g_part_gpt.c revision 280261
1/*-
2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/geom/part/g_part_gpt.c 280261 2015-03-19 14:09:27Z ae $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/diskmbr.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/geom_int.h>
48#include <geom/part/g_part.h>
49
50#include "g_part_if.h"
51
52FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53
54CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
55CTASSERT(sizeof(struct gpt_ent) == 128);
56
57#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
58
59#define	MBRSIZE		512
60
61enum gpt_elt {
62	GPT_ELT_PRIHDR,
63	GPT_ELT_PRITBL,
64	GPT_ELT_SECHDR,
65	GPT_ELT_SECTBL,
66	GPT_ELT_COUNT
67};
68
69enum gpt_state {
70	GPT_STATE_UNKNOWN,	/* Not determined. */
71	GPT_STATE_MISSING,	/* No signature found. */
72	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
73	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
74	GPT_STATE_OK		/* Perfectly fine. */
75};
76
77struct g_part_gpt_table {
78	struct g_part_table	base;
79	u_char			mbr[MBRSIZE];
80	struct gpt_hdr		*hdr;
81	quad_t			lba[GPT_ELT_COUNT];
82	enum gpt_state		state[GPT_ELT_COUNT];
83	int			bootcamp;
84};
85
86struct g_part_gpt_entry {
87	struct g_part_entry	base;
88	struct gpt_ent		ent;
89};
90
91static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
92static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
93static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
94
95static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
96    struct g_part_parms *);
97static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
98static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
99static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
100static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
101    struct sbuf *, const char *);
102static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
103static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
104    struct g_part_parms *);
105static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
106    char *, size_t);
107static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
108static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
109static int g_part_gpt_setunset(struct g_part_table *table,
110    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
111static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
112    char *, size_t);
113static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
114static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
115    struct g_part_parms *);
116static int g_part_gpt_recover(struct g_part_table *);
117
118static kobj_method_t g_part_gpt_methods[] = {
119	KOBJMETHOD(g_part_add,		g_part_gpt_add),
120	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
121	KOBJMETHOD(g_part_create,	g_part_gpt_create),
122	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
123	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
124	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
125	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
126	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
127	KOBJMETHOD(g_part_name,		g_part_gpt_name),
128	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
129	KOBJMETHOD(g_part_read,		g_part_gpt_read),
130	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
131	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
132	KOBJMETHOD(g_part_type,		g_part_gpt_type),
133	KOBJMETHOD(g_part_write,	g_part_gpt_write),
134	{ 0, 0 }
135};
136
137static struct g_part_scheme g_part_gpt_scheme = {
138	"GPT",
139	g_part_gpt_methods,
140	sizeof(struct g_part_gpt_table),
141	.gps_entrysz = sizeof(struct g_part_gpt_entry),
142	.gps_minent = 128,
143	.gps_maxent = 4096,
144	.gps_bootcodesz = MBRSIZE,
145};
146G_PART_SCHEME_DECLARE(g_part_gpt);
147
148static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
149static struct uuid gpt_uuid_apple_core_storage =
150    GPT_ENT_TYPE_APPLE_CORE_STORAGE;
151static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
152static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
153static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
154static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
155static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
156static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
157static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
158static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
159static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
160static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
161static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
162static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
163static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
164static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
165static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
166static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
167static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
168static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
169static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
170static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
171static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
172static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
173static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
174static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
175static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
176static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
177static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
178static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
179static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
180static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
181static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
182static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
183static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
184static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
185static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
186static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
187static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
188static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
189static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
190static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
191static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
192static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
193static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
194static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
195static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
196
197static struct g_part_uuid_alias {
198	struct uuid *uuid;
199	int alias;
200	int mbrtype;
201} gpt_uuid_alias_match[] = {
202	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
203	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
204	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
205	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
206	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
207	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
208	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
209	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
210	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
211	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
212	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
213	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
214	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
215	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
216	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
217	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
218	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
219	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
220	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
221	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
222	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
223	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
224	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
225	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
226	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
227	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
228	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
229	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
230	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
231	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
232	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
233	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
234	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
235	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
236	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
237	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
238	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
239	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
240	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
241	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
242	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
243	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
244	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
245	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
246	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
247	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
248	{ NULL, 0, 0 }
249};
250
251static int
252gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
253    quad_t end)
254{
255
256	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
257		return (EINVAL);
258
259	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
260	mbr[0] = 0;
261	if (start == 1) {
262		/*
263		 * Treat the PMBR partition specially to maximize
264		 * interoperability with BIOSes.
265		 */
266		mbr[1] = mbr[3] = 0;
267		mbr[2] = 2;
268	} else
269		mbr[1] = mbr[2] = mbr[3] = 0xff;
270	mbr[4] = typ;
271	mbr[5] = mbr[6] = mbr[7] = 0xff;
272	le32enc(mbr + 8, (uint32_t)start);
273	le32enc(mbr + 12, (uint32_t)(end - start + 1));
274	return (0);
275}
276
277static int
278gpt_map_type(struct uuid *t)
279{
280	struct g_part_uuid_alias *uap;
281
282	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
283		if (EQUUID(t, uap->uuid))
284			return (uap->mbrtype);
285	}
286	return (0);
287}
288
289static void
290gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
291{
292
293	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
294	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
295	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
296	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
297}
298
299/*
300 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
301 * whole disk anymore. Rather, it covers the GPT table and the EFI
302 * system partition only. This way the HFS+ partition and any FAT
303 * partitions can be added to the MBR without creating an overlap.
304 */
305static int
306gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
307{
308	uint8_t *p;
309
310	p = table->mbr + DOSPARTOFF;
311	if (p[4] != 0xee || le32dec(p + 8) != 1)
312		return (0);
313
314	p += DOSPARTSIZE;
315	if (p[4] != 0xaf)
316		return (0);
317
318	printf("GEOM: %s: enabling Boot Camp\n", provname);
319	return (1);
320}
321
322static void
323gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
324{
325	struct g_part_entry *baseentry;
326	struct g_part_gpt_entry *entry;
327	struct g_part_gpt_table *table;
328	int bootable, error, index, slices, typ;
329
330	table = (struct g_part_gpt_table *)basetable;
331
332	bootable = -1;
333	for (index = 0; index < NDOSPART; index++) {
334		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
335			bootable = index;
336	}
337
338	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
339	slices = 0;
340	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
341		if (baseentry->gpe_deleted)
342			continue;
343		index = baseentry->gpe_index - 1;
344		if (index >= NDOSPART)
345			continue;
346
347		entry = (struct g_part_gpt_entry *)baseentry;
348
349		switch (index) {
350		case 0:	/* This must be the EFI system partition. */
351			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
352				goto disable;
353			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
354			    1ull, entry->ent.ent_lba_end);
355			break;
356		case 1:	/* This must be the HFS+ partition. */
357			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
358				goto disable;
359			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
360			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
361			break;
362		default:
363			typ = gpt_map_type(&entry->ent.ent_type);
364			error = gpt_write_mbr_entry(table->mbr, index, typ,
365			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
366			break;
367		}
368		if (error)
369			continue;
370
371		if (index == bootable)
372			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
373		slices |= 1 << index;
374	}
375	if ((slices & 3) == 3)
376		return;
377
378 disable:
379	table->bootcamp = 0;
380	gpt_create_pmbr(table, pp);
381}
382
383static struct gpt_hdr *
384gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
385    enum gpt_elt elt)
386{
387	struct gpt_hdr *buf, *hdr;
388	struct g_provider *pp;
389	quad_t lba, last;
390	int error;
391	uint32_t crc, sz;
392
393	pp = cp->provider;
394	last = (pp->mediasize / pp->sectorsize) - 1;
395	table->state[elt] = GPT_STATE_MISSING;
396	/*
397	 * If the primary header is valid look for secondary
398	 * header in AlternateLBA, otherwise in the last medium's LBA.
399	 */
400	if (elt == GPT_ELT_SECHDR) {
401		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
402			table->lba[elt] = last;
403	} else
404		table->lba[elt] = 1;
405	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
406	    &error);
407	if (buf == NULL)
408		return (NULL);
409	hdr = NULL;
410	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
411		goto fail;
412
413	table->state[elt] = GPT_STATE_CORRUPT;
414	sz = le32toh(buf->hdr_size);
415	if (sz < 92 || sz > pp->sectorsize)
416		goto fail;
417
418	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
419	bcopy(buf, hdr, sz);
420	hdr->hdr_size = sz;
421
422	crc = le32toh(buf->hdr_crc_self);
423	buf->hdr_crc_self = 0;
424	if (crc32(buf, sz) != crc)
425		goto fail;
426	hdr->hdr_crc_self = crc;
427
428	table->state[elt] = GPT_STATE_INVALID;
429	hdr->hdr_revision = le32toh(buf->hdr_revision);
430	if (hdr->hdr_revision < GPT_HDR_REVISION)
431		goto fail;
432	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
433	if (hdr->hdr_lba_self != table->lba[elt])
434		goto fail;
435	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
436	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
437	    hdr->hdr_lba_alt > last)
438		goto fail;
439
440	/* Check the managed area. */
441	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
442	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
443		goto fail;
444	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
445	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
446		goto fail;
447
448	/* Check the table location and size of the table. */
449	hdr->hdr_entries = le32toh(buf->hdr_entries);
450	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
451	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
452	    (hdr->hdr_entsz & 7) != 0)
453		goto fail;
454	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
455	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
456		goto fail;
457	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
458	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
459		goto fail;
460	lba = hdr->hdr_lba_table +
461	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
462	    pp->sectorsize - 1;
463	if (lba >= last)
464		goto fail;
465	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
466		goto fail;
467
468	table->state[elt] = GPT_STATE_OK;
469	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
470	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
471
472	/* save LBA for secondary header */
473	if (elt == GPT_ELT_PRIHDR)
474		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
475
476	g_free(buf);
477	return (hdr);
478
479 fail:
480	if (hdr != NULL)
481		g_free(hdr);
482	g_free(buf);
483	return (NULL);
484}
485
486static struct gpt_ent *
487gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
488    enum gpt_elt elt, struct gpt_hdr *hdr)
489{
490	struct g_provider *pp;
491	struct gpt_ent *ent, *tbl;
492	char *buf, *p;
493	unsigned int idx, sectors, tblsz, size;
494	int error;
495
496	if (hdr == NULL)
497		return (NULL);
498
499	pp = cp->provider;
500	table->lba[elt] = hdr->hdr_lba_table;
501
502	table->state[elt] = GPT_STATE_MISSING;
503	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
504	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
505	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
506	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
507		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
508		    (sectors - idx) * pp->sectorsize;
509		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
510		    size, &error);
511		if (p == NULL) {
512			g_free(buf);
513			return (NULL);
514		}
515		bcopy(p, buf + idx * pp->sectorsize, size);
516		g_free(p);
517	}
518	table->state[elt] = GPT_STATE_CORRUPT;
519	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
520		g_free(buf);
521		return (NULL);
522	}
523
524	table->state[elt] = GPT_STATE_OK;
525	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
526	    M_WAITOK | M_ZERO);
527
528	for (idx = 0, ent = tbl, p = buf;
529	     idx < hdr->hdr_entries;
530	     idx++, ent++, p += hdr->hdr_entsz) {
531		le_uuid_dec(p, &ent->ent_type);
532		le_uuid_dec(p + 16, &ent->ent_uuid);
533		ent->ent_lba_start = le64dec(p + 32);
534		ent->ent_lba_end = le64dec(p + 40);
535		ent->ent_attr = le64dec(p + 48);
536		/* Keep UTF-16 in little-endian. */
537		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
538	}
539
540	g_free(buf);
541	return (tbl);
542}
543
544static int
545gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
546{
547
548	if (pri == NULL || sec == NULL)
549		return (0);
550
551	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
552		return (0);
553	return ((pri->hdr_revision == sec->hdr_revision &&
554	    pri->hdr_size == sec->hdr_size &&
555	    pri->hdr_lba_start == sec->hdr_lba_start &&
556	    pri->hdr_lba_end == sec->hdr_lba_end &&
557	    pri->hdr_entries == sec->hdr_entries &&
558	    pri->hdr_entsz == sec->hdr_entsz &&
559	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
560}
561
562static int
563gpt_parse_type(const char *type, struct uuid *uuid)
564{
565	struct uuid tmp;
566	const char *alias;
567	int error;
568	struct g_part_uuid_alias *uap;
569
570	if (type[0] == '!') {
571		error = parse_uuid(type + 1, &tmp);
572		if (error)
573			return (error);
574		if (EQUUID(&tmp, &gpt_uuid_unused))
575			return (EINVAL);
576		*uuid = tmp;
577		return (0);
578	}
579	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
580		alias = g_part_alias_name(uap->alias);
581		if (!strcasecmp(type, alias)) {
582			*uuid = *uap->uuid;
583			return (0);
584		}
585	}
586	return (EINVAL);
587}
588
589static int
590g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
591    struct g_part_parms *gpp)
592{
593	struct g_part_gpt_entry *entry;
594	int error;
595
596	entry = (struct g_part_gpt_entry *)baseentry;
597	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
598	if (error)
599		return (error);
600	kern_uuidgen(&entry->ent.ent_uuid, 1);
601	entry->ent.ent_lba_start = baseentry->gpe_start;
602	entry->ent.ent_lba_end = baseentry->gpe_end;
603	if (baseentry->gpe_deleted) {
604		entry->ent.ent_attr = 0;
605		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
606	}
607	if (gpp->gpp_parms & G_PART_PARM_LABEL)
608		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
609		    sizeof(entry->ent.ent_name) /
610		    sizeof(entry->ent.ent_name[0]));
611	return (0);
612}
613
614static int
615g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
616{
617	struct g_part_gpt_table *table;
618	size_t codesz;
619
620	codesz = DOSPARTOFF;
621	table = (struct g_part_gpt_table *)basetable;
622	bzero(table->mbr, codesz);
623	codesz = MIN(codesz, gpp->gpp_codesize);
624	if (codesz > 0)
625		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
626	return (0);
627}
628
629static int
630g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
631{
632	struct g_provider *pp;
633	struct g_part_gpt_table *table;
634	size_t tblsz;
635
636	/* We don't nest, which means that our depth should be 0. */
637	if (basetable->gpt_depth != 0)
638		return (ENXIO);
639
640	table = (struct g_part_gpt_table *)basetable;
641	pp = gpp->gpp_provider;
642	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
643	    pp->sectorsize - 1) / pp->sectorsize;
644	if (pp->sectorsize < MBRSIZE ||
645	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
646	    pp->sectorsize)
647		return (ENOSPC);
648
649	gpt_create_pmbr(table, pp);
650
651	/* Allocate space for the header */
652	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
653
654	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
655	table->hdr->hdr_revision = GPT_HDR_REVISION;
656	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
657	kern_uuidgen(&table->hdr->hdr_uuid, 1);
658	table->hdr->hdr_entries = basetable->gpt_entries;
659	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
660
661	g_gpt_set_defaults(basetable, pp);
662	return (0);
663}
664
665static int
666g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
667{
668	struct g_part_gpt_table *table;
669	struct g_provider *pp;
670
671	table = (struct g_part_gpt_table *)basetable;
672	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
673	g_free(table->hdr);
674	table->hdr = NULL;
675
676	/*
677	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
678	 * sector only if it has valid secondary header.
679	 */
680	basetable->gpt_smhead |= 3;
681	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
682	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
683		basetable->gpt_smtail |= 1;
684	return (0);
685}
686
687static void
688g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
689    struct sbuf *sb, const char *indent)
690{
691	struct g_part_gpt_entry *entry;
692
693	entry = (struct g_part_gpt_entry *)baseentry;
694	if (indent == NULL) {
695		/* conftxt: libdisk compatibility */
696		sbuf_printf(sb, " xs GPT xt ");
697		sbuf_printf_uuid(sb, &entry->ent.ent_type);
698	} else if (entry != NULL) {
699		/* confxml: partition entry information */
700		sbuf_printf(sb, "%s<label>", indent);
701		g_gpt_printf_utf16(sb, entry->ent.ent_name,
702		    sizeof(entry->ent.ent_name) >> 1);
703		sbuf_printf(sb, "</label>\n");
704		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
705			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
706		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
707			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
708			    indent);
709		}
710		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
711			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
712			    indent);
713		}
714		sbuf_printf(sb, "%s<rawtype>", indent);
715		sbuf_printf_uuid(sb, &entry->ent.ent_type);
716		sbuf_printf(sb, "</rawtype>\n");
717		sbuf_printf(sb, "%s<rawuuid>", indent);
718		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
719		sbuf_printf(sb, "</rawuuid>\n");
720	} else {
721		/* confxml: scheme information */
722	}
723}
724
725static int
726g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
727{
728	struct g_part_gpt_entry *entry;
729
730	entry = (struct g_part_gpt_entry *)baseentry;
731	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
732	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
733	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
734}
735
736static int
737g_part_gpt_modify(struct g_part_table *basetable,
738    struct g_part_entry *baseentry, struct g_part_parms *gpp)
739{
740	struct g_part_gpt_entry *entry;
741	int error;
742
743	entry = (struct g_part_gpt_entry *)baseentry;
744	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
745		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
746		if (error)
747			return (error);
748	}
749	if (gpp->gpp_parms & G_PART_PARM_LABEL)
750		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
751		    sizeof(entry->ent.ent_name) /
752		    sizeof(entry->ent.ent_name[0]));
753	return (0);
754}
755
756static int
757g_part_gpt_resize(struct g_part_table *basetable,
758    struct g_part_entry *baseentry, struct g_part_parms *gpp)
759{
760	struct g_part_gpt_entry *entry;
761
762	if (baseentry == NULL)
763		return (EOPNOTSUPP);
764
765	entry = (struct g_part_gpt_entry *)baseentry;
766	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
767	entry->ent.ent_lba_end = baseentry->gpe_end;
768
769	return (0);
770}
771
772static const char *
773g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
774    char *buf, size_t bufsz)
775{
776	struct g_part_gpt_entry *entry;
777	char c;
778
779	entry = (struct g_part_gpt_entry *)baseentry;
780	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
781	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
782	return (buf);
783}
784
785static int
786g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
787{
788	struct g_provider *pp;
789	u_char *buf;
790	int error, index, pri, res;
791
792	/* We don't nest, which means that our depth should be 0. */
793	if (table->gpt_depth != 0)
794		return (ENXIO);
795
796	pp = cp->provider;
797
798	/*
799	 * Sanity-check the provider. Since the first sector on the provider
800	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
801	 * must be at least 512 bytes.  Also, since the theoretical minimum
802	 * number of sectors needed by GPT is 6, any medium that has less
803	 * than 6 sectors is never going to be able to hold a GPT. The
804	 * number 6 comes from:
805	 *	1 sector for the PMBR
806	 *	2 sectors for the GPT headers (each 1 sector)
807	 *	2 sectors for the GPT tables (each 1 sector)
808	 *	1 sector for an actual partition
809	 * It's better to catch this pathological case early than behaving
810	 * pathologically later on...
811	 */
812	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
813		return (ENOSPC);
814
815	/*
816	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
817	 * as the highest priority on a match, otherwise we assume some
818	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
819	 * we really want the MBR scheme to take precedence.
820	 */
821	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
822	if (buf == NULL)
823		return (error);
824	res = le16dec(buf + DOSMAGICOFFSET);
825	pri = G_PART_PROBE_PRI_LOW;
826	for (index = 0; index < NDOSPART; index++) {
827		if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
828			pri = G_PART_PROBE_PRI_HIGH;
829	}
830	g_free(buf);
831	if (res != DOSMAGIC)
832		return (ENXIO);
833
834	/* Check that there's a primary header. */
835	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
836	if (buf == NULL)
837		return (error);
838	res = memcmp(buf, GPT_HDR_SIG, 8);
839	g_free(buf);
840	if (res == 0)
841		return (pri);
842
843	/* No primary? Check that there's a secondary. */
844	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
845	    &error);
846	if (buf == NULL)
847		return (error);
848	res = memcmp(buf, GPT_HDR_SIG, 8);
849	g_free(buf);
850	return ((res == 0) ? pri : ENXIO);
851}
852
853static int
854g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
855{
856	struct gpt_hdr *prihdr, *sechdr;
857	struct gpt_ent *tbl, *pritbl, *sectbl;
858	struct g_provider *pp;
859	struct g_part_gpt_table *table;
860	struct g_part_gpt_entry *entry;
861	u_char *buf;
862	uint64_t last;
863	int error, index;
864
865	table = (struct g_part_gpt_table *)basetable;
866	pp = cp->provider;
867	last = (pp->mediasize / pp->sectorsize) - 1;
868
869	/* Read the PMBR */
870	buf = g_read_data(cp, 0, pp->sectorsize, &error);
871	if (buf == NULL)
872		return (error);
873	bcopy(buf, table->mbr, MBRSIZE);
874	g_free(buf);
875
876	/* Read the primary header and table. */
877	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
878	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
879		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
880	} else {
881		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
882		pritbl = NULL;
883	}
884
885	/* Read the secondary header and table. */
886	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
887	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
888		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
889	} else {
890		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
891		sectbl = NULL;
892	}
893
894	/* Fail if we haven't got any good tables at all. */
895	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
896	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
897		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
898		    pp->name);
899		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
900		    pp->name);
901		return (EINVAL);
902	}
903
904	/*
905	 * If both headers are good but they disagree with each other,
906	 * then invalidate one. We prefer to keep the primary header,
907	 * unless the primary table is corrupt.
908	 */
909	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
910	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
911	    !gpt_matched_hdrs(prihdr, sechdr)) {
912		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
913			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
914			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
915			g_free(sechdr);
916			sechdr = NULL;
917		} else {
918			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
919			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
920			g_free(prihdr);
921			prihdr = NULL;
922		}
923	}
924
925	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
926		printf("GEOM: %s: the primary GPT table is corrupt or "
927		    "invalid.\n", pp->name);
928		printf("GEOM: %s: using the secondary instead -- recovery "
929		    "strongly advised.\n", pp->name);
930		table->hdr = sechdr;
931		basetable->gpt_corrupt = 1;
932		if (prihdr != NULL)
933			g_free(prihdr);
934		tbl = sectbl;
935		if (pritbl != NULL)
936			g_free(pritbl);
937	} else {
938		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
939			printf("GEOM: %s: the secondary GPT table is corrupt "
940			    "or invalid.\n", pp->name);
941			printf("GEOM: %s: using the primary only -- recovery "
942			    "suggested.\n", pp->name);
943			basetable->gpt_corrupt = 1;
944		} else if (table->lba[GPT_ELT_SECHDR] != last) {
945			printf( "GEOM: %s: the secondary GPT header is not in "
946			    "the last LBA.\n", pp->name);
947			basetable->gpt_corrupt = 1;
948		}
949		table->hdr = prihdr;
950		if (sechdr != NULL)
951			g_free(sechdr);
952		tbl = pritbl;
953		if (sectbl != NULL)
954			g_free(sectbl);
955	}
956
957	basetable->gpt_first = table->hdr->hdr_lba_start;
958	basetable->gpt_last = table->hdr->hdr_lba_end;
959	basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) *
960	    pp->sectorsize / table->hdr->hdr_entsz;
961
962	for (index = table->hdr->hdr_entries - 1; index >= 0; index--) {
963		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
964			continue;
965		entry = (struct g_part_gpt_entry *)g_part_new_entry(
966		    basetable, index + 1, tbl[index].ent_lba_start,
967		    tbl[index].ent_lba_end);
968		entry->ent = tbl[index];
969	}
970
971	g_free(tbl);
972
973	/*
974	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
975	 * if (and only if) any FAT32 or FAT16 partitions have been
976	 * created. This happens irrespective of whether Boot Camp is
977	 * used/enabled, though it's generally understood to be done
978	 * to support legacy Windows under Boot Camp. We refer to this
979	 * mirroring simply as Boot Camp. We try to detect Boot Camp
980	 * so that we can update the MBR if and when GPT changes have
981	 * been made. Note that we do not enable Boot Camp if not
982	 * previously enabled because we can't assume that we're on a
983	 * Mac alongside Mac OS X.
984	 */
985	table->bootcamp = gpt_is_bootcamp(table, pp->name);
986
987	return (0);
988}
989
990static int
991g_part_gpt_recover(struct g_part_table *basetable)
992{
993	struct g_part_gpt_table *table;
994	struct g_provider *pp;
995
996	table = (struct g_part_gpt_table *)basetable;
997	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
998	gpt_create_pmbr(table, pp);
999	g_gpt_set_defaults(basetable, pp);
1000	basetable->gpt_corrupt = 0;
1001	return (0);
1002}
1003
1004static int
1005g_part_gpt_setunset(struct g_part_table *basetable,
1006    struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1007{
1008	struct g_part_gpt_entry *entry;
1009	struct g_part_gpt_table *table;
1010	uint8_t *p;
1011	uint64_t attr;
1012	int i;
1013
1014	table = (struct g_part_gpt_table *)basetable;
1015	entry = (struct g_part_gpt_entry *)baseentry;
1016
1017	if (strcasecmp(attrib, "active") == 0) {
1018		if (table->bootcamp) {
1019			/* The active flag must be set on a valid entry. */
1020			if (entry == NULL)
1021				return (ENXIO);
1022			if (baseentry->gpe_index > NDOSPART)
1023				return (EINVAL);
1024			for (i = 0; i < NDOSPART; i++) {
1025				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1026				p[0] = (i == baseentry->gpe_index - 1)
1027				    ? ((set) ? 0x80 : 0) : 0;
1028			}
1029		} else {
1030			/* The PMBR is marked as active without an entry. */
1031			if (entry != NULL)
1032				return (ENXIO);
1033			for (i = 0; i < NDOSPART; i++) {
1034				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1035				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1036			}
1037		}
1038		return (0);
1039	}
1040
1041	if (entry == NULL)
1042		return (ENODEV);
1043
1044	attr = 0;
1045	if (strcasecmp(attrib, "bootme") == 0) {
1046		attr |= GPT_ENT_ATTR_BOOTME;
1047	} else if (strcasecmp(attrib, "bootonce") == 0) {
1048		attr |= GPT_ENT_ATTR_BOOTONCE;
1049		if (set)
1050			attr |= GPT_ENT_ATTR_BOOTME;
1051	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1052		/*
1053		 * It should only be possible to unset BOOTFAILED, but it might
1054		 * be useful for test purposes to also be able to set it.
1055		 */
1056		attr |= GPT_ENT_ATTR_BOOTFAILED;
1057	}
1058	if (attr == 0)
1059		return (EINVAL);
1060
1061	if (set)
1062		attr = entry->ent.ent_attr | attr;
1063	else
1064		attr = entry->ent.ent_attr & ~attr;
1065	if (attr != entry->ent.ent_attr) {
1066		entry->ent.ent_attr = attr;
1067		if (!baseentry->gpe_created)
1068			baseentry->gpe_modified = 1;
1069	}
1070	return (0);
1071}
1072
1073static const char *
1074g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1075    char *buf, size_t bufsz)
1076{
1077	struct g_part_gpt_entry *entry;
1078	struct uuid *type;
1079	struct g_part_uuid_alias *uap;
1080
1081	entry = (struct g_part_gpt_entry *)baseentry;
1082	type = &entry->ent.ent_type;
1083	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1084		if (EQUUID(type, uap->uuid))
1085			return (g_part_alias_name(uap->alias));
1086	buf[0] = '!';
1087	snprintf_uuid(buf + 1, bufsz - 1, type);
1088
1089	return (buf);
1090}
1091
1092static int
1093g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1094{
1095	unsigned char *buf, *bp;
1096	struct g_provider *pp;
1097	struct g_part_entry *baseentry;
1098	struct g_part_gpt_entry *entry;
1099	struct g_part_gpt_table *table;
1100	size_t tblsz;
1101	uint32_t crc;
1102	int error, index;
1103
1104	pp = cp->provider;
1105	table = (struct g_part_gpt_table *)basetable;
1106	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1107	    pp->sectorsize - 1) / pp->sectorsize;
1108
1109	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1110	if (table->bootcamp)
1111		gpt_update_bootcamp(basetable, pp);
1112
1113	/* Write the PMBR */
1114	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1115	bcopy(table->mbr, buf, MBRSIZE);
1116	error = g_write_data(cp, 0, buf, pp->sectorsize);
1117	g_free(buf);
1118	if (error)
1119		return (error);
1120
1121	/* Allocate space for the header and entries. */
1122	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1123
1124	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1125	le32enc(buf + 8, table->hdr->hdr_revision);
1126	le32enc(buf + 12, table->hdr->hdr_size);
1127	le64enc(buf + 40, table->hdr->hdr_lba_start);
1128	le64enc(buf + 48, table->hdr->hdr_lba_end);
1129	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1130	le32enc(buf + 80, table->hdr->hdr_entries);
1131	le32enc(buf + 84, table->hdr->hdr_entsz);
1132
1133	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1134		if (baseentry->gpe_deleted)
1135			continue;
1136		entry = (struct g_part_gpt_entry *)baseentry;
1137		index = baseentry->gpe_index - 1;
1138		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1139		le_uuid_enc(bp, &entry->ent.ent_type);
1140		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1141		le64enc(bp + 32, entry->ent.ent_lba_start);
1142		le64enc(bp + 40, entry->ent.ent_lba_end);
1143		le64enc(bp + 48, entry->ent.ent_attr);
1144		memcpy(bp + 56, entry->ent.ent_name,
1145		    sizeof(entry->ent.ent_name));
1146	}
1147
1148	crc = crc32(buf + pp->sectorsize,
1149	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1150	le32enc(buf + 88, crc);
1151
1152	/* Write primary meta-data. */
1153	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1154	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1155	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1156	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1157	crc = crc32(buf, table->hdr->hdr_size);
1158	le32enc(buf + 16, crc);
1159
1160	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1161		error = g_write_data(cp,
1162		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1163		    buf + (index + 1) * pp->sectorsize,
1164		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1165		    (tblsz - index) * pp->sectorsize);
1166		if (error)
1167			goto out;
1168	}
1169	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1170	    buf, pp->sectorsize);
1171	if (error)
1172		goto out;
1173
1174	/* Write secondary meta-data. */
1175	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1176	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1177	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1178	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1179	crc = crc32(buf, table->hdr->hdr_size);
1180	le32enc(buf + 16, crc);
1181
1182	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1183		error = g_write_data(cp,
1184		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1185		    buf + (index + 1) * pp->sectorsize,
1186		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1187		    (tblsz - index) * pp->sectorsize);
1188		if (error)
1189			goto out;
1190	}
1191	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1192	    buf, pp->sectorsize);
1193
1194 out:
1195	g_free(buf);
1196	return (error);
1197}
1198
1199static void
1200g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1201{
1202	struct g_part_gpt_table *table;
1203	quad_t last;
1204	size_t tblsz;
1205
1206	table = (struct g_part_gpt_table *)basetable;
1207	last = pp->mediasize / pp->sectorsize - 1;
1208	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1209	    pp->sectorsize - 1) / pp->sectorsize;
1210
1211	table->lba[GPT_ELT_PRIHDR] = 1;
1212	table->lba[GPT_ELT_PRITBL] = 2;
1213	table->lba[GPT_ELT_SECHDR] = last;
1214	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1215	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1216	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1217	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1218	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1219
1220	table->hdr->hdr_lba_start = 2 + tblsz;
1221	table->hdr->hdr_lba_end = last - tblsz - 1;
1222
1223	basetable->gpt_first = table->hdr->hdr_lba_start;
1224	basetable->gpt_last = table->hdr->hdr_lba_end;
1225}
1226
1227static void
1228g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1229{
1230	u_int bo;
1231	uint32_t ch;
1232	uint16_t c;
1233
1234	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1235	while (len > 0 && *str != 0) {
1236		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1237		str++, len--;
1238		if ((ch & 0xf800) == 0xd800) {
1239			if (len > 0) {
1240				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1241				    : le16toh(*str);
1242				str++, len--;
1243			} else
1244				c = 0xfffd;
1245			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1246				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1247				ch += 0x10000;
1248			} else
1249				ch = 0xfffd;
1250		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1251			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1252			continue;
1253		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1254			continue;
1255
1256		/* Write the Unicode character in UTF-8 */
1257		if (ch < 0x80)
1258			g_conf_printf_escaped(sb, "%c", ch);
1259		else if (ch < 0x800)
1260			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1261			    0x80 | (ch & 0x3f));
1262		else if (ch < 0x10000)
1263			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1264			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1265		else if (ch < 0x200000)
1266			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1267			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1268			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1269	}
1270}
1271
1272static void
1273g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1274{
1275	size_t s16idx, s8idx;
1276	uint32_t utfchar;
1277	unsigned int c, utfbytes;
1278
1279	s8idx = s16idx = 0;
1280	utfchar = 0;
1281	utfbytes = 0;
1282	bzero(s16, s16len << 1);
1283	while (s8[s8idx] != 0 && s16idx < s16len) {
1284		c = s8[s8idx++];
1285		if ((c & 0xc0) != 0x80) {
1286			/* Initial characters. */
1287			if (utfbytes != 0) {
1288				/* Incomplete encoding of previous char. */
1289				s16[s16idx++] = htole16(0xfffd);
1290			}
1291			if ((c & 0xf8) == 0xf0) {
1292				utfchar = c & 0x07;
1293				utfbytes = 3;
1294			} else if ((c & 0xf0) == 0xe0) {
1295				utfchar = c & 0x0f;
1296				utfbytes = 2;
1297			} else if ((c & 0xe0) == 0xc0) {
1298				utfchar = c & 0x1f;
1299				utfbytes = 1;
1300			} else {
1301				utfchar = c & 0x7f;
1302				utfbytes = 0;
1303			}
1304		} else {
1305			/* Followup characters. */
1306			if (utfbytes > 0) {
1307				utfchar = (utfchar << 6) + (c & 0x3f);
1308				utfbytes--;
1309			} else if (utfbytes == 0)
1310				utfbytes = ~0;
1311		}
1312		/*
1313		 * Write the complete Unicode character as UTF-16 when we
1314		 * have all the UTF-8 charactars collected.
1315		 */
1316		if (utfbytes == 0) {
1317			/*
1318			 * If we need to write 2 UTF-16 characters, but
1319			 * we only have room for 1, then we truncate the
1320			 * string by writing a 0 instead.
1321			 */
1322			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1323				s16[s16idx++] =
1324				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1325				s16[s16idx++] =
1326				    htole16(0xdc00 | (utfchar & 0x3ff));
1327			} else
1328				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1329				    htole16(utfchar);
1330		}
1331	}
1332	/*
1333	 * If our input string was truncated, append an invalid encoding
1334	 * character to the output string.
1335	 */
1336	if (utfbytes != 0 && s16idx < s16len)
1337		s16[s16idx++] = htole16(0xfffd);
1338}
1339