int *state;
1437
1438	pcpu = pcpu_find(cpu);
1439	state = (int *)pcpu->pc_monitorbuf;
1440	/*
1441	 * This doesn't need to be atomic since missing the race will
1442	 * simply result in unnecessary IPIs.
1443	 */
1444	if (*state == STATE_SLEEPING)
1445		return (0);
1446	if (*state == STATE_MWAIT)
1447		*state = STATE_RUNNING;
1448	return (1);
1449}
1450
1451/*
1452 * Ordered by speed/power consumption.
1453 */
1454struct {
1455	void	*id_fn;
1456	char	*id_name;
1457} idle_tbl[] = {
1458	{ cpu_idle_spin, "spin" },
1459	{ cpu_idle_mwait, "mwait" },
1460	{ cpu_idle_hlt, "hlt" },
1461	{ cpu_idle_acpi, "acpi" },
1462	{ NULL, NULL }
1463};
1464
1465static int
1466idle_sysctl_available(SYSCTL_HANDLER_ARGS)
1467{
1468	char *avail, *p;
1469	int error;
1470	int i;
1471
1472	avail = malloc(256, M_TEMP, M_WAITOK);
1473	p = avail;
1474	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1475		if (strstr(idle_tbl[i].id_name, "mwait") &&
1476		    (cpu_feature2 & CPUID2_MON) == 0)
1477			continue;
1478		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1479		    cpu_idle_hook == NULL)
1480			continue;
1481		p += sprintf(p, "%s%s", p != avail ? ", " : "",
1482		    idle_tbl[i].id_name);
1483	}
1484	error = sysctl_handle_string(oidp, avail, 0, req);
1485	free(avail, M_TEMP);
1486	return (error);
1487}
1488
1489SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
1490    0, 0, idle_sysctl_available, "A", "list of available idle functions");
1491
1492static int
1493idle_sysctl(SYSCTL_HANDLER_ARGS)
1494{
1495	char buf[16];
1496	int error;
1497	char *p;
1498	int i;
1499
1500	p = "unknown";
1501	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1502		if (idle_tbl[i].id_fn == cpu_idle_fn) {
1503			p = idle_tbl[i].id_name;
1504			break;
1505		}
1506	}
1507	strncpy(buf, p, sizeof(buf));
1508	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
1509	if (error != 0 || req->newptr == NULL)
1510		return (error);
1511	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
1512		if (strstr(idle_tbl[i].id_name, "mwait") &&
1513		    (cpu_feature2 & CPUID2_MON) == 0)
1514			continue;
1515		if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
1516		    cpu_idle_hook == NULL)
1517			continue;
1518		if (strcmp(idle_tbl[i].id_name, buf))
1519			continue;
1520		cpu_idle_fn = idle_tbl[i].id_fn;
1521		return (0);
1522	}
1523	return (EINVAL);
1524}
1525
1526SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
1527    idle_sysctl, "A", "currently selected idle function");
1528
1529/*
1530 * Reset registers to default values on exec.
1531 */
1532void
1533exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1534{
1535	struct trapframe *regs = td->td_frame;
1536	struct pcb *pcb = td->td_pcb;
1537
1538	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1539	pcb->pcb_gs = _udatasel;
1540	load_gs(_udatasel);
1541
1542	mtx_lock_spin(&dt_lock);
1543	if (td->td_proc->p_md.md_ldt)
1544		user_ldt_free(td);
1545	else
1546		mtx_unlock_spin(&dt_lock);
1547
1548	bzero((char *)regs, sizeof(struct trapframe));
1549	regs->tf_eip = imgp->entry_addr;
1550	regs->tf_esp = stack;
1551	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1552	regs->tf_ss = _udatasel;
1553	regs->tf_ds = _udatasel;
1554	regs->tf_es = _udatasel;
1555	regs->tf_fs = _udatasel;
1556	regs->tf_cs = _ucodesel;
1557
1558	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1559	regs->tf_ebx = imgp->ps_strings;
1560
1561        /*
1562         * Reset the hardware debug registers if they were in use.
1563         * They won't have any meaning for the newly exec'd process.
1564         */
1565        if (pcb->pcb_flags & PCB_DBREGS) {
1566                pcb->pcb_dr0 = 0;
1567                pcb->pcb_dr1 = 0;
1568                pcb->pcb_dr2 = 0;
1569                pcb->pcb_dr3 = 0;
1570                pcb->pcb_dr6 = 0;
1571                pcb->pcb_dr7 = 0;
1572                if (pcb == curpcb) {
1573		        /*
1574			 * Clear the debug registers on the running
1575			 * CPU, otherwise they will end up affecting
1576			 * the next process we switch to.
1577			 */
1578		        reset_dbregs();
1579                }
1580                pcb->pcb_flags &= ~PCB_DBREGS;
1581        }
1582
1583	/*
1584	 * Initialize the math emulator (if any) for the current process.
1585	 * Actually, just clear the bit that says that the emulator has
1586	 * been initialized.  Initialization is delayed until the process
1587	 * traps to the emulator (if it is done at all) mainly because
1588	 * emulators don't provide an entry point for initialization.
1589	 */
1590	td->td_pcb->pcb_flags &= ~FP_SOFTFP;
1591	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1592
1593	/*
1594	 * Drop the FP state if we hold it, so that the process gets a
1595	 * clean FP state if it uses the FPU again.
1596	 */
1597	fpstate_drop(td);
1598
1599	/*
1600	 * XXX - Linux emulator
1601	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1602	 * on it.
1603	 */
1604	td->td_retval[1] = 0;
1605}
1606
1607void
1608cpu_setregs(void)
1609{
1610	unsigned int cr0;
1611
1612	cr0 = rcr0();
1613
1614	/*
1615	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1616	 *
1617	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1618	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1619	 * bit to control the trap, because setting the CR0_EM bit does
1620	 * not cause WAIT instructions to trap.  It's important to trap
1621	 * WAIT instructions - otherwise the "wait" variants of no-wait
1622	 * control instructions would degenerate to the "no-wait" variants
1623	 * after FP context switches but work correctly otherwise.  It's
1624	 * particularly important to trap WAITs when there is no NPX -
1625	 * otherwise the "wait" variants would always degenerate.
1626	 *
1627	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1628	 * Setting it should fail or do nothing on lesser processors.
1629	 */
1630	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1631	load_cr0(cr0);
1632	load_gs(_udatasel);
1633}
1634
1635u_long bootdev;		/* not a struct cdev *- encoding is different */
1636SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1637	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1638
1639/*
1640 * Initialize 386 and configure to run kernel
1641 */
1642
1643/*
1644 * Initialize segments & interrupt table
1645 */
1646
1647int _default_ldt;
1648
1649#ifdef XEN
1650union descriptor *gdt;
1651union descriptor *ldt;
1652#else
1653union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1654union descriptor ldt[NLDT];		/* local descriptor table */
1655#endif
1656static struct gate_descriptor idt0[NIDT];
1657struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1658struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1659struct mtx dt_lock;			/* lock for GDT and LDT */
1660
1661#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1662extern int has_f00f_bug;
1663#endif
1664
1665static struct i386tss dblfault_tss;
1666static char dblfault_stack[PAGE_SIZE];
1667
1668extern  vm_offset_t	proc0kstack;
1669
1670
1671/*
1672 * software prototypes -- in more palatable form.
1673 *
1674 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1675 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1676 */
1677struct soft_segment_descriptor gdt_segs[] = {
1678/* GNULL_SEL	0 Null Descriptor */
1679{	.ssd_base = 0x0,
1680	.ssd_limit = 0x0,
1681	.ssd_type = 0,
1682	.ssd_dpl = SEL_KPL,
1683	.ssd_p = 0,
1684	.ssd_xx = 0, .ssd_xx1 = 0,
1685	.ssd_def32 = 0,
1686	.ssd_gran = 0		},
1687/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1688{	.ssd_base = 0x0,
1689	.ssd_limit = 0xfffff,
1690	.ssd_type = SDT_MEMRWA,
1691	.ssd_dpl = SEL_KPL,
1692	.ssd_p = 1,
1693	.ssd_xx = 0, .ssd_xx1 = 0,
1694	.ssd_def32 = 1,
1695	.ssd_gran = 1		},
1696/* GUFS_SEL	2 %fs Descriptor for user */
1697{	.ssd_base = 0x0,
1698	.ssd_limit = 0xfffff,
1699	.ssd_type = SDT_MEMRWA,
1700	.ssd_dpl = SEL_UPL,
1701	.ssd_p = 1,
1702	.ssd_xx = 0, .ssd_xx1 = 0,
1703	.ssd_def32 = 1,
1704	.ssd_gran = 1		},
1705/* GUGS_SEL	3 %gs Descriptor for user */
1706{	.ssd_base = 0x0,
1707	.ssd_limit = 0xfffff,
1708	.ssd_type = SDT_MEMRWA,
1709	.ssd_dpl = SEL_UPL,
1710	.ssd_p = 1,
1711	.ssd_xx = 0, .ssd_xx1 = 0,
1712	.ssd_def32 = 1,
1713	.ssd_gran = 1		},
1714/* GCODE_SEL	4 Code Descriptor for kernel */
1715{	.ssd_base = 0x0,
1716	.ssd_limit = 0xfffff,
1717	.ssd_type = SDT_MEMERA,
1718	.ssd_dpl = SEL_KPL,
1719	.ssd_p = 1,
1720	.ssd_xx = 0, .ssd_xx1 = 0,
1721	.ssd_def32 = 1,
1722	.ssd_gran = 1		},
1723/* GDATA_SEL	5 Data Descriptor for kernel */
1724{	.ssd_base = 0x0,
1725	.ssd_limit = 0xfffff,
1726	.ssd_type = SDT_MEMRWA,
1727	.ssd_dpl = SEL_KPL,
1728	.ssd_p = 1,
1729	.ssd_xx = 0, .ssd_xx1 = 0,
1730	.ssd_def32 = 1,
1731	.ssd_gran = 1		},
1732/* GUCODE_SEL	6 Code Descriptor for user */
1733{	.ssd_base = 0x0,
1734	.ssd_limit = 0xfffff,
1735	.ssd_type = SDT_MEMERA,
1736	.ssd_dpl = SEL_UPL,
1737	.ssd_p = 1,
1738	.ssd_xx = 0, .ssd_xx1 = 0,
1739	.ssd_def32 = 1,
1740	.ssd_gran = 1		},
1741/* GUDATA_SEL	7 Data Descriptor for user */
1742{	.ssd_base = 0x0,
1743	.ssd_limit = 0xfffff,
1744	.ssd_type = SDT_MEMRWA,
1745	.ssd_dpl = SEL_UPL,
1746	.ssd_p = 1,
1747	.ssd_xx = 0, .ssd_xx1 = 0,
1748	.ssd_def32 = 1,
1749	.ssd_gran = 1		},
1750/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1751{	.ssd_base = 0x400,
1752	.ssd_limit = 0xfffff,
1753	.ssd_type = SDT_MEMRWA,
1754	.ssd_dpl = SEL_KPL,
1755	.ssd_p = 1,
1756	.ssd_xx = 0, .ssd_xx1 = 0,
1757	.ssd_def32 = 1,
1758	.ssd_gran = 1		},
1759#ifndef XEN
1760/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1761{
1762	.ssd_base = 0x0,
1763	.ssd_limit = sizeof(struct i386tss)-1,
1764	.ssd_type = SDT_SYS386TSS,
1765	.ssd_dpl = 0,
1766	.ssd_p = 1,
1767	.ssd_xx = 0, .ssd_xx1 = 0,
1768	.ssd_def32 = 0,
1769	.ssd_gran = 0		},
1770/* GLDT_SEL	10 LDT Descriptor */
1771{	.ssd_base = (int) ldt,
1772	.ssd_limit = sizeof(ldt)-1,
1773	.ssd_type = SDT_SYSLDT,
1774	.ssd_dpl = SEL_UPL,
1775	.ssd_p = 1,
1776	.ssd_xx = 0, .ssd_xx1 = 0,
1777	.ssd_def32 = 0,
1778	.ssd_gran = 0		},
1779/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1780{	.ssd_base = (int) ldt,
1781	.ssd_limit = (512 * sizeof(union descriptor)-1),
1782	.ssd_type = SDT_SYSLDT,
1783	.ssd_dpl = 0,
1784	.ssd_p = 1,
1785	.ssd_xx = 0, .ssd_xx1 = 0,
1786	.ssd_def32 = 0,
1787	.ssd_gran = 0		},
1788/* GPANIC_SEL	12 Panic Tss Descriptor */
1789{	.ssd_base = (int) &dblfault_tss,
1790	.ssd_limit = sizeof(struct i386tss)-1,
1791	.ssd_type = SDT_SYS386TSS,
1792	.ssd_dpl = 0,
1793	.ssd_p = 1,
1794	.ssd_xx = 0, .ssd_xx1 = 0,
1795	.ssd_def32 = 0,
1796	.ssd_gran = 0		},
1797/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1798{	.ssd_base = 0,
1799	.ssd_limit = 0xfffff,
1800	.ssd_type = SDT_MEMERA,
1801	.ssd_dpl = 0,
1802	.ssd_p = 1,
1803	.ssd_xx = 0, .ssd_xx1 = 0,
1804	.ssd_def32 = 0,
1805	.ssd_gran = 1		},
1806/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1807{	.ssd_base = 0,
1808	.ssd_limit = 0xfffff,
1809	.ssd_type = SDT_MEMERA,
1810	.ssd_dpl = 0,
1811	.ssd_p = 1,
1812	.ssd_xx = 0, .ssd_xx1 = 0,
1813	.ssd_def32 = 0,
1814	.ssd_gran = 1		},
1815/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1816{	.ssd_base = 0,
1817	.ssd_limit = 0xfffff,
1818	.ssd_type = SDT_MEMRWA,
1819	.ssd_dpl = 0,
1820	.ssd_p = 1,
1821	.ssd_xx = 0, .ssd_xx1 = 0,
1822	.ssd_def32 = 1,
1823	.ssd_gran = 1		},
1824/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1825{	.ssd_base = 0,
1826	.ssd_limit = 0xfffff,
1827	.ssd_type = SDT_MEMRWA,
1828	.ssd_dpl = 0,
1829	.ssd_p = 1,
1830	.ssd_xx = 0, .ssd_xx1 = 0,
1831	.ssd_def32 = 0,
1832	.ssd_gran = 1		},
1833/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1834{	.ssd_base = 0,
1835	.ssd_limit = 0xfffff,
1836	.ssd_type = SDT_MEMRWA,
1837	.ssd_dpl = 0,
1838	.ssd_p = 1,
1839	.ssd_xx = 0, .ssd_xx1 = 0,
1840	.ssd_def32 = 0,
1841	.ssd_gran = 1		},
1842/* GNDIS_SEL	18 NDIS Descriptor */
1843{	.ssd_base = 0x0,
1844	.ssd_limit = 0x0,
1845	.ssd_type = 0,
1846	.ssd_dpl = 0,
1847	.ssd_p = 0,
1848	.ssd_xx = 0, .ssd_xx1 = 0,
1849	.ssd_def32 = 0,
1850	.ssd_gran = 0		},
1851#endif /* !XEN */
1852};
1853
1854static struct soft_segment_descriptor ldt_segs[] = {
1855	/* Null Descriptor - overwritten by call gate */
1856{	.ssd_base = 0x0,
1857	.ssd_limit = 0x0,
1858	.ssd_type = 0,
1859	.ssd_dpl = 0,
1860	.ssd_p = 0,
1861	.ssd_xx = 0, .ssd_xx1 = 0,
1862	.ssd_def32 = 0,
1863	.ssd_gran = 0		},
1864	/* Null Descriptor - overwritten by call gate */
1865{	.ssd_base = 0x0,
1866	.ssd_limit = 0x0,
1867	.ssd_type = 0,
1868	.ssd_dpl = 0,
1869	.ssd_p = 0,
1870	.ssd_xx = 0, .ssd_xx1 = 0,
1871	.ssd_def32 = 0,
1872	.ssd_gran = 0		},
1873	/* Null Descriptor - overwritten by call gate */
1874{	.ssd_base = 0x0,
1875	.ssd_limit = 0x0,
1876	.ssd_type = 0,
1877	.ssd_dpl = 0,
1878	.ssd_p = 0,
1879	.ssd_xx = 0, .ssd_xx1 = 0,
1880	.ssd_def32 = 0,
1881	.ssd_gran = 0		},
1882	/* Code Descriptor for user */
1883{	.ssd_base = 0x0,
1884	.ssd_limit = 0xfffff,
1885	.ssd_type = SDT_MEMERA,
1886	.ssd_dpl = SEL_UPL,
1887	.ssd_p = 1,
1888	.ssd_xx = 0, .ssd_xx1 = 0,
1889	.ssd_def32 = 1,
1890	.ssd_gran = 1		},
1891	/* Null Descriptor - overwritten by call gate */
1892{	.ssd_base = 0x0,
1893	.ssd_limit = 0x0,
1894	.ssd_type = 0,
1895	.ssd_dpl = 0,
1896	.ssd_p = 0,
1897	.ssd_xx = 0, .ssd_xx1 = 0,
1898	.ssd_def32 = 0,
1899	.ssd_gran = 0		},
1900	/* Data Descriptor for user */
1901{	.ssd_base = 0x0,
1902	.ssd_limit = 0xfffff,
1903	.ssd_type = SDT_MEMRWA,
1904	.ssd_dpl = SEL_UPL,
1905	.ssd_p = 1,
1906	.ssd_xx = 0, .ssd_xx1 = 0,
1907	.ssd_def32 = 1,
1908	.ssd_gran = 1		},
1909};
1910
1911void
1912setidt(idx, func, typ, dpl, selec)
1913	int idx;
1914	inthand_t *func;
1915	int typ;
1916	int dpl;
1917	int selec;
1918{
1919	struct gate_descriptor *ip;
1920
1921	ip = idt + idx;
1922	ip->gd_looffset = (int)func;
1923	ip->gd_selector = selec;
1924	ip->gd_stkcpy = 0;
1925	ip->gd_xx = 0;
1926	ip->gd_type = typ;
1927	ip->gd_dpl = dpl;
1928	ip->gd_p = 1;
1929	ip->gd_hioffset = ((int)func)>>16 ;
1930}
1931
1932extern inthand_t
1933	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1934	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1935	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1936	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1937	IDTVEC(xmm),
1938#ifdef KDTRACE_HOOKS
1939	IDTVEC(dtrace_ret),
1940#endif
1941#ifdef XENHVM
1942	IDTVEC(xen_intr_upcall),
1943#endif
1944	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1945
1946#ifdef DDB
1947/*
1948 * Display the index and function name of any IDT entries that don't use
1949 * the default 'rsvd' entry point.
1950 */
1951DB_SHOW_COMMAND(idt, db_show_idt)
1952{
1953	struct gate_descriptor *ip;
1954	int idx;
1955	uintptr_t func;
1956
1957	ip = idt;
1958	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1959		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1960		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1961			db_printf("%3d\t", idx);
1962			db_printsym(func, DB_STGY_PROC);
1963			db_printf("\n");
1964		}
1965		ip++;
1966	}
1967}
1968
1969/* Show privileged registers. */
1970DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1971{
1972	uint64_t idtr, gdtr;
1973
1974	idtr = ridt();
1975	db_printf("idtr\t0x%08x/%04x\n",
1976	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1977	gdtr = rgdt();
1978	db_printf("gdtr\t0x%08x/%04x\n",
1979	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1980	db_printf("ldtr\t0x%04x\n", rldt());
1981	db_printf("tr\t0x%04x\n", rtr());
1982	db_printf("cr0\t0x%08x\n", rcr0());
1983	db_printf("cr2\t0x%08x\n", rcr2());
1984	db_printf("cr3\t0x%08x\n", rcr3());
1985	db_printf("cr4\t0x%08x\n", rcr4());
1986}
1987#endif
1988
1989void
1990sdtossd(sd, ssd)
1991	struct segment_descriptor *sd;
1992	struct soft_segment_descriptor *ssd;
1993{
1994	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1995	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1996	ssd->ssd_type  = sd->sd_type;
1997	ssd->ssd_dpl   = sd->sd_dpl;
1998	ssd->ssd_p     = sd->sd_p;
1999	ssd->ssd_def32 = sd->sd_def32;
2000	ssd->ssd_gran  = sd->sd_gran;
2001}
2002
2003#ifndef XEN
2004static int
2005add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
2006{
2007	int i, insert_idx, physmap_idx;
2008
2009	physmap_idx = *physmap_idxp;
2010
2011	if (boothowto & RB_VERBOSE)
2012		printf("SMAP type=%02x base=%016llx len=%016llx\n",
2013		    smap->type, smap->base, smap->length);
2014
2015	if (smap->type != SMAP_TYPE_MEMORY)
2016		return (1);
2017
2018	if (smap->length == 0)
2019		return (1);
2020
2021#ifndef PAE
2022	if (smap->base > 0xffffffff) {
2023		printf("%uK of memory above 4GB ignored\n",
2024		    (u_int)(smap->length / 1024));
2025		return (1);
2026	}
2027#endif
2028
2029	/*
2030	 * Find insertion point while checking for overlap.  Start off by
2031	 * assuming the new entry will be added to the end.
2032	 */
2033	insert_idx = physmap_idx + 2;
2034	for (i = 0; i <= physmap_idx; i += 2) {
2035		if (smap->base < physmap[i + 1]) {
2036			if (smap->base + smap->length <= physmap[i]) {
2037				insert_idx = i;
2038				break;
2039			}
2040			if (boothowto & RB_VERBOSE)
2041				printf(
2042		    "Overlapping memory regions, ignoring second region\n");
2043			return (1);
2044		}
2045	}
2046
2047	/* See if we can prepend to the next entry. */
2048	if (insert_idx <= physmap_idx &&
2049	    smap->base + smap->length == physmap[insert_idx]) {
2050		physmap[insert_idx] = smap->base;
2051		return (1);
2052	}
2053
2054	/* See if we can append to the previous entry. */
2055	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
2056		physmap[insert_idx - 1] += smap->length;
2057		return (1);
2058	}
2059
2060	physmap_idx += 2;
2061	*physmap_idxp = physmap_idx;
2062	if (physmap_idx == PHYSMAP_SIZE) {
2063		printf(
2064		"Too many segments in the physical address map, giving up\n");
2065		return (0);
2066	}
2067
2068	/*
2069	 * Move the last 'N' entries down to make room for the new
2070	 * entry if needed.
2071	 */
2072	for (i = physmap_idx; i > insert_idx; i -= 2) {
2073		physmap[i] = physmap[i - 2];
2074		physmap[i + 1] = physmap[i - 1];
2075	}
2076
2077	/* Insert the new entry. */
2078	physmap[insert_idx] = smap->base;
2079	physmap[insert_idx + 1] = smap->base + smap->length;
2080	return (1);
2081}
2082
2083static void
2084basemem_setup(void)
2085{
2086	vm_paddr_t pa;
2087	pt_entry_t *pte;
2088	int i;
2089
2090	if (basemem > 640) {
2091		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
2092			basemem);
2093		basemem = 640;
2094	}
2095
2096	/*
2097	 * XXX if biosbasemem is now < 640, there is a `hole'
2098	 * between the end of base memory and the start of
2099	 * ISA memory.  The hole may be empty or it may
2100	 * contain BIOS code or data.  Map it read/write so
2101	 * that the BIOS can write to it.  (Memory from 0 to
2102	 * the physical end of the kernel is mapped read-only
2103	 * to begin with and then parts of it are remapped.
2104	 * The parts that aren't remapped form holes that
2105	 * remain read-only and are unused by the kernel.
2106	 * The base memory area is below the physical end of
2107	 * the kernel and right now forms a read-only hole.
2108	 * The part of it from PAGE_SIZE to
2109	 * (trunc_page(biosbasemem * 1024) - 1) will be
2110	 * remapped and used by the kernel later.)
2111	 *
2112	 * This code is similar to the code used in
2113	 * pmap_mapdev, but since no memory needs to be
2114	 * allocated we simply change the mapping.
2115	 */
2116	for (pa = trunc_page(basemem * 1024);
2117	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
2118		pmap_kenter(KERNBASE + pa, pa);
2119
2120	/*
2121	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
2122	 * the vm86 page table so that vm86 can scribble on them using
2123	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
2124	 * page 0, at least as initialized here?
2125	 */
2126	pte = (pt_entry_t *)vm86paddr;
2127	for (i = basemem / 4; i < 160; i++)
2128		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
2129}
2130#endif
2131
2132/*
2133 * Populate the (physmap) array with base/bound pairs describing the
2134 * available physical memory in the system, then test this memory and
2135 * build the phys_avail array describing the actually-available memory.
2136 *
2137 * If we cannot accurately determine the physical memory map, then use
2138 * value from the 0xE801 call, and failing that, the RTC.
2139 *
2140 * Total memory size may be set by the kernel environment variable
2141 * hw.physmem or the compile-time define MAXMEM.
2142 *
2143 * XXX first should be vm_paddr_t.
2144 */
2145static void
2146getmemsize(int first)
2147{
2148	int has_smap, off, physmap_idx, pa_indx, da_indx;
2149	u_long physmem_tunable, memtest;
2150	vm_paddr_t physmap[PHYSMAP_SIZE];
2151	pt_entry_t *pte;
2152	quad_t dcons_addr, dcons_size;
2153#ifndef XEN
2154	int hasbrokenint12, i, res;
2155	u_int extmem;
2156	struct vm86frame vmf;
2157	struct vm86context vmc;
2158	vm_paddr_t pa;
2159	struct bios_smap *smap, *smapbase, *smapend;
2160	u_int32_t smapsize;
2161	caddr_t kmdp;
2162#endif
2163
2164	has_smap = 0;
2165#if defined(XEN)
2166	Maxmem = xen_start_info->nr_pages - init_first;
2167	physmem = Maxmem;
2168	basemem = 0;
2169	physmap[0] = init_first << PAGE_SHIFT;
2170	physmap[1] = ptoa(Maxmem) - round_page(msgbufsize);
2171	physmap_idx = 0;
2172#else
2173#ifdef XBOX
2174	if (arch_i386_is_xbox) {
2175		/*
2176		 * We queried the memory size before, so chop off 4MB for
2177		 * the framebuffer and inform the OS of this.
2178		 */
2179		physmap[0] = 0;
2180		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2181		physmap_idx = 0;
2182		goto physmap_done;
2183	}
2184#endif
2185	bzero(&vmf, sizeof(vmf));
2186	bzero(physmap, sizeof(physmap));
2187	basemem = 0;
2188
2189	/*
2190	 * Check if the loader supplied an SMAP memory map.  If so,
2191	 * use that and do not make any VM86 calls.
2192	 */
2193	physmap_idx = 0;
2194	smapbase = NULL;
2195	kmdp = preload_search_by_type("elf kernel");
2196	if (kmdp == NULL)
2197		kmdp = preload_search_by_type("elf32 kernel");
2198	if (kmdp != NULL)
2199		smapbase = (struct bios_smap *)preload_search_info(kmdp,
2200		    MODINFO_METADATA | MODINFOMD_SMAP);
2201	if (smapbase != NULL) {
2202		/*
2203		 * subr_module.c says:
2204		 * "Consumer may safely assume that size value precedes data."
2205		 * ie: an int32_t immediately precedes SMAP.
2206		 */
2207		smapsize = *((u_int32_t *)smapbase - 1);
2208		smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
2209		has_smap = 1;
2210
2211		for (smap = smapbase; smap < smapend; smap++)
2212			if (!add_smap_entry(smap, physmap, &physmap_idx))
2213				break;
2214		goto have_smap;
2215	}
2216
2217	/*
2218	 * Some newer BIOSes have a broken INT 12H implementation
2219	 * which causes a kernel panic immediately.  In this case, we
2220	 * need use the SMAP to determine the base memory size.
2221	 */
2222	hasbrokenint12 = 0;
2223	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2224	if (hasbrokenint12 == 0) {
2225		/* Use INT12 to determine base memory size. */
2226		vm86_intcall(0x12, &vmf);
2227		basemem = vmf.vmf_ax;
2228		basemem_setup();
2229	}
2230
2231	/*
2232	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2233	 * the kernel page table so we can use it as a buffer.  The
2234	 * kernel will unmap this page later.
2235	 */
2236	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2237	vmc.npages = 0;
2238	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2239	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2240	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2241
2242	vmf.vmf_ebx = 0;
2243	do {
2244		vmf.vmf_eax = 0xE820;
2245		vmf.vmf_edx = SMAP_SIG;
2246		vmf.vmf_ecx = sizeof(struct bios_smap);
2247		i = vm86_datacall(0x15, &vmf, &vmc);
2248		if (i || vmf.vmf_eax != SMAP_SIG)
2249			break;
2250		has_smap = 1;
2251		if (!add_smap_entry(smap, physmap, &physmap_idx))
2252			break;
2253	} while (vmf.vmf_ebx != 0);
2254
2255have_smap:
2256	/*
2257	 * If we didn't fetch the "base memory" size from INT12,
2258	 * figure it out from the SMAP (or just guess).
2259	 */
2260	if (basemem == 0) {
2261		for (i = 0; i <= physmap_idx; i += 2) {
2262			if (physmap[i] == 0x00000000) {
2263				basemem = physmap[i + 1] / 1024;
2264				break;
2265			}
2266		}
2267
2268		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2269		if (basemem == 0)
2270			basemem = 640;
2271		basemem_setup();
2272	}
2273
2274	if (physmap[1] != 0)
2275		goto physmap_done;
2276
2277	/*
2278	 * If we failed to find an SMAP, figure out the extended
2279	 * memory size.  We will then build a simple memory map with
2280	 * two segments, one for "base memory" and the second for
2281	 * "extended memory".  Note that "extended memory" starts at a
2282	 * physical address of 1MB and that both basemem and extmem
2283	 * are in units of 1KB.
2284	 *
2285	 * First, try to fetch the extended memory size via INT 15:E801.
2286	 */
2287	vmf.vmf_ax = 0xE801;
2288	if (vm86_intcall(0x15, &vmf) == 0) {
2289		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2290	} else {
2291		/*
2292		 * If INT15:E801 fails, this is our last ditch effort
2293		 * to determine the extended memory size.  Currently
2294		 * we prefer the RTC value over INT15:88.
2295		 */
2296#if 0
2297		vmf.vmf_ah = 0x88;
2298		vm86_intcall(0x15, &vmf);
2299		extmem = vmf.vmf_ax;
2300#else
2301		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2302#endif
2303	}
2304
2305	/*
2306	 * Special hack for chipsets that still remap the 384k hole when
2307	 * there's 16MB of memory - this really confuses people that
2308	 * are trying to use bus mastering ISA controllers with the
2309	 * "16MB limit"; they only have 16MB, but the remapping puts
2310	 * them beyond the limit.
2311	 *
2312	 * If extended memory is between 15-16MB (16-17MB phys address range),
2313	 *	chop it to 15MB.
2314	 */
2315	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2316		extmem = 15 * 1024;
2317
2318	physmap[0] = 0;
2319	physmap[1] = basemem * 1024;
2320	physmap_idx = 2;
2321	physmap[physmap_idx] = 0x100000;
2322	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2323
2324physmap_done:
2325#endif
2326	/*
2327	 * Now, physmap contains a map of physical memory.
2328	 */
2329
2330#ifdef SMP
2331	/* make hole for AP bootstrap code */
2332	physmap[1] = mp_bootaddress(physmap[1]);
2333#endif
2334
2335	/*
2336	 * Maxmem isn't the "maximum memory", it's one larger than the
2337	 * highest page of the physical address space.  It should be
2338	 * called something like "Maxphyspage".  We may adjust this
2339	 * based on ``hw.physmem'' and the results of the memory test.
2340	 */
2341	Maxmem = atop(physmap[physmap_idx + 1]);
2342
2343#ifdef MAXMEM
2344	Maxmem = MAXMEM / 4;
2345#endif
2346
2347	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
2348		Maxmem = atop(physmem_tunable);
2349
2350	/*
2351	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2352	 * the amount of memory in the system.
2353	 */
2354	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2355		Maxmem = atop(physmap[physmap_idx + 1]);
2356
2357	/*
2358	 * By default enable the memory test on real hardware, and disable
2359	 * it if we appear to be running in a VM.  This avoids touching all
2360	 * pages unnecessarily, which doesn't matter on real hardware but is
2361	 * bad for shared VM hosts.  Use a general name so that
2362	 * one could eventually do more with the code than just disable it.
2363	 */
2364	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2365	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2366
2367	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2368	    (boothowto & RB_VERBOSE))
2369		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2370
2371	/*
2372	 * If Maxmem has been increased beyond what the system has detected,
2373	 * extend the last memory segment to the new limit.
2374	 */
2375	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2376		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2377
2378	/* call pmap initialization to make new kernel address space */
2379	pmap_bootstrap(first);
2380
2381	/*
2382	 * Size up each available chunk of physical memory.
2383	 */
2384	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2385	pa_indx = 0;
2386	da_indx = 1;
2387	phys_avail[pa_indx++] = physmap[0];
2388	phys_avail[pa_indx] = physmap[0];
2389	dump_avail[da_indx] = physmap[0];
2390	pte = CMAP1;
2391
2392	/*
2393	 * Get dcons buffer address
2394	 */
2395	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2396	    getenv_quad("dcons.size", &dcons_size) == 0)
2397		dcons_addr = 0;
2398
2399#ifndef XEN
2400	/*
2401	 * physmap is in bytes, so when converting to page boundaries,
2402	 * round up the start address and round down the end address.
2403	 */
2404	for (i = 0; i <= physmap_idx; i += 2) {
2405		vm_paddr_t end;
2406
2407		end = ptoa((vm_paddr_t)Maxmem);
2408		if (physmap[i + 1] < end)
2409			end = trunc_page(physmap[i + 1]);
2410		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2411			int tmp, page_bad, full;
2412			int *ptr = (int *)CADDR1;
2413
2414			full = FALSE;
2415			/*
2416			 * block out kernel memory as not available.
2417			 */
2418			if (pa >= KERNLOAD && pa < first)
2419				goto do_dump_avail;
2420
2421			/*
2422			 * block out dcons buffer
2423			 */
2424			if (dcons_addr > 0
2425			    && pa >= trunc_page(dcons_addr)
2426			    && pa < dcons_addr + dcons_size)
2427				goto do_dump_avail;
2428
2429			page_bad = FALSE;
2430			if (memtest == 0)
2431				goto skip_memtest;
2432
2433			/*
2434			 * map page into kernel: valid, read/write,non-cacheable
2435			 */
2436			*pte = pa | PG_V | PG_RW | PG_N;
2437			invltlb();
2438
2439			tmp = *(int *)ptr;
2440			/*
2441			 * Test for alternating 1's and 0's
2442			 */
2443			*(volatile int *)ptr = 0xaaaaaaaa;
2444			if (*(volatile int *)ptr != 0xaaaaaaaa)
2445				page_bad = TRUE;
2446			/*
2447			 * Test for alternating 0's and 1's
2448			 */
2449			*(volatile int *)ptr = 0x55555555;
2450			if (*(volatile int *)ptr != 0x55555555)
2451				page_bad = TRUE;
2452			/*
2453			 * Test for all 1's
2454			 */
2455			*(volatile int *)ptr = 0xffffffff;
2456			if (*(volatile int *)ptr != 0xffffffff)
2457				page_bad = TRUE;
2458			/*
2459			 * Test for all 0's
2460			 */
2461			*(volatile int *)ptr = 0x0;
2462			if (*(volatile int *)ptr != 0x0)
2463				page_bad = TRUE;
2464			/*
2465			 * Restore original value.
2466			 */
2467			*(int *)ptr = tmp;
2468
2469skip_memtest:
2470			/*
2471			 * Adjust array of valid/good pages.
2472			 */
2473			if (page_bad == TRUE)
2474				continue;
2475			/*
2476			 * If this good page is a continuation of the
2477			 * previous set of good pages, then just increase
2478			 * the end pointer. Otherwise start a new chunk.
2479			 * Note that "end" points one higher than end,
2480			 * making the range >= start and < end.
2481			 * If we're also doing a speculative memory
2482			 * test and we at or past the end, bump up Maxmem
2483			 * so that we keep going. The first bad page
2484			 * will terminate the loop.
2485			 */
2486			if (phys_avail[pa_indx] == pa) {
2487				phys_avail[pa_indx] += PAGE_SIZE;
2488			} else {
2489				pa_indx++;
2490				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2491					printf(
2492		"Too many holes in the physical address space, giving up\n");
2493					pa_indx--;
2494					full = TRUE;
2495					goto do_dump_avail;
2496				}
2497				phys_avail[pa_indx++] = pa;	/* start */
2498				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2499			}
2500			physmem++;
2501do_dump_avail:
2502			if (dump_avail[da_indx] == pa) {
2503				dump_avail[da_indx] += PAGE_SIZE;
2504			} else {
2505				da_indx++;
2506				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2507					da_indx--;
2508					goto do_next;
2509				}
2510				dump_avail[da_indx++] = pa;	/* start */
2511				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2512			}
2513do_next:
2514			if (full)
2515				break;
2516		}
2517	}
2518	*pte = 0;
2519	invltlb();
2520#else
2521	phys_avail[0] = physfree;
2522	phys_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2523	dump_avail[0] = 0;
2524	dump_avail[1] = xen_start_info->nr_pages*PAGE_SIZE;
2525
2526#endif
2527
2528	/*
2529	 * XXX
2530	 * The last chunk must contain at least one page plus the message
2531	 * buffer to avoid complicating other code (message buffer address
2532	 * calculation, etc.).
2533	 */
2534	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2535	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2536		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2537		phys_avail[pa_indx--] = 0;
2538		phys_avail[pa_indx--] = 0;
2539	}
2540
2541	Maxmem = atop(phys_avail[pa_indx]);
2542
2543	/* Trim off space for the message buffer. */
2544	phys_avail[pa_indx] -= round_page(msgbufsize);
2545
2546	/* Map the message buffer. */
2547	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2548		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2549		    off);
2550
2551	PT_UPDATES_FLUSH();
2552}
2553
2554#ifdef XEN
2555#define MTOPSIZE (1<<(14 + PAGE_SHIFT))
2556
2557void
2558init386(first)
2559	int first;
2560{
2561	unsigned long gdtmachpfn;
2562	int error, gsel_tss, metadata_missing, x, pa;
2563	size_t kstack0_sz;
2564	struct pcpu *pc;
2565	struct callback_register event = {
2566		.type = CALLBACKTYPE_event,
2567		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)Xhypervisor_callback },
2568	};
2569	struct callback_register failsafe = {
2570		.type = CALLBACKTYPE_failsafe,
2571		.address = {GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback },
2572	};
2573
2574	thread0.td_kstack = proc0kstack;
2575	thread0.td_kstack_pages = KSTACK_PAGES;
2576	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
2577	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
2578
2579	/*
2580 	 * This may be done better later if it gets more high level
2581 	 * components in it. If so just link td->td_proc here.
2582	 */
2583	proc_linkup0(&proc0, &thread0);
2584
2585	metadata_missing = 0;
2586	if (xen_start_info->mod_start) {
2587		preload_metadata = (caddr_t)xen_start_info->mod_start;
2588		preload_bootstrap_relocate(KERNBASE);
2589	} else {
2590		metadata_missing = 1;
2591	}
2592	if (envmode == 1)
2593		kern_envp = static_env;
2594	else if ((caddr_t)xen_start_info->cmd_line)
2595	        kern_envp = xen_setbootenv((caddr_t)xen_start_info->cmd_line);
2596
2597	boothowto |= xen_boothowto(kern_envp);
2598
2599	/* Init basic tunables, hz etc */
2600	init_param1();
2601
2602	/*
2603	 * XEN occupies a portion of the upper virtual address space
2604	 * At its base it manages an array mapping machine page frames
2605	 * to physical page frames - hence we need to be able to
2606	 * access 4GB - (64MB  - 4MB + 64k)
2607	 */
2608	gdt_segs[GPRIV_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2609	gdt_segs[GUFS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2610	gdt_segs[GUGS_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2611	gdt_segs[GCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2612	gdt_segs[GDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2613	gdt_segs[GUCODE_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2614	gdt_segs[GUDATA_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2615	gdt_segs[GBIOSLOWMEM_SEL].ssd_limit = atop(HYPERVISOR_VIRT_START + MTOPSIZE);
2616
2617	pc = &__pcpu[0];
2618	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2619	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2620
2621	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V | PG_RW);
2622	bzero(gdt, PAGE_SIZE);
2623	for (x = 0; x < NGDT; x++)
2624		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2625
2626	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2627
2628	gdtmachpfn = vtomach(gdt) >> PAGE_SHIFT;
2629	PT_SET_MA(gdt, xpmap_ptom(VTOP(gdt)) | PG_V);
2630	PANIC_IF(HYPERVISOR_set_gdt(&gdtmachpfn, 512) != 0);
2631	lgdt(&r_gdt);
2632	gdtset = 1;
2633
2634	if ((error = HYPERVISOR_set_trap_table(trap_table)) != 0) {
2635		panic("set_trap_table failed - error %d\n", error);
2636	}
2637
2638	error = HYPERVISOR_callback_op(CALLBACKOP_register, &event);
2639	if (error == 0)
2640		error = HYPERVISOR_callback_op(CALLBACKOP_register, &failsafe);
2641#if	CONFIG_XEN_COMPAT <= 0x030002
2642	if (error == -ENOXENSYS)
2643		HYPERVISOR_set_callbacks(GSEL(GCODE_SEL, SEL_KPL),
2644		    (unsigned long)Xhypervisor_callback,
2645		    GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
2646#endif
2647	pcpu_init(pc, 0, sizeof(struct pcpu));
2648	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2649		pmap_kenter(pa + KERNBASE, pa);
2650	dpcpu_init((void *)(first + KERNBASE), 0);
2651	first += DPCPU_SIZE;
2652	physfree += DPCPU_SIZE;
2653	init_first += DPCPU_SIZE / PAGE_SIZE;
2654
2655	PCPU_SET(prvspace, pc);
2656	PCPU_SET(curthread, &thread0);
2657	PCPU_SET(curpcb, thread0.td_pcb);
2658
2659	/*
2660	 * Initialize mutexes.
2661	 *
2662	 * icu_lock: in order to allow an interrupt to occur in a critical
2663	 * 	     section, to set pcpu->ipending (etc...) properly, we
2664	 *	     must be able to get the icu lock, so it can't be
2665	 *	     under witness.
2666	 */
2667	mutex_init();
2668	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2669
2670	/* make ldt memory segments */
2671	PT_SET_MA(ldt, xpmap_ptom(VTOP(ldt)) | PG_V | PG_RW);
2672	bzero(ldt, PAGE_SIZE);
2673	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2674	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2675	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2676		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2677
2678	default_proc_ldt.ldt_base = (caddr_t)ldt;
2679	default_proc_ldt.ldt_len = 6;
2680	_default_ldt = (int)&default_proc_ldt;
2681	PCPU_SET(currentldt, _default_ldt);
2682	PT_SET_MA(ldt, *vtopte((unsigned long)ldt) & ~PG_RW);
2683	xen_set_ldt((unsigned long) ldt, (sizeof ldt_segs / sizeof ldt_segs[0]));
2684
2685#if defined(XEN_PRIVILEGED)
2686	/*
2687	 * Initialize the i8254 before the console so that console
2688	 * initialization can use DELAY().
2689	 */
2690	i8254_init();
2691#endif
2692
2693	/*
2694	 * Initialize the console before we print anything out.
2695	 */
2696	cninit();
2697
2698	if (metadata_missing)
2699		printf("WARNING: loader(8) metadata is missing!\n");
2700
2701#ifdef DEV_ISA
2702#ifdef DEV_ATPIC
2703	elcr_probe();
2704	atpic_startup();
2705#else
2706	/* Reset and mask the atpics and leave them shut down. */
2707	atpic_reset();
2708
2709	/*
2710	 * Point the ICU spurious interrupt vectors at the APIC spurious
2711	 * interrupt handler.
2712	 */
2713	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2714	    GSEL(GCODE_SEL, SEL_KPL));
2715	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2716	    GSEL(GCODE_SEL, SEL_KPL));
2717#endif
2718#endif
2719
2720#ifdef DDB
2721	ksym_start = bootinfo.bi_symtab;
2722	ksym_end = bootinfo.bi_esymtab;
2723#endif
2724
2725	kdb_init();
2726
2727#ifdef KDB
2728	if (boothowto & RB_KDB)
2729		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2730#endif
2731
2732	finishidentcpu();	/* Final stage of CPU initialization */
2733	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2734	    GSEL(GCODE_SEL, SEL_KPL));
2735	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2736	    GSEL(GCODE_SEL, SEL_KPL));
2737	initializecpu();	/* Initialize CPU registers */
2738
2739	/* make an initial tss so cpu can get interrupt stack on syscall! */
2740	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2741	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2742	    kstack0_sz - sizeof(struct pcb) - 16);
2743	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2744	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2745	HYPERVISOR_stack_switch(GSEL(GDATA_SEL, SEL_KPL),
2746	    PCPU_GET(common_tss.tss_esp0));
2747
2748	/* pointer to selector slot for %fs/%gs */
2749	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2750
2751	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2752	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2753	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2754	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2755#ifdef PAE
2756	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2757#else
2758	dblfault_tss.tss_cr3 = (int)IdlePTD;
2759#endif
2760	dblfault_tss.tss_eip = (int)dblfault_handler;
2761	dblfault_tss.tss_eflags = PSL_KERNEL;
2762	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2763	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2764	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2765	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2766	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2767
2768	vm86_initialize();
2769	getmemsize(first);
2770	init_param2(physmem);
2771
2772	/* now running on new page tables, configured,and u/iom is accessible */
2773
2774	msgbufinit(msgbufp, msgbufsize);
2775	/* transfer to user mode */
2776
2777	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2778	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2779
2780	/* setup proc 0's pcb */
2781	thread0.td_pcb->pcb_flags = 0;
2782#ifdef PAE
2783	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2784#else
2785	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2786#endif
2787	thread0.td_pcb->pcb_ext = 0;
2788	thread0.td_frame = &proc0_tf;
2789	thread0.td_pcb->pcb_fsd = PCPU_GET(fsgs_gdt)[0];
2790	thread0.td_pcb->pcb_gsd = PCPU_GET(fsgs_gdt)[1];
2791
2792	cpu_probe_amdc1e();
2793}
2794
2795#else
2796void
2797init386(first)
2798	int first;
2799{
2800	struct gate_descriptor *gdp;
2801	int gsel_tss, metadata_missing, x, pa;
2802	size_t kstack0_sz;
2803	struct pcpu *pc;
2804
2805	thread0.td_kstack = proc0kstack;
2806	thread0.td_kstack_pages = KSTACK_PAGES;
2807	kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
2808	thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
2809
2810	/*
2811 	 * This may be done better later if it gets more high level
2812 	 * components in it. If so just link td->td_proc here.
2813	 */
2814	proc_linkup0(&proc0, &thread0);
2815
2816	metadata_missing = 0;
2817	if (bootinfo.bi_modulep) {
2818		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2819		preload_bootstrap_relocate(KERNBASE);
2820	} else {
2821		metadata_missing = 1;
2822	}
2823	if (envmode == 1)
2824		kern_envp = static_env;
2825	else if (bootinfo.bi_envp)
2826		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2827
2828	/* Init basic tunables, hz etc */
2829	init_param1();
2830
2831	/*
2832	 * Make gdt memory segments.  All segments cover the full 4GB
2833	 * of address space and permissions are enforced at page level.
2834	 */
2835	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2836	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2837	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2838	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2839	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2840	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2841
2842	pc = &__pcpu[0];
2843	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2844	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2845	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2846
2847	for (x = 0; x < NGDT; x++)
2848		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2849
2850	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2851	r_gdt.rd_base =  (int) gdt;
2852	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2853	lgdt(&r_gdt);
2854
2855	pcpu_init(pc, 0, sizeof(struct pcpu));
2856	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2857		pmap_kenter(pa + KERNBASE, pa);
2858	dpcpu_init((void *)(first + KERNBASE), 0);
2859	first += DPCPU_SIZE;
2860	PCPU_SET(prvspace, pc);
2861	PCPU_SET(curthread, &thread0);
2862	PCPU_SET(curpcb, thread0.td_pcb);
2863
2864	/*
2865	 * Initialize mutexes.
2866	 *
2867	 * icu_lock: in order to allow an interrupt to occur in a critical
2868	 * 	     section, to set pcpu->ipending (etc...) properly, we
2869	 *	     must be able to get the icu lock, so it can't be
2870	 *	     under witness.
2871	 */
2872	mutex_init();
2873	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2874
2875	/* make ldt memory segments */
2876	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2877	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2878	for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
2879		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2880
2881	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2882	lldt(_default_ldt);
2883	PCPU_SET(currentldt, _default_ldt);
2884
2885	/* exceptions */
2886	for (x = 0; x < NIDT; x++)
2887		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2888		    GSEL(GCODE_SEL, SEL_KPL));
2889	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2890	    GSEL(GCODE_SEL, SEL_KPL));
2891	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2892	    GSEL(GCODE_SEL, SEL_KPL));
2893	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2894	    GSEL(GCODE_SEL, SEL_KPL));
2895 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2896	    GSEL(GCODE_SEL, SEL_KPL));
2897	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2898	    GSEL(GCODE_SEL, SEL_KPL));
2899	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2900	    GSEL(GCODE_SEL, SEL_KPL));
2901	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2902	    GSEL(GCODE_SEL, SEL_KPL));
2903	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2904	    , GSEL(GCODE_SEL, SEL_KPL));
2905	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2906	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2907	    GSEL(GCODE_SEL, SEL_KPL));
2908	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2909	    GSEL(GCODE_SEL, SEL_KPL));
2910	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2911	    GSEL(GCODE_SEL, SEL_KPL));
2912	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2913	    GSEL(GCODE_SEL, SEL_KPL));
2914	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2915	    GSEL(GCODE_SEL, SEL_KPL));
2916	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2917	    GSEL(GCODE_SEL, SEL_KPL));
2918	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2919	    GSEL(GCODE_SEL, SEL_KPL));
2920	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2921	    GSEL(GCODE_SEL, SEL_KPL));
2922	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2923	    GSEL(GCODE_SEL, SEL_KPL));
2924	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2925	    GSEL(GCODE_SEL, SEL_KPL));
2926 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2927	    GSEL(GCODE_SEL, SEL_KPL));
2928#ifdef KDTRACE_HOOKS
2929	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
2930	    GSEL(GCODE_SEL, SEL_KPL));
2931#endif
2932#ifdef XENHVM
2933	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
2934	    GSEL(GCODE_SEL, SEL_KPL));
2935#endif
2936
2937	r_idt.rd_limit = sizeof(idt0) - 1;
2938	r_idt.rd_base = (int) idt;
2939	lidt(&r_idt);
2940
2941#ifdef XBOX
2942	/*
2943	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2944	 * This should be 0x10de / 0x02a5.
2945	 *
2946	 * This is exactly what Linux does.
2947	 */
2948	outl(0xcf8, 0x80000000);
2949	if (inl(0xcfc) == 0x02a510de) {
2950		arch_i386_is_xbox = 1;
2951		pic16l_setled(XBOX_LED_GREEN);
2952
2953		/*
2954		 * We are an XBOX, but we may have either 64MB or 128MB of
2955		 * memory. The PCI host bridge should be programmed for this,
2956		 * so we just query it.
2957		 */
2958		outl(0xcf8, 0x80000084);
2959		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2960	}
2961#endif /* XBOX */
2962
2963	/*
2964	 * Initialize the i8254 before the console so that console
2965	 * initialization can use DELAY().
2966	 */
2967	i8254_init();
2968
2969	/*
2970	 * Initialize the console before we print anything out.
2971	 */
2972	cninit();
2973
2974	if (metadata_missing)
2975		printf("WARNING: loader(8) metadata is missing!\n");
2976
2977#ifdef DEV_ISA
2978#ifdef DEV_ATPIC
2979	elcr_probe();
2980	atpic_startup();
2981#else
2982	/* Reset and mask the atpics and leave them shut down. */
2983	atpic_reset();
2984
2985	/*
2986	 * Point the ICU spurious interrupt vectors at the APIC spurious
2987	 * interrupt handler.
2988	 */
2989	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2990	    GSEL(GCODE_SEL, SEL_KPL));
2991	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2992	    GSEL(GCODE_SEL, SEL_KPL));
2993#endif
2994#endif
2995
2996#ifdef DDB
2997	ksym_start = bootinfo.bi_symtab;
2998	ksym_end = bootinfo.bi_esymtab;
2999#endif
3000
3001	kdb_init();
3002
3003#ifdef KDB
3004	if (boothowto & RB_KDB)
3005		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
3006#endif
3007
3008	finishidentcpu();	/* Final stage of CPU initialization */
3009	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
3010	    GSEL(GCODE_SEL, SEL_KPL));
3011	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
3012	    GSEL(GCODE_SEL, SEL_KPL));
3013	initializecpu();	/* Initialize CPU registers */
3014
3015	/* make an initial tss so cpu can get interrupt stack on syscall! */
3016	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
3017	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
3018	    kstack0_sz - sizeof(struct pcb) - 16);
3019	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
3020	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
3021	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
3022	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
3023	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
3024	ltr(gsel_tss);
3025
3026	/* pointer to selector slot for %fs/%gs */
3027	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
3028
3029	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
3030	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
3031	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
3032	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
3033#ifdef PAE
3034	dblfault_tss.tss_cr3 = (int)IdlePDPT;
3035#else
3036	dblfault_tss.tss_cr3 = (int)IdlePTD;
3037#endif
3038	dblfault_tss.tss_eip = (int)dblfault_handler;
3039	dblfault_tss.tss_eflags = PSL_KERNEL;
3040	dblfault_tss.tss_ds = dblfault_tss.tss_es =
3041	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
3042	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
3043	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
3044	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
3045
3046	vm86_initialize();
3047	getmemsize(first);
3048	init_param2(physmem);
3049
3050	/* now running on new page tables, configured,and u/iom is accessible */
3051
3052	msgbufinit(msgbufp, msgbufsize);
3053
3054	/* make a call gate to reenter kernel with */
3055	gdp = &ldt[LSYS5CALLS_SEL].gd;
3056
3057	x = (int) &IDTVEC(lcall_syscall);
3058	gdp->gd_looffset = x;
3059	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
3060	gdp->gd_stkcpy = 1;
3061	gdp->gd_type = SDT_SYS386CGT;
3062	gdp->gd_dpl = SEL_UPL;
3063	gdp->gd_p = 1;
3064	gdp->gd_hioffset = x >> 16;
3065
3066	/* XXX does this work? */
3067	/* XXX yes! */
3068	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
3069	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
3070
3071	/* transfer to user mode */
3072
3073	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
3074	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
3075
3076	/* setup proc 0's pcb */
3077	thread0.td_pcb->pcb_flags = 0;
3078#ifdef PAE
3079	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
3080#else
3081	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
3082#endif
3083	thread0.td_pcb->pcb_ext = 0;
3084	thread0.td_frame = &proc0_tf;
3085
3086	cpu_probe_amdc1e();
3087
3088#ifdef FDT
3089	x86_init_fdt();
3090#endif
3091}
3092#endif
3093
3094void
3095cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
3096{
3097
3098	pcpu->pc_acpi_id = 0xffffffff;
3099}
3100
3101void
3102spinlock_enter(void)
3103{
3104	struct thread *td;
3105	register_t flags;
3106
3107	td = curthread;
3108	if (td->td_md.md_spinlock_count == 0) {
3109		flags = intr_disable();
3110		td->td_md.md_spinlock_count = 1;
3111		td->td_md.md_saved_flags = flags;
3112	} else
3113		td->td_md.md_spinlock_count++;
3114	critical_enter();
3115}
3116
3117void
3118spinlock_exit(void)
3119{
3120	struct thread *td;
3121	register_t flags;
3122
3123	td = curthread;
3124	critical_exit();
3125	flags = td->td_md.md_saved_flags;
3126	td->td_md.md_spinlock_count--;
3127	if (td->td_md.md_spinlock_count == 0)
3128		intr_restore(flags);
3129}
3130
3131#if defined(I586_CPU) && !defined(NO_F00F_HACK)
3132static void f00f_hack(void *unused);
3133SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
3134
3135static void
3136f00f_hack(void *unused)
3137{
3138	struct gate_descriptor *new_idt;
3139	vm_offset_t tmp;
3140
3141	if (!has_f00f_bug)
3142		return;
3143
3144	GIANT_REQUIRED;
3145
3146	printf("Intel Pentium detected, installing workaround for F00F bug\n");
3147
3148	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
3149	if (tmp == 0)
3150		panic("kmem_malloc returned 0");
3151
3152	/* Put the problematic entry (#6) at the end of the lower page. */
3153	new_idt = (struct gate_descriptor*)
3154	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
3155	bcopy(idt, new_idt, sizeof(idt0));
3156	r_idt.rd_base = (u_int)new_idt;
3157	lidt(&r_idt);
3158	idt = new_idt;
3159	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
3160}
3161#endif /* defined(I586_CPU) && !NO_F00F_HACK */
3162
3163/*
3164 * Construct a PCB from a trapframe. This is called from kdb_trap() where
3165 * we want to start a backtrace from the function that caused us to enter
3166 * the debugger. We have the context in the trapframe, but base the trace
3167 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
3168 * enough for a backtrace.
3169 */
3170void
3171makectx(struct trapframe *tf, struct pcb *pcb)
3172{
3173
3174	pcb->pcb_edi = tf->tf_edi;
3175	pcb->pcb_esi = tf->tf_esi;
3176	pcb->pcb_ebp = tf->tf_ebp;
3177	pcb->pcb_ebx = tf->tf_ebx;
3178	pcb->pcb_eip = tf->tf_eip;
3179	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
3180}
3181
3182int
3183ptrace_set_pc(struct thread *td, u_long addr)
3184{
3185
3186	td->td_frame->tf_eip = addr;
3187	return (0);
3188}
3189
3190int
3191ptrace_single_step(struct thread *td)
3192{
3193	td->td_frame->tf_eflags |= PSL_T;
3194	return (0);
3195}
3196
3197int
3198ptrace_clear_single_step(struct thread *td)
3199{
3200	td->td_frame->tf_eflags &= ~PSL_T;
3201	return (0);
3202}
3203
3204int
3205fill_regs(struct thread *td, struct reg *regs)
3206{
3207	struct pcb *pcb;
3208	struct trapframe *tp;
3209
3210	tp = td->td_frame;
3211	pcb = td->td_pcb;
3212	regs->r_gs = pcb->pcb_gs;
3213	return (fill_frame_regs(tp, regs));
3214}
3215
3216int
3217fill_frame_regs(struct trapframe *tp, struct reg *regs)
3218{
3219	regs->r_fs = tp->tf_fs;
3220	regs->r_es = tp->tf_es;
3221	regs->r_ds = tp->tf_ds;
3222	regs->r_edi = tp->tf_edi;
3223	regs->r_esi = tp->tf_esi;
3224	regs->r_ebp = tp->tf_ebp;
3225	regs->r_ebx = tp->tf_ebx;
3226	regs->r_edx = tp->tf_edx;
3227	regs->r_ecx = tp->tf_ecx;
3228	regs->r_eax = tp->tf_eax;
3229	regs->r_eip = tp->tf_eip;
3230	regs->r_cs = tp->tf_cs;
3231	regs->r_eflags = tp->tf_eflags;
3232	regs->r_esp = tp->tf_esp;
3233	regs->r_ss = tp->tf_ss;
3234	return (0);
3235}
3236
3237int
3238set_regs(struct thread *td, struct reg *regs)
3239{
3240	struct pcb *pcb;
3241	struct trapframe *tp;
3242
3243	tp = td->td_frame;
3244	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
3245	    !CS_SECURE(regs->r_cs))
3246		return (EINVAL);
3247	pcb = td->td_pcb;
3248	tp->tf_fs = regs->r_fs;
3249	tp->tf_es = regs->r_es;
3250	tp->tf_ds = regs->r_ds;
3251	tp->tf_edi = regs->r_edi;
3252	tp->tf_esi = regs->r_esi;
3253	tp->tf_ebp = regs->r_ebp;
3254	tp->tf_ebx = regs->r_ebx;
3255	tp->tf_edx = regs->r_edx;
3256	tp->tf_ecx = regs->r_ecx;
3257	tp->tf_eax = regs->r_eax;
3258	tp->tf_eip = regs->r_eip;
3259	tp->tf_cs = regs->r_cs;
3260	tp->tf_eflags = regs->r_eflags;
3261	tp->tf_esp = regs->r_esp;
3262	tp->tf_ss = regs->r_ss;
3263	pcb->pcb_gs = regs->r_gs;
3264	return (0);
3265}
3266
3267#ifdef CPU_ENABLE_SSE
3268static void
3269fill_fpregs_xmm(sv_xmm, sv_87)
3270	struct savexmm *sv_xmm;
3271	struct save87 *sv_87;
3272{
3273	register struct env87 *penv_87 = &sv_87->sv_env;
3274	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3275	int i;
3276
3277	bzero(sv_87, sizeof(*sv_87));
3278
3279	/* FPU control/status */
3280	penv_87->en_cw = penv_xmm->en_cw;
3281	penv_87->en_sw = penv_xmm->en_sw;
3282	penv_87->en_tw = penv_xmm->en_tw;
3283	penv_87->en_fip = penv_xmm->en_fip;
3284	penv_87->en_fcs = penv_xmm->en_fcs;
3285	penv_87->en_opcode = penv_xmm->en_opcode;
3286	penv_87->en_foo = penv_xmm->en_foo;
3287	penv_87->en_fos = penv_xmm->en_fos;
3288
3289	/* FPU registers */
3290	for (i = 0; i < 8; ++i)
3291		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
3292}
3293
3294static void
3295set_fpregs_xmm(sv_87, sv_xmm)
3296	struct save87 *sv_87;
3297	struct savexmm *sv_xmm;
3298{
3299	register struct env87 *penv_87 = &sv_87->sv_env;
3300	register struct envxmm *penv_xmm = &sv_xmm->sv_env;
3301	int i;
3302
3303	/* FPU control/status */
3304	penv_xmm->en_cw = penv_87->en_cw;
3305	penv_xmm->en_sw = penv_87->en_sw;
3306	penv_xmm->en_tw = penv_87->en_tw;
3307	penv_xmm->en_fip = penv_87->en_fip;
3308	penv_xmm->en_fcs = penv_87->en_fcs;
3309	penv_xmm->en_opcode = penv_87->en_opcode;
3310	penv_xmm->en_foo = penv_87->en_foo;
3311	penv_xmm->en_fos = penv_87->en_fos;
3312
3313	/* FPU registers */
3314	for (i = 0; i < 8; ++i)
3315		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
3316}
3317#endif /* CPU_ENABLE_SSE */
3318
3319int
3320fill_fpregs(struct thread *td, struct fpreg *fpregs)
3321{
3322
3323	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3324	    P_SHOULDSTOP(td->td_proc),
3325	    ("not suspended thread %p", td));
3326#ifdef DEV_NPX
3327	npxgetregs(td);
3328#else
3329	bzero(fpregs, sizeof(*fpregs));
3330#endif
3331#ifdef CPU_ENABLE_SSE
3332	if (cpu_fxsr)
3333		fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
3334		    (struct save87 *)fpregs);
3335	else
3336#endif /* CPU_ENABLE_SSE */
3337		bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
3338		    sizeof(*fpregs));
3339	return (0);
3340}
3341
3342int
3343set_fpregs(struct thread *td, struct fpreg *fpregs)
3344{
3345
3346#ifdef CPU_ENABLE_SSE
3347	if (cpu_fxsr)
3348		set_fpregs_xmm((struct save87 *)fpregs,
3349		    &td->td_pcb->pcb_user_save.sv_xmm);
3350	else
3351#endif /* CPU_ENABLE_SSE */
3352		bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
3353		    sizeof(*fpregs));
3354#ifdef DEV_NPX
3355	npxuserinited(td);
3356#endif
3357	return (0);
3358}
3359
3360/*
3361 * Get machine context.
3362 */
3363int
3364get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3365{
3366	struct trapframe *tp;
3367	struct segment_descriptor *sdp;
3368
3369	tp = td->td_frame;
3370
3371	PROC_LOCK(curthread->td_proc);
3372	mcp->mc_onstack = sigonstack(tp->tf_esp);
3373	PROC_UNLOCK(curthread->td_proc);
3374	mcp->mc_gs = td->td_pcb->pcb_gs;
3375	mcp->mc_fs = tp->tf_fs;
3376	mcp->mc_es = tp->tf_es;
3377	mcp->mc_ds = tp->tf_ds;
3378	mcp->mc_edi = tp->tf_edi;
3379	mcp->mc_esi = tp->tf_esi;
3380	mcp->mc_ebp = tp->tf_ebp;
3381	mcp->mc_isp = tp->tf_isp;
3382	mcp->mc_eflags = tp->tf_eflags;
3383	if (flags & GET_MC_CLEAR_RET) {
3384		mcp->mc_eax = 0;
3385		mcp->mc_edx = 0;
3386		mcp->mc_eflags &= ~PSL_C;
3387	} else {
3388		mcp->mc_eax = tp->tf_eax;
3389		mcp->mc_edx = tp->tf_edx;
3390	}
3391	mcp->mc_ebx = tp->tf_ebx;
3392	mcp->mc_ecx = tp->tf_ecx;
3393	mcp->mc_eip = tp->tf_eip;
3394	mcp->mc_cs = tp->tf_cs;
3395	mcp->mc_esp = tp->tf_esp;
3396	mcp->mc_ss = tp->tf_ss;
3397	mcp->mc_len = sizeof(*mcp);
3398	get_fpcontext(td, mcp);
3399	sdp = &td->td_pcb->pcb_fsd;
3400	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3401	sdp = &td->td_pcb->pcb_gsd;
3402	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3403	mcp->mc_flags = 0;
3404	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3405	return (0);
3406}
3407
3408/*
3409 * Set machine context.
3410 *
3411 * However, we don't set any but the user modifiable flags, and we won't
3412 * touch the cs selector.
3413 */
3414int
3415set_mcontext(struct thread *td, const mcontext_t *mcp)
3416{
3417	struct trapframe *tp;
3418	int eflags, ret;
3419
3420	tp = td->td_frame;
3421	if (mcp->mc_len != sizeof(*mcp))
3422		return (EINVAL);
3423	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3424	    (tp->tf_eflags & ~PSL_USERCHANGE);
3425	if ((ret = set_fpcontext(td, mcp)) == 0) {
3426		tp->tf_fs = mcp->mc_fs;
3427		tp->tf_es = mcp->mc_es;
3428		tp->tf_ds = mcp->mc_ds;
3429		tp->tf_edi = mcp->mc_edi;
3430		tp->tf_esi = mcp->mc_esi;
3431		tp->tf_ebp = mcp->mc_ebp;
3432		tp->tf_ebx = mcp->mc_ebx;
3433		tp->tf_edx = mcp->mc_edx;
3434		tp->tf_ecx = mcp->mc_ecx;
3435		tp->tf_eax = mcp->mc_eax;
3436		tp->tf_eip = mcp->mc_eip;
3437		tp->tf_eflags = eflags;
3438		tp->tf_esp = mcp->mc_esp;
3439		tp->tf_ss = mcp->mc_ss;
3440		td->td_pcb->pcb_gs = mcp->mc_gs;
3441		ret = 0;
3442	}
3443	return (ret);
3444}
3445
3446static void
3447get_fpcontext(struct thread *td, mcontext_t *mcp)
3448{
3449
3450#ifndef DEV_NPX
3451	mcp->mc_fpformat = _MC_FPFMT_NODEV;
3452	mcp->mc_ownedfp = _MC_FPOWNED_NONE;
3453	bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
3454#else
3455	mcp->mc_ownedfp = npxgetregs(td);
3456	bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0],
3457	    sizeof(mcp->mc_fpstate));
3458	mcp->mc_fpformat = npxformat();
3459#endif
3460}
3461
3462static int
3463set_fpcontext(struct thread *td, const mcontext_t *mcp)
3464{
3465
3466	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3467		return (0);
3468	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3469	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3470		return (EINVAL);
3471	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
3472		/* We don't care what state is left in the FPU or PCB. */
3473		fpstate_drop(td);
3474	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3475	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3476#ifdef DEV_NPX
3477#ifdef CPU_ENABLE_SSE
3478		if (cpu_fxsr)
3479			((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
3480			    en_mxcsr &= cpu_mxcsr_mask;
3481#endif
3482		npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
3483#endif
3484	} else
3485		return (EINVAL);
3486	return (0);
3487}
3488
3489static void
3490fpstate_drop(struct thread *td)
3491{
3492
3493	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3494	critical_enter();
3495#ifdef DEV_NPX
3496	if (PCPU_GET(fpcurthread) == td)
3497		npxdrop();
3498#endif
3499	/*
3500	 * XXX force a full drop of the npx.  The above only drops it if we
3501	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3502	 *
3503	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3504	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3505	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3506	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3507	 * have too many layers.
3508	 */
3509	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3510	    PCB_NPXUSERINITDONE);
3511	critical_exit();
3512}
3513
3514int
3515fill_dbregs(struct thread *td, struct dbreg *dbregs)
3516{
3517	struct pcb *pcb;
3518
3519	if (td == NULL) {
3520		dbregs->dr[0] = rdr0();
3521		dbregs->dr[1] = rdr1();
3522		dbregs->dr[2] = rdr2();
3523		dbregs->dr[3] = rdr3();
3524		dbregs->dr[4] = rdr4();
3525		dbregs->dr[5] = rdr5();
3526		dbregs->dr[6] = rdr6();
3527		dbregs->dr[7] = rdr7();
3528	} else {
3529		pcb = td->td_pcb;
3530		dbregs->dr[0] = pcb->pcb_dr0;
3531		dbregs->dr[1] = pcb->pcb_dr1;
3532		dbregs->dr[2] = pcb->pcb_dr2;
3533		dbregs->dr[3] = pcb->pcb_dr3;
3534		dbregs->dr[4] = 0;
3535		dbregs->dr[5] = 0;
3536		dbregs->dr[6] = pcb->pcb_dr6;
3537		dbregs->dr[7] = pcb->pcb_dr7;
3538	}
3539	return (0);
3540}
3541
3542int
3543set_dbregs(struct thread *td, struct dbreg *dbregs)
3544{
3545	struct pcb *pcb;
3546	int i;
3547
3548	if (td == NULL) {
3549		load_dr0(dbregs->dr[0]);
3550		load_dr1(dbregs->dr[1]);
3551		load_dr2(dbregs->dr[2]);
3552		load_dr3(dbregs->dr[3]);
3553		load_dr4(dbregs->dr[4]);
3554		load_dr5(dbregs->dr[5]);
3555		load_dr6(dbregs->dr[6]);
3556		load_dr7(dbregs->dr[7]);
3557	} else {
3558		/*
3559		 * Don't let an illegal value for dr7 get set.	Specifically,
3560		 * check for undefined settings.  Setting these bit patterns
3561		 * result in undefined behaviour and can lead to an unexpected
3562		 * TRCTRAP.
3563		 */
3564		for (i = 0; i < 4; i++) {
3565			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3566				return (EINVAL);
3567			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3568				return (EINVAL);
3569		}
3570
3571		pcb = td->td_pcb;
3572
3573		/*
3574		 * Don't let a process set a breakpoint that is not within the
3575		 * process's address space.  If a process could do this, it
3576		 * could halt the system by setting a breakpoint in the kernel
3577		 * (if ddb was enabled).  Thus, we need to check to make sure
3578		 * that no breakpoints are being enabled for addresses outside
3579		 * process's address space.
3580		 *
3581		 * XXX - what about when the watched area of the user's
3582		 * address space is written into from within the kernel
3583		 * ... wouldn't that still cause a breakpoint to be generated
3584		 * from within kernel mode?
3585		 */
3586
3587		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3588			/* dr0 is enabled */
3589			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3590				return (EINVAL);
3591		}
3592
3593		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3594			/* dr1 is enabled */
3595			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3596				return (EINVAL);
3597		}
3598
3599		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3600			/* dr2 is enabled */
3601			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3602				return (EINVAL);
3603		}
3604
3605		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3606			/* dr3 is enabled */
3607			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3608				return (EINVAL);
3609		}
3610
3611		pcb->pcb_dr0 = dbregs->dr[0];
3612		pcb->pcb_dr1 = dbregs->dr[1];
3613		pcb->pcb_dr2 = dbregs->dr[2];
3614		pcb->pcb_dr3 = dbregs->dr[3];
3615		pcb->pcb_dr6 = dbregs->dr[6];
3616		pcb->pcb_dr7 = dbregs->dr[7];
3617
3618		pcb->pcb_flags |= PCB_DBREGS;
3619	}
3620
3621	return (0);
3622}
3623
3624/*
3625 * Return > 0 if a hardware breakpoint has been hit, and the
3626 * breakpoint was in user space.  Return 0, otherwise.
3627 */
3628int
3629user_dbreg_trap(void)
3630{
3631        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
3632        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3633        int nbp;            /* number of breakpoints that triggered */
3634        caddr_t addr[4];    /* breakpoint addresses */
3635        int i;
3636
3637        dr7 = rdr7();
3638        if ((dr7 & 0x000000ff) == 0) {
3639                /*
3640                 * all GE and LE bits in the dr7 register are zero,
3641                 * thus the trap couldn't have been caused by the
3642                 * hardware debug registers
3643                 */
3644                return 0;
3645        }
3646
3647        nbp = 0;
3648        dr6 = rdr6();
3649        bp = dr6 & 0x0000000f;
3650
3651        if (!bp) {
3652                /*
3653                 * None of the breakpoint bits are set meaning this
3654                 * trap was not caused by any of the debug registers
3655                 */
3656                return 0;
3657        }
3658
3659        /*
3660         * at least one of the breakpoints were hit, check to see
3661         * which ones and if any of them are user space addresses
3662         */
3663
3664        if (bp & 0x01) {
3665                addr[nbp++] = (caddr_t)rdr0();
3666        }
3667        if (bp & 0x02) {
3668                addr[nbp++] = (caddr_t)rdr1();
3669        }
3670        if (bp & 0x04) {
3671                addr[nbp++] = (caddr_t)rdr2();
3672        }
3673        if (bp & 0x08) {
3674                addr[nbp++] = (caddr_t)rdr3();
3675        }
3676
3677        for (i = 0; i < nbp; i++) {
3678                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3679                        /*
3680                         * addr[i] is in user space
3681                         */
3682                        return nbp;
3683                }
3684        }
3685
3686        /*
3687         * None of the breakpoints are in user space.
3688         */
3689        return 0;
3690}
3691
3692#ifdef KDB
3693
3694/*
3695 * Provide inb() and outb() as functions.  They are normally only available as
3696 * inline functions, thus cannot be called from the debugger.
3697 */
3698
3699/* silence compiler warnings */
3700u_char inb_(u_short);
3701void outb_(u_short, u_char);
3702
3703u_char
3704inb_(u_short port)
3705{
3706	return inb(port);
3707}
3708
3709void
3710outb_(u_short port, u_char data)
3711{
3712	outb(port, data);
3713}
3714
3715#endif /* KDB */
3716