tr_raid1.c revision 260385
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/geom/raid/tr_raid1.c 260385 2014-01-07 01:32:23Z scottl $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/endian.h>
33#include <sys/kernel.h>
34#include <sys/kobj.h>
35#include <sys/limits.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/sysctl.h>
40#include <sys/systm.h>
41#include <geom/geom.h>
42#include "geom/raid/g_raid.h"
43#include "g_raid_tr_if.h"
44
45SYSCTL_DECL(_kern_geom_raid_raid1);
46
47#define RAID1_REBUILD_SLAB	(1 << 20) /* One transation in a rebuild */
48static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB;
49TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size",
50    &g_raid1_rebuild_slab);
51SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW,
52    &g_raid1_rebuild_slab, 0,
53    "Amount of the disk to rebuild each read/write cycle of the rebuild.");
54
55#define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */
56static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO;
57TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io",
58    &g_raid1_rebuild_fair_io);
59SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW,
60    &g_raid1_rebuild_fair_io, 0,
61    "Fraction of the I/O bandwidth to use when disk busy for rebuild.");
62
63#define RAID1_REBUILD_CLUSTER_IDLE 100
64static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE;
65TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle",
66    &g_raid1_rebuild_cluster_idle);
67SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW,
68    &g_raid1_rebuild_cluster_idle, 0,
69    "Number of slabs to do each time we trigger a rebuild cycle");
70
71#define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */
72static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE;
73TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update",
74    &g_raid1_rebuild_meta_update);
75SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW,
76    &g_raid1_rebuild_meta_update, 0,
77    "When to update the meta data.");
78
79static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data");
80
81#define TR_RAID1_NONE 0
82#define TR_RAID1_REBUILD 1
83#define TR_RAID1_RESYNC 2
84
85#define TR_RAID1_F_DOING_SOME	0x1
86#define TR_RAID1_F_LOCKED	0x2
87#define TR_RAID1_F_ABORT	0x4
88
89struct g_raid_tr_raid1_object {
90	struct g_raid_tr_object	 trso_base;
91	int			 trso_starting;
92	int			 trso_stopping;
93	int			 trso_type;
94	int			 trso_recover_slabs; /* slabs before rest */
95	int			 trso_fair_io;
96	int			 trso_meta_update;
97	int			 trso_flags;
98	struct g_raid_subdisk	*trso_failed_sd; /* like per volume */
99	void			*trso_buffer;	 /* Buffer space */
100	struct bio		 trso_bio;
101};
102
103static g_raid_tr_taste_t g_raid_tr_taste_raid1;
104static g_raid_tr_event_t g_raid_tr_event_raid1;
105static g_raid_tr_start_t g_raid_tr_start_raid1;
106static g_raid_tr_stop_t g_raid_tr_stop_raid1;
107static g_raid_tr_iostart_t g_raid_tr_iostart_raid1;
108static g_raid_tr_iodone_t g_raid_tr_iodone_raid1;
109static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1;
110static g_raid_tr_locked_t g_raid_tr_locked_raid1;
111static g_raid_tr_idle_t g_raid_tr_idle_raid1;
112static g_raid_tr_free_t g_raid_tr_free_raid1;
113
114static kobj_method_t g_raid_tr_raid1_methods[] = {
115	KOBJMETHOD(g_raid_tr_taste,	g_raid_tr_taste_raid1),
116	KOBJMETHOD(g_raid_tr_event,	g_raid_tr_event_raid1),
117	KOBJMETHOD(g_raid_tr_start,	g_raid_tr_start_raid1),
118	KOBJMETHOD(g_raid_tr_stop,	g_raid_tr_stop_raid1),
119	KOBJMETHOD(g_raid_tr_iostart,	g_raid_tr_iostart_raid1),
120	KOBJMETHOD(g_raid_tr_iodone,	g_raid_tr_iodone_raid1),
121	KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1),
122	KOBJMETHOD(g_raid_tr_locked,	g_raid_tr_locked_raid1),
123	KOBJMETHOD(g_raid_tr_idle,	g_raid_tr_idle_raid1),
124	KOBJMETHOD(g_raid_tr_free,	g_raid_tr_free_raid1),
125	{ 0, 0 }
126};
127
128static struct g_raid_tr_class g_raid_tr_raid1_class = {
129	"RAID1",
130	g_raid_tr_raid1_methods,
131	sizeof(struct g_raid_tr_raid1_object),
132	.trc_enable = 1,
133	.trc_priority = 100,
134	.trc_accept_unmapped = 1
135};
136
137static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr);
138static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
139    struct g_raid_subdisk *sd);
140
141static int
142g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
143{
144	struct g_raid_tr_raid1_object *trs;
145
146	trs = (struct g_raid_tr_raid1_object *)tr;
147	if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 ||
148	    (tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1SM &&
149	     tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1MM))
150		return (G_RAID_TR_TASTE_FAIL);
151	trs->trso_starting = 1;
152	return (G_RAID_TR_TASTE_SUCCEED);
153}
154
155static int
156g_raid_tr_update_state_raid1(struct g_raid_volume *vol,
157    struct g_raid_subdisk *sd)
158{
159	struct g_raid_tr_raid1_object *trs;
160	struct g_raid_softc *sc;
161	struct g_raid_subdisk *tsd, *bestsd;
162	u_int s;
163	int i, na, ns;
164
165	sc = vol->v_softc;
166	trs = (struct g_raid_tr_raid1_object *)vol->v_tr;
167	if (trs->trso_stopping &&
168	    (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0)
169		s = G_RAID_VOLUME_S_STOPPED;
170	else if (trs->trso_starting)
171		s = G_RAID_VOLUME_S_STARTING;
172	else {
173		/* Make sure we have at least one ACTIVE disk. */
174		na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
175		if (na == 0) {
176			/*
177			 * Critical situation! We have no any active disk!
178			 * Choose the best disk we have to make it active.
179			 */
180			bestsd = &vol->v_subdisks[0];
181			for (i = 1; i < vol->v_disks_count; i++) {
182				tsd = &vol->v_subdisks[i];
183				if (tsd->sd_state > bestsd->sd_state)
184					bestsd = tsd;
185				else if (tsd->sd_state == bestsd->sd_state &&
186				    (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
187				     tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
188				    tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos)
189					bestsd = tsd;
190			}
191			if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) {
192				/* We found reasonable candidate. */
193				G_RAID_DEBUG1(1, sc,
194				    "Promote subdisk %s:%d from %s to ACTIVE.",
195				    vol->v_name, bestsd->sd_pos,
196				    g_raid_subdisk_state2str(bestsd->sd_state));
197				g_raid_change_subdisk_state(bestsd,
198				    G_RAID_SUBDISK_S_ACTIVE);
199				g_raid_write_metadata(sc,
200				    vol, bestsd, bestsd->sd_disk);
201			}
202		}
203		na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
204		ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
205		     g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
206		if (na == vol->v_disks_count)
207			s = G_RAID_VOLUME_S_OPTIMAL;
208		else if (na + ns == vol->v_disks_count)
209			s = G_RAID_VOLUME_S_SUBOPTIMAL;
210		else if (na > 0)
211			s = G_RAID_VOLUME_S_DEGRADED;
212		else
213			s = G_RAID_VOLUME_S_BROKEN;
214		g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd);
215	}
216	if (s != vol->v_state) {
217		g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
218		    G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
219		    G_RAID_EVENT_VOLUME);
220		g_raid_change_volume_state(vol, s);
221		if (!trs->trso_starting && !trs->trso_stopping)
222			g_raid_write_metadata(sc, vol, NULL, NULL);
223	}
224	return (0);
225}
226
227static void
228g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd,
229    struct g_raid_disk *disk)
230{
231	/*
232	 * We don't fail the last disk in the pack, since it still has decent
233	 * data on it and that's better than failing the disk if it is the root
234	 * file system.
235	 *
236	 * XXX should this be controlled via a tunable?  It makes sense for
237	 * the volume that has / on it.  I can't think of a case where we'd
238	 * want the volume to go away on this kind of event.
239	 */
240	if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 &&
241	    g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd)
242		return;
243	g_raid_fail_disk(sc, sd, disk);
244}
245
246static void
247g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr)
248{
249	struct g_raid_tr_raid1_object *trs;
250	struct g_raid_subdisk *sd, *good_sd;
251	struct bio *bp;
252
253	trs = (struct g_raid_tr_raid1_object *)tr;
254	if (trs->trso_flags & TR_RAID1_F_DOING_SOME)
255		return;
256	sd = trs->trso_failed_sd;
257	good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE);
258	if (good_sd == NULL) {
259		g_raid_tr_raid1_rebuild_abort(tr);
260		return;
261	}
262	bp = &trs->trso_bio;
263	memset(bp, 0, sizeof(*bp));
264	bp->bio_offset = sd->sd_rebuild_pos;
265	bp->bio_length = MIN(g_raid1_rebuild_slab,
266	    sd->sd_size - sd->sd_rebuild_pos);
267	bp->bio_data = trs->trso_buffer;
268	bp->bio_cmd = BIO_READ;
269	bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
270	bp->bio_caller1 = good_sd;
271	trs->trso_flags |= TR_RAID1_F_DOING_SOME;
272	trs->trso_flags |= TR_RAID1_F_LOCKED;
273	g_raid_lock_range(sd->sd_volume,	/* Lock callback starts I/O */
274	   bp->bio_offset, bp->bio_length, NULL, bp);
275}
276
277static void
278g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs)
279{
280	struct g_raid_volume *vol;
281	struct g_raid_subdisk *sd;
282
283	vol = trs->trso_base.tro_volume;
284	sd = trs->trso_failed_sd;
285	g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk);
286	free(trs->trso_buffer, M_TR_RAID1);
287	trs->trso_buffer = NULL;
288	trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
289	trs->trso_type = TR_RAID1_NONE;
290	trs->trso_recover_slabs = 0;
291	trs->trso_failed_sd = NULL;
292	g_raid_tr_update_state_raid1(vol, NULL);
293}
294
295static void
296g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr)
297{
298	struct g_raid_tr_raid1_object *trs;
299	struct g_raid_subdisk *sd;
300
301	trs = (struct g_raid_tr_raid1_object *)tr;
302	sd = trs->trso_failed_sd;
303	G_RAID_DEBUG1(0, tr->tro_volume->v_softc,
304	    "Subdisk %s:%d-%s rebuild completed.",
305	    sd->sd_volume->v_name, sd->sd_pos,
306	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
307	g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE);
308	sd->sd_rebuild_pos = 0;
309	g_raid_tr_raid1_rebuild_done(trs);
310}
311
312static void
313g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr)
314{
315	struct g_raid_tr_raid1_object *trs;
316	struct g_raid_subdisk *sd;
317	struct g_raid_volume *vol;
318	off_t len;
319
320	vol = tr->tro_volume;
321	trs = (struct g_raid_tr_raid1_object *)tr;
322	sd = trs->trso_failed_sd;
323	if (trs->trso_flags & TR_RAID1_F_DOING_SOME) {
324		G_RAID_DEBUG1(1, vol->v_softc,
325		    "Subdisk %s:%d-%s rebuild is aborting.",
326		    sd->sd_volume->v_name, sd->sd_pos,
327		    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
328		trs->trso_flags |= TR_RAID1_F_ABORT;
329	} else {
330		G_RAID_DEBUG1(0, vol->v_softc,
331		    "Subdisk %s:%d-%s rebuild aborted.",
332		    sd->sd_volume->v_name, sd->sd_pos,
333		    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
334		trs->trso_flags &= ~TR_RAID1_F_ABORT;
335		if (trs->trso_flags & TR_RAID1_F_LOCKED) {
336			trs->trso_flags &= ~TR_RAID1_F_LOCKED;
337			len = MIN(g_raid1_rebuild_slab,
338			    sd->sd_size - sd->sd_rebuild_pos);
339			g_raid_unlock_range(tr->tro_volume,
340			    sd->sd_rebuild_pos, len);
341		}
342		g_raid_tr_raid1_rebuild_done(trs);
343	}
344}
345
346static void
347g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr)
348{
349	struct g_raid_volume *vol;
350	struct g_raid_tr_raid1_object *trs;
351	struct g_raid_subdisk *sd, *fsd;
352
353	vol = tr->tro_volume;
354	trs = (struct g_raid_tr_raid1_object *)tr;
355	if (trs->trso_failed_sd) {
356		G_RAID_DEBUG1(1, vol->v_softc,
357		    "Already rebuild in start rebuild. pos %jd\n",
358		    (intmax_t)trs->trso_failed_sd->sd_rebuild_pos);
359		return;
360	}
361	sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE);
362	if (sd == NULL) {
363		G_RAID_DEBUG1(1, vol->v_softc,
364		    "No active disk to rebuild.  night night.");
365		return;
366	}
367	fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC);
368	if (fsd == NULL)
369		fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD);
370	if (fsd == NULL) {
371		fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE);
372		if (fsd != NULL) {
373			fsd->sd_rebuild_pos = 0;
374			g_raid_change_subdisk_state(fsd,
375			    G_RAID_SUBDISK_S_RESYNC);
376			g_raid_write_metadata(vol->v_softc, vol, fsd, NULL);
377		} else {
378			fsd = g_raid_get_subdisk(vol,
379			    G_RAID_SUBDISK_S_UNINITIALIZED);
380			if (fsd == NULL)
381				fsd = g_raid_get_subdisk(vol,
382				    G_RAID_SUBDISK_S_NEW);
383			if (fsd != NULL) {
384				fsd->sd_rebuild_pos = 0;
385				g_raid_change_subdisk_state(fsd,
386				    G_RAID_SUBDISK_S_REBUILD);
387				g_raid_write_metadata(vol->v_softc,
388				    vol, fsd, NULL);
389			}
390		}
391	}
392	if (fsd == NULL) {
393		G_RAID_DEBUG1(1, vol->v_softc,
394		    "No failed disk to rebuild.  night night.");
395		return;
396	}
397	trs->trso_failed_sd = fsd;
398	G_RAID_DEBUG1(0, vol->v_softc,
399	    "Subdisk %s:%d-%s rebuild start at %jd.",
400	    fsd->sd_volume->v_name, fsd->sd_pos,
401	    fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]",
402	    trs->trso_failed_sd->sd_rebuild_pos);
403	trs->trso_type = TR_RAID1_REBUILD;
404	trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK);
405	trs->trso_meta_update = g_raid1_rebuild_meta_update;
406	g_raid_tr_raid1_rebuild_some(tr);
407}
408
409
410static void
411g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
412    struct g_raid_subdisk *sd)
413{
414	struct g_raid_volume *vol;
415	struct g_raid_tr_raid1_object *trs;
416	int na, nr;
417
418	/*
419	 * If we're stopping, don't do anything.  If we don't have at least one
420	 * good disk and one bad disk, we don't do anything.  And if there's a
421	 * 'good disk' stored in the trs, then we're in progress and we punt.
422	 * If we make it past all these checks, we need to rebuild.
423	 */
424	vol = tr->tro_volume;
425	trs = (struct g_raid_tr_raid1_object *)tr;
426	if (trs->trso_stopping)
427		return;
428	na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
429	nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) +
430	    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
431	switch(trs->trso_type) {
432	case TR_RAID1_NONE:
433		if (na == 0)
434			return;
435		if (nr == 0) {
436			nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) +
437			    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
438			    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
439			if (nr == 0)
440				return;
441		}
442		g_raid_tr_raid1_rebuild_start(tr);
443		break;
444	case TR_RAID1_REBUILD:
445		if (na == 0 || nr == 0 || trs->trso_failed_sd == sd)
446			g_raid_tr_raid1_rebuild_abort(tr);
447		break;
448	case TR_RAID1_RESYNC:
449		break;
450	}
451}
452
453static int
454g_raid_tr_event_raid1(struct g_raid_tr_object *tr,
455    struct g_raid_subdisk *sd, u_int event)
456{
457
458	g_raid_tr_update_state_raid1(tr->tro_volume, sd);
459	return (0);
460}
461
462static int
463g_raid_tr_start_raid1(struct g_raid_tr_object *tr)
464{
465	struct g_raid_tr_raid1_object *trs;
466	struct g_raid_volume *vol;
467
468	trs = (struct g_raid_tr_raid1_object *)tr;
469	vol = tr->tro_volume;
470	trs->trso_starting = 0;
471	g_raid_tr_update_state_raid1(vol, NULL);
472	return (0);
473}
474
475static int
476g_raid_tr_stop_raid1(struct g_raid_tr_object *tr)
477{
478	struct g_raid_tr_raid1_object *trs;
479	struct g_raid_volume *vol;
480
481	trs = (struct g_raid_tr_raid1_object *)tr;
482	vol = tr->tro_volume;
483	trs->trso_starting = 0;
484	trs->trso_stopping = 1;
485	g_raid_tr_update_state_raid1(vol, NULL);
486	return (0);
487}
488
489/*
490 * Select the disk to read from.  Take into account: subdisk state, running
491 * error recovery, average disk load, head position and possible cache hits.
492 */
493#define ABS(x)		(((x) >= 0) ? (x) : (-(x)))
494static struct g_raid_subdisk *
495g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp,
496    u_int mask)
497{
498	struct g_raid_subdisk *sd, *best;
499	int i, prio, bestprio;
500
501	best = NULL;
502	bestprio = INT_MAX;
503	for (i = 0; i < vol->v_disks_count; i++) {
504		sd = &vol->v_subdisks[i];
505		if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
506		    ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD &&
507		      sd->sd_state != G_RAID_SUBDISK_S_RESYNC) ||
508		     bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos))
509			continue;
510		if ((mask & (1 << i)) != 0)
511			continue;
512		prio = G_RAID_SUBDISK_LOAD(sd);
513		prio += min(sd->sd_recovery, 255) << 22;
514		prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16;
515		/* If disk head is precisely in position - highly prefer it. */
516		if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset)
517			prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE;
518		else
519		/* If disk head is close to position - prefer it. */
520		if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) <
521		    G_RAID_SUBDISK_TRACK_SIZE)
522			prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE;
523		if (prio < bestprio) {
524			best = sd;
525			bestprio = prio;
526		}
527	}
528	return (best);
529}
530
531static void
532g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp)
533{
534	struct g_raid_subdisk *sd;
535	struct bio *cbp;
536
537	sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0);
538	KASSERT(sd != NULL, ("No active disks in volume %s.",
539		tr->tro_volume->v_name));
540
541	cbp = g_clone_bio(bp);
542	if (cbp == NULL) {
543		g_raid_iodone(bp, ENOMEM);
544		return;
545	}
546
547	g_raid_subdisk_iostart(sd, cbp);
548}
549
550static void
551g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp)
552{
553	struct g_raid_volume *vol;
554	struct g_raid_subdisk *sd;
555	struct bio_queue_head queue;
556	struct bio *cbp;
557	int i;
558
559	vol = tr->tro_volume;
560
561	/*
562	 * Allocate all bios before sending any request, so we can return
563	 * ENOMEM in nice and clean way.
564	 */
565	bioq_init(&queue);
566	for (i = 0; i < vol->v_disks_count; i++) {
567		sd = &vol->v_subdisks[i];
568		switch (sd->sd_state) {
569		case G_RAID_SUBDISK_S_ACTIVE:
570			break;
571		case G_RAID_SUBDISK_S_REBUILD:
572			/*
573			 * When rebuilding, only part of this subdisk is
574			 * writable, the rest will be written as part of the
575			 * that process.
576			 */
577			if (bp->bio_offset >= sd->sd_rebuild_pos)
578				continue;
579			break;
580		case G_RAID_SUBDISK_S_STALE:
581		case G_RAID_SUBDISK_S_RESYNC:
582			/*
583			 * Resyncing still writes on the theory that the
584			 * resync'd disk is very close and writing it will
585			 * keep it that way better if we keep up while
586			 * resyncing.
587			 */
588			break;
589		default:
590			continue;
591		}
592		cbp = g_clone_bio(bp);
593		if (cbp == NULL)
594			goto failure;
595		cbp->bio_caller1 = sd;
596		bioq_insert_tail(&queue, cbp);
597	}
598	while ((cbp = bioq_takefirst(&queue)) != NULL) {
599		sd = cbp->bio_caller1;
600		cbp->bio_caller1 = NULL;
601		g_raid_subdisk_iostart(sd, cbp);
602	}
603	return;
604failure:
605	while ((cbp = bioq_takefirst(&queue)) != NULL)
606		g_destroy_bio(cbp);
607	if (bp->bio_error == 0)
608		bp->bio_error = ENOMEM;
609	g_raid_iodone(bp, bp->bio_error);
610}
611
612static void
613g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp)
614{
615	struct g_raid_volume *vol;
616	struct g_raid_tr_raid1_object *trs;
617
618	vol = tr->tro_volume;
619	trs = (struct g_raid_tr_raid1_object *)tr;
620	if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL &&
621	    vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL &&
622	    vol->v_state != G_RAID_VOLUME_S_DEGRADED) {
623		g_raid_iodone(bp, EIO);
624		return;
625	}
626	/*
627	 * If we're rebuilding, squeeze in rebuild activity every so often,
628	 * even when the disk is busy.  Be sure to only count real I/O
629	 * to the disk.  All 'SPECIAL' I/O is traffic generated to the disk
630	 * by this module.
631	 */
632	if (trs->trso_failed_sd != NULL &&
633	    !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) {
634		/* Make this new or running now round short. */
635		trs->trso_recover_slabs = 0;
636		if (--trs->trso_fair_io <= 0) {
637			trs->trso_fair_io = g_raid1_rebuild_fair_io;
638			g_raid_tr_raid1_rebuild_some(tr);
639		}
640	}
641	switch (bp->bio_cmd) {
642	case BIO_READ:
643		g_raid_tr_iostart_raid1_read(tr, bp);
644		break;
645	case BIO_WRITE:
646	case BIO_DELETE:
647		g_raid_tr_iostart_raid1_write(tr, bp);
648		break;
649	case BIO_FLUSH:
650		g_raid_tr_flush_common(tr, bp);
651		break;
652	default:
653		KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
654		    bp->bio_cmd, vol->v_name));
655		break;
656	}
657}
658
659static void
660g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr,
661    struct g_raid_subdisk *sd, struct bio *bp)
662{
663	struct bio *cbp;
664	struct g_raid_subdisk *nsd;
665	struct g_raid_volume *vol;
666	struct bio *pbp;
667	struct g_raid_tr_raid1_object *trs;
668	uintptr_t *mask;
669	int error, do_write;
670
671	trs = (struct g_raid_tr_raid1_object *)tr;
672	vol = tr->tro_volume;
673	if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) {
674		/*
675		 * This operation is part of a rebuild or resync operation.
676		 * See what work just got done, then schedule the next bit of
677		 * work, if any.  Rebuild/resync is done a little bit at a
678		 * time.  Either when a timeout happens, or after we get a
679		 * bunch of I/Os to the disk (to make sure an active system
680		 * will complete in a sane amount of time).
681		 *
682		 * We are setup to do differing amounts of work for each of
683		 * these cases.  so long as the slabs is smallish (less than
684		 * 50 or so, I'd guess, but that's just a WAG), we shouldn't
685		 * have any bio starvation issues.  For active disks, we do
686		 * 5MB of data, for inactive ones, we do 50MB.
687		 */
688		if (trs->trso_type == TR_RAID1_REBUILD) {
689			if (bp->bio_cmd == BIO_READ) {
690
691				/* Immediately abort rebuild, if requested. */
692				if (trs->trso_flags & TR_RAID1_F_ABORT) {
693					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
694					g_raid_tr_raid1_rebuild_abort(tr);
695					return;
696				}
697
698				/* On read error, skip and cross fingers. */
699				if (bp->bio_error != 0) {
700					G_RAID_LOGREQ(0, bp,
701					    "Read error during rebuild (%d), "
702					    "possible data loss!",
703					    bp->bio_error);
704					goto rebuild_round_done;
705				}
706
707				/*
708				 * The read operation finished, queue the
709				 * write and get out.
710				 */
711				G_RAID_LOGREQ(4, bp, "rebuild read done. %d",
712				    bp->bio_error);
713				bp->bio_cmd = BIO_WRITE;
714				bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
715				G_RAID_LOGREQ(4, bp, "Queueing rebuild write.");
716				g_raid_subdisk_iostart(trs->trso_failed_sd, bp);
717			} else {
718				/*
719				 * The write operation just finished.  Do
720				 * another.  We keep cloning the master bio
721				 * since it has the right buffers allocated to
722				 * it.
723				 */
724				G_RAID_LOGREQ(4, bp,
725				    "rebuild write done. Error %d",
726				    bp->bio_error);
727				nsd = trs->trso_failed_sd;
728				if (bp->bio_error != 0 ||
729				    trs->trso_flags & TR_RAID1_F_ABORT) {
730					if ((trs->trso_flags &
731					    TR_RAID1_F_ABORT) == 0) {
732						g_raid_tr_raid1_fail_disk(sd->sd_softc,
733						    nsd, nsd->sd_disk);
734					}
735					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
736					g_raid_tr_raid1_rebuild_abort(tr);
737					return;
738				}
739rebuild_round_done:
740				nsd = trs->trso_failed_sd;
741				trs->trso_flags &= ~TR_RAID1_F_LOCKED;
742				g_raid_unlock_range(sd->sd_volume,
743				    bp->bio_offset, bp->bio_length);
744				nsd->sd_rebuild_pos += bp->bio_length;
745				if (nsd->sd_rebuild_pos >= nsd->sd_size) {
746					g_raid_tr_raid1_rebuild_finish(tr);
747					return;
748				}
749
750				/* Abort rebuild if we are stopping */
751				if (trs->trso_stopping) {
752					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
753					g_raid_tr_raid1_rebuild_abort(tr);
754					return;
755				}
756
757				if (--trs->trso_meta_update <= 0) {
758					g_raid_write_metadata(vol->v_softc,
759					    vol, nsd, nsd->sd_disk);
760					trs->trso_meta_update =
761					    g_raid1_rebuild_meta_update;
762				}
763				trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
764				if (--trs->trso_recover_slabs <= 0)
765					return;
766				g_raid_tr_raid1_rebuild_some(tr);
767			}
768		} else if (trs->trso_type == TR_RAID1_RESYNC) {
769			/*
770			 * read good sd, read bad sd in parallel.  when both
771			 * done, compare the buffers.  write good to the bad
772			 * if different.  do the next bit of work.
773			 */
774			panic("Somehow, we think we're doing a resync");
775		}
776		return;
777	}
778	pbp = bp->bio_parent;
779	pbp->bio_inbed++;
780	if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) {
781		/*
782		 * Read failed on first drive.  Retry the read error on
783		 * another disk drive, if available, before erroring out the
784		 * read.
785		 */
786		sd->sd_disk->d_read_errs++;
787		G_RAID_LOGREQ(0, bp,
788		    "Read error (%d), %d read errors total",
789		    bp->bio_error, sd->sd_disk->d_read_errs);
790
791		/*
792		 * If there are too many read errors, we move to degraded.
793		 * XXX Do we want to FAIL the drive (eg, make the user redo
794		 * everything to get it back in sync), or just degrade the
795		 * drive, which kicks off a resync?
796		 */
797		do_write = 1;
798		if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) {
799			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
800			if (pbp->bio_children == 1)
801				do_write = 0;
802		}
803
804		/*
805		 * Find the other disk, and try to do the I/O to it.
806		 */
807		mask = (uintptr_t *)(&pbp->bio_driver2);
808		if (pbp->bio_children == 1) {
809			/* Save original subdisk. */
810			pbp->bio_driver1 = do_write ? sd : NULL;
811			*mask = 0;
812		}
813		*mask |= 1 << sd->sd_pos;
814		nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask);
815		if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) {
816			g_destroy_bio(bp);
817			G_RAID_LOGREQ(2, cbp, "Retrying read from %d",
818			    nsd->sd_pos);
819			if (pbp->bio_children == 2 && do_write) {
820				sd->sd_recovery++;
821				cbp->bio_caller1 = nsd;
822				pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED;
823				/* Lock callback starts I/O */
824				g_raid_lock_range(sd->sd_volume,
825				    cbp->bio_offset, cbp->bio_length, pbp, cbp);
826			} else {
827				g_raid_subdisk_iostart(nsd, cbp);
828			}
829			return;
830		}
831		/*
832		 * We can't retry.  Return the original error by falling
833		 * through.  This will happen when there's only one good disk.
834		 * We don't need to fail the raid, since its actual state is
835		 * based on the state of the subdisks.
836		 */
837		G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it");
838	}
839	if (bp->bio_cmd == BIO_READ &&
840	    bp->bio_error == 0 &&
841	    pbp->bio_children > 1 &&
842	    pbp->bio_driver1 != NULL) {
843		/*
844		 * If it was a read, and bio_children is >1, then we just
845		 * recovered the data from the second drive.  We should try to
846		 * write that data to the first drive if sector remapping is
847		 * enabled.  A write should put the data in a new place on the
848		 * disk, remapping the bad sector.  Do we need to do that by
849		 * queueing a request to the main worker thread?  It doesn't
850		 * affect the return code of this current read, and can be
851		 * done at our liesure.  However, to make the code simpler, it
852		 * is done syncrhonously.
853		 */
854		G_RAID_LOGREQ(3, bp, "Recovered data from other drive");
855		cbp = g_clone_bio(pbp);
856		if (cbp != NULL) {
857			g_destroy_bio(bp);
858			cbp->bio_cmd = BIO_WRITE;
859			cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP;
860			G_RAID_LOGREQ(2, cbp,
861			    "Attempting bad sector remap on failing drive.");
862			g_raid_subdisk_iostart(pbp->bio_driver1, cbp);
863			return;
864		}
865	}
866	if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) {
867		/*
868		 * We're done with a recovery, mark the range as unlocked.
869		 * For any write errors, we agressively fail the disk since
870		 * there was both a READ and a WRITE error at this location.
871		 * Both types of errors generally indicates the drive is on
872		 * the verge of total failure anyway.  Better to stop trusting
873		 * it now.  However, we need to reset error to 0 in that case
874		 * because we're not failing the original I/O which succeeded.
875		 */
876		if (bp->bio_cmd == BIO_WRITE && bp->bio_error) {
877			G_RAID_LOGREQ(0, bp, "Remap write failed: "
878			    "failing subdisk.");
879			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
880			bp->bio_error = 0;
881		}
882		if (pbp->bio_driver1 != NULL) {
883			((struct g_raid_subdisk *)pbp->bio_driver1)
884			    ->sd_recovery--;
885		}
886		G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error);
887		g_raid_unlock_range(sd->sd_volume, bp->bio_offset,
888		    bp->bio_length);
889	}
890	if (pbp->bio_cmd != BIO_READ) {
891		if (pbp->bio_inbed == 1 || pbp->bio_error != 0)
892			pbp->bio_error = bp->bio_error;
893		if (pbp->bio_cmd == BIO_WRITE && bp->bio_error != 0) {
894			G_RAID_LOGREQ(0, bp, "Write failed: failing subdisk.");
895			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
896		}
897		error = pbp->bio_error;
898	} else
899		error = bp->bio_error;
900	g_destroy_bio(bp);
901	if (pbp->bio_children == pbp->bio_inbed) {
902		pbp->bio_completed = pbp->bio_length;
903		g_raid_iodone(pbp, error);
904	}
905}
906
907static int
908g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr,
909    void *virtual, vm_offset_t physical, off_t offset, size_t length)
910{
911	struct g_raid_volume *vol;
912	struct g_raid_subdisk *sd;
913	int error, i, ok;
914
915	vol = tr->tro_volume;
916	error = 0;
917	ok = 0;
918	for (i = 0; i < vol->v_disks_count; i++) {
919		sd = &vol->v_subdisks[i];
920		switch (sd->sd_state) {
921		case G_RAID_SUBDISK_S_ACTIVE:
922			break;
923		case G_RAID_SUBDISK_S_REBUILD:
924			/*
925			 * When rebuilding, only part of this subdisk is
926			 * writable, the rest will be written as part of the
927			 * that process.
928			 */
929			if (offset >= sd->sd_rebuild_pos)
930				continue;
931			break;
932		case G_RAID_SUBDISK_S_STALE:
933		case G_RAID_SUBDISK_S_RESYNC:
934			/*
935			 * Resyncing still writes on the theory that the
936			 * resync'd disk is very close and writing it will
937			 * keep it that way better if we keep up while
938			 * resyncing.
939			 */
940			break;
941		default:
942			continue;
943		}
944		error = g_raid_subdisk_kerneldump(sd,
945		    virtual, physical, offset, length);
946		if (error == 0)
947			ok++;
948	}
949	return (ok > 0 ? 0 : error);
950}
951
952static int
953g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp)
954{
955	struct bio *bp;
956	struct g_raid_subdisk *sd;
957
958	bp = (struct bio *)argp;
959	sd = (struct g_raid_subdisk *)bp->bio_caller1;
960	g_raid_subdisk_iostart(sd, bp);
961
962	return (0);
963}
964
965static int
966g_raid_tr_idle_raid1(struct g_raid_tr_object *tr)
967{
968	struct g_raid_tr_raid1_object *trs;
969
970	trs = (struct g_raid_tr_raid1_object *)tr;
971	trs->trso_fair_io = g_raid1_rebuild_fair_io;
972	trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle;
973	if (trs->trso_type == TR_RAID1_REBUILD)
974		g_raid_tr_raid1_rebuild_some(tr);
975	return (0);
976}
977
978static int
979g_raid_tr_free_raid1(struct g_raid_tr_object *tr)
980{
981	struct g_raid_tr_raid1_object *trs;
982
983	trs = (struct g_raid_tr_raid1_object *)tr;
984
985	if (trs->trso_buffer != NULL) {
986		free(trs->trso_buffer, M_TR_RAID1);
987		trs->trso_buffer = NULL;
988	}
989	return (0);
990}
991
992G_RAID_TR_DECLARE(raid1, "RAID1");
993