g_part_gpt.c revision 268091
1/*-
2 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/geom/part/g_part_gpt.c 268091 2014-07-01 13:29:17Z ae $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/diskmbr.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/geom_int.h>
48#include <geom/part/g_part.h>
49
50#include "g_part_if.h"
51
52FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53
54CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
55CTASSERT(sizeof(struct gpt_ent) == 128);
56
57#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
58
59#define	MBRSIZE		512
60
61enum gpt_elt {
62	GPT_ELT_PRIHDR,
63	GPT_ELT_PRITBL,
64	GPT_ELT_SECHDR,
65	GPT_ELT_SECTBL,
66	GPT_ELT_COUNT
67};
68
69enum gpt_state {
70	GPT_STATE_UNKNOWN,	/* Not determined. */
71	GPT_STATE_MISSING,	/* No signature found. */
72	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
73	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
74	GPT_STATE_OK		/* Perfectly fine. */
75};
76
77struct g_part_gpt_table {
78	struct g_part_table	base;
79	u_char			mbr[MBRSIZE];
80	struct gpt_hdr		*hdr;
81	quad_t			lba[GPT_ELT_COUNT];
82	enum gpt_state		state[GPT_ELT_COUNT];
83	int			bootcamp;
84};
85
86struct g_part_gpt_entry {
87	struct g_part_entry	base;
88	struct gpt_ent		ent;
89};
90
91static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
92static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
93static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
94
95static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
96    struct g_part_parms *);
97static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
98static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
99static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
100static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
101    struct sbuf *, const char *);
102static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
103static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
104    struct g_part_parms *);
105static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
106    char *, size_t);
107static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
108static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
109static int g_part_gpt_setunset(struct g_part_table *table,
110    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
111static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
112    char *, size_t);
113static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
114static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
115    struct g_part_parms *);
116static int g_part_gpt_recover(struct g_part_table *);
117
118static kobj_method_t g_part_gpt_methods[] = {
119	KOBJMETHOD(g_part_add,		g_part_gpt_add),
120	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
121	KOBJMETHOD(g_part_create,	g_part_gpt_create),
122	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
123	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
124	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
125	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
126	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
127	KOBJMETHOD(g_part_name,		g_part_gpt_name),
128	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
129	KOBJMETHOD(g_part_read,		g_part_gpt_read),
130	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
131	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
132	KOBJMETHOD(g_part_type,		g_part_gpt_type),
133	KOBJMETHOD(g_part_write,	g_part_gpt_write),
134	{ 0, 0 }
135};
136
137static struct g_part_scheme g_part_gpt_scheme = {
138	"GPT",
139	g_part_gpt_methods,
140	sizeof(struct g_part_gpt_table),
141	.gps_entrysz = sizeof(struct g_part_gpt_entry),
142	.gps_minent = 128,
143	.gps_maxent = 4096,
144	.gps_bootcodesz = MBRSIZE,
145};
146G_PART_SCHEME_DECLARE(g_part_gpt);
147
148static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
149static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
150static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
151static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
152static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
153static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
154static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
155static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
156static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
157static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
158static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
159static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
160static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
161static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
162static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
163static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
164static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
165static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
166static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
167static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
168static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
169static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
170static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
171static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
172static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
173static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
174static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
175static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
176static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
177static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
178static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
179static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
180static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
181static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
182static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
183static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
184static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
185static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
186static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
187static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
188static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
189static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
190static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
191static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
192static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
193
194static struct g_part_uuid_alias {
195	struct uuid *uuid;
196	int alias;
197	int mbrtype;
198} gpt_uuid_alias_match[] = {
199	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
200	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
201	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
202	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
203	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
204	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
205	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
206	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
207	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
208	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
209	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
210	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
211	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
212	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
213	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
214	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
215	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
216	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
217	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
218	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
219	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
220	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
221	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
222	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
223	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
224	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
225	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
226	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
227	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
228	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
229	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
230	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
231	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
232	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
233	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
234	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
235	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
236	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
237	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
238	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
239	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
240	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
241	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
242	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
243	{ NULL, 0, 0 }
244};
245
246static int
247gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
248    quad_t end)
249{
250
251	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
252		return (EINVAL);
253
254	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
255	mbr[0] = 0;
256	if (start == 1) {
257		/*
258		 * Treat the PMBR partition specially to maximize
259		 * interoperability with BIOSes.
260		 */
261		mbr[1] = mbr[3] = 0;
262		mbr[2] = 2;
263	} else
264		mbr[1] = mbr[2] = mbr[3] = 0xff;
265	mbr[4] = typ;
266	mbr[5] = mbr[6] = mbr[7] = 0xff;
267	le32enc(mbr + 8, (uint32_t)start);
268	le32enc(mbr + 12, (uint32_t)(end - start + 1));
269	return (0);
270}
271
272static int
273gpt_map_type(struct uuid *t)
274{
275	struct g_part_uuid_alias *uap;
276
277	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
278		if (EQUUID(t, uap->uuid))
279			return (uap->mbrtype);
280	}
281	return (0);
282}
283
284static void
285gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
286{
287
288	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
289	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
290	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
291	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
292}
293
294/*
295 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
296 * whole disk anymore. Rather, it covers the GPT table and the EFI
297 * system partition only. This way the HFS+ partition and any FAT
298 * partitions can be added to the MBR without creating an overlap.
299 */
300static int
301gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
302{
303	uint8_t *p;
304
305	p = table->mbr + DOSPARTOFF;
306	if (p[4] != 0xee || le32dec(p + 8) != 1)
307		return (0);
308
309	p += DOSPARTSIZE;
310	if (p[4] != 0xaf)
311		return (0);
312
313	printf("GEOM: %s: enabling Boot Camp\n", provname);
314	return (1);
315}
316
317static void
318gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
319{
320	struct g_part_entry *baseentry;
321	struct g_part_gpt_entry *entry;
322	struct g_part_gpt_table *table;
323	int bootable, error, index, slices, typ;
324
325	table = (struct g_part_gpt_table *)basetable;
326
327	bootable = -1;
328	for (index = 0; index < NDOSPART; index++) {
329		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
330			bootable = index;
331	}
332
333	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
334	slices = 0;
335	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
336		if (baseentry->gpe_deleted)
337			continue;
338		index = baseentry->gpe_index - 1;
339		if (index >= NDOSPART)
340			continue;
341
342		entry = (struct g_part_gpt_entry *)baseentry;
343
344		switch (index) {
345		case 0:	/* This must be the EFI system partition. */
346			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
347				goto disable;
348			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
349			    1ull, entry->ent.ent_lba_end);
350			break;
351		case 1:	/* This must be the HFS+ partition. */
352			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
353				goto disable;
354			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
355			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
356			break;
357		default:
358			typ = gpt_map_type(&entry->ent.ent_type);
359			error = gpt_write_mbr_entry(table->mbr, index, typ,
360			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
361			break;
362		}
363		if (error)
364			continue;
365
366		if (index == bootable)
367			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
368		slices |= 1 << index;
369	}
370	if ((slices & 3) == 3)
371		return;
372
373 disable:
374	table->bootcamp = 0;
375	gpt_create_pmbr(table, pp);
376}
377
378static struct gpt_hdr *
379gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
380    enum gpt_elt elt)
381{
382	struct gpt_hdr *buf, *hdr;
383	struct g_provider *pp;
384	quad_t lba, last;
385	int error;
386	uint32_t crc, sz;
387
388	pp = cp->provider;
389	last = (pp->mediasize / pp->sectorsize) - 1;
390	table->state[elt] = GPT_STATE_MISSING;
391	/*
392	 * If the primary header is valid look for secondary
393	 * header in AlternateLBA, otherwise in the last medium's LBA.
394	 */
395	if (elt == GPT_ELT_SECHDR) {
396		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
397			table->lba[elt] = last;
398	} else
399		table->lba[elt] = 1;
400	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
401	    &error);
402	if (buf == NULL)
403		return (NULL);
404	hdr = NULL;
405	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
406		goto fail;
407
408	table->state[elt] = GPT_STATE_CORRUPT;
409	sz = le32toh(buf->hdr_size);
410	if (sz < 92 || sz > pp->sectorsize)
411		goto fail;
412
413	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
414	bcopy(buf, hdr, sz);
415	hdr->hdr_size = sz;
416
417	crc = le32toh(buf->hdr_crc_self);
418	buf->hdr_crc_self = 0;
419	if (crc32(buf, sz) != crc)
420		goto fail;
421	hdr->hdr_crc_self = crc;
422
423	table->state[elt] = GPT_STATE_INVALID;
424	hdr->hdr_revision = le32toh(buf->hdr_revision);
425	if (hdr->hdr_revision < GPT_HDR_REVISION)
426		goto fail;
427	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
428	if (hdr->hdr_lba_self != table->lba[elt])
429		goto fail;
430	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
431	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
432	    hdr->hdr_lba_alt > last)
433		goto fail;
434
435	/* Check the managed area. */
436	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
437	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
438		goto fail;
439	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
440	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
441		goto fail;
442
443	/* Check the table location and size of the table. */
444	hdr->hdr_entries = le32toh(buf->hdr_entries);
445	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
446	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
447	    (hdr->hdr_entsz & 7) != 0)
448		goto fail;
449	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
450	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
451		goto fail;
452	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
453	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
454		goto fail;
455	lba = hdr->hdr_lba_table +
456	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
457	    pp->sectorsize - 1;
458	if (lba >= last)
459		goto fail;
460	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
461		goto fail;
462
463	table->state[elt] = GPT_STATE_OK;
464	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
465	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
466
467	/* save LBA for secondary header */
468	if (elt == GPT_ELT_PRIHDR)
469		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
470
471	g_free(buf);
472	return (hdr);
473
474 fail:
475	if (hdr != NULL)
476		g_free(hdr);
477	g_free(buf);
478	return (NULL);
479}
480
481static struct gpt_ent *
482gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
483    enum gpt_elt elt, struct gpt_hdr *hdr)
484{
485	struct g_provider *pp;
486	struct gpt_ent *ent, *tbl;
487	char *buf, *p;
488	unsigned int idx, sectors, tblsz, size;
489	int error;
490
491	if (hdr == NULL)
492		return (NULL);
493
494	pp = cp->provider;
495	table->lba[elt] = hdr->hdr_lba_table;
496
497	table->state[elt] = GPT_STATE_MISSING;
498	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
499	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
500	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
501	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
502		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
503		    (sectors - idx) * pp->sectorsize;
504		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
505		    size, &error);
506		if (p == NULL) {
507			g_free(buf);
508			return (NULL);
509		}
510		bcopy(p, buf + idx * pp->sectorsize, size);
511		g_free(p);
512	}
513	table->state[elt] = GPT_STATE_CORRUPT;
514	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
515		g_free(buf);
516		return (NULL);
517	}
518
519	table->state[elt] = GPT_STATE_OK;
520	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
521	    M_WAITOK | M_ZERO);
522
523	for (idx = 0, ent = tbl, p = buf;
524	     idx < hdr->hdr_entries;
525	     idx++, ent++, p += hdr->hdr_entsz) {
526		le_uuid_dec(p, &ent->ent_type);
527		le_uuid_dec(p + 16, &ent->ent_uuid);
528		ent->ent_lba_start = le64dec(p + 32);
529		ent->ent_lba_end = le64dec(p + 40);
530		ent->ent_attr = le64dec(p + 48);
531		/* Keep UTF-16 in little-endian. */
532		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
533	}
534
535	g_free(buf);
536	return (tbl);
537}
538
539static int
540gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
541{
542
543	if (pri == NULL || sec == NULL)
544		return (0);
545
546	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
547		return (0);
548	return ((pri->hdr_revision == sec->hdr_revision &&
549	    pri->hdr_size == sec->hdr_size &&
550	    pri->hdr_lba_start == sec->hdr_lba_start &&
551	    pri->hdr_lba_end == sec->hdr_lba_end &&
552	    pri->hdr_entries == sec->hdr_entries &&
553	    pri->hdr_entsz == sec->hdr_entsz &&
554	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
555}
556
557static int
558gpt_parse_type(const char *type, struct uuid *uuid)
559{
560	struct uuid tmp;
561	const char *alias;
562	int error;
563	struct g_part_uuid_alias *uap;
564
565	if (type[0] == '!') {
566		error = parse_uuid(type + 1, &tmp);
567		if (error)
568			return (error);
569		if (EQUUID(&tmp, &gpt_uuid_unused))
570			return (EINVAL);
571		*uuid = tmp;
572		return (0);
573	}
574	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
575		alias = g_part_alias_name(uap->alias);
576		if (!strcasecmp(type, alias)) {
577			*uuid = *uap->uuid;
578			return (0);
579		}
580	}
581	return (EINVAL);
582}
583
584static int
585g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
586    struct g_part_parms *gpp)
587{
588	struct g_part_gpt_entry *entry;
589	int error;
590
591	entry = (struct g_part_gpt_entry *)baseentry;
592	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
593	if (error)
594		return (error);
595	kern_uuidgen(&entry->ent.ent_uuid, 1);
596	entry->ent.ent_lba_start = baseentry->gpe_start;
597	entry->ent.ent_lba_end = baseentry->gpe_end;
598	if (baseentry->gpe_deleted) {
599		entry->ent.ent_attr = 0;
600		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
601	}
602	if (gpp->gpp_parms & G_PART_PARM_LABEL)
603		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
604		    sizeof(entry->ent.ent_name) /
605		    sizeof(entry->ent.ent_name[0]));
606	return (0);
607}
608
609static int
610g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
611{
612	struct g_part_gpt_table *table;
613	size_t codesz;
614
615	codesz = DOSPARTOFF;
616	table = (struct g_part_gpt_table *)basetable;
617	bzero(table->mbr, codesz);
618	codesz = MIN(codesz, gpp->gpp_codesize);
619	if (codesz > 0)
620		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
621	return (0);
622}
623
624static int
625g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
626{
627	struct g_provider *pp;
628	struct g_part_gpt_table *table;
629	size_t tblsz;
630
631	/* We don't nest, which means that our depth should be 0. */
632	if (basetable->gpt_depth != 0)
633		return (ENXIO);
634
635	table = (struct g_part_gpt_table *)basetable;
636	pp = gpp->gpp_provider;
637	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
638	    pp->sectorsize - 1) / pp->sectorsize;
639	if (pp->sectorsize < MBRSIZE ||
640	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
641	    pp->sectorsize)
642		return (ENOSPC);
643
644	gpt_create_pmbr(table, pp);
645
646	/* Allocate space for the header */
647	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
648
649	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
650	table->hdr->hdr_revision = GPT_HDR_REVISION;
651	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
652	kern_uuidgen(&table->hdr->hdr_uuid, 1);
653	table->hdr->hdr_entries = basetable->gpt_entries;
654	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
655
656	g_gpt_set_defaults(basetable, pp);
657	return (0);
658}
659
660static int
661g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
662{
663	struct g_part_gpt_table *table;
664	struct g_provider *pp;
665
666	table = (struct g_part_gpt_table *)basetable;
667	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
668	g_free(table->hdr);
669	table->hdr = NULL;
670
671	/*
672	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
673	 * sector only if it has valid secondary header.
674	 */
675	basetable->gpt_smhead |= 3;
676	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
677	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
678		basetable->gpt_smtail |= 1;
679	return (0);
680}
681
682static void
683g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
684    struct sbuf *sb, const char *indent)
685{
686	struct g_part_gpt_entry *entry;
687
688	entry = (struct g_part_gpt_entry *)baseentry;
689	if (indent == NULL) {
690		/* conftxt: libdisk compatibility */
691		sbuf_printf(sb, " xs GPT xt ");
692		sbuf_printf_uuid(sb, &entry->ent.ent_type);
693	} else if (entry != NULL) {
694		/* confxml: partition entry information */
695		sbuf_printf(sb, "%s<label>", indent);
696		g_gpt_printf_utf16(sb, entry->ent.ent_name,
697		    sizeof(entry->ent.ent_name) >> 1);
698		sbuf_printf(sb, "</label>\n");
699		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
700			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
701		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
702			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
703			    indent);
704		}
705		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
706			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
707			    indent);
708		}
709		sbuf_printf(sb, "%s<rawtype>", indent);
710		sbuf_printf_uuid(sb, &entry->ent.ent_type);
711		sbuf_printf(sb, "</rawtype>\n");
712		sbuf_printf(sb, "%s<rawuuid>", indent);
713		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
714		sbuf_printf(sb, "</rawuuid>\n");
715	} else {
716		/* confxml: scheme information */
717	}
718}
719
720static int
721g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
722{
723	struct g_part_gpt_entry *entry;
724
725	entry = (struct g_part_gpt_entry *)baseentry;
726	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
727	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
728	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
729}
730
731static int
732g_part_gpt_modify(struct g_part_table *basetable,
733    struct g_part_entry *baseentry, struct g_part_parms *gpp)
734{
735	struct g_part_gpt_entry *entry;
736	int error;
737
738	entry = (struct g_part_gpt_entry *)baseentry;
739	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
740		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
741		if (error)
742			return (error);
743	}
744	if (gpp->gpp_parms & G_PART_PARM_LABEL)
745		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
746		    sizeof(entry->ent.ent_name) /
747		    sizeof(entry->ent.ent_name[0]));
748	return (0);
749}
750
751static int
752g_part_gpt_resize(struct g_part_table *basetable,
753    struct g_part_entry *baseentry, struct g_part_parms *gpp)
754{
755	struct g_part_gpt_entry *entry;
756
757	if (baseentry == NULL)
758		return (EOPNOTSUPP);
759
760	entry = (struct g_part_gpt_entry *)baseentry;
761	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
762	entry->ent.ent_lba_end = baseentry->gpe_end;
763
764	return (0);
765}
766
767static const char *
768g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
769    char *buf, size_t bufsz)
770{
771	struct g_part_gpt_entry *entry;
772	char c;
773
774	entry = (struct g_part_gpt_entry *)baseentry;
775	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
776	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
777	return (buf);
778}
779
780static int
781g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
782{
783	struct g_provider *pp;
784	u_char *buf;
785	int error, index, pri, res;
786
787	/* We don't nest, which means that our depth should be 0. */
788	if (table->gpt_depth != 0)
789		return (ENXIO);
790
791	pp = cp->provider;
792
793	/*
794	 * Sanity-check the provider. Since the first sector on the provider
795	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
796	 * must be at least 512 bytes.  Also, since the theoretical minimum
797	 * number of sectors needed by GPT is 6, any medium that has less
798	 * than 6 sectors is never going to be able to hold a GPT. The
799	 * number 6 comes from:
800	 *	1 sector for the PMBR
801	 *	2 sectors for the GPT headers (each 1 sector)
802	 *	2 sectors for the GPT tables (each 1 sector)
803	 *	1 sector for an actual partition
804	 * It's better to catch this pathological case early than behaving
805	 * pathologically later on...
806	 */
807	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
808		return (ENOSPC);
809
810	/*
811	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
812	 * as the highest priority on a match, otherwise we assume some
813	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
814	 * we really want the MBR scheme to take precedence.
815	 */
816	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
817	if (buf == NULL)
818		return (error);
819	res = le16dec(buf + DOSMAGICOFFSET);
820	pri = G_PART_PROBE_PRI_LOW;
821	for (index = 0; index < NDOSPART; index++) {
822		if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
823			pri = G_PART_PROBE_PRI_HIGH;
824	}
825	g_free(buf);
826	if (res != DOSMAGIC)
827		return (ENXIO);
828
829	/* Check that there's a primary header. */
830	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
831	if (buf == NULL)
832		return (error);
833	res = memcmp(buf, GPT_HDR_SIG, 8);
834	g_free(buf);
835	if (res == 0)
836		return (pri);
837
838	/* No primary? Check that there's a secondary. */
839	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
840	    &error);
841	if (buf == NULL)
842		return (error);
843	res = memcmp(buf, GPT_HDR_SIG, 8);
844	g_free(buf);
845	return ((res == 0) ? pri : ENXIO);
846}
847
848static int
849g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
850{
851	struct gpt_hdr *prihdr, *sechdr;
852	struct gpt_ent *tbl, *pritbl, *sectbl;
853	struct g_provider *pp;
854	struct g_part_gpt_table *table;
855	struct g_part_gpt_entry *entry;
856	u_char *buf;
857	uint64_t last;
858	int error, index;
859
860	table = (struct g_part_gpt_table *)basetable;
861	pp = cp->provider;
862	last = (pp->mediasize / pp->sectorsize) - 1;
863
864	/* Read the PMBR */
865	buf = g_read_data(cp, 0, pp->sectorsize, &error);
866	if (buf == NULL)
867		return (error);
868	bcopy(buf, table->mbr, MBRSIZE);
869	g_free(buf);
870
871	/* Read the primary header and table. */
872	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
873	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
874		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
875	} else {
876		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
877		pritbl = NULL;
878	}
879
880	/* Read the secondary header and table. */
881	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
882	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
883		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
884	} else {
885		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
886		sectbl = NULL;
887	}
888
889	/* Fail if we haven't got any good tables at all. */
890	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
891	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
892		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
893		    pp->name);
894		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
895		    pp->name);
896		return (EINVAL);
897	}
898
899	/*
900	 * If both headers are good but they disagree with each other,
901	 * then invalidate one. We prefer to keep the primary header,
902	 * unless the primary table is corrupt.
903	 */
904	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
905	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
906	    !gpt_matched_hdrs(prihdr, sechdr)) {
907		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
908			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
909			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
910			g_free(sechdr);
911			sechdr = NULL;
912		} else {
913			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
914			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
915			g_free(prihdr);
916			prihdr = NULL;
917		}
918	}
919
920	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
921		printf("GEOM: %s: the primary GPT table is corrupt or "
922		    "invalid.\n", pp->name);
923		printf("GEOM: %s: using the secondary instead -- recovery "
924		    "strongly advised.\n", pp->name);
925		table->hdr = sechdr;
926		basetable->gpt_corrupt = 1;
927		if (prihdr != NULL)
928			g_free(prihdr);
929		tbl = sectbl;
930		if (pritbl != NULL)
931			g_free(pritbl);
932	} else {
933		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
934			printf("GEOM: %s: the secondary GPT table is corrupt "
935			    "or invalid.\n", pp->name);
936			printf("GEOM: %s: using the primary only -- recovery "
937			    "suggested.\n", pp->name);
938			basetable->gpt_corrupt = 1;
939		} else if (table->lba[GPT_ELT_SECHDR] != last) {
940			printf( "GEOM: %s: the secondary GPT header is not in "
941			    "the last LBA.\n", pp->name);
942			basetable->gpt_corrupt = 1;
943		}
944		table->hdr = prihdr;
945		if (sechdr != NULL)
946			g_free(sechdr);
947		tbl = pritbl;
948		if (sectbl != NULL)
949			g_free(sectbl);
950	}
951
952	basetable->gpt_first = table->hdr->hdr_lba_start;
953	basetable->gpt_last = table->hdr->hdr_lba_end;
954	basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) *
955	    pp->sectorsize / table->hdr->hdr_entsz;
956
957	for (index = table->hdr->hdr_entries - 1; index >= 0; index--) {
958		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
959			continue;
960		entry = (struct g_part_gpt_entry *)g_part_new_entry(
961		    basetable, index + 1, tbl[index].ent_lba_start,
962		    tbl[index].ent_lba_end);
963		entry->ent = tbl[index];
964	}
965
966	g_free(tbl);
967
968	/*
969	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
970	 * if (and only if) any FAT32 or FAT16 partitions have been
971	 * created. This happens irrespective of whether Boot Camp is
972	 * used/enabled, though it's generally understood to be done
973	 * to support legacy Windows under Boot Camp. We refer to this
974	 * mirroring simply as Boot Camp. We try to detect Boot Camp
975	 * so that we can update the MBR if and when GPT changes have
976	 * been made. Note that we do not enable Boot Camp if not
977	 * previously enabled because we can't assume that we're on a
978	 * Mac alongside Mac OS X.
979	 */
980	table->bootcamp = gpt_is_bootcamp(table, pp->name);
981
982	return (0);
983}
984
985static int
986g_part_gpt_recover(struct g_part_table *basetable)
987{
988	struct g_part_gpt_table *table;
989	struct g_provider *pp;
990
991	table = (struct g_part_gpt_table *)basetable;
992	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
993	gpt_create_pmbr(table, pp);
994	g_gpt_set_defaults(basetable, pp);
995	basetable->gpt_corrupt = 0;
996	return (0);
997}
998
999static int
1000g_part_gpt_setunset(struct g_part_table *basetable,
1001    struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1002{
1003	struct g_part_gpt_entry *entry;
1004	struct g_part_gpt_table *table;
1005	uint8_t *p;
1006	uint64_t attr;
1007	int i;
1008
1009	table = (struct g_part_gpt_table *)basetable;
1010	entry = (struct g_part_gpt_entry *)baseentry;
1011
1012	if (strcasecmp(attrib, "active") == 0) {
1013		if (table->bootcamp) {
1014			/* The active flag must be set on a valid entry. */
1015			if (entry == NULL)
1016				return (ENXIO);
1017			if (baseentry->gpe_index > NDOSPART)
1018				return (EINVAL);
1019			for (i = 0; i < NDOSPART; i++) {
1020				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1021				p[0] = (i == baseentry->gpe_index - 1)
1022				    ? ((set) ? 0x80 : 0) : 0;
1023			}
1024		} else {
1025			/* The PMBR is marked as active without an entry. */
1026			if (entry != NULL)
1027				return (ENXIO);
1028			for (i = 0; i < NDOSPART; i++) {
1029				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1030				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1031			}
1032		}
1033		return (0);
1034	}
1035
1036	if (entry == NULL)
1037		return (ENODEV);
1038
1039	attr = 0;
1040	if (strcasecmp(attrib, "bootme") == 0) {
1041		attr |= GPT_ENT_ATTR_BOOTME;
1042	} else if (strcasecmp(attrib, "bootonce") == 0) {
1043		attr |= GPT_ENT_ATTR_BOOTONCE;
1044		if (set)
1045			attr |= GPT_ENT_ATTR_BOOTME;
1046	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1047		/*
1048		 * It should only be possible to unset BOOTFAILED, but it might
1049		 * be useful for test purposes to also be able to set it.
1050		 */
1051		attr |= GPT_ENT_ATTR_BOOTFAILED;
1052	}
1053	if (attr == 0)
1054		return (EINVAL);
1055
1056	if (set)
1057		attr = entry->ent.ent_attr | attr;
1058	else
1059		attr = entry->ent.ent_attr & ~attr;
1060	if (attr != entry->ent.ent_attr) {
1061		entry->ent.ent_attr = attr;
1062		if (!baseentry->gpe_created)
1063			baseentry->gpe_modified = 1;
1064	}
1065	return (0);
1066}
1067
1068static const char *
1069g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1070    char *buf, size_t bufsz)
1071{
1072	struct g_part_gpt_entry *entry;
1073	struct uuid *type;
1074	struct g_part_uuid_alias *uap;
1075
1076	entry = (struct g_part_gpt_entry *)baseentry;
1077	type = &entry->ent.ent_type;
1078	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1079		if (EQUUID(type, uap->uuid))
1080			return (g_part_alias_name(uap->alias));
1081	buf[0] = '!';
1082	snprintf_uuid(buf + 1, bufsz - 1, type);
1083
1084	return (buf);
1085}
1086
1087static int
1088g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1089{
1090	unsigned char *buf, *bp;
1091	struct g_provider *pp;
1092	struct g_part_entry *baseentry;
1093	struct g_part_gpt_entry *entry;
1094	struct g_part_gpt_table *table;
1095	size_t tblsz;
1096	uint32_t crc;
1097	int error, index;
1098
1099	pp = cp->provider;
1100	table = (struct g_part_gpt_table *)basetable;
1101	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
1102	    pp->sectorsize - 1) / pp->sectorsize;
1103
1104	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1105	if (table->bootcamp)
1106		gpt_update_bootcamp(basetable, pp);
1107
1108	/* Write the PMBR */
1109	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1110	bcopy(table->mbr, buf, MBRSIZE);
1111	error = g_write_data(cp, 0, buf, pp->sectorsize);
1112	g_free(buf);
1113	if (error)
1114		return (error);
1115
1116	/* Allocate space for the header and entries. */
1117	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1118
1119	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1120	le32enc(buf + 8, table->hdr->hdr_revision);
1121	le32enc(buf + 12, table->hdr->hdr_size);
1122	le64enc(buf + 40, table->hdr->hdr_lba_start);
1123	le64enc(buf + 48, table->hdr->hdr_lba_end);
1124	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1125	le32enc(buf + 80, table->hdr->hdr_entries);
1126	le32enc(buf + 84, table->hdr->hdr_entsz);
1127
1128	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1129		if (baseentry->gpe_deleted)
1130			continue;
1131		entry = (struct g_part_gpt_entry *)baseentry;
1132		index = baseentry->gpe_index - 1;
1133		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1134		le_uuid_enc(bp, &entry->ent.ent_type);
1135		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1136		le64enc(bp + 32, entry->ent.ent_lba_start);
1137		le64enc(bp + 40, entry->ent.ent_lba_end);
1138		le64enc(bp + 48, entry->ent.ent_attr);
1139		memcpy(bp + 56, entry->ent.ent_name,
1140		    sizeof(entry->ent.ent_name));
1141	}
1142
1143	crc = crc32(buf + pp->sectorsize,
1144	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1145	le32enc(buf + 88, crc);
1146
1147	/* Write primary meta-data. */
1148	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1149	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1150	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1151	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1152	crc = crc32(buf, table->hdr->hdr_size);
1153	le32enc(buf + 16, crc);
1154
1155	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1156		error = g_write_data(cp,
1157		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1158		    buf + (index + 1) * pp->sectorsize,
1159		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1160		    (tblsz - index) * pp->sectorsize);
1161		if (error)
1162			goto out;
1163	}
1164	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1165	    buf, pp->sectorsize);
1166	if (error)
1167		goto out;
1168
1169	/* Write secondary meta-data. */
1170	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1171	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1172	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1173	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1174	crc = crc32(buf, table->hdr->hdr_size);
1175	le32enc(buf + 16, crc);
1176
1177	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
1178		error = g_write_data(cp,
1179		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1180		    buf + (index + 1) * pp->sectorsize,
1181		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1182		    (tblsz - index) * pp->sectorsize);
1183		if (error)
1184			goto out;
1185	}
1186	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1187	    buf, pp->sectorsize);
1188
1189 out:
1190	g_free(buf);
1191	return (error);
1192}
1193
1194static void
1195g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1196{
1197	struct g_part_gpt_table *table;
1198	quad_t last;
1199	size_t tblsz;
1200
1201	table = (struct g_part_gpt_table *)basetable;
1202	last = pp->mediasize / pp->sectorsize - 1;
1203	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1204	    pp->sectorsize - 1) / pp->sectorsize;
1205
1206	table->lba[GPT_ELT_PRIHDR] = 1;
1207	table->lba[GPT_ELT_PRITBL] = 2;
1208	table->lba[GPT_ELT_SECHDR] = last;
1209	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1210	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1211	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1212	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1213	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1214
1215	table->hdr->hdr_lba_start = 2 + tblsz;
1216	table->hdr->hdr_lba_end = last - tblsz - 1;
1217
1218	basetable->gpt_first = table->hdr->hdr_lba_start;
1219	basetable->gpt_last = table->hdr->hdr_lba_end;
1220}
1221
1222static void
1223g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1224{
1225	u_int bo;
1226	uint32_t ch;
1227	uint16_t c;
1228
1229	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1230	while (len > 0 && *str != 0) {
1231		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1232		str++, len--;
1233		if ((ch & 0xf800) == 0xd800) {
1234			if (len > 0) {
1235				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1236				    : le16toh(*str);
1237				str++, len--;
1238			} else
1239				c = 0xfffd;
1240			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1241				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1242				ch += 0x10000;
1243			} else
1244				ch = 0xfffd;
1245		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1246			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1247			continue;
1248		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1249			continue;
1250
1251		/* Write the Unicode character in UTF-8 */
1252		if (ch < 0x80)
1253			g_conf_printf_escaped(sb, "%c", ch);
1254		else if (ch < 0x800)
1255			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1256			    0x80 | (ch & 0x3f));
1257		else if (ch < 0x10000)
1258			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1259			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1260		else if (ch < 0x200000)
1261			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1262			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1263			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1264	}
1265}
1266
1267static void
1268g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1269{
1270	size_t s16idx, s8idx;
1271	uint32_t utfchar;
1272	unsigned int c, utfbytes;
1273
1274	s8idx = s16idx = 0;
1275	utfchar = 0;
1276	utfbytes = 0;
1277	bzero(s16, s16len << 1);
1278	while (s8[s8idx] != 0 && s16idx < s16len) {
1279		c = s8[s8idx++];
1280		if ((c & 0xc0) != 0x80) {
1281			/* Initial characters. */
1282			if (utfbytes != 0) {
1283				/* Incomplete encoding of previous char. */
1284				s16[s16idx++] = htole16(0xfffd);
1285			}
1286			if ((c & 0xf8) == 0xf0) {
1287				utfchar = c & 0x07;
1288				utfbytes = 3;
1289			} else if ((c & 0xf0) == 0xe0) {
1290				utfchar = c & 0x0f;
1291				utfbytes = 2;
1292			} else if ((c & 0xe0) == 0xc0) {
1293				utfchar = c & 0x1f;
1294				utfbytes = 1;
1295			} else {
1296				utfchar = c & 0x7f;
1297				utfbytes = 0;
1298			}
1299		} else {
1300			/* Followup characters. */
1301			if (utfbytes > 0) {
1302				utfchar = (utfchar << 6) + (c & 0x3f);
1303				utfbytes--;
1304			} else if (utfbytes == 0)
1305				utfbytes = ~0;
1306		}
1307		/*
1308		 * Write the complete Unicode character as UTF-16 when we
1309		 * have all the UTF-8 charactars collected.
1310		 */
1311		if (utfbytes == 0) {
1312			/*
1313			 * If we need to write 2 UTF-16 characters, but
1314			 * we only have room for 1, then we truncate the
1315			 * string by writing a 0 instead.
1316			 */
1317			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1318				s16[s16idx++] =
1319				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1320				s16[s16idx++] =
1321				    htole16(0xdc00 | (utfchar & 0x3ff));
1322			} else
1323				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1324				    htole16(utfchar);
1325		}
1326	}
1327	/*
1328	 * If our input string was truncated, append an invalid encoding
1329	 * character to the output string.
1330	 */
1331	if (utfbytes != 0 && s16idx < s16len)
1332		s16[s16idx++] = htole16(0xfffd);
1333}
1334