nfs_clport.c revision 280258
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/10/sys/fs/nfsclient/nfs_clport.c 280258 2015-03-19 13:37:36Z rwatson $");
36
37#include "opt_inet6.h"
38#include "opt_kdtrace.h"
39
40#include <sys/capsicum.h>
41
42/*
43 * generally, I don't like #includes inside .h files, but it seems to
44 * be the easiest way to handle the port.
45 */
46#include <sys/hash.h>
47#include <fs/nfs/nfsport.h>
48#include <netinet/if_ether.h>
49#include <net/if_types.h>
50
51#include <fs/nfsclient/nfs_kdtrace.h>
52
53#ifdef KDTRACE_HOOKS
54dtrace_nfsclient_attrcache_flush_probe_func_t
55		dtrace_nfscl_attrcache_flush_done_probe;
56uint32_t	nfscl_attrcache_flush_done_id;
57
58dtrace_nfsclient_attrcache_get_hit_probe_func_t
59		dtrace_nfscl_attrcache_get_hit_probe;
60uint32_t	nfscl_attrcache_get_hit_id;
61
62dtrace_nfsclient_attrcache_get_miss_probe_func_t
63		dtrace_nfscl_attrcache_get_miss_probe;
64uint32_t	nfscl_attrcache_get_miss_id;
65
66dtrace_nfsclient_attrcache_load_probe_func_t
67		dtrace_nfscl_attrcache_load_done_probe;
68uint32_t	nfscl_attrcache_load_done_id;
69#endif /* !KDTRACE_HOOKS */
70
71extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
72extern struct vop_vector newnfs_vnodeops;
73extern struct vop_vector newnfs_fifoops;
74extern uma_zone_t newnfsnode_zone;
75extern struct buf_ops buf_ops_newnfs;
76extern int ncl_pbuf_freecnt;
77extern short nfsv4_cbport;
78extern int nfscl_enablecallb;
79extern int nfs_numnfscbd;
80extern int nfscl_inited;
81struct mtx nfs_clstate_mutex;
82struct mtx ncl_iod_mutex;
83NFSDLOCKMUTEX;
84
85extern void (*ncl_call_invalcaches)(struct vnode *);
86
87/*
88 * Comparison function for vfs_hash functions.
89 */
90int
91newnfs_vncmpf(struct vnode *vp, void *arg)
92{
93	struct nfsfh *nfhp = (struct nfsfh *)arg;
94	struct nfsnode *np = VTONFS(vp);
95
96	if (np->n_fhp->nfh_len != nfhp->nfh_len ||
97	    NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
98		return (1);
99	return (0);
100}
101
102/*
103 * Look up a vnode/nfsnode by file handle.
104 * Callers must check for mount points!!
105 * In all cases, a pointer to a
106 * nfsnode structure is returned.
107 * This variant takes a "struct nfsfh *" as second argument and uses
108 * that structure up, either by hanging off the nfsnode or FREEing it.
109 */
110int
111nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
112    struct componentname *cnp, struct thread *td, struct nfsnode **npp,
113    void *stuff, int lkflags)
114{
115	struct nfsnode *np, *dnp;
116	struct vnode *vp, *nvp;
117	struct nfsv4node *newd, *oldd;
118	int error;
119	u_int hash;
120	struct nfsmount *nmp;
121
122	nmp = VFSTONFS(mntp);
123	dnp = VTONFS(dvp);
124	*npp = NULL;
125
126	hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
127
128	error = vfs_hash_get(mntp, hash, lkflags,
129	    td, &nvp, newnfs_vncmpf, nfhp);
130	if (error == 0 && nvp != NULL) {
131		/*
132		 * I believe there is a slight chance that vgonel() could
133		 * get called on this vnode between when NFSVOPLOCK() drops
134		 * the VI_LOCK() and vget() acquires it again, so that it
135		 * hasn't yet had v_usecount incremented. If this were to
136		 * happen, the VI_DOOMED flag would be set, so check for
137		 * that here. Since we now have the v_usecount incremented,
138		 * we should be ok until we vrele() it, if the VI_DOOMED
139		 * flag isn't set now.
140		 */
141		VI_LOCK(nvp);
142		if ((nvp->v_iflag & VI_DOOMED)) {
143			VI_UNLOCK(nvp);
144			vrele(nvp);
145			error = ENOENT;
146		} else {
147			VI_UNLOCK(nvp);
148		}
149	}
150	if (error) {
151		FREE((caddr_t)nfhp, M_NFSFH);
152		return (error);
153	}
154	if (nvp != NULL) {
155		np = VTONFS(nvp);
156		/*
157		 * For NFSv4, check to see if it is the same name and
158		 * replace the name, if it is different.
159		 */
160		oldd = newd = NULL;
161		if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
162		    nvp->v_type == VREG &&
163		    (np->n_v4->n4_namelen != cnp->cn_namelen ||
164		     NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
165		     cnp->cn_namelen) ||
166		     dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
167		     NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
168		     dnp->n_fhp->nfh_len))) {
169		    MALLOC(newd, struct nfsv4node *,
170			sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
171			+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
172		    NFSLOCKNODE(np);
173		    if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
174			&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
175			 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
176			 cnp->cn_namelen) ||
177			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
178			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
179			 dnp->n_fhp->nfh_len))) {
180			oldd = np->n_v4;
181			np->n_v4 = newd;
182			newd = NULL;
183			np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
184			np->n_v4->n4_namelen = cnp->cn_namelen;
185			NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
186			    dnp->n_fhp->nfh_len);
187			NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
188			    cnp->cn_namelen);
189		    }
190		    NFSUNLOCKNODE(np);
191		}
192		if (newd != NULL)
193			FREE((caddr_t)newd, M_NFSV4NODE);
194		if (oldd != NULL)
195			FREE((caddr_t)oldd, M_NFSV4NODE);
196		*npp = np;
197		FREE((caddr_t)nfhp, M_NFSFH);
198		return (0);
199	}
200	np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
201
202	error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
203	if (error) {
204		uma_zfree(newnfsnode_zone, np);
205		FREE((caddr_t)nfhp, M_NFSFH);
206		return (error);
207	}
208	vp = nvp;
209	KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
210	vp->v_bufobj.bo_ops = &buf_ops_newnfs;
211	vp->v_data = np;
212	np->n_vnode = vp;
213	/*
214	 * Initialize the mutex even if the vnode is going to be a loser.
215	 * This simplifies the logic in reclaim, which can then unconditionally
216	 * destroy the mutex (in the case of the loser, or if hash_insert
217	 * happened to return an error no special casing is needed).
218	 */
219	mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
220
221	/*
222	 * Are we getting the root? If so, make sure the vnode flags
223	 * are correct
224	 */
225	if ((nfhp->nfh_len == nmp->nm_fhsize) &&
226	    !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
227		if (vp->v_type == VNON)
228			vp->v_type = VDIR;
229		vp->v_vflag |= VV_ROOT;
230	}
231
232	np->n_fhp = nfhp;
233	/*
234	 * For NFSv4, we have to attach the directory file handle and
235	 * file name, so that Open Ops can be done later.
236	 */
237	if (nmp->nm_flag & NFSMNT_NFSV4) {
238		MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
239		    + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
240		    M_WAITOK);
241		np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
242		np->n_v4->n4_namelen = cnp->cn_namelen;
243		NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
244		    dnp->n_fhp->nfh_len);
245		NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
246		    cnp->cn_namelen);
247	} else {
248		np->n_v4 = NULL;
249	}
250
251	/*
252	 * NFS supports recursive and shared locking.
253	 */
254	lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
255	VN_LOCK_AREC(vp);
256	VN_LOCK_ASHARE(vp);
257	error = insmntque(vp, mntp);
258	if (error != 0) {
259		*npp = NULL;
260		mtx_destroy(&np->n_mtx);
261		FREE((caddr_t)nfhp, M_NFSFH);
262		if (np->n_v4 != NULL)
263			FREE((caddr_t)np->n_v4, M_NFSV4NODE);
264		uma_zfree(newnfsnode_zone, np);
265		return (error);
266	}
267	error = vfs_hash_insert(vp, hash, lkflags,
268	    td, &nvp, newnfs_vncmpf, nfhp);
269	if (error)
270		return (error);
271	if (nvp != NULL) {
272		*npp = VTONFS(nvp);
273		/* vfs_hash_insert() vput()'s the losing vnode */
274		return (0);
275	}
276	*npp = np;
277
278	return (0);
279}
280
281/*
282 * Anothe variant of nfs_nget(). This one is only used by reopen. It
283 * takes almost the same args as nfs_nget(), but only succeeds if an entry
284 * exists in the cache. (Since files should already be "open" with a
285 * vnode ref cnt on the node when reopen calls this, it should always
286 * succeed.)
287 * Also, don't get a vnode lock, since it may already be locked by some
288 * other process that is handling it. This is ok, since all other threads
289 * on the client are blocked by the nfsc_lock being exclusively held by the
290 * caller of this function.
291 */
292int
293nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
294    struct thread *td, struct nfsnode **npp)
295{
296	struct vnode *nvp;
297	u_int hash;
298	struct nfsfh *nfhp;
299	int error;
300
301	*npp = NULL;
302	/* For forced dismounts, just return error. */
303	if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
304		return (EINTR);
305	MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
306	    M_NFSFH, M_WAITOK);
307	bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
308	nfhp->nfh_len = fhsize;
309
310	hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
311
312	/*
313	 * First, try to get the vnode locked, but don't block for the lock.
314	 */
315	error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
316	    newnfs_vncmpf, nfhp);
317	if (error == 0 && nvp != NULL) {
318		NFSVOPUNLOCK(nvp, 0);
319	} else if (error == EBUSY) {
320		/*
321		 * The LK_EXCLOTHER lock type tells nfs_lock1() to not try
322		 * and lock the vnode, but just get a v_usecount on it.
323		 * LK_NOWAIT is set so that when vget() returns ENOENT,
324		 * vfs_hash_get() fails instead of looping.
325		 * If this succeeds, it is safe so long as a vflush() with
326		 * FORCECLOSE has not been done. Since the Renew thread is
327		 * stopped and the MNTK_UNMOUNTF flag is set before doing
328		 * a vflush() with FORCECLOSE, we should be ok here.
329		 */
330		if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
331			error = EINTR;
332		else
333			error = vfs_hash_get(mntp, hash,
334			    (LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
335			    newnfs_vncmpf, nfhp);
336	}
337	FREE(nfhp, M_NFSFH);
338	if (error)
339		return (error);
340	if (nvp != NULL) {
341		*npp = VTONFS(nvp);
342		return (0);
343	}
344	return (EINVAL);
345}
346
347/*
348 * Load the attribute cache (that lives in the nfsnode entry) with
349 * the attributes of the second argument and
350 * Iff vaper not NULL
351 *    copy the attributes to *vaper
352 * Similar to nfs_loadattrcache(), except the attributes are passed in
353 * instead of being parsed out of the mbuf list.
354 */
355int
356nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
357    void *stuff, int writeattr, int dontshrink)
358{
359	struct vnode *vp = *vpp;
360	struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
361	struct nfsnode *np;
362	struct nfsmount *nmp;
363	struct timespec mtime_save;
364	u_quad_t nsize;
365	int setnsize;
366
367	/*
368	 * If v_type == VNON it is a new node, so fill in the v_type,
369	 * n_mtime fields. Check to see if it represents a special
370	 * device, and if so, check for a possible alias. Once the
371	 * correct vnode has been obtained, fill in the rest of the
372	 * information.
373	 */
374	np = VTONFS(vp);
375	NFSLOCKNODE(np);
376	if (vp->v_type != nvap->va_type) {
377		vp->v_type = nvap->va_type;
378		if (vp->v_type == VFIFO)
379			vp->v_op = &newnfs_fifoops;
380		np->n_mtime = nvap->va_mtime;
381	}
382	nmp = VFSTONFS(vp->v_mount);
383	vap = &np->n_vattr.na_vattr;
384	mtime_save = vap->va_mtime;
385	if (writeattr) {
386		np->n_vattr.na_filerev = nap->na_filerev;
387		np->n_vattr.na_size = nap->na_size;
388		np->n_vattr.na_mtime = nap->na_mtime;
389		np->n_vattr.na_ctime = nap->na_ctime;
390		np->n_vattr.na_fsid = nap->na_fsid;
391		np->n_vattr.na_mode = nap->na_mode;
392	} else {
393		NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
394		    sizeof (struct nfsvattr));
395	}
396
397	/*
398	 * For NFSv4, if the node's fsid is not equal to the mount point's
399	 * fsid, return the low order 32bits of the node's fsid. This
400	 * allows getcwd(3) to work. There is a chance that the fsid might
401	 * be the same as a local fs, but since this is in an NFS mount
402	 * point, I don't think that will cause any problems?
403	 */
404	if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
405	    (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
406	     nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
407		/*
408		 * va_fsid needs to be set to some value derived from
409		 * np->n_vattr.na_filesid that is not equal
410		 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
411		 * from the value used for the top level server volume
412		 * in the mounted subtree.
413		 */
414		if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
415		    (uint32_t)np->n_vattr.na_filesid[0])
416			vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
417		else
418			vap->va_fsid = (uint32_t)hash32_buf(
419			    np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
420	} else
421		vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
422	np->n_attrstamp = time_second;
423	setnsize = 0;
424	nsize = 0;
425	if (vap->va_size != np->n_size) {
426		if (vap->va_type == VREG) {
427			if (dontshrink && vap->va_size < np->n_size) {
428				/*
429				 * We've been told not to shrink the file;
430				 * zero np->n_attrstamp to indicate that
431				 * the attributes are stale.
432				 */
433				vap->va_size = np->n_size;
434				np->n_attrstamp = 0;
435				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
436				vnode_pager_setsize(vp, np->n_size);
437			} else if (np->n_flag & NMODIFIED) {
438				/*
439				 * We've modified the file: Use the larger
440				 * of our size, and the server's size.
441				 */
442				if (vap->va_size < np->n_size) {
443					vap->va_size = np->n_size;
444				} else {
445					np->n_size = vap->va_size;
446					np->n_flag |= NSIZECHANGED;
447				}
448				vnode_pager_setsize(vp, np->n_size);
449			} else if (vap->va_size < np->n_size) {
450				/*
451				 * When shrinking the size, the call to
452				 * vnode_pager_setsize() cannot be done
453				 * with the mutex held, so delay it until
454				 * after the mtx_unlock call.
455				 */
456				nsize = np->n_size = vap->va_size;
457				np->n_flag |= NSIZECHANGED;
458				setnsize = 1;
459			} else {
460				np->n_size = vap->va_size;
461				np->n_flag |= NSIZECHANGED;
462				vnode_pager_setsize(vp, np->n_size);
463			}
464		} else {
465			np->n_size = vap->va_size;
466		}
467	}
468	/*
469	 * The following checks are added to prevent a race between (say)
470	 * a READDIR+ and a WRITE.
471	 * READDIR+, WRITE requests sent out.
472	 * READDIR+ resp, WRITE resp received on client.
473	 * However, the WRITE resp was handled before the READDIR+ resp
474	 * causing the post op attrs from the write to be loaded first
475	 * and the attrs from the READDIR+ to be loaded later. If this
476	 * happens, we have stale attrs loaded into the attrcache.
477	 * We detect this by for the mtime moving back. We invalidate the
478	 * attrcache when this happens.
479	 */
480	if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
481		/* Size changed or mtime went backwards */
482		np->n_attrstamp = 0;
483		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
484	}
485	if (vaper != NULL) {
486		NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
487		if (np->n_flag & NCHG) {
488			if (np->n_flag & NACC)
489				vaper->va_atime = np->n_atim;
490			if (np->n_flag & NUPD)
491				vaper->va_mtime = np->n_mtim;
492		}
493	}
494#ifdef KDTRACE_HOOKS
495	if (np->n_attrstamp != 0)
496		KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
497#endif
498	NFSUNLOCKNODE(np);
499	if (setnsize)
500		vnode_pager_setsize(vp, nsize);
501	return (0);
502}
503
504/*
505 * Fill in the client id name. For these bytes:
506 * 1 - they must be unique
507 * 2 - they should be persistent across client reboots
508 * 1 is more critical than 2
509 * Use the mount point's unique id plus either the uuid or, if that
510 * isn't set, random junk.
511 */
512void
513nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
514{
515	int uuidlen;
516
517	/*
518	 * First, put in the 64bit mount point identifier.
519	 */
520	if (idlen >= sizeof (u_int64_t)) {
521		NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
522		cp += sizeof (u_int64_t);
523		idlen -= sizeof (u_int64_t);
524	}
525
526	/*
527	 * If uuid is non-zero length, use it.
528	 */
529	uuidlen = strlen(uuid);
530	if (uuidlen > 0 && idlen >= uuidlen) {
531		NFSBCOPY(uuid, cp, uuidlen);
532		cp += uuidlen;
533		idlen -= uuidlen;
534	}
535
536	/*
537	 * This only normally happens if the uuid isn't set.
538	 */
539	while (idlen > 0) {
540		*cp++ = (u_int8_t)(arc4random() % 256);
541		idlen--;
542	}
543}
544
545/*
546 * Fill in a lock owner name. For now, pid + the process's creation time.
547 */
548void
549nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
550{
551	union {
552		u_int32_t	lval;
553		u_int8_t	cval[4];
554	} tl;
555	struct proc *p;
556
557	if (id == NULL) {
558		printf("NULL id\n");
559		bzero(cp, NFSV4CL_LOCKNAMELEN);
560		return;
561	}
562	if ((flags & F_POSIX) != 0) {
563		p = (struct proc *)id;
564		tl.lval = p->p_pid;
565		*cp++ = tl.cval[0];
566		*cp++ = tl.cval[1];
567		*cp++ = tl.cval[2];
568		*cp++ = tl.cval[3];
569		tl.lval = p->p_stats->p_start.tv_sec;
570		*cp++ = tl.cval[0];
571		*cp++ = tl.cval[1];
572		*cp++ = tl.cval[2];
573		*cp++ = tl.cval[3];
574		tl.lval = p->p_stats->p_start.tv_usec;
575		*cp++ = tl.cval[0];
576		*cp++ = tl.cval[1];
577		*cp++ = tl.cval[2];
578		*cp = tl.cval[3];
579	} else if ((flags & F_FLOCK) != 0) {
580		bcopy(&id, cp, sizeof(id));
581		bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
582	} else {
583		printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
584		bzero(cp, NFSV4CL_LOCKNAMELEN);
585	}
586}
587
588/*
589 * Find the parent process for the thread passed in as an argument.
590 * If none exists, return NULL, otherwise return a thread for the parent.
591 * (Can be any of the threads, since it is only used for td->td_proc.)
592 */
593NFSPROC_T *
594nfscl_getparent(struct thread *td)
595{
596	struct proc *p;
597	struct thread *ptd;
598
599	if (td == NULL)
600		return (NULL);
601	p = td->td_proc;
602	if (p->p_pid == 0)
603		return (NULL);
604	p = p->p_pptr;
605	if (p == NULL)
606		return (NULL);
607	ptd = TAILQ_FIRST(&p->p_threads);
608	return (ptd);
609}
610
611/*
612 * Start up the renew kernel thread.
613 */
614static void
615start_nfscl(void *arg)
616{
617	struct nfsclclient *clp;
618	struct thread *td;
619
620	clp = (struct nfsclclient *)arg;
621	td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
622	nfscl_renewthread(clp, td);
623	kproc_exit(0);
624}
625
626void
627nfscl_start_renewthread(struct nfsclclient *clp)
628{
629
630	kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
631	    "nfscl");
632}
633
634/*
635 * Handle wcc_data.
636 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
637 * as the first Op after PutFH.
638 * (For NFSv4, the postop attributes are after the Op, so they can't be
639 *  parsed here. A separate call to nfscl_postop_attr() is required.)
640 */
641int
642nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
643    struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
644{
645	u_int32_t *tl;
646	struct nfsnode *np = VTONFS(vp);
647	struct nfsvattr nfsva;
648	int error = 0;
649
650	if (wccflagp != NULL)
651		*wccflagp = 0;
652	if (nd->nd_flag & ND_NFSV3) {
653		*flagp = 0;
654		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
655		if (*tl == newnfs_true) {
656			NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
657			if (wccflagp != NULL) {
658				mtx_lock(&np->n_mtx);
659				*wccflagp = (np->n_mtime.tv_sec ==
660				    fxdr_unsigned(u_int32_t, *(tl + 2)) &&
661				    np->n_mtime.tv_nsec ==
662				    fxdr_unsigned(u_int32_t, *(tl + 3)));
663				mtx_unlock(&np->n_mtx);
664			}
665		}
666		error = nfscl_postop_attr(nd, nap, flagp, stuff);
667	} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
668	    == (ND_NFSV4 | ND_V4WCCATTR)) {
669		error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
670		    NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
671		    NULL, NULL, NULL, NULL, NULL);
672		if (error)
673			return (error);
674		/*
675		 * Get rid of Op# and status for next op.
676		 */
677		NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
678		if (*++tl)
679			nd->nd_flag |= ND_NOMOREDATA;
680		if (wccflagp != NULL &&
681		    nfsva.na_vattr.va_mtime.tv_sec != 0) {
682			mtx_lock(&np->n_mtx);
683			*wccflagp = (np->n_mtime.tv_sec ==
684			    nfsva.na_vattr.va_mtime.tv_sec &&
685			    np->n_mtime.tv_nsec ==
686			    nfsva.na_vattr.va_mtime.tv_sec);
687			mtx_unlock(&np->n_mtx);
688		}
689	}
690nfsmout:
691	return (error);
692}
693
694/*
695 * Get postop attributes.
696 */
697int
698nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
699    void *stuff)
700{
701	u_int32_t *tl;
702	int error = 0;
703
704	*retp = 0;
705	if (nd->nd_flag & ND_NOMOREDATA)
706		return (error);
707	if (nd->nd_flag & ND_NFSV3) {
708		NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
709		*retp = fxdr_unsigned(int, *tl);
710	} else if (nd->nd_flag & ND_NFSV4) {
711		/*
712		 * For NFSv4, the postop attr are at the end, so no point
713		 * in looking if nd_repstat != 0.
714		 */
715		if (!nd->nd_repstat) {
716			NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
717			if (*(tl + 1))
718				/* should never happen since nd_repstat != 0 */
719				nd->nd_flag |= ND_NOMOREDATA;
720			else
721				*retp = 1;
722		}
723	} else if (!nd->nd_repstat) {
724		/* For NFSv2, the attributes are here iff nd_repstat == 0 */
725		*retp = 1;
726	}
727	if (*retp) {
728		error = nfsm_loadattr(nd, nap);
729		if (error)
730			*retp = 0;
731	}
732nfsmout:
733	return (error);
734}
735
736/*
737 * Fill in the setable attributes. The full argument indicates whether
738 * to fill in them all or just mode and time.
739 */
740void
741nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
742    struct vnode *vp, int flags, u_int32_t rdev)
743{
744	u_int32_t *tl;
745	struct nfsv2_sattr *sp;
746	nfsattrbit_t attrbits;
747
748	switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
749	case ND_NFSV2:
750		NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
751		if (vap->va_mode == (mode_t)VNOVAL)
752			sp->sa_mode = newnfs_xdrneg1;
753		else
754			sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
755		if (vap->va_uid == (uid_t)VNOVAL)
756			sp->sa_uid = newnfs_xdrneg1;
757		else
758			sp->sa_uid = txdr_unsigned(vap->va_uid);
759		if (vap->va_gid == (gid_t)VNOVAL)
760			sp->sa_gid = newnfs_xdrneg1;
761		else
762			sp->sa_gid = txdr_unsigned(vap->va_gid);
763		if (flags & NFSSATTR_SIZE0)
764			sp->sa_size = 0;
765		else if (flags & NFSSATTR_SIZENEG1)
766			sp->sa_size = newnfs_xdrneg1;
767		else if (flags & NFSSATTR_SIZERDEV)
768			sp->sa_size = txdr_unsigned(rdev);
769		else
770			sp->sa_size = txdr_unsigned(vap->va_size);
771		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
772		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
773		break;
774	case ND_NFSV3:
775		if (vap->va_mode != (mode_t)VNOVAL) {
776			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
777			*tl++ = newnfs_true;
778			*tl = txdr_unsigned(vap->va_mode);
779		} else {
780			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
781			*tl = newnfs_false;
782		}
783		if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
784			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
785			*tl++ = newnfs_true;
786			*tl = txdr_unsigned(vap->va_uid);
787		} else {
788			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
789			*tl = newnfs_false;
790		}
791		if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
792			NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
793			*tl++ = newnfs_true;
794			*tl = txdr_unsigned(vap->va_gid);
795		} else {
796			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
797			*tl = newnfs_false;
798		}
799		if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
800			NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
801			*tl++ = newnfs_true;
802			txdr_hyper(vap->va_size, tl);
803		} else {
804			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
805			*tl = newnfs_false;
806		}
807		if (vap->va_atime.tv_sec != VNOVAL) {
808			if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
809				NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
810				*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
811				txdr_nfsv3time(&vap->va_atime, tl);
812			} else {
813				NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
814				*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
815			}
816		} else {
817			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
818			*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
819		}
820		if (vap->va_mtime.tv_sec != VNOVAL) {
821			if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
822				NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
823				*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
824				txdr_nfsv3time(&vap->va_mtime, tl);
825			} else {
826				NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
827				*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
828			}
829		} else {
830			NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
831			*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
832		}
833		break;
834	case ND_NFSV4:
835		NFSZERO_ATTRBIT(&attrbits);
836		if (vap->va_mode != (mode_t)VNOVAL)
837			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
838		if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
839			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
840		if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
841			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
842		if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
843			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
844		if (vap->va_atime.tv_sec != VNOVAL)
845			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
846		if (vap->va_mtime.tv_sec != VNOVAL)
847			NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
848		(void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
849		    &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
850		break;
851	};
852}
853
854/*
855 * nfscl_request() - mostly a wrapper for newnfs_request().
856 */
857int
858nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
859    struct ucred *cred, void *stuff)
860{
861	int ret, vers;
862	struct nfsmount *nmp;
863
864	nmp = VFSTONFS(vp->v_mount);
865	if (nd->nd_flag & ND_NFSV4)
866		vers = NFS_VER4;
867	else if (nd->nd_flag & ND_NFSV3)
868		vers = NFS_VER3;
869	else
870		vers = NFS_VER2;
871	ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
872		NFS_PROG, vers, NULL, 1, NULL, NULL);
873	return (ret);
874}
875
876/*
877 * fill in this bsden's variant of statfs using nfsstatfs.
878 */
879void
880nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
881{
882	struct statfs *sbp = (struct statfs *)statfs;
883
884	if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
885		sbp->f_bsize = NFS_FABLKSIZE;
886		sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
887		sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
888		/*
889		 * Although sf_abytes is uint64_t and f_bavail is int64_t,
890		 * the value after dividing by NFS_FABLKSIZE is small
891		 * enough that it will fit in 63bits, so it is ok to
892		 * assign it to f_bavail without fear that it will become
893		 * negative.
894		 */
895		sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
896		sbp->f_files = sfp->sf_tfiles;
897		/* Since f_ffree is int64_t, clip it to 63bits. */
898		if (sfp->sf_ffiles > INT64_MAX)
899			sbp->f_ffree = INT64_MAX;
900		else
901			sbp->f_ffree = sfp->sf_ffiles;
902	} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
903		/*
904		 * The type casts to (int32_t) ensure that this code is
905		 * compatible with the old NFS client, in that it will
906		 * propagate bit31 to the high order bits. This may or may
907		 * not be correct for NFSv2, but since it is a legacy
908		 * environment, I'd rather retain backwards compatibility.
909		 */
910		sbp->f_bsize = (int32_t)sfp->sf_bsize;
911		sbp->f_blocks = (int32_t)sfp->sf_blocks;
912		sbp->f_bfree = (int32_t)sfp->sf_bfree;
913		sbp->f_bavail = (int32_t)sfp->sf_bavail;
914		sbp->f_files = 0;
915		sbp->f_ffree = 0;
916	}
917}
918
919/*
920 * Use the fsinfo stuff to update the mount point.
921 */
922void
923nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
924{
925
926	if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
927	    fsp->fs_wtpref >= NFS_FABLKSIZE)
928		nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
929		    ~(NFS_FABLKSIZE - 1);
930	if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
931		nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
932		if (nmp->nm_wsize == 0)
933			nmp->nm_wsize = fsp->fs_wtmax;
934	}
935	if (nmp->nm_wsize < NFS_FABLKSIZE)
936		nmp->nm_wsize = NFS_FABLKSIZE;
937	if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
938	    fsp->fs_rtpref >= NFS_FABLKSIZE)
939		nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
940		    ~(NFS_FABLKSIZE - 1);
941	if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
942		nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
943		if (nmp->nm_rsize == 0)
944			nmp->nm_rsize = fsp->fs_rtmax;
945	}
946	if (nmp->nm_rsize < NFS_FABLKSIZE)
947		nmp->nm_rsize = NFS_FABLKSIZE;
948	if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
949	    && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
950		nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
951		    ~(NFS_DIRBLKSIZ - 1);
952	if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
953		nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
954		if (nmp->nm_readdirsize == 0)
955			nmp->nm_readdirsize = fsp->fs_rtmax;
956	}
957	if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
958		nmp->nm_readdirsize = NFS_DIRBLKSIZ;
959	if (fsp->fs_maxfilesize > 0 &&
960	    fsp->fs_maxfilesize < nmp->nm_maxfilesize)
961		nmp->nm_maxfilesize = fsp->fs_maxfilesize;
962	nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
963	nmp->nm_state |= NFSSTA_GOTFSINFO;
964}
965
966/*
967 * Get a pointer to my IP addrress and return it.
968 * Return NULL if you can't find one.
969 */
970u_int8_t *
971nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
972{
973	struct sockaddr_in sad, *sin;
974	struct rtentry *rt;
975	u_int8_t *retp = NULL;
976	static struct in_addr laddr;
977
978	*isinet6p = 0;
979	/*
980	 * Loop up a route for the destination address.
981	 */
982	if (nmp->nm_nam->sa_family == AF_INET) {
983		bzero(&sad, sizeof (sad));
984		sin = (struct sockaddr_in *)nmp->nm_nam;
985		sad.sin_family = AF_INET;
986		sad.sin_len = sizeof (struct sockaddr_in);
987		sad.sin_addr.s_addr = sin->sin_addr.s_addr;
988		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
989		rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
990		     curthread->td_proc->p_fibnum);
991		if (rt != NULL) {
992			if (rt->rt_ifp != NULL &&
993			    rt->rt_ifa != NULL &&
994			    ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
995			    rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
996				sin = (struct sockaddr_in *)
997				    rt->rt_ifa->ifa_addr;
998				laddr.s_addr = sin->sin_addr.s_addr;
999				retp = (u_int8_t *)&laddr;
1000			}
1001			RTFREE_LOCKED(rt);
1002		}
1003		CURVNET_RESTORE();
1004#ifdef INET6
1005	} else if (nmp->nm_nam->sa_family == AF_INET6) {
1006		struct sockaddr_in6 sad6, *sin6;
1007		static struct in6_addr laddr6;
1008
1009		bzero(&sad6, sizeof (sad6));
1010		sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
1011		sad6.sin6_family = AF_INET6;
1012		sad6.sin6_len = sizeof (struct sockaddr_in6);
1013		sad6.sin6_addr = sin6->sin6_addr;
1014		CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1015		rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
1016		     curthread->td_proc->p_fibnum);
1017		if (rt != NULL) {
1018			if (rt->rt_ifp != NULL &&
1019			    rt->rt_ifa != NULL &&
1020			    ((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
1021			    rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
1022				sin6 = (struct sockaddr_in6 *)
1023				    rt->rt_ifa->ifa_addr;
1024				laddr6 = sin6->sin6_addr;
1025				retp = (u_int8_t *)&laddr6;
1026				*isinet6p = 1;
1027			}
1028			RTFREE_LOCKED(rt);
1029		}
1030		CURVNET_RESTORE();
1031#endif
1032	}
1033	return (retp);
1034}
1035
1036/*
1037 * Copy NFS uid, gids from the cred structure.
1038 */
1039void
1040newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
1041{
1042	int i;
1043
1044	KASSERT(cr->cr_ngroups >= 0,
1045	    ("newnfs_copyincred: negative cr_ngroups"));
1046	nfscr->nfsc_uid = cr->cr_uid;
1047	nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
1048	for (i = 0; i < nfscr->nfsc_ngroups; i++)
1049		nfscr->nfsc_groups[i] = cr->cr_groups[i];
1050}
1051
1052
1053/*
1054 * Do any client specific initialization.
1055 */
1056void
1057nfscl_init(void)
1058{
1059	static int inited = 0;
1060
1061	if (inited)
1062		return;
1063	inited = 1;
1064	nfscl_inited = 1;
1065	ncl_pbuf_freecnt = nswbuf / 2 + 1;
1066}
1067
1068/*
1069 * Check each of the attributes to be set, to ensure they aren't already
1070 * the correct value. Disable setting ones already correct.
1071 */
1072int
1073nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1074{
1075
1076	if (vap->va_mode != (mode_t)VNOVAL) {
1077		if (vap->va_mode == nvap->na_mode)
1078			vap->va_mode = (mode_t)VNOVAL;
1079	}
1080	if (vap->va_uid != (uid_t)VNOVAL) {
1081		if (vap->va_uid == nvap->na_uid)
1082			vap->va_uid = (uid_t)VNOVAL;
1083	}
1084	if (vap->va_gid != (gid_t)VNOVAL) {
1085		if (vap->va_gid == nvap->na_gid)
1086			vap->va_gid = (gid_t)VNOVAL;
1087	}
1088	if (vap->va_size != VNOVAL) {
1089		if (vap->va_size == nvap->na_size)
1090			vap->va_size = VNOVAL;
1091	}
1092
1093	/*
1094	 * We are normally called with only a partially initialized
1095	 * VAP.  Since the NFSv3 spec says that server may use the
1096	 * file attributes to store the verifier, the spec requires
1097	 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1098	 * in atime, but we can't really assume that all servers will
1099	 * so we ensure that our SETATTR sets both atime and mtime.
1100	 */
1101	if (vap->va_mtime.tv_sec == VNOVAL)
1102		vfs_timestamp(&vap->va_mtime);
1103	if (vap->va_atime.tv_sec == VNOVAL)
1104		vap->va_atime = vap->va_mtime;
1105	return (1);
1106}
1107
1108/*
1109 * Map nfsv4 errors to errno.h errors.
1110 * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1111 * error should only be returned for the Open, Create and Setattr Ops.
1112 * As such, most calls can just pass in 0 for those arguments.
1113 */
1114APPLESTATIC int
1115nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1116{
1117	struct proc *p;
1118
1119	if (error < 10000)
1120		return (error);
1121	if (td != NULL)
1122		p = td->td_proc;
1123	else
1124		p = NULL;
1125	switch (error) {
1126	case NFSERR_BADOWNER:
1127		tprintf(p, LOG_INFO,
1128		    "No name and/or group mapping for uid,gid:(%d,%d)\n",
1129		    uid, gid);
1130		return (EPERM);
1131	case NFSERR_BADNAME:
1132	case NFSERR_BADCHAR:
1133		printf("nfsv4 char/name not handled by server\n");
1134		return (ENOENT);
1135	case NFSERR_STALECLIENTID:
1136	case NFSERR_STALESTATEID:
1137	case NFSERR_EXPIRED:
1138	case NFSERR_BADSTATEID:
1139	case NFSERR_BADSESSION:
1140		printf("nfsv4 recover err returned %d\n", error);
1141		return (EIO);
1142	case NFSERR_BADHANDLE:
1143	case NFSERR_SERVERFAULT:
1144	case NFSERR_BADTYPE:
1145	case NFSERR_FHEXPIRED:
1146	case NFSERR_RESOURCE:
1147	case NFSERR_MOVED:
1148	case NFSERR_NOFILEHANDLE:
1149	case NFSERR_MINORVERMISMATCH:
1150	case NFSERR_OLDSTATEID:
1151	case NFSERR_BADSEQID:
1152	case NFSERR_LEASEMOVED:
1153	case NFSERR_RECLAIMBAD:
1154	case NFSERR_BADXDR:
1155	case NFSERR_OPILLEGAL:
1156		printf("nfsv4 client/server protocol prob err=%d\n",
1157		    error);
1158		return (EIO);
1159	default:
1160		tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1161		return (EIO);
1162	};
1163}
1164
1165/*
1166 * Check to see if the process for this owner exists. Return 1 if it doesn't
1167 * and 0 otherwise.
1168 */
1169int
1170nfscl_procdoesntexist(u_int8_t *own)
1171{
1172	union {
1173		u_int32_t	lval;
1174		u_int8_t	cval[4];
1175	} tl;
1176	struct proc *p;
1177	pid_t pid;
1178	int ret = 0;
1179
1180	tl.cval[0] = *own++;
1181	tl.cval[1] = *own++;
1182	tl.cval[2] = *own++;
1183	tl.cval[3] = *own++;
1184	pid = tl.lval;
1185	p = pfind_locked(pid);
1186	if (p == NULL)
1187		return (1);
1188	if (p->p_stats == NULL) {
1189		PROC_UNLOCK(p);
1190		return (0);
1191	}
1192	tl.cval[0] = *own++;
1193	tl.cval[1] = *own++;
1194	tl.cval[2] = *own++;
1195	tl.cval[3] = *own++;
1196	if (tl.lval != p->p_stats->p_start.tv_sec) {
1197		ret = 1;
1198	} else {
1199		tl.cval[0] = *own++;
1200		tl.cval[1] = *own++;
1201		tl.cval[2] = *own++;
1202		tl.cval[3] = *own;
1203		if (tl.lval != p->p_stats->p_start.tv_usec)
1204			ret = 1;
1205	}
1206	PROC_UNLOCK(p);
1207	return (ret);
1208}
1209
1210/*
1211 * - nfs pseudo system call for the client
1212 */
1213/*
1214 * MPSAFE
1215 */
1216static int
1217nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1218{
1219	struct file *fp;
1220	struct nfscbd_args nfscbdarg;
1221	struct nfsd_nfscbd_args nfscbdarg2;
1222	struct nameidata nd;
1223	struct nfscl_dumpmntopts dumpmntopts;
1224	cap_rights_t rights;
1225	char *buf;
1226	int error;
1227
1228	if (uap->flag & NFSSVC_CBADDSOCK) {
1229		error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1230		if (error)
1231			return (error);
1232		/*
1233		 * Since we don't know what rights might be required,
1234		 * pretend that we need them all. It is better to be too
1235		 * careful than too reckless.
1236		 */
1237		error = fget(td, nfscbdarg.sock,
1238		    cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
1239		if (error)
1240			return (error);
1241		if (fp->f_type != DTYPE_SOCKET) {
1242			fdrop(fp, td);
1243			return (EPERM);
1244		}
1245		error = nfscbd_addsock(fp);
1246		fdrop(fp, td);
1247		if (!error && nfscl_enablecallb == 0) {
1248			nfsv4_cbport = nfscbdarg.port;
1249			nfscl_enablecallb = 1;
1250		}
1251	} else if (uap->flag & NFSSVC_NFSCBD) {
1252		if (uap->argp == NULL)
1253			return (EINVAL);
1254		error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1255		    sizeof(nfscbdarg2));
1256		if (error)
1257			return (error);
1258		error = nfscbd_nfsd(td, &nfscbdarg2);
1259	} else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
1260		error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
1261		if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
1262		    dumpmntopts.ndmnt_blen > 1024))
1263			error = EINVAL;
1264		if (error == 0)
1265			error = nfsrv_lookupfilename(&nd,
1266			    dumpmntopts.ndmnt_fname, td);
1267		if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
1268		    "nfs") != 0) {
1269			vput(nd.ni_vp);
1270			error = EINVAL;
1271		}
1272		if (error == 0) {
1273			buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
1274			nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
1275			    dumpmntopts.ndmnt_blen);
1276			vput(nd.ni_vp);
1277			error = copyout(buf, dumpmntopts.ndmnt_buf,
1278			    dumpmntopts.ndmnt_blen);
1279			free(buf, M_TEMP);
1280		}
1281	} else {
1282		error = EINVAL;
1283	}
1284	return (error);
1285}
1286
1287extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1288
1289/*
1290 * Called once to initialize data structures...
1291 */
1292static int
1293nfscl_modevent(module_t mod, int type, void *data)
1294{
1295	int error = 0;
1296	static int loaded = 0;
1297
1298	switch (type) {
1299	case MOD_LOAD:
1300		if (loaded)
1301			return (0);
1302		newnfs_portinit();
1303		mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
1304		    MTX_DEF);
1305		mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1306		nfscl_init();
1307		NFSD_LOCK();
1308		nfsrvd_cbinit(0);
1309		NFSD_UNLOCK();
1310		ncl_call_invalcaches = ncl_invalcaches;
1311		nfsd_call_nfscl = nfssvc_nfscl;
1312		loaded = 1;
1313		break;
1314
1315	case MOD_UNLOAD:
1316		if (nfs_numnfscbd != 0) {
1317			error = EBUSY;
1318			break;
1319		}
1320
1321		/*
1322		 * XXX: Unloading of nfscl module is unsupported.
1323		 */
1324#if 0
1325		ncl_call_invalcaches = NULL;
1326		nfsd_call_nfscl = NULL;
1327		/* and get rid of the mutexes */
1328		mtx_destroy(&nfs_clstate_mutex);
1329		mtx_destroy(&ncl_iod_mutex);
1330		loaded = 0;
1331		break;
1332#else
1333		/* FALLTHROUGH */
1334#endif
1335	default:
1336		error = EOPNOTSUPP;
1337		break;
1338	}
1339	return error;
1340}
1341static moduledata_t nfscl_mod = {
1342	"nfscl",
1343	nfscl_modevent,
1344	NULL,
1345};
1346DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
1347
1348/* So that loader and kldload(2) can find us, wherever we are.. */
1349MODULE_VERSION(nfscl, 1);
1350MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1351MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
1352MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
1353MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
1354
1355