nfs_clport.c revision 300141
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/10/sys/fs/nfsclient/nfs_clport.c 300141 2016-05-18 12:02:05Z kib $");
36
37#include "opt_inet6.h"
38#include "opt_kdtrace.h"
39
40#include <sys/capsicum.h>
41
42/*
43 * generally, I don't like #includes inside .h files, but it seems to
44 * be the easiest way to handle the port.
45 */
46#include <sys/hash.h>
47#include <fs/nfs/nfsport.h>
48#include <netinet/if_ether.h>
49#include <net/if_types.h>
50
51#include <fs/nfsclient/nfs_kdtrace.h>
52
53#ifdef KDTRACE_HOOKS
54dtrace_nfsclient_attrcache_flush_probe_func_t
55		dtrace_nfscl_attrcache_flush_done_probe;
56uint32_t	nfscl_attrcache_flush_done_id;
57
58dtrace_nfsclient_attrcache_get_hit_probe_func_t
59		dtrace_nfscl_attrcache_get_hit_probe;
60uint32_t	nfscl_attrcache_get_hit_id;
61
62dtrace_nfsclient_attrcache_get_miss_probe_func_t
63		dtrace_nfscl_attrcache_get_miss_probe;
64uint32_t	nfscl_attrcache_get_miss_id;
65
66dtrace_nfsclient_attrcache_load_probe_func_t
67		dtrace_nfscl_attrcache_load_done_probe;
68uint32_t	nfscl_attrcache_load_done_id;
69#endif /* !KDTRACE_HOOKS */
70
71extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
72extern struct vop_vector newnfs_vnodeops;
73extern struct vop_vector newnfs_fifoops;
74extern uma_zone_t newnfsnode_zone;
75extern struct buf_ops buf_ops_newnfs;
76extern int ncl_pbuf_freecnt;
77extern short nfsv4_cbport;
78extern int nfscl_enablecallb;
79extern int nfs_numnfscbd;
80extern int nfscl_inited;
81struct mtx nfs_clstate_mutex;
82struct mtx ncl_iod_mutex;
83NFSDLOCKMUTEX;
84
85extern void (*ncl_call_invalcaches)(struct vnode *);
86
87/*
88 * Comparison function for vfs_hash functions.
89 */
90int
91newnfs_vncmpf(struct vnode *vp, void *arg)
92{
93	struct nfsfh *nfhp = (struct nfsfh *)arg;
94	struct nfsnode *np = VTONFS(vp);
95
96	if (np->n_fhp->nfh_len != nfhp->nfh_len ||
97	    NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
98		return (1);
99	return (0);
100}
101
102/*
103 * Look up a vnode/nfsnode by file handle.
104 * Callers must check for mount points!!
105 * In all cases, a pointer to a
106 * nfsnode structure is returned.
107 * This variant takes a "struct nfsfh *" as second argument and uses
108 * that structure up, either by hanging off the nfsnode or FREEing it.
109 */
110int
111nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
112    struct componentname *cnp, struct thread *td, struct nfsnode **npp,
113    void *stuff, int lkflags)
114{
115	struct nfsnode *np, *dnp;
116	struct vnode *vp, *nvp;
117	struct nfsv4node *newd, *oldd;
118	int error;
119	u_int hash;
120	struct nfsmount *nmp;
121
122	nmp = VFSTONFS(mntp);
123	dnp = VTONFS(dvp);
124	*npp = NULL;
125
126	hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
127
128	error = vfs_hash_get(mntp, hash, lkflags,
129	    td, &nvp, newnfs_vncmpf, nfhp);
130	if (error == 0 && nvp != NULL) {
131		/*
132		 * I believe there is a slight chance that vgonel() could
133		 * get called on this vnode between when NFSVOPLOCK() drops
134		 * the VI_LOCK() and vget() acquires it again, so that it
135		 * hasn't yet had v_usecount incremented. If this were to
136		 * happen, the VI_DOOMED flag would be set, so check for
137		 * that here. Since we now have the v_usecount incremented,
138		 * we should be ok until we vrele() it, if the VI_DOOMED
139		 * flag isn't set now.
140		 */
141		VI_LOCK(nvp);
142		if ((nvp->v_iflag & VI_DOOMED)) {
143			VI_UNLOCK(nvp);
144			vrele(nvp);
145			error = ENOENT;
146		} else {
147			VI_UNLOCK(nvp);
148		}
149	}
150	if (error) {
151		FREE((caddr_t)nfhp, M_NFSFH);
152		return (error);
153	}
154	if (nvp != NULL) {
155		np = VTONFS(nvp);
156		/*
157		 * For NFSv4, check to see if it is the same name and
158		 * replace the name, if it is different.
159		 */
160		oldd = newd = NULL;
161		if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
162		    nvp->v_type == VREG &&
163		    (np->n_v4->n4_namelen != cnp->cn_namelen ||
164		     NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
165		     cnp->cn_namelen) ||
166		     dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
167		     NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
168		     dnp->n_fhp->nfh_len))) {
169		    MALLOC(newd, struct nfsv4node *,
170			sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
171			+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
172		    NFSLOCKNODE(np);
173		    if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
174			&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
175			 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
176			 cnp->cn_namelen) ||
177			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
178			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
179			 dnp->n_fhp->nfh_len))) {
180			oldd = np->n_v4;
181			np->n_v4 = newd;
182			newd = NULL;
183			np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
184			np->n_v4->n4_namelen = cnp->cn_namelen;
185			NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
186			    dnp->n_fhp->nfh_len);
187			NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
188			    cnp->cn_namelen);
189		    }
190		    NFSUNLOCKNODE(np);
191		}
192		if (newd != NULL)
193			FREE((caddr_t)newd, M_NFSV4NODE);
194		if (oldd != NULL)
195			FREE((caddr_t)oldd, M_NFSV4NODE);
196		*npp = np;
197		FREE((caddr_t)nfhp, M_NFSFH);
198		return (0);
199	}
200	np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
201
202	error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp);
203	if (error) {
204		uma_zfree(newnfsnode_zone, np);
205		FREE((caddr_t)nfhp, M_NFSFH);
206		return (error);
207	}
208	vp = nvp;
209	KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
210	vp->v_bufobj.bo_ops = &buf_ops_newnfs;
211	vp->v_data = np;
212	np->n_vnode = vp;
213	/*
214	 * Initialize the mutex even if the vnode is going to be a loser.
215	 * This simplifies the logic in reclaim, which can then unconditionally
216	 * destroy the mutex (in the case of the loser, or if hash_insert
217	 * happened to return an error no special casing is needed).
218	 */
219	mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
220
221	/*
222	 * Are we getting the root? If so, make sure the vnode flags
223	 * are correct
224	 */
225	if ((nfhp->nfh_len == nmp->nm_fhsize) &&
226	    !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
227		if (vp->v_type == VNON)
228			vp->v_type = VDIR;
229		vp->v_vflag |= VV_ROOT;
230	}
231
232	np->n_fhp = nfhp;
233	/*
234	 * For NFSv4, we have to attach the directory file handle and
235	 * file name, so that Open Ops can be done later.
236	 */
237	if (nmp->nm_flag & NFSMNT_NFSV4) {
238		MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
239		    + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
240		    M_WAITOK);
241		np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
242		np->n_v4->n4_namelen = cnp->cn_namelen;
243		NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
244		    dnp->n_fhp->nfh_len);
245		NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
246		    cnp->cn_namelen);
247	} else {
248		np->n_v4 = NULL;
249	}
250
251	/*
252	 * NFS supports recursive and shared locking.
253	 */
254	lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
255	VN_LOCK_AREC(vp);
256	VN_LOCK_ASHARE(vp);
257	error = insmntque(vp, mntp);
258	if (error != 0) {
259		*npp = NULL;
260		mtx_destroy(&np->n_mtx);
261		FREE((caddr_t)nfhp, M_NFSFH);
262		if (np->n_v4 != NULL)
263			FREE((caddr_t)np->n_v4, M_NFSV4NODE);
264		uma_zfree(newnfsnode_zone, np);
265		return (error);
266	}
267	error = vfs_hash_insert(vp, hash, lkflags,
268	    td, &nvp, newnfs_vncmpf, nfhp);
269	if (error)
270		return (error);
271	if (nvp != NULL) {
272		*npp = VTONFS(nvp);
273		/* vfs_hash_insert() vput()'s the losing vnode */
274		return (0);
275	}
276	*npp = np;
277
278	return (0);
279}
280
281/*
282 * Another variant of nfs_nget(). This one is only used by reopen. It
283 * takes almost the same args as nfs_nget(), but only succeeds if an entry
284 * exists in the cache. (Since files should already be "open" with a
285 * vnode ref cnt on the node when reopen calls this, it should always
286 * succeed.)
287 * Also, don't get a vnode lock, since it may already be locked by some
288 * other process that is handling it. This is ok, since all other threads
289 * on the client are blocked by the nfsc_lock being exclusively held by the
290 * caller of this function.
291 */
292int
293nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
294    struct thread *td, struct nfsnode **npp)
295{
296	struct vnode *nvp;
297	u_int hash;
298	struct nfsfh *nfhp;
299	int error;
300
301	*npp = NULL;
302	/* For forced dismounts, just return error. */
303	if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
304		return (EINTR);
305	MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
306	    M_NFSFH, M_WAITOK);
307	bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
308	nfhp->nfh_len = fhsize;
309
310	hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
311
312	/*
313	 * First, try to get the vnode locked, but don't block for the lock.
314	 */
315	error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
316	    newnfs_vncmpf, nfhp);
317	if (error == 0 && nvp != NULL) {
318		NFSVOPUNLOCK(nvp, 0);
319	} else if (error == EBUSY) {
320		/*
321		 * It is safe so long as a vflush() with
322		 * FORCECLOSE has not been done. Since the Renew thread is
323		 * stopped and the MNTK_UNMOUNTF flag is set before doing
324		 * a vflush() with FORCECLOSE, we should be ok here.
325		 */
326		if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
327			error = EINTR;
328		else {
329			vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp);
330			if (nvp == NULL) {
331				error = ENOENT;
332			} else if ((nvp->v_iflag & VI_DOOMED) != 0) {
333				error = ENOENT;
334				vrele(nvp);
335			} else {
336				error = 0;
337			}
338		}
339	}
340	FREE(nfhp, M_NFSFH);
341	if (error)
342		return (error);
343	if (nvp != NULL) {
344		*npp = VTONFS(nvp);
345		return (0);
346	}
347	return (EINVAL);
348}
349
350/*
351 * Load the attribute cache (that lives in the nfsnode entry) with
352 * the attributes of the second argument and
353 * Iff vaper not NULL
354 *    copy the attributes to *vaper
355 * Similar to nfs_loadattrcache(), except the attributes are passed in
356 * instead of being parsed out of the mbuf list.
357 */
358int
359nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
360    void *stuff, int writeattr, int dontshrink)
361{
362	struct vnode *vp = *vpp;
363	struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
364	struct nfsnode *np;
365	struct nfsmount *nmp;
366	struct timespec mtime_save;
367	u_quad_t nsize;
368	int setnsize;
369
370	/*
371	 * If v_type == VNON it is a new node, so fill in the v_type,
372	 * n_mtime fields. Check to see if it represents a special
373	 * device, and if so, check for a possible alias. Once the
374	 * correct vnode has been obtained, fill in the rest of the
375	 * information.
376	 */
377	np = VTONFS(vp);
378	NFSLOCKNODE(np);
379	if (vp->v_type != nvap->va_type) {
380		vp->v_type = nvap->va_type;
381		if (vp->v_type == VFIFO)
382			vp->v_op = &newnfs_fifoops;
383		np->n_mtime = nvap->va_mtime;
384	}
385	nmp = VFSTONFS(vp->v_mount);
386	vap = &np->n_vattr.na_vattr;
387	mtime_save = vap->va_mtime;
388	if (writeattr) {
389		np->n_vattr.na_filerev = nap->na_filerev;
390		np->n_vattr.na_size = nap->na_size;
391		np->n_vattr.na_mtime = nap->na_mtime;
392		np->n_vattr.na_ctime = nap->na_ctime;
393		np->n_vattr.na_fsid = nap->na_fsid;
394		np->n_vattr.na_mode = nap->na_mode;
395	} else {
396		NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
397		    sizeof (struct nfsvattr));
398	}
399
400	/*
401	 * For NFSv4, if the node's fsid is not equal to the mount point's
402	 * fsid, return the low order 32bits of the node's fsid. This
403	 * allows getcwd(3) to work. There is a chance that the fsid might
404	 * be the same as a local fs, but since this is in an NFS mount
405	 * point, I don't think that will cause any problems?
406	 */
407	if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
408	    (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
409	     nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
410		/*
411		 * va_fsid needs to be set to some value derived from
412		 * np->n_vattr.na_filesid that is not equal
413		 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
414		 * from the value used for the top level server volume
415		 * in the mounted subtree.
416		 */
417		if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
418		    (uint32_t)np->n_vattr.na_filesid[0])
419			vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
420		else
421			vap->va_fsid = (uint32_t)hash32_buf(
422			    np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
423	} else
424		vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
425	np->n_attrstamp = time_second;
426	setnsize = 0;
427	nsize = 0;
428	if (vap->va_size != np->n_size) {
429		if (vap->va_type == VREG) {
430			if (dontshrink && vap->va_size < np->n_size) {
431				/*
432				 * We've been told not to shrink the file;
433				 * zero np->n_attrstamp to indicate that
434				 * the attributes are stale.
435				 */
436				vap->va_size = np->n_size;
437				np->n_attrstamp = 0;
438				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
439				vnode_pager_setsize(vp, np->n_size);
440			} else if (np->n_flag & NMODIFIED) {
441				/*
442				 * We've modified the file: Use the larger
443				 * of our size, and the server's size.
444				 */
445				if (vap->va_size < np->n_size) {
446					vap->va_size = np->n_size;
447				} else {
448					np->n_size = vap->va_size;
449					np->n_flag |= NSIZECHANGED;
450				}
451				vnode_pager_setsize(vp, np->n_size);
452			} else if (vap->va_size < np->n_size) {
453				/*
454				 * When shrinking the size, the call to
455				 * vnode_pager_setsize() cannot be done
456				 * with the mutex held, so delay it until
457				 * after the mtx_unlock call.
458				 */
459				nsize = np->n_size = vap->va_size;
460				np->n_flag |= NSIZECHANGED;
461				setnsize = 1;
462			} else {
463				np->n_size = vap->va_size;
464				np->n_flag |= NSIZECHANGED;
465				vnode_pager_setsize(vp, np->n_size);
466			}
467		} else {
468			np->n_size = vap->va_size;
469		}
470	}
471	/*
472	 * The following checks are added to prevent a race between (say)
473	 * a READDIR+ and a WRITE.
474	 * READDIR+, WRITE requests sent out.
475	 * READDIR+ resp, WRITE resp received on client.
476	 * However, the WRITE resp was handled before the READDIR+ resp
477	 * causing the post op attrs from the write to be loaded first
478	 * and the attrs from the READDIR+ to be loaded later. If this
479	 * happens, we have stale attrs loaded into the attrcache.
480	 * We detect this by for the mtime moving back. We invalidate the
481	 * attrcache when this happens.
482	 */
483	if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
484		/* Size changed or mtime went backwards */
485		np->n_attrstamp = 0;
486		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
487	}
488	if (vaper != NULL) {
489		NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
490		if (np->n_flag & NCHG) {
491			if (np->n_flag & NACC)
492				vaper->va_atime = np->n_atim;
493			if (np->n_flag & NUPD)
494				vaper->va_mtime = np->n_mtim;
495		}
496	}
497#ifdef KDTRACE_HOOKS
498	if (np->n_attrstamp != 0)
499		KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
500#endif
501	NFSUNLOCKNODE(np);
502	if (setnsize)
503		vnode_pager_setsize(vp, nsize);
504	return (0);
505}
506
507/*
508 * Fill in the client id name. For these bytes:
509 * 1 - they must be unique
510 * 2 - they should be persistent across client reboots
511 * 1 is more critical than 2
512 * Use the mount point's unique id plus either the uuid or, if that
513 * isn't set, random junk.
514 */
515void
516nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
517{
518	int uuidlen;
519
520	/*
521	 * First, put in the 64bit mount point identifier.
522	 */
523	if (idlen >= sizeof (u_int64_t)) {
524		NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
525		cp += sizeof (u_int64_t);
526		idlen -= sizeof (u_int64_t);
527	}
528
529	/*
530	 * If uuid is non-zero length, use it.
531	 */
532	uuidlen = strlen(uuid);
533	if (uuidlen > 0 && idlen >= uuidlen) {
534		NFSBCOPY(uuid, cp, uuidlen);
535		cp += uuidlen;
536		idlen -= uuidlen;
537	}
538
539	/*
540	 * This only normally happens if the uuid isn't set.
541	 */
542	while (idlen > 0) {
543		*cp++ = (u_int8_t)(arc4random() % 256);
544		idlen--;
545	}
546}
547
548/*
549 * Fill in a lock owner name. For now, pid + the process's creation time.
550 */
551void
552nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
553{
554	union {
555		u_int32_t	lval;
556		u_int8_t	cval[4];
557	} tl;
558	struct proc *p;
559
560	if (id == NULL) {
561		printf("NULL id\n");
562		bzero(cp, NFSV4CL_LOCKNAMELEN);
563		return;
564	}
565	if ((flags & F_POSIX) != 0) {
566		p = (struct proc *)id;
567		tl.lval = p->p_pid;
568		*cp++ = tl.cval[0];
569		*cp++ = tl.cval[1];
570		*cp++ = tl.cval[2];
571		*cp++ = tl.cval[3];
572		tl.lval = p->p_stats->p_start.tv_sec;
573		*cp++ = tl.cval[0];
574		*cp++ = tl.cval[1];
575		*cp++ = tl.cval[2];
576		*cp++ = tl.cval[3];
577		tl.lval = p->p_stats->p_start.tv_usec;
578		*cp++ = tl.cval[0];
579		*cp++ = tl.cval[1];
580		*cp++ = tl.cval[2];
581		*cp = tl.cval[3];
582	} else if ((flags & F_FLOCK) != 0) {
583		bcopy(&id, cp, sizeof(id));
584		bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
585	} else {
586		printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
587		bzero(cp, NFSV4CL_LOCKNAMELEN);
588	}
589}
590
591/*
592 * Find the parent process for the thread passed in as an argument.
593 * If none exists, return NULL, otherwise return a thread for the parent.
594 * (Can be any of the threads, since it is only used for td->td_proc.)
595 */
596NFSPROC_T *
597nfscl_getparent(struct thread *td)
598{
599	struct proc *p;
600	struct thread *ptd;
601
602	if (td == NULL)
603		return (NULL);
604	p = td->td_proc;
605	if (p->p_pid == 0)
606		return (NULL);
607	p = p->p_pptr;
608	if (p == NULL)
609		return (NULL);
610	ptd = TAILQ_FIRST(&p->p_threads);
611	return (ptd);
612}
613
614/*
615 * Start up the renew kernel thread.
616 */
617static void
618start_nfscl(void *arg)
619{
620	struct nfsclclient *clp;
621	struct thread *td;
622
623	clp = (struct nfsclclient *)arg;
624	td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
625	nfscl_renewthread(clp, td);
626	kproc_exit(0);
627}
628
629void
630nfscl_start_renewthread(struct nfsclclient *clp)
631{
632
633	kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
634	    "nfscl");
635}
636
637/*
638 * Handle wcc_data.
639 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
640 * as the first Op after PutFH.
641 * (For NFSv4, the postop attributes are after the Op, so they can't be
642 *  parsed here. A separate call to nfscl_postop_attr() is required.)
643 */
644int
645nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
646    struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
647{
648	u_int32_t *tl;
649	struct nfsnode *np = VTONFS(vp);
650	struct nfsvattr nfsva;
651	int error = 0;
652
653	if (wccflagp != NULL)
654		*wccflagp = 0;
655	if (nd->nd_flag & ND_NFSV3) {
656		*flagp = 0;
657		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
658		if (*tl == newnfs_true) {
659			NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
660			if (wccflagp != NULL) {
661				mtx_lock(&np->n_mtx);
662				*wccflagp = (np->n_mtime.tv_sec ==
663				    fxdr_unsigned(u_int32_t, *(tl + 2)) &&
664				    np->n_mtime.tv_nsec ==
665				    fxdr_unsigned(u_int32_t, *(tl + 3)));
666				mtx_unlock(&np->n_mtx);
667			}
668		}
669		error = nfscl_postop_attr(nd, nap, flagp, stuff);
670	} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
671	    == (ND_NFSV4 | ND_V4WCCATTR)) {
672		error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
673		    NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
674		    NULL, NULL, NULL, NULL, NULL);
675		if (error)
676			return (error);
677		/*
678		 * Get rid of Op# and status for next op.
679		 */
680		NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
681		if (*++tl)
682			nd->nd_flag |= ND_NOMOREDATA;
683		if (wccflagp != NULL &&
684		    nfsva.na_vattr.va_mtime.tv_sec != 0) {
685			mtx_lock(&np->n_mtx);
686			*wccflagp = (np->n_mtime.tv_sec ==
687			    nfsva.na_vattr.va_mtime.tv_sec &&
688			    np->n_mtime.tv_nsec ==
689			    nfsva.na_vattr.va_mtime.tv_sec);
690			mtx_unlock(&np->n_mtx);
691		}
692	}
693nfsmout:
694	return (error);
695}
696
697/*
698 * Get postop attributes.
699 */
700int
701nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
702    void *stuff)
703{
704	u_int32_t *tl;
705	int error = 0;
706
707	*retp = 0;
708	if (nd->nd_flag & ND_NOMOREDATA)
709		return (error);
710	if (nd->nd_flag & ND_NFSV3) {
711		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
712		*retp = fxdr_unsigned(int, *tl);
713	} else if (nd->nd_flag & ND_NFSV4) {
714		/*
715		 * For NFSv4, the postop attr are at the end, so no point
716		 * in looking if nd_repstat != 0.
717		 */
718		if (!nd->nd_repstat) {
719			NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
720			if (*(tl + 1))
721				/* should never happen since nd_repstat != 0 */
722				nd->nd_flag |= ND_NOMOREDATA;
723			else
724				*retp = 1;
725		}
726	} else if (!nd->nd_repstat) {
727		/* For NFSv2, the attributes are here iff nd_repstat == 0 */
728		*retp = 1;
729	}
730	if (*retp) {
731		error = nfsm_loadattr(nd, nap);
732		if (error)
733			*retp = 0;
734	}
735nfsmout:
736	return (error);
737}
738
739/*
740 * Fill in the setable attributes. The full argument indicates whether
741 * to fill in them all or just mode and time.
742 */
743void
744nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
745    struct vnode *vp, int flags, u_int32_t rdev)
746{
747	u_int32_t *tl;
748	struct nfsv2_sattr *sp;
749	nfsattrbit_t attrbits;
750
751	switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
752	case ND_NFSV2:
753		NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
754		if (vap->va_mode == (mode_t)VNOVAL)
755			sp->sa_mode = newnfs_xdrneg1;
756		else
757			sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
758		if (vap->va_uid == (uid_t)VNOVAL)
759			sp->sa_uid = newnfs_xdrneg1;
760		else
761			sp->sa_uid = txdr_unsigned(vap->va_uid);
762		if (vap->va_gid == (gid_t)VNOVAL)
763			sp->sa_gid = newnfs_xdrneg1;
764		else
765			sp->sa_gid = txdr_unsigned(vap->va_gid);
766		if (flags & NFSSATTR_SIZE0)
767			sp->sa_size = 0;
768		else if (flags & NFSSATTR_SIZENEG1)
769			sp->sa_size = newnfs_xdrneg1;
770		else if (flags & NFSSATTR_SIZERDEV)
771			sp->sa_size = txdr_unsigned(rdev);
772		else
773			sp->sa_size = txdr_unsigned(vap->va_size);
774		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
775		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
776		break;
777	case ND_NFSV3:
778		if (vap->va_mode != (mode_t)VNOVAL) {
779			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
780			*tl++ = newnfs_true;
781			*tl = txdr_unsigned(vap->va_mode);
782		} else {
783			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
784			*tl = newnfs_false;
785		}
786		if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
787			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
788			*tl++ = newnfs_true;
789			*tl = txdr_unsigned(vap->va_uid);
790		} else {
791			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
792			*tl = newnfs_false;
793		}
794		if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
795			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
796			*tl++ = newnfs_true;
797			*tl = txdr_unsigned(vap->va_gid);
798		} else {
799			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
800			*tl = newnfs_false;
801		}
802		if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
803			NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
804			*tl++ = newnfs_true;
805			txdr_hyper(vap->va_size, tl);
806		} else {
807			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
808			*tl = newnfs_false;
809		}
810		if (vap->va_atime.tv_sec != VNOVAL) {
811			if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
812				NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
813				*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
814				txdr_nfsv3time(&vap->va_atime, tl);
815			} else {
816				NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
817				*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
818			}
819		} else {
820			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
821			*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
822		}
823		if (vap->va_mtime.tv_sec != VNOVAL) {
824			if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
825				NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
826				*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
827				txdr_nfsv3time(&vap->va_mtime, tl);
828			} else {
829				NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
830				*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
831			}
832		} else {
833			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
834			*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
835		}
836		break;
837	case ND_NFSV4:
838		NFSZERO_ATTRBIT(&attrbits);
839		if (vap->va_mode != (mode_t)VNOVAL)
840			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
841		if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
842			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
843		if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
844			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
845		if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
846			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
847		if (vap->va_atime.tv_sec != VNOVAL)
848			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
849		if (vap->va_mtime.tv_sec != VNOVAL)
850			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
851		(void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
852		    &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
853		break;
854	};
855}
856
857/*
858 * nfscl_request() - mostly a wrapper for newnfs_request().
859 */
860int
861nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
862    struct ucred *cred, void *stuff)
863{
864	int ret, vers;
865	struct nfsmount *nmp;
866
867	nmp = VFSTONFS(vp->v_mount);
868	if (nd->nd_flag & ND_NFSV4)
869		vers = NFS_VER4;
870	else if (nd->nd_flag & ND_NFSV3)
871		vers = NFS_VER3;
872	else
873		vers = NFS_VER2;
874	ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
875		NFS_PROG, vers, NULL, 1, NULL, NULL);
876	return (ret);
877}
878
879/*
880 * fill in this bsden's variant of statfs using nfsstatfs.
881 */
882void
883nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
884{
885	struct statfs *sbp = (struct statfs *)statfs;
886
887	if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
888		sbp->f_bsize = NFS_FABLKSIZE;
889		sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
890		sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
891		/*
892		 * Although sf_abytes is uint64_t and f_bavail is int64_t,
893		 * the value after dividing by NFS_FABLKSIZE is small
894		 * enough that it will fit in 63bits, so it is ok to
895		 * assign it to f_bavail without fear that it will become
896		 * negative.
897		 */
898		sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
899		sbp->f_files = sfp->sf_tfiles;
900		/* Since f_ffree is int64_t, clip it to 63bits. */
901		if (sfp->sf_ffiles > INT64_MAX)
902			sbp->f_ffree = INT64_MAX;
903		else
904			sbp->f_ffree = sfp->sf_ffiles;
905	} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
906		/*
907		 * The type casts to (int32_t) ensure that this code is
908		 * compatible with the old NFS client, in that it will
909		 * propagate bit31 to the high order bits. This may or may
910		 * not be correct for NFSv2, but since it is a legacy
911		 * environment, I'd rather retain backwards compatibility.
912		 */
913		sbp->f_bsize = (int32_t)sfp->sf_bsize;
914		sbp->f_blocks = (int32_t)sfp->sf_blocks;
915		sbp->f_bfree = (int32_t)sfp->sf_bfree;
916		sbp->f_bavail = (int32_t)sfp->sf_bavail;
917		sbp->f_files = 0;
918		sbp->f_ffree = 0;
919	}
920}
921
922/*
923 * Use the fsinfo stuff to update the mount point.
924 */
925void
926nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
927{
928
929	if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
930	    fsp->fs_wtpref >= NFS_FABLKSIZE)
931		nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
932		    ~(NFS_FABLKSIZE - 1);
933	if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
934		nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
935		if (nmp->nm_wsize == 0)
936			nmp->nm_wsize = fsp->fs_wtmax;
937	}
938	if (nmp->nm_wsize < NFS_FABLKSIZE)
939		nmp->nm_wsize = NFS_FABLKSIZE;
940	if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
941	    fsp->fs_rtpref >= NFS_FABLKSIZE)
942		nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
943		    ~(NFS_FABLKSIZE - 1);
944	if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
945		nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
946		if (nmp->nm_rsize == 0)
947			nmp->nm_rsize = fsp->fs_rtmax;
948	}
949	if (nmp->nm_rsize < NFS_FABLKSIZE)
950		nmp->nm_rsize = NFS_FABLKSIZE;
951	if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
952	    && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
953		nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
954		    ~(NFS_DIRBLKSIZ - 1);
955	if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
956		nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
957		if (nmp->nm_readdirsize == 0)
958			nmp->nm_readdirsize = fsp->fs_rtmax;
959	}
960	if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
961		nmp->nm_readdirsize = NFS_DIRBLKSIZ;
962	if (fsp->fs_maxfilesize > 0 &&
963	    fsp->fs_maxfilesize < nmp->nm_maxfilesize)
964		nmp->nm_maxfilesize = fsp->fs_maxfilesize;
965	nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
966	nmp->nm_state |= NFSSTA_GOTFSINFO;
967}
968
969/*
970 * Get a pointer to my IP addrress and return it.
971 * Return NULL if you can't find one.
972 */
973u_int8_t *
974nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
975{
976	struct sockaddr_in sad, *sin;
977	struct rtentry *rt;
978	u_int8_t *retp = NULL;
979	static struct in_addr laddr;
980
981	*isinet6p = 0;
982	/*
983	 * Loop up a route for the destination address.
984	 */
985	if (nmp->nm_nam->sa_family == AF_INET) {
986		bzero(&sad, sizeof (sad));
987		sin = (struct sockaddr_in *)nmp->nm_nam;
988		sad.sin_family = AF_INET;
989		sad.sin_len = sizeof (struct sockaddr_in);
990		sad.sin_addr.s_addr = sin->sin_addr.s_addr;
991		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
992		rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
993		     curthread->td_proc->p_fibnum);
994		if (rt != NULL) {
995			if (rt->rt_ifp != NULL &&
996			    rt->rt_ifa != NULL &&
997			    ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
998			    rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
999				sin = (struct sockaddr_in *)
1000				    rt->rt_ifa->ifa_addr;
1001				laddr.s_addr = sin->sin_addr.s_addr;
1002				retp = (u_int8_t *)&laddr;
1003			}
1004			RTFREE_LOCKED(rt);
1005		}
1006		CURVNET_RESTORE();
1007#ifdef INET6
1008	} else if (nmp->nm_nam->sa_family == AF_INET6) {
1009		struct sockaddr_in6 sad6, *sin6;
1010		static struct in6_addr laddr6;
1011
1012		bzero(&sad6, sizeof (sad6));
1013		sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
1014		sad6.sin6_family = AF_INET6;
1015		sad6.sin6_len = sizeof (struct sockaddr_in6);
1016		sad6.sin6_addr = sin6->sin6_addr;
1017		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1018		rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
1019		     curthread->td_proc->p_fibnum);
1020		if (rt != NULL) {
1021			if (rt->rt_ifp != NULL &&
1022			    rt->rt_ifa != NULL &&
1023			    ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
1024			    rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
1025				sin6 = (struct sockaddr_in6 *)
1026				    rt->rt_ifa->ifa_addr;
1027				laddr6 = sin6->sin6_addr;
1028				retp = (u_int8_t *)&laddr6;
1029				*isinet6p = 1;
1030			}
1031			RTFREE_LOCKED(rt);
1032		}
1033		CURVNET_RESTORE();
1034#endif
1035	}
1036	return (retp);
1037}
1038
1039/*
1040 * Copy NFS uid, gids from the cred structure.
1041 */
1042void
1043newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
1044{
1045	int i;
1046
1047	KASSERT(cr->cr_ngroups >= 0,
1048	    ("newnfs_copyincred: negative cr_ngroups"));
1049	nfscr->nfsc_uid = cr->cr_uid;
1050	nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
1051	for (i = 0; i < nfscr->nfsc_ngroups; i++)
1052		nfscr->nfsc_groups[i] = cr->cr_groups[i];
1053}
1054
1055
1056/*
1057 * Do any client specific initialization.
1058 */
1059void
1060nfscl_init(void)
1061{
1062	static int inited = 0;
1063
1064	if (inited)
1065		return;
1066	inited = 1;
1067	nfscl_inited = 1;
1068	ncl_pbuf_freecnt = nswbuf / 2 + 1;
1069}
1070
1071/*
1072 * Check each of the attributes to be set, to ensure they aren't already
1073 * the correct value. Disable setting ones already correct.
1074 */
1075int
1076nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1077{
1078
1079	if (vap->va_mode != (mode_t)VNOVAL) {
1080		if (vap->va_mode == nvap->na_mode)
1081			vap->va_mode = (mode_t)VNOVAL;
1082	}
1083	if (vap->va_uid != (uid_t)VNOVAL) {
1084		if (vap->va_uid == nvap->na_uid)
1085			vap->va_uid = (uid_t)VNOVAL;
1086	}
1087	if (vap->va_gid != (gid_t)VNOVAL) {
1088		if (vap->va_gid == nvap->na_gid)
1089			vap->va_gid = (gid_t)VNOVAL;
1090	}
1091	if (vap->va_size != VNOVAL) {
1092		if (vap->va_size == nvap->na_size)
1093			vap->va_size = VNOVAL;
1094	}
1095
1096	/*
1097	 * We are normally called with only a partially initialized
1098	 * VAP.  Since the NFSv3 spec says that server may use the
1099	 * file attributes to store the verifier, the spec requires
1100	 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1101	 * in atime, but we can't really assume that all servers will
1102	 * so we ensure that our SETATTR sets both atime and mtime.
1103	 * Set the VA_UTIMES_NULL flag for this case, so that
1104	 * the server's time will be used.  This is needed to
1105	 * work around a bug in some Solaris servers, where
1106	 * setting the time TOCLIENT causes the Setattr RPC
1107	 * to return NFS_OK, but not set va_mode.
1108	 */
1109	if (vap->va_mtime.tv_sec == VNOVAL) {
1110		vfs_timestamp(&vap->va_mtime);
1111		vap->va_vaflags |= VA_UTIMES_NULL;
1112	}
1113	if (vap->va_atime.tv_sec == VNOVAL)
1114		vap->va_atime = vap->va_mtime;
1115	return (1);
1116}
1117
1118/*
1119 * Map nfsv4 errors to errno.h errors.
1120 * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1121 * error should only be returned for the Open, Create and Setattr Ops.
1122 * As such, most calls can just pass in 0 for those arguments.
1123 */
1124APPLESTATIC int
1125nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1126{
1127	struct proc *p;
1128
1129	if (error < 10000)
1130		return (error);
1131	if (td != NULL)
1132		p = td->td_proc;
1133	else
1134		p = NULL;
1135	switch (error) {
1136	case NFSERR_BADOWNER:
1137		tprintf(p, LOG_INFO,
1138		    "No name and/or group mapping for uid,gid:(%d,%d)\n",
1139		    uid, gid);
1140		return (EPERM);
1141	case NFSERR_BADNAME:
1142	case NFSERR_BADCHAR:
1143		printf("nfsv4 char/name not handled by server\n");
1144		return (ENOENT);
1145	case NFSERR_STALECLIENTID:
1146	case NFSERR_STALESTATEID:
1147	case NFSERR_EXPIRED:
1148	case NFSERR_BADSTATEID:
1149	case NFSERR_BADSESSION:
1150		printf("nfsv4 recover err returned %d\n", error);
1151		return (EIO);
1152	case NFSERR_BADHANDLE:
1153	case NFSERR_SERVERFAULT:
1154	case NFSERR_BADTYPE:
1155	case NFSERR_FHEXPIRED:
1156	case NFSERR_RESOURCE:
1157	case NFSERR_MOVED:
1158	case NFSERR_NOFILEHANDLE:
1159	case NFSERR_MINORVERMISMATCH:
1160	case NFSERR_OLDSTATEID:
1161	case NFSERR_BADSEQID:
1162	case NFSERR_LEASEMOVED:
1163	case NFSERR_RECLAIMBAD:
1164	case NFSERR_BADXDR:
1165	case NFSERR_OPILLEGAL:
1166		printf("nfsv4 client/server protocol prob err=%d\n",
1167		    error);
1168		return (EIO);
1169	default:
1170		tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1171		return (EIO);
1172	};
1173}
1174
1175/*
1176 * Check to see if the process for this owner exists. Return 1 if it doesn't
1177 * and 0 otherwise.
1178 */
1179int
1180nfscl_procdoesntexist(u_int8_t *own)
1181{
1182	union {
1183		u_int32_t	lval;
1184		u_int8_t	cval[4];
1185	} tl;
1186	struct proc *p;
1187	pid_t pid;
1188	int ret = 0;
1189
1190	tl.cval[0] = *own++;
1191	tl.cval[1] = *own++;
1192	tl.cval[2] = *own++;
1193	tl.cval[3] = *own++;
1194	pid = tl.lval;
1195	p = pfind_locked(pid);
1196	if (p == NULL)
1197		return (1);
1198	if (p->p_stats == NULL) {
1199		PROC_UNLOCK(p);
1200		return (0);
1201	}
1202	tl.cval[0] = *own++;
1203	tl.cval[1] = *own++;
1204	tl.cval[2] = *own++;
1205	tl.cval[3] = *own++;
1206	if (tl.lval != p->p_stats->p_start.tv_sec) {
1207		ret = 1;
1208	} else {
1209		tl.cval[0] = *own++;
1210		tl.cval[1] = *own++;
1211		tl.cval[2] = *own++;
1212		tl.cval[3] = *own;
1213		if (tl.lval != p->p_stats->p_start.tv_usec)
1214			ret = 1;
1215	}
1216	PROC_UNLOCK(p);
1217	return (ret);
1218}
1219
1220/*
1221 * - nfs pseudo system call for the client
1222 */
1223/*
1224 * MPSAFE
1225 */
1226static int
1227nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1228{
1229	struct file *fp;
1230	struct nfscbd_args nfscbdarg;
1231	struct nfsd_nfscbd_args nfscbdarg2;
1232	struct nameidata nd;
1233	struct nfscl_dumpmntopts dumpmntopts;
1234	cap_rights_t rights;
1235	char *buf;
1236	int error;
1237
1238	if (uap->flag & NFSSVC_CBADDSOCK) {
1239		error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1240		if (error)
1241			return (error);
1242		/*
1243		 * Since we don't know what rights might be required,
1244		 * pretend that we need them all. It is better to be too
1245		 * careful than too reckless.
1246		 */
1247		error = fget(td, nfscbdarg.sock,
1248		    cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
1249		if (error)
1250			return (error);
1251		if (fp->f_type != DTYPE_SOCKET) {
1252			fdrop(fp, td);
1253			return (EPERM);
1254		}
1255		error = nfscbd_addsock(fp);
1256		fdrop(fp, td);
1257		if (!error && nfscl_enablecallb == 0) {
1258			nfsv4_cbport = nfscbdarg.port;
1259			nfscl_enablecallb = 1;
1260		}
1261	} else if (uap->flag & NFSSVC_NFSCBD) {
1262		if (uap->argp == NULL)
1263			return (EINVAL);
1264		error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1265		    sizeof(nfscbdarg2));
1266		if (error)
1267			return (error);
1268		error = nfscbd_nfsd(td, &nfscbdarg2);
1269	} else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
1270		error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
1271		if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
1272		    dumpmntopts.ndmnt_blen > 1024))
1273			error = EINVAL;
1274		if (error == 0)
1275			error = nfsrv_lookupfilename(&nd,
1276			    dumpmntopts.ndmnt_fname, td);
1277		if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
1278		    "nfs") != 0) {
1279			vput(nd.ni_vp);
1280			error = EINVAL;
1281		}
1282		if (error == 0) {
1283			buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
1284			nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
1285			    dumpmntopts.ndmnt_blen);
1286			vput(nd.ni_vp);
1287			error = copyout(buf, dumpmntopts.ndmnt_buf,
1288			    dumpmntopts.ndmnt_blen);
1289			free(buf, M_TEMP);
1290		}
1291	} else {
1292		error = EINVAL;
1293	}
1294	return (error);
1295}
1296
1297extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1298
1299/*
1300 * Called once to initialize data structures...
1301 */
1302static int
1303nfscl_modevent(module_t mod, int type, void *data)
1304{
1305	int error = 0;
1306	static int loaded = 0;
1307
1308	switch (type) {
1309	case MOD_LOAD:
1310		if (loaded)
1311			return (0);
1312		newnfs_portinit();
1313		mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
1314		    MTX_DEF);
1315		mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1316		nfscl_init();
1317		NFSD_LOCK();
1318		nfsrvd_cbinit(0);
1319		NFSD_UNLOCK();
1320		ncl_call_invalcaches = ncl_invalcaches;
1321		nfsd_call_nfscl = nfssvc_nfscl;
1322		loaded = 1;
1323		break;
1324
1325	case MOD_UNLOAD:
1326		if (nfs_numnfscbd != 0) {
1327			error = EBUSY;
1328			break;
1329		}
1330
1331		/*
1332		 * XXX: Unloading of nfscl module is unsupported.
1333		 */
1334#if 0
1335		ncl_call_invalcaches = NULL;
1336		nfsd_call_nfscl = NULL;
1337		/* and get rid of the mutexes */
1338		mtx_destroy(&nfs_clstate_mutex);
1339		mtx_destroy(&ncl_iod_mutex);
1340		loaded = 0;
1341		break;
1342#else
1343		/* FALLTHROUGH */
1344#endif
1345	default:
1346		error = EOPNOTSUPP;
1347		break;
1348	}
1349	return error;
1350}
1351static moduledata_t nfscl_mod = {
1352	"nfscl",
1353	nfscl_modevent,
1354	NULL,
1355};
1356DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
1357
1358/* So that loader and kldload(2) can find us, wherever we are.. */
1359MODULE_VERSION(nfscl, 1);
1360MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1361MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
1362MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
1363MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
1364
1365