g_eli_integrity.c revision 330737
1/*-
2 * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/geom/eli/g_eli_integrity.c 330737 2018-03-10 04:17:01Z asomers $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/linker.h>
34#include <sys/module.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/bio.h>
38#include <sys/sysctl.h>
39#include <sys/malloc.h>
40#include <sys/kthread.h>
41#include <sys/proc.h>
42#include <sys/sched.h>
43#include <sys/smp.h>
44#include <sys/uio.h>
45#include <sys/vnode.h>
46
47#include <vm/uma.h>
48
49#include <geom/geom.h>
50#include <geom/eli/g_eli.h>
51#include <geom/eli/pkcs5v2.h>
52
53/*
54 * The data layout description when integrity verification is configured.
55 *
56 * One of the most important assumption here is that authenticated data and its
57 * HMAC has to be stored in the same place (namely in the same sector) to make
58 * it work reliable.
59 * The problem is that file systems work only with sectors that are multiple of
60 * 512 bytes and a power of two number.
61 * My idea to implement it is as follows.
62 * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
63 * data. We can't use that directly (ie. we can't create provider with 480 bytes
64 * sector size). We need another sector from where we take only 32 bytes of data
65 * and we store HMAC of this data as well. This takes two sectors from the
66 * original provider at the input and leaves us one sector of authenticated data
67 * at the output. Not very efficient, but you got the idea.
68 * Now, let's assume, we want to create provider with 4096 bytes sector.
69 * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
70 * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
71 * output. That's better. With 4096 bytes sector we can use 89% of size of the
72 * original provider. I find it as an acceptable cost.
73 * The reliability comes from the fact, that every HMAC stored inside the sector
74 * is calculated only for the data in the same sector, so its impossible to
75 * write new data and leave old HMAC or vice versa.
76 *
77 * And here is the picture:
78 *
79 * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
80 *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
81 *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
82 *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
83 *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
84 *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
85 *                                                                                                      +----------+
86 * da0.eli: +----+----+----+----+----+----+----+----+----+
87 *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
88 *          +----+----+----+----+----+----+----+----+----+
89 *          |                 4096 bytes                 |
90 *          +--------------------------------------------+
91 *
92 * PS. You can use any sector size with geli(8). My example is using 4kB,
93 *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
94 *     so the cost is the same as for 4kB sectors.
95 */
96
97/*
98 * Code paths:
99 * BIO_READ:
100 *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
101 * BIO_WRITE:
102 *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
103 */
104
105MALLOC_DECLARE(M_ELI);
106
107/*
108 * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
109 * not possible to copy sectors.
110 * We cannot depend on fact, that every sector has its own IV, because different
111 * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
112 */
113static void
114g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
115{
116	SHA256_CTX ctx;
117
118	/* Copy precalculated SHA256 context. */
119	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
120	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
121	SHA256_Final(key, &ctx);
122}
123
124/*
125 * The function is called after we read and decrypt data.
126 *
127 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
128 */
129static int
130g_eli_auth_read_done(struct cryptop *crp)
131{
132	struct g_eli_softc *sc;
133	struct bio *bp;
134
135	if (crp->crp_etype == EAGAIN) {
136		if (g_eli_crypto_rerun(crp) == 0)
137			return (0);
138	}
139	bp = (struct bio *)crp->crp_opaque;
140	bp->bio_inbed++;
141	if (crp->crp_etype == 0) {
142		bp->bio_completed += crp->crp_olen;
143		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
144		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
145	} else {
146		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
147		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
148		if (bp->bio_error == 0)
149			bp->bio_error = crp->crp_etype;
150	}
151	sc = bp->bio_to->geom->softc;
152	g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key);
153	/*
154	 * Do we have all sectors already?
155	 */
156	if (bp->bio_inbed < bp->bio_children)
157		return (0);
158	if (bp->bio_error == 0) {
159		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
160		u_char *srcdata, *dstdata, *auth;
161		off_t coroff, corsize;
162
163		/*
164		 * Verify data integrity based on calculated and read HMACs.
165		 */
166		/* Sectorsize of decrypted provider eg. 4096. */
167		decr_secsize = bp->bio_to->sectorsize;
168		/* The real sectorsize of encrypted provider, eg. 512. */
169		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
170		/* Number of data bytes in one encrypted sector, eg. 480. */
171		data_secsize = sc->sc_data_per_sector;
172		/* Number of sectors from decrypted provider, eg. 2. */
173		nsec = bp->bio_length / decr_secsize;
174		/* Number of sectors from encrypted provider, eg. 18. */
175		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
176		/* Last sector number in every big sector, eg. 9. */
177		lsec = sc->sc_bytes_per_sector / encr_secsize;
178
179		srcdata = bp->bio_driver2;
180		dstdata = bp->bio_data;
181		auth = srcdata + encr_secsize * nsec;
182		coroff = -1;
183		corsize = 0;
184
185		for (i = 1; i <= nsec; i++) {
186			data_secsize = sc->sc_data_per_sector;
187			if ((i % lsec) == 0)
188				data_secsize = decr_secsize % data_secsize;
189			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
190				/*
191				 * Curruption detected, remember the offset if
192				 * this is the first corrupted sector and
193				 * increase size.
194				 */
195				if (bp->bio_error == 0)
196					bp->bio_error = -1;
197				if (coroff == -1) {
198					coroff = bp->bio_offset +
199					    (dstdata - (u_char *)bp->bio_data);
200				}
201				corsize += data_secsize;
202			} else {
203				/*
204				 * No curruption, good.
205				 * Report previous corruption if there was one.
206				 */
207				if (coroff != -1) {
208					G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
209					    "bytes of data at offset %jd.",
210					    sc->sc_name, (intmax_t)corsize,
211					    (intmax_t)coroff);
212					coroff = -1;
213					corsize = 0;
214				}
215				bcopy(srcdata + sc->sc_alen, dstdata,
216				    data_secsize);
217			}
218			srcdata += encr_secsize;
219			dstdata += data_secsize;
220			auth += sc->sc_alen;
221		}
222		/* Report previous corruption if there was one. */
223		if (coroff != -1) {
224			G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
225			    "bytes of data at offset %jd.",
226			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
227		}
228	}
229	free(bp->bio_driver2, M_ELI);
230	bp->bio_driver2 = NULL;
231	if (bp->bio_error != 0) {
232		if (bp->bio_error == -1)
233			bp->bio_error = EINVAL;
234		else {
235			G_ELI_LOGREQ(0, bp,
236			    "Crypto READ request failed (error=%d).",
237			    bp->bio_error);
238		}
239		bp->bio_completed = 0;
240	}
241	/*
242	 * Read is finished, send it up.
243	 */
244	g_io_deliver(bp, bp->bio_error);
245	atomic_subtract_int(&sc->sc_inflight, 1);
246	return (0);
247}
248
249/*
250 * The function is called after data encryption.
251 *
252 * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
253 */
254static int
255g_eli_auth_write_done(struct cryptop *crp)
256{
257	struct g_eli_softc *sc;
258	struct g_consumer *cp;
259	struct bio *bp, *cbp, *cbp2;
260	u_int nsec;
261
262	if (crp->crp_etype == EAGAIN) {
263		if (g_eli_crypto_rerun(crp) == 0)
264			return (0);
265	}
266	bp = (struct bio *)crp->crp_opaque;
267	bp->bio_inbed++;
268	if (crp->crp_etype == 0) {
269		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
270		    bp->bio_inbed, bp->bio_children);
271	} else {
272		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
273		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
274		if (bp->bio_error == 0)
275			bp->bio_error = crp->crp_etype;
276	}
277	sc = bp->bio_to->geom->softc;
278	g_eli_key_drop(sc, crp->crp_desc->crd_key);
279	/*
280	 * All sectors are already encrypted?
281	 */
282	if (bp->bio_inbed < bp->bio_children)
283		return (0);
284	if (bp->bio_error != 0) {
285		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
286		    bp->bio_error);
287		free(bp->bio_driver2, M_ELI);
288		bp->bio_driver2 = NULL;
289		cbp = bp->bio_driver1;
290		bp->bio_driver1 = NULL;
291		g_destroy_bio(cbp);
292		g_io_deliver(bp, bp->bio_error);
293		atomic_subtract_int(&sc->sc_inflight, 1);
294		return (0);
295	}
296	cp = LIST_FIRST(&sc->sc_geom->consumer);
297	cbp = bp->bio_driver1;
298	bp->bio_driver1 = NULL;
299	cbp->bio_to = cp->provider;
300	cbp->bio_done = g_eli_write_done;
301
302	/* Number of sectors from decrypted provider, eg. 1. */
303	nsec = bp->bio_length / bp->bio_to->sectorsize;
304	/* Number of sectors from encrypted provider, eg. 9. */
305	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
306
307	cbp->bio_length = cp->provider->sectorsize * nsec;
308	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
309	cbp->bio_data = bp->bio_driver2;
310
311	/*
312	 * We write more than what is requested, so we have to be ready to write
313	 * more than MAXPHYS.
314	 */
315	cbp2 = NULL;
316	if (cbp->bio_length > MAXPHYS) {
317		cbp2 = g_duplicate_bio(bp);
318		cbp2->bio_length = cbp->bio_length - MAXPHYS;
319		cbp2->bio_data = cbp->bio_data + MAXPHYS;
320		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
321		cbp2->bio_to = cp->provider;
322		cbp2->bio_done = g_eli_write_done;
323		cbp->bio_length = MAXPHYS;
324	}
325	/*
326	 * Send encrypted data to the provider.
327	 */
328	G_ELI_LOGREQ(2, cbp, "Sending request.");
329	bp->bio_inbed = 0;
330	bp->bio_children = (cbp2 != NULL ? 2 : 1);
331	g_io_request(cbp, cp);
332	if (cbp2 != NULL) {
333		G_ELI_LOGREQ(2, cbp2, "Sending request.");
334		g_io_request(cbp2, cp);
335	}
336	return (0);
337}
338
339void
340g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
341{
342	struct g_consumer *cp;
343	struct bio *cbp, *cbp2;
344	size_t size;
345	off_t nsec;
346
347	bp->bio_pflags = 0;
348
349	cp = LIST_FIRST(&sc->sc_geom->consumer);
350	cbp = bp->bio_driver1;
351	bp->bio_driver1 = NULL;
352	cbp->bio_to = cp->provider;
353	cbp->bio_done = g_eli_read_done;
354
355	/* Number of sectors from decrypted provider, eg. 1. */
356	nsec = bp->bio_length / bp->bio_to->sectorsize;
357	/* Number of sectors from encrypted provider, eg. 9. */
358	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
359
360	cbp->bio_length = cp->provider->sectorsize * nsec;
361	size = cbp->bio_length;
362	size += sc->sc_alen * nsec;
363	size += sizeof(struct cryptop) * nsec;
364	size += sizeof(struct cryptodesc) * nsec * 2;
365	size += G_ELI_AUTH_SECKEYLEN * nsec;
366	size += sizeof(struct uio) * nsec;
367	size += sizeof(struct iovec) * nsec;
368	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
369	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
370	cbp->bio_data = bp->bio_driver2;
371
372	/*
373	 * We read more than what is requested, so we have to be ready to read
374	 * more than MAXPHYS.
375	 */
376	cbp2 = NULL;
377	if (cbp->bio_length > MAXPHYS) {
378		cbp2 = g_duplicate_bio(bp);
379		cbp2->bio_length = cbp->bio_length - MAXPHYS;
380		cbp2->bio_data = cbp->bio_data + MAXPHYS;
381		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
382		cbp2->bio_to = cp->provider;
383		cbp2->bio_done = g_eli_read_done;
384		cbp->bio_length = MAXPHYS;
385	}
386	/*
387	 * Read encrypted data from provider.
388	 */
389	G_ELI_LOGREQ(2, cbp, "Sending request.");
390	g_io_request(cbp, cp);
391	if (cbp2 != NULL) {
392		G_ELI_LOGREQ(2, cbp2, "Sending request.");
393		g_io_request(cbp2, cp);
394	}
395}
396
397/*
398 * This is the main function responsible for cryptography (ie. communication
399 * with crypto(9) subsystem).
400 *
401 * BIO_READ:
402 *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
403 * BIO_WRITE:
404 *	g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
405 */
406void
407g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
408{
409	struct g_eli_softc *sc;
410	struct cryptop *crp;
411	struct cryptodesc *crde, *crda;
412	struct uio *uio;
413	struct iovec *iov;
414	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
415	off_t dstoff;
416	int err, error;
417	u_char *p, *data, *auth, *authkey, *plaindata;
418
419	G_ELI_LOGREQ(3, bp, "%s", __func__);
420
421	bp->bio_pflags = wr->w_number;
422	sc = wr->w_softc;
423	/* Sectorsize of decrypted provider eg. 4096. */
424	decr_secsize = bp->bio_to->sectorsize;
425	/* The real sectorsize of encrypted provider, eg. 512. */
426	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
427	/* Number of data bytes in one encrypted sector, eg. 480. */
428	data_secsize = sc->sc_data_per_sector;
429	/* Number of sectors from decrypted provider, eg. 2. */
430	nsec = bp->bio_length / decr_secsize;
431	/* Number of sectors from encrypted provider, eg. 18. */
432	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
433	/* Last sector number in every big sector, eg. 9. */
434	lsec = sc->sc_bytes_per_sector / encr_secsize;
435	/* Destination offset, used for IV generation. */
436	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
437
438	auth = NULL;	/* Silence compiler warning. */
439	plaindata = bp->bio_data;
440	if (bp->bio_cmd == BIO_READ) {
441		data = bp->bio_driver2;
442		auth = data + encr_secsize * nsec;
443		p = auth + sc->sc_alen * nsec;
444	} else {
445		size_t size;
446
447		size = encr_secsize * nsec;
448		size += sizeof(*crp) * nsec;
449		size += sizeof(*crde) * nsec;
450		size += sizeof(*crda) * nsec;
451		size += G_ELI_AUTH_SECKEYLEN * nsec;
452		size += sizeof(*uio) * nsec;
453		size += sizeof(*iov) * nsec;
454		data = malloc(size, M_ELI, M_WAITOK);
455		bp->bio_driver2 = data;
456		p = data + encr_secsize * nsec;
457	}
458	bp->bio_inbed = 0;
459	bp->bio_children = nsec;
460
461	error = 0;
462	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
463		crp = (struct cryptop *)p;	p += sizeof(*crp);
464		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
465		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
466		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;
467		uio = (struct uio *)p;		p += sizeof(*uio);
468		iov = (struct iovec *)p;	p += sizeof(*iov);
469
470		data_secsize = sc->sc_data_per_sector;
471		if ((i % lsec) == 0) {
472			data_secsize = decr_secsize % data_secsize;
473			/*
474			 * Last encrypted sector of each decrypted sector is
475			 * only partially filled.
476			 */
477			if (bp->bio_cmd == BIO_WRITE)
478				memset(data + sc->sc_alen + data_secsize, 0,
479				    encr_secsize - sc->sc_alen - data_secsize);
480		}
481
482		if (bp->bio_cmd == BIO_READ) {
483			/* Remember read HMAC. */
484			bcopy(data, auth, sc->sc_alen);
485			auth += sc->sc_alen;
486			/* TODO: bzero(9) can be commented out later. */
487			bzero(data, sc->sc_alen);
488		} else {
489			bcopy(plaindata, data + sc->sc_alen, data_secsize);
490			plaindata += data_secsize;
491		}
492
493		iov->iov_len = sc->sc_alen + data_secsize;
494		iov->iov_base = data;
495		data += encr_secsize;
496
497		uio->uio_iov = iov;
498		uio->uio_iovcnt = 1;
499		uio->uio_segflg = UIO_SYSSPACE;
500		uio->uio_resid = iov->iov_len;
501
502		crp->crp_sid = wr->w_sid;
503		crp->crp_ilen = uio->uio_resid;
504		crp->crp_olen = data_secsize;
505		crp->crp_opaque = (void *)bp;
506		crp->crp_buf = (void *)uio;
507		crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL;
508		if (g_eli_batch)
509			crp->crp_flags |= CRYPTO_F_BATCH;
510		if (bp->bio_cmd == BIO_WRITE) {
511			crp->crp_callback = g_eli_auth_write_done;
512			crp->crp_desc = crde;
513			crde->crd_next = crda;
514			crda->crd_next = NULL;
515		} else {
516			crp->crp_callback = g_eli_auth_read_done;
517			crp->crp_desc = crda;
518			crda->crd_next = crde;
519			crde->crd_next = NULL;
520		}
521
522		crde->crd_skip = sc->sc_alen;
523		crde->crd_len = data_secsize;
524		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
525		if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0)
526			crde->crd_flags |= CRD_F_KEY_EXPLICIT;
527		if (bp->bio_cmd == BIO_WRITE)
528			crde->crd_flags |= CRD_F_ENCRYPT;
529		crde->crd_alg = sc->sc_ealgo;
530		crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize);
531		crde->crd_klen = sc->sc_ekeylen;
532		if (sc->sc_ealgo == CRYPTO_AES_XTS)
533			crde->crd_klen <<= 1;
534		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
535		    sizeof(crde->crd_iv));
536
537		crda->crd_skip = sc->sc_alen;
538		crda->crd_len = data_secsize;
539		crda->crd_inject = 0;
540		crda->crd_flags = CRD_F_KEY_EXPLICIT;
541		crda->crd_alg = sc->sc_aalgo;
542		g_eli_auth_keygen(sc, dstoff, authkey);
543		crda->crd_key = authkey;
544		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
545
546		crp->crp_etype = 0;
547		err = crypto_dispatch(crp);
548		if (err != 0 && error == 0)
549			error = err;
550	}
551	if (bp->bio_error == 0)
552		bp->bio_error = error;
553}
554