nfs_clvnops.c revision 317408
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/10/sys/fs/nfsclient/nfs_clvnops.c 317408 2017-04-25 13:17:34Z kib $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_kdtrace.h"
43#include "opt_inet.h"
44
45#include <sys/param.h>
46#include <sys/kernel.h>
47#include <sys/systm.h>
48#include <sys/resourcevar.h>
49#include <sys/proc.h>
50#include <sys/mount.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/jail.h>
54#include <sys/malloc.h>
55#include <sys/mbuf.h>
56#include <sys/namei.h>
57#include <sys/socket.h>
58#include <sys/vnode.h>
59#include <sys/dirent.h>
60#include <sys/fcntl.h>
61#include <sys/lockf.h>
62#include <sys/stat.h>
63#include <sys/sysctl.h>
64#include <sys/signalvar.h>
65
66#include <vm/vm.h>
67#include <vm/vm_extern.h>
68#include <vm/vm_object.h>
69
70#include <fs/nfs/nfsport.h>
71#include <fs/nfsclient/nfsnode.h>
72#include <fs/nfsclient/nfsmount.h>
73#include <fs/nfsclient/nfs.h>
74#include <fs/nfsclient/nfs_kdtrace.h>
75
76#include <net/if.h>
77#include <netinet/in.h>
78#include <netinet/in_var.h>
79
80#include <nfs/nfs_lock.h>
81
82#ifdef KDTRACE_HOOKS
83#include <sys/dtrace_bsd.h>
84
85dtrace_nfsclient_accesscache_flush_probe_func_t
86		dtrace_nfscl_accesscache_flush_done_probe;
87uint32_t	nfscl_accesscache_flush_done_id;
88
89dtrace_nfsclient_accesscache_get_probe_func_t
90		dtrace_nfscl_accesscache_get_hit_probe,
91		dtrace_nfscl_accesscache_get_miss_probe;
92uint32_t	nfscl_accesscache_get_hit_id;
93uint32_t	nfscl_accesscache_get_miss_id;
94
95dtrace_nfsclient_accesscache_load_probe_func_t
96		dtrace_nfscl_accesscache_load_done_probe;
97uint32_t	nfscl_accesscache_load_done_id;
98#endif /* !KDTRACE_HOOKS */
99
100/* Defs */
101#define	TRUE	1
102#define	FALSE	0
103
104extern struct nfsstats newnfsstats;
105extern int nfsrv_useacl;
106extern int nfscl_debuglevel;
107MALLOC_DECLARE(M_NEWNFSREQ);
108
109/*
110 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
111 * calls are not in getblk() and brelse() so that they would not be necessary
112 * here.
113 */
114#ifndef B_VMIO
115#define	vfs_busy_pages(bp, f)
116#endif
117
118static vop_read_t	nfsfifo_read;
119static vop_write_t	nfsfifo_write;
120static vop_close_t	nfsfifo_close;
121static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
122		    struct thread *);
123static vop_lookup_t	nfs_lookup;
124static vop_create_t	nfs_create;
125static vop_mknod_t	nfs_mknod;
126static vop_open_t	nfs_open;
127static vop_pathconf_t	nfs_pathconf;
128static vop_close_t	nfs_close;
129static vop_access_t	nfs_access;
130static vop_getattr_t	nfs_getattr;
131static vop_setattr_t	nfs_setattr;
132static vop_read_t	nfs_read;
133static vop_fsync_t	nfs_fsync;
134static vop_remove_t	nfs_remove;
135static vop_link_t	nfs_link;
136static vop_rename_t	nfs_rename;
137static vop_mkdir_t	nfs_mkdir;
138static vop_rmdir_t	nfs_rmdir;
139static vop_symlink_t	nfs_symlink;
140static vop_readdir_t	nfs_readdir;
141static vop_strategy_t	nfs_strategy;
142static	int	nfs_lookitup(struct vnode *, char *, int,
143		    struct ucred *, struct thread *, struct nfsnode **);
144static	int	nfs_sillyrename(struct vnode *, struct vnode *,
145		    struct componentname *);
146static vop_access_t	nfsspec_access;
147static vop_readlink_t	nfs_readlink;
148static vop_print_t	nfs_print;
149static vop_advlock_t	nfs_advlock;
150static vop_advlockasync_t nfs_advlockasync;
151static vop_getacl_t nfs_getacl;
152static vop_setacl_t nfs_setacl;
153
154/*
155 * Global vfs data structures for nfs
156 */
157struct vop_vector newnfs_vnodeops = {
158	.vop_default =		&default_vnodeops,
159	.vop_access =		nfs_access,
160	.vop_advlock =		nfs_advlock,
161	.vop_advlockasync =	nfs_advlockasync,
162	.vop_close =		nfs_close,
163	.vop_create =		nfs_create,
164	.vop_fsync =		nfs_fsync,
165	.vop_getattr =		nfs_getattr,
166	.vop_getpages =		ncl_getpages,
167	.vop_putpages =		ncl_putpages,
168	.vop_inactive =		ncl_inactive,
169	.vop_link =		nfs_link,
170	.vop_lookup =		nfs_lookup,
171	.vop_mkdir =		nfs_mkdir,
172	.vop_mknod =		nfs_mknod,
173	.vop_open =		nfs_open,
174	.vop_pathconf =		nfs_pathconf,
175	.vop_print =		nfs_print,
176	.vop_read =		nfs_read,
177	.vop_readdir =		nfs_readdir,
178	.vop_readlink =		nfs_readlink,
179	.vop_reclaim =		ncl_reclaim,
180	.vop_remove =		nfs_remove,
181	.vop_rename =		nfs_rename,
182	.vop_rmdir =		nfs_rmdir,
183	.vop_setattr =		nfs_setattr,
184	.vop_strategy =		nfs_strategy,
185	.vop_symlink =		nfs_symlink,
186	.vop_write =		ncl_write,
187	.vop_getacl =		nfs_getacl,
188	.vop_setacl =		nfs_setacl,
189};
190
191struct vop_vector newnfs_fifoops = {
192	.vop_default =		&fifo_specops,
193	.vop_access =		nfsspec_access,
194	.vop_close =		nfsfifo_close,
195	.vop_fsync =		nfs_fsync,
196	.vop_getattr =		nfs_getattr,
197	.vop_inactive =		ncl_inactive,
198	.vop_print =		nfs_print,
199	.vop_read =		nfsfifo_read,
200	.vop_reclaim =		ncl_reclaim,
201	.vop_setattr =		nfs_setattr,
202	.vop_write =		nfsfifo_write,
203};
204
205static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
206    struct componentname *cnp, struct vattr *vap);
207static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
208    int namelen, struct ucred *cred, struct thread *td);
209static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
210    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
211    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
212static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
213    struct componentname *scnp, struct sillyrename *sp);
214
215/*
216 * Global variables
217 */
218#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
219
220SYSCTL_DECL(_vfs_nfs);
221
222static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
223SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
224	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
225
226static int	nfs_prime_access_cache = 0;
227SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
228	   &nfs_prime_access_cache, 0,
229	   "Prime NFS ACCESS cache when fetching attributes");
230
231static int	newnfs_commit_on_close = 0;
232SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
233    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
234
235static int	nfs_clean_pages_on_close = 1;
236SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
237	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
238
239int newnfs_directio_enable = 0;
240SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
241	   &newnfs_directio_enable, 0, "Enable NFS directio");
242
243int nfs_keep_dirty_on_error;
244SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
245    &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
246
247/*
248 * This sysctl allows other processes to mmap a file that has been opened
249 * O_DIRECT by a process.  In general, having processes mmap the file while
250 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
251 * this by default to prevent DoS attacks - to prevent a malicious user from
252 * opening up files O_DIRECT preventing other users from mmap'ing these
253 * files.  "Protected" environments where stricter consistency guarantees are
254 * required can disable this knob.  The process that opened the file O_DIRECT
255 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
256 * meaningful.
257 */
258int newnfs_directio_allow_mmap = 1;
259SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
260	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
261
262#if 0
263SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
264	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
265
266SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
267	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
268#endif
269
270#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
271			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
272			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
273
274/*
275 * SMP Locking Note :
276 * The list of locks after the description of the lock is the ordering
277 * of other locks acquired with the lock held.
278 * np->n_mtx : Protects the fields in the nfsnode.
279       VM Object Lock
280       VI_MTX (acquired indirectly)
281 * nmp->nm_mtx : Protects the fields in the nfsmount.
282       rep->r_mtx
283 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
284 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
285       nmp->nm_mtx
286       rep->r_mtx
287 * rep->r_mtx : Protects the fields in an nfsreq.
288 */
289
290static int
291nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
292    struct ucred *cred, u_int32_t *retmode)
293{
294	int error = 0, attrflag, i, lrupos;
295	u_int32_t rmode;
296	struct nfsnode *np = VTONFS(vp);
297	struct nfsvattr nfsva;
298
299	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
300	    &rmode, NULL);
301	if (attrflag)
302		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
303	if (!error) {
304		lrupos = 0;
305		mtx_lock(&np->n_mtx);
306		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
307			if (np->n_accesscache[i].uid == cred->cr_uid) {
308				np->n_accesscache[i].mode = rmode;
309				np->n_accesscache[i].stamp = time_second;
310				break;
311			}
312			if (i > 0 && np->n_accesscache[i].stamp <
313			    np->n_accesscache[lrupos].stamp)
314				lrupos = i;
315		}
316		if (i == NFS_ACCESSCACHESIZE) {
317			np->n_accesscache[lrupos].uid = cred->cr_uid;
318			np->n_accesscache[lrupos].mode = rmode;
319			np->n_accesscache[lrupos].stamp = time_second;
320		}
321		mtx_unlock(&np->n_mtx);
322		if (retmode != NULL)
323			*retmode = rmode;
324		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
325	} else if (NFS_ISV4(vp)) {
326		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
327	}
328#ifdef KDTRACE_HOOKS
329	if (error != 0)
330		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
331		    error);
332#endif
333	return (error);
334}
335
336/*
337 * nfs access vnode op.
338 * For nfs version 2, just return ok. File accesses may fail later.
339 * For nfs version 3, use the access rpc to check accessibility. If file modes
340 * are changed on the server, accesses might still fail later.
341 */
342static int
343nfs_access(struct vop_access_args *ap)
344{
345	struct vnode *vp = ap->a_vp;
346	int error = 0, i, gotahit;
347	u_int32_t mode, wmode, rmode;
348	int v34 = NFS_ISV34(vp);
349	struct nfsnode *np = VTONFS(vp);
350
351	/*
352	 * Disallow write attempts on filesystems mounted read-only;
353	 * unless the file is a socket, fifo, or a block or character
354	 * device resident on the filesystem.
355	 */
356	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
357	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
358	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
359		switch (vp->v_type) {
360		case VREG:
361		case VDIR:
362		case VLNK:
363			return (EROFS);
364		default:
365			break;
366		}
367	}
368	/*
369	 * For nfs v3 or v4, check to see if we have done this recently, and if
370	 * so return our cached result instead of making an ACCESS call.
371	 * If not, do an access rpc, otherwise you are stuck emulating
372	 * ufs_access() locally using the vattr. This may not be correct,
373	 * since the server may apply other access criteria such as
374	 * client uid-->server uid mapping that we do not know about.
375	 */
376	if (v34) {
377		if (ap->a_accmode & VREAD)
378			mode = NFSACCESS_READ;
379		else
380			mode = 0;
381		if (vp->v_type != VDIR) {
382			if (ap->a_accmode & VWRITE)
383				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
384			if (ap->a_accmode & VAPPEND)
385				mode |= NFSACCESS_EXTEND;
386			if (ap->a_accmode & VEXEC)
387				mode |= NFSACCESS_EXECUTE;
388			if (ap->a_accmode & VDELETE)
389				mode |= NFSACCESS_DELETE;
390		} else {
391			if (ap->a_accmode & VWRITE)
392				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
393			if (ap->a_accmode & VAPPEND)
394				mode |= NFSACCESS_EXTEND;
395			if (ap->a_accmode & VEXEC)
396				mode |= NFSACCESS_LOOKUP;
397			if (ap->a_accmode & VDELETE)
398				mode |= NFSACCESS_DELETE;
399			if (ap->a_accmode & VDELETE_CHILD)
400				mode |= NFSACCESS_MODIFY;
401		}
402		/* XXX safety belt, only make blanket request if caching */
403		if (nfsaccess_cache_timeout > 0) {
404			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
405				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
406				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
407		} else {
408			wmode = mode;
409		}
410
411		/*
412		 * Does our cached result allow us to give a definite yes to
413		 * this request?
414		 */
415		gotahit = 0;
416		mtx_lock(&np->n_mtx);
417		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
418			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
419			    if (time_second < (np->n_accesscache[i].stamp
420				+ nfsaccess_cache_timeout) &&
421				(np->n_accesscache[i].mode & mode) == mode) {
422				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
423				gotahit = 1;
424			    }
425			    break;
426			}
427		}
428		mtx_unlock(&np->n_mtx);
429#ifdef KDTRACE_HOOKS
430		if (gotahit != 0)
431			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
432			    ap->a_cred->cr_uid, mode);
433		else
434			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
435			    ap->a_cred->cr_uid, mode);
436#endif
437		if (gotahit == 0) {
438			/*
439			 * Either a no, or a don't know.  Go to the wire.
440			 */
441			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
442		        error = nfs34_access_otw(vp, wmode, ap->a_td,
443			    ap->a_cred, &rmode);
444			if (!error &&
445			    (rmode & mode) != mode)
446				error = EACCES;
447		}
448		return (error);
449	} else {
450		if ((error = nfsspec_access(ap)) != 0) {
451			return (error);
452		}
453		/*
454		 * Attempt to prevent a mapped root from accessing a file
455		 * which it shouldn't.  We try to read a byte from the file
456		 * if the user is root and the file is not zero length.
457		 * After calling nfsspec_access, we should have the correct
458		 * file size cached.
459		 */
460		mtx_lock(&np->n_mtx);
461		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
462		    && VTONFS(vp)->n_size > 0) {
463			struct iovec aiov;
464			struct uio auio;
465			char buf[1];
466
467			mtx_unlock(&np->n_mtx);
468			aiov.iov_base = buf;
469			aiov.iov_len = 1;
470			auio.uio_iov = &aiov;
471			auio.uio_iovcnt = 1;
472			auio.uio_offset = 0;
473			auio.uio_resid = 1;
474			auio.uio_segflg = UIO_SYSSPACE;
475			auio.uio_rw = UIO_READ;
476			auio.uio_td = ap->a_td;
477
478			if (vp->v_type == VREG)
479				error = ncl_readrpc(vp, &auio, ap->a_cred);
480			else if (vp->v_type == VDIR) {
481				char* bp;
482				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
483				aiov.iov_base = bp;
484				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
485				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
486				    ap->a_td);
487				free(bp, M_TEMP);
488			} else if (vp->v_type == VLNK)
489				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
490			else
491				error = EACCES;
492		} else
493			mtx_unlock(&np->n_mtx);
494		return (error);
495	}
496}
497
498
499/*
500 * nfs open vnode op
501 * Check to see if the type is ok
502 * and that deletion is not in progress.
503 * For paged in text files, you will need to flush the page cache
504 * if consistency is lost.
505 */
506/* ARGSUSED */
507static int
508nfs_open(struct vop_open_args *ap)
509{
510	struct vnode *vp = ap->a_vp;
511	struct nfsnode *np = VTONFS(vp);
512	struct vattr vattr;
513	int error;
514	int fmode = ap->a_mode;
515	struct ucred *cred;
516
517	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
518		return (EOPNOTSUPP);
519
520	/*
521	 * For NFSv4, we need to do the Open Op before cache validation,
522	 * so that we conform to RFC3530 Sec. 9.3.1.
523	 */
524	if (NFS_ISV4(vp)) {
525		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
526		if (error) {
527			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
528			    (gid_t)0);
529			return (error);
530		}
531	}
532
533	/*
534	 * Now, if this Open will be doing reading, re-validate/flush the
535	 * cache, so that Close/Open coherency is maintained.
536	 */
537	mtx_lock(&np->n_mtx);
538	if (np->n_flag & NMODIFIED) {
539		mtx_unlock(&np->n_mtx);
540		error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
541		if (error == EINTR || error == EIO) {
542			if (NFS_ISV4(vp))
543				(void) nfsrpc_close(vp, 0, ap->a_td);
544			return (error);
545		}
546		mtx_lock(&np->n_mtx);
547		np->n_attrstamp = 0;
548		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
549		if (vp->v_type == VDIR)
550			np->n_direofoffset = 0;
551		mtx_unlock(&np->n_mtx);
552		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
553		if (error) {
554			if (NFS_ISV4(vp))
555				(void) nfsrpc_close(vp, 0, ap->a_td);
556			return (error);
557		}
558		mtx_lock(&np->n_mtx);
559		np->n_mtime = vattr.va_mtime;
560		if (NFS_ISV4(vp))
561			np->n_change = vattr.va_filerev;
562	} else {
563		mtx_unlock(&np->n_mtx);
564		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
565		if (error) {
566			if (NFS_ISV4(vp))
567				(void) nfsrpc_close(vp, 0, ap->a_td);
568			return (error);
569		}
570		mtx_lock(&np->n_mtx);
571		if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
572		    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
573			if (vp->v_type == VDIR)
574				np->n_direofoffset = 0;
575			mtx_unlock(&np->n_mtx);
576			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
577			if (error == EINTR || error == EIO) {
578				if (NFS_ISV4(vp))
579					(void) nfsrpc_close(vp, 0, ap->a_td);
580				return (error);
581			}
582			mtx_lock(&np->n_mtx);
583			np->n_mtime = vattr.va_mtime;
584			if (NFS_ISV4(vp))
585				np->n_change = vattr.va_filerev;
586		}
587	}
588
589	/*
590	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
591	 */
592	if (newnfs_directio_enable && (fmode & O_DIRECT) &&
593	    (vp->v_type == VREG)) {
594		if (np->n_directio_opens == 0) {
595			mtx_unlock(&np->n_mtx);
596			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
597			if (error) {
598				if (NFS_ISV4(vp))
599					(void) nfsrpc_close(vp, 0, ap->a_td);
600				return (error);
601			}
602			mtx_lock(&np->n_mtx);
603			np->n_flag |= NNONCACHE;
604		}
605		np->n_directio_opens++;
606	}
607
608	/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
609	if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
610		np->n_flag |= NWRITEOPENED;
611
612	/*
613	 * If this is an open for writing, capture a reference to the
614	 * credentials, so they can be used by ncl_putpages(). Using
615	 * these write credentials is preferable to the credentials of
616	 * whatever thread happens to be doing the VOP_PUTPAGES() since
617	 * the write RPCs are less likely to fail with EACCES.
618	 */
619	if ((fmode & FWRITE) != 0) {
620		cred = np->n_writecred;
621		np->n_writecred = crhold(ap->a_cred);
622	} else
623		cred = NULL;
624	mtx_unlock(&np->n_mtx);
625
626	if (cred != NULL)
627		crfree(cred);
628	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
629	return (0);
630}
631
632/*
633 * nfs close vnode op
634 * What an NFS client should do upon close after writing is a debatable issue.
635 * Most NFS clients push delayed writes to the server upon close, basically for
636 * two reasons:
637 * 1 - So that any write errors may be reported back to the client process
638 *     doing the close system call. By far the two most likely errors are
639 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
640 * 2 - To put a worst case upper bound on cache inconsistency between
641 *     multiple clients for the file.
642 * There is also a consistency problem for Version 2 of the protocol w.r.t.
643 * not being able to tell if other clients are writing a file concurrently,
644 * since there is no way of knowing if the changed modify time in the reply
645 * is only due to the write for this client.
646 * (NFS Version 3 provides weak cache consistency data in the reply that
647 *  should be sufficient to detect and handle this case.)
648 *
649 * The current code does the following:
650 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
651 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
652 *                     or commit them (this satisfies 1 and 2 except for the
653 *                     case where the server crashes after this close but
654 *                     before the commit RPC, which is felt to be "good
655 *                     enough". Changing the last argument to ncl_flush() to
656 *                     a 1 would force a commit operation, if it is felt a
657 *                     commit is necessary now.
658 * for NFS Version 4 - flush the dirty buffers and commit them, if
659 *		       nfscl_mustflush() says this is necessary.
660 *                     It is necessary if there is no write delegation held,
661 *                     in order to satisfy open/close coherency.
662 *                     If the file isn't cached on local stable storage,
663 *                     it may be necessary in order to detect "out of space"
664 *                     errors from the server, if the write delegation
665 *                     issued by the server doesn't allow the file to grow.
666 */
667/* ARGSUSED */
668static int
669nfs_close(struct vop_close_args *ap)
670{
671	struct vnode *vp = ap->a_vp;
672	struct nfsnode *np = VTONFS(vp);
673	struct nfsvattr nfsva;
674	struct ucred *cred;
675	int error = 0, ret, localcred = 0;
676	int fmode = ap->a_fflag;
677
678	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
679		return (0);
680	/*
681	 * During shutdown, a_cred isn't valid, so just use root.
682	 */
683	if (ap->a_cred == NOCRED) {
684		cred = newnfs_getcred();
685		localcred = 1;
686	} else {
687		cred = ap->a_cred;
688	}
689	if (vp->v_type == VREG) {
690	    /*
691	     * Examine and clean dirty pages, regardless of NMODIFIED.
692	     * This closes a major hole in close-to-open consistency.
693	     * We want to push out all dirty pages (and buffers) on
694	     * close, regardless of whether they were dirtied by
695	     * mmap'ed writes or via write().
696	     */
697	    if (nfs_clean_pages_on_close && vp->v_object) {
698		VM_OBJECT_WLOCK(vp->v_object);
699		vm_object_page_clean(vp->v_object, 0, 0, 0);
700		VM_OBJECT_WUNLOCK(vp->v_object);
701	    }
702	    mtx_lock(&np->n_mtx);
703	    if (np->n_flag & NMODIFIED) {
704		mtx_unlock(&np->n_mtx);
705		if (NFS_ISV3(vp)) {
706		    /*
707		     * Under NFSv3 we have dirty buffers to dispose of.  We
708		     * must flush them to the NFS server.  We have the option
709		     * of waiting all the way through the commit rpc or just
710		     * waiting for the initial write.  The default is to only
711		     * wait through the initial write so the data is in the
712		     * server's cache, which is roughly similar to the state
713		     * a standard disk subsystem leaves the file in on close().
714		     *
715		     * We cannot clear the NMODIFIED bit in np->n_flag due to
716		     * potential races with other processes, and certainly
717		     * cannot clear it if we don't commit.
718		     * These races occur when there is no longer the old
719		     * traditional vnode locking implemented for Vnode Ops.
720		     */
721		    int cm = newnfs_commit_on_close ? 1 : 0;
722		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
723		    /* np->n_flag &= ~NMODIFIED; */
724		} else if (NFS_ISV4(vp)) {
725			if (nfscl_mustflush(vp) != 0) {
726				int cm = newnfs_commit_on_close ? 1 : 0;
727				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
728				    cm, 0);
729				/*
730				 * as above w.r.t races when clearing
731				 * NMODIFIED.
732				 * np->n_flag &= ~NMODIFIED;
733				 */
734			}
735		} else
736		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
737		mtx_lock(&np->n_mtx);
738	    }
739 	    /*
740 	     * Invalidate the attribute cache in all cases.
741 	     * An open is going to fetch fresh attrs any way, other procs
742 	     * on this node that have file open will be forced to do an
743 	     * otw attr fetch, but this is safe.
744	     * --> A user found that their RPC count dropped by 20% when
745	     *     this was commented out and I can't see any requirement
746	     *     for it, so I've disabled it when negative lookups are
747	     *     enabled. (What does this have to do with negative lookup
748	     *     caching? Well nothing, except it was reported by the
749	     *     same user that needed negative lookup caching and I wanted
750	     *     there to be a way to disable it to see if it
751	     *     is the cause of some caching/coherency issue that might
752	     *     crop up.)
753 	     */
754	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
755		    np->n_attrstamp = 0;
756		    KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
757	    }
758	    if (np->n_flag & NWRITEERR) {
759		np->n_flag &= ~NWRITEERR;
760		error = np->n_error;
761	    }
762	    mtx_unlock(&np->n_mtx);
763	}
764
765	if (NFS_ISV4(vp)) {
766		/*
767		 * Get attributes so "change" is up to date.
768		 */
769		if (error == 0 && nfscl_mustflush(vp) != 0 &&
770		    vp->v_type == VREG &&
771		    (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
772			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
773			    NULL);
774			if (!ret) {
775				np->n_change = nfsva.na_filerev;
776				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
777				    NULL, 0, 0);
778			}
779		}
780
781		/*
782		 * and do the close.
783		 */
784		ret = nfsrpc_close(vp, 0, ap->a_td);
785		if (!error && ret)
786			error = ret;
787		if (error)
788			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
789			    (gid_t)0);
790	}
791	if (newnfs_directio_enable)
792		KASSERT((np->n_directio_asyncwr == 0),
793			("nfs_close: dirty unflushed (%d) directio buffers\n",
794			 np->n_directio_asyncwr));
795	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
796		mtx_lock(&np->n_mtx);
797		KASSERT((np->n_directio_opens > 0),
798			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
799		np->n_directio_opens--;
800		if (np->n_directio_opens == 0)
801			np->n_flag &= ~NNONCACHE;
802		mtx_unlock(&np->n_mtx);
803	}
804	if (localcred)
805		NFSFREECRED(cred);
806	return (error);
807}
808
809/*
810 * nfs getattr call from vfs.
811 */
812static int
813nfs_getattr(struct vop_getattr_args *ap)
814{
815	struct vnode *vp = ap->a_vp;
816	struct thread *td = curthread;	/* XXX */
817	struct nfsnode *np = VTONFS(vp);
818	int error = 0;
819	struct nfsvattr nfsva;
820	struct vattr *vap = ap->a_vap;
821	struct vattr vattr;
822
823	/*
824	 * Update local times for special files.
825	 */
826	mtx_lock(&np->n_mtx);
827	if (np->n_flag & (NACC | NUPD))
828		np->n_flag |= NCHG;
829	mtx_unlock(&np->n_mtx);
830	/*
831	 * First look in the cache.
832	 */
833	if (ncl_getattrcache(vp, &vattr) == 0) {
834		vap->va_type = vattr.va_type;
835		vap->va_mode = vattr.va_mode;
836		vap->va_nlink = vattr.va_nlink;
837		vap->va_uid = vattr.va_uid;
838		vap->va_gid = vattr.va_gid;
839		vap->va_fsid = vattr.va_fsid;
840		vap->va_fileid = vattr.va_fileid;
841		vap->va_size = vattr.va_size;
842		vap->va_blocksize = vattr.va_blocksize;
843		vap->va_atime = vattr.va_atime;
844		vap->va_mtime = vattr.va_mtime;
845		vap->va_ctime = vattr.va_ctime;
846		vap->va_gen = vattr.va_gen;
847		vap->va_flags = vattr.va_flags;
848		vap->va_rdev = vattr.va_rdev;
849		vap->va_bytes = vattr.va_bytes;
850		vap->va_filerev = vattr.va_filerev;
851		/*
852		 * Get the local modify time for the case of a write
853		 * delegation.
854		 */
855		nfscl_deleggetmodtime(vp, &vap->va_mtime);
856		return (0);
857	}
858
859	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
860	    nfsaccess_cache_timeout > 0) {
861		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
862		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
863		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
864			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
865			return (0);
866		}
867	}
868	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
869	if (!error)
870		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
871	if (!error) {
872		/*
873		 * Get the local modify time for the case of a write
874		 * delegation.
875		 */
876		nfscl_deleggetmodtime(vp, &vap->va_mtime);
877	} else if (NFS_ISV4(vp)) {
878		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
879	}
880	return (error);
881}
882
883/*
884 * nfs setattr call.
885 */
886static int
887nfs_setattr(struct vop_setattr_args *ap)
888{
889	struct vnode *vp = ap->a_vp;
890	struct nfsnode *np = VTONFS(vp);
891	struct thread *td = curthread;	/* XXX */
892	struct vattr *vap = ap->a_vap;
893	int error = 0;
894	u_quad_t tsize;
895
896#ifndef nolint
897	tsize = (u_quad_t)0;
898#endif
899
900	/*
901	 * Setting of flags and marking of atimes are not supported.
902	 */
903	if (vap->va_flags != VNOVAL)
904		return (EOPNOTSUPP);
905
906	/*
907	 * Disallow write attempts if the filesystem is mounted read-only.
908	 */
909  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
910	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
911	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
912	    (vp->v_mount->mnt_flag & MNT_RDONLY))
913		return (EROFS);
914	if (vap->va_size != VNOVAL) {
915 		switch (vp->v_type) {
916 		case VDIR:
917 			return (EISDIR);
918 		case VCHR:
919 		case VBLK:
920 		case VSOCK:
921 		case VFIFO:
922			if (vap->va_mtime.tv_sec == VNOVAL &&
923			    vap->va_atime.tv_sec == VNOVAL &&
924			    vap->va_mode == (mode_t)VNOVAL &&
925			    vap->va_uid == (uid_t)VNOVAL &&
926			    vap->va_gid == (gid_t)VNOVAL)
927				return (0);
928 			vap->va_size = VNOVAL;
929 			break;
930 		default:
931			/*
932			 * Disallow write attempts if the filesystem is
933			 * mounted read-only.
934			 */
935			if (vp->v_mount->mnt_flag & MNT_RDONLY)
936				return (EROFS);
937			/*
938			 *  We run vnode_pager_setsize() early (why?),
939			 * we must set np->n_size now to avoid vinvalbuf
940			 * V_SAVE races that might setsize a lower
941			 * value.
942			 */
943			mtx_lock(&np->n_mtx);
944			tsize = np->n_size;
945			mtx_unlock(&np->n_mtx);
946			error = ncl_meta_setsize(vp, ap->a_cred, td,
947			    vap->va_size);
948			mtx_lock(&np->n_mtx);
949 			if (np->n_flag & NMODIFIED) {
950			    tsize = np->n_size;
951			    mtx_unlock(&np->n_mtx);
952 			    if (vap->va_size == 0)
953 				error = ncl_vinvalbuf(vp, 0, td, 1);
954 			    else
955 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
956 			    if (error) {
957				vnode_pager_setsize(vp, tsize);
958				return (error);
959			    }
960			    /*
961			     * Call nfscl_delegmodtime() to set the modify time
962			     * locally, as required.
963			     */
964			    nfscl_delegmodtime(vp);
965 			} else
966			    mtx_unlock(&np->n_mtx);
967			/*
968			 * np->n_size has already been set to vap->va_size
969			 * in ncl_meta_setsize(). We must set it again since
970			 * nfs_loadattrcache() could be called through
971			 * ncl_meta_setsize() and could modify np->n_size.
972			 */
973			mtx_lock(&np->n_mtx);
974 			np->n_vattr.na_size = np->n_size = vap->va_size;
975			mtx_unlock(&np->n_mtx);
976  		};
977  	} else {
978		mtx_lock(&np->n_mtx);
979		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
980		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
981			mtx_unlock(&np->n_mtx);
982			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
983			    (error == EINTR || error == EIO))
984				return (error);
985		} else
986			mtx_unlock(&np->n_mtx);
987	}
988	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
989	if (error && vap->va_size != VNOVAL) {
990		mtx_lock(&np->n_mtx);
991		np->n_size = np->n_vattr.na_size = tsize;
992		vnode_pager_setsize(vp, tsize);
993		mtx_unlock(&np->n_mtx);
994	}
995	return (error);
996}
997
998/*
999 * Do an nfs setattr rpc.
1000 */
1001static int
1002nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
1003    struct thread *td)
1004{
1005	struct nfsnode *np = VTONFS(vp);
1006	int error, ret, attrflag, i;
1007	struct nfsvattr nfsva;
1008
1009	if (NFS_ISV34(vp)) {
1010		mtx_lock(&np->n_mtx);
1011		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
1012			np->n_accesscache[i].stamp = 0;
1013		np->n_flag |= NDELEGMOD;
1014		mtx_unlock(&np->n_mtx);
1015		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
1016	}
1017	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1018	    NULL);
1019	if (attrflag) {
1020		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1021		if (ret && !error)
1022			error = ret;
1023	}
1024	if (error && NFS_ISV4(vp))
1025		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1026	return (error);
1027}
1028
1029/*
1030 * nfs lookup call, one step at a time...
1031 * First look in cache
1032 * If not found, unlock the directory nfsnode and do the rpc
1033 */
1034static int
1035nfs_lookup(struct vop_lookup_args *ap)
1036{
1037	struct componentname *cnp = ap->a_cnp;
1038	struct vnode *dvp = ap->a_dvp;
1039	struct vnode **vpp = ap->a_vpp;
1040	struct mount *mp = dvp->v_mount;
1041	int flags = cnp->cn_flags;
1042	struct vnode *newvp;
1043	struct nfsmount *nmp;
1044	struct nfsnode *np, *newnp;
1045	int error = 0, attrflag, dattrflag, ltype, ncticks;
1046	struct thread *td = cnp->cn_thread;
1047	struct nfsfh *nfhp;
1048	struct nfsvattr dnfsva, nfsva;
1049	struct vattr vattr;
1050	struct timespec nctime;
1051
1052	*vpp = NULLVP;
1053	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1054	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1055		return (EROFS);
1056	if (dvp->v_type != VDIR)
1057		return (ENOTDIR);
1058	nmp = VFSTONFS(mp);
1059	np = VTONFS(dvp);
1060
1061	/* For NFSv4, wait until any remove is done. */
1062	mtx_lock(&np->n_mtx);
1063	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1064		np->n_flag |= NREMOVEWANT;
1065		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1066	}
1067	mtx_unlock(&np->n_mtx);
1068
1069	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1070		return (error);
1071	error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1072	if (error > 0 && error != ENOENT)
1073		return (error);
1074	if (error == -1) {
1075		/*
1076		 * Lookups of "." are special and always return the
1077		 * current directory.  cache_lookup() already handles
1078		 * associated locking bookkeeping, etc.
1079		 */
1080		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1081			/* XXX: Is this really correct? */
1082			if (cnp->cn_nameiop != LOOKUP &&
1083			    (flags & ISLASTCN))
1084				cnp->cn_flags |= SAVENAME;
1085			return (0);
1086		}
1087
1088		/*
1089		 * We only accept a positive hit in the cache if the
1090		 * change time of the file matches our cached copy.
1091		 * Otherwise, we discard the cache entry and fallback
1092		 * to doing a lookup RPC.  We also only trust cache
1093		 * entries for less than nm_nametimeo seconds.
1094		 *
1095		 * To better handle stale file handles and attributes,
1096		 * clear the attribute cache of this node if it is a
1097		 * leaf component, part of an open() call, and not
1098		 * locally modified before fetching the attributes.
1099		 * This should allow stale file handles to be detected
1100		 * here where we can fall back to a LOOKUP RPC to
1101		 * recover rather than having nfs_open() detect the
1102		 * stale file handle and failing open(2) with ESTALE.
1103		 */
1104		newvp = *vpp;
1105		newnp = VTONFS(newvp);
1106		if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1107		    (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1108		    !(newnp->n_flag & NMODIFIED)) {
1109			mtx_lock(&newnp->n_mtx);
1110			newnp->n_attrstamp = 0;
1111			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1112			mtx_unlock(&newnp->n_mtx);
1113		}
1114		if (nfscl_nodeleg(newvp, 0) == 0 ||
1115		    ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1116		    VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1117		    timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1118			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1119			if (cnp->cn_nameiop != LOOKUP &&
1120			    (flags & ISLASTCN))
1121				cnp->cn_flags |= SAVENAME;
1122			return (0);
1123		}
1124		cache_purge(newvp);
1125		if (dvp != newvp)
1126			vput(newvp);
1127		else
1128			vrele(newvp);
1129		*vpp = NULLVP;
1130	} else if (error == ENOENT) {
1131		if (dvp->v_iflag & VI_DOOMED)
1132			return (ENOENT);
1133		/*
1134		 * We only accept a negative hit in the cache if the
1135		 * modification time of the parent directory matches
1136		 * the cached copy in the name cache entry.
1137		 * Otherwise, we discard all of the negative cache
1138		 * entries for this directory.  We also only trust
1139		 * negative cache entries for up to nm_negnametimeo
1140		 * seconds.
1141		 */
1142		if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1143		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1144		    timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1145			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1146			return (ENOENT);
1147		}
1148		cache_purge_negative(dvp);
1149	}
1150
1151	error = 0;
1152	newvp = NULLVP;
1153	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1154	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1155	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1156	    NULL);
1157	if (dattrflag)
1158		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1159	if (error) {
1160		if (newvp != NULLVP) {
1161			vput(newvp);
1162			*vpp = NULLVP;
1163		}
1164
1165		if (error != ENOENT) {
1166			if (NFS_ISV4(dvp))
1167				error = nfscl_maperr(td, error, (uid_t)0,
1168				    (gid_t)0);
1169			return (error);
1170		}
1171
1172		/* The requested file was not found. */
1173		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1174		    (flags & ISLASTCN)) {
1175			/*
1176			 * XXX: UFS does a full VOP_ACCESS(dvp,
1177			 * VWRITE) here instead of just checking
1178			 * MNT_RDONLY.
1179			 */
1180			if (mp->mnt_flag & MNT_RDONLY)
1181				return (EROFS);
1182			cnp->cn_flags |= SAVENAME;
1183			return (EJUSTRETURN);
1184		}
1185
1186		if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1187			/*
1188			 * Cache the modification time of the parent
1189			 * directory from the post-op attributes in
1190			 * the name cache entry.  The negative cache
1191			 * entry will be ignored once the directory
1192			 * has changed.  Don't bother adding the entry
1193			 * if the directory has already changed.
1194			 */
1195			mtx_lock(&np->n_mtx);
1196			if (timespeccmp(&np->n_vattr.na_mtime,
1197			    &dnfsva.na_mtime, ==)) {
1198				mtx_unlock(&np->n_mtx);
1199				cache_enter_time(dvp, NULL, cnp,
1200				    &dnfsva.na_mtime, NULL);
1201			} else
1202				mtx_unlock(&np->n_mtx);
1203		}
1204		return (ENOENT);
1205	}
1206
1207	/*
1208	 * Handle RENAME case...
1209	 */
1210	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1211		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1212			FREE((caddr_t)nfhp, M_NFSFH);
1213			return (EISDIR);
1214		}
1215		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1216		    LK_EXCLUSIVE);
1217		if (error)
1218			return (error);
1219		newvp = NFSTOV(np);
1220		if (attrflag)
1221			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1222			    0, 1);
1223		*vpp = newvp;
1224		cnp->cn_flags |= SAVENAME;
1225		return (0);
1226	}
1227
1228	if (flags & ISDOTDOT) {
1229		ltype = NFSVOPISLOCKED(dvp);
1230		error = vfs_busy(mp, MBF_NOWAIT);
1231		if (error != 0) {
1232			vfs_ref(mp);
1233			NFSVOPUNLOCK(dvp, 0);
1234			error = vfs_busy(mp, 0);
1235			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1236			vfs_rel(mp);
1237			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1238				vfs_unbusy(mp);
1239				error = ENOENT;
1240			}
1241			if (error != 0)
1242				return (error);
1243		}
1244		NFSVOPUNLOCK(dvp, 0);
1245		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1246		    cnp->cn_lkflags);
1247		if (error == 0)
1248			newvp = NFSTOV(np);
1249		vfs_unbusy(mp);
1250		if (newvp != dvp)
1251			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1252		if (dvp->v_iflag & VI_DOOMED) {
1253			if (error == 0) {
1254				if (newvp == dvp)
1255					vrele(newvp);
1256				else
1257					vput(newvp);
1258			}
1259			error = ENOENT;
1260		}
1261		if (error != 0)
1262			return (error);
1263		if (attrflag)
1264			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1265			    0, 1);
1266	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1267		FREE((caddr_t)nfhp, M_NFSFH);
1268		VREF(dvp);
1269		newvp = dvp;
1270		if (attrflag)
1271			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1272			    0, 1);
1273	} else {
1274		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1275		    cnp->cn_lkflags);
1276		if (error)
1277			return (error);
1278		newvp = NFSTOV(np);
1279		if (attrflag)
1280			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1281			    0, 1);
1282		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1283		    !(np->n_flag & NMODIFIED)) {
1284			/*
1285			 * Flush the attribute cache when opening a
1286			 * leaf node to ensure that fresh attributes
1287			 * are fetched in nfs_open() since we did not
1288			 * fetch attributes from the LOOKUP reply.
1289			 */
1290			mtx_lock(&np->n_mtx);
1291			np->n_attrstamp = 0;
1292			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1293			mtx_unlock(&np->n_mtx);
1294		}
1295	}
1296	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1297		cnp->cn_flags |= SAVENAME;
1298	if ((cnp->cn_flags & MAKEENTRY) &&
1299	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1300	    attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1301		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1302		    newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1303	*vpp = newvp;
1304	return (0);
1305}
1306
1307/*
1308 * nfs read call.
1309 * Just call ncl_bioread() to do the work.
1310 */
1311static int
1312nfs_read(struct vop_read_args *ap)
1313{
1314	struct vnode *vp = ap->a_vp;
1315
1316	switch (vp->v_type) {
1317	case VREG:
1318		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1319	case VDIR:
1320		return (EISDIR);
1321	default:
1322		return (EOPNOTSUPP);
1323	}
1324}
1325
1326/*
1327 * nfs readlink call
1328 */
1329static int
1330nfs_readlink(struct vop_readlink_args *ap)
1331{
1332	struct vnode *vp = ap->a_vp;
1333
1334	if (vp->v_type != VLNK)
1335		return (EINVAL);
1336	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1337}
1338
1339/*
1340 * Do a readlink rpc.
1341 * Called by ncl_doio() from below the buffer cache.
1342 */
1343int
1344ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1345{
1346	int error, ret, attrflag;
1347	struct nfsvattr nfsva;
1348
1349	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1350	    &attrflag, NULL);
1351	if (attrflag) {
1352		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1353		if (ret && !error)
1354			error = ret;
1355	}
1356	if (error && NFS_ISV4(vp))
1357		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1358	return (error);
1359}
1360
1361/*
1362 * nfs read rpc call
1363 * Ditto above
1364 */
1365int
1366ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1367{
1368	int error, ret, attrflag;
1369	struct nfsvattr nfsva;
1370	struct nfsmount *nmp;
1371
1372	nmp = VFSTONFS(vnode_mount(vp));
1373	error = EIO;
1374	attrflag = 0;
1375	if (NFSHASPNFS(nmp))
1376		error = nfscl_doiods(vp, uiop, NULL, NULL,
1377		    NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td);
1378	NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1379	if (error != 0)
1380		error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1381		    &attrflag, NULL);
1382	if (attrflag) {
1383		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1384		if (ret && !error)
1385			error = ret;
1386	}
1387	if (error && NFS_ISV4(vp))
1388		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1389	return (error);
1390}
1391
1392/*
1393 * nfs write call
1394 */
1395int
1396ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1397    int *iomode, int *must_commit, int called_from_strategy)
1398{
1399	struct nfsvattr nfsva;
1400	int error, attrflag, ret;
1401	struct nfsmount *nmp;
1402
1403	nmp = VFSTONFS(vnode_mount(vp));
1404	error = EIO;
1405	attrflag = 0;
1406	if (NFSHASPNFS(nmp))
1407		error = nfscl_doiods(vp, uiop, iomode, must_commit,
1408		    NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td);
1409	NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1410	if (error != 0)
1411		error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1412		    uiop->uio_td, &nfsva, &attrflag, NULL,
1413		    called_from_strategy);
1414	if (attrflag) {
1415		if (VTONFS(vp)->n_flag & ND_NFSV4)
1416			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1417			    1);
1418		else
1419			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1420			    1);
1421		if (ret && !error)
1422			error = ret;
1423	}
1424	if (DOINGASYNC(vp))
1425		*iomode = NFSWRITE_FILESYNC;
1426	if (error && NFS_ISV4(vp))
1427		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1428	return (error);
1429}
1430
1431/*
1432 * nfs mknod rpc
1433 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1434 * mode set to specify the file type and the size field for rdev.
1435 */
1436static int
1437nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1438    struct vattr *vap)
1439{
1440	struct nfsvattr nfsva, dnfsva;
1441	struct vnode *newvp = NULL;
1442	struct nfsnode *np = NULL, *dnp;
1443	struct nfsfh *nfhp;
1444	struct vattr vattr;
1445	int error = 0, attrflag, dattrflag;
1446	u_int32_t rdev;
1447
1448	if (vap->va_type == VCHR || vap->va_type == VBLK)
1449		rdev = vap->va_rdev;
1450	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1451		rdev = 0xffffffff;
1452	else
1453		return (EOPNOTSUPP);
1454	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1455		return (error);
1456	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1457	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1458	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1459	if (!error) {
1460		if (!nfhp)
1461			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1462			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1463			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1464			    NULL);
1465		if (nfhp)
1466			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1467			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1468	}
1469	if (dattrflag)
1470		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1471	if (!error) {
1472		newvp = NFSTOV(np);
1473		if (attrflag != 0) {
1474			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1475			    0, 1);
1476			if (error != 0)
1477				vput(newvp);
1478		}
1479	}
1480	if (!error) {
1481		*vpp = newvp;
1482	} else if (NFS_ISV4(dvp)) {
1483		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1484		    vap->va_gid);
1485	}
1486	dnp = VTONFS(dvp);
1487	mtx_lock(&dnp->n_mtx);
1488	dnp->n_flag |= NMODIFIED;
1489	if (!dattrflag) {
1490		dnp->n_attrstamp = 0;
1491		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1492	}
1493	mtx_unlock(&dnp->n_mtx);
1494	return (error);
1495}
1496
1497/*
1498 * nfs mknod vop
1499 * just call nfs_mknodrpc() to do the work.
1500 */
1501/* ARGSUSED */
1502static int
1503nfs_mknod(struct vop_mknod_args *ap)
1504{
1505	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1506}
1507
1508static struct mtx nfs_cverf_mtx;
1509MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1510    MTX_DEF);
1511
1512static nfsquad_t
1513nfs_get_cverf(void)
1514{
1515	static nfsquad_t cverf;
1516	nfsquad_t ret;
1517	static int cverf_initialized = 0;
1518
1519	mtx_lock(&nfs_cverf_mtx);
1520	if (cverf_initialized == 0) {
1521		cverf.lval[0] = arc4random();
1522		cverf.lval[1] = arc4random();
1523		cverf_initialized = 1;
1524	} else
1525		cverf.qval++;
1526	ret = cverf;
1527	mtx_unlock(&nfs_cverf_mtx);
1528
1529	return (ret);
1530}
1531
1532/*
1533 * nfs file create call
1534 */
1535static int
1536nfs_create(struct vop_create_args *ap)
1537{
1538	struct vnode *dvp = ap->a_dvp;
1539	struct vattr *vap = ap->a_vap;
1540	struct componentname *cnp = ap->a_cnp;
1541	struct nfsnode *np = NULL, *dnp;
1542	struct vnode *newvp = NULL;
1543	struct nfsmount *nmp;
1544	struct nfsvattr dnfsva, nfsva;
1545	struct nfsfh *nfhp;
1546	nfsquad_t cverf;
1547	int error = 0, attrflag, dattrflag, fmode = 0;
1548	struct vattr vattr;
1549
1550	/*
1551	 * Oops, not for me..
1552	 */
1553	if (vap->va_type == VSOCK)
1554		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1555
1556	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1557		return (error);
1558	if (vap->va_vaflags & VA_EXCLUSIVE)
1559		fmode |= O_EXCL;
1560	dnp = VTONFS(dvp);
1561	nmp = VFSTONFS(vnode_mount(dvp));
1562again:
1563	/* For NFSv4, wait until any remove is done. */
1564	mtx_lock(&dnp->n_mtx);
1565	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1566		dnp->n_flag |= NREMOVEWANT;
1567		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1568	}
1569	mtx_unlock(&dnp->n_mtx);
1570
1571	cverf = nfs_get_cverf();
1572	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1573	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1574	    &nfhp, &attrflag, &dattrflag, NULL);
1575	if (!error) {
1576		if (nfhp == NULL)
1577			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1578			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1579			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1580			    NULL);
1581		if (nfhp != NULL)
1582			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1583			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1584	}
1585	if (dattrflag)
1586		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1587	if (!error) {
1588		newvp = NFSTOV(np);
1589		if (attrflag == 0)
1590			error = nfsrpc_getattr(newvp, cnp->cn_cred,
1591			    cnp->cn_thread, &nfsva, NULL);
1592		if (error == 0)
1593			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1594			    0, 1);
1595	}
1596	if (error) {
1597		if (newvp != NULL) {
1598			vput(newvp);
1599			newvp = NULL;
1600		}
1601		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1602		    error == NFSERR_NOTSUPP) {
1603			fmode &= ~O_EXCL;
1604			goto again;
1605		}
1606	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1607		if (nfscl_checksattr(vap, &nfsva)) {
1608			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1609			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1610			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1611			    vap->va_gid != (gid_t)VNOVAL)) {
1612				/* try again without setting uid/gid */
1613				vap->va_uid = (uid_t)VNOVAL;
1614				vap->va_gid = (uid_t)VNOVAL;
1615				error = nfsrpc_setattr(newvp, vap, NULL,
1616				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1617				    &attrflag, NULL);
1618			}
1619			if (attrflag)
1620				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1621				    NULL, 0, 1);
1622			if (error != 0)
1623				vput(newvp);
1624		}
1625	}
1626	if (!error) {
1627		if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1628			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1629			    NULL);
1630		*ap->a_vpp = newvp;
1631	} else if (NFS_ISV4(dvp)) {
1632		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1633		    vap->va_gid);
1634	}
1635	mtx_lock(&dnp->n_mtx);
1636	dnp->n_flag |= NMODIFIED;
1637	if (!dattrflag) {
1638		dnp->n_attrstamp = 0;
1639		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1640	}
1641	mtx_unlock(&dnp->n_mtx);
1642	return (error);
1643}
1644
1645/*
1646 * nfs file remove call
1647 * To try and make nfs semantics closer to ufs semantics, a file that has
1648 * other processes using the vnode is renamed instead of removed and then
1649 * removed later on the last close.
1650 * - If v_usecount > 1
1651 *	  If a rename is not already in the works
1652 *	     call nfs_sillyrename() to set it up
1653 *     else
1654 *	  do the remove rpc
1655 */
1656static int
1657nfs_remove(struct vop_remove_args *ap)
1658{
1659	struct vnode *vp = ap->a_vp;
1660	struct vnode *dvp = ap->a_dvp;
1661	struct componentname *cnp = ap->a_cnp;
1662	struct nfsnode *np = VTONFS(vp);
1663	int error = 0;
1664	struct vattr vattr;
1665
1666	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1667	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1668	if (vp->v_type == VDIR)
1669		error = EPERM;
1670	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1671	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1672	    vattr.va_nlink > 1)) {
1673		/*
1674		 * Purge the name cache so that the chance of a lookup for
1675		 * the name succeeding while the remove is in progress is
1676		 * minimized. Without node locking it can still happen, such
1677		 * that an I/O op returns ESTALE, but since you get this if
1678		 * another host removes the file..
1679		 */
1680		cache_purge(vp);
1681		/*
1682		 * throw away biocache buffers, mainly to avoid
1683		 * unnecessary delayed writes later.
1684		 */
1685		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1686		/* Do the rpc */
1687		if (error != EINTR && error != EIO)
1688			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1689			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1690		/*
1691		 * Kludge City: If the first reply to the remove rpc is lost..
1692		 *   the reply to the retransmitted request will be ENOENT
1693		 *   since the file was in fact removed
1694		 *   Therefore, we cheat and return success.
1695		 */
1696		if (error == ENOENT)
1697			error = 0;
1698	} else if (!np->n_sillyrename)
1699		error = nfs_sillyrename(dvp, vp, cnp);
1700	mtx_lock(&np->n_mtx);
1701	np->n_attrstamp = 0;
1702	mtx_unlock(&np->n_mtx);
1703	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1704	return (error);
1705}
1706
1707/*
1708 * nfs file remove rpc called from nfs_inactive
1709 */
1710int
1711ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1712{
1713	/*
1714	 * Make sure that the directory vnode is still valid.
1715	 * XXX we should lock sp->s_dvp here.
1716	 */
1717	if (sp->s_dvp->v_type == VBAD)
1718		return (0);
1719	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1720	    sp->s_cred, NULL));
1721}
1722
1723/*
1724 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1725 */
1726static int
1727nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1728    int namelen, struct ucred *cred, struct thread *td)
1729{
1730	struct nfsvattr dnfsva;
1731	struct nfsnode *dnp = VTONFS(dvp);
1732	int error = 0, dattrflag;
1733
1734	mtx_lock(&dnp->n_mtx);
1735	dnp->n_flag |= NREMOVEINPROG;
1736	mtx_unlock(&dnp->n_mtx);
1737	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1738	    &dattrflag, NULL);
1739	mtx_lock(&dnp->n_mtx);
1740	if ((dnp->n_flag & NREMOVEWANT)) {
1741		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1742		mtx_unlock(&dnp->n_mtx);
1743		wakeup((caddr_t)dnp);
1744	} else {
1745		dnp->n_flag &= ~NREMOVEINPROG;
1746		mtx_unlock(&dnp->n_mtx);
1747	}
1748	if (dattrflag)
1749		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1750	mtx_lock(&dnp->n_mtx);
1751	dnp->n_flag |= NMODIFIED;
1752	if (!dattrflag) {
1753		dnp->n_attrstamp = 0;
1754		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1755	}
1756	mtx_unlock(&dnp->n_mtx);
1757	if (error && NFS_ISV4(dvp))
1758		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1759	return (error);
1760}
1761
1762/*
1763 * nfs file rename call
1764 */
1765static int
1766nfs_rename(struct vop_rename_args *ap)
1767{
1768	struct vnode *fvp = ap->a_fvp;
1769	struct vnode *tvp = ap->a_tvp;
1770	struct vnode *fdvp = ap->a_fdvp;
1771	struct vnode *tdvp = ap->a_tdvp;
1772	struct componentname *tcnp = ap->a_tcnp;
1773	struct componentname *fcnp = ap->a_fcnp;
1774	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1775	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1776	struct nfsv4node *newv4 = NULL;
1777	int error;
1778
1779	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1780	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1781	/* Check for cross-device rename */
1782	if ((fvp->v_mount != tdvp->v_mount) ||
1783	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1784		error = EXDEV;
1785		goto out;
1786	}
1787
1788	if (fvp == tvp) {
1789		printf("nfs_rename: fvp == tvp (can't happen)\n");
1790		error = 0;
1791		goto out;
1792	}
1793	if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1794		goto out;
1795
1796	/*
1797	 * We have to flush B_DELWRI data prior to renaming
1798	 * the file.  If we don't, the delayed-write buffers
1799	 * can be flushed out later after the file has gone stale
1800	 * under NFSV3.  NFSV2 does not have this problem because
1801	 * ( as far as I can tell ) it flushes dirty buffers more
1802	 * often.
1803	 *
1804	 * Skip the rename operation if the fsync fails, this can happen
1805	 * due to the server's volume being full, when we pushed out data
1806	 * that was written back to our cache earlier. Not checking for
1807	 * this condition can result in potential (silent) data loss.
1808	 */
1809	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1810	NFSVOPUNLOCK(fvp, 0);
1811	if (!error && tvp)
1812		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1813	if (error)
1814		goto out;
1815
1816	/*
1817	 * If the tvp exists and is in use, sillyrename it before doing the
1818	 * rename of the new file over it.
1819	 * XXX Can't sillyrename a directory.
1820	 */
1821	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1822		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1823		vput(tvp);
1824		tvp = NULL;
1825	}
1826
1827	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1828	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1829	    tcnp->cn_thread);
1830
1831	if (error == 0 && NFS_ISV4(tdvp)) {
1832		/*
1833		 * For NFSv4, check to see if it is the same name and
1834		 * replace the name, if it is different.
1835		 */
1836		MALLOC(newv4, struct nfsv4node *,
1837		    sizeof (struct nfsv4node) +
1838		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1839		    M_NFSV4NODE, M_WAITOK);
1840		mtx_lock(&tdnp->n_mtx);
1841		mtx_lock(&fnp->n_mtx);
1842		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1843		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1844		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1845		      tcnp->cn_namelen) ||
1846		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1847		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1848			tdnp->n_fhp->nfh_len))) {
1849#ifdef notdef
1850{ char nnn[100]; int nnnl;
1851nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1852bcopy(tcnp->cn_nameptr, nnn, nnnl);
1853nnn[nnnl] = '\0';
1854printf("ren replace=%s\n",nnn);
1855}
1856#endif
1857			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1858			fnp->n_v4 = newv4;
1859			newv4 = NULL;
1860			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1861			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1862			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1863			    tdnp->n_fhp->nfh_len);
1864			NFSBCOPY(tcnp->cn_nameptr,
1865			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1866		}
1867		mtx_unlock(&tdnp->n_mtx);
1868		mtx_unlock(&fnp->n_mtx);
1869		if (newv4 != NULL)
1870			FREE((caddr_t)newv4, M_NFSV4NODE);
1871	}
1872
1873	if (fvp->v_type == VDIR) {
1874		if (tvp != NULL && tvp->v_type == VDIR)
1875			cache_purge(tdvp);
1876		cache_purge(fdvp);
1877	}
1878
1879out:
1880	if (tdvp == tvp)
1881		vrele(tdvp);
1882	else
1883		vput(tdvp);
1884	if (tvp)
1885		vput(tvp);
1886	vrele(fdvp);
1887	vrele(fvp);
1888	/*
1889	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1890	 */
1891	if (error == ENOENT)
1892		error = 0;
1893	return (error);
1894}
1895
1896/*
1897 * nfs file rename rpc called from nfs_remove() above
1898 */
1899static int
1900nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1901    struct sillyrename *sp)
1902{
1903
1904	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1905	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1906	    scnp->cn_thread));
1907}
1908
1909/*
1910 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1911 */
1912static int
1913nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1914    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1915    int tnamelen, struct ucred *cred, struct thread *td)
1916{
1917	struct nfsvattr fnfsva, tnfsva;
1918	struct nfsnode *fdnp = VTONFS(fdvp);
1919	struct nfsnode *tdnp = VTONFS(tdvp);
1920	int error = 0, fattrflag, tattrflag;
1921
1922	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1923	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1924	    &tattrflag, NULL, NULL);
1925	mtx_lock(&fdnp->n_mtx);
1926	fdnp->n_flag |= NMODIFIED;
1927	if (fattrflag != 0) {
1928		mtx_unlock(&fdnp->n_mtx);
1929		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1930	} else {
1931		fdnp->n_attrstamp = 0;
1932		mtx_unlock(&fdnp->n_mtx);
1933		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1934	}
1935	mtx_lock(&tdnp->n_mtx);
1936	tdnp->n_flag |= NMODIFIED;
1937	if (tattrflag != 0) {
1938		mtx_unlock(&tdnp->n_mtx);
1939		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1940	} else {
1941		tdnp->n_attrstamp = 0;
1942		mtx_unlock(&tdnp->n_mtx);
1943		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1944	}
1945	if (error && NFS_ISV4(fdvp))
1946		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1947	return (error);
1948}
1949
1950/*
1951 * nfs hard link create call
1952 */
1953static int
1954nfs_link(struct vop_link_args *ap)
1955{
1956	struct vnode *vp = ap->a_vp;
1957	struct vnode *tdvp = ap->a_tdvp;
1958	struct componentname *cnp = ap->a_cnp;
1959	struct nfsnode *np, *tdnp;
1960	struct nfsvattr nfsva, dnfsva;
1961	int error = 0, attrflag, dattrflag;
1962
1963	/*
1964	 * Push all writes to the server, so that the attribute cache
1965	 * doesn't get "out of sync" with the server.
1966	 * XXX There should be a better way!
1967	 */
1968	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1969
1970	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1971	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1972	    &dattrflag, NULL);
1973	tdnp = VTONFS(tdvp);
1974	mtx_lock(&tdnp->n_mtx);
1975	tdnp->n_flag |= NMODIFIED;
1976	if (dattrflag != 0) {
1977		mtx_unlock(&tdnp->n_mtx);
1978		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1979	} else {
1980		tdnp->n_attrstamp = 0;
1981		mtx_unlock(&tdnp->n_mtx);
1982		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1983	}
1984	if (attrflag)
1985		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1986	else {
1987		np = VTONFS(vp);
1988		mtx_lock(&np->n_mtx);
1989		np->n_attrstamp = 0;
1990		mtx_unlock(&np->n_mtx);
1991		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1992	}
1993	/*
1994	 * If negative lookup caching is enabled, I might as well
1995	 * add an entry for this node. Not necessary for correctness,
1996	 * but if negative caching is enabled, then the system
1997	 * must care about lookup caching hit rate, so...
1998	 */
1999	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
2000	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2001		cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
2002	}
2003	if (error && NFS_ISV4(vp))
2004		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2005		    (gid_t)0);
2006	return (error);
2007}
2008
2009/*
2010 * nfs symbolic link create call
2011 */
2012static int
2013nfs_symlink(struct vop_symlink_args *ap)
2014{
2015	struct vnode *dvp = ap->a_dvp;
2016	struct vattr *vap = ap->a_vap;
2017	struct componentname *cnp = ap->a_cnp;
2018	struct nfsvattr nfsva, dnfsva;
2019	struct nfsfh *nfhp;
2020	struct nfsnode *np = NULL, *dnp;
2021	struct vnode *newvp = NULL;
2022	int error = 0, attrflag, dattrflag, ret;
2023
2024	vap->va_type = VLNK;
2025	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2026	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2027	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2028	if (nfhp) {
2029		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2030		    &np, NULL, LK_EXCLUSIVE);
2031		if (!ret)
2032			newvp = NFSTOV(np);
2033		else if (!error)
2034			error = ret;
2035	}
2036	if (newvp != NULL) {
2037		if (attrflag)
2038			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2039			    0, 1);
2040	} else if (!error) {
2041		/*
2042		 * If we do not have an error and we could not extract the
2043		 * newvp from the response due to the request being NFSv2, we
2044		 * have to do a lookup in order to obtain a newvp to return.
2045		 */
2046		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2047		    cnp->cn_cred, cnp->cn_thread, &np);
2048		if (!error)
2049			newvp = NFSTOV(np);
2050	}
2051	if (error) {
2052		if (newvp)
2053			vput(newvp);
2054		if (NFS_ISV4(dvp))
2055			error = nfscl_maperr(cnp->cn_thread, error,
2056			    vap->va_uid, vap->va_gid);
2057	} else {
2058		*ap->a_vpp = newvp;
2059	}
2060
2061	dnp = VTONFS(dvp);
2062	mtx_lock(&dnp->n_mtx);
2063	dnp->n_flag |= NMODIFIED;
2064	if (dattrflag != 0) {
2065		mtx_unlock(&dnp->n_mtx);
2066		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2067	} else {
2068		dnp->n_attrstamp = 0;
2069		mtx_unlock(&dnp->n_mtx);
2070		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2071	}
2072	/*
2073	 * If negative lookup caching is enabled, I might as well
2074	 * add an entry for this node. Not necessary for correctness,
2075	 * but if negative caching is enabled, then the system
2076	 * must care about lookup caching hit rate, so...
2077	 */
2078	if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2079	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2080		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2081	}
2082	return (error);
2083}
2084
2085/*
2086 * nfs make dir call
2087 */
2088static int
2089nfs_mkdir(struct vop_mkdir_args *ap)
2090{
2091	struct vnode *dvp = ap->a_dvp;
2092	struct vattr *vap = ap->a_vap;
2093	struct componentname *cnp = ap->a_cnp;
2094	struct nfsnode *np = NULL, *dnp;
2095	struct vnode *newvp = NULL;
2096	struct vattr vattr;
2097	struct nfsfh *nfhp;
2098	struct nfsvattr nfsva, dnfsva;
2099	int error = 0, attrflag, dattrflag, ret;
2100
2101	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2102		return (error);
2103	vap->va_type = VDIR;
2104	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2105	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2106	    &attrflag, &dattrflag, NULL);
2107	dnp = VTONFS(dvp);
2108	mtx_lock(&dnp->n_mtx);
2109	dnp->n_flag |= NMODIFIED;
2110	if (dattrflag != 0) {
2111		mtx_unlock(&dnp->n_mtx);
2112		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2113	} else {
2114		dnp->n_attrstamp = 0;
2115		mtx_unlock(&dnp->n_mtx);
2116		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2117	}
2118	if (nfhp) {
2119		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2120		    &np, NULL, LK_EXCLUSIVE);
2121		if (!ret) {
2122			newvp = NFSTOV(np);
2123			if (attrflag)
2124			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2125				NULL, 0, 1);
2126		} else if (!error)
2127			error = ret;
2128	}
2129	if (!error && newvp == NULL) {
2130		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2131		    cnp->cn_cred, cnp->cn_thread, &np);
2132		if (!error) {
2133			newvp = NFSTOV(np);
2134			if (newvp->v_type != VDIR)
2135				error = EEXIST;
2136		}
2137	}
2138	if (error) {
2139		if (newvp)
2140			vput(newvp);
2141		if (NFS_ISV4(dvp))
2142			error = nfscl_maperr(cnp->cn_thread, error,
2143			    vap->va_uid, vap->va_gid);
2144	} else {
2145		/*
2146		 * If negative lookup caching is enabled, I might as well
2147		 * add an entry for this node. Not necessary for correctness,
2148		 * but if negative caching is enabled, then the system
2149		 * must care about lookup caching hit rate, so...
2150		 */
2151		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2152		    (cnp->cn_flags & MAKEENTRY) &&
2153		    attrflag != 0 && dattrflag != 0)
2154			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2155			    &dnfsva.na_ctime);
2156		*ap->a_vpp = newvp;
2157	}
2158	return (error);
2159}
2160
2161/*
2162 * nfs remove directory call
2163 */
2164static int
2165nfs_rmdir(struct vop_rmdir_args *ap)
2166{
2167	struct vnode *vp = ap->a_vp;
2168	struct vnode *dvp = ap->a_dvp;
2169	struct componentname *cnp = ap->a_cnp;
2170	struct nfsnode *dnp;
2171	struct nfsvattr dnfsva;
2172	int error, dattrflag;
2173
2174	if (dvp == vp)
2175		return (EINVAL);
2176	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2177	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2178	dnp = VTONFS(dvp);
2179	mtx_lock(&dnp->n_mtx);
2180	dnp->n_flag |= NMODIFIED;
2181	if (dattrflag != 0) {
2182		mtx_unlock(&dnp->n_mtx);
2183		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2184	} else {
2185		dnp->n_attrstamp = 0;
2186		mtx_unlock(&dnp->n_mtx);
2187		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2188	}
2189
2190	cache_purge(dvp);
2191	cache_purge(vp);
2192	if (error && NFS_ISV4(dvp))
2193		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2194		    (gid_t)0);
2195	/*
2196	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2197	 */
2198	if (error == ENOENT)
2199		error = 0;
2200	return (error);
2201}
2202
2203/*
2204 * nfs readdir call
2205 */
2206static int
2207nfs_readdir(struct vop_readdir_args *ap)
2208{
2209	struct vnode *vp = ap->a_vp;
2210	struct nfsnode *np = VTONFS(vp);
2211	struct uio *uio = ap->a_uio;
2212	ssize_t tresid, left;
2213	int error = 0;
2214	struct vattr vattr;
2215
2216	if (ap->a_eofflag != NULL)
2217		*ap->a_eofflag = 0;
2218	if (vp->v_type != VDIR)
2219		return(EPERM);
2220
2221	/*
2222	 * First, check for hit on the EOF offset cache
2223	 */
2224	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2225	    (np->n_flag & NMODIFIED) == 0) {
2226		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2227			mtx_lock(&np->n_mtx);
2228			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2229			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2230				mtx_unlock(&np->n_mtx);
2231				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2232				if (ap->a_eofflag != NULL)
2233					*ap->a_eofflag = 1;
2234				return (0);
2235			} else
2236				mtx_unlock(&np->n_mtx);
2237		}
2238	}
2239
2240	/*
2241	 * NFS always guarantees that directory entries don't straddle
2242	 * DIRBLKSIZ boundaries.  As such, we need to limit the size
2243	 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2244	 * directory entry.
2245	 */
2246	left = uio->uio_resid % DIRBLKSIZ;
2247	if (left == uio->uio_resid)
2248		return (EINVAL);
2249	uio->uio_resid -= left;
2250
2251	/*
2252	 * Call ncl_bioread() to do the real work.
2253	 */
2254	tresid = uio->uio_resid;
2255	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2256
2257	if (!error && uio->uio_resid == tresid) {
2258		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2259		if (ap->a_eofflag != NULL)
2260			*ap->a_eofflag = 1;
2261	}
2262
2263	/* Add the partial DIRBLKSIZ (left) back in. */
2264	uio->uio_resid += left;
2265	return (error);
2266}
2267
2268/*
2269 * Readdir rpc call.
2270 * Called from below the buffer cache by ncl_doio().
2271 */
2272int
2273ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2274    struct thread *td)
2275{
2276	struct nfsvattr nfsva;
2277	nfsuint64 *cookiep, cookie;
2278	struct nfsnode *dnp = VTONFS(vp);
2279	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2280	int error = 0, eof, attrflag;
2281
2282	KASSERT(uiop->uio_iovcnt == 1 &&
2283	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2284	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2285	    ("nfs readdirrpc bad uio"));
2286
2287	/*
2288	 * If there is no cookie, assume directory was stale.
2289	 */
2290	ncl_dircookie_lock(dnp);
2291	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2292	if (cookiep) {
2293		cookie = *cookiep;
2294		ncl_dircookie_unlock(dnp);
2295	} else {
2296		ncl_dircookie_unlock(dnp);
2297		return (NFSERR_BAD_COOKIE);
2298	}
2299
2300	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2301		(void)ncl_fsinfo(nmp, vp, cred, td);
2302
2303	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2304	    &attrflag, &eof, NULL);
2305	if (attrflag)
2306		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2307
2308	if (!error) {
2309		/*
2310		 * We are now either at the end of the directory or have filled
2311		 * the block.
2312		 */
2313		if (eof)
2314			dnp->n_direofoffset = uiop->uio_offset;
2315		else {
2316			if (uiop->uio_resid > 0)
2317				printf("EEK! readdirrpc resid > 0\n");
2318			ncl_dircookie_lock(dnp);
2319			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2320			*cookiep = cookie;
2321			ncl_dircookie_unlock(dnp);
2322		}
2323	} else if (NFS_ISV4(vp)) {
2324		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2325	}
2326	return (error);
2327}
2328
2329/*
2330 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2331 */
2332int
2333ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2334    struct thread *td)
2335{
2336	struct nfsvattr nfsva;
2337	nfsuint64 *cookiep, cookie;
2338	struct nfsnode *dnp = VTONFS(vp);
2339	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2340	int error = 0, attrflag, eof;
2341
2342	KASSERT(uiop->uio_iovcnt == 1 &&
2343	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2344	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2345	    ("nfs readdirplusrpc bad uio"));
2346
2347	/*
2348	 * If there is no cookie, assume directory was stale.
2349	 */
2350	ncl_dircookie_lock(dnp);
2351	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2352	if (cookiep) {
2353		cookie = *cookiep;
2354		ncl_dircookie_unlock(dnp);
2355	} else {
2356		ncl_dircookie_unlock(dnp);
2357		return (NFSERR_BAD_COOKIE);
2358	}
2359
2360	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2361		(void)ncl_fsinfo(nmp, vp, cred, td);
2362	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2363	    &attrflag, &eof, NULL);
2364	if (attrflag)
2365		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2366
2367	if (!error) {
2368		/*
2369		 * We are now either at end of the directory or have filled the
2370		 * the block.
2371		 */
2372		if (eof)
2373			dnp->n_direofoffset = uiop->uio_offset;
2374		else {
2375			if (uiop->uio_resid > 0)
2376				printf("EEK! readdirplusrpc resid > 0\n");
2377			ncl_dircookie_lock(dnp);
2378			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2379			*cookiep = cookie;
2380			ncl_dircookie_unlock(dnp);
2381		}
2382	} else if (NFS_ISV4(vp)) {
2383		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2384	}
2385	return (error);
2386}
2387
2388/*
2389 * Silly rename. To make the NFS filesystem that is stateless look a little
2390 * more like the "ufs" a remove of an active vnode is translated to a rename
2391 * to a funny looking filename that is removed by nfs_inactive on the
2392 * nfsnode. There is the potential for another process on a different client
2393 * to create the same funny name between the nfs_lookitup() fails and the
2394 * nfs_rename() completes, but...
2395 */
2396static int
2397nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2398{
2399	struct sillyrename *sp;
2400	struct nfsnode *np;
2401	int error;
2402	short pid;
2403	unsigned int lticks;
2404
2405	cache_purge(dvp);
2406	np = VTONFS(vp);
2407	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2408	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2409	    M_NEWNFSREQ, M_WAITOK);
2410	sp->s_cred = crhold(cnp->cn_cred);
2411	sp->s_dvp = dvp;
2412	VREF(dvp);
2413
2414	/*
2415	 * Fudge together a funny name.
2416	 * Changing the format of the funny name to accomodate more
2417	 * sillynames per directory.
2418	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2419	 * CPU ticks since boot.
2420	 */
2421	pid = cnp->cn_thread->td_proc->p_pid;
2422	lticks = (unsigned int)ticks;
2423	for ( ; ; ) {
2424		sp->s_namlen = sprintf(sp->s_name,
2425				       ".nfs.%08x.%04x4.4", lticks,
2426				       pid);
2427		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2428				 cnp->cn_thread, NULL))
2429			break;
2430		lticks++;
2431	}
2432	error = nfs_renameit(dvp, vp, cnp, sp);
2433	if (error)
2434		goto bad;
2435	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2436		cnp->cn_thread, &np);
2437	np->n_sillyrename = sp;
2438	return (0);
2439bad:
2440	vrele(sp->s_dvp);
2441	crfree(sp->s_cred);
2442	free((caddr_t)sp, M_NEWNFSREQ);
2443	return (error);
2444}
2445
2446/*
2447 * Look up a file name and optionally either update the file handle or
2448 * allocate an nfsnode, depending on the value of npp.
2449 * npp == NULL	--> just do the lookup
2450 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2451 *			handled too
2452 * *npp != NULL --> update the file handle in the vnode
2453 */
2454static int
2455nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2456    struct thread *td, struct nfsnode **npp)
2457{
2458	struct vnode *newvp = NULL, *vp;
2459	struct nfsnode *np, *dnp = VTONFS(dvp);
2460	struct nfsfh *nfhp, *onfhp;
2461	struct nfsvattr nfsva, dnfsva;
2462	struct componentname cn;
2463	int error = 0, attrflag, dattrflag;
2464	u_int hash;
2465
2466	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2467	    &nfhp, &attrflag, &dattrflag, NULL);
2468	if (dattrflag)
2469		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2470	if (npp && !error) {
2471		if (*npp != NULL) {
2472		    np = *npp;
2473		    vp = NFSTOV(np);
2474		    /*
2475		     * For NFSv4, check to see if it is the same name and
2476		     * replace the name, if it is different.
2477		     */
2478		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2479			(np->n_v4->n4_namelen != len ||
2480			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2481			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2482			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2483			 dnp->n_fhp->nfh_len))) {
2484#ifdef notdef
2485{ char nnn[100]; int nnnl;
2486nnnl = (len < 100) ? len : 99;
2487bcopy(name, nnn, nnnl);
2488nnn[nnnl] = '\0';
2489printf("replace=%s\n",nnn);
2490}
2491#endif
2492			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2493			    MALLOC(np->n_v4, struct nfsv4node *,
2494				sizeof (struct nfsv4node) +
2495				dnp->n_fhp->nfh_len + len - 1,
2496				M_NFSV4NODE, M_WAITOK);
2497			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2498			    np->n_v4->n4_namelen = len;
2499			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2500				dnp->n_fhp->nfh_len);
2501			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2502		    }
2503		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2504			FNV1_32_INIT);
2505		    onfhp = np->n_fhp;
2506		    /*
2507		     * Rehash node for new file handle.
2508		     */
2509		    vfs_hash_rehash(vp, hash);
2510		    np->n_fhp = nfhp;
2511		    if (onfhp != NULL)
2512			FREE((caddr_t)onfhp, M_NFSFH);
2513		    newvp = NFSTOV(np);
2514		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2515		    FREE((caddr_t)nfhp, M_NFSFH);
2516		    VREF(dvp);
2517		    newvp = dvp;
2518		} else {
2519		    cn.cn_nameptr = name;
2520		    cn.cn_namelen = len;
2521		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2522			&np, NULL, LK_EXCLUSIVE);
2523		    if (error)
2524			return (error);
2525		    newvp = NFSTOV(np);
2526		}
2527		if (!attrflag && *npp == NULL) {
2528			if (newvp == dvp)
2529				vrele(newvp);
2530			else
2531				vput(newvp);
2532			return (ENOENT);
2533		}
2534		if (attrflag)
2535			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2536			    0, 1);
2537	}
2538	if (npp && *npp == NULL) {
2539		if (error) {
2540			if (newvp) {
2541				if (newvp == dvp)
2542					vrele(newvp);
2543				else
2544					vput(newvp);
2545			}
2546		} else
2547			*npp = np;
2548	}
2549	if (error && NFS_ISV4(dvp))
2550		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2551	return (error);
2552}
2553
2554/*
2555 * Nfs Version 3 and 4 commit rpc
2556 */
2557int
2558ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2559   struct thread *td)
2560{
2561	struct nfsvattr nfsva;
2562	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2563	int error, attrflag;
2564
2565	mtx_lock(&nmp->nm_mtx);
2566	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2567		mtx_unlock(&nmp->nm_mtx);
2568		return (0);
2569	}
2570	mtx_unlock(&nmp->nm_mtx);
2571	error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2572	    &attrflag, NULL);
2573	if (attrflag != 0)
2574		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2575		    0, 1);
2576	if (error != 0 && NFS_ISV4(vp))
2577		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2578	return (error);
2579}
2580
2581/*
2582 * Strategy routine.
2583 * For async requests when nfsiod(s) are running, queue the request by
2584 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2585 * request.
2586 */
2587static int
2588nfs_strategy(struct vop_strategy_args *ap)
2589{
2590	struct buf *bp = ap->a_bp;
2591	struct ucred *cr;
2592
2593	KASSERT(!(bp->b_flags & B_DONE),
2594	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2595	BUF_ASSERT_HELD(bp);
2596
2597	if (bp->b_iocmd == BIO_READ)
2598		cr = bp->b_rcred;
2599	else
2600		cr = bp->b_wcred;
2601
2602	/*
2603	 * If the op is asynchronous and an i/o daemon is waiting
2604	 * queue the request, wake it up and wait for completion
2605	 * otherwise just do it ourselves.
2606	 */
2607	if ((bp->b_flags & B_ASYNC) == 0 ||
2608	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2609		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2610	return (0);
2611}
2612
2613/*
2614 * fsync vnode op. Just call ncl_flush() with commit == 1.
2615 */
2616/* ARGSUSED */
2617static int
2618nfs_fsync(struct vop_fsync_args *ap)
2619{
2620
2621	if (ap->a_vp->v_type != VREG) {
2622		/*
2623		 * For NFS, metadata is changed synchronously on the server,
2624		 * so there is nothing to flush. Also, ncl_flush() clears
2625		 * the NMODIFIED flag and that shouldn't be done here for
2626		 * directories.
2627		 */
2628		return (0);
2629	}
2630	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2631}
2632
2633/*
2634 * Flush all the blocks associated with a vnode.
2635 * 	Walk through the buffer pool and push any dirty pages
2636 *	associated with the vnode.
2637 * If the called_from_renewthread argument is TRUE, it has been called
2638 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2639 * waiting for a buffer write to complete.
2640 */
2641int
2642ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2643    int commit, int called_from_renewthread)
2644{
2645	struct nfsnode *np = VTONFS(vp);
2646	struct buf *bp;
2647	int i;
2648	struct buf *nbp;
2649	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2650	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2651	int passone = 1, trycnt = 0;
2652	u_quad_t off, endoff, toff;
2653	struct ucred* wcred = NULL;
2654	struct buf **bvec = NULL;
2655	struct bufobj *bo;
2656#ifndef NFS_COMMITBVECSIZ
2657#define	NFS_COMMITBVECSIZ	20
2658#endif
2659	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2660	int bvecsize = 0, bveccount;
2661
2662	if (called_from_renewthread != 0)
2663		slptimeo = hz;
2664	if (nmp->nm_flag & NFSMNT_INT)
2665		slpflag = PCATCH;
2666	if (!commit)
2667		passone = 0;
2668	bo = &vp->v_bufobj;
2669	/*
2670	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2671	 * server, but has not been committed to stable storage on the server
2672	 * yet. On the first pass, the byte range is worked out and the commit
2673	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2674	 * job.
2675	 */
2676again:
2677	off = (u_quad_t)-1;
2678	endoff = 0;
2679	bvecpos = 0;
2680	if (NFS_ISV34(vp) && commit) {
2681		if (bvec != NULL && bvec != bvec_on_stack)
2682			free(bvec, M_TEMP);
2683		/*
2684		 * Count up how many buffers waiting for a commit.
2685		 */
2686		bveccount = 0;
2687		BO_LOCK(bo);
2688		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2689			if (!BUF_ISLOCKED(bp) &&
2690			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2691				== (B_DELWRI | B_NEEDCOMMIT))
2692				bveccount++;
2693		}
2694		/*
2695		 * Allocate space to remember the list of bufs to commit.  It is
2696		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2697		 * If we can't get memory (for whatever reason), we will end up
2698		 * committing the buffers one-by-one in the loop below.
2699		 */
2700		if (bveccount > NFS_COMMITBVECSIZ) {
2701			/*
2702			 * Release the vnode interlock to avoid a lock
2703			 * order reversal.
2704			 */
2705			BO_UNLOCK(bo);
2706			bvec = (struct buf **)
2707				malloc(bveccount * sizeof(struct buf *),
2708				       M_TEMP, M_NOWAIT);
2709			BO_LOCK(bo);
2710			if (bvec == NULL) {
2711				bvec = bvec_on_stack;
2712				bvecsize = NFS_COMMITBVECSIZ;
2713			} else
2714				bvecsize = bveccount;
2715		} else {
2716			bvec = bvec_on_stack;
2717			bvecsize = NFS_COMMITBVECSIZ;
2718		}
2719		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2720			if (bvecpos >= bvecsize)
2721				break;
2722			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2723				nbp = TAILQ_NEXT(bp, b_bobufs);
2724				continue;
2725			}
2726			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2727			    (B_DELWRI | B_NEEDCOMMIT)) {
2728				BUF_UNLOCK(bp);
2729				nbp = TAILQ_NEXT(bp, b_bobufs);
2730				continue;
2731			}
2732			BO_UNLOCK(bo);
2733			bremfree(bp);
2734			/*
2735			 * Work out if all buffers are using the same cred
2736			 * so we can deal with them all with one commit.
2737			 *
2738			 * NOTE: we are not clearing B_DONE here, so we have
2739			 * to do it later on in this routine if we intend to
2740			 * initiate I/O on the bp.
2741			 *
2742			 * Note: to avoid loopback deadlocks, we do not
2743			 * assign b_runningbufspace.
2744			 */
2745			if (wcred == NULL)
2746				wcred = bp->b_wcred;
2747			else if (wcred != bp->b_wcred)
2748				wcred = NOCRED;
2749			vfs_busy_pages(bp, 1);
2750
2751			BO_LOCK(bo);
2752			/*
2753			 * bp is protected by being locked, but nbp is not
2754			 * and vfs_busy_pages() may sleep.  We have to
2755			 * recalculate nbp.
2756			 */
2757			nbp = TAILQ_NEXT(bp, b_bobufs);
2758
2759			/*
2760			 * A list of these buffers is kept so that the
2761			 * second loop knows which buffers have actually
2762			 * been committed. This is necessary, since there
2763			 * may be a race between the commit rpc and new
2764			 * uncommitted writes on the file.
2765			 */
2766			bvec[bvecpos++] = bp;
2767			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2768				bp->b_dirtyoff;
2769			if (toff < off)
2770				off = toff;
2771			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2772			if (toff > endoff)
2773				endoff = toff;
2774		}
2775		BO_UNLOCK(bo);
2776	}
2777	if (bvecpos > 0) {
2778		/*
2779		 * Commit data on the server, as required.
2780		 * If all bufs are using the same wcred, then use that with
2781		 * one call for all of them, otherwise commit each one
2782		 * separately.
2783		 */
2784		if (wcred != NOCRED)
2785			retv = ncl_commit(vp, off, (int)(endoff - off),
2786					  wcred, td);
2787		else {
2788			retv = 0;
2789			for (i = 0; i < bvecpos; i++) {
2790				off_t off, size;
2791				bp = bvec[i];
2792				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2793					bp->b_dirtyoff;
2794				size = (u_quad_t)(bp->b_dirtyend
2795						  - bp->b_dirtyoff);
2796				retv = ncl_commit(vp, off, (int)size,
2797						  bp->b_wcred, td);
2798				if (retv) break;
2799			}
2800		}
2801
2802		if (retv == NFSERR_STALEWRITEVERF)
2803			ncl_clearcommit(vp->v_mount);
2804
2805		/*
2806		 * Now, either mark the blocks I/O done or mark the
2807		 * blocks dirty, depending on whether the commit
2808		 * succeeded.
2809		 */
2810		for (i = 0; i < bvecpos; i++) {
2811			bp = bvec[i];
2812			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2813			if (retv) {
2814				/*
2815				 * Error, leave B_DELWRI intact
2816				 */
2817				vfs_unbusy_pages(bp);
2818				brelse(bp);
2819			} else {
2820				/*
2821				 * Success, remove B_DELWRI ( bundirty() ).
2822				 *
2823				 * b_dirtyoff/b_dirtyend seem to be NFS
2824				 * specific.  We should probably move that
2825				 * into bundirty(). XXX
2826				 */
2827				bufobj_wref(bo);
2828				bp->b_flags |= B_ASYNC;
2829				bundirty(bp);
2830				bp->b_flags &= ~B_DONE;
2831				bp->b_ioflags &= ~BIO_ERROR;
2832				bp->b_dirtyoff = bp->b_dirtyend = 0;
2833				bufdone(bp);
2834			}
2835		}
2836	}
2837
2838	/*
2839	 * Start/do any write(s) that are required.
2840	 */
2841loop:
2842	BO_LOCK(bo);
2843	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2844		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2845			if (waitfor != MNT_WAIT || passone)
2846				continue;
2847
2848			error = BUF_TIMELOCK(bp,
2849			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2850			    BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2851			if (error == 0) {
2852				BUF_UNLOCK(bp);
2853				goto loop;
2854			}
2855			if (error == ENOLCK) {
2856				error = 0;
2857				goto loop;
2858			}
2859			if (called_from_renewthread != 0) {
2860				/*
2861				 * Return EIO so the flush will be retried
2862				 * later.
2863				 */
2864				error = EIO;
2865				goto done;
2866			}
2867			if (newnfs_sigintr(nmp, td)) {
2868				error = EINTR;
2869				goto done;
2870			}
2871			if (slpflag == PCATCH) {
2872				slpflag = 0;
2873				slptimeo = 2 * hz;
2874			}
2875			goto loop;
2876		}
2877		if ((bp->b_flags & B_DELWRI) == 0)
2878			panic("nfs_fsync: not dirty");
2879		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2880			BUF_UNLOCK(bp);
2881			continue;
2882		}
2883		BO_UNLOCK(bo);
2884		bremfree(bp);
2885		if (passone || !commit)
2886		    bp->b_flags |= B_ASYNC;
2887		else
2888		    bp->b_flags |= B_ASYNC;
2889		bwrite(bp);
2890		if (newnfs_sigintr(nmp, td)) {
2891			error = EINTR;
2892			goto done;
2893		}
2894		goto loop;
2895	}
2896	if (passone) {
2897		passone = 0;
2898		BO_UNLOCK(bo);
2899		goto again;
2900	}
2901	if (waitfor == MNT_WAIT) {
2902		while (bo->bo_numoutput) {
2903			error = bufobj_wwait(bo, slpflag, slptimeo);
2904			if (error) {
2905			    BO_UNLOCK(bo);
2906			    if (called_from_renewthread != 0) {
2907				/*
2908				 * Return EIO so that the flush will be
2909				 * retried later.
2910				 */
2911				error = EIO;
2912				goto done;
2913			    }
2914			    error = newnfs_sigintr(nmp, td);
2915			    if (error)
2916				goto done;
2917			    if (slpflag == PCATCH) {
2918				slpflag = 0;
2919				slptimeo = 2 * hz;
2920			    }
2921			    BO_LOCK(bo);
2922			}
2923		}
2924		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2925			BO_UNLOCK(bo);
2926			goto loop;
2927		}
2928		/*
2929		 * Wait for all the async IO requests to drain
2930		 */
2931		BO_UNLOCK(bo);
2932		mtx_lock(&np->n_mtx);
2933		while (np->n_directio_asyncwr > 0) {
2934			np->n_flag |= NFSYNCWAIT;
2935			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2936			    &np->n_mtx, slpflag | (PRIBIO + 1),
2937			    "nfsfsync", 0);
2938			if (error) {
2939				if (newnfs_sigintr(nmp, td)) {
2940					mtx_unlock(&np->n_mtx);
2941					error = EINTR;
2942					goto done;
2943				}
2944			}
2945		}
2946		mtx_unlock(&np->n_mtx);
2947	} else
2948		BO_UNLOCK(bo);
2949	if (NFSHASPNFS(nmp)) {
2950		nfscl_layoutcommit(vp, td);
2951		/*
2952		 * Invalidate the attribute cache, since writes to a DS
2953		 * won't update the size attribute.
2954		 */
2955		mtx_lock(&np->n_mtx);
2956		np->n_attrstamp = 0;
2957	} else
2958		mtx_lock(&np->n_mtx);
2959	if (np->n_flag & NWRITEERR) {
2960		error = np->n_error;
2961		np->n_flag &= ~NWRITEERR;
2962	}
2963  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2964	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2965  		np->n_flag &= ~NMODIFIED;
2966	mtx_unlock(&np->n_mtx);
2967done:
2968	if (bvec != NULL && bvec != bvec_on_stack)
2969		free(bvec, M_TEMP);
2970	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2971	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2972	    np->n_directio_asyncwr != 0)) {
2973		if (trycnt++ < 5) {
2974			/* try, try again... */
2975			passone = 1;
2976			wcred = NULL;
2977			bvec = NULL;
2978			bvecsize = 0;
2979			goto again;
2980		}
2981		vn_printf(vp, "ncl_flush failed");
2982		error = called_from_renewthread != 0 ? EIO : EBUSY;
2983	}
2984	return (error);
2985}
2986
2987/*
2988 * NFS advisory byte-level locks.
2989 */
2990static int
2991nfs_advlock(struct vop_advlock_args *ap)
2992{
2993	struct vnode *vp = ap->a_vp;
2994	struct ucred *cred;
2995	struct nfsnode *np = VTONFS(ap->a_vp);
2996	struct proc *p = (struct proc *)ap->a_id;
2997	struct thread *td = curthread;	/* XXX */
2998	struct vattr va;
2999	int ret, error = EOPNOTSUPP;
3000	u_quad_t size;
3001
3002	if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
3003		if (vp->v_type != VREG)
3004			return (EINVAL);
3005		if ((ap->a_flags & F_POSIX) != 0)
3006			cred = p->p_ucred;
3007		else
3008			cred = td->td_ucred;
3009		NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3010		if (vp->v_iflag & VI_DOOMED) {
3011			NFSVOPUNLOCK(vp, 0);
3012			return (EBADF);
3013		}
3014
3015		/*
3016		 * If this is unlocking a write locked region, flush and
3017		 * commit them before unlocking. This is required by
3018		 * RFC3530 Sec. 9.3.2.
3019		 */
3020		if (ap->a_op == F_UNLCK &&
3021		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3022		    ap->a_flags))
3023			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
3024
3025		/*
3026		 * Loop around doing the lock op, while a blocking lock
3027		 * must wait for the lock op to succeed.
3028		 */
3029		do {
3030			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3031			    ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3032			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3033			    ap->a_op == F_SETLK) {
3034				NFSVOPUNLOCK(vp, 0);
3035				error = nfs_catnap(PZERO | PCATCH, ret,
3036				    "ncladvl");
3037				if (error)
3038					return (EINTR);
3039				NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3040				if (vp->v_iflag & VI_DOOMED) {
3041					NFSVOPUNLOCK(vp, 0);
3042					return (EBADF);
3043				}
3044			}
3045		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3046		     ap->a_op == F_SETLK);
3047		if (ret == NFSERR_DENIED) {
3048			NFSVOPUNLOCK(vp, 0);
3049			return (EAGAIN);
3050		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3051			NFSVOPUNLOCK(vp, 0);
3052			return (ret);
3053		} else if (ret != 0) {
3054			NFSVOPUNLOCK(vp, 0);
3055			return (EACCES);
3056		}
3057
3058		/*
3059		 * Now, if we just got a lock, invalidate data in the buffer
3060		 * cache, as required, so that the coherency conforms with
3061		 * RFC3530 Sec. 9.3.2.
3062		 */
3063		if (ap->a_op == F_SETLK) {
3064			if ((np->n_flag & NMODIFIED) == 0) {
3065				np->n_attrstamp = 0;
3066				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3067				ret = VOP_GETATTR(vp, &va, cred);
3068			}
3069			if ((np->n_flag & NMODIFIED) || ret ||
3070			    np->n_change != va.va_filerev) {
3071				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3072				np->n_attrstamp = 0;
3073				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3074				ret = VOP_GETATTR(vp, &va, cred);
3075				if (!ret) {
3076					np->n_mtime = va.va_mtime;
3077					np->n_change = va.va_filerev;
3078				}
3079			}
3080			/* Mark that a file lock has been acquired. */
3081			mtx_lock(&np->n_mtx);
3082			np->n_flag |= NHASBEENLOCKED;
3083			mtx_unlock(&np->n_mtx);
3084		}
3085		NFSVOPUNLOCK(vp, 0);
3086		return (0);
3087	} else if (!NFS_ISV4(vp)) {
3088		error = NFSVOPLOCK(vp, LK_SHARED);
3089		if (error)
3090			return (error);
3091		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3092			size = VTONFS(vp)->n_size;
3093			NFSVOPUNLOCK(vp, 0);
3094			error = lf_advlock(ap, &(vp->v_lockf), size);
3095		} else {
3096			if (nfs_advlock_p != NULL)
3097				error = nfs_advlock_p(ap);
3098			else {
3099				NFSVOPUNLOCK(vp, 0);
3100				error = ENOLCK;
3101			}
3102		}
3103		if (error == 0 && ap->a_op == F_SETLK) {
3104			error = NFSVOPLOCK(vp, LK_SHARED);
3105			if (error == 0) {
3106				/* Mark that a file lock has been acquired. */
3107				mtx_lock(&np->n_mtx);
3108				np->n_flag |= NHASBEENLOCKED;
3109				mtx_unlock(&np->n_mtx);
3110				NFSVOPUNLOCK(vp, 0);
3111			}
3112		}
3113	}
3114	return (error);
3115}
3116
3117/*
3118 * NFS advisory byte-level locks.
3119 */
3120static int
3121nfs_advlockasync(struct vop_advlockasync_args *ap)
3122{
3123	struct vnode *vp = ap->a_vp;
3124	u_quad_t size;
3125	int error;
3126
3127	if (NFS_ISV4(vp))
3128		return (EOPNOTSUPP);
3129	error = NFSVOPLOCK(vp, LK_SHARED);
3130	if (error)
3131		return (error);
3132	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3133		size = VTONFS(vp)->n_size;
3134		NFSVOPUNLOCK(vp, 0);
3135		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3136	} else {
3137		NFSVOPUNLOCK(vp, 0);
3138		error = EOPNOTSUPP;
3139	}
3140	return (error);
3141}
3142
3143/*
3144 * Print out the contents of an nfsnode.
3145 */
3146static int
3147nfs_print(struct vop_print_args *ap)
3148{
3149	struct vnode *vp = ap->a_vp;
3150	struct nfsnode *np = VTONFS(vp);
3151
3152	printf("\tfileid %ld fsid 0x%x", np->n_vattr.na_fileid,
3153	    np->n_vattr.na_fsid);
3154	if (vp->v_type == VFIFO)
3155		fifo_printinfo(vp);
3156	printf("\n");
3157	return (0);
3158}
3159
3160/*
3161 * This is the "real" nfs::bwrite(struct buf*).
3162 * We set B_CACHE if this is a VMIO buffer.
3163 */
3164int
3165ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3166{
3167	int s;
3168	int oldflags = bp->b_flags;
3169#if 0
3170	int retv = 1;
3171	off_t off;
3172#endif
3173
3174	BUF_ASSERT_HELD(bp);
3175
3176	if (bp->b_flags & B_INVAL) {
3177		brelse(bp);
3178		return(0);
3179	}
3180
3181	bp->b_flags |= B_CACHE;
3182
3183	/*
3184	 * Undirty the bp.  We will redirty it later if the I/O fails.
3185	 */
3186
3187	s = splbio();
3188	bundirty(bp);
3189	bp->b_flags &= ~B_DONE;
3190	bp->b_ioflags &= ~BIO_ERROR;
3191	bp->b_iocmd = BIO_WRITE;
3192
3193	bufobj_wref(bp->b_bufobj);
3194	curthread->td_ru.ru_oublock++;
3195	splx(s);
3196
3197	/*
3198	 * Note: to avoid loopback deadlocks, we do not
3199	 * assign b_runningbufspace.
3200	 */
3201	vfs_busy_pages(bp, 1);
3202
3203	BUF_KERNPROC(bp);
3204	bp->b_iooffset = dbtob(bp->b_blkno);
3205	bstrategy(bp);
3206
3207	if( (oldflags & B_ASYNC) == 0) {
3208		int rtval = bufwait(bp);
3209
3210		if (oldflags & B_DELWRI) {
3211			s = splbio();
3212			reassignbuf(bp);
3213			splx(s);
3214		}
3215		brelse(bp);
3216		return (rtval);
3217	}
3218
3219	return (0);
3220}
3221
3222/*
3223 * nfs special file access vnode op.
3224 * Essentially just get vattr and then imitate iaccess() since the device is
3225 * local to the client.
3226 */
3227static int
3228nfsspec_access(struct vop_access_args *ap)
3229{
3230	struct vattr *vap;
3231	struct ucred *cred = ap->a_cred;
3232	struct vnode *vp = ap->a_vp;
3233	accmode_t accmode = ap->a_accmode;
3234	struct vattr vattr;
3235	int error;
3236
3237	/*
3238	 * Disallow write attempts on filesystems mounted read-only;
3239	 * unless the file is a socket, fifo, or a block or character
3240	 * device resident on the filesystem.
3241	 */
3242	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3243		switch (vp->v_type) {
3244		case VREG:
3245		case VDIR:
3246		case VLNK:
3247			return (EROFS);
3248		default:
3249			break;
3250		}
3251	}
3252	vap = &vattr;
3253	error = VOP_GETATTR(vp, vap, cred);
3254	if (error)
3255		goto out;
3256	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3257	    accmode, cred, NULL);
3258out:
3259	return error;
3260}
3261
3262/*
3263 * Read wrapper for fifos.
3264 */
3265static int
3266nfsfifo_read(struct vop_read_args *ap)
3267{
3268	struct nfsnode *np = VTONFS(ap->a_vp);
3269	int error;
3270
3271	/*
3272	 * Set access flag.
3273	 */
3274	mtx_lock(&np->n_mtx);
3275	np->n_flag |= NACC;
3276	vfs_timestamp(&np->n_atim);
3277	mtx_unlock(&np->n_mtx);
3278	error = fifo_specops.vop_read(ap);
3279	return error;
3280}
3281
3282/*
3283 * Write wrapper for fifos.
3284 */
3285static int
3286nfsfifo_write(struct vop_write_args *ap)
3287{
3288	struct nfsnode *np = VTONFS(ap->a_vp);
3289
3290	/*
3291	 * Set update flag.
3292	 */
3293	mtx_lock(&np->n_mtx);
3294	np->n_flag |= NUPD;
3295	vfs_timestamp(&np->n_mtim);
3296	mtx_unlock(&np->n_mtx);
3297	return(fifo_specops.vop_write(ap));
3298}
3299
3300/*
3301 * Close wrapper for fifos.
3302 *
3303 * Update the times on the nfsnode then do fifo close.
3304 */
3305static int
3306nfsfifo_close(struct vop_close_args *ap)
3307{
3308	struct vnode *vp = ap->a_vp;
3309	struct nfsnode *np = VTONFS(vp);
3310	struct vattr vattr;
3311	struct timespec ts;
3312
3313	mtx_lock(&np->n_mtx);
3314	if (np->n_flag & (NACC | NUPD)) {
3315		vfs_timestamp(&ts);
3316		if (np->n_flag & NACC)
3317			np->n_atim = ts;
3318		if (np->n_flag & NUPD)
3319			np->n_mtim = ts;
3320		np->n_flag |= NCHG;
3321		if (vrefcnt(vp) == 1 &&
3322		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3323			VATTR_NULL(&vattr);
3324			if (np->n_flag & NACC)
3325				vattr.va_atime = np->n_atim;
3326			if (np->n_flag & NUPD)
3327				vattr.va_mtime = np->n_mtim;
3328			mtx_unlock(&np->n_mtx);
3329			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3330			goto out;
3331		}
3332	}
3333	mtx_unlock(&np->n_mtx);
3334out:
3335	return (fifo_specops.vop_close(ap));
3336}
3337
3338/*
3339 * Just call ncl_writebp() with the force argument set to 1.
3340 *
3341 * NOTE: B_DONE may or may not be set in a_bp on call.
3342 */
3343static int
3344nfs_bwrite(struct buf *bp)
3345{
3346
3347	return (ncl_writebp(bp, 1, curthread));
3348}
3349
3350struct buf_ops buf_ops_newnfs = {
3351	.bop_name	=	"buf_ops_nfs",
3352	.bop_write	=	nfs_bwrite,
3353	.bop_strategy	=	bufstrategy,
3354	.bop_sync	=	bufsync,
3355	.bop_bdflush	=	bufbdflush,
3356};
3357
3358static int
3359nfs_getacl(struct vop_getacl_args *ap)
3360{
3361	int error;
3362
3363	if (ap->a_type != ACL_TYPE_NFS4)
3364		return (EOPNOTSUPP);
3365	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3366	    NULL);
3367	if (error > NFSERR_STALE) {
3368		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3369		error = EPERM;
3370	}
3371	return (error);
3372}
3373
3374static int
3375nfs_setacl(struct vop_setacl_args *ap)
3376{
3377	int error;
3378
3379	if (ap->a_type != ACL_TYPE_NFS4)
3380		return (EOPNOTSUPP);
3381	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3382	    NULL);
3383	if (error > NFSERR_STALE) {
3384		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3385		error = EPERM;
3386	}
3387	return (error);
3388}
3389
3390/*
3391 * Return POSIX pathconf information applicable to nfs filesystems.
3392 */
3393static int
3394nfs_pathconf(struct vop_pathconf_args *ap)
3395{
3396	struct nfsv3_pathconf pc;
3397	struct nfsvattr nfsva;
3398	struct vnode *vp = ap->a_vp;
3399	struct thread *td = curthread;
3400	int attrflag, error;
3401
3402	if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3403	    ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3404	    ap->a_name == _PC_NO_TRUNC)) ||
3405	    (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3406		/*
3407		 * Since only the above 4 a_names are returned by the NFSv3
3408		 * Pathconf RPC, there is no point in doing it for others.
3409		 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3410		 * be used for _PC_NFS4_ACL as well.
3411		 */
3412		error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3413		    &attrflag, NULL);
3414		if (attrflag != 0)
3415			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3416			    1);
3417		if (error != 0)
3418			return (error);
3419	} else {
3420		/*
3421		 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3422		 * just fake them.
3423		 */
3424		pc.pc_linkmax = LINK_MAX;
3425		pc.pc_namemax = NFS_MAXNAMLEN;
3426		pc.pc_notrunc = 1;
3427		pc.pc_chownrestricted = 1;
3428		pc.pc_caseinsensitive = 0;
3429		pc.pc_casepreserving = 1;
3430		error = 0;
3431	}
3432	switch (ap->a_name) {
3433	case _PC_LINK_MAX:
3434		*ap->a_retval = pc.pc_linkmax;
3435		break;
3436	case _PC_NAME_MAX:
3437		*ap->a_retval = pc.pc_namemax;
3438		break;
3439	case _PC_PATH_MAX:
3440		*ap->a_retval = PATH_MAX;
3441		break;
3442	case _PC_PIPE_BUF:
3443		*ap->a_retval = PIPE_BUF;
3444		break;
3445	case _PC_CHOWN_RESTRICTED:
3446		*ap->a_retval = pc.pc_chownrestricted;
3447		break;
3448	case _PC_NO_TRUNC:
3449		*ap->a_retval = pc.pc_notrunc;
3450		break;
3451	case _PC_ACL_EXTENDED:
3452		*ap->a_retval = 0;
3453		break;
3454	case _PC_ACL_NFS4:
3455		if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3456		    NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3457			*ap->a_retval = 1;
3458		else
3459			*ap->a_retval = 0;
3460		break;
3461	case _PC_ACL_PATH_MAX:
3462		if (NFS_ISV4(vp))
3463			*ap->a_retval = ACL_MAX_ENTRIES;
3464		else
3465			*ap->a_retval = 3;
3466		break;
3467	case _PC_MAC_PRESENT:
3468		*ap->a_retval = 0;
3469		break;
3470	case _PC_ASYNC_IO:
3471		/* _PC_ASYNC_IO should have been handled by upper layers. */
3472		KASSERT(0, ("_PC_ASYNC_IO should not get here"));
3473		error = EINVAL;
3474		break;
3475	case _PC_PRIO_IO:
3476		*ap->a_retval = 0;
3477		break;
3478	case _PC_SYNC_IO:
3479		*ap->a_retval = 0;
3480		break;
3481	case _PC_ALLOC_SIZE_MIN:
3482		*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3483		break;
3484	case _PC_FILESIZEBITS:
3485		if (NFS_ISV34(vp))
3486			*ap->a_retval = 64;
3487		else
3488			*ap->a_retval = 32;
3489		break;
3490	case _PC_REC_INCR_XFER_SIZE:
3491		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3492		break;
3493	case _PC_REC_MAX_XFER_SIZE:
3494		*ap->a_retval = -1; /* means ``unlimited'' */
3495		break;
3496	case _PC_REC_MIN_XFER_SIZE:
3497		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3498		break;
3499	case _PC_REC_XFER_ALIGN:
3500		*ap->a_retval = PAGE_SIZE;
3501		break;
3502	case _PC_SYMLINK_MAX:
3503		*ap->a_retval = NFS_MAXPATHLEN;
3504		break;
3505
3506	default:
3507		error = EINVAL;
3508		break;
3509	}
3510	return (error);
3511}
3512
3513