nfs_clvnops.c revision 265470
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/10/sys/fs/nfsclient/nfs_clvnops.c 265470 2014-05-06 21:59:48Z rmacklem $");
37
38/*
39 * vnode op calls for Sun NFS version 2, 3 and 4
40 */
41
42#include "opt_kdtrace.h"
43#include "opt_inet.h"
44
45#include <sys/param.h>
46#include <sys/kernel.h>
47#include <sys/systm.h>
48#include <sys/resourcevar.h>
49#include <sys/proc.h>
50#include <sys/mount.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/jail.h>
54#include <sys/malloc.h>
55#include <sys/mbuf.h>
56#include <sys/namei.h>
57#include <sys/socket.h>
58#include <sys/vnode.h>
59#include <sys/dirent.h>
60#include <sys/fcntl.h>
61#include <sys/lockf.h>
62#include <sys/stat.h>
63#include <sys/sysctl.h>
64#include <sys/signalvar.h>
65
66#include <vm/vm.h>
67#include <vm/vm_extern.h>
68#include <vm/vm_object.h>
69
70#include <fs/nfs/nfsport.h>
71#include <fs/nfsclient/nfsnode.h>
72#include <fs/nfsclient/nfsmount.h>
73#include <fs/nfsclient/nfs.h>
74#include <fs/nfsclient/nfs_kdtrace.h>
75
76#include <net/if.h>
77#include <netinet/in.h>
78#include <netinet/in_var.h>
79
80#include <nfs/nfs_lock.h>
81
82#ifdef KDTRACE_HOOKS
83#include <sys/dtrace_bsd.h>
84
85dtrace_nfsclient_accesscache_flush_probe_func_t
86		dtrace_nfscl_accesscache_flush_done_probe;
87uint32_t	nfscl_accesscache_flush_done_id;
88
89dtrace_nfsclient_accesscache_get_probe_func_t
90		dtrace_nfscl_accesscache_get_hit_probe,
91		dtrace_nfscl_accesscache_get_miss_probe;
92uint32_t	nfscl_accesscache_get_hit_id;
93uint32_t	nfscl_accesscache_get_miss_id;
94
95dtrace_nfsclient_accesscache_load_probe_func_t
96		dtrace_nfscl_accesscache_load_done_probe;
97uint32_t	nfscl_accesscache_load_done_id;
98#endif /* !KDTRACE_HOOKS */
99
100/* Defs */
101#define	TRUE	1
102#define	FALSE	0
103
104extern struct nfsstats newnfsstats;
105extern int nfsrv_useacl;
106extern int nfscl_debuglevel;
107MALLOC_DECLARE(M_NEWNFSREQ);
108
109/*
110 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
111 * calls are not in getblk() and brelse() so that they would not be necessary
112 * here.
113 */
114#ifndef B_VMIO
115#define	vfs_busy_pages(bp, f)
116#endif
117
118static vop_read_t	nfsfifo_read;
119static vop_write_t	nfsfifo_write;
120static vop_close_t	nfsfifo_close;
121static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
122		    struct thread *);
123static vop_lookup_t	nfs_lookup;
124static vop_create_t	nfs_create;
125static vop_mknod_t	nfs_mknod;
126static vop_open_t	nfs_open;
127static vop_pathconf_t	nfs_pathconf;
128static vop_close_t	nfs_close;
129static vop_access_t	nfs_access;
130static vop_getattr_t	nfs_getattr;
131static vop_setattr_t	nfs_setattr;
132static vop_read_t	nfs_read;
133static vop_fsync_t	nfs_fsync;
134static vop_remove_t	nfs_remove;
135static vop_link_t	nfs_link;
136static vop_rename_t	nfs_rename;
137static vop_mkdir_t	nfs_mkdir;
138static vop_rmdir_t	nfs_rmdir;
139static vop_symlink_t	nfs_symlink;
140static vop_readdir_t	nfs_readdir;
141static vop_strategy_t	nfs_strategy;
142static vop_lock1_t	nfs_lock1;
143static	int	nfs_lookitup(struct vnode *, char *, int,
144		    struct ucred *, struct thread *, struct nfsnode **);
145static	int	nfs_sillyrename(struct vnode *, struct vnode *,
146		    struct componentname *);
147static vop_access_t	nfsspec_access;
148static vop_readlink_t	nfs_readlink;
149static vop_print_t	nfs_print;
150static vop_advlock_t	nfs_advlock;
151static vop_advlockasync_t nfs_advlockasync;
152static vop_getacl_t nfs_getacl;
153static vop_setacl_t nfs_setacl;
154
155/*
156 * Global vfs data structures for nfs
157 */
158struct vop_vector newnfs_vnodeops = {
159	.vop_default =		&default_vnodeops,
160	.vop_access =		nfs_access,
161	.vop_advlock =		nfs_advlock,
162	.vop_advlockasync =	nfs_advlockasync,
163	.vop_close =		nfs_close,
164	.vop_create =		nfs_create,
165	.vop_fsync =		nfs_fsync,
166	.vop_getattr =		nfs_getattr,
167	.vop_getpages =		ncl_getpages,
168	.vop_putpages =		ncl_putpages,
169	.vop_inactive =		ncl_inactive,
170	.vop_link =		nfs_link,
171	.vop_lock1 = 		nfs_lock1,
172	.vop_lookup =		nfs_lookup,
173	.vop_mkdir =		nfs_mkdir,
174	.vop_mknod =		nfs_mknod,
175	.vop_open =		nfs_open,
176	.vop_pathconf =		nfs_pathconf,
177	.vop_print =		nfs_print,
178	.vop_read =		nfs_read,
179	.vop_readdir =		nfs_readdir,
180	.vop_readlink =		nfs_readlink,
181	.vop_reclaim =		ncl_reclaim,
182	.vop_remove =		nfs_remove,
183	.vop_rename =		nfs_rename,
184	.vop_rmdir =		nfs_rmdir,
185	.vop_setattr =		nfs_setattr,
186	.vop_strategy =		nfs_strategy,
187	.vop_symlink =		nfs_symlink,
188	.vop_write =		ncl_write,
189	.vop_getacl =		nfs_getacl,
190	.vop_setacl =		nfs_setacl,
191};
192
193struct vop_vector newnfs_fifoops = {
194	.vop_default =		&fifo_specops,
195	.vop_access =		nfsspec_access,
196	.vop_close =		nfsfifo_close,
197	.vop_fsync =		nfs_fsync,
198	.vop_getattr =		nfs_getattr,
199	.vop_inactive =		ncl_inactive,
200	.vop_print =		nfs_print,
201	.vop_read =		nfsfifo_read,
202	.vop_reclaim =		ncl_reclaim,
203	.vop_setattr =		nfs_setattr,
204	.vop_write =		nfsfifo_write,
205};
206
207static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
208    struct componentname *cnp, struct vattr *vap);
209static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
210    int namelen, struct ucred *cred, struct thread *td);
211static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
212    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
213    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
214static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
215    struct componentname *scnp, struct sillyrename *sp);
216
217/*
218 * Global variables
219 */
220#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
221
222SYSCTL_DECL(_vfs_nfs);
223
224static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
225SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
226	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
227
228static int	nfs_prime_access_cache = 0;
229SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
230	   &nfs_prime_access_cache, 0,
231	   "Prime NFS ACCESS cache when fetching attributes");
232
233static int	newnfs_commit_on_close = 0;
234SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
235    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
236
237static int	nfs_clean_pages_on_close = 1;
238SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
239	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
240
241int newnfs_directio_enable = 0;
242SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
243	   &newnfs_directio_enable, 0, "Enable NFS directio");
244
245int nfs_keep_dirty_on_error;
246SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
247    &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
248
249/*
250 * This sysctl allows other processes to mmap a file that has been opened
251 * O_DIRECT by a process.  In general, having processes mmap the file while
252 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
253 * this by default to prevent DoS attacks - to prevent a malicious user from
254 * opening up files O_DIRECT preventing other users from mmap'ing these
255 * files.  "Protected" environments where stricter consistency guarantees are
256 * required can disable this knob.  The process that opened the file O_DIRECT
257 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
258 * meaningful.
259 */
260int newnfs_directio_allow_mmap = 1;
261SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
262	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
263
264#if 0
265SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
266	   &newnfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
267
268SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
269	   &newnfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
270#endif
271
272#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
273			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
274			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
275
276/*
277 * SMP Locking Note :
278 * The list of locks after the description of the lock is the ordering
279 * of other locks acquired with the lock held.
280 * np->n_mtx : Protects the fields in the nfsnode.
281       VM Object Lock
282       VI_MTX (acquired indirectly)
283 * nmp->nm_mtx : Protects the fields in the nfsmount.
284       rep->r_mtx
285 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
286 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
287       nmp->nm_mtx
288       rep->r_mtx
289 * rep->r_mtx : Protects the fields in an nfsreq.
290 */
291
292static int
293nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
294    struct ucred *cred, u_int32_t *retmode)
295{
296	int error = 0, attrflag, i, lrupos;
297	u_int32_t rmode;
298	struct nfsnode *np = VTONFS(vp);
299	struct nfsvattr nfsva;
300
301	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
302	    &rmode, NULL);
303	if (attrflag)
304		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
305	if (!error) {
306		lrupos = 0;
307		mtx_lock(&np->n_mtx);
308		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
309			if (np->n_accesscache[i].uid == cred->cr_uid) {
310				np->n_accesscache[i].mode = rmode;
311				np->n_accesscache[i].stamp = time_second;
312				break;
313			}
314			if (i > 0 && np->n_accesscache[i].stamp <
315			    np->n_accesscache[lrupos].stamp)
316				lrupos = i;
317		}
318		if (i == NFS_ACCESSCACHESIZE) {
319			np->n_accesscache[lrupos].uid = cred->cr_uid;
320			np->n_accesscache[lrupos].mode = rmode;
321			np->n_accesscache[lrupos].stamp = time_second;
322		}
323		mtx_unlock(&np->n_mtx);
324		if (retmode != NULL)
325			*retmode = rmode;
326		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
327	} else if (NFS_ISV4(vp)) {
328		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
329	}
330#ifdef KDTRACE_HOOKS
331	if (error != 0)
332		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
333		    error);
334#endif
335	return (error);
336}
337
338/*
339 * nfs access vnode op.
340 * For nfs version 2, just return ok. File accesses may fail later.
341 * For nfs version 3, use the access rpc to check accessibility. If file modes
342 * are changed on the server, accesses might still fail later.
343 */
344static int
345nfs_access(struct vop_access_args *ap)
346{
347	struct vnode *vp = ap->a_vp;
348	int error = 0, i, gotahit;
349	u_int32_t mode, wmode, rmode;
350	int v34 = NFS_ISV34(vp);
351	struct nfsnode *np = VTONFS(vp);
352
353	/*
354	 * Disallow write attempts on filesystems mounted read-only;
355	 * unless the file is a socket, fifo, or a block or character
356	 * device resident on the filesystem.
357	 */
358	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
359	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
360	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
361		switch (vp->v_type) {
362		case VREG:
363		case VDIR:
364		case VLNK:
365			return (EROFS);
366		default:
367			break;
368		}
369	}
370	/*
371	 * For nfs v3 or v4, check to see if we have done this recently, and if
372	 * so return our cached result instead of making an ACCESS call.
373	 * If not, do an access rpc, otherwise you are stuck emulating
374	 * ufs_access() locally using the vattr. This may not be correct,
375	 * since the server may apply other access criteria such as
376	 * client uid-->server uid mapping that we do not know about.
377	 */
378	if (v34) {
379		if (ap->a_accmode & VREAD)
380			mode = NFSACCESS_READ;
381		else
382			mode = 0;
383		if (vp->v_type != VDIR) {
384			if (ap->a_accmode & VWRITE)
385				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
386			if (ap->a_accmode & VAPPEND)
387				mode |= NFSACCESS_EXTEND;
388			if (ap->a_accmode & VEXEC)
389				mode |= NFSACCESS_EXECUTE;
390			if (ap->a_accmode & VDELETE)
391				mode |= NFSACCESS_DELETE;
392		} else {
393			if (ap->a_accmode & VWRITE)
394				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
395			if (ap->a_accmode & VAPPEND)
396				mode |= NFSACCESS_EXTEND;
397			if (ap->a_accmode & VEXEC)
398				mode |= NFSACCESS_LOOKUP;
399			if (ap->a_accmode & VDELETE)
400				mode |= NFSACCESS_DELETE;
401			if (ap->a_accmode & VDELETE_CHILD)
402				mode |= NFSACCESS_MODIFY;
403		}
404		/* XXX safety belt, only make blanket request if caching */
405		if (nfsaccess_cache_timeout > 0) {
406			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
407				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
408				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
409		} else {
410			wmode = mode;
411		}
412
413		/*
414		 * Does our cached result allow us to give a definite yes to
415		 * this request?
416		 */
417		gotahit = 0;
418		mtx_lock(&np->n_mtx);
419		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
420			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
421			    if (time_second < (np->n_accesscache[i].stamp
422				+ nfsaccess_cache_timeout) &&
423				(np->n_accesscache[i].mode & mode) == mode) {
424				NFSINCRGLOBAL(newnfsstats.accesscache_hits);
425				gotahit = 1;
426			    }
427			    break;
428			}
429		}
430		mtx_unlock(&np->n_mtx);
431#ifdef KDTRACE_HOOKS
432		if (gotahit != 0)
433			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
434			    ap->a_cred->cr_uid, mode);
435		else
436			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
437			    ap->a_cred->cr_uid, mode);
438#endif
439		if (gotahit == 0) {
440			/*
441			 * Either a no, or a don't know.  Go to the wire.
442			 */
443			NFSINCRGLOBAL(newnfsstats.accesscache_misses);
444		        error = nfs34_access_otw(vp, wmode, ap->a_td,
445			    ap->a_cred, &rmode);
446			if (!error &&
447			    (rmode & mode) != mode)
448				error = EACCES;
449		}
450		return (error);
451	} else {
452		if ((error = nfsspec_access(ap)) != 0) {
453			return (error);
454		}
455		/*
456		 * Attempt to prevent a mapped root from accessing a file
457		 * which it shouldn't.  We try to read a byte from the file
458		 * if the user is root and the file is not zero length.
459		 * After calling nfsspec_access, we should have the correct
460		 * file size cached.
461		 */
462		mtx_lock(&np->n_mtx);
463		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
464		    && VTONFS(vp)->n_size > 0) {
465			struct iovec aiov;
466			struct uio auio;
467			char buf[1];
468
469			mtx_unlock(&np->n_mtx);
470			aiov.iov_base = buf;
471			aiov.iov_len = 1;
472			auio.uio_iov = &aiov;
473			auio.uio_iovcnt = 1;
474			auio.uio_offset = 0;
475			auio.uio_resid = 1;
476			auio.uio_segflg = UIO_SYSSPACE;
477			auio.uio_rw = UIO_READ;
478			auio.uio_td = ap->a_td;
479
480			if (vp->v_type == VREG)
481				error = ncl_readrpc(vp, &auio, ap->a_cred);
482			else if (vp->v_type == VDIR) {
483				char* bp;
484				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
485				aiov.iov_base = bp;
486				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
487				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
488				    ap->a_td);
489				free(bp, M_TEMP);
490			} else if (vp->v_type == VLNK)
491				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
492			else
493				error = EACCES;
494		} else
495			mtx_unlock(&np->n_mtx);
496		return (error);
497	}
498}
499
500
501/*
502 * nfs open vnode op
503 * Check to see if the type is ok
504 * and that deletion is not in progress.
505 * For paged in text files, you will need to flush the page cache
506 * if consistency is lost.
507 */
508/* ARGSUSED */
509static int
510nfs_open(struct vop_open_args *ap)
511{
512	struct vnode *vp = ap->a_vp;
513	struct nfsnode *np = VTONFS(vp);
514	struct vattr vattr;
515	int error;
516	int fmode = ap->a_mode;
517	struct ucred *cred;
518
519	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
520		return (EOPNOTSUPP);
521
522	/*
523	 * For NFSv4, we need to do the Open Op before cache validation,
524	 * so that we conform to RFC3530 Sec. 9.3.1.
525	 */
526	if (NFS_ISV4(vp)) {
527		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
528		if (error) {
529			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
530			    (gid_t)0);
531			return (error);
532		}
533	}
534
535	/*
536	 * Now, if this Open will be doing reading, re-validate/flush the
537	 * cache, so that Close/Open coherency is maintained.
538	 */
539	mtx_lock(&np->n_mtx);
540	if (np->n_flag & NMODIFIED) {
541		mtx_unlock(&np->n_mtx);
542		error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
543		if (error == EINTR || error == EIO) {
544			if (NFS_ISV4(vp))
545				(void) nfsrpc_close(vp, 0, ap->a_td);
546			return (error);
547		}
548		mtx_lock(&np->n_mtx);
549		np->n_attrstamp = 0;
550		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
551		if (vp->v_type == VDIR)
552			np->n_direofoffset = 0;
553		mtx_unlock(&np->n_mtx);
554		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
555		if (error) {
556			if (NFS_ISV4(vp))
557				(void) nfsrpc_close(vp, 0, ap->a_td);
558			return (error);
559		}
560		mtx_lock(&np->n_mtx);
561		np->n_mtime = vattr.va_mtime;
562		if (NFS_ISV4(vp))
563			np->n_change = vattr.va_filerev;
564	} else {
565		mtx_unlock(&np->n_mtx);
566		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
567		if (error) {
568			if (NFS_ISV4(vp))
569				(void) nfsrpc_close(vp, 0, ap->a_td);
570			return (error);
571		}
572		mtx_lock(&np->n_mtx);
573		if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
574		    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
575			if (vp->v_type == VDIR)
576				np->n_direofoffset = 0;
577			mtx_unlock(&np->n_mtx);
578			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
579			if (error == EINTR || error == EIO) {
580				if (NFS_ISV4(vp))
581					(void) nfsrpc_close(vp, 0, ap->a_td);
582				return (error);
583			}
584			mtx_lock(&np->n_mtx);
585			np->n_mtime = vattr.va_mtime;
586			if (NFS_ISV4(vp))
587				np->n_change = vattr.va_filerev;
588		}
589	}
590
591	/*
592	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
593	 */
594	if (newnfs_directio_enable && (fmode & O_DIRECT) &&
595	    (vp->v_type == VREG)) {
596		if (np->n_directio_opens == 0) {
597			mtx_unlock(&np->n_mtx);
598			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
599			if (error) {
600				if (NFS_ISV4(vp))
601					(void) nfsrpc_close(vp, 0, ap->a_td);
602				return (error);
603			}
604			mtx_lock(&np->n_mtx);
605			np->n_flag |= NNONCACHE;
606		}
607		np->n_directio_opens++;
608	}
609
610	/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
611	if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
612		np->n_flag |= NWRITEOPENED;
613
614	/*
615	 * If this is an open for writing, capture a reference to the
616	 * credentials, so they can be used by ncl_putpages(). Using
617	 * these write credentials is preferable to the credentials of
618	 * whatever thread happens to be doing the VOP_PUTPAGES() since
619	 * the write RPCs are less likely to fail with EACCES.
620	 */
621	if ((fmode & FWRITE) != 0) {
622		cred = np->n_writecred;
623		np->n_writecred = crhold(ap->a_cred);
624	} else
625		cred = NULL;
626	mtx_unlock(&np->n_mtx);
627
628	if (cred != NULL)
629		crfree(cred);
630	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
631	return (0);
632}
633
634/*
635 * nfs close vnode op
636 * What an NFS client should do upon close after writing is a debatable issue.
637 * Most NFS clients push delayed writes to the server upon close, basically for
638 * two reasons:
639 * 1 - So that any write errors may be reported back to the client process
640 *     doing the close system call. By far the two most likely errors are
641 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
642 * 2 - To put a worst case upper bound on cache inconsistency between
643 *     multiple clients for the file.
644 * There is also a consistency problem for Version 2 of the protocol w.r.t.
645 * not being able to tell if other clients are writing a file concurrently,
646 * since there is no way of knowing if the changed modify time in the reply
647 * is only due to the write for this client.
648 * (NFS Version 3 provides weak cache consistency data in the reply that
649 *  should be sufficient to detect and handle this case.)
650 *
651 * The current code does the following:
652 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
653 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
654 *                     or commit them (this satisfies 1 and 2 except for the
655 *                     case where the server crashes after this close but
656 *                     before the commit RPC, which is felt to be "good
657 *                     enough". Changing the last argument to ncl_flush() to
658 *                     a 1 would force a commit operation, if it is felt a
659 *                     commit is necessary now.
660 * for NFS Version 4 - flush the dirty buffers and commit them, if
661 *		       nfscl_mustflush() says this is necessary.
662 *                     It is necessary if there is no write delegation held,
663 *                     in order to satisfy open/close coherency.
664 *                     If the file isn't cached on local stable storage,
665 *                     it may be necessary in order to detect "out of space"
666 *                     errors from the server, if the write delegation
667 *                     issued by the server doesn't allow the file to grow.
668 */
669/* ARGSUSED */
670static int
671nfs_close(struct vop_close_args *ap)
672{
673	struct vnode *vp = ap->a_vp;
674	struct nfsnode *np = VTONFS(vp);
675	struct nfsvattr nfsva;
676	struct ucred *cred;
677	int error = 0, ret, localcred = 0;
678	int fmode = ap->a_fflag;
679
680	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
681		return (0);
682	/*
683	 * During shutdown, a_cred isn't valid, so just use root.
684	 */
685	if (ap->a_cred == NOCRED) {
686		cred = newnfs_getcred();
687		localcred = 1;
688	} else {
689		cred = ap->a_cred;
690	}
691	if (vp->v_type == VREG) {
692	    /*
693	     * Examine and clean dirty pages, regardless of NMODIFIED.
694	     * This closes a major hole in close-to-open consistency.
695	     * We want to push out all dirty pages (and buffers) on
696	     * close, regardless of whether they were dirtied by
697	     * mmap'ed writes or via write().
698	     */
699	    if (nfs_clean_pages_on_close && vp->v_object) {
700		VM_OBJECT_WLOCK(vp->v_object);
701		vm_object_page_clean(vp->v_object, 0, 0, 0);
702		VM_OBJECT_WUNLOCK(vp->v_object);
703	    }
704	    mtx_lock(&np->n_mtx);
705	    if (np->n_flag & NMODIFIED) {
706		mtx_unlock(&np->n_mtx);
707		if (NFS_ISV3(vp)) {
708		    /*
709		     * Under NFSv3 we have dirty buffers to dispose of.  We
710		     * must flush them to the NFS server.  We have the option
711		     * of waiting all the way through the commit rpc or just
712		     * waiting for the initial write.  The default is to only
713		     * wait through the initial write so the data is in the
714		     * server's cache, which is roughly similar to the state
715		     * a standard disk subsystem leaves the file in on close().
716		     *
717		     * We cannot clear the NMODIFIED bit in np->n_flag due to
718		     * potential races with other processes, and certainly
719		     * cannot clear it if we don't commit.
720		     * These races occur when there is no longer the old
721		     * traditional vnode locking implemented for Vnode Ops.
722		     */
723		    int cm = newnfs_commit_on_close ? 1 : 0;
724		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
725		    /* np->n_flag &= ~NMODIFIED; */
726		} else if (NFS_ISV4(vp)) {
727			if (nfscl_mustflush(vp) != 0) {
728				int cm = newnfs_commit_on_close ? 1 : 0;
729				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
730				    cm, 0);
731				/*
732				 * as above w.r.t races when clearing
733				 * NMODIFIED.
734				 * np->n_flag &= ~NMODIFIED;
735				 */
736			}
737		} else
738		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
739		mtx_lock(&np->n_mtx);
740	    }
741 	    /*
742 	     * Invalidate the attribute cache in all cases.
743 	     * An open is going to fetch fresh attrs any way, other procs
744 	     * on this node that have file open will be forced to do an
745 	     * otw attr fetch, but this is safe.
746	     * --> A user found that their RPC count dropped by 20% when
747	     *     this was commented out and I can't see any requirement
748	     *     for it, so I've disabled it when negative lookups are
749	     *     enabled. (What does this have to do with negative lookup
750	     *     caching? Well nothing, except it was reported by the
751	     *     same user that needed negative lookup caching and I wanted
752	     *     there to be a way to disable it to see if it
753	     *     is the cause of some caching/coherency issue that might
754	     *     crop up.)
755 	     */
756	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
757		    np->n_attrstamp = 0;
758		    KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
759	    }
760	    if (np->n_flag & NWRITEERR) {
761		np->n_flag &= ~NWRITEERR;
762		error = np->n_error;
763	    }
764	    mtx_unlock(&np->n_mtx);
765	}
766
767	if (NFS_ISV4(vp)) {
768		/*
769		 * Get attributes so "change" is up to date.
770		 */
771		if (error == 0 && nfscl_mustflush(vp) != 0 &&
772		    vp->v_type == VREG &&
773		    (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
774			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
775			    NULL);
776			if (!ret) {
777				np->n_change = nfsva.na_filerev;
778				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
779				    NULL, 0, 0);
780			}
781		}
782
783		/*
784		 * and do the close.
785		 */
786		ret = nfsrpc_close(vp, 0, ap->a_td);
787		if (!error && ret)
788			error = ret;
789		if (error)
790			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
791			    (gid_t)0);
792	}
793	if (newnfs_directio_enable)
794		KASSERT((np->n_directio_asyncwr == 0),
795			("nfs_close: dirty unflushed (%d) directio buffers\n",
796			 np->n_directio_asyncwr));
797	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
798		mtx_lock(&np->n_mtx);
799		KASSERT((np->n_directio_opens > 0),
800			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
801		np->n_directio_opens--;
802		if (np->n_directio_opens == 0)
803			np->n_flag &= ~NNONCACHE;
804		mtx_unlock(&np->n_mtx);
805	}
806	if (localcred)
807		NFSFREECRED(cred);
808	return (error);
809}
810
811/*
812 * nfs getattr call from vfs.
813 */
814static int
815nfs_getattr(struct vop_getattr_args *ap)
816{
817	struct vnode *vp = ap->a_vp;
818	struct thread *td = curthread;	/* XXX */
819	struct nfsnode *np = VTONFS(vp);
820	int error = 0;
821	struct nfsvattr nfsva;
822	struct vattr *vap = ap->a_vap;
823	struct vattr vattr;
824
825	/*
826	 * Update local times for special files.
827	 */
828	mtx_lock(&np->n_mtx);
829	if (np->n_flag & (NACC | NUPD))
830		np->n_flag |= NCHG;
831	mtx_unlock(&np->n_mtx);
832	/*
833	 * First look in the cache.
834	 */
835	if (ncl_getattrcache(vp, &vattr) == 0) {
836		vap->va_type = vattr.va_type;
837		vap->va_mode = vattr.va_mode;
838		vap->va_nlink = vattr.va_nlink;
839		vap->va_uid = vattr.va_uid;
840		vap->va_gid = vattr.va_gid;
841		vap->va_fsid = vattr.va_fsid;
842		vap->va_fileid = vattr.va_fileid;
843		vap->va_size = vattr.va_size;
844		vap->va_blocksize = vattr.va_blocksize;
845		vap->va_atime = vattr.va_atime;
846		vap->va_mtime = vattr.va_mtime;
847		vap->va_ctime = vattr.va_ctime;
848		vap->va_gen = vattr.va_gen;
849		vap->va_flags = vattr.va_flags;
850		vap->va_rdev = vattr.va_rdev;
851		vap->va_bytes = vattr.va_bytes;
852		vap->va_filerev = vattr.va_filerev;
853		/*
854		 * Get the local modify time for the case of a write
855		 * delegation.
856		 */
857		nfscl_deleggetmodtime(vp, &vap->va_mtime);
858		return (0);
859	}
860
861	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
862	    nfsaccess_cache_timeout > 0) {
863		NFSINCRGLOBAL(newnfsstats.accesscache_misses);
864		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
865		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
866			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
867			return (0);
868		}
869	}
870	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
871	if (!error)
872		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
873	if (!error) {
874		/*
875		 * Get the local modify time for the case of a write
876		 * delegation.
877		 */
878		nfscl_deleggetmodtime(vp, &vap->va_mtime);
879	} else if (NFS_ISV4(vp)) {
880		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
881	}
882	return (error);
883}
884
885/*
886 * nfs setattr call.
887 */
888static int
889nfs_setattr(struct vop_setattr_args *ap)
890{
891	struct vnode *vp = ap->a_vp;
892	struct nfsnode *np = VTONFS(vp);
893	struct thread *td = curthread;	/* XXX */
894	struct vattr *vap = ap->a_vap;
895	int error = 0;
896	u_quad_t tsize;
897
898#ifndef nolint
899	tsize = (u_quad_t)0;
900#endif
901
902	/*
903	 * Setting of flags and marking of atimes are not supported.
904	 */
905	if (vap->va_flags != VNOVAL)
906		return (EOPNOTSUPP);
907
908	/*
909	 * Disallow write attempts if the filesystem is mounted read-only.
910	 */
911  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
912	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
913	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
914	    (vp->v_mount->mnt_flag & MNT_RDONLY))
915		return (EROFS);
916	if (vap->va_size != VNOVAL) {
917 		switch (vp->v_type) {
918 		case VDIR:
919 			return (EISDIR);
920 		case VCHR:
921 		case VBLK:
922 		case VSOCK:
923 		case VFIFO:
924			if (vap->va_mtime.tv_sec == VNOVAL &&
925			    vap->va_atime.tv_sec == VNOVAL &&
926			    vap->va_mode == (mode_t)VNOVAL &&
927			    vap->va_uid == (uid_t)VNOVAL &&
928			    vap->va_gid == (gid_t)VNOVAL)
929				return (0);
930 			vap->va_size = VNOVAL;
931 			break;
932 		default:
933			/*
934			 * Disallow write attempts if the filesystem is
935			 * mounted read-only.
936			 */
937			if (vp->v_mount->mnt_flag & MNT_RDONLY)
938				return (EROFS);
939			/*
940			 *  We run vnode_pager_setsize() early (why?),
941			 * we must set np->n_size now to avoid vinvalbuf
942			 * V_SAVE races that might setsize a lower
943			 * value.
944			 */
945			mtx_lock(&np->n_mtx);
946			tsize = np->n_size;
947			mtx_unlock(&np->n_mtx);
948			error = ncl_meta_setsize(vp, ap->a_cred, td,
949			    vap->va_size);
950			mtx_lock(&np->n_mtx);
951 			if (np->n_flag & NMODIFIED) {
952			    tsize = np->n_size;
953			    mtx_unlock(&np->n_mtx);
954 			    if (vap->va_size == 0)
955 				error = ncl_vinvalbuf(vp, 0, td, 1);
956 			    else
957 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
958 			    if (error) {
959				vnode_pager_setsize(vp, tsize);
960				return (error);
961			    }
962			    /*
963			     * Call nfscl_delegmodtime() to set the modify time
964			     * locally, as required.
965			     */
966			    nfscl_delegmodtime(vp);
967 			} else
968			    mtx_unlock(&np->n_mtx);
969			/*
970			 * np->n_size has already been set to vap->va_size
971			 * in ncl_meta_setsize(). We must set it again since
972			 * nfs_loadattrcache() could be called through
973			 * ncl_meta_setsize() and could modify np->n_size.
974			 */
975			mtx_lock(&np->n_mtx);
976 			np->n_vattr.na_size = np->n_size = vap->va_size;
977			mtx_unlock(&np->n_mtx);
978  		};
979  	} else {
980		mtx_lock(&np->n_mtx);
981		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
982		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
983			mtx_unlock(&np->n_mtx);
984			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
985			    (error == EINTR || error == EIO))
986				return (error);
987		} else
988			mtx_unlock(&np->n_mtx);
989	}
990	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
991	if (error && vap->va_size != VNOVAL) {
992		mtx_lock(&np->n_mtx);
993		np->n_size = np->n_vattr.na_size = tsize;
994		vnode_pager_setsize(vp, tsize);
995		mtx_unlock(&np->n_mtx);
996	}
997	return (error);
998}
999
1000/*
1001 * Do an nfs setattr rpc.
1002 */
1003static int
1004nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
1005    struct thread *td)
1006{
1007	struct nfsnode *np = VTONFS(vp);
1008	int error, ret, attrflag, i;
1009	struct nfsvattr nfsva;
1010
1011	if (NFS_ISV34(vp)) {
1012		mtx_lock(&np->n_mtx);
1013		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
1014			np->n_accesscache[i].stamp = 0;
1015		np->n_flag |= NDELEGMOD;
1016		mtx_unlock(&np->n_mtx);
1017		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
1018	}
1019	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1020	    NULL);
1021	if (attrflag) {
1022		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1023		if (ret && !error)
1024			error = ret;
1025	}
1026	if (error && NFS_ISV4(vp))
1027		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1028	return (error);
1029}
1030
1031/*
1032 * nfs lookup call, one step at a time...
1033 * First look in cache
1034 * If not found, unlock the directory nfsnode and do the rpc
1035 */
1036static int
1037nfs_lookup(struct vop_lookup_args *ap)
1038{
1039	struct componentname *cnp = ap->a_cnp;
1040	struct vnode *dvp = ap->a_dvp;
1041	struct vnode **vpp = ap->a_vpp;
1042	struct mount *mp = dvp->v_mount;
1043	int flags = cnp->cn_flags;
1044	struct vnode *newvp;
1045	struct nfsmount *nmp;
1046	struct nfsnode *np, *newnp;
1047	int error = 0, attrflag, dattrflag, ltype, ncticks;
1048	struct thread *td = cnp->cn_thread;
1049	struct nfsfh *nfhp;
1050	struct nfsvattr dnfsva, nfsva;
1051	struct vattr vattr;
1052	struct timespec nctime;
1053
1054	*vpp = NULLVP;
1055	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1056	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1057		return (EROFS);
1058	if (dvp->v_type != VDIR)
1059		return (ENOTDIR);
1060	nmp = VFSTONFS(mp);
1061	np = VTONFS(dvp);
1062
1063	/* For NFSv4, wait until any remove is done. */
1064	mtx_lock(&np->n_mtx);
1065	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1066		np->n_flag |= NREMOVEWANT;
1067		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1068	}
1069	mtx_unlock(&np->n_mtx);
1070
1071	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1072		return (error);
1073	error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1074	if (error > 0 && error != ENOENT)
1075		return (error);
1076	if (error == -1) {
1077		/*
1078		 * Lookups of "." are special and always return the
1079		 * current directory.  cache_lookup() already handles
1080		 * associated locking bookkeeping, etc.
1081		 */
1082		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1083			/* XXX: Is this really correct? */
1084			if (cnp->cn_nameiop != LOOKUP &&
1085			    (flags & ISLASTCN))
1086				cnp->cn_flags |= SAVENAME;
1087			return (0);
1088		}
1089
1090		/*
1091		 * We only accept a positive hit in the cache if the
1092		 * change time of the file matches our cached copy.
1093		 * Otherwise, we discard the cache entry and fallback
1094		 * to doing a lookup RPC.  We also only trust cache
1095		 * entries for less than nm_nametimeo seconds.
1096		 *
1097		 * To better handle stale file handles and attributes,
1098		 * clear the attribute cache of this node if it is a
1099		 * leaf component, part of an open() call, and not
1100		 * locally modified before fetching the attributes.
1101		 * This should allow stale file handles to be detected
1102		 * here where we can fall back to a LOOKUP RPC to
1103		 * recover rather than having nfs_open() detect the
1104		 * stale file handle and failing open(2) with ESTALE.
1105		 */
1106		newvp = *vpp;
1107		newnp = VTONFS(newvp);
1108		if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1109		    (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1110		    !(newnp->n_flag & NMODIFIED)) {
1111			mtx_lock(&newnp->n_mtx);
1112			newnp->n_attrstamp = 0;
1113			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1114			mtx_unlock(&newnp->n_mtx);
1115		}
1116		if (nfscl_nodeleg(newvp, 0) == 0 ||
1117		    ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1118		    VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1119		    timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1120			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1121			if (cnp->cn_nameiop != LOOKUP &&
1122			    (flags & ISLASTCN))
1123				cnp->cn_flags |= SAVENAME;
1124			return (0);
1125		}
1126		cache_purge(newvp);
1127		if (dvp != newvp)
1128			vput(newvp);
1129		else
1130			vrele(newvp);
1131		*vpp = NULLVP;
1132	} else if (error == ENOENT) {
1133		if (dvp->v_iflag & VI_DOOMED)
1134			return (ENOENT);
1135		/*
1136		 * We only accept a negative hit in the cache if the
1137		 * modification time of the parent directory matches
1138		 * the cached copy in the name cache entry.
1139		 * Otherwise, we discard all of the negative cache
1140		 * entries for this directory.  We also only trust
1141		 * negative cache entries for up to nm_negnametimeo
1142		 * seconds.
1143		 */
1144		if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1145		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1146		    timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1147			NFSINCRGLOBAL(newnfsstats.lookupcache_hits);
1148			return (ENOENT);
1149		}
1150		cache_purge_negative(dvp);
1151	}
1152
1153	error = 0;
1154	newvp = NULLVP;
1155	NFSINCRGLOBAL(newnfsstats.lookupcache_misses);
1156	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1157	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1158	    NULL);
1159	if (dattrflag)
1160		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1161	if (error) {
1162		if (newvp != NULLVP) {
1163			vput(newvp);
1164			*vpp = NULLVP;
1165		}
1166
1167		if (error != ENOENT) {
1168			if (NFS_ISV4(dvp))
1169				error = nfscl_maperr(td, error, (uid_t)0,
1170				    (gid_t)0);
1171			return (error);
1172		}
1173
1174		/* The requested file was not found. */
1175		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1176		    (flags & ISLASTCN)) {
1177			/*
1178			 * XXX: UFS does a full VOP_ACCESS(dvp,
1179			 * VWRITE) here instead of just checking
1180			 * MNT_RDONLY.
1181			 */
1182			if (mp->mnt_flag & MNT_RDONLY)
1183				return (EROFS);
1184			cnp->cn_flags |= SAVENAME;
1185			return (EJUSTRETURN);
1186		}
1187
1188		if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE &&
1189		    dattrflag) {
1190			/*
1191			 * Cache the modification time of the parent
1192			 * directory from the post-op attributes in
1193			 * the name cache entry.  The negative cache
1194			 * entry will be ignored once the directory
1195			 * has changed.  Don't bother adding the entry
1196			 * if the directory has already changed.
1197			 */
1198			mtx_lock(&np->n_mtx);
1199			if (timespeccmp(&np->n_vattr.na_mtime,
1200			    &dnfsva.na_mtime, ==)) {
1201				mtx_unlock(&np->n_mtx);
1202				cache_enter_time(dvp, NULL, cnp,
1203				    &dnfsva.na_mtime, NULL);
1204			} else
1205				mtx_unlock(&np->n_mtx);
1206		}
1207		return (ENOENT);
1208	}
1209
1210	/*
1211	 * Handle RENAME case...
1212	 */
1213	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1214		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1215			FREE((caddr_t)nfhp, M_NFSFH);
1216			return (EISDIR);
1217		}
1218		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1219		    LK_EXCLUSIVE);
1220		if (error)
1221			return (error);
1222		newvp = NFSTOV(np);
1223		if (attrflag)
1224			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1225			    0, 1);
1226		*vpp = newvp;
1227		cnp->cn_flags |= SAVENAME;
1228		return (0);
1229	}
1230
1231	if (flags & ISDOTDOT) {
1232		ltype = NFSVOPISLOCKED(dvp);
1233		error = vfs_busy(mp, MBF_NOWAIT);
1234		if (error != 0) {
1235			vfs_ref(mp);
1236			NFSVOPUNLOCK(dvp, 0);
1237			error = vfs_busy(mp, 0);
1238			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1239			vfs_rel(mp);
1240			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1241				vfs_unbusy(mp);
1242				error = ENOENT;
1243			}
1244			if (error != 0)
1245				return (error);
1246		}
1247		NFSVOPUNLOCK(dvp, 0);
1248		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1249		    cnp->cn_lkflags);
1250		if (error == 0)
1251			newvp = NFSTOV(np);
1252		vfs_unbusy(mp);
1253		if (newvp != dvp)
1254			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1255		if (dvp->v_iflag & VI_DOOMED) {
1256			if (error == 0) {
1257				if (newvp == dvp)
1258					vrele(newvp);
1259				else
1260					vput(newvp);
1261			}
1262			error = ENOENT;
1263		}
1264		if (error != 0)
1265			return (error);
1266		if (attrflag)
1267			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1268			    0, 1);
1269	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1270		FREE((caddr_t)nfhp, M_NFSFH);
1271		VREF(dvp);
1272		newvp = dvp;
1273		if (attrflag)
1274			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1275			    0, 1);
1276	} else {
1277		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1278		    cnp->cn_lkflags);
1279		if (error)
1280			return (error);
1281		newvp = NFSTOV(np);
1282		if (attrflag)
1283			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1284			    0, 1);
1285		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1286		    !(np->n_flag & NMODIFIED)) {
1287			/*
1288			 * Flush the attribute cache when opening a
1289			 * leaf node to ensure that fresh attributes
1290			 * are fetched in nfs_open() since we did not
1291			 * fetch attributes from the LOOKUP reply.
1292			 */
1293			mtx_lock(&np->n_mtx);
1294			np->n_attrstamp = 0;
1295			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1296			mtx_unlock(&np->n_mtx);
1297		}
1298	}
1299	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1300		cnp->cn_flags |= SAVENAME;
1301	if ((cnp->cn_flags & MAKEENTRY) &&
1302	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1303	    attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1304		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1305		    newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1306	*vpp = newvp;
1307	return (0);
1308}
1309
1310/*
1311 * nfs read call.
1312 * Just call ncl_bioread() to do the work.
1313 */
1314static int
1315nfs_read(struct vop_read_args *ap)
1316{
1317	struct vnode *vp = ap->a_vp;
1318
1319	switch (vp->v_type) {
1320	case VREG:
1321		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1322	case VDIR:
1323		return (EISDIR);
1324	default:
1325		return (EOPNOTSUPP);
1326	}
1327}
1328
1329/*
1330 * nfs readlink call
1331 */
1332static int
1333nfs_readlink(struct vop_readlink_args *ap)
1334{
1335	struct vnode *vp = ap->a_vp;
1336
1337	if (vp->v_type != VLNK)
1338		return (EINVAL);
1339	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1340}
1341
1342/*
1343 * Do a readlink rpc.
1344 * Called by ncl_doio() from below the buffer cache.
1345 */
1346int
1347ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1348{
1349	int error, ret, attrflag;
1350	struct nfsvattr nfsva;
1351
1352	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1353	    &attrflag, NULL);
1354	if (attrflag) {
1355		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1356		if (ret && !error)
1357			error = ret;
1358	}
1359	if (error && NFS_ISV4(vp))
1360		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1361	return (error);
1362}
1363
1364/*
1365 * nfs read rpc call
1366 * Ditto above
1367 */
1368int
1369ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1370{
1371	int error, ret, attrflag;
1372	struct nfsvattr nfsva;
1373	struct nfsmount *nmp;
1374
1375	nmp = VFSTONFS(vnode_mount(vp));
1376	error = EIO;
1377	attrflag = 0;
1378	if (NFSHASPNFS(nmp))
1379		error = nfscl_doiods(vp, uiop, NULL, NULL,
1380		    NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td);
1381	NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1382	if (error != 0)
1383		error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1384		    &attrflag, NULL);
1385	if (attrflag) {
1386		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1387		if (ret && !error)
1388			error = ret;
1389	}
1390	if (error && NFS_ISV4(vp))
1391		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1392	return (error);
1393}
1394
1395/*
1396 * nfs write call
1397 */
1398int
1399ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1400    int *iomode, int *must_commit, int called_from_strategy)
1401{
1402	struct nfsvattr nfsva;
1403	int error, attrflag, ret;
1404	struct nfsmount *nmp;
1405
1406	nmp = VFSTONFS(vnode_mount(vp));
1407	error = EIO;
1408	attrflag = 0;
1409	if (NFSHASPNFS(nmp))
1410		error = nfscl_doiods(vp, uiop, iomode, must_commit,
1411		    NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td);
1412	NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1413	if (error != 0)
1414		error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1415		    uiop->uio_td, &nfsva, &attrflag, NULL,
1416		    called_from_strategy);
1417	if (attrflag) {
1418		if (VTONFS(vp)->n_flag & ND_NFSV4)
1419			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1420			    1);
1421		else
1422			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1423			    1);
1424		if (ret && !error)
1425			error = ret;
1426	}
1427	if (DOINGASYNC(vp))
1428		*iomode = NFSWRITE_FILESYNC;
1429	if (error && NFS_ISV4(vp))
1430		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1431	return (error);
1432}
1433
1434/*
1435 * nfs mknod rpc
1436 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1437 * mode set to specify the file type and the size field for rdev.
1438 */
1439static int
1440nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1441    struct vattr *vap)
1442{
1443	struct nfsvattr nfsva, dnfsva;
1444	struct vnode *newvp = NULL;
1445	struct nfsnode *np = NULL, *dnp;
1446	struct nfsfh *nfhp;
1447	struct vattr vattr;
1448	int error = 0, attrflag, dattrflag;
1449	u_int32_t rdev;
1450
1451	if (vap->va_type == VCHR || vap->va_type == VBLK)
1452		rdev = vap->va_rdev;
1453	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1454		rdev = 0xffffffff;
1455	else
1456		return (EOPNOTSUPP);
1457	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1458		return (error);
1459	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1460	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1461	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1462	if (!error) {
1463		if (!nfhp)
1464			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1465			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1466			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1467			    NULL);
1468		if (nfhp)
1469			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1470			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1471	}
1472	if (dattrflag)
1473		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1474	if (!error) {
1475		newvp = NFSTOV(np);
1476		if (attrflag != 0) {
1477			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1478			    0, 1);
1479			if (error != 0)
1480				vput(newvp);
1481		}
1482	}
1483	if (!error) {
1484		*vpp = newvp;
1485	} else if (NFS_ISV4(dvp)) {
1486		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1487		    vap->va_gid);
1488	}
1489	dnp = VTONFS(dvp);
1490	mtx_lock(&dnp->n_mtx);
1491	dnp->n_flag |= NMODIFIED;
1492	if (!dattrflag) {
1493		dnp->n_attrstamp = 0;
1494		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1495	}
1496	mtx_unlock(&dnp->n_mtx);
1497	return (error);
1498}
1499
1500/*
1501 * nfs mknod vop
1502 * just call nfs_mknodrpc() to do the work.
1503 */
1504/* ARGSUSED */
1505static int
1506nfs_mknod(struct vop_mknod_args *ap)
1507{
1508	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1509}
1510
1511static struct mtx nfs_cverf_mtx;
1512MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1513    MTX_DEF);
1514
1515static nfsquad_t
1516nfs_get_cverf(void)
1517{
1518	static nfsquad_t cverf;
1519	nfsquad_t ret;
1520	static int cverf_initialized = 0;
1521
1522	mtx_lock(&nfs_cverf_mtx);
1523	if (cverf_initialized == 0) {
1524		cverf.lval[0] = arc4random();
1525		cverf.lval[1] = arc4random();
1526		cverf_initialized = 1;
1527	} else
1528		cverf.qval++;
1529	ret = cverf;
1530	mtx_unlock(&nfs_cverf_mtx);
1531
1532	return (ret);
1533}
1534
1535/*
1536 * nfs file create call
1537 */
1538static int
1539nfs_create(struct vop_create_args *ap)
1540{
1541	struct vnode *dvp = ap->a_dvp;
1542	struct vattr *vap = ap->a_vap;
1543	struct componentname *cnp = ap->a_cnp;
1544	struct nfsnode *np = NULL, *dnp;
1545	struct vnode *newvp = NULL;
1546	struct nfsmount *nmp;
1547	struct nfsvattr dnfsva, nfsva;
1548	struct nfsfh *nfhp;
1549	nfsquad_t cverf;
1550	int error = 0, attrflag, dattrflag, fmode = 0;
1551	struct vattr vattr;
1552
1553	/*
1554	 * Oops, not for me..
1555	 */
1556	if (vap->va_type == VSOCK)
1557		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1558
1559	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1560		return (error);
1561	if (vap->va_vaflags & VA_EXCLUSIVE)
1562		fmode |= O_EXCL;
1563	dnp = VTONFS(dvp);
1564	nmp = VFSTONFS(vnode_mount(dvp));
1565again:
1566	/* For NFSv4, wait until any remove is done. */
1567	mtx_lock(&dnp->n_mtx);
1568	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1569		dnp->n_flag |= NREMOVEWANT;
1570		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1571	}
1572	mtx_unlock(&dnp->n_mtx);
1573
1574	cverf = nfs_get_cverf();
1575	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1576	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1577	    &nfhp, &attrflag, &dattrflag, NULL);
1578	if (!error) {
1579		if (nfhp == NULL)
1580			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1581			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1582			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1583			    NULL);
1584		if (nfhp != NULL)
1585			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1586			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1587	}
1588	if (dattrflag)
1589		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1590	if (!error) {
1591		newvp = NFSTOV(np);
1592		if (attrflag == 0)
1593			error = nfsrpc_getattr(newvp, cnp->cn_cred,
1594			    cnp->cn_thread, &nfsva, NULL);
1595		if (error == 0)
1596			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1597			    0, 1);
1598	}
1599	if (error) {
1600		if (newvp != NULL) {
1601			vput(newvp);
1602			newvp = NULL;
1603		}
1604		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1605		    error == NFSERR_NOTSUPP) {
1606			fmode &= ~O_EXCL;
1607			goto again;
1608		}
1609	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1610		if (nfscl_checksattr(vap, &nfsva)) {
1611			/*
1612			 * We are normally called with only a partially
1613			 * initialized VAP. Since the NFSv3 spec says that
1614			 * the server may use the file attributes to
1615			 * store the verifier, the spec requires us to do a
1616			 * SETATTR RPC. FreeBSD servers store the verifier in
1617			 * atime, but we can't really assume that all servers
1618			 * will so we ensure that our SETATTR sets both atime
1619			 * and mtime.
1620			 */
1621			if (vap->va_mtime.tv_sec == VNOVAL)
1622				vfs_timestamp(&vap->va_mtime);
1623			if (vap->va_atime.tv_sec == VNOVAL)
1624				vap->va_atime = vap->va_mtime;
1625			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1626			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1627			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1628			    vap->va_gid != (gid_t)VNOVAL)) {
1629				/* try again without setting uid/gid */
1630				vap->va_uid = (uid_t)VNOVAL;
1631				vap->va_gid = (uid_t)VNOVAL;
1632				error = nfsrpc_setattr(newvp, vap, NULL,
1633				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1634				    &attrflag, NULL);
1635			}
1636			if (attrflag)
1637				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1638				    NULL, 0, 1);
1639			if (error != 0)
1640				vput(newvp);
1641		}
1642	}
1643	if (!error) {
1644		if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1645			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1646			    NULL);
1647		*ap->a_vpp = newvp;
1648	} else if (NFS_ISV4(dvp)) {
1649		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1650		    vap->va_gid);
1651	}
1652	mtx_lock(&dnp->n_mtx);
1653	dnp->n_flag |= NMODIFIED;
1654	if (!dattrflag) {
1655		dnp->n_attrstamp = 0;
1656		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1657	}
1658	mtx_unlock(&dnp->n_mtx);
1659	return (error);
1660}
1661
1662/*
1663 * nfs file remove call
1664 * To try and make nfs semantics closer to ufs semantics, a file that has
1665 * other processes using the vnode is renamed instead of removed and then
1666 * removed later on the last close.
1667 * - If v_usecount > 1
1668 *	  If a rename is not already in the works
1669 *	     call nfs_sillyrename() to set it up
1670 *     else
1671 *	  do the remove rpc
1672 */
1673static int
1674nfs_remove(struct vop_remove_args *ap)
1675{
1676	struct vnode *vp = ap->a_vp;
1677	struct vnode *dvp = ap->a_dvp;
1678	struct componentname *cnp = ap->a_cnp;
1679	struct nfsnode *np = VTONFS(vp);
1680	int error = 0;
1681	struct vattr vattr;
1682
1683	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1684	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1685	if (vp->v_type == VDIR)
1686		error = EPERM;
1687	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1688	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1689	    vattr.va_nlink > 1)) {
1690		/*
1691		 * Purge the name cache so that the chance of a lookup for
1692		 * the name succeeding while the remove is in progress is
1693		 * minimized. Without node locking it can still happen, such
1694		 * that an I/O op returns ESTALE, but since you get this if
1695		 * another host removes the file..
1696		 */
1697		cache_purge(vp);
1698		/*
1699		 * throw away biocache buffers, mainly to avoid
1700		 * unnecessary delayed writes later.
1701		 */
1702		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1703		/* Do the rpc */
1704		if (error != EINTR && error != EIO)
1705			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1706			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1707		/*
1708		 * Kludge City: If the first reply to the remove rpc is lost..
1709		 *   the reply to the retransmitted request will be ENOENT
1710		 *   since the file was in fact removed
1711		 *   Therefore, we cheat and return success.
1712		 */
1713		if (error == ENOENT)
1714			error = 0;
1715	} else if (!np->n_sillyrename)
1716		error = nfs_sillyrename(dvp, vp, cnp);
1717	mtx_lock(&np->n_mtx);
1718	np->n_attrstamp = 0;
1719	mtx_unlock(&np->n_mtx);
1720	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1721	return (error);
1722}
1723
1724/*
1725 * nfs file remove rpc called from nfs_inactive
1726 */
1727int
1728ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1729{
1730	/*
1731	 * Make sure that the directory vnode is still valid.
1732	 * XXX we should lock sp->s_dvp here.
1733	 */
1734	if (sp->s_dvp->v_type == VBAD)
1735		return (0);
1736	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1737	    sp->s_cred, NULL));
1738}
1739
1740/*
1741 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1742 */
1743static int
1744nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1745    int namelen, struct ucred *cred, struct thread *td)
1746{
1747	struct nfsvattr dnfsva;
1748	struct nfsnode *dnp = VTONFS(dvp);
1749	int error = 0, dattrflag;
1750
1751	mtx_lock(&dnp->n_mtx);
1752	dnp->n_flag |= NREMOVEINPROG;
1753	mtx_unlock(&dnp->n_mtx);
1754	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1755	    &dattrflag, NULL);
1756	mtx_lock(&dnp->n_mtx);
1757	if ((dnp->n_flag & NREMOVEWANT)) {
1758		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1759		mtx_unlock(&dnp->n_mtx);
1760		wakeup((caddr_t)dnp);
1761	} else {
1762		dnp->n_flag &= ~NREMOVEINPROG;
1763		mtx_unlock(&dnp->n_mtx);
1764	}
1765	if (dattrflag)
1766		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1767	mtx_lock(&dnp->n_mtx);
1768	dnp->n_flag |= NMODIFIED;
1769	if (!dattrflag) {
1770		dnp->n_attrstamp = 0;
1771		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1772	}
1773	mtx_unlock(&dnp->n_mtx);
1774	if (error && NFS_ISV4(dvp))
1775		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1776	return (error);
1777}
1778
1779/*
1780 * nfs file rename call
1781 */
1782static int
1783nfs_rename(struct vop_rename_args *ap)
1784{
1785	struct vnode *fvp = ap->a_fvp;
1786	struct vnode *tvp = ap->a_tvp;
1787	struct vnode *fdvp = ap->a_fdvp;
1788	struct vnode *tdvp = ap->a_tdvp;
1789	struct componentname *tcnp = ap->a_tcnp;
1790	struct componentname *fcnp = ap->a_fcnp;
1791	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1792	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1793	struct nfsv4node *newv4 = NULL;
1794	int error;
1795
1796	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1797	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1798	/* Check for cross-device rename */
1799	if ((fvp->v_mount != tdvp->v_mount) ||
1800	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1801		error = EXDEV;
1802		goto out;
1803	}
1804
1805	if (fvp == tvp) {
1806		ncl_printf("nfs_rename: fvp == tvp (can't happen)\n");
1807		error = 0;
1808		goto out;
1809	}
1810	if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1811		goto out;
1812
1813	/*
1814	 * We have to flush B_DELWRI data prior to renaming
1815	 * the file.  If we don't, the delayed-write buffers
1816	 * can be flushed out later after the file has gone stale
1817	 * under NFSV3.  NFSV2 does not have this problem because
1818	 * ( as far as I can tell ) it flushes dirty buffers more
1819	 * often.
1820	 *
1821	 * Skip the rename operation if the fsync fails, this can happen
1822	 * due to the server's volume being full, when we pushed out data
1823	 * that was written back to our cache earlier. Not checking for
1824	 * this condition can result in potential (silent) data loss.
1825	 */
1826	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1827	NFSVOPUNLOCK(fvp, 0);
1828	if (!error && tvp)
1829		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1830	if (error)
1831		goto out;
1832
1833	/*
1834	 * If the tvp exists and is in use, sillyrename it before doing the
1835	 * rename of the new file over it.
1836	 * XXX Can't sillyrename a directory.
1837	 */
1838	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1839		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1840		vput(tvp);
1841		tvp = NULL;
1842	}
1843
1844	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1845	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1846	    tcnp->cn_thread);
1847
1848	if (error == 0 && NFS_ISV4(tdvp)) {
1849		/*
1850		 * For NFSv4, check to see if it is the same name and
1851		 * replace the name, if it is different.
1852		 */
1853		MALLOC(newv4, struct nfsv4node *,
1854		    sizeof (struct nfsv4node) +
1855		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1856		    M_NFSV4NODE, M_WAITOK);
1857		mtx_lock(&tdnp->n_mtx);
1858		mtx_lock(&fnp->n_mtx);
1859		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1860		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1861		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1862		      tcnp->cn_namelen) ||
1863		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1864		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1865			tdnp->n_fhp->nfh_len))) {
1866#ifdef notdef
1867{ char nnn[100]; int nnnl;
1868nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1869bcopy(tcnp->cn_nameptr, nnn, nnnl);
1870nnn[nnnl] = '\0';
1871printf("ren replace=%s\n",nnn);
1872}
1873#endif
1874			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1875			fnp->n_v4 = newv4;
1876			newv4 = NULL;
1877			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1878			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1879			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1880			    tdnp->n_fhp->nfh_len);
1881			NFSBCOPY(tcnp->cn_nameptr,
1882			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1883		}
1884		mtx_unlock(&tdnp->n_mtx);
1885		mtx_unlock(&fnp->n_mtx);
1886		if (newv4 != NULL)
1887			FREE((caddr_t)newv4, M_NFSV4NODE);
1888	}
1889
1890	if (fvp->v_type == VDIR) {
1891		if (tvp != NULL && tvp->v_type == VDIR)
1892			cache_purge(tdvp);
1893		cache_purge(fdvp);
1894	}
1895
1896out:
1897	if (tdvp == tvp)
1898		vrele(tdvp);
1899	else
1900		vput(tdvp);
1901	if (tvp)
1902		vput(tvp);
1903	vrele(fdvp);
1904	vrele(fvp);
1905	/*
1906	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1907	 */
1908	if (error == ENOENT)
1909		error = 0;
1910	return (error);
1911}
1912
1913/*
1914 * nfs file rename rpc called from nfs_remove() above
1915 */
1916static int
1917nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1918    struct sillyrename *sp)
1919{
1920
1921	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1922	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1923	    scnp->cn_thread));
1924}
1925
1926/*
1927 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1928 */
1929static int
1930nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1931    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1932    int tnamelen, struct ucred *cred, struct thread *td)
1933{
1934	struct nfsvattr fnfsva, tnfsva;
1935	struct nfsnode *fdnp = VTONFS(fdvp);
1936	struct nfsnode *tdnp = VTONFS(tdvp);
1937	int error = 0, fattrflag, tattrflag;
1938
1939	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1940	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1941	    &tattrflag, NULL, NULL);
1942	mtx_lock(&fdnp->n_mtx);
1943	fdnp->n_flag |= NMODIFIED;
1944	if (fattrflag != 0) {
1945		mtx_unlock(&fdnp->n_mtx);
1946		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1947	} else {
1948		fdnp->n_attrstamp = 0;
1949		mtx_unlock(&fdnp->n_mtx);
1950		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1951	}
1952	mtx_lock(&tdnp->n_mtx);
1953	tdnp->n_flag |= NMODIFIED;
1954	if (tattrflag != 0) {
1955		mtx_unlock(&tdnp->n_mtx);
1956		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1957	} else {
1958		tdnp->n_attrstamp = 0;
1959		mtx_unlock(&tdnp->n_mtx);
1960		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1961	}
1962	if (error && NFS_ISV4(fdvp))
1963		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1964	return (error);
1965}
1966
1967/*
1968 * nfs hard link create call
1969 */
1970static int
1971nfs_link(struct vop_link_args *ap)
1972{
1973	struct vnode *vp = ap->a_vp;
1974	struct vnode *tdvp = ap->a_tdvp;
1975	struct componentname *cnp = ap->a_cnp;
1976	struct nfsnode *np, *tdnp;
1977	struct nfsvattr nfsva, dnfsva;
1978	int error = 0, attrflag, dattrflag;
1979
1980	if (vp->v_mount != tdvp->v_mount) {
1981		return (EXDEV);
1982	}
1983
1984	/*
1985	 * Push all writes to the server, so that the attribute cache
1986	 * doesn't get "out of sync" with the server.
1987	 * XXX There should be a better way!
1988	 */
1989	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1990
1991	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1992	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1993	    &dattrflag, NULL);
1994	tdnp = VTONFS(tdvp);
1995	mtx_lock(&tdnp->n_mtx);
1996	tdnp->n_flag |= NMODIFIED;
1997	if (dattrflag != 0) {
1998		mtx_unlock(&tdnp->n_mtx);
1999		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
2000	} else {
2001		tdnp->n_attrstamp = 0;
2002		mtx_unlock(&tdnp->n_mtx);
2003		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
2004	}
2005	if (attrflag)
2006		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2007	else {
2008		np = VTONFS(vp);
2009		mtx_lock(&np->n_mtx);
2010		np->n_attrstamp = 0;
2011		mtx_unlock(&np->n_mtx);
2012		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
2013	}
2014	/*
2015	 * If negative lookup caching is enabled, I might as well
2016	 * add an entry for this node. Not necessary for correctness,
2017	 * but if negative caching is enabled, then the system
2018	 * must care about lookup caching hit rate, so...
2019	 */
2020	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
2021	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2022		cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
2023	}
2024	if (error && NFS_ISV4(vp))
2025		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2026		    (gid_t)0);
2027	return (error);
2028}
2029
2030/*
2031 * nfs symbolic link create call
2032 */
2033static int
2034nfs_symlink(struct vop_symlink_args *ap)
2035{
2036	struct vnode *dvp = ap->a_dvp;
2037	struct vattr *vap = ap->a_vap;
2038	struct componentname *cnp = ap->a_cnp;
2039	struct nfsvattr nfsva, dnfsva;
2040	struct nfsfh *nfhp;
2041	struct nfsnode *np = NULL, *dnp;
2042	struct vnode *newvp = NULL;
2043	int error = 0, attrflag, dattrflag, ret;
2044
2045	vap->va_type = VLNK;
2046	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2047	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2048	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2049	if (nfhp) {
2050		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2051		    &np, NULL, LK_EXCLUSIVE);
2052		if (!ret)
2053			newvp = NFSTOV(np);
2054		else if (!error)
2055			error = ret;
2056	}
2057	if (newvp != NULL) {
2058		if (attrflag)
2059			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2060			    0, 1);
2061	} else if (!error) {
2062		/*
2063		 * If we do not have an error and we could not extract the
2064		 * newvp from the response due to the request being NFSv2, we
2065		 * have to do a lookup in order to obtain a newvp to return.
2066		 */
2067		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2068		    cnp->cn_cred, cnp->cn_thread, &np);
2069		if (!error)
2070			newvp = NFSTOV(np);
2071	}
2072	if (error) {
2073		if (newvp)
2074			vput(newvp);
2075		if (NFS_ISV4(dvp))
2076			error = nfscl_maperr(cnp->cn_thread, error,
2077			    vap->va_uid, vap->va_gid);
2078	} else {
2079		*ap->a_vpp = newvp;
2080	}
2081
2082	dnp = VTONFS(dvp);
2083	mtx_lock(&dnp->n_mtx);
2084	dnp->n_flag |= NMODIFIED;
2085	if (dattrflag != 0) {
2086		mtx_unlock(&dnp->n_mtx);
2087		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2088	} else {
2089		dnp->n_attrstamp = 0;
2090		mtx_unlock(&dnp->n_mtx);
2091		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2092	}
2093	/*
2094	 * If negative lookup caching is enabled, I might as well
2095	 * add an entry for this node. Not necessary for correctness,
2096	 * but if negative caching is enabled, then the system
2097	 * must care about lookup caching hit rate, so...
2098	 */
2099	if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2100	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2101		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2102	}
2103	return (error);
2104}
2105
2106/*
2107 * nfs make dir call
2108 */
2109static int
2110nfs_mkdir(struct vop_mkdir_args *ap)
2111{
2112	struct vnode *dvp = ap->a_dvp;
2113	struct vattr *vap = ap->a_vap;
2114	struct componentname *cnp = ap->a_cnp;
2115	struct nfsnode *np = NULL, *dnp;
2116	struct vnode *newvp = NULL;
2117	struct vattr vattr;
2118	struct nfsfh *nfhp;
2119	struct nfsvattr nfsva, dnfsva;
2120	int error = 0, attrflag, dattrflag, ret;
2121
2122	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2123		return (error);
2124	vap->va_type = VDIR;
2125	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2126	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2127	    &attrflag, &dattrflag, NULL);
2128	dnp = VTONFS(dvp);
2129	mtx_lock(&dnp->n_mtx);
2130	dnp->n_flag |= NMODIFIED;
2131	if (dattrflag != 0) {
2132		mtx_unlock(&dnp->n_mtx);
2133		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2134	} else {
2135		dnp->n_attrstamp = 0;
2136		mtx_unlock(&dnp->n_mtx);
2137		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2138	}
2139	if (nfhp) {
2140		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2141		    &np, NULL, LK_EXCLUSIVE);
2142		if (!ret) {
2143			newvp = NFSTOV(np);
2144			if (attrflag)
2145			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2146				NULL, 0, 1);
2147		} else if (!error)
2148			error = ret;
2149	}
2150	if (!error && newvp == NULL) {
2151		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2152		    cnp->cn_cred, cnp->cn_thread, &np);
2153		if (!error) {
2154			newvp = NFSTOV(np);
2155			if (newvp->v_type != VDIR)
2156				error = EEXIST;
2157		}
2158	}
2159	if (error) {
2160		if (newvp)
2161			vput(newvp);
2162		if (NFS_ISV4(dvp))
2163			error = nfscl_maperr(cnp->cn_thread, error,
2164			    vap->va_uid, vap->va_gid);
2165	} else {
2166		/*
2167		 * If negative lookup caching is enabled, I might as well
2168		 * add an entry for this node. Not necessary for correctness,
2169		 * but if negative caching is enabled, then the system
2170		 * must care about lookup caching hit rate, so...
2171		 */
2172		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2173		    (cnp->cn_flags & MAKEENTRY) &&
2174		    attrflag != 0 && dattrflag != 0)
2175			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2176			    &dnfsva.na_ctime);
2177		*ap->a_vpp = newvp;
2178	}
2179	return (error);
2180}
2181
2182/*
2183 * nfs remove directory call
2184 */
2185static int
2186nfs_rmdir(struct vop_rmdir_args *ap)
2187{
2188	struct vnode *vp = ap->a_vp;
2189	struct vnode *dvp = ap->a_dvp;
2190	struct componentname *cnp = ap->a_cnp;
2191	struct nfsnode *dnp;
2192	struct nfsvattr dnfsva;
2193	int error, dattrflag;
2194
2195	if (dvp == vp)
2196		return (EINVAL);
2197	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2198	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2199	dnp = VTONFS(dvp);
2200	mtx_lock(&dnp->n_mtx);
2201	dnp->n_flag |= NMODIFIED;
2202	if (dattrflag != 0) {
2203		mtx_unlock(&dnp->n_mtx);
2204		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2205	} else {
2206		dnp->n_attrstamp = 0;
2207		mtx_unlock(&dnp->n_mtx);
2208		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2209	}
2210
2211	cache_purge(dvp);
2212	cache_purge(vp);
2213	if (error && NFS_ISV4(dvp))
2214		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2215		    (gid_t)0);
2216	/*
2217	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2218	 */
2219	if (error == ENOENT)
2220		error = 0;
2221	return (error);
2222}
2223
2224/*
2225 * nfs readdir call
2226 */
2227static int
2228nfs_readdir(struct vop_readdir_args *ap)
2229{
2230	struct vnode *vp = ap->a_vp;
2231	struct nfsnode *np = VTONFS(vp);
2232	struct uio *uio = ap->a_uio;
2233	ssize_t tresid;
2234	int error = 0;
2235	struct vattr vattr;
2236
2237	if (ap->a_eofflag != NULL)
2238		*ap->a_eofflag = 0;
2239	if (vp->v_type != VDIR)
2240		return(EPERM);
2241
2242	/*
2243	 * First, check for hit on the EOF offset cache
2244	 */
2245	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2246	    (np->n_flag & NMODIFIED) == 0) {
2247		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2248			mtx_lock(&np->n_mtx);
2249			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2250			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2251				mtx_unlock(&np->n_mtx);
2252				NFSINCRGLOBAL(newnfsstats.direofcache_hits);
2253				if (ap->a_eofflag != NULL)
2254					*ap->a_eofflag = 1;
2255				return (0);
2256			} else
2257				mtx_unlock(&np->n_mtx);
2258		}
2259	}
2260
2261	/*
2262	 * Call ncl_bioread() to do the real work.
2263	 */
2264	tresid = uio->uio_resid;
2265	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2266
2267	if (!error && uio->uio_resid == tresid) {
2268		NFSINCRGLOBAL(newnfsstats.direofcache_misses);
2269		if (ap->a_eofflag != NULL)
2270			*ap->a_eofflag = 1;
2271	}
2272	return (error);
2273}
2274
2275/*
2276 * Readdir rpc call.
2277 * Called from below the buffer cache by ncl_doio().
2278 */
2279int
2280ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2281    struct thread *td)
2282{
2283	struct nfsvattr nfsva;
2284	nfsuint64 *cookiep, cookie;
2285	struct nfsnode *dnp = VTONFS(vp);
2286	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2287	int error = 0, eof, attrflag;
2288
2289	KASSERT(uiop->uio_iovcnt == 1 &&
2290	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2291	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2292	    ("nfs readdirrpc bad uio"));
2293
2294	/*
2295	 * If there is no cookie, assume directory was stale.
2296	 */
2297	ncl_dircookie_lock(dnp);
2298	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2299	if (cookiep) {
2300		cookie = *cookiep;
2301		ncl_dircookie_unlock(dnp);
2302	} else {
2303		ncl_dircookie_unlock(dnp);
2304		return (NFSERR_BAD_COOKIE);
2305	}
2306
2307	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2308		(void)ncl_fsinfo(nmp, vp, cred, td);
2309
2310	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2311	    &attrflag, &eof, NULL);
2312	if (attrflag)
2313		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2314
2315	if (!error) {
2316		/*
2317		 * We are now either at the end of the directory or have filled
2318		 * the block.
2319		 */
2320		if (eof)
2321			dnp->n_direofoffset = uiop->uio_offset;
2322		else {
2323			if (uiop->uio_resid > 0)
2324				ncl_printf("EEK! readdirrpc resid > 0\n");
2325			ncl_dircookie_lock(dnp);
2326			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2327			*cookiep = cookie;
2328			ncl_dircookie_unlock(dnp);
2329		}
2330	} else if (NFS_ISV4(vp)) {
2331		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2332	}
2333	return (error);
2334}
2335
2336/*
2337 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2338 */
2339int
2340ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2341    struct thread *td)
2342{
2343	struct nfsvattr nfsva;
2344	nfsuint64 *cookiep, cookie;
2345	struct nfsnode *dnp = VTONFS(vp);
2346	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2347	int error = 0, attrflag, eof;
2348
2349	KASSERT(uiop->uio_iovcnt == 1 &&
2350	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2351	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2352	    ("nfs readdirplusrpc bad uio"));
2353
2354	/*
2355	 * If there is no cookie, assume directory was stale.
2356	 */
2357	ncl_dircookie_lock(dnp);
2358	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2359	if (cookiep) {
2360		cookie = *cookiep;
2361		ncl_dircookie_unlock(dnp);
2362	} else {
2363		ncl_dircookie_unlock(dnp);
2364		return (NFSERR_BAD_COOKIE);
2365	}
2366
2367	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2368		(void)ncl_fsinfo(nmp, vp, cred, td);
2369	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2370	    &attrflag, &eof, NULL);
2371	if (attrflag)
2372		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2373
2374	if (!error) {
2375		/*
2376		 * We are now either at end of the directory or have filled the
2377		 * the block.
2378		 */
2379		if (eof)
2380			dnp->n_direofoffset = uiop->uio_offset;
2381		else {
2382			if (uiop->uio_resid > 0)
2383				ncl_printf("EEK! readdirplusrpc resid > 0\n");
2384			ncl_dircookie_lock(dnp);
2385			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2386			*cookiep = cookie;
2387			ncl_dircookie_unlock(dnp);
2388		}
2389	} else if (NFS_ISV4(vp)) {
2390		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2391	}
2392	return (error);
2393}
2394
2395/*
2396 * Silly rename. To make the NFS filesystem that is stateless look a little
2397 * more like the "ufs" a remove of an active vnode is translated to a rename
2398 * to a funny looking filename that is removed by nfs_inactive on the
2399 * nfsnode. There is the potential for another process on a different client
2400 * to create the same funny name between the nfs_lookitup() fails and the
2401 * nfs_rename() completes, but...
2402 */
2403static int
2404nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2405{
2406	struct sillyrename *sp;
2407	struct nfsnode *np;
2408	int error;
2409	short pid;
2410	unsigned int lticks;
2411
2412	cache_purge(dvp);
2413	np = VTONFS(vp);
2414	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2415	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2416	    M_NEWNFSREQ, M_WAITOK);
2417	sp->s_cred = crhold(cnp->cn_cred);
2418	sp->s_dvp = dvp;
2419	VREF(dvp);
2420
2421	/*
2422	 * Fudge together a funny name.
2423	 * Changing the format of the funny name to accomodate more
2424	 * sillynames per directory.
2425	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2426	 * CPU ticks since boot.
2427	 */
2428	pid = cnp->cn_thread->td_proc->p_pid;
2429	lticks = (unsigned int)ticks;
2430	for ( ; ; ) {
2431		sp->s_namlen = sprintf(sp->s_name,
2432				       ".nfs.%08x.%04x4.4", lticks,
2433				       pid);
2434		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2435				 cnp->cn_thread, NULL))
2436			break;
2437		lticks++;
2438	}
2439	error = nfs_renameit(dvp, vp, cnp, sp);
2440	if (error)
2441		goto bad;
2442	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2443		cnp->cn_thread, &np);
2444	np->n_sillyrename = sp;
2445	return (0);
2446bad:
2447	vrele(sp->s_dvp);
2448	crfree(sp->s_cred);
2449	free((caddr_t)sp, M_NEWNFSREQ);
2450	return (error);
2451}
2452
2453/*
2454 * Look up a file name and optionally either update the file handle or
2455 * allocate an nfsnode, depending on the value of npp.
2456 * npp == NULL	--> just do the lookup
2457 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2458 *			handled too
2459 * *npp != NULL --> update the file handle in the vnode
2460 */
2461static int
2462nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2463    struct thread *td, struct nfsnode **npp)
2464{
2465	struct vnode *newvp = NULL, *vp;
2466	struct nfsnode *np, *dnp = VTONFS(dvp);
2467	struct nfsfh *nfhp, *onfhp;
2468	struct nfsvattr nfsva, dnfsva;
2469	struct componentname cn;
2470	int error = 0, attrflag, dattrflag;
2471	u_int hash;
2472
2473	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2474	    &nfhp, &attrflag, &dattrflag, NULL);
2475	if (dattrflag)
2476		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2477	if (npp && !error) {
2478		if (*npp != NULL) {
2479		    np = *npp;
2480		    vp = NFSTOV(np);
2481		    /*
2482		     * For NFSv4, check to see if it is the same name and
2483		     * replace the name, if it is different.
2484		     */
2485		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2486			(np->n_v4->n4_namelen != len ||
2487			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2488			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2489			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2490			 dnp->n_fhp->nfh_len))) {
2491#ifdef notdef
2492{ char nnn[100]; int nnnl;
2493nnnl = (len < 100) ? len : 99;
2494bcopy(name, nnn, nnnl);
2495nnn[nnnl] = '\0';
2496printf("replace=%s\n",nnn);
2497}
2498#endif
2499			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2500			    MALLOC(np->n_v4, struct nfsv4node *,
2501				sizeof (struct nfsv4node) +
2502				dnp->n_fhp->nfh_len + len - 1,
2503				M_NFSV4NODE, M_WAITOK);
2504			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2505			    np->n_v4->n4_namelen = len;
2506			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2507				dnp->n_fhp->nfh_len);
2508			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2509		    }
2510		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2511			FNV1_32_INIT);
2512		    onfhp = np->n_fhp;
2513		    /*
2514		     * Rehash node for new file handle.
2515		     */
2516		    vfs_hash_rehash(vp, hash);
2517		    np->n_fhp = nfhp;
2518		    if (onfhp != NULL)
2519			FREE((caddr_t)onfhp, M_NFSFH);
2520		    newvp = NFSTOV(np);
2521		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2522		    FREE((caddr_t)nfhp, M_NFSFH);
2523		    VREF(dvp);
2524		    newvp = dvp;
2525		} else {
2526		    cn.cn_nameptr = name;
2527		    cn.cn_namelen = len;
2528		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2529			&np, NULL, LK_EXCLUSIVE);
2530		    if (error)
2531			return (error);
2532		    newvp = NFSTOV(np);
2533		}
2534		if (!attrflag && *npp == NULL) {
2535			if (newvp == dvp)
2536				vrele(newvp);
2537			else
2538				vput(newvp);
2539			return (ENOENT);
2540		}
2541		if (attrflag)
2542			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2543			    0, 1);
2544	}
2545	if (npp && *npp == NULL) {
2546		if (error) {
2547			if (newvp) {
2548				if (newvp == dvp)
2549					vrele(newvp);
2550				else
2551					vput(newvp);
2552			}
2553		} else
2554			*npp = np;
2555	}
2556	if (error && NFS_ISV4(dvp))
2557		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2558	return (error);
2559}
2560
2561/*
2562 * Nfs Version 3 and 4 commit rpc
2563 */
2564int
2565ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2566   struct thread *td)
2567{
2568	struct nfsvattr nfsva;
2569	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2570	int error, attrflag;
2571
2572	mtx_lock(&nmp->nm_mtx);
2573	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2574		mtx_unlock(&nmp->nm_mtx);
2575		return (0);
2576	}
2577	mtx_unlock(&nmp->nm_mtx);
2578	error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2579	    &attrflag, NULL);
2580	if (attrflag != 0)
2581		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2582		    0, 1);
2583	if (error != 0 && NFS_ISV4(vp))
2584		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2585	return (error);
2586}
2587
2588/*
2589 * Strategy routine.
2590 * For async requests when nfsiod(s) are running, queue the request by
2591 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2592 * request.
2593 */
2594static int
2595nfs_strategy(struct vop_strategy_args *ap)
2596{
2597	struct buf *bp = ap->a_bp;
2598	struct ucred *cr;
2599
2600	KASSERT(!(bp->b_flags & B_DONE),
2601	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2602	BUF_ASSERT_HELD(bp);
2603
2604	if (bp->b_iocmd == BIO_READ)
2605		cr = bp->b_rcred;
2606	else
2607		cr = bp->b_wcred;
2608
2609	/*
2610	 * If the op is asynchronous and an i/o daemon is waiting
2611	 * queue the request, wake it up and wait for completion
2612	 * otherwise just do it ourselves.
2613	 */
2614	if ((bp->b_flags & B_ASYNC) == 0 ||
2615	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2616		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2617	return (0);
2618}
2619
2620/*
2621 * fsync vnode op. Just call ncl_flush() with commit == 1.
2622 */
2623/* ARGSUSED */
2624static int
2625nfs_fsync(struct vop_fsync_args *ap)
2626{
2627
2628	if (ap->a_vp->v_type != VREG) {
2629		/*
2630		 * For NFS, metadata is changed synchronously on the server,
2631		 * so there is nothing to flush. Also, ncl_flush() clears
2632		 * the NMODIFIED flag and that shouldn't be done here for
2633		 * directories.
2634		 */
2635		return (0);
2636	}
2637	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2638}
2639
2640/*
2641 * Flush all the blocks associated with a vnode.
2642 * 	Walk through the buffer pool and push any dirty pages
2643 *	associated with the vnode.
2644 * If the called_from_renewthread argument is TRUE, it has been called
2645 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2646 * waiting for a buffer write to complete.
2647 */
2648int
2649ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2650    int commit, int called_from_renewthread)
2651{
2652	struct nfsnode *np = VTONFS(vp);
2653	struct buf *bp;
2654	int i;
2655	struct buf *nbp;
2656	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2657	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2658	int passone = 1, trycnt = 0;
2659	u_quad_t off, endoff, toff;
2660	struct ucred* wcred = NULL;
2661	struct buf **bvec = NULL;
2662	struct bufobj *bo;
2663#ifndef NFS_COMMITBVECSIZ
2664#define	NFS_COMMITBVECSIZ	20
2665#endif
2666	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2667	int bvecsize = 0, bveccount;
2668
2669	if (called_from_renewthread != 0)
2670		slptimeo = hz;
2671	if (nmp->nm_flag & NFSMNT_INT)
2672		slpflag = PCATCH;
2673	if (!commit)
2674		passone = 0;
2675	bo = &vp->v_bufobj;
2676	/*
2677	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2678	 * server, but has not been committed to stable storage on the server
2679	 * yet. On the first pass, the byte range is worked out and the commit
2680	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2681	 * job.
2682	 */
2683again:
2684	off = (u_quad_t)-1;
2685	endoff = 0;
2686	bvecpos = 0;
2687	if (NFS_ISV34(vp) && commit) {
2688		if (bvec != NULL && bvec != bvec_on_stack)
2689			free(bvec, M_TEMP);
2690		/*
2691		 * Count up how many buffers waiting for a commit.
2692		 */
2693		bveccount = 0;
2694		BO_LOCK(bo);
2695		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2696			if (!BUF_ISLOCKED(bp) &&
2697			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2698				== (B_DELWRI | B_NEEDCOMMIT))
2699				bveccount++;
2700		}
2701		/*
2702		 * Allocate space to remember the list of bufs to commit.  It is
2703		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2704		 * If we can't get memory (for whatever reason), we will end up
2705		 * committing the buffers one-by-one in the loop below.
2706		 */
2707		if (bveccount > NFS_COMMITBVECSIZ) {
2708			/*
2709			 * Release the vnode interlock to avoid a lock
2710			 * order reversal.
2711			 */
2712			BO_UNLOCK(bo);
2713			bvec = (struct buf **)
2714				malloc(bveccount * sizeof(struct buf *),
2715				       M_TEMP, M_NOWAIT);
2716			BO_LOCK(bo);
2717			if (bvec == NULL) {
2718				bvec = bvec_on_stack;
2719				bvecsize = NFS_COMMITBVECSIZ;
2720			} else
2721				bvecsize = bveccount;
2722		} else {
2723			bvec = bvec_on_stack;
2724			bvecsize = NFS_COMMITBVECSIZ;
2725		}
2726		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2727			if (bvecpos >= bvecsize)
2728				break;
2729			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2730				nbp = TAILQ_NEXT(bp, b_bobufs);
2731				continue;
2732			}
2733			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2734			    (B_DELWRI | B_NEEDCOMMIT)) {
2735				BUF_UNLOCK(bp);
2736				nbp = TAILQ_NEXT(bp, b_bobufs);
2737				continue;
2738			}
2739			BO_UNLOCK(bo);
2740			bremfree(bp);
2741			/*
2742			 * Work out if all buffers are using the same cred
2743			 * so we can deal with them all with one commit.
2744			 *
2745			 * NOTE: we are not clearing B_DONE here, so we have
2746			 * to do it later on in this routine if we intend to
2747			 * initiate I/O on the bp.
2748			 *
2749			 * Note: to avoid loopback deadlocks, we do not
2750			 * assign b_runningbufspace.
2751			 */
2752			if (wcred == NULL)
2753				wcred = bp->b_wcred;
2754			else if (wcred != bp->b_wcred)
2755				wcred = NOCRED;
2756			vfs_busy_pages(bp, 1);
2757
2758			BO_LOCK(bo);
2759			/*
2760			 * bp is protected by being locked, but nbp is not
2761			 * and vfs_busy_pages() may sleep.  We have to
2762			 * recalculate nbp.
2763			 */
2764			nbp = TAILQ_NEXT(bp, b_bobufs);
2765
2766			/*
2767			 * A list of these buffers is kept so that the
2768			 * second loop knows which buffers have actually
2769			 * been committed. This is necessary, since there
2770			 * may be a race between the commit rpc and new
2771			 * uncommitted writes on the file.
2772			 */
2773			bvec[bvecpos++] = bp;
2774			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2775				bp->b_dirtyoff;
2776			if (toff < off)
2777				off = toff;
2778			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2779			if (toff > endoff)
2780				endoff = toff;
2781		}
2782		BO_UNLOCK(bo);
2783	}
2784	if (bvecpos > 0) {
2785		/*
2786		 * Commit data on the server, as required.
2787		 * If all bufs are using the same wcred, then use that with
2788		 * one call for all of them, otherwise commit each one
2789		 * separately.
2790		 */
2791		if (wcred != NOCRED)
2792			retv = ncl_commit(vp, off, (int)(endoff - off),
2793					  wcred, td);
2794		else {
2795			retv = 0;
2796			for (i = 0; i < bvecpos; i++) {
2797				off_t off, size;
2798				bp = bvec[i];
2799				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2800					bp->b_dirtyoff;
2801				size = (u_quad_t)(bp->b_dirtyend
2802						  - bp->b_dirtyoff);
2803				retv = ncl_commit(vp, off, (int)size,
2804						  bp->b_wcred, td);
2805				if (retv) break;
2806			}
2807		}
2808
2809		if (retv == NFSERR_STALEWRITEVERF)
2810			ncl_clearcommit(vp->v_mount);
2811
2812		/*
2813		 * Now, either mark the blocks I/O done or mark the
2814		 * blocks dirty, depending on whether the commit
2815		 * succeeded.
2816		 */
2817		for (i = 0; i < bvecpos; i++) {
2818			bp = bvec[i];
2819			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2820			if (retv) {
2821				/*
2822				 * Error, leave B_DELWRI intact
2823				 */
2824				vfs_unbusy_pages(bp);
2825				brelse(bp);
2826			} else {
2827				/*
2828				 * Success, remove B_DELWRI ( bundirty() ).
2829				 *
2830				 * b_dirtyoff/b_dirtyend seem to be NFS
2831				 * specific.  We should probably move that
2832				 * into bundirty(). XXX
2833				 */
2834				bufobj_wref(bo);
2835				bp->b_flags |= B_ASYNC;
2836				bundirty(bp);
2837				bp->b_flags &= ~B_DONE;
2838				bp->b_ioflags &= ~BIO_ERROR;
2839				bp->b_dirtyoff = bp->b_dirtyend = 0;
2840				bufdone(bp);
2841			}
2842		}
2843	}
2844
2845	/*
2846	 * Start/do any write(s) that are required.
2847	 */
2848loop:
2849	BO_LOCK(bo);
2850	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2851		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2852			if (waitfor != MNT_WAIT || passone)
2853				continue;
2854
2855			error = BUF_TIMELOCK(bp,
2856			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2857			    BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2858			if (error == 0) {
2859				BUF_UNLOCK(bp);
2860				goto loop;
2861			}
2862			if (error == ENOLCK) {
2863				error = 0;
2864				goto loop;
2865			}
2866			if (called_from_renewthread != 0) {
2867				/*
2868				 * Return EIO so the flush will be retried
2869				 * later.
2870				 */
2871				error = EIO;
2872				goto done;
2873			}
2874			if (newnfs_sigintr(nmp, td)) {
2875				error = EINTR;
2876				goto done;
2877			}
2878			if (slpflag == PCATCH) {
2879				slpflag = 0;
2880				slptimeo = 2 * hz;
2881			}
2882			goto loop;
2883		}
2884		if ((bp->b_flags & B_DELWRI) == 0)
2885			panic("nfs_fsync: not dirty");
2886		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2887			BUF_UNLOCK(bp);
2888			continue;
2889		}
2890		BO_UNLOCK(bo);
2891		bremfree(bp);
2892		if (passone || !commit)
2893		    bp->b_flags |= B_ASYNC;
2894		else
2895		    bp->b_flags |= B_ASYNC;
2896		bwrite(bp);
2897		if (newnfs_sigintr(nmp, td)) {
2898			error = EINTR;
2899			goto done;
2900		}
2901		goto loop;
2902	}
2903	if (passone) {
2904		passone = 0;
2905		BO_UNLOCK(bo);
2906		goto again;
2907	}
2908	if (waitfor == MNT_WAIT) {
2909		while (bo->bo_numoutput) {
2910			error = bufobj_wwait(bo, slpflag, slptimeo);
2911			if (error) {
2912			    BO_UNLOCK(bo);
2913			    if (called_from_renewthread != 0) {
2914				/*
2915				 * Return EIO so that the flush will be
2916				 * retried later.
2917				 */
2918				error = EIO;
2919				goto done;
2920			    }
2921			    error = newnfs_sigintr(nmp, td);
2922			    if (error)
2923				goto done;
2924			    if (slpflag == PCATCH) {
2925				slpflag = 0;
2926				slptimeo = 2 * hz;
2927			    }
2928			    BO_LOCK(bo);
2929			}
2930		}
2931		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2932			BO_UNLOCK(bo);
2933			goto loop;
2934		}
2935		/*
2936		 * Wait for all the async IO requests to drain
2937		 */
2938		BO_UNLOCK(bo);
2939		mtx_lock(&np->n_mtx);
2940		while (np->n_directio_asyncwr > 0) {
2941			np->n_flag |= NFSYNCWAIT;
2942			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2943			    &np->n_mtx, slpflag | (PRIBIO + 1),
2944			    "nfsfsync", 0);
2945			if (error) {
2946				if (newnfs_sigintr(nmp, td)) {
2947					mtx_unlock(&np->n_mtx);
2948					error = EINTR;
2949					goto done;
2950				}
2951			}
2952		}
2953		mtx_unlock(&np->n_mtx);
2954	} else
2955		BO_UNLOCK(bo);
2956	if (NFSHASPNFS(nmp)) {
2957		nfscl_layoutcommit(vp, td);
2958		/*
2959		 * Invalidate the attribute cache, since writes to a DS
2960		 * won't update the size attribute.
2961		 */
2962		mtx_lock(&np->n_mtx);
2963		np->n_attrstamp = 0;
2964	} else
2965		mtx_lock(&np->n_mtx);
2966	if (np->n_flag & NWRITEERR) {
2967		error = np->n_error;
2968		np->n_flag &= ~NWRITEERR;
2969	}
2970  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2971	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2972  		np->n_flag &= ~NMODIFIED;
2973	mtx_unlock(&np->n_mtx);
2974done:
2975	if (bvec != NULL && bvec != bvec_on_stack)
2976		free(bvec, M_TEMP);
2977	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2978	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2979	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2980		/* try, try again... */
2981		passone = 1;
2982		wcred = NULL;
2983		bvec = NULL;
2984		bvecsize = 0;
2985printf("try%d\n", trycnt);
2986		goto again;
2987	}
2988	return (error);
2989}
2990
2991/*
2992 * NFS advisory byte-level locks.
2993 */
2994static int
2995nfs_advlock(struct vop_advlock_args *ap)
2996{
2997	struct vnode *vp = ap->a_vp;
2998	struct ucred *cred;
2999	struct nfsnode *np = VTONFS(ap->a_vp);
3000	struct proc *p = (struct proc *)ap->a_id;
3001	struct thread *td = curthread;	/* XXX */
3002	struct vattr va;
3003	int ret, error = EOPNOTSUPP;
3004	u_quad_t size;
3005
3006	if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
3007		if (vp->v_type != VREG)
3008			return (EINVAL);
3009		if ((ap->a_flags & F_POSIX) != 0)
3010			cred = p->p_ucred;
3011		else
3012			cred = td->td_ucred;
3013		NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3014		if (vp->v_iflag & VI_DOOMED) {
3015			NFSVOPUNLOCK(vp, 0);
3016			return (EBADF);
3017		}
3018
3019		/*
3020		 * If this is unlocking a write locked region, flush and
3021		 * commit them before unlocking. This is required by
3022		 * RFC3530 Sec. 9.3.2.
3023		 */
3024		if (ap->a_op == F_UNLCK &&
3025		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3026		    ap->a_flags))
3027			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
3028
3029		/*
3030		 * Loop around doing the lock op, while a blocking lock
3031		 * must wait for the lock op to succeed.
3032		 */
3033		do {
3034			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3035			    ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3036			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3037			    ap->a_op == F_SETLK) {
3038				NFSVOPUNLOCK(vp, 0);
3039				error = nfs_catnap(PZERO | PCATCH, ret,
3040				    "ncladvl");
3041				if (error)
3042					return (EINTR);
3043				NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3044				if (vp->v_iflag & VI_DOOMED) {
3045					NFSVOPUNLOCK(vp, 0);
3046					return (EBADF);
3047				}
3048			}
3049		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3050		     ap->a_op == F_SETLK);
3051		if (ret == NFSERR_DENIED) {
3052			NFSVOPUNLOCK(vp, 0);
3053			return (EAGAIN);
3054		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3055			NFSVOPUNLOCK(vp, 0);
3056			return (ret);
3057		} else if (ret != 0) {
3058			NFSVOPUNLOCK(vp, 0);
3059			return (EACCES);
3060		}
3061
3062		/*
3063		 * Now, if we just got a lock, invalidate data in the buffer
3064		 * cache, as required, so that the coherency conforms with
3065		 * RFC3530 Sec. 9.3.2.
3066		 */
3067		if (ap->a_op == F_SETLK) {
3068			if ((np->n_flag & NMODIFIED) == 0) {
3069				np->n_attrstamp = 0;
3070				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3071				ret = VOP_GETATTR(vp, &va, cred);
3072			}
3073			if ((np->n_flag & NMODIFIED) || ret ||
3074			    np->n_change != va.va_filerev) {
3075				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3076				np->n_attrstamp = 0;
3077				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3078				ret = VOP_GETATTR(vp, &va, cred);
3079				if (!ret) {
3080					np->n_mtime = va.va_mtime;
3081					np->n_change = va.va_filerev;
3082				}
3083			}
3084			/* Mark that a file lock has been acquired. */
3085			mtx_lock(&np->n_mtx);
3086			np->n_flag |= NHASBEENLOCKED;
3087			mtx_unlock(&np->n_mtx);
3088		}
3089		NFSVOPUNLOCK(vp, 0);
3090		return (0);
3091	} else if (!NFS_ISV4(vp)) {
3092		error = NFSVOPLOCK(vp, LK_SHARED);
3093		if (error)
3094			return (error);
3095		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3096			size = VTONFS(vp)->n_size;
3097			NFSVOPUNLOCK(vp, 0);
3098			error = lf_advlock(ap, &(vp->v_lockf), size);
3099		} else {
3100			if (nfs_advlock_p != NULL)
3101				error = nfs_advlock_p(ap);
3102			else {
3103				NFSVOPUNLOCK(vp, 0);
3104				error = ENOLCK;
3105			}
3106		}
3107		if (error == 0 && ap->a_op == F_SETLK) {
3108			/* Mark that a file lock has been acquired. */
3109			mtx_lock(&np->n_mtx);
3110			np->n_flag |= NHASBEENLOCKED;
3111			mtx_unlock(&np->n_mtx);
3112		}
3113	}
3114	return (error);
3115}
3116
3117/*
3118 * NFS advisory byte-level locks.
3119 */
3120static int
3121nfs_advlockasync(struct vop_advlockasync_args *ap)
3122{
3123	struct vnode *vp = ap->a_vp;
3124	u_quad_t size;
3125	int error;
3126
3127	if (NFS_ISV4(vp))
3128		return (EOPNOTSUPP);
3129	error = NFSVOPLOCK(vp, LK_SHARED);
3130	if (error)
3131		return (error);
3132	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3133		size = VTONFS(vp)->n_size;
3134		NFSVOPUNLOCK(vp, 0);
3135		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3136	} else {
3137		NFSVOPUNLOCK(vp, 0);
3138		error = EOPNOTSUPP;
3139	}
3140	return (error);
3141}
3142
3143/*
3144 * Print out the contents of an nfsnode.
3145 */
3146static int
3147nfs_print(struct vop_print_args *ap)
3148{
3149	struct vnode *vp = ap->a_vp;
3150	struct nfsnode *np = VTONFS(vp);
3151
3152	ncl_printf("\tfileid %ld fsid 0x%x",
3153	   np->n_vattr.na_fileid, np->n_vattr.na_fsid);
3154	if (vp->v_type == VFIFO)
3155		fifo_printinfo(vp);
3156	printf("\n");
3157	return (0);
3158}
3159
3160/*
3161 * This is the "real" nfs::bwrite(struct buf*).
3162 * We set B_CACHE if this is a VMIO buffer.
3163 */
3164int
3165ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3166{
3167	int s;
3168	int oldflags = bp->b_flags;
3169#if 0
3170	int retv = 1;
3171	off_t off;
3172#endif
3173
3174	BUF_ASSERT_HELD(bp);
3175
3176	if (bp->b_flags & B_INVAL) {
3177		brelse(bp);
3178		return(0);
3179	}
3180
3181	bp->b_flags |= B_CACHE;
3182
3183	/*
3184	 * Undirty the bp.  We will redirty it later if the I/O fails.
3185	 */
3186
3187	s = splbio();
3188	bundirty(bp);
3189	bp->b_flags &= ~B_DONE;
3190	bp->b_ioflags &= ~BIO_ERROR;
3191	bp->b_iocmd = BIO_WRITE;
3192
3193	bufobj_wref(bp->b_bufobj);
3194	curthread->td_ru.ru_oublock++;
3195	splx(s);
3196
3197	/*
3198	 * Note: to avoid loopback deadlocks, we do not
3199	 * assign b_runningbufspace.
3200	 */
3201	vfs_busy_pages(bp, 1);
3202
3203	BUF_KERNPROC(bp);
3204	bp->b_iooffset = dbtob(bp->b_blkno);
3205	bstrategy(bp);
3206
3207	if( (oldflags & B_ASYNC) == 0) {
3208		int rtval = bufwait(bp);
3209
3210		if (oldflags & B_DELWRI) {
3211			s = splbio();
3212			reassignbuf(bp);
3213			splx(s);
3214		}
3215		brelse(bp);
3216		return (rtval);
3217	}
3218
3219	return (0);
3220}
3221
3222/*
3223 * nfs special file access vnode op.
3224 * Essentially just get vattr and then imitate iaccess() since the device is
3225 * local to the client.
3226 */
3227static int
3228nfsspec_access(struct vop_access_args *ap)
3229{
3230	struct vattr *vap;
3231	struct ucred *cred = ap->a_cred;
3232	struct vnode *vp = ap->a_vp;
3233	accmode_t accmode = ap->a_accmode;
3234	struct vattr vattr;
3235	int error;
3236
3237	/*
3238	 * Disallow write attempts on filesystems mounted read-only;
3239	 * unless the file is a socket, fifo, or a block or character
3240	 * device resident on the filesystem.
3241	 */
3242	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3243		switch (vp->v_type) {
3244		case VREG:
3245		case VDIR:
3246		case VLNK:
3247			return (EROFS);
3248		default:
3249			break;
3250		}
3251	}
3252	vap = &vattr;
3253	error = VOP_GETATTR(vp, vap, cred);
3254	if (error)
3255		goto out;
3256	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3257	    accmode, cred, NULL);
3258out:
3259	return error;
3260}
3261
3262/*
3263 * Read wrapper for fifos.
3264 */
3265static int
3266nfsfifo_read(struct vop_read_args *ap)
3267{
3268	struct nfsnode *np = VTONFS(ap->a_vp);
3269	int error;
3270
3271	/*
3272	 * Set access flag.
3273	 */
3274	mtx_lock(&np->n_mtx);
3275	np->n_flag |= NACC;
3276	vfs_timestamp(&np->n_atim);
3277	mtx_unlock(&np->n_mtx);
3278	error = fifo_specops.vop_read(ap);
3279	return error;
3280}
3281
3282/*
3283 * Write wrapper for fifos.
3284 */
3285static int
3286nfsfifo_write(struct vop_write_args *ap)
3287{
3288	struct nfsnode *np = VTONFS(ap->a_vp);
3289
3290	/*
3291	 * Set update flag.
3292	 */
3293	mtx_lock(&np->n_mtx);
3294	np->n_flag |= NUPD;
3295	vfs_timestamp(&np->n_mtim);
3296	mtx_unlock(&np->n_mtx);
3297	return(fifo_specops.vop_write(ap));
3298}
3299
3300/*
3301 * Close wrapper for fifos.
3302 *
3303 * Update the times on the nfsnode then do fifo close.
3304 */
3305static int
3306nfsfifo_close(struct vop_close_args *ap)
3307{
3308	struct vnode *vp = ap->a_vp;
3309	struct nfsnode *np = VTONFS(vp);
3310	struct vattr vattr;
3311	struct timespec ts;
3312
3313	mtx_lock(&np->n_mtx);
3314	if (np->n_flag & (NACC | NUPD)) {
3315		vfs_timestamp(&ts);
3316		if (np->n_flag & NACC)
3317			np->n_atim = ts;
3318		if (np->n_flag & NUPD)
3319			np->n_mtim = ts;
3320		np->n_flag |= NCHG;
3321		if (vrefcnt(vp) == 1 &&
3322		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3323			VATTR_NULL(&vattr);
3324			if (np->n_flag & NACC)
3325				vattr.va_atime = np->n_atim;
3326			if (np->n_flag & NUPD)
3327				vattr.va_mtime = np->n_mtim;
3328			mtx_unlock(&np->n_mtx);
3329			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3330			goto out;
3331		}
3332	}
3333	mtx_unlock(&np->n_mtx);
3334out:
3335	return (fifo_specops.vop_close(ap));
3336}
3337
3338/*
3339 * Just call ncl_writebp() with the force argument set to 1.
3340 *
3341 * NOTE: B_DONE may or may not be set in a_bp on call.
3342 */
3343static int
3344nfs_bwrite(struct buf *bp)
3345{
3346
3347	return (ncl_writebp(bp, 1, curthread));
3348}
3349
3350struct buf_ops buf_ops_newnfs = {
3351	.bop_name	=	"buf_ops_nfs",
3352	.bop_write	=	nfs_bwrite,
3353	.bop_strategy	=	bufstrategy,
3354	.bop_sync	=	bufsync,
3355	.bop_bdflush	=	bufbdflush,
3356};
3357
3358/*
3359 * Cloned from vop_stdlock(), and then the ugly hack added.
3360 */
3361static int
3362nfs_lock1(struct vop_lock1_args *ap)
3363{
3364	struct vnode *vp = ap->a_vp;
3365	int error = 0;
3366
3367	/*
3368	 * Since vfs_hash_get() calls vget() and it will no longer work
3369	 * for FreeBSD8 with flags == 0, I can only think of this horrible
3370	 * hack to work around it. I call vfs_hash_get() with LK_EXCLOTHER
3371	 * and then handle it here. All I want for this case is a v_usecount
3372	 * on the vnode to use for recovery, while another thread might
3373	 * hold a lock on the vnode. I have the other threads blocked, so
3374	 * there isn't any race problem.
3375	 */
3376	if ((ap->a_flags & LK_TYPE_MASK) == LK_EXCLOTHER) {
3377		if ((ap->a_flags & LK_INTERLOCK) == 0)
3378			panic("ncllock1");
3379		if ((vp->v_iflag & VI_DOOMED))
3380			error = ENOENT;
3381		VI_UNLOCK(vp);
3382		return (error);
3383	}
3384	return (_lockmgr_args(vp->v_vnlock, ap->a_flags, VI_MTX(vp),
3385	    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, ap->a_file,
3386	    ap->a_line));
3387}
3388
3389static int
3390nfs_getacl(struct vop_getacl_args *ap)
3391{
3392	int error;
3393
3394	if (ap->a_type != ACL_TYPE_NFS4)
3395		return (EOPNOTSUPP);
3396	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3397	    NULL);
3398	if (error > NFSERR_STALE) {
3399		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3400		error = EPERM;
3401	}
3402	return (error);
3403}
3404
3405static int
3406nfs_setacl(struct vop_setacl_args *ap)
3407{
3408	int error;
3409
3410	if (ap->a_type != ACL_TYPE_NFS4)
3411		return (EOPNOTSUPP);
3412	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3413	    NULL);
3414	if (error > NFSERR_STALE) {
3415		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3416		error = EPERM;
3417	}
3418	return (error);
3419}
3420
3421/*
3422 * Return POSIX pathconf information applicable to nfs filesystems.
3423 */
3424static int
3425nfs_pathconf(struct vop_pathconf_args *ap)
3426{
3427	struct nfsv3_pathconf pc;
3428	struct nfsvattr nfsva;
3429	struct vnode *vp = ap->a_vp;
3430	struct thread *td = curthread;
3431	int attrflag, error;
3432
3433	if (NFS_ISV4(vp) || (NFS_ISV3(vp) && (ap->a_name == _PC_LINK_MAX ||
3434	    ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3435	    ap->a_name == _PC_NO_TRUNC))) {
3436		/*
3437		 * Since only the above 4 a_names are returned by the NFSv3
3438		 * Pathconf RPC, there is no point in doing it for others.
3439		 */
3440		error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3441		    &attrflag, NULL);
3442		if (attrflag != 0)
3443			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3444			    1);
3445		if (error != 0)
3446			return (error);
3447	} else {
3448		/*
3449		 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3450		 * just fake them.
3451		 */
3452		pc.pc_linkmax = LINK_MAX;
3453		pc.pc_namemax = NFS_MAXNAMLEN;
3454		pc.pc_notrunc = 1;
3455		pc.pc_chownrestricted = 1;
3456		pc.pc_caseinsensitive = 0;
3457		pc.pc_casepreserving = 1;
3458		error = 0;
3459	}
3460	switch (ap->a_name) {
3461	case _PC_LINK_MAX:
3462		*ap->a_retval = pc.pc_linkmax;
3463		break;
3464	case _PC_NAME_MAX:
3465		*ap->a_retval = pc.pc_namemax;
3466		break;
3467	case _PC_PATH_MAX:
3468		*ap->a_retval = PATH_MAX;
3469		break;
3470	case _PC_PIPE_BUF:
3471		*ap->a_retval = PIPE_BUF;
3472		break;
3473	case _PC_CHOWN_RESTRICTED:
3474		*ap->a_retval = pc.pc_chownrestricted;
3475		break;
3476	case _PC_NO_TRUNC:
3477		*ap->a_retval = pc.pc_notrunc;
3478		break;
3479	case _PC_ACL_EXTENDED:
3480		*ap->a_retval = 0;
3481		break;
3482	case _PC_ACL_NFS4:
3483		if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3484		    NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3485			*ap->a_retval = 1;
3486		else
3487			*ap->a_retval = 0;
3488		break;
3489	case _PC_ACL_PATH_MAX:
3490		if (NFS_ISV4(vp))
3491			*ap->a_retval = ACL_MAX_ENTRIES;
3492		else
3493			*ap->a_retval = 3;
3494		break;
3495	case _PC_MAC_PRESENT:
3496		*ap->a_retval = 0;
3497		break;
3498	case _PC_ASYNC_IO:
3499		/* _PC_ASYNC_IO should have been handled by upper layers. */
3500		KASSERT(0, ("_PC_ASYNC_IO should not get here"));
3501		error = EINVAL;
3502		break;
3503	case _PC_PRIO_IO:
3504		*ap->a_retval = 0;
3505		break;
3506	case _PC_SYNC_IO:
3507		*ap->a_retval = 0;
3508		break;
3509	case _PC_ALLOC_SIZE_MIN:
3510		*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3511		break;
3512	case _PC_FILESIZEBITS:
3513		if (NFS_ISV34(vp))
3514			*ap->a_retval = 64;
3515		else
3516			*ap->a_retval = 32;
3517		break;
3518	case _PC_REC_INCR_XFER_SIZE:
3519		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3520		break;
3521	case _PC_REC_MAX_XFER_SIZE:
3522		*ap->a_retval = -1; /* means ``unlimited'' */
3523		break;
3524	case _PC_REC_MIN_XFER_SIZE:
3525		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3526		break;
3527	case _PC_REC_XFER_ALIGN:
3528		*ap->a_retval = PAGE_SIZE;
3529		break;
3530	case _PC_SYMLINK_MAX:
3531		*ap->a_retval = NFS_MAXPATHLEN;
3532		break;
3533
3534	default:
3535		error = EINVAL;
3536		break;
3537	}
3538	return (error);
3539}
3540
3541