blkback.c revision 285738
1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Ken Merry           (Spectra Logic Corporation)
32 */
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/dev/xen/blkback/blkback.c 285738 2015-07-21 07:22:18Z royger $");
35
36/**
37 * \file blkback.c
38 *
39 * \brief Device driver supporting the vending of block storage from
40 *        a FreeBSD domain to other domains.
41 */
42
43#include "opt_kdtrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kernel.h>
48#include <sys/malloc.h>
49
50#include <sys/bio.h>
51#include <sys/bus.h>
52#include <sys/conf.h>
53#include <sys/devicestat.h>
54#include <sys/disk.h>
55#include <sys/fcntl.h>
56#include <sys/filedesc.h>
57#include <sys/kdb.h>
58#include <sys/module.h>
59#include <sys/namei.h>
60#include <sys/proc.h>
61#include <sys/rman.h>
62#include <sys/taskqueue.h>
63#include <sys/types.h>
64#include <sys/vnode.h>
65#include <sys/mount.h>
66#include <sys/sysctl.h>
67#include <sys/bitstring.h>
68#include <sys/sdt.h>
69
70#include <geom/geom.h>
71
72#include <machine/_inttypes.h>
73
74#include <vm/vm.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_kern.h>
77
78#include <xen/xen-os.h>
79#include <xen/blkif.h>
80#include <xen/gnttab.h>
81#include <xen/xen_intr.h>
82
83#include <xen/interface/event_channel.h>
84#include <xen/interface/grant_table.h>
85
86#include <xen/xenbus/xenbusvar.h>
87
88/*--------------------------- Compile-time Tunables --------------------------*/
89/**
90 * The maximum number of shared memory ring pages we will allow in a
91 * negotiated block-front/back communication channel.  Allow enough
92 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
93 */
94#define	XBB_MAX_RING_PAGES		32
95
96/**
97 * The maximum number of outstanding request blocks (request headers plus
98 * additional segment blocks) we will allow in a negotiated block-front/back
99 * communication channel.
100 */
101#define	XBB_MAX_REQUESTS 					\
102	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
103
104/**
105 * \brief Define to force all I/O to be performed on memory owned by the
106 *        backend device, with a copy-in/out to the remote domain's memory.
107 *
108 * \note  This option is currently required when this driver's domain is
109 *        operating in HVM mode on a system using an IOMMU.
110 *
111 * This driver uses Xen's grant table API to gain access to the memory of
112 * the remote domains it serves.  When our domain is operating in PV mode,
113 * the grant table mechanism directly updates our domain's page table entries
114 * to point to the physical pages of the remote domain.  This scheme guarantees
115 * that blkback and the backing devices it uses can safely perform DMA
116 * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
117 * insure that our domain cannot DMA to pages owned by another domain.  As
118 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
119 * table API.  For this reason, in HVM mode, we must bounce all requests into
120 * memory that is mapped into our domain at domain startup and thus has
121 * valid IOMMU mappings.
122 */
123#define XBB_USE_BOUNCE_BUFFERS
124
125/**
126 * \brief Define to enable rudimentary request logging to the console.
127 */
128#undef XBB_DEBUG
129
130/*---------------------------------- Macros ----------------------------------*/
131/**
132 * Custom malloc type for all driver allocations.
133 */
134static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
135
136#ifdef XBB_DEBUG
137#define DPRINTF(fmt, args...)					\
138    printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
139#else
140#define DPRINTF(fmt, args...) do {} while(0)
141#endif
142
143/**
144 * The maximum mapped region size per request we will allow in a negotiated
145 * block-front/back communication channel.
146 */
147#define	XBB_MAX_REQUEST_SIZE					\
148	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
149
150/**
151 * The maximum number of segments (within a request header and accompanying
152 * segment blocks) per request we will allow in a negotiated block-front/back
153 * communication channel.
154 */
155#define	XBB_MAX_SEGMENTS_PER_REQUEST				\
156	(MIN(UIO_MAXIOV,					\
157	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
158		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
159
160/**
161 * The maximum number of ring pages that we can allow per request list.
162 * We limit this to the maximum number of segments per request, because
163 * that is already a reasonable number of segments to aggregate.  This
164 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
165 * because that would leave situations where we can't dispatch even one
166 * large request.
167 */
168#define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
169
170/*--------------------------- Forward Declarations ---------------------------*/
171struct xbb_softc;
172struct xbb_xen_req;
173
174static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
175			      ...) __attribute__((format(printf, 3, 4)));
176static int  xbb_shutdown(struct xbb_softc *xbb);
177static int  xbb_detach(device_t dev);
178
179/*------------------------------ Data Structures -----------------------------*/
180
181STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
182
183typedef enum {
184	XBB_REQLIST_NONE	= 0x00,
185	XBB_REQLIST_MAPPED	= 0x01
186} xbb_reqlist_flags;
187
188struct xbb_xen_reqlist {
189	/**
190	 * Back reference to the parent block back instance for this
191	 * request.  Used during bio_done handling.
192	 */
193	struct xbb_softc        *xbb;
194
195	/**
196	 * BLKIF_OP code for this request.
197	 */
198	int			 operation;
199
200	/**
201	 * Set to BLKIF_RSP_* to indicate request status.
202	 *
203	 * This field allows an error status to be recorded even if the
204	 * delivery of this status must be deferred.  Deferred reporting
205	 * is necessary, for example, when an error is detected during
206	 * completion processing of one bio when other bios for this
207	 * request are still outstanding.
208	 */
209	int			 status;
210
211	/**
212	 * Number of 512 byte sectors not transferred.
213	 */
214	int			 residual_512b_sectors;
215
216	/**
217	 * Starting sector number of the first request in the list.
218	 */
219	off_t			 starting_sector_number;
220
221	/**
222	 * If we're going to coalesce, the next contiguous sector would be
223	 * this one.
224	 */
225	off_t			 next_contig_sector;
226
227	/**
228	 * Number of child requests in the list.
229	 */
230	int			 num_children;
231
232	/**
233	 * Number of I/O requests still pending on the backend.
234	 */
235	int			 pendcnt;
236
237	/**
238	 * Total number of segments for requests in the list.
239	 */
240	int			 nr_segments;
241
242	/**
243	 * Flags for this particular request list.
244	 */
245	xbb_reqlist_flags	 flags;
246
247	/**
248	 * Kernel virtual address space reserved for this request
249	 * list structure and used to map the remote domain's pages for
250	 * this I/O, into our domain's address space.
251	 */
252	uint8_t			*kva;
253
254	/**
255	 * Base, psuedo-physical address, corresponding to the start
256	 * of this request's kva region.
257	 */
258	uint64_t	 	 gnt_base;
259
260
261#ifdef XBB_USE_BOUNCE_BUFFERS
262	/**
263	 * Pre-allocated domain local memory used to proxy remote
264	 * domain memory during I/O operations.
265	 */
266	uint8_t			*bounce;
267#endif
268
269	/**
270	 * Array of grant handles (one per page) used to map this request.
271	 */
272	grant_handle_t		*gnt_handles;
273
274	/**
275	 * Device statistics request ordering type (ordered or simple).
276	 */
277	devstat_tag_type	 ds_tag_type;
278
279	/**
280	 * Device statistics request type (read, write, no_data).
281	 */
282	devstat_trans_flags	 ds_trans_type;
283
284	/**
285	 * The start time for this request.
286	 */
287	struct bintime		 ds_t0;
288
289	/**
290	 * Linked list of contiguous requests with the same operation type.
291	 */
292	struct xbb_xen_req_list	 contig_req_list;
293
294	/**
295	 * Linked list links used to aggregate idle requests in the
296	 * request list free pool (xbb->reqlist_free_stailq) and pending
297	 * requests waiting for execution (xbb->reqlist_pending_stailq).
298	 */
299	STAILQ_ENTRY(xbb_xen_reqlist) links;
300};
301
302STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
303
304/**
305 * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
306 */
307struct xbb_xen_req {
308	/**
309	 * Linked list links used to aggregate requests into a reqlist
310	 * and to store them in the request free pool.
311	 */
312	STAILQ_ENTRY(xbb_xen_req) links;
313
314	/**
315	 * The remote domain's identifier for this I/O request.
316	 */
317	uint64_t		  id;
318
319	/**
320	 * The number of pages currently mapped for this request.
321	 */
322	int			  nr_pages;
323
324	/**
325	 * The number of 512 byte sectors comprising this requests.
326	 */
327	int			  nr_512b_sectors;
328
329	/**
330	 * BLKIF_OP code for this request.
331	 */
332	int			  operation;
333
334	/**
335	 * Storage used for non-native ring requests.
336	 */
337	blkif_request_t		 ring_req_storage;
338
339	/**
340	 * Pointer to the Xen request in the ring.
341	 */
342	blkif_request_t		*ring_req;
343
344	/**
345	 * Consumer index for this request.
346	 */
347	RING_IDX		 req_ring_idx;
348
349	/**
350	 * The start time for this request.
351	 */
352	struct bintime		 ds_t0;
353
354	/**
355	 * Pointer back to our parent request list.
356	 */
357	struct xbb_xen_reqlist  *reqlist;
358};
359SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
360
361/**
362 * \brief Configuration data for the shared memory request ring
363 *        used to communicate with the front-end client of this
364 *        this driver.
365 */
366struct xbb_ring_config {
367	/** KVA address where ring memory is mapped. */
368	vm_offset_t	va;
369
370	/** The pseudo-physical address where ring memory is mapped.*/
371	uint64_t	gnt_addr;
372
373	/**
374	 * Grant table handles, one per-ring page, returned by the
375	 * hyperpervisor upon mapping of the ring and required to
376	 * unmap it when a connection is torn down.
377	 */
378	grant_handle_t	handle[XBB_MAX_RING_PAGES];
379
380	/**
381	 * The device bus address returned by the hypervisor when
382	 * mapping the ring and required to unmap it when a connection
383	 * is torn down.
384	 */
385	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
386
387	/** The number of ring pages mapped for the current connection. */
388	u_int		ring_pages;
389
390	/**
391	 * The grant references, one per-ring page, supplied by the
392	 * front-end, allowing us to reference the ring pages in the
393	 * front-end's domain and to map these pages into our own domain.
394	 */
395	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
396
397	/** The interrupt driven even channel used to signal ring events. */
398	evtchn_port_t   evtchn;
399};
400
401/**
402 * Per-instance connection state flags.
403 */
404typedef enum
405{
406	/**
407	 * The front-end requested a read-only mount of the
408	 * back-end device/file.
409	 */
410	XBBF_READ_ONLY         = 0x01,
411
412	/** Communication with the front-end has been established. */
413	XBBF_RING_CONNECTED    = 0x02,
414
415	/**
416	 * Front-end requests exist in the ring and are waiting for
417	 * xbb_xen_req objects to free up.
418	 */
419	XBBF_RESOURCE_SHORTAGE = 0x04,
420
421	/** Connection teardown in progress. */
422	XBBF_SHUTDOWN          = 0x08,
423
424	/** A thread is already performing shutdown processing. */
425	XBBF_IN_SHUTDOWN       = 0x10
426} xbb_flag_t;
427
428/** Backend device type.  */
429typedef enum {
430	/** Backend type unknown. */
431	XBB_TYPE_NONE		= 0x00,
432
433	/**
434	 * Backend type disk (access via cdev switch
435	 * strategy routine).
436	 */
437	XBB_TYPE_DISK		= 0x01,
438
439	/** Backend type file (access vnode operations.). */
440	XBB_TYPE_FILE		= 0x02
441} xbb_type;
442
443/**
444 * \brief Structure used to memoize information about a per-request
445 *        scatter-gather list.
446 *
447 * The chief benefit of using this data structure is it avoids having
448 * to reparse the possibly discontiguous S/G list in the original
449 * request.  Due to the way that the mapping of the memory backing an
450 * I/O transaction is handled by Xen, a second pass is unavoidable.
451 * At least this way the second walk is a simple array traversal.
452 *
453 * \note A single Scatter/Gather element in the block interface covers
454 *       at most 1 machine page.  In this context a sector (blkif
455 *       nomenclature, not what I'd choose) is a 512b aligned unit
456 *       of mapping within the machine page referenced by an S/G
457 *       element.
458 */
459struct xbb_sg {
460	/** The number of 512b data chunks mapped in this S/G element. */
461	int16_t nsect;
462
463	/**
464	 * The index (0 based) of the first 512b data chunk mapped
465	 * in this S/G element.
466	 */
467	uint8_t first_sect;
468
469	/**
470	 * The index (0 based) of the last 512b data chunk mapped
471	 * in this S/G element.
472	 */
473	uint8_t last_sect;
474};
475
476/**
477 * Character device backend specific configuration data.
478 */
479struct xbb_dev_data {
480	/** Cdev used for device backend access.  */
481	struct cdev   *cdev;
482
483	/** Cdev switch used for device backend access.  */
484	struct cdevsw *csw;
485
486	/** Used to hold a reference on opened cdev backend devices. */
487	int	       dev_ref;
488};
489
490/**
491 * File backend specific configuration data.
492 */
493struct xbb_file_data {
494	/** Credentials to use for vnode backed (file based) I/O. */
495	struct ucred   *cred;
496
497	/**
498	 * \brief Array of io vectors used to process file based I/O.
499	 *
500	 * Only a single file based request is outstanding per-xbb instance,
501	 * so we only need one of these.
502	 */
503	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
504#ifdef XBB_USE_BOUNCE_BUFFERS
505
506	/**
507	 * \brief Array of io vectors used to handle bouncing of file reads.
508	 *
509	 * Vnode operations are free to modify uio data during their
510	 * exectuion.  In the case of a read with bounce buffering active,
511	 * we need some of the data from the original uio in order to
512	 * bounce-out the read data.  This array serves as the temporary
513	 * storage for this saved data.
514	 */
515	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
516
517	/**
518	 * \brief Array of memoized bounce buffer kva offsets used
519	 *        in the file based backend.
520	 *
521	 * Due to the way that the mapping of the memory backing an
522	 * I/O transaction is handled by Xen, a second pass through
523	 * the request sg elements is unavoidable. We memoize the computed
524	 * bounce address here to reduce the cost of the second walk.
525	 */
526	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
527#endif /* XBB_USE_BOUNCE_BUFFERS */
528};
529
530/**
531 * Collection of backend type specific data.
532 */
533union xbb_backend_data {
534	struct xbb_dev_data  dev;
535	struct xbb_file_data file;
536};
537
538/**
539 * Function signature of backend specific I/O handlers.
540 */
541typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
542			      struct xbb_xen_reqlist *reqlist, int operation,
543			      int flags);
544
545/**
546 * Per-instance configuration data.
547 */
548struct xbb_softc {
549
550	/**
551	 * Task-queue used to process I/O requests.
552	 */
553	struct taskqueue	 *io_taskqueue;
554
555	/**
556	 * Single "run the request queue" task enqueued
557	 * on io_taskqueue.
558	 */
559	struct task		  io_task;
560
561	/** Device type for this instance. */
562	xbb_type		  device_type;
563
564	/** NewBus device corresponding to this instance. */
565	device_t		  dev;
566
567	/** Backend specific dispatch routine for this instance. */
568	xbb_dispatch_t		  dispatch_io;
569
570	/** The number of requests outstanding on the backend device/file. */
571	int			  active_request_count;
572
573	/** Free pool of request tracking structures. */
574	struct xbb_xen_req_list   request_free_stailq;
575
576	/** Array, sized at connection time, of request tracking structures. */
577	struct xbb_xen_req	 *requests;
578
579	/** Free pool of request list structures. */
580	struct xbb_xen_reqlist_list reqlist_free_stailq;
581
582	/** List of pending request lists awaiting execution. */
583	struct xbb_xen_reqlist_list reqlist_pending_stailq;
584
585	/** Array, sized at connection time, of request list structures. */
586	struct xbb_xen_reqlist	 *request_lists;
587
588	/**
589	 * Global pool of kva used for mapping remote domain ring
590	 * and I/O transaction data.
591	 */
592	vm_offset_t		  kva;
593
594	/** Psuedo-physical address corresponding to kva. */
595	uint64_t		  gnt_base_addr;
596
597	/** The size of the global kva pool. */
598	int			  kva_size;
599
600	/** The size of the KVA area used for request lists. */
601	int			  reqlist_kva_size;
602
603	/** The number of pages of KVA used for request lists */
604	int			  reqlist_kva_pages;
605
606	/** Bitmap of free KVA pages */
607	bitstr_t		 *kva_free;
608
609	/**
610	 * \brief Cached value of the front-end's domain id.
611	 *
612	 * This value is used at once for each mapped page in
613	 * a transaction.  We cache it to avoid incuring the
614	 * cost of an ivar access every time this is needed.
615	 */
616	domid_t			  otherend_id;
617
618	/**
619	 * \brief The blkif protocol abi in effect.
620	 *
621	 * There are situations where the back and front ends can
622	 * have a different, native abi (e.g. intel x86_64 and
623	 * 32bit x86 domains on the same machine).  The back-end
624	 * always accomodates the front-end's native abi.  That
625	 * value is pulled from the XenStore and recorded here.
626	 */
627	int			  abi;
628
629	/**
630	 * \brief The maximum number of requests and request lists allowed
631	 *        to be in flight at a time.
632	 *
633	 * This value is negotiated via the XenStore.
634	 */
635	u_int			  max_requests;
636
637	/**
638	 * \brief The maximum number of segments (1 page per segment)
639	 *	  that can be mapped by a request.
640	 *
641	 * This value is negotiated via the XenStore.
642	 */
643	u_int			  max_request_segments;
644
645	/**
646	 * \brief Maximum number of segments per request list.
647	 *
648	 * This value is derived from and will generally be larger than
649	 * max_request_segments.
650	 */
651	u_int			  max_reqlist_segments;
652
653	/**
654	 * The maximum size of any request to this back-end
655	 * device.
656	 *
657	 * This value is negotiated via the XenStore.
658	 */
659	u_int			  max_request_size;
660
661	/**
662	 * The maximum size of any request list.  This is derived directly
663	 * from max_reqlist_segments.
664	 */
665	u_int			  max_reqlist_size;
666
667	/** Various configuration and state bit flags. */
668	xbb_flag_t		  flags;
669
670	/** Ring mapping and interrupt configuration data. */
671	struct xbb_ring_config	  ring_config;
672
673	/** Runtime, cross-abi safe, structures for ring access. */
674	blkif_back_rings_t	  rings;
675
676	/** IRQ mapping for the communication ring event channel. */
677	xen_intr_handle_t	  xen_intr_handle;
678
679	/**
680	 * \brief Backend access mode flags (e.g. write, or read-only).
681	 *
682	 * This value is passed to us by the front-end via the XenStore.
683	 */
684	char			 *dev_mode;
685
686	/**
687	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
688	 *
689	 * This value is passed to us by the front-end via the XenStore.
690	 * Currently unused.
691	 */
692	char			 *dev_type;
693
694	/**
695	 * \brief Backend device/file identifier.
696	 *
697	 * This value is passed to us by the front-end via the XenStore.
698	 * We expect this to be a POSIX path indicating the file or
699	 * device to open.
700	 */
701	char			 *dev_name;
702
703	/**
704	 * Vnode corresponding to the backend device node or file
705	 * we are acessing.
706	 */
707	struct vnode		 *vn;
708
709	union xbb_backend_data	  backend;
710
711	/** The native sector size of the backend. */
712	u_int			  sector_size;
713
714	/** log2 of sector_size.  */
715	u_int			  sector_size_shift;
716
717	/** Size in bytes of the backend device or file.  */
718	off_t			  media_size;
719
720	/**
721	 * \brief media_size expressed in terms of the backend native
722	 *	  sector size.
723	 *
724	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
725	 */
726	uint64_t		  media_num_sectors;
727
728	/**
729	 * \brief Array of memoized scatter gather data computed during the
730	 *	  conversion of blkif ring requests to internal xbb_xen_req
731	 *	  structures.
732	 *
733	 * Ring processing is serialized so we only need one of these.
734	 */
735	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
736
737	/**
738	 * Temporary grant table map used in xbb_dispatch_io().  When
739	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
740	 * stack could cause a stack overflow.
741	 */
742	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
743
744	/** Mutex protecting per-instance data. */
745	struct mtx		  lock;
746
747#ifdef XENHVM
748	/**
749	 * Resource representing allocated physical address space
750	 * associated with our per-instance kva region.
751	 */
752	struct resource		 *pseudo_phys_res;
753
754	/** Resource id for allocated physical address space. */
755	int			  pseudo_phys_res_id;
756#endif
757
758	/**
759	 * I/O statistics from BlockBack dispatch down.  These are
760	 * coalesced requests, and we start them right before execution.
761	 */
762	struct devstat		 *xbb_stats;
763
764	/**
765	 * I/O statistics coming into BlockBack.  These are the requests as
766	 * we get them from BlockFront.  They are started as soon as we
767	 * receive a request, and completed when the I/O is complete.
768	 */
769	struct devstat		 *xbb_stats_in;
770
771	/** Disable sending flush to the backend */
772	int			  disable_flush;
773
774	/** Send a real flush for every N flush requests */
775	int			  flush_interval;
776
777	/** Count of flush requests in the interval */
778	int			  flush_count;
779
780	/** Don't coalesce requests if this is set */
781	int			  no_coalesce_reqs;
782
783	/** Number of requests we have received */
784	uint64_t		  reqs_received;
785
786	/** Number of requests we have completed*/
787	uint64_t		  reqs_completed;
788
789	/** How many forced dispatches (i.e. without coalescing) have happend */
790	uint64_t		  forced_dispatch;
791
792	/** How many normal dispatches have happend */
793	uint64_t		  normal_dispatch;
794
795	/** How many total dispatches have happend */
796	uint64_t		  total_dispatch;
797
798	/** How many times we have run out of KVA */
799	uint64_t		  kva_shortages;
800
801	/** How many times we have run out of request structures */
802	uint64_t		  request_shortages;
803};
804
805/*---------------------------- Request Processing ----------------------------*/
806/**
807 * Allocate an internal transaction tracking structure from the free pool.
808 *
809 * \param xbb  Per-instance xbb configuration structure.
810 *
811 * \return  On success, a pointer to the allocated xbb_xen_req structure.
812 *          Otherwise NULL.
813 */
814static inline struct xbb_xen_req *
815xbb_get_req(struct xbb_softc *xbb)
816{
817	struct xbb_xen_req *req;
818
819	req = NULL;
820
821	mtx_assert(&xbb->lock, MA_OWNED);
822
823	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
824		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
825		xbb->active_request_count++;
826	}
827
828	return (req);
829}
830
831/**
832 * Return an allocated transaction tracking structure to the free pool.
833 *
834 * \param xbb  Per-instance xbb configuration structure.
835 * \param req  The request structure to free.
836 */
837static inline void
838xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
839{
840	mtx_assert(&xbb->lock, MA_OWNED);
841
842	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
843	xbb->active_request_count--;
844
845	KASSERT(xbb->active_request_count >= 0,
846		("xbb_release_req: negative active count"));
847}
848
849/**
850 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
851 *
852 * \param xbb	    Per-instance xbb configuration structure.
853 * \param req_list  The list of requests to free.
854 * \param nreqs	    The number of items in the list.
855 */
856static inline void
857xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
858		 int nreqs)
859{
860	mtx_assert(&xbb->lock, MA_OWNED);
861
862	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
863	xbb->active_request_count -= nreqs;
864
865	KASSERT(xbb->active_request_count >= 0,
866		("xbb_release_reqs: negative active count"));
867}
868
869/**
870 * Given a page index and 512b sector offset within that page,
871 * calculate an offset into a request's kva region.
872 *
873 * \param reqlist The request structure whose kva region will be accessed.
874 * \param pagenr  The page index used to compute the kva offset.
875 * \param sector  The 512b sector index used to compute the page relative
876 *                kva offset.
877 *
878 * \return  The computed global KVA offset.
879 */
880static inline uint8_t *
881xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
882{
883	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
884}
885
886#ifdef XBB_USE_BOUNCE_BUFFERS
887/**
888 * Given a page index and 512b sector offset within that page,
889 * calculate an offset into a request's local bounce memory region.
890 *
891 * \param reqlist The request structure whose bounce region will be accessed.
892 * \param pagenr  The page index used to compute the bounce offset.
893 * \param sector  The 512b sector index used to compute the page relative
894 *                bounce offset.
895 *
896 * \return  The computed global bounce buffer address.
897 */
898static inline uint8_t *
899xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
900{
901	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
902}
903#endif
904
905/**
906 * Given a page number and 512b sector offset within that page,
907 * calculate an offset into the request's memory region that the
908 * underlying backend device/file should use for I/O.
909 *
910 * \param reqlist The request structure whose I/O region will be accessed.
911 * \param pagenr  The page index used to compute the I/O offset.
912 * \param sector  The 512b sector index used to compute the page relative
913 *                I/O offset.
914 *
915 * \return  The computed global I/O address.
916 *
917 * Depending on configuration, this will either be a local bounce buffer
918 * or a pointer to the memory mapped in from the front-end domain for
919 * this request.
920 */
921static inline uint8_t *
922xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
923{
924#ifdef XBB_USE_BOUNCE_BUFFERS
925	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
926#else
927	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
928#endif
929}
930
931/**
932 * Given a page index and 512b sector offset within that page, calculate
933 * an offset into the local psuedo-physical address space used to map a
934 * front-end's request data into a request.
935 *
936 * \param reqlist The request list structure whose pseudo-physical region
937 *                will be accessed.
938 * \param pagenr  The page index used to compute the pseudo-physical offset.
939 * \param sector  The 512b sector index used to compute the page relative
940 *                pseudo-physical offset.
941 *
942 * \return  The computed global pseudo-phsyical address.
943 *
944 * Depending on configuration, this will either be a local bounce buffer
945 * or a pointer to the memory mapped in from the front-end domain for
946 * this request.
947 */
948static inline uintptr_t
949xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
950{
951	struct xbb_softc *xbb;
952
953	xbb = reqlist->xbb;
954
955	return ((uintptr_t)(xbb->gnt_base_addr +
956		(uintptr_t)(reqlist->kva - xbb->kva) +
957		(PAGE_SIZE * pagenr) + (sector << 9)));
958}
959
960/**
961 * Get Kernel Virtual Address space for mapping requests.
962 *
963 * \param xbb         Per-instance xbb configuration structure.
964 * \param nr_pages    Number of pages needed.
965 * \param check_only  If set, check for free KVA but don't allocate it.
966 * \param have_lock   If set, xbb lock is already held.
967 *
968 * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
969 *
970 * Note:  This should be unnecessary once we have either chaining or
971 * scatter/gather support for struct bio.  At that point we'll be able to
972 * put multiple addresses and lengths in one bio/bio chain and won't need
973 * to map everything into one virtual segment.
974 */
975static uint8_t *
976xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
977{
978	intptr_t first_clear;
979	intptr_t num_clear;
980	uint8_t *free_kva;
981	int      i;
982
983	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
984
985	first_clear = 0;
986	free_kva = NULL;
987
988	mtx_lock(&xbb->lock);
989
990	/*
991	 * Look for the first available page.  If there are none, we're done.
992	 */
993	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
994
995	if (first_clear == -1)
996		goto bailout;
997
998	/*
999	 * Starting at the first available page, look for consecutive free
1000	 * pages that will satisfy the user's request.
1001	 */
1002	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1003		/*
1004		 * If this is true, the page is used, so we have to reset
1005		 * the number of clear pages and the first clear page
1006		 * (since it pointed to a region with an insufficient number
1007		 * of clear pages).
1008		 */
1009		if (bit_test(xbb->kva_free, i)) {
1010			num_clear = 0;
1011			first_clear = -1;
1012			continue;
1013		}
1014
1015		if (first_clear == -1)
1016			first_clear = i;
1017
1018		/*
1019		 * If this is true, we've found a large enough free region
1020		 * to satisfy the request.
1021		 */
1022		if (++num_clear == nr_pages) {
1023
1024			bit_nset(xbb->kva_free, first_clear,
1025				 first_clear + nr_pages - 1);
1026
1027			free_kva = xbb->kva +
1028				(uint8_t *)(first_clear * PAGE_SIZE);
1029
1030			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1031				free_kva + (nr_pages * PAGE_SIZE) <=
1032				(uint8_t *)xbb->ring_config.va,
1033				("Free KVA %p len %d out of range, "
1034				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1035				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1036				 (uintmax_t)xbb->ring_config.va));
1037			break;
1038		}
1039	}
1040
1041bailout:
1042
1043	if (free_kva == NULL) {
1044		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1045		xbb->kva_shortages++;
1046	}
1047
1048	mtx_unlock(&xbb->lock);
1049
1050	return (free_kva);
1051}
1052
1053/**
1054 * Free allocated KVA.
1055 *
1056 * \param xbb	    Per-instance xbb configuration structure.
1057 * \param kva_ptr   Pointer to allocated KVA region.
1058 * \param nr_pages  Number of pages in the KVA region.
1059 */
1060static void
1061xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1062{
1063	intptr_t start_page;
1064
1065	mtx_assert(&xbb->lock, MA_OWNED);
1066
1067	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1068	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1069
1070}
1071
1072/**
1073 * Unmap the front-end pages associated with this I/O request.
1074 *
1075 * \param req  The request structure to unmap.
1076 */
1077static void
1078xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1079{
1080	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1081	u_int			      i;
1082	u_int			      invcount;
1083	int			      error;
1084
1085	invcount = 0;
1086	for (i = 0; i < reqlist->nr_segments; i++) {
1087
1088		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1089			continue;
1090
1091		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1092		unmap[invcount].dev_bus_addr = 0;
1093		unmap[invcount].handle       = reqlist->gnt_handles[i];
1094		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1095		invcount++;
1096	}
1097
1098	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1099					  unmap, invcount);
1100	KASSERT(error == 0, ("Grant table operation failed"));
1101}
1102
1103/**
1104 * Allocate an internal transaction tracking structure from the free pool.
1105 *
1106 * \param xbb  Per-instance xbb configuration structure.
1107 *
1108 * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1109 *          Otherwise NULL.
1110 */
1111static inline struct xbb_xen_reqlist *
1112xbb_get_reqlist(struct xbb_softc *xbb)
1113{
1114	struct xbb_xen_reqlist *reqlist;
1115
1116	reqlist = NULL;
1117
1118	mtx_assert(&xbb->lock, MA_OWNED);
1119
1120	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1121
1122		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1123		reqlist->flags = XBB_REQLIST_NONE;
1124		reqlist->kva = NULL;
1125		reqlist->status = BLKIF_RSP_OKAY;
1126		reqlist->residual_512b_sectors = 0;
1127		reqlist->num_children = 0;
1128		reqlist->nr_segments = 0;
1129		STAILQ_INIT(&reqlist->contig_req_list);
1130	}
1131
1132	return (reqlist);
1133}
1134
1135/**
1136 * Return an allocated transaction tracking structure to the free pool.
1137 *
1138 * \param xbb        Per-instance xbb configuration structure.
1139 * \param req        The request list structure to free.
1140 * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1141 *                   during a resource shortage condition.
1142 */
1143static inline void
1144xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1145		    int wakeup)
1146{
1147
1148	mtx_lock(&xbb->lock);
1149
1150	if (wakeup) {
1151		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1152		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1153	}
1154
1155	if (reqlist->kva != NULL)
1156		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1157
1158	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1159
1160	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1161
1162	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1163		/*
1164		 * Shutdown is in progress.  See if we can
1165		 * progress further now that one more request
1166		 * has completed and been returned to the
1167		 * free pool.
1168		 */
1169		xbb_shutdown(xbb);
1170	}
1171
1172	mtx_unlock(&xbb->lock);
1173
1174	if (wakeup != 0)
1175		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1176}
1177
1178/**
1179 * Request resources and do basic request setup.
1180 *
1181 * \param xbb          Per-instance xbb configuration structure.
1182 * \param reqlist      Pointer to reqlist pointer.
1183 * \param ring_req     Pointer to a block ring request.
1184 * \param ring_index   The ring index of this request.
1185 *
1186 * \return  0 for success, non-zero for failure.
1187 */
1188static int
1189xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1190		  blkif_request_t *ring_req, RING_IDX ring_idx)
1191{
1192	struct xbb_xen_reqlist *nreqlist;
1193	struct xbb_xen_req     *nreq;
1194
1195	nreqlist = NULL;
1196	nreq     = NULL;
1197
1198	mtx_lock(&xbb->lock);
1199
1200	/*
1201	 * We don't allow new resources to be allocated if we're in the
1202	 * process of shutting down.
1203	 */
1204	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1205		mtx_unlock(&xbb->lock);
1206		return (1);
1207	}
1208
1209	/*
1210	 * Allocate a reqlist if the caller doesn't have one already.
1211	 */
1212	if (*reqlist == NULL) {
1213		nreqlist = xbb_get_reqlist(xbb);
1214		if (nreqlist == NULL)
1215			goto bailout_error;
1216	}
1217
1218	/* We always allocate a request. */
1219	nreq = xbb_get_req(xbb);
1220	if (nreq == NULL)
1221		goto bailout_error;
1222
1223	mtx_unlock(&xbb->lock);
1224
1225	if (*reqlist == NULL) {
1226		*reqlist = nreqlist;
1227		nreqlist->operation = ring_req->operation;
1228		nreqlist->starting_sector_number = ring_req->sector_number;
1229		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1230				   links);
1231	}
1232
1233	nreq->reqlist = *reqlist;
1234	nreq->req_ring_idx = ring_idx;
1235	nreq->id = ring_req->id;
1236	nreq->operation = ring_req->operation;
1237
1238	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1239		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1240		nreq->ring_req = &nreq->ring_req_storage;
1241	} else {
1242		nreq->ring_req = ring_req;
1243	}
1244
1245	binuptime(&nreq->ds_t0);
1246	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1247	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1248	(*reqlist)->num_children++;
1249	(*reqlist)->nr_segments += ring_req->nr_segments;
1250
1251	return (0);
1252
1253bailout_error:
1254
1255	/*
1256	 * We're out of resources, so set the shortage flag.  The next time
1257	 * a request is released, we'll try waking up the work thread to
1258	 * see if we can allocate more resources.
1259	 */
1260	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1261	xbb->request_shortages++;
1262
1263	if (nreq != NULL)
1264		xbb_release_req(xbb, nreq);
1265
1266	mtx_unlock(&xbb->lock);
1267
1268	if (nreqlist != NULL)
1269		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1270
1271	return (1);
1272}
1273
1274/**
1275 * Create and transmit a response to a blkif request.
1276 *
1277 * \param xbb     Per-instance xbb configuration structure.
1278 * \param req     The request structure to which to respond.
1279 * \param status  The status code to report.  See BLKIF_RSP_*
1280 *                in sys/xen/interface/io/blkif.h.
1281 */
1282static void
1283xbb_send_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1284{
1285	blkif_response_t *resp;
1286	int		  more_to_do;
1287	int		  notify;
1288
1289	more_to_do = 0;
1290
1291	/*
1292	 * Place on the response ring for the relevant domain.
1293	 * For now, only the spacing between entries is different
1294	 * in the different ABIs, not the response entry layout.
1295	 */
1296	mtx_lock(&xbb->lock);
1297	switch (xbb->abi) {
1298	case BLKIF_PROTOCOL_NATIVE:
1299		resp = RING_GET_RESPONSE(&xbb->rings.native,
1300					 xbb->rings.native.rsp_prod_pvt);
1301		break;
1302	case BLKIF_PROTOCOL_X86_32:
1303		resp = (blkif_response_t *)
1304		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1305				      xbb->rings.x86_32.rsp_prod_pvt);
1306		break;
1307	case BLKIF_PROTOCOL_X86_64:
1308		resp = (blkif_response_t *)
1309		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1310				      xbb->rings.x86_64.rsp_prod_pvt);
1311		break;
1312	default:
1313		panic("Unexpected blkif protocol ABI.");
1314	}
1315
1316	resp->id        = req->id;
1317	resp->operation = req->operation;
1318	resp->status    = status;
1319
1320	xbb->rings.common.rsp_prod_pvt++;
1321	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, notify);
1322
1323	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1324
1325		/*
1326		 * Tail check for pending requests. Allows frontend to avoid
1327		 * notifications if requests are already in flight (lower
1328		 * overheads and promotes batching).
1329		 */
1330		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1331	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1332
1333		more_to_do = 1;
1334	}
1335
1336	xbb->reqs_completed++;
1337
1338	mtx_unlock(&xbb->lock);
1339
1340	if (more_to_do)
1341		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1342
1343	if (notify)
1344		xen_intr_signal(xbb->xen_intr_handle);
1345}
1346
1347/**
1348 * Complete a request list.
1349 *
1350 * \param xbb        Per-instance xbb configuration structure.
1351 * \param reqlist    Allocated internal request list structure.
1352 */
1353static void
1354xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1355{
1356	struct xbb_xen_req *nreq;
1357	off_t		    sectors_sent;
1358
1359	sectors_sent = 0;
1360
1361	if (reqlist->flags & XBB_REQLIST_MAPPED)
1362		xbb_unmap_reqlist(reqlist);
1363
1364	/*
1365	 * All I/O is done, send the response.  A lock should not be
1366	 * necessary here because the request list is complete, and
1367	 * therefore this is the only context accessing this request
1368	 * right now.  The functions we call do their own locking if
1369	 * necessary.
1370	 */
1371	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1372		off_t cur_sectors_sent;
1373
1374		xbb_send_response(xbb, nreq, reqlist->status);
1375
1376		/* We don't report bytes sent if there is an error. */
1377		if (reqlist->status == BLKIF_RSP_OKAY)
1378			cur_sectors_sent = nreq->nr_512b_sectors;
1379		else
1380			cur_sectors_sent = 0;
1381
1382		sectors_sent += cur_sectors_sent;
1383
1384		devstat_end_transaction(xbb->xbb_stats_in,
1385					/*bytes*/cur_sectors_sent << 9,
1386					reqlist->ds_tag_type,
1387					reqlist->ds_trans_type,
1388					/*now*/NULL,
1389					/*then*/&nreq->ds_t0);
1390	}
1391
1392	/*
1393	 * Take out any sectors not sent.  If we wind up negative (which
1394	 * might happen if an error is reported as well as a residual), just
1395	 * report 0 sectors sent.
1396	 */
1397	sectors_sent -= reqlist->residual_512b_sectors;
1398	if (sectors_sent < 0)
1399		sectors_sent = 0;
1400
1401	devstat_end_transaction(xbb->xbb_stats,
1402				/*bytes*/ sectors_sent << 9,
1403				reqlist->ds_tag_type,
1404				reqlist->ds_trans_type,
1405				/*now*/NULL,
1406				/*then*/&reqlist->ds_t0);
1407
1408	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1409}
1410
1411/**
1412 * Completion handler for buffer I/O requests issued by the device
1413 * backend driver.
1414 *
1415 * \param bio  The buffer I/O request on which to perform completion
1416 *             processing.
1417 */
1418static void
1419xbb_bio_done(struct bio *bio)
1420{
1421	struct xbb_softc       *xbb;
1422	struct xbb_xen_reqlist *reqlist;
1423
1424	reqlist = bio->bio_caller1;
1425	xbb     = reqlist->xbb;
1426
1427	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1428
1429	/*
1430	 * This is a bit imprecise.  With aggregated I/O a single
1431	 * request list can contain multiple front-end requests and
1432	 * a multiple bios may point to a single request.  By carefully
1433	 * walking the request list, we could map residuals and errors
1434	 * back to the original front-end request, but the interface
1435	 * isn't sufficiently rich for us to properly report the error.
1436	 * So, we just treat the entire request list as having failed if an
1437	 * error occurs on any part.  And, if an error occurs, we treat
1438	 * the amount of data transferred as 0.
1439	 *
1440	 * For residuals, we report it on the overall aggregated device,
1441	 * but not on the individual requests, since we don't currently
1442	 * do the work to determine which front-end request to which the
1443	 * residual applies.
1444	 */
1445	if (bio->bio_error) {
1446		DPRINTF("BIO returned error %d for operation on device %s\n",
1447			bio->bio_error, xbb->dev_name);
1448		reqlist->status = BLKIF_RSP_ERROR;
1449
1450		if (bio->bio_error == ENXIO
1451		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1452
1453			/*
1454			 * Backend device has disappeared.  Signal the
1455			 * front-end that we (the device proxy) want to
1456			 * go away.
1457			 */
1458			xenbus_set_state(xbb->dev, XenbusStateClosing);
1459		}
1460	}
1461
1462#ifdef XBB_USE_BOUNCE_BUFFERS
1463	if (bio->bio_cmd == BIO_READ) {
1464		vm_offset_t kva_offset;
1465
1466		kva_offset = (vm_offset_t)bio->bio_data
1467			   - (vm_offset_t)reqlist->bounce;
1468		memcpy((uint8_t *)reqlist->kva + kva_offset,
1469		       bio->bio_data, bio->bio_bcount);
1470	}
1471#endif /* XBB_USE_BOUNCE_BUFFERS */
1472
1473	/*
1474	 * Decrement the pending count for the request list.  When we're
1475	 * done with the requests, send status back for all of them.
1476	 */
1477	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1478		xbb_complete_reqlist(xbb, reqlist);
1479
1480	g_destroy_bio(bio);
1481}
1482
1483/**
1484 * Parse a blkif request into an internal request structure and send
1485 * it to the backend for processing.
1486 *
1487 * \param xbb       Per-instance xbb configuration structure.
1488 * \param reqlist   Allocated internal request list structure.
1489 *
1490 * \return          On success, 0.  For resource shortages, non-zero.
1491 *
1492 * This routine performs the backend common aspects of request parsing
1493 * including compiling an internal request structure, parsing the S/G
1494 * list and any secondary ring requests in which they may reside, and
1495 * the mapping of front-end I/O pages into our domain.
1496 */
1497static int
1498xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1499{
1500	struct xbb_sg                *xbb_sg;
1501	struct gnttab_map_grant_ref  *map;
1502	struct blkif_request_segment *sg;
1503	struct blkif_request_segment *last_block_sg;
1504	struct xbb_xen_req	     *nreq;
1505	u_int			      nseg;
1506	u_int			      seg_idx;
1507	u_int			      block_segs;
1508	int			      nr_sects;
1509	int			      total_sects;
1510	int			      operation;
1511	uint8_t			      bio_flags;
1512	int			      error;
1513
1514	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1515	bio_flags            = 0;
1516	total_sects	     = 0;
1517	nr_sects	     = 0;
1518
1519	/*
1520	 * First determine whether we have enough free KVA to satisfy this
1521	 * request list.  If not, tell xbb_run_queue() so it can go to
1522	 * sleep until we have more KVA.
1523	 */
1524	reqlist->kva = NULL;
1525	if (reqlist->nr_segments != 0) {
1526		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1527		if (reqlist->kva == NULL) {
1528			/*
1529			 * If we're out of KVA, return ENOMEM.
1530			 */
1531			return (ENOMEM);
1532		}
1533	}
1534
1535	binuptime(&reqlist->ds_t0);
1536	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1537
1538	switch (reqlist->operation) {
1539	case BLKIF_OP_WRITE_BARRIER:
1540		bio_flags       |= BIO_ORDERED;
1541		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1542		/* FALLTHROUGH */
1543	case BLKIF_OP_WRITE:
1544		operation = BIO_WRITE;
1545		reqlist->ds_trans_type = DEVSTAT_WRITE;
1546		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1547			DPRINTF("Attempt to write to read only device %s\n",
1548				xbb->dev_name);
1549			reqlist->status = BLKIF_RSP_ERROR;
1550			goto send_response;
1551		}
1552		break;
1553	case BLKIF_OP_READ:
1554		operation = BIO_READ;
1555		reqlist->ds_trans_type = DEVSTAT_READ;
1556		break;
1557	case BLKIF_OP_FLUSH_DISKCACHE:
1558		/*
1559		 * If this is true, the user has requested that we disable
1560		 * flush support.  So we just complete the requests
1561		 * successfully.
1562		 */
1563		if (xbb->disable_flush != 0) {
1564			goto send_response;
1565		}
1566
1567		/*
1568		 * The user has requested that we only send a real flush
1569		 * for every N flush requests.  So keep count, and either
1570		 * complete the request immediately or queue it for the
1571		 * backend.
1572		 */
1573		if (xbb->flush_interval != 0) {
1574		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1575				goto send_response;
1576			} else
1577				xbb->flush_count = 0;
1578		}
1579
1580		operation = BIO_FLUSH;
1581		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1582		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1583		goto do_dispatch;
1584		/*NOTREACHED*/
1585	default:
1586		DPRINTF("error: unknown block io operation [%d]\n",
1587			reqlist->operation);
1588		reqlist->status = BLKIF_RSP_ERROR;
1589		goto send_response;
1590	}
1591
1592	reqlist->xbb  = xbb;
1593	xbb_sg        = xbb->xbb_sgs;
1594	map	      = xbb->maps;
1595	seg_idx	      = 0;
1596
1597	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1598		blkif_request_t		*ring_req;
1599		RING_IDX		 req_ring_idx;
1600		u_int			 req_seg_idx;
1601
1602		ring_req	      = nreq->ring_req;
1603		req_ring_idx	      = nreq->req_ring_idx;
1604		nr_sects              = 0;
1605		nseg                  = ring_req->nr_segments;
1606		nreq->nr_pages        = nseg;
1607		nreq->nr_512b_sectors = 0;
1608		req_seg_idx	      = 0;
1609		sg	              = NULL;
1610
1611		/* Check that number of segments is sane. */
1612		if (__predict_false(nseg == 0)
1613		 || __predict_false(nseg > xbb->max_request_segments)) {
1614			DPRINTF("Bad number of segments in request (%d)\n",
1615				nseg);
1616			reqlist->status = BLKIF_RSP_ERROR;
1617			goto send_response;
1618		}
1619
1620		block_segs    = nseg;
1621		sg            = ring_req->seg;
1622		last_block_sg = sg + block_segs;
1623
1624		while (sg < last_block_sg) {
1625			KASSERT(seg_idx <
1626				XBB_MAX_SEGMENTS_PER_REQLIST,
1627				("seg_idx %d is too large, max "
1628				"segs %d\n", seg_idx,
1629				XBB_MAX_SEGMENTS_PER_REQLIST));
1630
1631			xbb_sg->first_sect = sg->first_sect;
1632			xbb_sg->last_sect  = sg->last_sect;
1633			xbb_sg->nsect =
1634			    (int8_t)(sg->last_sect -
1635			    sg->first_sect + 1);
1636
1637			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1638			 || (xbb_sg->nsect <= 0)) {
1639				reqlist->status = BLKIF_RSP_ERROR;
1640				goto send_response;
1641			}
1642
1643			nr_sects += xbb_sg->nsect;
1644			map->host_addr = xbb_get_gntaddr(reqlist,
1645						seg_idx, /*sector*/0);
1646			KASSERT(map->host_addr + PAGE_SIZE <=
1647				xbb->ring_config.gnt_addr,
1648				("Host address %#jx len %d overlaps "
1649				 "ring address %#jx\n",
1650				(uintmax_t)map->host_addr, PAGE_SIZE,
1651				(uintmax_t)xbb->ring_config.gnt_addr));
1652
1653			map->flags     = GNTMAP_host_map;
1654			map->ref       = sg->gref;
1655			map->dom       = xbb->otherend_id;
1656			if (operation == BIO_WRITE)
1657				map->flags |= GNTMAP_readonly;
1658			sg++;
1659			map++;
1660			xbb_sg++;
1661			seg_idx++;
1662			req_seg_idx++;
1663		}
1664
1665		/* Convert to the disk's sector size */
1666		nreq->nr_512b_sectors = nr_sects;
1667		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1668		total_sects += nr_sects;
1669
1670		if ((nreq->nr_512b_sectors &
1671		    ((xbb->sector_size >> 9) - 1)) != 0) {
1672			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1673				      "a multiple of the backing store sector "
1674				      "size (%d)\n", __func__,
1675				      nreq->nr_512b_sectors << 9,
1676				      xbb->sector_size);
1677			reqlist->status = BLKIF_RSP_ERROR;
1678			goto send_response;
1679		}
1680	}
1681
1682	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1683					  xbb->maps, reqlist->nr_segments);
1684	if (error != 0)
1685		panic("Grant table operation failed (%d)", error);
1686
1687	reqlist->flags |= XBB_REQLIST_MAPPED;
1688
1689	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1690	     seg_idx++, map++){
1691
1692		if (__predict_false(map->status != 0)) {
1693			DPRINTF("invalid buffer -- could not remap "
1694			        "it (%d)\n", map->status);
1695			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1696			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1697				map->host_addr, map->flags, map->ref,
1698				map->dom);
1699			reqlist->status = BLKIF_RSP_ERROR;
1700			goto send_response;
1701		}
1702
1703		reqlist->gnt_handles[seg_idx] = map->handle;
1704	}
1705	if (reqlist->starting_sector_number + total_sects >
1706	    xbb->media_num_sectors) {
1707
1708		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1709			"extends past end of device %s\n",
1710			operation == BIO_READ ? "read" : "write",
1711			reqlist->starting_sector_number,
1712			reqlist->starting_sector_number + total_sects,
1713			xbb->dev_name);
1714		reqlist->status = BLKIF_RSP_ERROR;
1715		goto send_response;
1716	}
1717
1718do_dispatch:
1719
1720	error = xbb->dispatch_io(xbb,
1721				 reqlist,
1722				 operation,
1723				 bio_flags);
1724
1725	if (error != 0) {
1726		reqlist->status = BLKIF_RSP_ERROR;
1727		goto send_response;
1728	}
1729
1730	return (0);
1731
1732send_response:
1733
1734	xbb_complete_reqlist(xbb, reqlist);
1735
1736	return (0);
1737}
1738
1739static __inline int
1740xbb_count_sects(blkif_request_t *ring_req)
1741{
1742	int i;
1743	int cur_size = 0;
1744
1745	for (i = 0; i < ring_req->nr_segments; i++) {
1746		int nsect;
1747
1748		nsect = (int8_t)(ring_req->seg[i].last_sect -
1749			ring_req->seg[i].first_sect + 1);
1750		if (nsect <= 0)
1751			break;
1752
1753		cur_size += nsect;
1754	}
1755
1756	return (cur_size);
1757}
1758
1759/**
1760 * Process incoming requests from the shared communication ring in response
1761 * to a signal on the ring's event channel.
1762 *
1763 * \param context  Callback argument registerd during task initialization -
1764 *                 the xbb_softc for this instance.
1765 * \param pending  The number of taskqueue_enqueue events that have
1766 *                 occurred since this handler was last run.
1767 */
1768static void
1769xbb_run_queue(void *context, int pending)
1770{
1771	struct xbb_softc       *xbb;
1772	blkif_back_rings_t     *rings;
1773	RING_IDX		rp;
1774	uint64_t		cur_sector;
1775	int			cur_operation;
1776	struct xbb_xen_reqlist *reqlist;
1777
1778
1779	xbb   = (struct xbb_softc *)context;
1780	rings = &xbb->rings;
1781
1782	/*
1783	 * Work gather and dispatch loop.  Note that we have a bias here
1784	 * towards gathering I/O sent by blockfront.  We first gather up
1785	 * everything in the ring, as long as we have resources.  Then we
1786	 * dispatch one request, and then attempt to gather up any
1787	 * additional requests that have come in while we were dispatching
1788	 * the request.
1789	 *
1790	 * This allows us to get a clearer picture (via devstat) of how
1791	 * many requests blockfront is queueing to us at any given time.
1792	 */
1793	for (;;) {
1794		int retval;
1795
1796		/*
1797		 * Initialize reqlist to the last element in the pending
1798		 * queue, if there is one.  This allows us to add more
1799		 * requests to that request list, if we have room.
1800		 */
1801		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1802				      xbb_xen_reqlist, links);
1803		if (reqlist != NULL) {
1804			cur_sector = reqlist->next_contig_sector;
1805			cur_operation = reqlist->operation;
1806		} else {
1807			cur_operation = 0;
1808			cur_sector    = 0;
1809		}
1810
1811		/*
1812		 * Cache req_prod to avoid accessing a cache line shared
1813		 * with the frontend.
1814		 */
1815		rp = rings->common.sring->req_prod;
1816
1817		/* Ensure we see queued requests up to 'rp'. */
1818		rmb();
1819
1820		/**
1821		 * Run so long as there is work to consume and the generation
1822		 * of a response will not overflow the ring.
1823		 *
1824		 * @note There's a 1 to 1 relationship between requests and
1825		 *       responses, so an overflow should never occur.  This
1826		 *       test is to protect our domain from digesting bogus
1827		 *       data.  Shouldn't we log this?
1828		 */
1829		while (rings->common.req_cons != rp
1830		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1831						  rings->common.req_cons) == 0){
1832			blkif_request_t	        ring_req_storage;
1833			blkif_request_t	       *ring_req;
1834			int			cur_size;
1835
1836			switch (xbb->abi) {
1837			case BLKIF_PROTOCOL_NATIVE:
1838				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1839				    rings->common.req_cons);
1840				break;
1841			case BLKIF_PROTOCOL_X86_32:
1842			{
1843				struct blkif_x86_32_request *ring_req32;
1844
1845				ring_req32 = RING_GET_REQUEST(
1846				    &xbb->rings.x86_32, rings->common.req_cons);
1847				blkif_get_x86_32_req(&ring_req_storage,
1848						     ring_req32);
1849				ring_req = &ring_req_storage;
1850				break;
1851			}
1852			case BLKIF_PROTOCOL_X86_64:
1853			{
1854				struct blkif_x86_64_request *ring_req64;
1855
1856				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1857				    rings->common.req_cons);
1858				blkif_get_x86_64_req(&ring_req_storage,
1859						     ring_req64);
1860				ring_req = &ring_req_storage;
1861				break;
1862			}
1863			default:
1864				panic("Unexpected blkif protocol ABI.");
1865				/* NOTREACHED */
1866			}
1867
1868			/*
1869			 * Check for situations that would require closing
1870			 * off this I/O for further coalescing:
1871			 *  - Coalescing is turned off.
1872			 *  - Current I/O is out of sequence with the previous
1873			 *    I/O.
1874			 *  - Coalesced I/O would be too large.
1875			 */
1876			if ((reqlist != NULL)
1877			 && ((xbb->no_coalesce_reqs != 0)
1878			  || ((xbb->no_coalesce_reqs == 0)
1879			   && ((ring_req->sector_number != cur_sector)
1880			    || (ring_req->operation != cur_operation)
1881			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1882			         xbb->max_reqlist_segments))))) {
1883				reqlist = NULL;
1884			}
1885
1886			/*
1887			 * Grab and check for all resources in one shot.
1888			 * If we can't get all of the resources we need,
1889			 * the shortage is noted and the thread will get
1890			 * woken up when more resources are available.
1891			 */
1892			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1893						   xbb->rings.common.req_cons);
1894
1895			if (retval != 0) {
1896				/*
1897				 * Resource shortage has been recorded.
1898				 * We'll be scheduled to run once a request
1899				 * object frees up due to a completion.
1900				 */
1901				break;
1902			}
1903
1904			/*
1905			 * Signify that	we can overwrite this request with
1906			 * a response by incrementing our consumer index.
1907			 * The response won't be generated until after
1908			 * we've already consumed all necessary data out
1909			 * of the version of the request in the ring buffer
1910			 * (for native mode).  We must update the consumer
1911			 * index  before issueing back-end I/O so there is
1912			 * no possibility that it will complete and a
1913			 * response be generated before we make room in
1914			 * the queue for that response.
1915			 */
1916			xbb->rings.common.req_cons++;
1917			xbb->reqs_received++;
1918
1919			cur_size = xbb_count_sects(ring_req);
1920			cur_sector = ring_req->sector_number + cur_size;
1921			reqlist->next_contig_sector = cur_sector;
1922			cur_operation = ring_req->operation;
1923		}
1924
1925		/* Check for I/O to dispatch */
1926		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1927		if (reqlist == NULL) {
1928			/*
1929			 * We're out of work to do, put the task queue to
1930			 * sleep.
1931			 */
1932			break;
1933		}
1934
1935		/*
1936		 * Grab the first request off the queue and attempt
1937		 * to dispatch it.
1938		 */
1939		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1940
1941		retval = xbb_dispatch_io(xbb, reqlist);
1942		if (retval != 0) {
1943			/*
1944			 * xbb_dispatch_io() returns non-zero only when
1945			 * there is a resource shortage.  If that's the
1946			 * case, re-queue this request on the head of the
1947			 * queue, and go to sleep until we have more
1948			 * resources.
1949			 */
1950			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1951					   reqlist, links);
1952			break;
1953		} else {
1954			/*
1955			 * If we still have anything on the queue after
1956			 * removing the head entry, that is because we
1957			 * met one of the criteria to create a new
1958			 * request list (outlined above), and we'll call
1959			 * that a forced dispatch for statistical purposes.
1960			 *
1961			 * Otherwise, if there is only one element on the
1962			 * queue, we coalesced everything available on
1963			 * the ring and we'll call that a normal dispatch.
1964			 */
1965			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1966
1967			if (reqlist != NULL)
1968				xbb->forced_dispatch++;
1969			else
1970				xbb->normal_dispatch++;
1971
1972			xbb->total_dispatch++;
1973		}
1974	}
1975}
1976
1977/**
1978 * Interrupt handler bound to the shared ring's event channel.
1979 *
1980 * \param arg  Callback argument registerd during event channel
1981 *             binding - the xbb_softc for this instance.
1982 */
1983static int
1984xbb_filter(void *arg)
1985{
1986	struct xbb_softc *xbb;
1987
1988	/* Defer to taskqueue thread. */
1989	xbb = (struct xbb_softc *)arg;
1990	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1991
1992	return (FILTER_HANDLED);
1993}
1994
1995SDT_PROVIDER_DEFINE(xbb);
1996SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
1997SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
1998		  "uint64_t");
1999SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2000		  "uint64_t", "uint64_t");
2001
2002/*----------------------------- Backend Handlers -----------------------------*/
2003/**
2004 * Backend handler for character device access.
2005 *
2006 * \param xbb        Per-instance xbb configuration structure.
2007 * \param reqlist    Allocated internal request list structure.
2008 * \param operation  BIO_* I/O operation code.
2009 * \param bio_flags  Additional bio_flag data to pass to any generated
2010 *                   bios (e.g. BIO_ORDERED)..
2011 *
2012 * \return  0 for success, errno codes for failure.
2013 */
2014static int
2015xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2016		 int operation, int bio_flags)
2017{
2018	struct xbb_dev_data *dev_data;
2019	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2020	off_t                bio_offset;
2021	struct bio          *bio;
2022	struct xbb_sg       *xbb_sg;
2023	u_int	             nbio;
2024	u_int                bio_idx;
2025	u_int		     nseg;
2026	u_int                seg_idx;
2027	int                  error;
2028
2029	dev_data   = &xbb->backend.dev;
2030	bio_offset = (off_t)reqlist->starting_sector_number
2031		   << xbb->sector_size_shift;
2032	error      = 0;
2033	nbio       = 0;
2034	bio_idx    = 0;
2035
2036	if (operation == BIO_FLUSH) {
2037		bio = g_new_bio();
2038		if (__predict_false(bio == NULL)) {
2039			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2040			error = ENOMEM;
2041			return (error);
2042		}
2043
2044		bio->bio_cmd	 = BIO_FLUSH;
2045		bio->bio_flags	|= BIO_ORDERED;
2046		bio->bio_dev	 = dev_data->cdev;
2047		bio->bio_offset	 = 0;
2048		bio->bio_data	 = 0;
2049		bio->bio_done	 = xbb_bio_done;
2050		bio->bio_caller1 = reqlist;
2051		bio->bio_pblkno	 = 0;
2052
2053		reqlist->pendcnt = 1;
2054
2055		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2056			   device_get_unit(xbb->dev));
2057
2058		(*dev_data->csw->d_strategy)(bio);
2059
2060		return (0);
2061	}
2062
2063	xbb_sg = xbb->xbb_sgs;
2064	bio    = NULL;
2065	nseg = reqlist->nr_segments;
2066
2067	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2068
2069		/*
2070		 * KVA will not be contiguous, so any additional
2071		 * I/O will need to be represented in a new bio.
2072		 */
2073		if ((bio != NULL)
2074		 && (xbb_sg->first_sect != 0)) {
2075			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2076				printf("%s: Discontiguous I/O request "
2077				       "from domain %d ends on "
2078				       "non-sector boundary\n",
2079				       __func__, xbb->otherend_id);
2080				error = EINVAL;
2081				goto fail_free_bios;
2082			}
2083			bio = NULL;
2084		}
2085
2086		if (bio == NULL) {
2087			/*
2088			 * Make sure that the start of this bio is
2089			 * aligned to a device sector.
2090			 */
2091			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2092				printf("%s: Misaligned I/O request "
2093				       "from domain %d\n", __func__,
2094				       xbb->otherend_id);
2095				error = EINVAL;
2096				goto fail_free_bios;
2097			}
2098
2099			bio = bios[nbio++] = g_new_bio();
2100			if (__predict_false(bio == NULL)) {
2101				error = ENOMEM;
2102				goto fail_free_bios;
2103			}
2104			bio->bio_cmd     = operation;
2105			bio->bio_flags  |= bio_flags;
2106			bio->bio_dev     = dev_data->cdev;
2107			bio->bio_offset  = bio_offset;
2108			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2109						xbb_sg->first_sect);
2110			bio->bio_done    = xbb_bio_done;
2111			bio->bio_caller1 = reqlist;
2112			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2113		}
2114
2115		bio->bio_length += xbb_sg->nsect << 9;
2116		bio->bio_bcount  = bio->bio_length;
2117		bio_offset      += xbb_sg->nsect << 9;
2118
2119		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2120
2121			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2122				printf("%s: Discontiguous I/O request "
2123				       "from domain %d ends on "
2124				       "non-sector boundary\n",
2125				       __func__, xbb->otherend_id);
2126				error = EINVAL;
2127				goto fail_free_bios;
2128			}
2129			/*
2130			 * KVA will not be contiguous, so any additional
2131			 * I/O will need to be represented in a new bio.
2132			 */
2133			bio = NULL;
2134		}
2135	}
2136
2137	reqlist->pendcnt = nbio;
2138
2139	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2140	{
2141#ifdef XBB_USE_BOUNCE_BUFFERS
2142		vm_offset_t kva_offset;
2143
2144		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2145			   - (vm_offset_t)reqlist->bounce;
2146		if (operation == BIO_WRITE) {
2147			memcpy(bios[bio_idx]->bio_data,
2148			       (uint8_t *)reqlist->kva + kva_offset,
2149			       bios[bio_idx]->bio_bcount);
2150		}
2151#endif
2152		if (operation == BIO_READ) {
2153			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2154				   device_get_unit(xbb->dev),
2155				   bios[bio_idx]->bio_offset,
2156				   bios[bio_idx]->bio_length);
2157		} else if (operation == BIO_WRITE) {
2158			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2159				   device_get_unit(xbb->dev),
2160				   bios[bio_idx]->bio_offset,
2161				   bios[bio_idx]->bio_length);
2162		}
2163		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2164	}
2165
2166	return (error);
2167
2168fail_free_bios:
2169	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2170		g_destroy_bio(bios[bio_idx]);
2171
2172	return (error);
2173}
2174
2175SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2176SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2177		  "uint64_t");
2178SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2179		  "uint64_t", "uint64_t");
2180
2181/**
2182 * Backend handler for file access.
2183 *
2184 * \param xbb        Per-instance xbb configuration structure.
2185 * \param reqlist    Allocated internal request list.
2186 * \param operation  BIO_* I/O operation code.
2187 * \param flags      Additional bio_flag data to pass to any generated bios
2188 *                   (e.g. BIO_ORDERED)..
2189 *
2190 * \return  0 for success, errno codes for failure.
2191 */
2192static int
2193xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2194		  int operation, int flags)
2195{
2196	struct xbb_file_data *file_data;
2197	u_int                 seg_idx;
2198	u_int		      nseg;
2199	off_t		      sectors_sent;
2200	struct uio            xuio;
2201	struct xbb_sg        *xbb_sg;
2202	struct iovec         *xiovec;
2203#ifdef XBB_USE_BOUNCE_BUFFERS
2204	void                **p_vaddr;
2205	int                   saved_uio_iovcnt;
2206#endif /* XBB_USE_BOUNCE_BUFFERS */
2207	int                   error;
2208
2209	file_data = &xbb->backend.file;
2210	sectors_sent = 0;
2211	error = 0;
2212	bzero(&xuio, sizeof(xuio));
2213
2214	switch (operation) {
2215	case BIO_READ:
2216		xuio.uio_rw = UIO_READ;
2217		break;
2218	case BIO_WRITE:
2219		xuio.uio_rw = UIO_WRITE;
2220		break;
2221	case BIO_FLUSH: {
2222		struct mount *mountpoint;
2223
2224		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2225			   device_get_unit(xbb->dev));
2226
2227		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2228
2229		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2230		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2231		VOP_UNLOCK(xbb->vn, 0);
2232
2233		vn_finished_write(mountpoint);
2234
2235		goto bailout_send_response;
2236		/* NOTREACHED */
2237	}
2238	default:
2239		panic("invalid operation %d", operation);
2240		/* NOTREACHED */
2241	}
2242	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2243			<< xbb->sector_size_shift;
2244	xuio.uio_segflg = UIO_SYSSPACE;
2245	xuio.uio_iov = file_data->xiovecs;
2246	xuio.uio_iovcnt = 0;
2247	xbb_sg = xbb->xbb_sgs;
2248	nseg = reqlist->nr_segments;
2249
2250	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2251
2252		/*
2253		 * If the first sector is not 0, the KVA will
2254		 * not be contiguous and we'll need to go on
2255		 * to another segment.
2256		 */
2257		if (xbb_sg->first_sect != 0)
2258			xiovec = NULL;
2259
2260		if (xiovec == NULL) {
2261			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2262			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2263			    seg_idx, xbb_sg->first_sect);
2264#ifdef XBB_USE_BOUNCE_BUFFERS
2265			/*
2266			 * Store the address of the incoming
2267			 * buffer at this particular offset
2268			 * as well, so we can do the copy
2269			 * later without having to do more
2270			 * work to recalculate this address.
2271		 	 */
2272			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2273			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2274			    xbb_sg->first_sect);
2275#endif /* XBB_USE_BOUNCE_BUFFERS */
2276			xiovec->iov_len = 0;
2277			xuio.uio_iovcnt++;
2278		}
2279
2280		xiovec->iov_len += xbb_sg->nsect << 9;
2281
2282		xuio.uio_resid += xbb_sg->nsect << 9;
2283
2284		/*
2285		 * If the last sector is not the full page
2286		 * size count, the next segment will not be
2287		 * contiguous in KVA and we need a new iovec.
2288		 */
2289		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2290			xiovec = NULL;
2291	}
2292
2293	xuio.uio_td = curthread;
2294
2295#ifdef XBB_USE_BOUNCE_BUFFERS
2296	saved_uio_iovcnt = xuio.uio_iovcnt;
2297
2298	if (operation == BIO_WRITE) {
2299		/* Copy the write data to the local buffer. */
2300		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2301		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2302		     seg_idx++, xiovec++, p_vaddr++) {
2303
2304			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2305		}
2306	} else {
2307		/*
2308		 * We only need to save off the iovecs in the case of a
2309		 * read, because the copy for the read happens after the
2310		 * VOP_READ().  (The uio will get modified in that call
2311		 * sequence.)
2312		 */
2313		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2314		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2315	}
2316#endif /* XBB_USE_BOUNCE_BUFFERS */
2317
2318	switch (operation) {
2319	case BIO_READ:
2320
2321		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2322			   device_get_unit(xbb->dev), xuio.uio_offset,
2323			   xuio.uio_resid);
2324
2325		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2326
2327		/*
2328		 * UFS pays attention to IO_DIRECT for reads.  If the
2329		 * DIRECTIO option is configured into the kernel, it calls
2330		 * ffs_rawread().  But that only works for single-segment
2331		 * uios with user space addresses.  In our case, with a
2332		 * kernel uio, it still reads into the buffer cache, but it
2333		 * will just try to release the buffer from the cache later
2334		 * on in ffs_read().
2335		 *
2336		 * ZFS does not pay attention to IO_DIRECT for reads.
2337		 *
2338		 * UFS does not pay attention to IO_SYNC for reads.
2339		 *
2340		 * ZFS pays attention to IO_SYNC (which translates into the
2341		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2342		 * attempts to sync the file before reading.
2343		 *
2344		 * So, to attempt to provide some barrier semantics in the
2345		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2346		 */
2347		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2348				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2349
2350		VOP_UNLOCK(xbb->vn, 0);
2351		break;
2352	case BIO_WRITE: {
2353		struct mount *mountpoint;
2354
2355		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2356			   device_get_unit(xbb->dev), xuio.uio_offset,
2357			   xuio.uio_resid);
2358
2359		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2360
2361		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2362
2363		/*
2364		 * UFS pays attention to IO_DIRECT for writes.  The write
2365		 * is done asynchronously.  (Normally the write would just
2366		 * get put into cache.
2367		 *
2368		 * UFS pays attention to IO_SYNC for writes.  It will
2369		 * attempt to write the buffer out synchronously if that
2370		 * flag is set.
2371		 *
2372		 * ZFS does not pay attention to IO_DIRECT for writes.
2373		 *
2374		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2375		 * for writes.  It will flush the transaction from the
2376		 * cache before returning.
2377		 *
2378		 * So if we've got the BIO_ORDERED flag set, we want
2379		 * IO_SYNC in either the UFS or ZFS case.
2380		 */
2381		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2382				  IO_SYNC : 0, file_data->cred);
2383		VOP_UNLOCK(xbb->vn, 0);
2384
2385		vn_finished_write(mountpoint);
2386
2387		break;
2388	}
2389	default:
2390		panic("invalid operation %d", operation);
2391		/* NOTREACHED */
2392	}
2393
2394#ifdef XBB_USE_BOUNCE_BUFFERS
2395	/* We only need to copy here for read operations */
2396	if (operation == BIO_READ) {
2397
2398		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2399		     xiovec = file_data->saved_xiovecs;
2400		     seg_idx < saved_uio_iovcnt; seg_idx++,
2401		     xiovec++, p_vaddr++) {
2402
2403			/*
2404			 * Note that we have to use the copy of the
2405			 * io vector we made above.  uiomove() modifies
2406			 * the uio and its referenced vector as uiomove
2407			 * performs the copy, so we can't rely on any
2408			 * state from the original uio.
2409			 */
2410			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2411		}
2412	}
2413#endif /* XBB_USE_BOUNCE_BUFFERS */
2414
2415bailout_send_response:
2416
2417	if (error != 0)
2418		reqlist->status = BLKIF_RSP_ERROR;
2419
2420	xbb_complete_reqlist(xbb, reqlist);
2421
2422	return (0);
2423}
2424
2425/*--------------------------- Backend Configuration --------------------------*/
2426/**
2427 * Close and cleanup any backend device/file specific state for this
2428 * block back instance.
2429 *
2430 * \param xbb  Per-instance xbb configuration structure.
2431 */
2432static void
2433xbb_close_backend(struct xbb_softc *xbb)
2434{
2435	DROP_GIANT();
2436	DPRINTF("closing dev=%s\n", xbb->dev_name);
2437	if (xbb->vn) {
2438		int flags = FREAD;
2439
2440		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2441			flags |= FWRITE;
2442
2443		switch (xbb->device_type) {
2444		case XBB_TYPE_DISK:
2445			if (xbb->backend.dev.csw) {
2446				dev_relthread(xbb->backend.dev.cdev,
2447					      xbb->backend.dev.dev_ref);
2448				xbb->backend.dev.csw  = NULL;
2449				xbb->backend.dev.cdev = NULL;
2450			}
2451			break;
2452		case XBB_TYPE_FILE:
2453			break;
2454		case XBB_TYPE_NONE:
2455		default:
2456			panic("Unexpected backend type.");
2457			break;
2458		}
2459
2460		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2461		xbb->vn = NULL;
2462
2463		switch (xbb->device_type) {
2464		case XBB_TYPE_DISK:
2465			break;
2466		case XBB_TYPE_FILE:
2467			if (xbb->backend.file.cred != NULL) {
2468				crfree(xbb->backend.file.cred);
2469				xbb->backend.file.cred = NULL;
2470			}
2471			break;
2472		case XBB_TYPE_NONE:
2473		default:
2474			panic("Unexpected backend type.");
2475			break;
2476		}
2477	}
2478	PICKUP_GIANT();
2479}
2480
2481/**
2482 * Open a character device to be used for backend I/O.
2483 *
2484 * \param xbb  Per-instance xbb configuration structure.
2485 *
2486 * \return  0 for success, errno codes for failure.
2487 */
2488static int
2489xbb_open_dev(struct xbb_softc *xbb)
2490{
2491	struct vattr   vattr;
2492	struct cdev   *dev;
2493	struct cdevsw *devsw;
2494	int	       error;
2495
2496	xbb->device_type = XBB_TYPE_DISK;
2497	xbb->dispatch_io = xbb_dispatch_dev;
2498	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2499	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2500					     &xbb->backend.dev.dev_ref);
2501	if (xbb->backend.dev.csw == NULL)
2502		panic("Unable to retrieve device switch");
2503
2504	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2505	if (error) {
2506		xenbus_dev_fatal(xbb->dev, error, "error getting "
2507				 "vnode attributes for device %s",
2508				 xbb->dev_name);
2509		return (error);
2510	}
2511
2512
2513	dev = xbb->vn->v_rdev;
2514	devsw = dev->si_devsw;
2515	if (!devsw->d_ioctl) {
2516		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2517				 "device %s!", xbb->dev_name);
2518		return (ENODEV);
2519	}
2520
2521	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2522			       (caddr_t)&xbb->sector_size, FREAD,
2523			       curthread);
2524	if (error) {
2525		xenbus_dev_fatal(xbb->dev, error,
2526				 "error calling ioctl DIOCGSECTORSIZE "
2527				 "for device %s", xbb->dev_name);
2528		return (error);
2529	}
2530
2531	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2532			       (caddr_t)&xbb->media_size, FREAD,
2533			       curthread);
2534	if (error) {
2535		xenbus_dev_fatal(xbb->dev, error,
2536				 "error calling ioctl DIOCGMEDIASIZE "
2537				 "for device %s", xbb->dev_name);
2538		return (error);
2539	}
2540
2541	return (0);
2542}
2543
2544/**
2545 * Open a file to be used for backend I/O.
2546 *
2547 * \param xbb  Per-instance xbb configuration structure.
2548 *
2549 * \return  0 for success, errno codes for failure.
2550 */
2551static int
2552xbb_open_file(struct xbb_softc *xbb)
2553{
2554	struct xbb_file_data *file_data;
2555	struct vattr          vattr;
2556	int                   error;
2557
2558	file_data = &xbb->backend.file;
2559	xbb->device_type = XBB_TYPE_FILE;
2560	xbb->dispatch_io = xbb_dispatch_file;
2561	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2562	if (error != 0) {
2563		xenbus_dev_fatal(xbb->dev, error,
2564				 "error calling VOP_GETATTR()"
2565				 "for file %s", xbb->dev_name);
2566		return (error);
2567	}
2568
2569	/*
2570	 * Verify that we have the ability to upgrade to exclusive
2571	 * access on this file so we can trap errors at open instead
2572	 * of reporting them during first access.
2573	 */
2574	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2575		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2576		if (xbb->vn->v_iflag & VI_DOOMED) {
2577			error = EBADF;
2578			xenbus_dev_fatal(xbb->dev, error,
2579					 "error locking file %s",
2580					 xbb->dev_name);
2581
2582			return (error);
2583		}
2584	}
2585
2586	file_data->cred = crhold(curthread->td_ucred);
2587	xbb->media_size = vattr.va_size;
2588
2589	/*
2590	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2591	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2592	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2593	 * may not work with other OSes as well.  So just export a sector
2594	 * size of 512 bytes, which should work with any OS or
2595	 * application.  Since our backing is a file, any block size will
2596	 * work fine for the backing store.
2597	 */
2598#if 0
2599	xbb->sector_size = vattr.va_blocksize;
2600#endif
2601	xbb->sector_size = 512;
2602
2603	/*
2604	 * Sanity check.  The media size has to be at least one
2605	 * sector long.
2606	 */
2607	if (xbb->media_size < xbb->sector_size) {
2608		error = EINVAL;
2609		xenbus_dev_fatal(xbb->dev, error,
2610				 "file %s size %ju < block size %u",
2611				 xbb->dev_name,
2612				 (uintmax_t)xbb->media_size,
2613				 xbb->sector_size);
2614	}
2615	return (error);
2616}
2617
2618/**
2619 * Open the backend provider for this connection.
2620 *
2621 * \param xbb  Per-instance xbb configuration structure.
2622 *
2623 * \return  0 for success, errno codes for failure.
2624 */
2625static int
2626xbb_open_backend(struct xbb_softc *xbb)
2627{
2628	struct nameidata nd;
2629	int		 flags;
2630	int		 error;
2631
2632	flags = FREAD;
2633	error = 0;
2634
2635	DPRINTF("opening dev=%s\n", xbb->dev_name);
2636
2637	if (rootvnode == NULL) {
2638		xenbus_dev_fatal(xbb->dev, ENOENT,
2639				 "Root file system not mounted");
2640		return (ENOENT);
2641	}
2642
2643	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2644		flags |= FWRITE;
2645
2646	if (!curthread->td_proc->p_fd->fd_cdir) {
2647		curthread->td_proc->p_fd->fd_cdir = rootvnode;
2648		VREF(rootvnode);
2649	}
2650	if (!curthread->td_proc->p_fd->fd_rdir) {
2651		curthread->td_proc->p_fd->fd_rdir = rootvnode;
2652		VREF(rootvnode);
2653	}
2654	if (!curthread->td_proc->p_fd->fd_jdir) {
2655		curthread->td_proc->p_fd->fd_jdir = rootvnode;
2656		VREF(rootvnode);
2657	}
2658
2659 again:
2660	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2661	error = vn_open(&nd, &flags, 0, NULL);
2662	if (error) {
2663		/*
2664		 * This is the only reasonable guess we can make as far as
2665		 * path if the user doesn't give us a fully qualified path.
2666		 * If they want to specify a file, they need to specify the
2667		 * full path.
2668		 */
2669		if (xbb->dev_name[0] != '/') {
2670			char *dev_path = "/dev/";
2671			char *dev_name;
2672
2673			/* Try adding device path at beginning of name */
2674			dev_name = malloc(strlen(xbb->dev_name)
2675					+ strlen(dev_path) + 1,
2676					  M_XENBLOCKBACK, M_NOWAIT);
2677			if (dev_name) {
2678				sprintf(dev_name, "%s%s", dev_path,
2679					xbb->dev_name);
2680				free(xbb->dev_name, M_XENBLOCKBACK);
2681				xbb->dev_name = dev_name;
2682				goto again;
2683			}
2684		}
2685		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2686				 xbb->dev_name);
2687		return (error);
2688	}
2689
2690	NDFREE(&nd, NDF_ONLY_PNBUF);
2691
2692	xbb->vn = nd.ni_vp;
2693
2694	/* We only support disks and files. */
2695	if (vn_isdisk(xbb->vn, &error)) {
2696		error = xbb_open_dev(xbb);
2697	} else if (xbb->vn->v_type == VREG) {
2698		error = xbb_open_file(xbb);
2699	} else {
2700		error = EINVAL;
2701		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2702				 "or file", xbb->dev_name);
2703	}
2704	VOP_UNLOCK(xbb->vn, 0);
2705
2706	if (error != 0) {
2707		xbb_close_backend(xbb);
2708		return (error);
2709	}
2710
2711	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2712	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2713
2714	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2715		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2716		xbb->dev_name, xbb->sector_size, xbb->media_size);
2717
2718	return (0);
2719}
2720
2721/*------------------------ Inter-Domain Communication ------------------------*/
2722/**
2723 * Free dynamically allocated KVA or pseudo-physical address allocations.
2724 *
2725 * \param xbb  Per-instance xbb configuration structure.
2726 */
2727static void
2728xbb_free_communication_mem(struct xbb_softc *xbb)
2729{
2730	if (xbb->kva != 0) {
2731#ifndef XENHVM
2732		kva_free(xbb->kva, xbb->kva_size);
2733#else
2734		if (xbb->pseudo_phys_res != NULL) {
2735			bus_release_resource(xbb->dev, SYS_RES_MEMORY,
2736					     xbb->pseudo_phys_res_id,
2737					     xbb->pseudo_phys_res);
2738			xbb->pseudo_phys_res = NULL;
2739		}
2740#endif
2741	}
2742	xbb->kva = 0;
2743	xbb->gnt_base_addr = 0;
2744	if (xbb->kva_free != NULL) {
2745		free(xbb->kva_free, M_XENBLOCKBACK);
2746		xbb->kva_free = NULL;
2747	}
2748}
2749
2750/**
2751 * Cleanup all inter-domain communication mechanisms.
2752 *
2753 * \param xbb  Per-instance xbb configuration structure.
2754 */
2755static int
2756xbb_disconnect(struct xbb_softc *xbb)
2757{
2758	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2759	struct gnttab_unmap_grant_ref *op;
2760	u_int			       ring_idx;
2761	int			       error;
2762
2763	DPRINTF("\n");
2764
2765	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2766		return (0);
2767
2768	xen_intr_unbind(&xbb->xen_intr_handle);
2769
2770	mtx_unlock(&xbb->lock);
2771	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2772	mtx_lock(&xbb->lock);
2773
2774	/*
2775	 * No new interrupts can generate work, but we must wait
2776	 * for all currently active requests to drain.
2777	 */
2778	if (xbb->active_request_count != 0)
2779		return (EAGAIN);
2780
2781	for (ring_idx = 0, op = ops;
2782	     ring_idx < xbb->ring_config.ring_pages;
2783	     ring_idx++, op++) {
2784
2785		op->host_addr    = xbb->ring_config.gnt_addr
2786			         + (ring_idx * PAGE_SIZE);
2787		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2788		op->handle	 = xbb->ring_config.handle[ring_idx];
2789	}
2790
2791	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2792					  xbb->ring_config.ring_pages);
2793	if (error != 0)
2794		panic("Grant table op failed (%d)", error);
2795
2796	xbb_free_communication_mem(xbb);
2797
2798	if (xbb->requests != NULL) {
2799		free(xbb->requests, M_XENBLOCKBACK);
2800		xbb->requests = NULL;
2801	}
2802
2803	if (xbb->request_lists != NULL) {
2804		struct xbb_xen_reqlist *reqlist;
2805		int i;
2806
2807		/* There is one request list for ever allocated request. */
2808		for (i = 0, reqlist = xbb->request_lists;
2809		     i < xbb->max_requests; i++, reqlist++){
2810#ifdef XBB_USE_BOUNCE_BUFFERS
2811			if (reqlist->bounce != NULL) {
2812				free(reqlist->bounce, M_XENBLOCKBACK);
2813				reqlist->bounce = NULL;
2814			}
2815#endif
2816			if (reqlist->gnt_handles != NULL) {
2817				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2818				reqlist->gnt_handles = NULL;
2819			}
2820		}
2821		free(xbb->request_lists, M_XENBLOCKBACK);
2822		xbb->request_lists = NULL;
2823	}
2824
2825	xbb->flags &= ~XBBF_RING_CONNECTED;
2826	return (0);
2827}
2828
2829/**
2830 * Map shared memory ring into domain local address space, initialize
2831 * ring control structures, and bind an interrupt to the event channel
2832 * used to notify us of ring changes.
2833 *
2834 * \param xbb  Per-instance xbb configuration structure.
2835 */
2836static int
2837xbb_connect_ring(struct xbb_softc *xbb)
2838{
2839	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2840	struct gnttab_map_grant_ref *gnt;
2841	u_int			     ring_idx;
2842	int			     error;
2843
2844	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2845		return (0);
2846
2847	/*
2848	 * Kva for our ring is at the tail of the region of kva allocated
2849	 * by xbb_alloc_communication_mem().
2850	 */
2851	xbb->ring_config.va = xbb->kva
2852			    + (xbb->kva_size
2853			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2854	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2855				  + (xbb->kva_size
2856				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2857
2858	for (ring_idx = 0, gnt = gnts;
2859	     ring_idx < xbb->ring_config.ring_pages;
2860	     ring_idx++, gnt++) {
2861
2862		gnt->host_addr = xbb->ring_config.gnt_addr
2863			       + (ring_idx * PAGE_SIZE);
2864		gnt->flags     = GNTMAP_host_map;
2865		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2866		gnt->dom       = xbb->otherend_id;
2867	}
2868
2869	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2870					  xbb->ring_config.ring_pages);
2871	if (error)
2872		panic("blkback: Ring page grant table op failed (%d)", error);
2873
2874	for (ring_idx = 0, gnt = gnts;
2875	     ring_idx < xbb->ring_config.ring_pages;
2876	     ring_idx++, gnt++) {
2877		if (gnt->status != 0) {
2878			xbb->ring_config.va = 0;
2879			xenbus_dev_fatal(xbb->dev, EACCES,
2880					 "Ring shared page mapping failed. "
2881					 "Status %d.", gnt->status);
2882			return (EACCES);
2883		}
2884		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2885		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2886	}
2887
2888	/* Initialize the ring based on ABI. */
2889	switch (xbb->abi) {
2890	case BLKIF_PROTOCOL_NATIVE:
2891	{
2892		blkif_sring_t *sring;
2893		sring = (blkif_sring_t *)xbb->ring_config.va;
2894		BACK_RING_INIT(&xbb->rings.native, sring,
2895			       xbb->ring_config.ring_pages * PAGE_SIZE);
2896		break;
2897	}
2898	case BLKIF_PROTOCOL_X86_32:
2899	{
2900		blkif_x86_32_sring_t *sring_x86_32;
2901		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2902		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2903			       xbb->ring_config.ring_pages * PAGE_SIZE);
2904		break;
2905	}
2906	case BLKIF_PROTOCOL_X86_64:
2907	{
2908		blkif_x86_64_sring_t *sring_x86_64;
2909		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2910		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2911			       xbb->ring_config.ring_pages * PAGE_SIZE);
2912		break;
2913	}
2914	default:
2915		panic("Unexpected blkif protocol ABI.");
2916	}
2917
2918	xbb->flags |= XBBF_RING_CONNECTED;
2919
2920	error = xen_intr_bind_remote_port(xbb->dev,
2921					  xbb->otherend_id,
2922					  xbb->ring_config.evtchn,
2923					  xbb_filter,
2924					  /*ithread_handler*/NULL,
2925					  /*arg*/xbb,
2926					  INTR_TYPE_BIO | INTR_MPSAFE,
2927					  &xbb->xen_intr_handle);
2928	if (error) {
2929		(void)xbb_disconnect(xbb);
2930		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2931		return (error);
2932	}
2933
2934	DPRINTF("rings connected!\n");
2935
2936	return 0;
2937}
2938
2939/* Needed to make bit_alloc() macro work */
2940#define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
2941				   M_NOWAIT|M_ZERO);
2942
2943/**
2944 * Size KVA and pseudo-physical address allocations based on negotiated
2945 * values for the size and number of I/O requests, and the size of our
2946 * communication ring.
2947 *
2948 * \param xbb  Per-instance xbb configuration structure.
2949 *
2950 * These address spaces are used to dynamically map pages in the
2951 * front-end's domain into our own.
2952 */
2953static int
2954xbb_alloc_communication_mem(struct xbb_softc *xbb)
2955{
2956	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2957	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2958	xbb->kva_size = xbb->reqlist_kva_size +
2959			(xbb->ring_config.ring_pages * PAGE_SIZE);
2960
2961	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
2962	if (xbb->kva_free == NULL)
2963		return (ENOMEM);
2964
2965	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2966		device_get_nameunit(xbb->dev), xbb->kva_size,
2967		xbb->reqlist_kva_size);
2968#ifndef XENHVM
2969	xbb->kva = kva_alloc(xbb->kva_size);
2970	if (xbb->kva == 0)
2971		return (ENOMEM);
2972	xbb->gnt_base_addr = xbb->kva;
2973#else /* XENHVM */
2974	/*
2975	 * Reserve a range of pseudo physical memory that we can map
2976	 * into kva.  These pages will only be backed by machine
2977	 * pages ("real memory") during the lifetime of front-end requests
2978	 * via grant table operations.
2979	 */
2980	xbb->pseudo_phys_res_id = 0;
2981	xbb->pseudo_phys_res = bus_alloc_resource(xbb->dev, SYS_RES_MEMORY,
2982						  &xbb->pseudo_phys_res_id,
2983						  0, ~0, xbb->kva_size,
2984						  RF_ACTIVE);
2985	if (xbb->pseudo_phys_res == NULL) {
2986		xbb->kva = 0;
2987		return (ENOMEM);
2988	}
2989	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
2990	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
2991#endif /* XENHVM */
2992
2993	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
2994		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
2995		(uintmax_t)xbb->gnt_base_addr);
2996	return (0);
2997}
2998
2999/**
3000 * Collect front-end information from the XenStore.
3001 *
3002 * \param xbb  Per-instance xbb configuration structure.
3003 */
3004static int
3005xbb_collect_frontend_info(struct xbb_softc *xbb)
3006{
3007	char	    protocol_abi[64];
3008	const char *otherend_path;
3009	int	    error;
3010	u_int	    ring_idx;
3011	u_int	    ring_page_order;
3012	size_t	    ring_size;
3013
3014	otherend_path = xenbus_get_otherend_path(xbb->dev);
3015
3016	/*
3017	 * Protocol defaults valid even if all negotiation fails.
3018	 */
3019	xbb->ring_config.ring_pages = 1;
3020	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3021	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3022
3023	/*
3024	 * Mandatory data (used in all versions of the protocol) first.
3025	 */
3026	error = xs_scanf(XST_NIL, otherend_path,
3027			 "event-channel", NULL, "%" PRIu32,
3028			 &xbb->ring_config.evtchn);
3029	if (error != 0) {
3030		xenbus_dev_fatal(xbb->dev, error,
3031				 "Unable to retrieve event-channel information "
3032				 "from frontend %s.  Unable to connect.",
3033				 xenbus_get_otherend_path(xbb->dev));
3034		return (error);
3035	}
3036
3037	/*
3038	 * These fields are initialized to legacy protocol defaults
3039	 * so we only need to fail if reading the updated value succeeds
3040	 * and the new value is outside of its allowed range.
3041	 *
3042	 * \note xs_gather() returns on the first encountered error, so
3043	 *       we must use independant calls in order to guarantee
3044	 *       we don't miss information in a sparsly populated front-end
3045	 *       tree.
3046	 *
3047	 * \note xs_scanf() does not update variables for unmatched
3048	 *       fields.
3049	 */
3050	ring_page_order = 0;
3051	xbb->max_requests = 32;
3052
3053	(void)xs_scanf(XST_NIL, otherend_path,
3054		       "ring-page-order", NULL, "%u",
3055		       &ring_page_order);
3056	xbb->ring_config.ring_pages = 1 << ring_page_order;
3057	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3058	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3059
3060	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3061		xenbus_dev_fatal(xbb->dev, EINVAL,
3062				 "Front-end specified ring-pages of %u "
3063				 "exceeds backend limit of %u.  "
3064				 "Unable to connect.",
3065				 xbb->ring_config.ring_pages,
3066				 XBB_MAX_RING_PAGES);
3067		return (EINVAL);
3068	}
3069
3070	if (xbb->ring_config.ring_pages	== 1) {
3071		error = xs_gather(XST_NIL, otherend_path,
3072				  "ring-ref", "%" PRIu32,
3073				  &xbb->ring_config.ring_ref[0],
3074				  NULL);
3075		if (error != 0) {
3076			xenbus_dev_fatal(xbb->dev, error,
3077					 "Unable to retrieve ring information "
3078					 "from frontend %s.  Unable to "
3079					 "connect.",
3080					 xenbus_get_otherend_path(xbb->dev));
3081			return (error);
3082		}
3083	} else {
3084		/* Multi-page ring format. */
3085		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3086		     ring_idx++) {
3087			char ring_ref_name[]= "ring_refXX";
3088
3089			snprintf(ring_ref_name, sizeof(ring_ref_name),
3090				 "ring-ref%u", ring_idx);
3091			error = xs_scanf(XST_NIL, otherend_path,
3092					 ring_ref_name, NULL, "%" PRIu32,
3093					 &xbb->ring_config.ring_ref[ring_idx]);
3094			if (error != 0) {
3095				xenbus_dev_fatal(xbb->dev, error,
3096						 "Failed to retriev grant "
3097						 "reference for page %u of "
3098						 "shared ring.  Unable "
3099						 "to connect.", ring_idx);
3100				return (error);
3101			}
3102		}
3103	}
3104
3105	error = xs_gather(XST_NIL, otherend_path,
3106			  "protocol", "%63s", protocol_abi,
3107			  NULL);
3108	if (error != 0
3109	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3110		/*
3111		 * Assume native if the frontend has not
3112		 * published ABI data or it has published and
3113		 * matches our own ABI.
3114		 */
3115		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3116	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3117
3118		xbb->abi = BLKIF_PROTOCOL_X86_32;
3119	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3120
3121		xbb->abi = BLKIF_PROTOCOL_X86_64;
3122	} else {
3123
3124		xenbus_dev_fatal(xbb->dev, EINVAL,
3125				 "Unknown protocol ABI (%s) published by "
3126				 "frontend.  Unable to connect.", protocol_abi);
3127		return (EINVAL);
3128	}
3129	return (0);
3130}
3131
3132/**
3133 * Allocate per-request data structures given request size and number
3134 * information negotiated with the front-end.
3135 *
3136 * \param xbb  Per-instance xbb configuration structure.
3137 */
3138static int
3139xbb_alloc_requests(struct xbb_softc *xbb)
3140{
3141	struct xbb_xen_req *req;
3142	struct xbb_xen_req *last_req;
3143
3144	/*
3145	 * Allocate request book keeping datastructures.
3146	 */
3147	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3148			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3149	if (xbb->requests == NULL) {
3150		xenbus_dev_fatal(xbb->dev, ENOMEM,
3151				  "Unable to allocate request structures");
3152		return (ENOMEM);
3153	}
3154
3155	req      = xbb->requests;
3156	last_req = &xbb->requests[xbb->max_requests - 1];
3157	STAILQ_INIT(&xbb->request_free_stailq);
3158	while (req <= last_req) {
3159		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3160		req++;
3161	}
3162	return (0);
3163}
3164
3165static int
3166xbb_alloc_request_lists(struct xbb_softc *xbb)
3167{
3168	struct xbb_xen_reqlist *reqlist;
3169	int			i;
3170
3171	/*
3172	 * If no requests can be merged, we need 1 request list per
3173	 * in flight request.
3174	 */
3175	xbb->request_lists = malloc(xbb->max_requests *
3176		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3177	if (xbb->request_lists == NULL) {
3178		xenbus_dev_fatal(xbb->dev, ENOMEM,
3179				  "Unable to allocate request list structures");
3180		return (ENOMEM);
3181	}
3182
3183	STAILQ_INIT(&xbb->reqlist_free_stailq);
3184	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3185	for (i = 0; i < xbb->max_requests; i++) {
3186		int seg;
3187
3188		reqlist      = &xbb->request_lists[i];
3189
3190		reqlist->xbb = xbb;
3191
3192#ifdef XBB_USE_BOUNCE_BUFFERS
3193		reqlist->bounce = malloc(xbb->max_reqlist_size,
3194					 M_XENBLOCKBACK, M_NOWAIT);
3195		if (reqlist->bounce == NULL) {
3196			xenbus_dev_fatal(xbb->dev, ENOMEM,
3197					 "Unable to allocate request "
3198					 "bounce buffers");
3199			return (ENOMEM);
3200		}
3201#endif /* XBB_USE_BOUNCE_BUFFERS */
3202
3203		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3204					      sizeof(*reqlist->gnt_handles),
3205					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3206		if (reqlist->gnt_handles == NULL) {
3207			xenbus_dev_fatal(xbb->dev, ENOMEM,
3208					  "Unable to allocate request "
3209					  "grant references");
3210			return (ENOMEM);
3211		}
3212
3213		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3214			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3215
3216		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3217	}
3218	return (0);
3219}
3220
3221/**
3222 * Supply information about the physical device to the frontend
3223 * via XenBus.
3224 *
3225 * \param xbb  Per-instance xbb configuration structure.
3226 */
3227static int
3228xbb_publish_backend_info(struct xbb_softc *xbb)
3229{
3230	struct xs_transaction xst;
3231	const char	     *our_path;
3232	const char	     *leaf;
3233	int		      error;
3234
3235	our_path = xenbus_get_node(xbb->dev);
3236	while (1) {
3237		error = xs_transaction_start(&xst);
3238		if (error != 0) {
3239			xenbus_dev_fatal(xbb->dev, error,
3240					 "Error publishing backend info "
3241					 "(start transaction)");
3242			return (error);
3243		}
3244
3245		leaf = "sectors";
3246		error = xs_printf(xst, our_path, leaf,
3247				  "%"PRIu64, xbb->media_num_sectors);
3248		if (error != 0)
3249			break;
3250
3251		/* XXX Support all VBD attributes here. */
3252		leaf = "info";
3253		error = xs_printf(xst, our_path, leaf, "%u",
3254				  xbb->flags & XBBF_READ_ONLY
3255				? VDISK_READONLY : 0);
3256		if (error != 0)
3257			break;
3258
3259		leaf = "sector-size";
3260		error = xs_printf(xst, our_path, leaf, "%u",
3261				  xbb->sector_size);
3262		if (error != 0)
3263			break;
3264
3265		error = xs_transaction_end(xst, 0);
3266		if (error == 0) {
3267			return (0);
3268		} else if (error != EAGAIN) {
3269			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3270			return (error);
3271		}
3272	}
3273
3274	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3275			our_path, leaf);
3276	xs_transaction_end(xst, 1);
3277	return (error);
3278}
3279
3280/**
3281 * Connect to our blkfront peer now that it has completed publishing
3282 * its configuration into the XenStore.
3283 *
3284 * \param xbb  Per-instance xbb configuration structure.
3285 */
3286static void
3287xbb_connect(struct xbb_softc *xbb)
3288{
3289	int error;
3290
3291	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3292		return;
3293
3294	if (xbb_collect_frontend_info(xbb) != 0)
3295		return;
3296
3297	xbb->flags &= ~XBBF_SHUTDOWN;
3298
3299	/*
3300	 * We limit the maximum number of reqlist segments to the maximum
3301	 * number of segments in the ring, or our absolute maximum,
3302	 * whichever is smaller.
3303	 */
3304	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3305		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3306
3307	/*
3308	 * The maximum size is simply a function of the number of segments
3309	 * we can handle.
3310	 */
3311	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3312
3313	/* Allocate resources whose size depends on front-end configuration. */
3314	error = xbb_alloc_communication_mem(xbb);
3315	if (error != 0) {
3316		xenbus_dev_fatal(xbb->dev, error,
3317				 "Unable to allocate communication memory");
3318		return;
3319	}
3320
3321	error = xbb_alloc_requests(xbb);
3322	if (error != 0) {
3323		/* Specific errors are reported by xbb_alloc_requests(). */
3324		return;
3325	}
3326
3327	error = xbb_alloc_request_lists(xbb);
3328	if (error != 0) {
3329		/* Specific errors are reported by xbb_alloc_request_lists(). */
3330		return;
3331	}
3332
3333	/*
3334	 * Connect communication channel.
3335	 */
3336	error = xbb_connect_ring(xbb);
3337	if (error != 0) {
3338		/* Specific errors are reported by xbb_connect_ring(). */
3339		return;
3340	}
3341
3342	if (xbb_publish_backend_info(xbb) != 0) {
3343		/*
3344		 * If we can't publish our data, we cannot participate
3345		 * in this connection, and waiting for a front-end state
3346		 * change will not help the situation.
3347		 */
3348		(void)xbb_disconnect(xbb);
3349		return;
3350	}
3351
3352	/* Ready for I/O. */
3353	xenbus_set_state(xbb->dev, XenbusStateConnected);
3354}
3355
3356/*-------------------------- Device Teardown Support -------------------------*/
3357/**
3358 * Perform device shutdown functions.
3359 *
3360 * \param xbb  Per-instance xbb configuration structure.
3361 *
3362 * Mark this instance as shutting down, wait for any active I/O on the
3363 * backend device/file to drain, disconnect from the front-end, and notify
3364 * any waiters (e.g. a thread invoking our detach method) that detach can
3365 * now proceed.
3366 */
3367static int
3368xbb_shutdown(struct xbb_softc *xbb)
3369{
3370	XenbusState frontState;
3371	int	    error;
3372
3373	DPRINTF("\n");
3374
3375	/*
3376	 * Due to the need to drop our mutex during some
3377	 * xenbus operations, it is possible for two threads
3378	 * to attempt to close out shutdown processing at
3379	 * the same time.  Tell the caller that hits this
3380	 * race to try back later.
3381	 */
3382	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3383		return (EAGAIN);
3384
3385	xbb->flags |= XBBF_IN_SHUTDOWN;
3386	mtx_unlock(&xbb->lock);
3387
3388	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3389		xenbus_set_state(xbb->dev, XenbusStateClosing);
3390
3391	frontState = xenbus_get_otherend_state(xbb->dev);
3392	mtx_lock(&xbb->lock);
3393	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3394
3395	/* The front can submit I/O until entering the closed state. */
3396	if (frontState < XenbusStateClosed)
3397		return (EAGAIN);
3398
3399	DPRINTF("\n");
3400
3401	/* Indicate shutdown is in progress. */
3402	xbb->flags |= XBBF_SHUTDOWN;
3403
3404	/* Disconnect from the front-end. */
3405	error = xbb_disconnect(xbb);
3406	if (error != 0) {
3407		/*
3408		 * Requests still outstanding.  We'll be called again
3409		 * once they complete.
3410		 */
3411		KASSERT(error == EAGAIN,
3412			("%s: Unexpected xbb_disconnect() failure %d",
3413			 __func__, error));
3414
3415		return (error);
3416	}
3417
3418	DPRINTF("\n");
3419
3420	/* Indicate to xbb_detach() that is it safe to proceed. */
3421	wakeup(xbb);
3422
3423	return (0);
3424}
3425
3426/**
3427 * Report an attach time error to the console and Xen, and cleanup
3428 * this instance by forcing immediate detach processing.
3429 *
3430 * \param xbb  Per-instance xbb configuration structure.
3431 * \param err  Errno describing the error.
3432 * \param fmt  Printf style format and arguments
3433 */
3434static void
3435xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3436{
3437	va_list ap;
3438	va_list ap_hotplug;
3439
3440	va_start(ap, fmt);
3441	va_copy(ap_hotplug, ap);
3442	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3443		  "hotplug-error", fmt, ap_hotplug);
3444	va_end(ap_hotplug);
3445	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3446		  "hotplug-status", "error");
3447
3448	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3449	va_end(ap);
3450
3451	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3452		  "online", "0");
3453	xbb_detach(xbb->dev);
3454}
3455
3456/*---------------------------- NewBus Entrypoints ----------------------------*/
3457/**
3458 * Inspect a XenBus device and claim it if is of the appropriate type.
3459 *
3460 * \param dev  NewBus device object representing a candidate XenBus device.
3461 *
3462 * \return  0 for success, errno codes for failure.
3463 */
3464static int
3465xbb_probe(device_t dev)
3466{
3467
3468        if (!strcmp(xenbus_get_type(dev), "vbd")) {
3469                device_set_desc(dev, "Backend Virtual Block Device");
3470                device_quiet(dev);
3471                return (0);
3472        }
3473
3474        return (ENXIO);
3475}
3476
3477/**
3478 * Setup sysctl variables to control various Block Back parameters.
3479 *
3480 * \param xbb  Xen Block Back softc.
3481 *
3482 */
3483static void
3484xbb_setup_sysctl(struct xbb_softc *xbb)
3485{
3486	struct sysctl_ctx_list *sysctl_ctx = NULL;
3487	struct sysctl_oid      *sysctl_tree = NULL;
3488
3489	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3490	if (sysctl_ctx == NULL)
3491		return;
3492
3493	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3494	if (sysctl_tree == NULL)
3495		return;
3496
3497	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3498		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3499		       "fake the flush command");
3500
3501	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3502		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3503		       "send a real flush for N flush requests");
3504
3505	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3506		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3507		       "Don't coalesce contiguous requests");
3508
3509	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3510			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3511			 "how many I/O requests we have received");
3512
3513	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3514			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3515			 "how many I/O requests have been completed");
3516
3517	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3518			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3519			 "how many I/O dispatches were forced");
3520
3521	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3522			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3523			 "how many I/O dispatches were normal");
3524
3525	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3526			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3527			 "total number of I/O dispatches");
3528
3529	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3530			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3531			 "how many times we have run out of KVA");
3532
3533	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3534			 "request_shortages", CTLFLAG_RW,
3535			 &xbb->request_shortages,
3536			 "how many times we have run out of requests");
3537
3538	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3539		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3540		        "maximum outstanding requests (negotiated)");
3541
3542	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3543		        "max_request_segments", CTLFLAG_RD,
3544		        &xbb->max_request_segments, 0,
3545		        "maximum number of pages per requests (negotiated)");
3546
3547	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3548		        "max_request_size", CTLFLAG_RD,
3549		        &xbb->max_request_size, 0,
3550		        "maximum size in bytes of a request (negotiated)");
3551
3552	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3553		        "ring_pages", CTLFLAG_RD,
3554		        &xbb->ring_config.ring_pages, 0,
3555		        "communication channel pages (negotiated)");
3556}
3557
3558/**
3559 * Attach to a XenBus device that has been claimed by our probe routine.
3560 *
3561 * \param dev  NewBus device object representing this Xen Block Back instance.
3562 *
3563 * \return  0 for success, errno codes for failure.
3564 */
3565static int
3566xbb_attach(device_t dev)
3567{
3568	struct xbb_softc	*xbb;
3569	int			 error;
3570	u_int			 max_ring_page_order;
3571
3572	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3573
3574	/*
3575	 * Basic initialization.
3576	 * After this block it is safe to call xbb_detach()
3577	 * to clean up any allocated data for this instance.
3578	 */
3579	xbb = device_get_softc(dev);
3580	xbb->dev = dev;
3581	xbb->otherend_id = xenbus_get_otherend_id(dev);
3582	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3583	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3584
3585	/*
3586	 * Publish protocol capabilities for consumption by the
3587	 * front-end.
3588	 */
3589	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3590			  "feature-barrier", "1");
3591	if (error) {
3592		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3593				  xenbus_get_node(xbb->dev));
3594		return (error);
3595	}
3596
3597	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3598			  "feature-flush-cache", "1");
3599	if (error) {
3600		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3601				  xenbus_get_node(xbb->dev));
3602		return (error);
3603	}
3604
3605	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3606	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3607			  "max-ring-page-order", "%u", max_ring_page_order);
3608	if (error) {
3609		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3610				  xenbus_get_node(xbb->dev));
3611		return (error);
3612	}
3613
3614	/* Collect physical device information. */
3615	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3616			  "device-type", NULL, &xbb->dev_type,
3617			  NULL);
3618	if (error != 0)
3619		xbb->dev_type = NULL;
3620
3621	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3622                          "mode", NULL, &xbb->dev_mode,
3623			  "params", NULL, &xbb->dev_name,
3624                          NULL);
3625	if (error != 0) {
3626		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3627				  xenbus_get_node(dev));
3628                return (ENXIO);
3629        }
3630
3631	/* Parse fopen style mode flags. */
3632	if (strchr(xbb->dev_mode, 'w') == NULL)
3633		xbb->flags |= XBBF_READ_ONLY;
3634
3635	/*
3636	 * Verify the physical device is present and can support
3637	 * the desired I/O mode.
3638	 */
3639	DROP_GIANT();
3640	error = xbb_open_backend(xbb);
3641	PICKUP_GIANT();
3642	if (error != 0) {
3643		xbb_attach_failed(xbb, error, "Unable to open %s",
3644				  xbb->dev_name);
3645		return (ENXIO);
3646	}
3647
3648	/* Use devstat(9) for recording statistics. */
3649	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3650					   xbb->sector_size,
3651					   DEVSTAT_ALL_SUPPORTED,
3652					   DEVSTAT_TYPE_DIRECT
3653					 | DEVSTAT_TYPE_IF_OTHER,
3654					   DEVSTAT_PRIORITY_OTHER);
3655
3656	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3657					      xbb->sector_size,
3658					      DEVSTAT_ALL_SUPPORTED,
3659					      DEVSTAT_TYPE_DIRECT
3660					    | DEVSTAT_TYPE_IF_OTHER,
3661					      DEVSTAT_PRIORITY_OTHER);
3662	/*
3663	 * Setup sysctl variables.
3664	 */
3665	xbb_setup_sysctl(xbb);
3666
3667	/*
3668	 * Create a taskqueue for doing work that must occur from a
3669	 * thread context.
3670	 */
3671	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3672						  M_NOWAIT,
3673						  taskqueue_thread_enqueue,
3674						  /*contxt*/&xbb->io_taskqueue);
3675	if (xbb->io_taskqueue == NULL) {
3676		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3677		return (ENOMEM);
3678	}
3679
3680	taskqueue_start_threads(&xbb->io_taskqueue,
3681				/*num threads*/1,
3682				/*priority*/PWAIT,
3683				/*thread name*/
3684				"%s taskq", device_get_nameunit(dev));
3685
3686	/* Update hot-plug status to satisfy xend. */
3687	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3688			  "hotplug-status", "connected");
3689	if (error) {
3690		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3691				  xenbus_get_node(xbb->dev));
3692		return (error);
3693	}
3694
3695	/* Tell the front end that we are ready to connect. */
3696	xenbus_set_state(dev, XenbusStateInitWait);
3697
3698	return (0);
3699}
3700
3701/**
3702 * Detach from a block back device instance.
3703 *
3704 * \param dev  NewBus device object representing this Xen Block Back instance.
3705 *
3706 * \return  0 for success, errno codes for failure.
3707 *
3708 * \note A block back device may be detached at any time in its life-cycle,
3709 *       including part way through the attach process.  For this reason,
3710 *       initialization order and the intialization state checks in this
3711 *       routine must be carefully coupled so that attach time failures
3712 *       are gracefully handled.
3713 */
3714static int
3715xbb_detach(device_t dev)
3716{
3717        struct xbb_softc *xbb;
3718
3719	DPRINTF("\n");
3720
3721        xbb = device_get_softc(dev);
3722	mtx_lock(&xbb->lock);
3723	while (xbb_shutdown(xbb) == EAGAIN) {
3724		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3725		       "xbb_shutdown", 0);
3726	}
3727	mtx_unlock(&xbb->lock);
3728
3729	DPRINTF("\n");
3730
3731	if (xbb->io_taskqueue != NULL)
3732		taskqueue_free(xbb->io_taskqueue);
3733
3734	if (xbb->xbb_stats != NULL)
3735		devstat_remove_entry(xbb->xbb_stats);
3736
3737	if (xbb->xbb_stats_in != NULL)
3738		devstat_remove_entry(xbb->xbb_stats_in);
3739
3740	xbb_close_backend(xbb);
3741
3742	if (xbb->dev_mode != NULL) {
3743		free(xbb->dev_mode, M_XENBUS);
3744		xbb->dev_mode = NULL;
3745	}
3746
3747	if (xbb->dev_type != NULL) {
3748		free(xbb->dev_type, M_XENBUS);
3749		xbb->dev_type = NULL;
3750	}
3751
3752	if (xbb->dev_name != NULL) {
3753		free(xbb->dev_name, M_XENBUS);
3754		xbb->dev_name = NULL;
3755	}
3756
3757	mtx_destroy(&xbb->lock);
3758        return (0);
3759}
3760
3761/**
3762 * Prepare this block back device for suspension of this VM.
3763 *
3764 * \param dev  NewBus device object representing this Xen Block Back instance.
3765 *
3766 * \return  0 for success, errno codes for failure.
3767 */
3768static int
3769xbb_suspend(device_t dev)
3770{
3771#ifdef NOT_YET
3772        struct xbb_softc *sc = device_get_softc(dev);
3773
3774        /* Prevent new requests being issued until we fix things up. */
3775        mtx_lock(&sc->xb_io_lock);
3776        sc->connected = BLKIF_STATE_SUSPENDED;
3777        mtx_unlock(&sc->xb_io_lock);
3778#endif
3779
3780        return (0);
3781}
3782
3783/**
3784 * Perform any processing required to recover from a suspended state.
3785 *
3786 * \param dev  NewBus device object representing this Xen Block Back instance.
3787 *
3788 * \return  0 for success, errno codes for failure.
3789 */
3790static int
3791xbb_resume(device_t dev)
3792{
3793	return (0);
3794}
3795
3796/**
3797 * Handle state changes expressed via the XenStore by our front-end peer.
3798 *
3799 * \param dev             NewBus device object representing this Xen
3800 *                        Block Back instance.
3801 * \param frontend_state  The new state of the front-end.
3802 *
3803 * \return  0 for success, errno codes for failure.
3804 */
3805static void
3806xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3807{
3808	struct xbb_softc *xbb = device_get_softc(dev);
3809
3810	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3811	        xenbus_strstate(frontend_state),
3812		xenbus_strstate(xenbus_get_state(xbb->dev)));
3813
3814	switch (frontend_state) {
3815	case XenbusStateInitialising:
3816		break;
3817	case XenbusStateInitialised:
3818	case XenbusStateConnected:
3819		xbb_connect(xbb);
3820		break;
3821	case XenbusStateClosing:
3822	case XenbusStateClosed:
3823		mtx_lock(&xbb->lock);
3824		xbb_shutdown(xbb);
3825		mtx_unlock(&xbb->lock);
3826		if (frontend_state == XenbusStateClosed)
3827			xenbus_set_state(xbb->dev, XenbusStateClosed);
3828		break;
3829	default:
3830		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3831				 frontend_state);
3832		break;
3833	}
3834}
3835
3836/*---------------------------- NewBus Registration ---------------------------*/
3837static device_method_t xbb_methods[] = {
3838	/* Device interface */
3839	DEVMETHOD(device_probe,		xbb_probe),
3840	DEVMETHOD(device_attach,	xbb_attach),
3841	DEVMETHOD(device_detach,	xbb_detach),
3842	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3843	DEVMETHOD(device_suspend,	xbb_suspend),
3844	DEVMETHOD(device_resume,	xbb_resume),
3845
3846	/* Xenbus interface */
3847	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3848
3849	{ 0, 0 }
3850};
3851
3852static driver_t xbb_driver = {
3853        "xbbd",
3854        xbb_methods,
3855        sizeof(struct xbb_softc),
3856};
3857devclass_t xbb_devclass;
3858
3859DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3860