netfront.c revision 315676
1/*-
2 * Copyright (c) 2004-2006 Kip Macy
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/xen/netfront/netfront.c 315676 2017-03-21 09:38:59Z royger $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/sockio.h>
36#include <sys/mbuf.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/kernel.h>
40#include <sys/socket.h>
41#include <sys/sysctl.h>
42#include <sys/queue.h>
43#include <sys/lock.h>
44#include <sys/sx.h>
45#include <sys/limits.h>
46
47#include <net/if.h>
48#include <net/if_arp.h>
49#include <net/ethernet.h>
50#include <net/if_dl.h>
51#include <net/if_media.h>
52
53#include <net/bpf.h>
54
55#include <net/if_types.h>
56#include <net/if.h>
57
58#include <netinet/in_systm.h>
59#include <netinet/in.h>
60#include <netinet/ip.h>
61#include <netinet/if_ether.h>
62#if __FreeBSD_version >= 700000
63#include <netinet/tcp.h>
64#include <netinet/tcp_lro.h>
65#endif
66
67#include <vm/vm.h>
68#include <vm/pmap.h>
69
70#include <machine/clock.h>      /* for DELAY */
71#include <machine/bus.h>
72#include <machine/resource.h>
73#include <machine/frame.h>
74#include <machine/vmparam.h>
75
76#include <sys/bus.h>
77#include <sys/rman.h>
78
79#include <machine/intr_machdep.h>
80
81#include <xen/xen-os.h>
82#include <xen/hypervisor.h>
83#include <xen/xen_intr.h>
84#include <xen/gnttab.h>
85#include <xen/interface/memory.h>
86#include <xen/interface/io/netif.h>
87#include <xen/xenbus/xenbusvar.h>
88
89#include <machine/xen/xenvar.h>
90
91#include <dev/xen/netfront/mbufq.h>
92
93#include "xenbus_if.h"
94
95/* Features supported by all backends.  TSO and LRO can be negotiated */
96#define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
97
98#define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
99#define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
100
101#if __FreeBSD_version >= 700000
102/*
103 * Should the driver do LRO on the RX end
104 *  this can be toggled on the fly, but the
105 *  interface must be reset (down/up) for it
106 *  to take effect.
107 */
108static int xn_enable_lro = 1;
109TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
110#else
111
112#define IFCAP_TSO4	0
113#define CSUM_TSO	0
114
115#endif
116
117#ifdef CONFIG_XEN
118static int MODPARM_rx_copy = 0;
119module_param_named(rx_copy, MODPARM_rx_copy, bool, 0);
120MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)");
121static int MODPARM_rx_flip = 0;
122module_param_named(rx_flip, MODPARM_rx_flip, bool, 0);
123MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)");
124#else
125static const int MODPARM_rx_copy = 1;
126static const int MODPARM_rx_flip = 0;
127#endif
128
129/**
130 * \brief The maximum allowed data fragments in a single transmit
131 *        request.
132 *
133 * This limit is imposed by the backend driver.  We assume here that
134 * we are dealing with a Linux driver domain and have set our limit
135 * to mirror the Linux MAX_SKB_FRAGS constant.
136 */
137#define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
138
139#define RX_COPY_THRESHOLD 256
140
141#define net_ratelimit() 0
142
143struct netfront_info;
144struct netfront_rx_info;
145
146static void xn_txeof(struct netfront_info *);
147static void xn_rxeof(struct netfront_info *);
148static void network_alloc_rx_buffers(struct netfront_info *);
149
150static void xn_tick_locked(struct netfront_info *);
151static void xn_tick(void *);
152
153static void xn_intr(void *);
154static inline int xn_count_frags(struct mbuf *m);
155static int  xn_assemble_tx_request(struct netfront_info *sc,
156				   struct mbuf *m_head);
157static void xn_start_locked(struct ifnet *);
158static void xn_start(struct ifnet *);
159static int  xn_ioctl(struct ifnet *, u_long, caddr_t);
160static void xn_ifinit_locked(struct netfront_info *);
161static void xn_ifinit(void *);
162static void xn_stop(struct netfront_info *);
163static void xn_query_features(struct netfront_info *np);
164static int  xn_configure_features(struct netfront_info *np);
165#ifdef notyet
166static void xn_watchdog(struct ifnet *);
167#endif
168
169#ifdef notyet
170static void netfront_closing(device_t dev);
171#endif
172static void netif_free(struct netfront_info *info);
173static int netfront_detach(device_t dev);
174
175static int talk_to_backend(device_t dev, struct netfront_info *info);
176static int create_netdev(device_t dev);
177static void netif_disconnect_backend(struct netfront_info *info);
178static int setup_device(device_t dev, struct netfront_info *info);
179static void free_ring(int *ref, void *ring_ptr_ref);
180
181static int  xn_ifmedia_upd(struct ifnet *ifp);
182static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
183
184/* Xenolinux helper functions */
185int network_connect(struct netfront_info *);
186
187static void xn_free_rx_ring(struct netfront_info *);
188
189static void xn_free_tx_ring(struct netfront_info *);
190
191static int xennet_get_responses(struct netfront_info *np,
192	struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
193	struct mbuf **list, int *pages_flipped_p);
194
195#define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
196
197#define INVALID_P2M_ENTRY (~0UL)
198
199/*
200 * Mbuf pointers. We need these to keep track of the virtual addresses
201 * of our mbuf chains since we can only convert from virtual to physical,
202 * not the other way around.  The size must track the free index arrays.
203 */
204struct xn_chain_data {
205	struct mbuf    *xn_tx_chain[NET_TX_RING_SIZE+1];
206	int		xn_tx_chain_cnt;
207	struct mbuf    *xn_rx_chain[NET_RX_RING_SIZE+1];
208};
209
210struct net_device_stats
211{
212	u_long	rx_packets;		/* total packets received	*/
213	u_long	tx_packets;		/* total packets transmitted	*/
214	u_long	rx_bytes;		/* total bytes received 	*/
215	u_long	tx_bytes;		/* total bytes transmitted	*/
216	u_long	rx_errors;		/* bad packets received		*/
217	u_long	tx_errors;		/* packet transmit problems	*/
218	u_long	rx_dropped;		/* no space in linux buffers	*/
219	u_long	tx_dropped;		/* no space available in linux	*/
220	u_long	multicast;		/* multicast packets received	*/
221	u_long	collisions;
222
223	/* detailed rx_errors: */
224	u_long	rx_length_errors;
225	u_long	rx_over_errors;		/* receiver ring buff overflow	*/
226	u_long	rx_crc_errors;		/* recved pkt with crc error	*/
227	u_long	rx_frame_errors;	/* recv'd frame alignment error */
228	u_long	rx_fifo_errors;		/* recv'r fifo overrun		*/
229	u_long	rx_missed_errors;	/* receiver missed packet	*/
230
231	/* detailed tx_errors */
232	u_long	tx_aborted_errors;
233	u_long	tx_carrier_errors;
234	u_long	tx_fifo_errors;
235	u_long	tx_heartbeat_errors;
236	u_long	tx_window_errors;
237
238	/* for cslip etc */
239	u_long	rx_compressed;
240	u_long	tx_compressed;
241};
242
243struct netfront_info {
244	struct ifnet *xn_ifp;
245#if __FreeBSD_version >= 700000
246	struct lro_ctrl xn_lro;
247#endif
248
249	struct net_device_stats stats;
250	u_int tx_full;
251
252	netif_tx_front_ring_t tx;
253	netif_rx_front_ring_t rx;
254
255	struct mtx   tx_lock;
256	struct mtx   rx_lock;
257	struct mtx   sc_lock;
258
259	xen_intr_handle_t xen_intr_handle;
260	u_int copying_receiver;
261	u_int carrier;
262	u_int maxfrags;
263
264	/* Receive-ring batched refills. */
265#define RX_MIN_TARGET 32
266#define RX_MAX_TARGET NET_RX_RING_SIZE
267	int rx_min_target;
268	int rx_max_target;
269	int rx_target;
270
271	grant_ref_t gref_tx_head;
272	grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1];
273	grant_ref_t gref_rx_head;
274	grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1];
275
276	device_t		xbdev;
277	int			tx_ring_ref;
278	int			rx_ring_ref;
279	uint8_t			mac[ETHER_ADDR_LEN];
280	struct xn_chain_data	xn_cdata;	/* mbufs */
281	struct mbuf_head	xn_rx_batch;	/* head of the batch queue */
282
283	int			xn_if_flags;
284	struct callout	        xn_stat_ch;
285
286	u_long			rx_pfn_array[NET_RX_RING_SIZE];
287	multicall_entry_t	rx_mcl[NET_RX_RING_SIZE+1];
288	mmu_update_t		rx_mmu[NET_RX_RING_SIZE];
289	struct ifmedia		sc_media;
290
291	bool			xn_resume;
292};
293
294#define rx_mbufs xn_cdata.xn_rx_chain
295#define tx_mbufs xn_cdata.xn_tx_chain
296
297#define XN_LOCK_INIT(_sc, _name) \
298        mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \
299        mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF);  \
300        mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF)
301
302#define XN_RX_LOCK(_sc)           mtx_lock(&(_sc)->rx_lock)
303#define XN_RX_UNLOCK(_sc)         mtx_unlock(&(_sc)->rx_lock)
304
305#define XN_TX_LOCK(_sc)           mtx_lock(&(_sc)->tx_lock)
306#define XN_TX_UNLOCK(_sc)         mtx_unlock(&(_sc)->tx_lock)
307
308#define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
309#define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
310
311#define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
312#define XN_RX_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->rx_lock, MA_OWNED);
313#define XN_TX_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->tx_lock, MA_OWNED);
314#define XN_LOCK_DESTROY(_sc)   mtx_destroy(&(_sc)->rx_lock); \
315                               mtx_destroy(&(_sc)->tx_lock); \
316                               mtx_destroy(&(_sc)->sc_lock);
317
318struct netfront_rx_info {
319	struct netif_rx_response rx;
320	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
321};
322
323#define netfront_carrier_on(netif)	((netif)->carrier = 1)
324#define netfront_carrier_off(netif)	((netif)->carrier = 0)
325#define netfront_carrier_ok(netif)	((netif)->carrier)
326
327/* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
328
329static inline void
330add_id_to_freelist(struct mbuf **list, uintptr_t id)
331{
332	KASSERT(id != 0,
333		("%s: the head item (0) must always be free.", __func__));
334	list[id] = list[0];
335	list[0]  = (struct mbuf *)id;
336}
337
338static inline unsigned short
339get_id_from_freelist(struct mbuf **list)
340{
341	uintptr_t id;
342
343	id = (uintptr_t)list[0];
344	KASSERT(id != 0,
345		("%s: the head item (0) must always remain free.", __func__));
346	list[0] = list[id];
347	return (id);
348}
349
350static inline int
351xennet_rxidx(RING_IDX idx)
352{
353	return idx & (NET_RX_RING_SIZE - 1);
354}
355
356static inline struct mbuf *
357xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri)
358{
359	int i = xennet_rxidx(ri);
360	struct mbuf *m;
361
362	m = np->rx_mbufs[i];
363	np->rx_mbufs[i] = NULL;
364	return (m);
365}
366
367static inline grant_ref_t
368xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri)
369{
370	int i = xennet_rxidx(ri);
371	grant_ref_t ref = np->grant_rx_ref[i];
372	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
373	np->grant_rx_ref[i] = GRANT_REF_INVALID;
374	return ref;
375}
376
377#define IPRINTK(fmt, args...) \
378    printf("[XEN] " fmt, ##args)
379#ifdef INVARIANTS
380#define WPRINTK(fmt, args...) \
381    printf("[XEN] " fmt, ##args)
382#else
383#define WPRINTK(fmt, args...)
384#endif
385#ifdef DEBUG
386#define DPRINTK(fmt, args...) \
387    printf("[XEN] %s: " fmt, __func__, ##args)
388#else
389#define DPRINTK(fmt, args...)
390#endif
391
392/**
393 * Read the 'mac' node at the given device's node in the store, and parse that
394 * as colon-separated octets, placing result the given mac array.  mac must be
395 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
396 * Return 0 on success, or errno on error.
397 */
398static int
399xen_net_read_mac(device_t dev, uint8_t mac[])
400{
401	int error, i;
402	char *s, *e, *macstr;
403	const char *path;
404
405	path = xenbus_get_node(dev);
406	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
407	if (error == ENOENT) {
408		/*
409		 * Deal with missing mac XenStore nodes on devices with
410		 * HVM emulation (the 'ioemu' configuration attribute)
411		 * enabled.
412		 *
413		 * The HVM emulator may execute in a stub device model
414		 * domain which lacks the permission, only given to Dom0,
415		 * to update the guest's XenStore tree.  For this reason,
416		 * the HVM emulator doesn't even attempt to write the
417		 * front-side mac node, even when operating in Dom0.
418		 * However, there should always be a mac listed in the
419		 * backend tree.  Fallback to this version if our query
420		 * of the front side XenStore location doesn't find
421		 * anything.
422		 */
423		path = xenbus_get_otherend_path(dev);
424		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
425	}
426	if (error != 0) {
427		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
428		return (error);
429	}
430
431	s = macstr;
432	for (i = 0; i < ETHER_ADDR_LEN; i++) {
433		mac[i] = strtoul(s, &e, 16);
434		if (s == e || (e[0] != ':' && e[0] != 0)) {
435			free(macstr, M_XENBUS);
436			return (ENOENT);
437		}
438		s = &e[1];
439	}
440	free(macstr, M_XENBUS);
441	return (0);
442}
443
444/**
445 * Entry point to this code when a new device is created.  Allocate the basic
446 * structures and the ring buffers for communication with the backend, and
447 * inform the backend of the appropriate details for those.  Switch to
448 * Connected state.
449 */
450static int
451netfront_probe(device_t dev)
452{
453
454#ifdef XENHVM
455	if (xen_disable_pv_nics != 0)
456		return (ENXIO);
457#endif
458
459	if (!strcmp(xenbus_get_type(dev), "vif")) {
460		device_set_desc(dev, "Virtual Network Interface");
461		return (0);
462	}
463
464	return (ENXIO);
465}
466
467static int
468netfront_attach(device_t dev)
469{
470	int err;
471
472	err = create_netdev(dev);
473	if (err) {
474		xenbus_dev_fatal(dev, err, "creating netdev");
475		return (err);
476	}
477
478#if __FreeBSD_version >= 700000
479	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
480	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
481	    OID_AUTO, "enable_lro", CTLFLAG_RW,
482	    &xn_enable_lro, 0, "Large Receive Offload");
483#endif
484
485	return (0);
486}
487
488static int
489netfront_suspend(device_t dev)
490{
491	struct netfront_info *info = device_get_softc(dev);
492
493	XN_RX_LOCK(info);
494	XN_TX_LOCK(info);
495	netfront_carrier_off(info);
496	XN_TX_UNLOCK(info);
497	XN_RX_UNLOCK(info);
498	return (0);
499}
500
501/**
502 * We are reconnecting to the backend, due to a suspend/resume, or a backend
503 * driver restart.  We tear down our netif structure and recreate it, but
504 * leave the device-layer structures intact so that this is transparent to the
505 * rest of the kernel.
506 */
507static int
508netfront_resume(device_t dev)
509{
510	struct netfront_info *info = device_get_softc(dev);
511
512	if (xen_suspend_cancelled) {
513		XN_RX_LOCK(info);
514		XN_TX_LOCK(info);
515		netfront_carrier_on(info);
516		XN_TX_UNLOCK(info);
517		XN_RX_UNLOCK(info);
518		return (0);
519	}
520
521	info->xn_resume = true;
522	netif_disconnect_backend(info);
523	return (0);
524}
525
526/* Common code used when first setting up, and when resuming. */
527static int
528talk_to_backend(device_t dev, struct netfront_info *info)
529{
530	const char *message;
531	struct xs_transaction xst;
532	const char *node = xenbus_get_node(dev);
533	int err;
534
535	err = xen_net_read_mac(dev, info->mac);
536	if (err) {
537		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
538		goto out;
539	}
540
541	/* Create shared ring, alloc event channel. */
542	err = setup_device(dev, info);
543	if (err)
544		goto out;
545
546 again:
547	err = xs_transaction_start(&xst);
548	if (err) {
549		xenbus_dev_fatal(dev, err, "starting transaction");
550		goto destroy_ring;
551	}
552	err = xs_printf(xst, node, "tx-ring-ref","%u",
553			info->tx_ring_ref);
554	if (err) {
555		message = "writing tx ring-ref";
556		goto abort_transaction;
557	}
558	err = xs_printf(xst, node, "rx-ring-ref","%u",
559			info->rx_ring_ref);
560	if (err) {
561		message = "writing rx ring-ref";
562		goto abort_transaction;
563	}
564	err = xs_printf(xst, node,
565			"event-channel", "%u",
566			xen_intr_port(info->xen_intr_handle));
567	if (err) {
568		message = "writing event-channel";
569		goto abort_transaction;
570	}
571	err = xs_printf(xst, node, "request-rx-copy", "%u",
572			info->copying_receiver);
573	if (err) {
574		message = "writing request-rx-copy";
575		goto abort_transaction;
576	}
577	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
578	if (err) {
579		message = "writing feature-rx-notify";
580		goto abort_transaction;
581	}
582	err = xs_printf(xst, node, "feature-sg", "%d", 1);
583	if (err) {
584		message = "writing feature-sg";
585		goto abort_transaction;
586	}
587#if __FreeBSD_version >= 700000
588	err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
589	if (err) {
590		message = "writing feature-gso-tcpv4";
591		goto abort_transaction;
592	}
593#endif
594
595	err = xs_transaction_end(xst, 0);
596	if (err) {
597		if (err == EAGAIN)
598			goto again;
599		xenbus_dev_fatal(dev, err, "completing transaction");
600		goto destroy_ring;
601	}
602
603	return 0;
604
605 abort_transaction:
606	xs_transaction_end(xst, 1);
607	xenbus_dev_fatal(dev, err, "%s", message);
608 destroy_ring:
609	netif_free(info);
610 out:
611	return err;
612}
613
614static int
615setup_device(device_t dev, struct netfront_info *info)
616{
617	netif_tx_sring_t *txs;
618	netif_rx_sring_t *rxs;
619	int error;
620	struct ifnet *ifp;
621
622	ifp = info->xn_ifp;
623
624	info->tx_ring_ref = GRANT_REF_INVALID;
625	info->rx_ring_ref = GRANT_REF_INVALID;
626	info->rx.sring = NULL;
627	info->tx.sring = NULL;
628
629	txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO);
630	if (!txs) {
631		error = ENOMEM;
632		xenbus_dev_fatal(dev, error, "allocating tx ring page");
633		goto fail;
634	}
635	SHARED_RING_INIT(txs);
636	FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE);
637	error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref);
638	if (error)
639		goto fail;
640
641	rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO);
642	if (!rxs) {
643		error = ENOMEM;
644		xenbus_dev_fatal(dev, error, "allocating rx ring page");
645		goto fail;
646	}
647	SHARED_RING_INIT(rxs);
648	FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE);
649
650	error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref);
651	if (error)
652		goto fail;
653
654	error = xen_intr_alloc_and_bind_local_port(dev,
655	    xenbus_get_otherend_id(dev), /*filter*/NULL, xn_intr, info,
656	    INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, &info->xen_intr_handle);
657
658	if (error) {
659		xenbus_dev_fatal(dev, error,
660				 "xen_intr_alloc_and_bind_local_port failed");
661		goto fail;
662	}
663
664	return (0);
665
666 fail:
667	netif_free(info);
668	return (error);
669}
670
671#ifdef INET
672/**
673 * If this interface has an ipv4 address, send an arp for it. This
674 * helps to get the network going again after migrating hosts.
675 */
676static void
677netfront_send_fake_arp(device_t dev, struct netfront_info *info)
678{
679	struct ifnet *ifp;
680	struct ifaddr *ifa;
681
682	ifp = info->xn_ifp;
683	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
684		if (ifa->ifa_addr->sa_family == AF_INET) {
685			arp_ifinit(ifp, ifa);
686		}
687	}
688}
689#endif
690
691/**
692 * Callback received when the backend's state changes.
693 */
694static void
695netfront_backend_changed(device_t dev, XenbusState newstate)
696{
697	struct netfront_info *sc = device_get_softc(dev);
698
699	DPRINTK("newstate=%d\n", newstate);
700
701	switch (newstate) {
702	case XenbusStateInitialising:
703	case XenbusStateInitialised:
704	case XenbusStateUnknown:
705	case XenbusStateClosed:
706	case XenbusStateReconfigured:
707	case XenbusStateReconfiguring:
708		break;
709	case XenbusStateInitWait:
710		if (xenbus_get_state(dev) != XenbusStateInitialising)
711			break;
712		if (network_connect(sc) != 0)
713			break;
714		xenbus_set_state(dev, XenbusStateConnected);
715		break;
716	case XenbusStateClosing:
717		xenbus_set_state(dev, XenbusStateClosed);
718		break;
719	case XenbusStateConnected:
720#ifdef INET
721		netfront_send_fake_arp(dev, sc);
722#endif
723		break;
724	}
725}
726
727static void
728xn_free_rx_ring(struct netfront_info *sc)
729{
730#if 0
731	int i;
732
733	for (i = 0; i < NET_RX_RING_SIZE; i++) {
734		if (sc->xn_cdata.rx_mbufs[i] != NULL) {
735			m_freem(sc->rx_mbufs[i]);
736			sc->rx_mbufs[i] = NULL;
737		}
738	}
739
740	sc->rx.rsp_cons = 0;
741	sc->xn_rx_if->req_prod = 0;
742	sc->xn_rx_if->event = sc->rx.rsp_cons ;
743#endif
744}
745
746static void
747xn_free_tx_ring(struct netfront_info *sc)
748{
749#if 0
750	int i;
751
752	for (i = 0; i < NET_TX_RING_SIZE; i++) {
753		if (sc->tx_mbufs[i] != NULL) {
754			m_freem(sc->tx_mbufs[i]);
755			sc->xn_cdata.xn_tx_chain[i] = NULL;
756		}
757	}
758
759	return;
760#endif
761}
762
763/**
764 * \brief Verify that there is sufficient space in the Tx ring
765 *        buffer for a maximally sized request to be enqueued.
766 *
767 * A transmit request requires a transmit descriptor for each packet
768 * fragment, plus up to 2 entries for "options" (e.g. TSO).
769 */
770static inline int
771xn_tx_slot_available(struct netfront_info *np)
772{
773	return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2));
774}
775
776static void
777netif_release_tx_bufs(struct netfront_info *np)
778{
779	int i;
780
781	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
782		struct mbuf *m;
783
784		m = np->tx_mbufs[i];
785
786		/*
787		 * We assume that no kernel addresses are
788		 * less than NET_TX_RING_SIZE.  Any entry
789		 * in the table that is below this number
790		 * must be an index from free-list tracking.
791		 */
792		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
793			continue;
794		gnttab_end_foreign_access_ref(np->grant_tx_ref[i]);
795		gnttab_release_grant_reference(&np->gref_tx_head,
796		    np->grant_tx_ref[i]);
797		np->grant_tx_ref[i] = GRANT_REF_INVALID;
798		add_id_to_freelist(np->tx_mbufs, i);
799		np->xn_cdata.xn_tx_chain_cnt--;
800		if (np->xn_cdata.xn_tx_chain_cnt < 0) {
801			panic("%s: tx_chain_cnt must be >= 0", __func__);
802		}
803		m_free(m);
804	}
805}
806
807static void
808network_alloc_rx_buffers(struct netfront_info *sc)
809{
810	int otherend_id = xenbus_get_otherend_id(sc->xbdev);
811	unsigned short id;
812	struct mbuf *m_new;
813	int i, batch_target, notify;
814	RING_IDX req_prod;
815	struct xen_memory_reservation reservation;
816	grant_ref_t ref;
817	int nr_flips;
818	netif_rx_request_t *req;
819	vm_offset_t vaddr;
820	u_long pfn;
821
822	req_prod = sc->rx.req_prod_pvt;
823
824	if (__predict_false(sc->carrier == 0))
825		return;
826
827	/*
828	 * Allocate mbufs greedily, even though we batch updates to the
829	 * receive ring. This creates a less bursty demand on the memory
830	 * allocator, and so should reduce the chance of failed allocation
831	 * requests both for ourself and for other kernel subsystems.
832	 *
833	 * Here we attempt to maintain rx_target buffers in flight, counting
834	 * buffers that we have yet to process in the receive ring.
835	 */
836	batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons);
837	for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) {
838		MGETHDR(m_new, M_NOWAIT, MT_DATA);
839		if (m_new == NULL) {
840			printf("%s: MGETHDR failed\n", __func__);
841			goto no_mbuf;
842		}
843
844		m_cljget(m_new, M_NOWAIT, MJUMPAGESIZE);
845		if ((m_new->m_flags & M_EXT) == 0) {
846			printf("%s: m_cljget failed\n", __func__);
847			m_freem(m_new);
848
849no_mbuf:
850			if (i != 0)
851				goto refill;
852			/*
853			 * XXX set timer
854			 */
855			break;
856		}
857		m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE;
858
859		/* queue the mbufs allocated */
860		mbufq_tail(&sc->xn_rx_batch, m_new);
861	}
862
863	/*
864	 * If we've allocated at least half of our target number of entries,
865	 * submit them to the backend - we have enough to make the overhead
866	 * of submission worthwhile.  Otherwise wait for more mbufs and
867	 * request entries to become available.
868	 */
869	if (i < (sc->rx_target/2)) {
870		if (req_prod >sc->rx.sring->req_prod)
871			goto push;
872		return;
873	}
874
875	/*
876	 * Double floating fill target if we risked having the backend
877	 * run out of empty buffers for receive traffic.  We define "running
878	 * low" as having less than a fourth of our target buffers free
879	 * at the time we refilled the queue.
880	 */
881	if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) {
882		sc->rx_target *= 2;
883		if (sc->rx_target > sc->rx_max_target)
884			sc->rx_target = sc->rx_max_target;
885	}
886
887refill:
888	for (nr_flips = i = 0; ; i++) {
889		if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL)
890			break;
891
892		m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)(
893				vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT);
894
895		id = xennet_rxidx(req_prod + i);
896
897		KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain"));
898		sc->rx_mbufs[id] = m_new;
899
900		ref = gnttab_claim_grant_reference(&sc->gref_rx_head);
901		KASSERT(ref != GNTTAB_LIST_END,
902			("reserved grant references exhuasted"));
903		sc->grant_rx_ref[id] = ref;
904
905		vaddr = mtod(m_new, vm_offset_t);
906		pfn = vtophys(vaddr) >> PAGE_SHIFT;
907		req = RING_GET_REQUEST(&sc->rx, req_prod + i);
908
909		if (sc->copying_receiver == 0) {
910			gnttab_grant_foreign_transfer_ref(ref,
911			    otherend_id, pfn);
912			sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn);
913			if (!xen_feature(XENFEAT_auto_translated_physmap)) {
914				/* Remove this page before passing
915				 * back to Xen.
916				 */
917				set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
918				MULTI_update_va_mapping(&sc->rx_mcl[i],
919				    vaddr, 0, 0);
920			}
921			nr_flips++;
922		} else {
923			gnttab_grant_foreign_access_ref(ref,
924			    otherend_id,
925			    PFNTOMFN(pfn), 0);
926		}
927		req->id = id;
928		req->gref = ref;
929
930		sc->rx_pfn_array[i] =
931		    vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT;
932	}
933
934	KASSERT(i, ("no mbufs processed")); /* should have returned earlier */
935	KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed"));
936	/*
937	 * We may have allocated buffers which have entries outstanding
938	 * in the page * update queue -- make sure we flush those first!
939	 */
940	PT_UPDATES_FLUSH();
941	if (nr_flips != 0) {
942#ifdef notyet
943		/* Tell the ballon driver what is going on. */
944		balloon_update_driver_allowance(i);
945#endif
946		set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array);
947		reservation.nr_extents   = i;
948		reservation.extent_order = 0;
949		reservation.address_bits = 0;
950		reservation.domid        = DOMID_SELF;
951
952		if (!xen_feature(XENFEAT_auto_translated_physmap)) {
953			/* After all PTEs have been zapped, flush the TLB. */
954			sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] =
955			    UVMF_TLB_FLUSH|UVMF_ALL;
956
957			/* Give away a batch of pages. */
958			sc->rx_mcl[i].op = __HYPERVISOR_memory_op;
959			sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation;
960			sc->rx_mcl[i].args[1] =  (u_long)&reservation;
961			/* Zap PTEs and give away pages in one big multicall. */
962			(void)HYPERVISOR_multicall(sc->rx_mcl, i+1);
963
964			if (__predict_false(sc->rx_mcl[i].result != i ||
965			    HYPERVISOR_memory_op(XENMEM_decrease_reservation,
966			    &reservation) != i))
967				panic("%s: unable to reduce memory "
968				    "reservation\n", __func__);
969		}
970	} else {
971		wmb();
972	}
973
974	/* Above is a suitable barrier to ensure backend will see requests. */
975	sc->rx.req_prod_pvt = req_prod + i;
976push:
977	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify);
978	if (notify)
979		xen_intr_signal(sc->xen_intr_handle);
980}
981
982static void
983xn_rxeof(struct netfront_info *np)
984{
985	struct ifnet *ifp;
986#if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6))
987	struct lro_ctrl *lro = &np->xn_lro;
988	struct lro_entry *queued;
989#endif
990	struct netfront_rx_info rinfo;
991	struct netif_rx_response *rx = &rinfo.rx;
992	struct netif_extra_info *extras = rinfo.extras;
993	RING_IDX i, rp;
994	multicall_entry_t *mcl;
995	struct mbuf *m;
996	struct mbuf_head rxq, errq;
997	int err, pages_flipped = 0, work_to_do;
998
999	do {
1000		XN_RX_LOCK_ASSERT(np);
1001		if (!netfront_carrier_ok(np))
1002			return;
1003
1004		mbufq_init(&errq);
1005		mbufq_init(&rxq);
1006
1007		ifp = np->xn_ifp;
1008
1009		rp = np->rx.sring->rsp_prod;
1010		rmb();	/* Ensure we see queued responses up to 'rp'. */
1011
1012		i = np->rx.rsp_cons;
1013		while ((i != rp)) {
1014			memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx));
1015			memset(extras, 0, sizeof(rinfo.extras));
1016
1017			m = NULL;
1018			err = xennet_get_responses(np, &rinfo, rp, &i, &m,
1019			    &pages_flipped);
1020
1021			if (__predict_false(err)) {
1022				if (m)
1023					mbufq_tail(&errq, m);
1024				np->stats.rx_errors++;
1025				continue;
1026			}
1027
1028			m->m_pkthdr.rcvif = ifp;
1029			if ( rx->flags & NETRXF_data_validated ) {
1030				/* Tell the stack the checksums are okay */
1031				/*
1032				 * XXX this isn't necessarily the case - need to add
1033				 * check
1034				 */
1035
1036				m->m_pkthdr.csum_flags |=
1037					(CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID
1038					    | CSUM_PSEUDO_HDR);
1039				m->m_pkthdr.csum_data = 0xffff;
1040			}
1041
1042			np->stats.rx_packets++;
1043			np->stats.rx_bytes += m->m_pkthdr.len;
1044
1045			mbufq_tail(&rxq, m);
1046			np->rx.rsp_cons = i;
1047		}
1048
1049		if (pages_flipped) {
1050			/* Some pages are no longer absent... */
1051#ifdef notyet
1052			balloon_update_driver_allowance(-pages_flipped);
1053#endif
1054			/* Do all the remapping work, and M->P updates, in one big
1055			 * hypercall.
1056			 */
1057			if (!!xen_feature(XENFEAT_auto_translated_physmap)) {
1058				mcl = np->rx_mcl + pages_flipped;
1059				mcl->op = __HYPERVISOR_mmu_update;
1060				mcl->args[0] = (u_long)np->rx_mmu;
1061				mcl->args[1] = pages_flipped;
1062				mcl->args[2] = 0;
1063				mcl->args[3] = DOMID_SELF;
1064				(void)HYPERVISOR_multicall(np->rx_mcl,
1065				    pages_flipped + 1);
1066			}
1067		}
1068
1069		while ((m = mbufq_dequeue(&errq)))
1070			m_freem(m);
1071
1072		/*
1073		 * Process all the mbufs after the remapping is complete.
1074		 * Break the mbuf chain first though.
1075		 */
1076		while ((m = mbufq_dequeue(&rxq)) != NULL) {
1077			ifp->if_ipackets++;
1078
1079			/*
1080			 * Do we really need to drop the rx lock?
1081			 */
1082			XN_RX_UNLOCK(np);
1083#if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6))
1084			/* Use LRO if possible */
1085			if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1086			    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1087				/*
1088				 * If LRO fails, pass up to the stack
1089				 * directly.
1090				 */
1091				(*ifp->if_input)(ifp, m);
1092			}
1093#else
1094			(*ifp->if_input)(ifp, m);
1095#endif
1096			XN_RX_LOCK(np);
1097		}
1098
1099		np->rx.rsp_cons = i;
1100
1101#if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6))
1102		/*
1103		 * Flush any outstanding LRO work
1104		 */
1105		while (!SLIST_EMPTY(&lro->lro_active)) {
1106			queued = SLIST_FIRST(&lro->lro_active);
1107			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1108			tcp_lro_flush(lro, queued);
1109		}
1110#endif
1111
1112#if 0
1113		/* If we get a callback with very few responses, reduce fill target. */
1114		/* NB. Note exponential increase, linear decrease. */
1115		if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) >
1116			((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target))
1117			np->rx_target = np->rx_min_target;
1118#endif
1119
1120		network_alloc_rx_buffers(np);
1121
1122		RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do);
1123	} while (work_to_do);
1124}
1125
1126static void
1127xn_txeof(struct netfront_info *np)
1128{
1129	RING_IDX i, prod;
1130	unsigned short id;
1131	struct ifnet *ifp;
1132	netif_tx_response_t *txr;
1133	struct mbuf *m;
1134
1135	XN_TX_LOCK_ASSERT(np);
1136
1137	if (!netfront_carrier_ok(np))
1138		return;
1139
1140	ifp = np->xn_ifp;
1141
1142	do {
1143		prod = np->tx.sring->rsp_prod;
1144		rmb(); /* Ensure we see responses up to 'rp'. */
1145
1146		for (i = np->tx.rsp_cons; i != prod; i++) {
1147			txr = RING_GET_RESPONSE(&np->tx, i);
1148			if (txr->status == NETIF_RSP_NULL)
1149				continue;
1150
1151			if (txr->status != NETIF_RSP_OKAY) {
1152				printf("%s: WARNING: response is %d!\n",
1153				       __func__, txr->status);
1154			}
1155			id = txr->id;
1156			m = np->tx_mbufs[id];
1157			KASSERT(m != NULL, ("mbuf not found in xn_tx_chain"));
1158			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1159				("mbuf already on the free list, but we're "
1160				"trying to free it again!"));
1161			M_ASSERTVALID(m);
1162
1163			/*
1164			 * Increment packet count if this is the last
1165			 * mbuf of the chain.
1166			 */
1167			if (!m->m_next)
1168				ifp->if_opackets++;
1169			if (__predict_false(gnttab_query_foreign_access(
1170			    np->grant_tx_ref[id]) != 0)) {
1171				panic("%s: grant id %u still in use by the "
1172				    "backend", __func__, id);
1173			}
1174			gnttab_end_foreign_access_ref(
1175				np->grant_tx_ref[id]);
1176			gnttab_release_grant_reference(
1177				&np->gref_tx_head, np->grant_tx_ref[id]);
1178			np->grant_tx_ref[id] = GRANT_REF_INVALID;
1179
1180			np->tx_mbufs[id] = NULL;
1181			add_id_to_freelist(np->tx_mbufs, id);
1182			np->xn_cdata.xn_tx_chain_cnt--;
1183			m_free(m);
1184			/* Only mark the queue active if we've freed up at least one slot to try */
1185			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1186		}
1187		np->tx.rsp_cons = prod;
1188
1189		/*
1190		 * Set a new event, then check for race with update of
1191		 * tx_cons. Note that it is essential to schedule a
1192		 * callback, no matter how few buffers are pending. Even if
1193		 * there is space in the transmit ring, higher layers may
1194		 * be blocked because too much data is outstanding: in such
1195		 * cases notification from Xen is likely to be the only kick
1196		 * that we'll get.
1197		 */
1198		np->tx.sring->rsp_event =
1199		    prod + ((np->tx.sring->req_prod - prod) >> 1) + 1;
1200
1201		mb();
1202	} while (prod != np->tx.sring->rsp_prod);
1203
1204	if (np->tx_full &&
1205	    ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1206		np->tx_full = 0;
1207#if 0
1208		if (np->user_state == UST_OPEN)
1209			netif_wake_queue(dev);
1210#endif
1211	}
1212}
1213
1214static void
1215xn_intr(void *xsc)
1216{
1217	struct netfront_info *np = xsc;
1218	struct ifnet *ifp = np->xn_ifp;
1219
1220#if 0
1221	if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod &&
1222	    likely(netfront_carrier_ok(np)) &&
1223	    ifp->if_drv_flags & IFF_DRV_RUNNING))
1224		return;
1225#endif
1226	if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) {
1227		XN_TX_LOCK(np);
1228		xn_txeof(np);
1229		XN_TX_UNLOCK(np);
1230	}
1231
1232	XN_RX_LOCK(np);
1233	xn_rxeof(np);
1234	XN_RX_UNLOCK(np);
1235
1236	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1237	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1238		xn_start(ifp);
1239}
1240
1241static void
1242xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m,
1243	grant_ref_t ref)
1244{
1245	int new = xennet_rxidx(np->rx.req_prod_pvt);
1246
1247	KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL"));
1248	np->rx_mbufs[new] = m;
1249	np->grant_rx_ref[new] = ref;
1250	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new;
1251	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref;
1252	np->rx.req_prod_pvt++;
1253}
1254
1255static int
1256xennet_get_extras(struct netfront_info *np,
1257    struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1258{
1259	struct netif_extra_info *extra;
1260
1261	int err = 0;
1262
1263	do {
1264		struct mbuf *m;
1265		grant_ref_t ref;
1266
1267		if (__predict_false(*cons + 1 == rp)) {
1268#if 0
1269			if (net_ratelimit())
1270				WPRINTK("Missing extra info\n");
1271#endif
1272			err = EINVAL;
1273			break;
1274		}
1275
1276		extra = (struct netif_extra_info *)
1277		RING_GET_RESPONSE(&np->rx, ++(*cons));
1278
1279		if (__predict_false(!extra->type ||
1280			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1281#if 0
1282			if (net_ratelimit())
1283				WPRINTK("Invalid extra type: %d\n",
1284					extra->type);
1285#endif
1286			err = EINVAL;
1287		} else {
1288			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1289		}
1290
1291		m = xennet_get_rx_mbuf(np, *cons);
1292		ref = xennet_get_rx_ref(np, *cons);
1293		xennet_move_rx_slot(np, m, ref);
1294	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1295
1296	return err;
1297}
1298
1299static int
1300xennet_get_responses(struct netfront_info *np,
1301	struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1302	struct mbuf  **list,
1303	int *pages_flipped_p)
1304{
1305	int pages_flipped = *pages_flipped_p;
1306	struct mmu_update *mmu;
1307	struct multicall_entry *mcl;
1308	struct netif_rx_response *rx = &rinfo->rx;
1309	struct netif_extra_info *extras = rinfo->extras;
1310	struct mbuf *m, *m0, *m_prev;
1311	grant_ref_t ref = xennet_get_rx_ref(np, *cons);
1312	RING_IDX ref_cons = *cons;
1313	int frags = 1;
1314	int err = 0;
1315	u_long ret;
1316
1317	m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons);
1318
1319	if (rx->flags & NETRXF_extra_info) {
1320		err = xennet_get_extras(np, extras, rp, cons);
1321	}
1322
1323	if (m0 != NULL) {
1324		m0->m_pkthdr.len = 0;
1325		m0->m_next = NULL;
1326	}
1327
1328	for (;;) {
1329		u_long mfn;
1330
1331#if 0
1332		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1333			rx->status, rx->offset, frags);
1334#endif
1335		if (__predict_false(rx->status < 0 ||
1336			rx->offset + rx->status > PAGE_SIZE)) {
1337
1338#if 0
1339			if (net_ratelimit())
1340				WPRINTK("rx->offset: %x, size: %u\n",
1341					rx->offset, rx->status);
1342#endif
1343			xennet_move_rx_slot(np, m, ref);
1344			if (m0 == m)
1345				m0 = NULL;
1346			m = NULL;
1347			err = EINVAL;
1348			goto next_skip_queue;
1349		}
1350
1351		/*
1352		 * This definitely indicates a bug, either in this driver or in
1353		 * the backend driver. In future this should flag the bad
1354		 * situation to the system controller to reboot the backed.
1355		 */
1356		if (ref == GRANT_REF_INVALID) {
1357
1358#if 0
1359			if (net_ratelimit())
1360				WPRINTK("Bad rx response id %d.\n", rx->id);
1361#endif
1362			printf("%s: Bad rx response id %d.\n", __func__,rx->id);
1363			err = EINVAL;
1364			goto next;
1365		}
1366
1367		if (!np->copying_receiver) {
1368			/* Memory pressure, insufficient buffer
1369			 * headroom, ...
1370			 */
1371			if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) {
1372				WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n",
1373					rx->id, rx->status);
1374				xennet_move_rx_slot(np, m, ref);
1375				err = ENOMEM;
1376				goto next;
1377			}
1378
1379			if (!xen_feature( XENFEAT_auto_translated_physmap)) {
1380				/* Remap the page. */
1381				void *vaddr = mtod(m, void *);
1382				uint32_t pfn;
1383
1384				mcl = np->rx_mcl + pages_flipped;
1385				mmu = np->rx_mmu + pages_flipped;
1386
1387				MULTI_update_va_mapping(mcl, (u_long)vaddr,
1388				    (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW |
1389				    PG_V | PG_M | PG_A, 0);
1390				pfn = (uintptr_t)m->m_ext.ext_arg1;
1391				mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) |
1392				    MMU_MACHPHYS_UPDATE;
1393				mmu->val = pfn;
1394
1395				set_phys_to_machine(pfn, mfn);
1396			}
1397			pages_flipped++;
1398		} else {
1399			ret = gnttab_end_foreign_access_ref(ref);
1400			KASSERT(ret, ("ret != 0"));
1401		}
1402
1403		gnttab_release_grant_reference(&np->gref_rx_head, ref);
1404
1405next:
1406		if (m == NULL)
1407			break;
1408
1409		m->m_len = rx->status;
1410		m->m_data += rx->offset;
1411		m0->m_pkthdr.len += rx->status;
1412
1413next_skip_queue:
1414		if (!(rx->flags & NETRXF_more_data))
1415			break;
1416
1417		if (*cons + frags == rp) {
1418			if (net_ratelimit())
1419				WPRINTK("Need more frags\n");
1420			err = ENOENT;
1421			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1422			       __func__, *cons, frags, rp);
1423			break;
1424		}
1425		/*
1426		 * Note that m can be NULL, if rx->status < 0 or if
1427		 * rx->offset + rx->status > PAGE_SIZE above.
1428		 */
1429		m_prev = m;
1430
1431		rx = RING_GET_RESPONSE(&np->rx, *cons + frags);
1432		m = xennet_get_rx_mbuf(np, *cons + frags);
1433
1434		/*
1435		 * m_prev == NULL can happen if rx->status < 0 or if
1436		 * rx->offset + * rx->status > PAGE_SIZE above.
1437		 */
1438		if (m_prev != NULL)
1439			m_prev->m_next = m;
1440
1441		/*
1442		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1443		 * rx->status > PAGE_SIZE above.
1444		 */
1445		if (m0 == NULL)
1446			m0 = m;
1447		m->m_next = NULL;
1448		ref = xennet_get_rx_ref(np, *cons + frags);
1449		ref_cons = *cons + frags;
1450		frags++;
1451	}
1452	*list = m0;
1453	*cons += frags;
1454	*pages_flipped_p = pages_flipped;
1455
1456	return (err);
1457}
1458
1459static void
1460xn_tick_locked(struct netfront_info *sc)
1461{
1462	XN_RX_LOCK_ASSERT(sc);
1463	callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc);
1464
1465	/* XXX placeholder for printing debug information */
1466}
1467
1468static void
1469xn_tick(void *xsc)
1470{
1471	struct netfront_info *sc;
1472
1473	sc = xsc;
1474	XN_RX_LOCK(sc);
1475	xn_tick_locked(sc);
1476	XN_RX_UNLOCK(sc);
1477}
1478
1479/**
1480 * \brief Count the number of fragments in an mbuf chain.
1481 *
1482 * Surprisingly, there isn't an M* macro for this.
1483 */
1484static inline int
1485xn_count_frags(struct mbuf *m)
1486{
1487	int nfrags;
1488
1489	for (nfrags = 0; m != NULL; m = m->m_next)
1490		nfrags++;
1491
1492	return (nfrags);
1493}
1494
1495/**
1496 * Given an mbuf chain, make sure we have enough room and then push
1497 * it onto the transmit ring.
1498 */
1499static int
1500xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head)
1501{
1502	struct ifnet *ifp;
1503	struct mbuf *m;
1504	u_int nfrags;
1505	netif_extra_info_t *extra;
1506	int otherend_id;
1507
1508	ifp = sc->xn_ifp;
1509
1510	/**
1511	 * Defragment the mbuf if necessary.
1512	 */
1513	nfrags = xn_count_frags(m_head);
1514
1515	/*
1516	 * Check to see whether this request is longer than netback
1517	 * can handle, and try to defrag it.
1518	 */
1519	/**
1520	 * It is a bit lame, but the netback driver in Linux can't
1521	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1522	 * the Linux network stack.
1523	 */
1524	if (nfrags > sc->maxfrags) {
1525		m = m_defrag(m_head, M_NOWAIT);
1526		if (!m) {
1527			/*
1528			 * Defrag failed, so free the mbuf and
1529			 * therefore drop the packet.
1530			 */
1531			m_freem(m_head);
1532			return (EMSGSIZE);
1533		}
1534		m_head = m;
1535	}
1536
1537	/* Determine how many fragments now exist */
1538	nfrags = xn_count_frags(m_head);
1539
1540	/*
1541	 * Check to see whether the defragmented packet has too many
1542	 * segments for the Linux netback driver.
1543	 */
1544	/**
1545	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1546	 * of mbufs longer than Linux can handle.  Make sure we don't
1547	 * pass a too-long chain over to the other side by dropping the
1548	 * packet.  It doesn't look like there is currently a way to
1549	 * tell the TCP stack to generate a shorter chain of packets.
1550	 */
1551	if (nfrags > MAX_TX_REQ_FRAGS) {
1552#ifdef DEBUG
1553		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1554		       "won't be able to handle it, dropping\n",
1555		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1556#endif
1557		m_freem(m_head);
1558		return (EMSGSIZE);
1559	}
1560
1561	/*
1562	 * This check should be redundant.  We've already verified that we
1563	 * have enough slots in the ring to handle a packet of maximum
1564	 * size, and that our packet is less than the maximum size.  Keep
1565	 * it in here as an assert for now just to make certain that
1566	 * xn_tx_chain_cnt is accurate.
1567	 */
1568	KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE,
1569		("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1570		 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt,
1571                    (int) nfrags, (int) NET_TX_RING_SIZE));
1572
1573	/*
1574	 * Start packing the mbufs in this chain into
1575	 * the fragment pointers. Stop when we run out
1576	 * of fragments or hit the end of the mbuf chain.
1577	 */
1578	m = m_head;
1579	extra = NULL;
1580	otherend_id = xenbus_get_otherend_id(sc->xbdev);
1581	for (m = m_head; m; m = m->m_next) {
1582		netif_tx_request_t *tx;
1583		uintptr_t id;
1584		grant_ref_t ref;
1585		u_long mfn; /* XXX Wrong type? */
1586
1587		tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt);
1588		id = get_id_from_freelist(sc->tx_mbufs);
1589		if (id == 0)
1590			panic("%s: was allocated the freelist head!\n",
1591			    __func__);
1592		sc->xn_cdata.xn_tx_chain_cnt++;
1593		if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE)
1594			panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
1595			    __func__);
1596		sc->tx_mbufs[id] = m;
1597		tx->id = id;
1598		ref = gnttab_claim_grant_reference(&sc->gref_tx_head);
1599		KASSERT((short)ref >= 0, ("Negative ref"));
1600		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1601		gnttab_grant_foreign_access_ref(ref, otherend_id,
1602		    mfn, GNTMAP_readonly);
1603		tx->gref = sc->grant_tx_ref[id] = ref;
1604		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1605		tx->flags = 0;
1606		if (m == m_head) {
1607			/*
1608			 * The first fragment has the entire packet
1609			 * size, subsequent fragments have just the
1610			 * fragment size. The backend works out the
1611			 * true size of the first fragment by
1612			 * subtracting the sizes of the other
1613			 * fragments.
1614			 */
1615			tx->size = m->m_pkthdr.len;
1616
1617			/*
1618			 * The first fragment contains the checksum flags
1619			 * and is optionally followed by extra data for
1620			 * TSO etc.
1621			 */
1622			/**
1623			 * CSUM_TSO requires checksum offloading.
1624			 * Some versions of FreeBSD fail to
1625			 * set CSUM_TCP in the CSUM_TSO case,
1626			 * so we have to test for CSUM_TSO
1627			 * explicitly.
1628			 */
1629			if (m->m_pkthdr.csum_flags
1630			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1631				tx->flags |= (NETTXF_csum_blank
1632				    | NETTXF_data_validated);
1633			}
1634#if __FreeBSD_version >= 700000
1635			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1636				struct netif_extra_info *gso =
1637					(struct netif_extra_info *)
1638					RING_GET_REQUEST(&sc->tx,
1639							 ++sc->tx.req_prod_pvt);
1640
1641				tx->flags |= NETTXF_extra_info;
1642
1643				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1644				gso->u.gso.type =
1645					XEN_NETIF_GSO_TYPE_TCPV4;
1646				gso->u.gso.pad = 0;
1647				gso->u.gso.features = 0;
1648
1649				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1650				gso->flags = 0;
1651			}
1652#endif
1653		} else {
1654			tx->size = m->m_len;
1655		}
1656		if (m->m_next)
1657			tx->flags |= NETTXF_more_data;
1658
1659		sc->tx.req_prod_pvt++;
1660	}
1661	BPF_MTAP(ifp, m_head);
1662
1663	sc->stats.tx_bytes += m_head->m_pkthdr.len;
1664	sc->stats.tx_packets++;
1665
1666	return (0);
1667}
1668
1669static void
1670xn_start_locked(struct ifnet *ifp)
1671{
1672	struct netfront_info *sc;
1673	struct mbuf *m_head;
1674	int notify;
1675
1676	sc = ifp->if_softc;
1677
1678	if (!netfront_carrier_ok(sc))
1679		return;
1680
1681	/*
1682	 * While we have enough transmit slots available for at least one
1683	 * maximum-sized packet, pull mbufs off the queue and put them on
1684	 * the transmit ring.
1685	 */
1686	while (xn_tx_slot_available(sc)) {
1687		IF_DEQUEUE(&ifp->if_snd, m_head);
1688		if (m_head == NULL)
1689			break;
1690
1691		if (xn_assemble_tx_request(sc, m_head) != 0)
1692			break;
1693	}
1694
1695	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify);
1696	if (notify)
1697		xen_intr_signal(sc->xen_intr_handle);
1698
1699	if (RING_FULL(&sc->tx)) {
1700		sc->tx_full = 1;
1701#if 0
1702		netif_stop_queue(dev);
1703#endif
1704	}
1705}
1706
1707static void
1708xn_start(struct ifnet *ifp)
1709{
1710	struct netfront_info *sc;
1711	sc = ifp->if_softc;
1712	XN_TX_LOCK(sc);
1713	xn_start_locked(ifp);
1714	XN_TX_UNLOCK(sc);
1715}
1716
1717/* equivalent of network_open() in Linux */
1718static void
1719xn_ifinit_locked(struct netfront_info *sc)
1720{
1721	struct ifnet *ifp;
1722
1723	XN_LOCK_ASSERT(sc);
1724
1725	ifp = sc->xn_ifp;
1726
1727	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1728		return;
1729
1730	xn_stop(sc);
1731
1732	network_alloc_rx_buffers(sc);
1733	sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1;
1734
1735	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1736	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1737	if_link_state_change(ifp, LINK_STATE_UP);
1738
1739	callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc);
1740}
1741
1742static void
1743xn_ifinit(void *xsc)
1744{
1745	struct netfront_info *sc = xsc;
1746
1747	XN_LOCK(sc);
1748	xn_ifinit_locked(sc);
1749	XN_UNLOCK(sc);
1750}
1751
1752static int
1753xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1754{
1755	struct netfront_info *sc = ifp->if_softc;
1756	struct ifreq *ifr = (struct ifreq *) data;
1757#ifdef INET
1758	struct ifaddr *ifa = (struct ifaddr *)data;
1759#endif
1760
1761	int mask, error = 0;
1762	switch(cmd) {
1763	case SIOCSIFADDR:
1764	case SIOCGIFADDR:
1765#ifdef INET
1766		XN_LOCK(sc);
1767		if (ifa->ifa_addr->sa_family == AF_INET) {
1768			ifp->if_flags |= IFF_UP;
1769			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1770				xn_ifinit_locked(sc);
1771			arp_ifinit(ifp, ifa);
1772			XN_UNLOCK(sc);
1773		} else {
1774			XN_UNLOCK(sc);
1775#endif
1776			error = ether_ioctl(ifp, cmd, data);
1777#ifdef INET
1778		}
1779#endif
1780		break;
1781	case SIOCSIFMTU:
1782		/* XXX can we alter the MTU on a VN ?*/
1783#ifdef notyet
1784		if (ifr->ifr_mtu > XN_JUMBO_MTU)
1785			error = EINVAL;
1786		else
1787#endif
1788		{
1789			ifp->if_mtu = ifr->ifr_mtu;
1790			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1791			xn_ifinit(sc);
1792		}
1793		break;
1794	case SIOCSIFFLAGS:
1795		XN_LOCK(sc);
1796		if (ifp->if_flags & IFF_UP) {
1797			/*
1798			 * If only the state of the PROMISC flag changed,
1799			 * then just use the 'set promisc mode' command
1800			 * instead of reinitializing the entire NIC. Doing
1801			 * a full re-init means reloading the firmware and
1802			 * waiting for it to start up, which may take a
1803			 * second or two.
1804			 */
1805#ifdef notyet
1806			/* No promiscuous mode with Xen */
1807			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1808			    ifp->if_flags & IFF_PROMISC &&
1809			    !(sc->xn_if_flags & IFF_PROMISC)) {
1810				XN_SETBIT(sc, XN_RX_MODE,
1811					  XN_RXMODE_RX_PROMISC);
1812			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1813				   !(ifp->if_flags & IFF_PROMISC) &&
1814				   sc->xn_if_flags & IFF_PROMISC) {
1815				XN_CLRBIT(sc, XN_RX_MODE,
1816					  XN_RXMODE_RX_PROMISC);
1817			} else
1818#endif
1819				xn_ifinit_locked(sc);
1820		} else {
1821			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1822				xn_stop(sc);
1823			}
1824		}
1825		sc->xn_if_flags = ifp->if_flags;
1826		XN_UNLOCK(sc);
1827		error = 0;
1828		break;
1829	case SIOCSIFCAP:
1830		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1831		if (mask & IFCAP_TXCSUM) {
1832			if (IFCAP_TXCSUM & ifp->if_capenable) {
1833				ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4);
1834				ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP
1835				    | CSUM_IP | CSUM_TSO);
1836			} else {
1837				ifp->if_capenable |= IFCAP_TXCSUM;
1838				ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP
1839				    | CSUM_IP);
1840			}
1841		}
1842		if (mask & IFCAP_RXCSUM) {
1843			ifp->if_capenable ^= IFCAP_RXCSUM;
1844		}
1845#if __FreeBSD_version >= 700000
1846		if (mask & IFCAP_TSO4) {
1847			if (IFCAP_TSO4 & ifp->if_capenable) {
1848				ifp->if_capenable &= ~IFCAP_TSO4;
1849				ifp->if_hwassist &= ~CSUM_TSO;
1850			} else if (IFCAP_TXCSUM & ifp->if_capenable) {
1851				ifp->if_capenable |= IFCAP_TSO4;
1852				ifp->if_hwassist |= CSUM_TSO;
1853			} else {
1854				IPRINTK("Xen requires tx checksum offload"
1855				    " be enabled to use TSO\n");
1856				error = EINVAL;
1857			}
1858		}
1859		if (mask & IFCAP_LRO) {
1860			ifp->if_capenable ^= IFCAP_LRO;
1861
1862		}
1863#endif
1864		error = 0;
1865		break;
1866	case SIOCADDMULTI:
1867	case SIOCDELMULTI:
1868#ifdef notyet
1869		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1870			XN_LOCK(sc);
1871			xn_setmulti(sc);
1872			XN_UNLOCK(sc);
1873			error = 0;
1874		}
1875#endif
1876		/* FALLTHROUGH */
1877	case SIOCSIFMEDIA:
1878	case SIOCGIFMEDIA:
1879		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1880		break;
1881	default:
1882		error = ether_ioctl(ifp, cmd, data);
1883	}
1884
1885	return (error);
1886}
1887
1888static void
1889xn_stop(struct netfront_info *sc)
1890{
1891	struct ifnet *ifp;
1892
1893	XN_LOCK_ASSERT(sc);
1894
1895	ifp = sc->xn_ifp;
1896
1897	callout_stop(&sc->xn_stat_ch);
1898
1899	xn_free_rx_ring(sc);
1900	xn_free_tx_ring(sc);
1901
1902	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1903	if_link_state_change(ifp, LINK_STATE_DOWN);
1904}
1905
1906/* START of Xenolinux helper functions adapted to FreeBSD */
1907int
1908network_connect(struct netfront_info *np)
1909{
1910	int i, requeue_idx, error;
1911	grant_ref_t ref;
1912	netif_rx_request_t *req;
1913	u_int feature_rx_copy, feature_rx_flip;
1914
1915	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1916	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1917	if (error)
1918		feature_rx_copy = 0;
1919	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1920	    "feature-rx-flip", NULL, "%u", &feature_rx_flip);
1921	if (error)
1922		feature_rx_flip = 1;
1923
1924	/*
1925	 * Copy packets on receive path if:
1926	 *  (a) This was requested by user, and the backend supports it; or
1927	 *  (b) Flipping was requested, but this is unsupported by the backend.
1928	 */
1929	np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) ||
1930				(MODPARM_rx_flip && !feature_rx_flip));
1931
1932	/* Recovery procedure: */
1933	error = talk_to_backend(np->xbdev, np);
1934	if (error)
1935		return (error);
1936
1937	/* Step 1: Reinitialise variables. */
1938	xn_query_features(np);
1939	xn_configure_features(np);
1940	netif_release_tx_bufs(np);
1941
1942	/* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */
1943	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1944		struct mbuf *m;
1945		u_long pfn;
1946
1947		if (np->rx_mbufs[i] == NULL)
1948			continue;
1949
1950		m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i);
1951		ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i);
1952
1953		req = RING_GET_REQUEST(&np->rx, requeue_idx);
1954		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1955
1956		if (!np->copying_receiver) {
1957			gnttab_grant_foreign_transfer_ref(ref,
1958			    xenbus_get_otherend_id(np->xbdev),
1959			    pfn);
1960		} else {
1961			gnttab_grant_foreign_access_ref(ref,
1962			    xenbus_get_otherend_id(np->xbdev),
1963			    PFNTOMFN(pfn), 0);
1964		}
1965		req->gref = ref;
1966		req->id   = requeue_idx;
1967
1968		requeue_idx++;
1969	}
1970
1971	np->rx.req_prod_pvt = requeue_idx;
1972
1973	/* Step 3: All public and private state should now be sane.  Get
1974	 * ready to start sending and receiving packets and give the driver
1975	 * domain a kick because we've probably just requeued some
1976	 * packets.
1977	 */
1978	netfront_carrier_on(np);
1979	xen_intr_signal(np->xen_intr_handle);
1980	XN_TX_LOCK(np);
1981	xn_txeof(np);
1982	XN_TX_UNLOCK(np);
1983	network_alloc_rx_buffers(np);
1984
1985	return (0);
1986}
1987
1988static void
1989xn_query_features(struct netfront_info *np)
1990{
1991	int val;
1992
1993	device_printf(np->xbdev, "backend features:");
1994
1995	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1996		"feature-sg", NULL, "%d", &val) < 0)
1997		val = 0;
1998
1999	np->maxfrags = 1;
2000	if (val) {
2001		np->maxfrags = MAX_TX_REQ_FRAGS;
2002		printf(" feature-sg");
2003	}
2004
2005	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2006		"feature-gso-tcpv4", NULL, "%d", &val) < 0)
2007		val = 0;
2008
2009	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2010	if (val) {
2011		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2012		printf(" feature-gso-tcp4");
2013	}
2014
2015	printf("\n");
2016}
2017
2018static int
2019xn_configure_features(struct netfront_info *np)
2020{
2021	int err, cap_enabled;
2022
2023	err = 0;
2024
2025	if (np->xn_resume &&
2026	    ((np->xn_ifp->if_capenable & np->xn_ifp->if_capabilities)
2027	    == np->xn_ifp->if_capenable)) {
2028		/* Current options are available, no need to do anything. */
2029		return (0);
2030	}
2031
2032	/* Try to preserve as many options as possible. */
2033	if (np->xn_resume)
2034		cap_enabled = np->xn_ifp->if_capenable;
2035	else
2036		cap_enabled = UINT_MAX;
2037
2038#if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6))
2039	if ((np->xn_ifp->if_capenable & IFCAP_LRO) == (cap_enabled & IFCAP_LRO))
2040		tcp_lro_free(&np->xn_lro);
2041#endif
2042    	np->xn_ifp->if_capenable =
2043	    np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4) & cap_enabled;
2044	np->xn_ifp->if_hwassist &= ~CSUM_TSO;
2045#if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6))
2046	if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) ==
2047	    (cap_enabled & IFCAP_LRO)) {
2048		err = tcp_lro_init(&np->xn_lro);
2049		if (err) {
2050			device_printf(np->xbdev, "LRO initialization failed\n");
2051		} else {
2052			np->xn_lro.ifp = np->xn_ifp;
2053			np->xn_ifp->if_capenable |= IFCAP_LRO;
2054		}
2055	}
2056	if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) ==
2057	    (cap_enabled & IFCAP_TSO4)) {
2058		np->xn_ifp->if_capenable |= IFCAP_TSO4;
2059		np->xn_ifp->if_hwassist |= CSUM_TSO;
2060	}
2061#endif
2062	return (err);
2063}
2064
2065/**
2066 * Create a network device.
2067 * @param dev  Newbus device representing this virtual NIC.
2068 */
2069int
2070create_netdev(device_t dev)
2071{
2072	int i;
2073	struct netfront_info *np;
2074	int err;
2075	struct ifnet *ifp;
2076
2077	np = device_get_softc(dev);
2078
2079	np->xbdev         = dev;
2080
2081	XN_LOCK_INIT(np, xennetif);
2082
2083	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2084	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2085	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2086
2087	np->rx_target     = RX_MIN_TARGET;
2088	np->rx_min_target = RX_MIN_TARGET;
2089	np->rx_max_target = RX_MAX_TARGET;
2090
2091	/* Initialise {tx,rx}_skbs to be a free chain containing every entry. */
2092	for (i = 0; i <= NET_TX_RING_SIZE; i++) {
2093		np->tx_mbufs[i] = (void *) ((u_long) i+1);
2094		np->grant_tx_ref[i] = GRANT_REF_INVALID;
2095	}
2096	np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0;
2097
2098	for (i = 0; i <= NET_RX_RING_SIZE; i++) {
2099
2100		np->rx_mbufs[i] = NULL;
2101		np->grant_rx_ref[i] = GRANT_REF_INVALID;
2102	}
2103	/* A grant for every tx ring slot */
2104	if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
2105					  &np->gref_tx_head) != 0) {
2106		IPRINTK("#### netfront can't alloc tx grant refs\n");
2107		err = ENOMEM;
2108		goto exit;
2109	}
2110	/* A grant for every rx ring slot */
2111	if (gnttab_alloc_grant_references(RX_MAX_TARGET,
2112					  &np->gref_rx_head) != 0) {
2113		WPRINTK("#### netfront can't alloc rx grant refs\n");
2114		gnttab_free_grant_references(np->gref_tx_head);
2115		err = ENOMEM;
2116		goto exit;
2117	}
2118
2119	err = xen_net_read_mac(dev, np->mac);
2120	if (err)
2121		goto out;
2122
2123	/* Set up ifnet structure */
2124	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2125    	ifp->if_softc = np;
2126    	if_initname(ifp, "xn",  device_get_unit(dev));
2127    	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2128    	ifp->if_ioctl = xn_ioctl;
2129    	ifp->if_output = ether_output;
2130    	ifp->if_start = xn_start;
2131#ifdef notyet
2132    	ifp->if_watchdog = xn_watchdog;
2133#endif
2134    	ifp->if_init = xn_ifinit;
2135    	ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1;
2136
2137    	ifp->if_hwassist = XN_CSUM_FEATURES;
2138    	ifp->if_capabilities = IFCAP_HWCSUM;
2139	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2140	ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS;
2141	ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
2142
2143    	ether_ifattach(ifp, np->mac);
2144    	callout_init(&np->xn_stat_ch, 1);
2145	netfront_carrier_off(np);
2146
2147	return (0);
2148
2149exit:
2150	gnttab_free_grant_references(np->gref_tx_head);
2151out:
2152	return (err);
2153}
2154
2155/**
2156 * Handle the change of state of the backend to Closing.  We must delete our
2157 * device-layer structures now, to ensure that writes are flushed through to
2158 * the backend.  Once is this done, we can switch to Closed in
2159 * acknowledgement.
2160 */
2161#if 0
2162static void
2163netfront_closing(device_t dev)
2164{
2165#if 0
2166	struct netfront_info *info = dev->dev_driver_data;
2167
2168	DPRINTK("netfront_closing: %s removed\n", dev->nodename);
2169
2170	close_netdev(info);
2171#endif
2172	xenbus_switch_state(dev, XenbusStateClosed);
2173}
2174#endif
2175
2176static int
2177netfront_detach(device_t dev)
2178{
2179	struct netfront_info *info = device_get_softc(dev);
2180
2181	DPRINTK("%s\n", xenbus_get_node(dev));
2182
2183	netif_free(info);
2184
2185	return 0;
2186}
2187
2188static void
2189netif_free(struct netfront_info *info)
2190{
2191	XN_LOCK(info);
2192	xn_stop(info);
2193	XN_UNLOCK(info);
2194	callout_drain(&info->xn_stat_ch);
2195	netif_disconnect_backend(info);
2196	if (info->xn_ifp != NULL) {
2197		ether_ifdetach(info->xn_ifp);
2198		if_free(info->xn_ifp);
2199		info->xn_ifp = NULL;
2200	}
2201	ifmedia_removeall(&info->sc_media);
2202}
2203
2204static void
2205netif_disconnect_backend(struct netfront_info *info)
2206{
2207	XN_RX_LOCK(info);
2208	XN_TX_LOCK(info);
2209	netfront_carrier_off(info);
2210	XN_TX_UNLOCK(info);
2211	XN_RX_UNLOCK(info);
2212
2213	free_ring(&info->tx_ring_ref, &info->tx.sring);
2214	free_ring(&info->rx_ring_ref, &info->rx.sring);
2215
2216	xen_intr_unbind(&info->xen_intr_handle);
2217}
2218
2219static void
2220free_ring(int *ref, void *ring_ptr_ref)
2221{
2222	void **ring_ptr_ptr = ring_ptr_ref;
2223
2224	if (*ref != GRANT_REF_INVALID) {
2225		/* This API frees the associated storage. */
2226		gnttab_end_foreign_access(*ref, *ring_ptr_ptr);
2227		*ref = GRANT_REF_INVALID;
2228	}
2229	*ring_ptr_ptr = NULL;
2230}
2231
2232static int
2233xn_ifmedia_upd(struct ifnet *ifp)
2234{
2235	return (0);
2236}
2237
2238static void
2239xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2240{
2241	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2242	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2243}
2244
2245/* ** Driver registration ** */
2246static device_method_t netfront_methods[] = {
2247	/* Device interface */
2248	DEVMETHOD(device_probe,         netfront_probe),
2249	DEVMETHOD(device_attach,        netfront_attach),
2250	DEVMETHOD(device_detach,        netfront_detach),
2251	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2252	DEVMETHOD(device_suspend,       netfront_suspend),
2253	DEVMETHOD(device_resume,        netfront_resume),
2254
2255	/* Xenbus interface */
2256	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2257
2258	DEVMETHOD_END
2259};
2260
2261static driver_t netfront_driver = {
2262	"xn",
2263	netfront_methods,
2264	sizeof(struct netfront_info),
2265};
2266devclass_t netfront_devclass;
2267
2268DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL,
2269    NULL);
2270