ubsec.c revision 314667
1/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
2
3/*-
4 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
5 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
6 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by Jason L. Wright
21 * 4. The name of the author may not be used to endorse or promote products
22 *    derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
32 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Effort sponsored in part by the Defense Advanced Research Projects
37 * Agency (DARPA) and Air Force Research Laboratory, Air Force
38 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/dev/ubsec/ubsec.c 314667 2017-03-04 13:03:31Z avg $");
43
44/*
45 * uBsec 5[56]01, 58xx hardware crypto accelerator
46 */
47
48#include "opt_ubsec.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/proc.h>
53#include <sys/errno.h>
54#include <sys/malloc.h>
55#include <sys/kernel.h>
56#include <sys/module.h>
57#include <sys/mbuf.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/sysctl.h>
61#include <sys/endian.h>
62
63#include <vm/vm.h>
64#include <vm/pmap.h>
65
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76#include <sys/kobj.h>
77
78#include "cryptodev_if.h"
79
80#include <dev/pci/pcivar.h>
81#include <dev/pci/pcireg.h>
82
83/* grr, #defines for gratuitous incompatibility in queue.h */
84#define	SIMPLEQ_HEAD		STAILQ_HEAD
85#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
86#define	SIMPLEQ_INIT		STAILQ_INIT
87#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
88#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
89#define	SIMPLEQ_FIRST		STAILQ_FIRST
90#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
91#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
92/* ditto for endian.h */
93#define	letoh16(x)		le16toh(x)
94#define	letoh32(x)		le32toh(x)
95
96#ifdef UBSEC_RNDTEST
97#include <dev/rndtest/rndtest.h>
98#endif
99#include <dev/ubsec/ubsecreg.h>
100#include <dev/ubsec/ubsecvar.h>
101
102/*
103 * Prototypes and count for the pci_device structure
104 */
105static	int ubsec_probe(device_t);
106static	int ubsec_attach(device_t);
107static	int ubsec_detach(device_t);
108static	int ubsec_suspend(device_t);
109static	int ubsec_resume(device_t);
110static	int ubsec_shutdown(device_t);
111
112static	int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
113static	int ubsec_freesession(device_t, u_int64_t);
114static	int ubsec_process(device_t, struct cryptop *, int);
115static	int ubsec_kprocess(device_t, struct cryptkop *, int);
116
117static device_method_t ubsec_methods[] = {
118	/* Device interface */
119	DEVMETHOD(device_probe,		ubsec_probe),
120	DEVMETHOD(device_attach,	ubsec_attach),
121	DEVMETHOD(device_detach,	ubsec_detach),
122	DEVMETHOD(device_suspend,	ubsec_suspend),
123	DEVMETHOD(device_resume,	ubsec_resume),
124	DEVMETHOD(device_shutdown,	ubsec_shutdown),
125
126	/* crypto device methods */
127	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
128	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
129	DEVMETHOD(cryptodev_process,	ubsec_process),
130	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
131
132	DEVMETHOD_END
133};
134static driver_t ubsec_driver = {
135	"ubsec",
136	ubsec_methods,
137	sizeof (struct ubsec_softc)
138};
139static devclass_t ubsec_devclass;
140
141DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
142MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
143#ifdef UBSEC_RNDTEST
144MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
145#endif
146
147static	void ubsec_intr(void *);
148static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
149static	void ubsec_feed(struct ubsec_softc *);
150static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
151static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
152static	int ubsec_feed2(struct ubsec_softc *);
153static	void ubsec_rng(void *);
154static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
155			     struct ubsec_dma_alloc *, int);
156#define	ubsec_dma_sync(_dma, _flags) \
157	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
158static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
159static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
160
161static	void ubsec_reset_board(struct ubsec_softc *sc);
162static	void ubsec_init_board(struct ubsec_softc *sc);
163static	void ubsec_init_pciregs(device_t dev);
164static	void ubsec_totalreset(struct ubsec_softc *sc);
165
166static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
167
168static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
169static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
170static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
171static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
172static	int ubsec_ksigbits(struct crparam *);
173static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
174static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
175
176static SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0,
177    "Broadcom driver parameters");
178
179#ifdef UBSEC_DEBUG
180static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
181static	void ubsec_dump_mcr(struct ubsec_mcr *);
182static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
183
184static	int ubsec_debug = 0;
185SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
186	    0, "control debugging msgs");
187#endif
188
189#define	READ_REG(sc,r) \
190	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
191
192#define WRITE_REG(sc,reg,val) \
193	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
194
195#define	SWAP32(x) (x) = htole32(ntohl((x)))
196#define	HTOLE32(x) (x) = htole32(x)
197
198struct ubsec_stats ubsecstats;
199SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
200	    ubsec_stats, "driver statistics");
201
202static int
203ubsec_probe(device_t dev)
204{
205	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
206	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
207	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
208		return (BUS_PROBE_DEFAULT);
209	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
210	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
211	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
212		return (BUS_PROBE_DEFAULT);
213	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
214	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
215	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
216	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
217	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
218	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
219	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
220	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
221	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825
222	     ))
223		return (BUS_PROBE_DEFAULT);
224	return (ENXIO);
225}
226
227static const char*
228ubsec_partname(struct ubsec_softc *sc)
229{
230	/* XXX sprintf numbers when not decoded */
231	switch (pci_get_vendor(sc->sc_dev)) {
232	case PCI_VENDOR_BROADCOM:
233		switch (pci_get_device(sc->sc_dev)) {
234		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
235		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
236		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
237		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
238		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
239		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
240		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
241		case PCI_PRODUCT_BROADCOM_5825:	return "Broadcom 5825";
242		}
243		return "Broadcom unknown-part";
244	case PCI_VENDOR_BLUESTEEL:
245		switch (pci_get_device(sc->sc_dev)) {
246		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
247		}
248		return "Bluesteel unknown-part";
249	case PCI_VENDOR_SUN:
250		switch (pci_get_device(sc->sc_dev)) {
251		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
252		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
253		}
254		return "Sun unknown-part";
255	}
256	return "Unknown-vendor unknown-part";
257}
258
259static void
260default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
261{
262	random_harvest(buf, count, count*NBBY/2, RANDOM_PURE_UBSEC);
263}
264
265static int
266ubsec_attach(device_t dev)
267{
268	struct ubsec_softc *sc = device_get_softc(dev);
269	struct ubsec_dma *dmap;
270	u_int32_t i;
271	int rid;
272
273	bzero(sc, sizeof (*sc));
274	sc->sc_dev = dev;
275
276	SIMPLEQ_INIT(&sc->sc_queue);
277	SIMPLEQ_INIT(&sc->sc_qchip);
278	SIMPLEQ_INIT(&sc->sc_queue2);
279	SIMPLEQ_INIT(&sc->sc_qchip2);
280	SIMPLEQ_INIT(&sc->sc_q2free);
281
282	/* XXX handle power management */
283
284	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
285
286	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
287	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
288		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
289
290	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
291	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
292	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
293		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
294
295	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
296	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
297		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
298		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
299
300	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
301	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
302	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
303	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
304	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825)) ||
305	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
306	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
307	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
308		/* NB: the 5821/5822 defines some additional status bits */
309		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
310		    BS_STAT_MCR2_ALLEMPTY;
311		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
312		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
313	}
314
315	pci_enable_busmaster(dev);
316
317	/*
318	 * Setup memory-mapping of PCI registers.
319	 */
320	rid = BS_BAR;
321	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
322					   RF_ACTIVE);
323	if (sc->sc_sr == NULL) {
324		device_printf(dev, "cannot map register space\n");
325		goto bad;
326	}
327	sc->sc_st = rman_get_bustag(sc->sc_sr);
328	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
329
330	/*
331	 * Arrange interrupt line.
332	 */
333	rid = 0;
334	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
335					    RF_SHAREABLE|RF_ACTIVE);
336	if (sc->sc_irq == NULL) {
337		device_printf(dev, "could not map interrupt\n");
338		goto bad1;
339	}
340	/*
341	 * NB: Network code assumes we are blocked with splimp()
342	 *     so make sure the IRQ is mapped appropriately.
343	 */
344	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
345			   NULL, ubsec_intr, sc, &sc->sc_ih)) {
346		device_printf(dev, "could not establish interrupt\n");
347		goto bad2;
348	}
349
350	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
351	if (sc->sc_cid < 0) {
352		device_printf(dev, "could not get crypto driver id\n");
353		goto bad3;
354	}
355
356	/*
357	 * Setup DMA descriptor area.
358	 */
359	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
360			       1, 0,			/* alignment, bounds */
361			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
362			       BUS_SPACE_MAXADDR,	/* highaddr */
363			       NULL, NULL,		/* filter, filterarg */
364			       0x3ffff,			/* maxsize */
365			       UBS_MAX_SCATTER,		/* nsegments */
366			       0xffff,			/* maxsegsize */
367			       BUS_DMA_ALLOCNOW,	/* flags */
368			       NULL, NULL,		/* lockfunc, lockarg */
369			       &sc->sc_dmat)) {
370		device_printf(dev, "cannot allocate DMA tag\n");
371		goto bad4;
372	}
373	SIMPLEQ_INIT(&sc->sc_freequeue);
374	dmap = sc->sc_dmaa;
375	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
376		struct ubsec_q *q;
377
378		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
379		    M_DEVBUF, M_NOWAIT);
380		if (q == NULL) {
381			device_printf(dev, "cannot allocate queue buffers\n");
382			break;
383		}
384
385		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
386		    &dmap->d_alloc, 0)) {
387			device_printf(dev, "cannot allocate dma buffers\n");
388			free(q, M_DEVBUF);
389			break;
390		}
391		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
392
393		q->q_dma = dmap;
394		sc->sc_queuea[i] = q;
395
396		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
397	}
398	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
399		"mcr1 operations", MTX_DEF);
400	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
401		"mcr1 free q", MTX_DEF);
402
403	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
404
405	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
406	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
407	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
408	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
409
410	/*
411	 * Reset Broadcom chip
412	 */
413	ubsec_reset_board(sc);
414
415	/*
416	 * Init Broadcom specific PCI settings
417	 */
418	ubsec_init_pciregs(dev);
419
420	/*
421	 * Init Broadcom chip
422	 */
423	ubsec_init_board(sc);
424
425#ifndef UBSEC_NO_RNG
426	if (sc->sc_flags & UBS_FLAGS_RNG) {
427		sc->sc_statmask |= BS_STAT_MCR2_DONE;
428#ifdef UBSEC_RNDTEST
429		sc->sc_rndtest = rndtest_attach(dev);
430		if (sc->sc_rndtest)
431			sc->sc_harvest = rndtest_harvest;
432		else
433			sc->sc_harvest = default_harvest;
434#else
435		sc->sc_harvest = default_harvest;
436#endif
437
438		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
439		    &sc->sc_rng.rng_q.q_mcr, 0))
440			goto skip_rng;
441
442		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
443		    &sc->sc_rng.rng_q.q_ctx, 0)) {
444			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
445			goto skip_rng;
446		}
447
448		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
449		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
450			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
451			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
452			goto skip_rng;
453		}
454
455		if (hz >= 100)
456			sc->sc_rnghz = hz / 100;
457		else
458			sc->sc_rnghz = 1;
459		callout_init(&sc->sc_rngto, 1);
460		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
461skip_rng:
462	;
463	}
464#endif /* UBSEC_NO_RNG */
465	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
466		"mcr2 operations", MTX_DEF);
467
468	if (sc->sc_flags & UBS_FLAGS_KEY) {
469		sc->sc_statmask |= BS_STAT_MCR2_DONE;
470
471		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
472#if 0
473		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
474#endif
475	}
476	return (0);
477bad4:
478	crypto_unregister_all(sc->sc_cid);
479bad3:
480	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
481bad2:
482	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
483bad1:
484	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
485bad:
486	return (ENXIO);
487}
488
489/*
490 * Detach a device that successfully probed.
491 */
492static int
493ubsec_detach(device_t dev)
494{
495	struct ubsec_softc *sc = device_get_softc(dev);
496
497	/* XXX wait/abort active ops */
498
499	/* disable interrupts */
500	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
501		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
502
503	callout_stop(&sc->sc_rngto);
504
505	crypto_unregister_all(sc->sc_cid);
506
507#ifdef UBSEC_RNDTEST
508	if (sc->sc_rndtest)
509		rndtest_detach(sc->sc_rndtest);
510#endif
511
512	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
513		struct ubsec_q *q;
514
515		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
516		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
517		ubsec_dma_free(sc, &q->q_dma->d_alloc);
518		free(q, M_DEVBUF);
519	}
520	mtx_destroy(&sc->sc_mcr1lock);
521	mtx_destroy(&sc->sc_freeqlock);
522#ifndef UBSEC_NO_RNG
523	if (sc->sc_flags & UBS_FLAGS_RNG) {
524		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
525		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
526		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
527	}
528#endif /* UBSEC_NO_RNG */
529	mtx_destroy(&sc->sc_mcr2lock);
530
531	bus_generic_detach(dev);
532	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
533	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
534
535	bus_dma_tag_destroy(sc->sc_dmat);
536	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
537
538	return (0);
539}
540
541/*
542 * Stop all chip i/o so that the kernel's probe routines don't
543 * get confused by errant DMAs when rebooting.
544 */
545static int
546ubsec_shutdown(device_t dev)
547{
548#ifdef notyet
549	ubsec_stop(device_get_softc(dev));
550#endif
551	return (0);
552}
553
554/*
555 * Device suspend routine.
556 */
557static int
558ubsec_suspend(device_t dev)
559{
560	struct ubsec_softc *sc = device_get_softc(dev);
561
562#ifdef notyet
563	/* XXX stop the device and save PCI settings */
564#endif
565	sc->sc_suspended = 1;
566
567	return (0);
568}
569
570static int
571ubsec_resume(device_t dev)
572{
573	struct ubsec_softc *sc = device_get_softc(dev);
574
575#ifdef notyet
576	/* XXX retore PCI settings and start the device */
577#endif
578	sc->sc_suspended = 0;
579	return (0);
580}
581
582/*
583 * UBSEC Interrupt routine
584 */
585static void
586ubsec_intr(void *arg)
587{
588	struct ubsec_softc *sc = arg;
589	volatile u_int32_t stat;
590	struct ubsec_q *q;
591	struct ubsec_dma *dmap;
592	int npkts = 0, i;
593
594	stat = READ_REG(sc, BS_STAT);
595	stat &= sc->sc_statmask;
596	if (stat == 0)
597		return;
598
599	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
600
601	/*
602	 * Check to see if we have any packets waiting for us
603	 */
604	if ((stat & BS_STAT_MCR1_DONE)) {
605		mtx_lock(&sc->sc_mcr1lock);
606		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
607			q = SIMPLEQ_FIRST(&sc->sc_qchip);
608			dmap = q->q_dma;
609
610			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
611				break;
612
613			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
614
615			npkts = q->q_nstacked_mcrs;
616			sc->sc_nqchip -= 1+npkts;
617			/*
618			 * search for further sc_qchip ubsec_q's that share
619			 * the same MCR, and complete them too, they must be
620			 * at the top.
621			 */
622			for (i = 0; i < npkts; i++) {
623				if(q->q_stacked_mcr[i]) {
624					ubsec_callback(sc, q->q_stacked_mcr[i]);
625				} else {
626					break;
627				}
628			}
629			ubsec_callback(sc, q);
630		}
631		/*
632		 * Don't send any more packet to chip if there has been
633		 * a DMAERR.
634		 */
635		if (!(stat & BS_STAT_DMAERR))
636			ubsec_feed(sc);
637		mtx_unlock(&sc->sc_mcr1lock);
638	}
639
640	/*
641	 * Check to see if we have any key setups/rng's waiting for us
642	 */
643	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
644	    (stat & BS_STAT_MCR2_DONE)) {
645		struct ubsec_q2 *q2;
646		struct ubsec_mcr *mcr;
647
648		mtx_lock(&sc->sc_mcr2lock);
649		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
650			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
651
652			ubsec_dma_sync(&q2->q_mcr,
653			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
654
655			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
656			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
657				ubsec_dma_sync(&q2->q_mcr,
658				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
659				break;
660			}
661			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
662			ubsec_callback2(sc, q2);
663			/*
664			 * Don't send any more packet to chip if there has been
665			 * a DMAERR.
666			 */
667			if (!(stat & BS_STAT_DMAERR))
668				ubsec_feed2(sc);
669		}
670		mtx_unlock(&sc->sc_mcr2lock);
671	}
672
673	/*
674	 * Check to see if we got any DMA Error
675	 */
676	if (stat & BS_STAT_DMAERR) {
677#ifdef UBSEC_DEBUG
678		if (ubsec_debug) {
679			volatile u_int32_t a = READ_REG(sc, BS_ERR);
680
681			printf("dmaerr %s@%08x\n",
682			    (a & BS_ERR_READ) ? "read" : "write",
683			    a & BS_ERR_ADDR);
684		}
685#endif /* UBSEC_DEBUG */
686		ubsecstats.hst_dmaerr++;
687		mtx_lock(&sc->sc_mcr1lock);
688		ubsec_totalreset(sc);
689		ubsec_feed(sc);
690		mtx_unlock(&sc->sc_mcr1lock);
691	}
692
693	if (sc->sc_needwakeup) {		/* XXX check high watermark */
694		int wakeup;
695
696		mtx_lock(&sc->sc_freeqlock);
697		wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
698#ifdef UBSEC_DEBUG
699		if (ubsec_debug)
700			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
701				sc->sc_needwakeup);
702#endif /* UBSEC_DEBUG */
703		sc->sc_needwakeup &= ~wakeup;
704		mtx_unlock(&sc->sc_freeqlock);
705		crypto_unblock(sc->sc_cid, wakeup);
706	}
707}
708
709/*
710 * ubsec_feed() - aggregate and post requests to chip
711 */
712static void
713ubsec_feed(struct ubsec_softc *sc)
714{
715	struct ubsec_q *q, *q2;
716	int npkts, i;
717	void *v;
718	u_int32_t stat;
719
720	/*
721	 * Decide how many ops to combine in a single MCR.  We cannot
722	 * aggregate more than UBS_MAX_AGGR because this is the number
723	 * of slots defined in the data structure.  Note that
724	 * aggregation only happens if ops are marked batch'able.
725	 * Aggregating ops reduces the number of interrupts to the host
726	 * but also (potentially) increases the latency for processing
727	 * completed ops as we only get an interrupt when all aggregated
728	 * ops have completed.
729	 */
730	if (sc->sc_nqueue == 0)
731		return;
732	if (sc->sc_nqueue > 1) {
733		npkts = 0;
734		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
735			npkts++;
736			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
737				break;
738		}
739	} else
740		npkts = 1;
741	/*
742	 * Check device status before going any further.
743	 */
744	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
745		if (stat & BS_STAT_DMAERR) {
746			ubsec_totalreset(sc);
747			ubsecstats.hst_dmaerr++;
748		} else
749			ubsecstats.hst_mcr1full++;
750		return;
751	}
752	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
753		ubsecstats.hst_maxqueue = sc->sc_nqueue;
754	if (npkts > UBS_MAX_AGGR)
755		npkts = UBS_MAX_AGGR;
756	if (npkts < 2)				/* special case 1 op */
757		goto feed1;
758
759	ubsecstats.hst_totbatch += npkts-1;
760#ifdef UBSEC_DEBUG
761	if (ubsec_debug)
762		printf("merging %d records\n", npkts);
763#endif /* UBSEC_DEBUG */
764
765	q = SIMPLEQ_FIRST(&sc->sc_queue);
766	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
767	--sc->sc_nqueue;
768
769	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
770	if (q->q_dst_map != NULL)
771		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
772
773	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
774
775	for (i = 0; i < q->q_nstacked_mcrs; i++) {
776		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
777		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
778		    BUS_DMASYNC_PREWRITE);
779		if (q2->q_dst_map != NULL)
780			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
781			    BUS_DMASYNC_PREREAD);
782		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
783		--sc->sc_nqueue;
784
785		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
786		    sizeof(struct ubsec_mcr_add));
787		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
788		q->q_stacked_mcr[i] = q2;
789	}
790	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
791	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
792	sc->sc_nqchip += npkts;
793	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
794		ubsecstats.hst_maxqchip = sc->sc_nqchip;
795	ubsec_dma_sync(&q->q_dma->d_alloc,
796	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
797	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
798	    offsetof(struct ubsec_dmachunk, d_mcr));
799	return;
800feed1:
801	q = SIMPLEQ_FIRST(&sc->sc_queue);
802
803	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
804	if (q->q_dst_map != NULL)
805		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
806	ubsec_dma_sync(&q->q_dma->d_alloc,
807	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
808
809	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
810	    offsetof(struct ubsec_dmachunk, d_mcr));
811#ifdef UBSEC_DEBUG
812	if (ubsec_debug)
813		printf("feed1: q->chip %p %08x stat %08x\n",
814		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
815		      stat);
816#endif /* UBSEC_DEBUG */
817	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
818	--sc->sc_nqueue;
819	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
820	sc->sc_nqchip++;
821	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
822		ubsecstats.hst_maxqchip = sc->sc_nqchip;
823	return;
824}
825
826static void
827ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
828{
829
830	/* Go ahead and compute key in ubsec's byte order */
831	if (algo == CRYPTO_DES_CBC) {
832		bcopy(key, &ses->ses_deskey[0], 8);
833		bcopy(key, &ses->ses_deskey[2], 8);
834		bcopy(key, &ses->ses_deskey[4], 8);
835	} else
836		bcopy(key, ses->ses_deskey, 24);
837
838	SWAP32(ses->ses_deskey[0]);
839	SWAP32(ses->ses_deskey[1]);
840	SWAP32(ses->ses_deskey[2]);
841	SWAP32(ses->ses_deskey[3]);
842	SWAP32(ses->ses_deskey[4]);
843	SWAP32(ses->ses_deskey[5]);
844}
845
846static void
847ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
848{
849	MD5_CTX md5ctx;
850	SHA1_CTX sha1ctx;
851	int i;
852
853	for (i = 0; i < klen; i++)
854		key[i] ^= HMAC_IPAD_VAL;
855
856	if (algo == CRYPTO_MD5_HMAC) {
857		MD5Init(&md5ctx);
858		MD5Update(&md5ctx, key, klen);
859		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
860		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
861	} else {
862		SHA1Init(&sha1ctx);
863		SHA1Update(&sha1ctx, key, klen);
864		SHA1Update(&sha1ctx, hmac_ipad_buffer,
865		    SHA1_HMAC_BLOCK_LEN - klen);
866		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
867	}
868
869	for (i = 0; i < klen; i++)
870		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
871
872	if (algo == CRYPTO_MD5_HMAC) {
873		MD5Init(&md5ctx);
874		MD5Update(&md5ctx, key, klen);
875		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
876		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
877	} else {
878		SHA1Init(&sha1ctx);
879		SHA1Update(&sha1ctx, key, klen);
880		SHA1Update(&sha1ctx, hmac_opad_buffer,
881		    SHA1_HMAC_BLOCK_LEN - klen);
882		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
883	}
884
885	for (i = 0; i < klen; i++)
886		key[i] ^= HMAC_OPAD_VAL;
887}
888
889/*
890 * Allocate a new 'session' and return an encoded session id.  'sidp'
891 * contains our registration id, and should contain an encoded session
892 * id on successful allocation.
893 */
894static int
895ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
896{
897	struct ubsec_softc *sc = device_get_softc(dev);
898	struct cryptoini *c, *encini = NULL, *macini = NULL;
899	struct ubsec_session *ses = NULL;
900	int sesn;
901
902	if (sidp == NULL || cri == NULL || sc == NULL)
903		return (EINVAL);
904
905	for (c = cri; c != NULL; c = c->cri_next) {
906		if (c->cri_alg == CRYPTO_MD5_HMAC ||
907		    c->cri_alg == CRYPTO_SHA1_HMAC) {
908			if (macini)
909				return (EINVAL);
910			macini = c;
911		} else if (c->cri_alg == CRYPTO_DES_CBC ||
912		    c->cri_alg == CRYPTO_3DES_CBC) {
913			if (encini)
914				return (EINVAL);
915			encini = c;
916		} else
917			return (EINVAL);
918	}
919	if (encini == NULL && macini == NULL)
920		return (EINVAL);
921
922	if (sc->sc_sessions == NULL) {
923		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
924		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
925		if (ses == NULL)
926			return (ENOMEM);
927		sesn = 0;
928		sc->sc_nsessions = 1;
929	} else {
930		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
931			if (sc->sc_sessions[sesn].ses_used == 0) {
932				ses = &sc->sc_sessions[sesn];
933				break;
934			}
935		}
936
937		if (ses == NULL) {
938			sesn = sc->sc_nsessions;
939			ses = (struct ubsec_session *)malloc((sesn + 1) *
940			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
941			if (ses == NULL)
942				return (ENOMEM);
943			bcopy(sc->sc_sessions, ses, sesn *
944			    sizeof(struct ubsec_session));
945			bzero(sc->sc_sessions, sesn *
946			    sizeof(struct ubsec_session));
947			free(sc->sc_sessions, M_DEVBUF);
948			sc->sc_sessions = ses;
949			ses = &sc->sc_sessions[sesn];
950			sc->sc_nsessions++;
951		}
952	}
953	bzero(ses, sizeof(struct ubsec_session));
954	ses->ses_used = 1;
955
956	if (encini) {
957		/* get an IV, network byte order */
958		/* XXX may read fewer than requested */
959		read_random(ses->ses_iv, sizeof(ses->ses_iv));
960
961		if (encini->cri_key != NULL) {
962			ubsec_setup_enckey(ses, encini->cri_alg,
963			    encini->cri_key);
964		}
965	}
966
967	if (macini) {
968		ses->ses_mlen = macini->cri_mlen;
969		if (ses->ses_mlen == 0) {
970			if (macini->cri_alg == CRYPTO_MD5_HMAC)
971				ses->ses_mlen = MD5_HASH_LEN;
972			else
973				ses->ses_mlen = SHA1_HASH_LEN;
974		}
975
976		if (macini->cri_key != NULL) {
977			ubsec_setup_mackey(ses, macini->cri_alg,
978			    macini->cri_key, macini->cri_klen / 8);
979		}
980	}
981
982	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
983	return (0);
984}
985
986/*
987 * Deallocate a session.
988 */
989static int
990ubsec_freesession(device_t dev, u_int64_t tid)
991{
992	struct ubsec_softc *sc = device_get_softc(dev);
993	int session, ret;
994	u_int32_t sid = CRYPTO_SESID2LID(tid);
995
996	if (sc == NULL)
997		return (EINVAL);
998
999	session = UBSEC_SESSION(sid);
1000	if (session < sc->sc_nsessions) {
1001		bzero(&sc->sc_sessions[session],
1002			sizeof(sc->sc_sessions[session]));
1003		ret = 0;
1004	} else
1005		ret = EINVAL;
1006
1007	return (ret);
1008}
1009
1010static void
1011ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1012{
1013	struct ubsec_operand *op = arg;
1014
1015	KASSERT(nsegs <= UBS_MAX_SCATTER,
1016		("Too many DMA segments returned when mapping operand"));
1017#ifdef UBSEC_DEBUG
1018	if (ubsec_debug)
1019		printf("ubsec_op_cb: mapsize %u nsegs %d error %d\n",
1020			(u_int) mapsize, nsegs, error);
1021#endif
1022	if (error != 0)
1023		return;
1024	op->mapsize = mapsize;
1025	op->nsegs = nsegs;
1026	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1027}
1028
1029static int
1030ubsec_process(device_t dev, struct cryptop *crp, int hint)
1031{
1032	struct ubsec_softc *sc = device_get_softc(dev);
1033	struct ubsec_q *q = NULL;
1034	int err = 0, i, j, nicealign;
1035	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1036	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1037	int sskip, dskip, stheend, dtheend;
1038	int16_t coffset;
1039	struct ubsec_session *ses;
1040	struct ubsec_pktctx ctx;
1041	struct ubsec_dma *dmap = NULL;
1042
1043	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1044		ubsecstats.hst_invalid++;
1045		return (EINVAL);
1046	}
1047	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1048		ubsecstats.hst_badsession++;
1049		return (EINVAL);
1050	}
1051
1052	mtx_lock(&sc->sc_freeqlock);
1053	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1054		ubsecstats.hst_queuefull++;
1055		sc->sc_needwakeup |= CRYPTO_SYMQ;
1056		mtx_unlock(&sc->sc_freeqlock);
1057		return (ERESTART);
1058	}
1059	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1060	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1061	mtx_unlock(&sc->sc_freeqlock);
1062
1063	dmap = q->q_dma; /* Save dma pointer */
1064	bzero(q, sizeof(struct ubsec_q));
1065	bzero(&ctx, sizeof(ctx));
1066
1067	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1068	q->q_dma = dmap;
1069	ses = &sc->sc_sessions[q->q_sesn];
1070
1071	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1072		q->q_src_m = (struct mbuf *)crp->crp_buf;
1073		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1074	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1075		q->q_src_io = (struct uio *)crp->crp_buf;
1076		q->q_dst_io = (struct uio *)crp->crp_buf;
1077	} else {
1078		ubsecstats.hst_badflags++;
1079		err = EINVAL;
1080		goto errout;	/* XXX we don't handle contiguous blocks! */
1081	}
1082
1083	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1084
1085	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1086	dmap->d_dma->d_mcr.mcr_flags = 0;
1087	q->q_crp = crp;
1088
1089	crd1 = crp->crp_desc;
1090	if (crd1 == NULL) {
1091		ubsecstats.hst_nodesc++;
1092		err = EINVAL;
1093		goto errout;
1094	}
1095	crd2 = crd1->crd_next;
1096
1097	if (crd2 == NULL) {
1098		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1099		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1100			maccrd = crd1;
1101			enccrd = NULL;
1102		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1103		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1104			maccrd = NULL;
1105			enccrd = crd1;
1106		} else {
1107			ubsecstats.hst_badalg++;
1108			err = EINVAL;
1109			goto errout;
1110		}
1111	} else {
1112		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1113		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1114		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1115			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1116		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1117			maccrd = crd1;
1118			enccrd = crd2;
1119		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1120		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1121		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1122			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1123		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1124			enccrd = crd1;
1125			maccrd = crd2;
1126		} else {
1127			/*
1128			 * We cannot order the ubsec as requested
1129			 */
1130			ubsecstats.hst_badalg++;
1131			err = EINVAL;
1132			goto errout;
1133		}
1134	}
1135
1136	if (enccrd) {
1137		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1138			ubsec_setup_enckey(ses, enccrd->crd_alg,
1139			    enccrd->crd_key);
1140		}
1141
1142		encoffset = enccrd->crd_skip;
1143		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1144
1145		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1146			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1147
1148			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1149				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1150			else {
1151				ctx.pc_iv[0] = ses->ses_iv[0];
1152				ctx.pc_iv[1] = ses->ses_iv[1];
1153			}
1154
1155			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1156				crypto_copyback(crp->crp_flags, crp->crp_buf,
1157				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1158			}
1159		} else {
1160			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1161
1162			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1163				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1164			else {
1165				crypto_copydata(crp->crp_flags, crp->crp_buf,
1166				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1167			}
1168		}
1169
1170		ctx.pc_deskey[0] = ses->ses_deskey[0];
1171		ctx.pc_deskey[1] = ses->ses_deskey[1];
1172		ctx.pc_deskey[2] = ses->ses_deskey[2];
1173		ctx.pc_deskey[3] = ses->ses_deskey[3];
1174		ctx.pc_deskey[4] = ses->ses_deskey[4];
1175		ctx.pc_deskey[5] = ses->ses_deskey[5];
1176		SWAP32(ctx.pc_iv[0]);
1177		SWAP32(ctx.pc_iv[1]);
1178	}
1179
1180	if (maccrd) {
1181		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1182			ubsec_setup_mackey(ses, maccrd->crd_alg,
1183			    maccrd->crd_key, maccrd->crd_klen / 8);
1184		}
1185
1186		macoffset = maccrd->crd_skip;
1187
1188		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1189			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1190		else
1191			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1192
1193		for (i = 0; i < 5; i++) {
1194			ctx.pc_hminner[i] = ses->ses_hminner[i];
1195			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1196
1197			HTOLE32(ctx.pc_hminner[i]);
1198			HTOLE32(ctx.pc_hmouter[i]);
1199		}
1200	}
1201
1202	if (enccrd && maccrd) {
1203		/*
1204		 * ubsec cannot handle packets where the end of encryption
1205		 * and authentication are not the same, or where the
1206		 * encrypted part begins before the authenticated part.
1207		 */
1208		if ((encoffset + enccrd->crd_len) !=
1209		    (macoffset + maccrd->crd_len)) {
1210			ubsecstats.hst_lenmismatch++;
1211			err = EINVAL;
1212			goto errout;
1213		}
1214		if (enccrd->crd_skip < maccrd->crd_skip) {
1215			ubsecstats.hst_skipmismatch++;
1216			err = EINVAL;
1217			goto errout;
1218		}
1219		sskip = maccrd->crd_skip;
1220		cpskip = dskip = enccrd->crd_skip;
1221		stheend = maccrd->crd_len;
1222		dtheend = enccrd->crd_len;
1223		coffset = enccrd->crd_skip - maccrd->crd_skip;
1224		cpoffset = cpskip + dtheend;
1225#ifdef UBSEC_DEBUG
1226		if (ubsec_debug) {
1227			printf("mac: skip %d, len %d, inject %d\n",
1228			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1229			printf("enc: skip %d, len %d, inject %d\n",
1230			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1231			printf("src: skip %d, len %d\n", sskip, stheend);
1232			printf("dst: skip %d, len %d\n", dskip, dtheend);
1233			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1234			    coffset, stheend, cpskip, cpoffset);
1235		}
1236#endif
1237	} else {
1238		cpskip = dskip = sskip = macoffset + encoffset;
1239		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1240		cpoffset = cpskip + dtheend;
1241		coffset = 0;
1242	}
1243	ctx.pc_offset = htole16(coffset >> 2);
1244
1245	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1246		ubsecstats.hst_nomap++;
1247		err = ENOMEM;
1248		goto errout;
1249	}
1250	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1251		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1252		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1253			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1254			q->q_src_map = NULL;
1255			ubsecstats.hst_noload++;
1256			err = ENOMEM;
1257			goto errout;
1258		}
1259	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1260		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1261		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1262			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1263			q->q_src_map = NULL;
1264			ubsecstats.hst_noload++;
1265			err = ENOMEM;
1266			goto errout;
1267		}
1268	}
1269	nicealign = ubsec_dmamap_aligned(&q->q_src);
1270
1271	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1272
1273#ifdef UBSEC_DEBUG
1274	if (ubsec_debug)
1275		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1276#endif
1277	for (i = j = 0; i < q->q_src_nsegs; i++) {
1278		struct ubsec_pktbuf *pb;
1279		bus_size_t packl = q->q_src_segs[i].ds_len;
1280		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1281
1282		if (sskip >= packl) {
1283			sskip -= packl;
1284			continue;
1285		}
1286
1287		packl -= sskip;
1288		packp += sskip;
1289		sskip = 0;
1290
1291		if (packl > 0xfffc) {
1292			err = EIO;
1293			goto errout;
1294		}
1295
1296		if (j == 0)
1297			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1298		else
1299			pb = &dmap->d_dma->d_sbuf[j - 1];
1300
1301		pb->pb_addr = htole32(packp);
1302
1303		if (stheend) {
1304			if (packl > stheend) {
1305				pb->pb_len = htole32(stheend);
1306				stheend = 0;
1307			} else {
1308				pb->pb_len = htole32(packl);
1309				stheend -= packl;
1310			}
1311		} else
1312			pb->pb_len = htole32(packl);
1313
1314		if ((i + 1) == q->q_src_nsegs)
1315			pb->pb_next = 0;
1316		else
1317			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1318			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1319		j++;
1320	}
1321
1322	if (enccrd == NULL && maccrd != NULL) {
1323		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1324		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1325		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1326		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1327#ifdef UBSEC_DEBUG
1328		if (ubsec_debug)
1329			printf("opkt: %x %x %x\n",
1330			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1331			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1332			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1333#endif
1334	} else {
1335		if (crp->crp_flags & CRYPTO_F_IOV) {
1336			if (!nicealign) {
1337				ubsecstats.hst_iovmisaligned++;
1338				err = EINVAL;
1339				goto errout;
1340			}
1341			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1342			     &q->q_dst_map)) {
1343				ubsecstats.hst_nomap++;
1344				err = ENOMEM;
1345				goto errout;
1346			}
1347			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1348			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1349				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1350				q->q_dst_map = NULL;
1351				ubsecstats.hst_noload++;
1352				err = ENOMEM;
1353				goto errout;
1354			}
1355		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1356			if (nicealign) {
1357				q->q_dst = q->q_src;
1358			} else {
1359				int totlen, len;
1360				struct mbuf *m, *top, **mp;
1361
1362				ubsecstats.hst_unaligned++;
1363				totlen = q->q_src_mapsize;
1364				if (totlen >= MINCLSIZE) {
1365					m = m_getcl(M_NOWAIT, MT_DATA,
1366					    q->q_src_m->m_flags & M_PKTHDR);
1367					len = MCLBYTES;
1368				} else if (q->q_src_m->m_flags & M_PKTHDR) {
1369					m = m_gethdr(M_NOWAIT, MT_DATA);
1370					len = MHLEN;
1371				} else {
1372					m = m_get(M_NOWAIT, MT_DATA);
1373					len = MLEN;
1374				}
1375				if (m && q->q_src_m->m_flags & M_PKTHDR &&
1376				    !m_dup_pkthdr(m, q->q_src_m, M_NOWAIT)) {
1377					m_free(m);
1378					m = NULL;
1379				}
1380				if (m == NULL) {
1381					ubsecstats.hst_nombuf++;
1382					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1383					goto errout;
1384				}
1385				m->m_len = len = min(totlen, len);
1386				totlen -= len;
1387				top = m;
1388				mp = &top;
1389
1390				while (totlen > 0) {
1391					if (totlen >= MINCLSIZE) {
1392						m = m_getcl(M_NOWAIT,
1393						    MT_DATA, 0);
1394						len = MCLBYTES;
1395					} else {
1396						m = m_get(M_NOWAIT, MT_DATA);
1397						len = MLEN;
1398					}
1399					if (m == NULL) {
1400						m_freem(top);
1401						ubsecstats.hst_nombuf++;
1402						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1403						goto errout;
1404					}
1405					m->m_len = len = min(totlen, len);
1406					totlen -= len;
1407					*mp = m;
1408					mp = &m->m_next;
1409				}
1410				q->q_dst_m = top;
1411				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1412				    cpskip, cpoffset);
1413				if (bus_dmamap_create(sc->sc_dmat,
1414				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1415					ubsecstats.hst_nomap++;
1416					err = ENOMEM;
1417					goto errout;
1418				}
1419				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1420				    q->q_dst_map, q->q_dst_m,
1421				    ubsec_op_cb, &q->q_dst,
1422				    BUS_DMA_NOWAIT) != 0) {
1423					bus_dmamap_destroy(sc->sc_dmat,
1424					q->q_dst_map);
1425					q->q_dst_map = NULL;
1426					ubsecstats.hst_noload++;
1427					err = ENOMEM;
1428					goto errout;
1429				}
1430			}
1431		} else {
1432			ubsecstats.hst_badflags++;
1433			err = EINVAL;
1434			goto errout;
1435		}
1436
1437#ifdef UBSEC_DEBUG
1438		if (ubsec_debug)
1439			printf("dst skip: %d\n", dskip);
1440#endif
1441		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1442			struct ubsec_pktbuf *pb;
1443			bus_size_t packl = q->q_dst_segs[i].ds_len;
1444			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1445
1446			if (dskip >= packl) {
1447				dskip -= packl;
1448				continue;
1449			}
1450
1451			packl -= dskip;
1452			packp += dskip;
1453			dskip = 0;
1454
1455			if (packl > 0xfffc) {
1456				err = EIO;
1457				goto errout;
1458			}
1459
1460			if (j == 0)
1461				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1462			else
1463				pb = &dmap->d_dma->d_dbuf[j - 1];
1464
1465			pb->pb_addr = htole32(packp);
1466
1467			if (dtheend) {
1468				if (packl > dtheend) {
1469					pb->pb_len = htole32(dtheend);
1470					dtheend = 0;
1471				} else {
1472					pb->pb_len = htole32(packl);
1473					dtheend -= packl;
1474				}
1475			} else
1476				pb->pb_len = htole32(packl);
1477
1478			if ((i + 1) == q->q_dst_nsegs) {
1479				if (maccrd)
1480					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1481					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1482				else
1483					pb->pb_next = 0;
1484			} else
1485				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1486				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1487			j++;
1488		}
1489	}
1490
1491	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1492	    offsetof(struct ubsec_dmachunk, d_ctx));
1493
1494	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1495		struct ubsec_pktctx_long *ctxl;
1496
1497		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1498		    offsetof(struct ubsec_dmachunk, d_ctx));
1499
1500		/* transform small context into long context */
1501		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1502		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1503		ctxl->pc_flags = ctx.pc_flags;
1504		ctxl->pc_offset = ctx.pc_offset;
1505		for (i = 0; i < 6; i++)
1506			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1507		for (i = 0; i < 5; i++)
1508			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1509		for (i = 0; i < 5; i++)
1510			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1511		ctxl->pc_iv[0] = ctx.pc_iv[0];
1512		ctxl->pc_iv[1] = ctx.pc_iv[1];
1513	} else
1514		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1515		    offsetof(struct ubsec_dmachunk, d_ctx),
1516		    sizeof(struct ubsec_pktctx));
1517
1518	mtx_lock(&sc->sc_mcr1lock);
1519	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1520	sc->sc_nqueue++;
1521	ubsecstats.hst_ipackets++;
1522	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1523	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1524		ubsec_feed(sc);
1525	mtx_unlock(&sc->sc_mcr1lock);
1526	return (0);
1527
1528errout:
1529	if (q != NULL) {
1530		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1531			m_freem(q->q_dst_m);
1532
1533		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1534			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1535			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1536		}
1537		if (q->q_src_map != NULL) {
1538			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1539			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1540		}
1541	}
1542	if (q != NULL || err == ERESTART) {
1543		mtx_lock(&sc->sc_freeqlock);
1544		if (q != NULL)
1545			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1546		if (err == ERESTART)
1547			sc->sc_needwakeup |= CRYPTO_SYMQ;
1548		mtx_unlock(&sc->sc_freeqlock);
1549	}
1550	if (err != ERESTART) {
1551		crp->crp_etype = err;
1552		crypto_done(crp);
1553	}
1554	return (err);
1555}
1556
1557static void
1558ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1559{
1560	struct cryptop *crp = (struct cryptop *)q->q_crp;
1561	struct cryptodesc *crd;
1562	struct ubsec_dma *dmap = q->q_dma;
1563
1564	ubsecstats.hst_opackets++;
1565	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1566
1567	ubsec_dma_sync(&dmap->d_alloc,
1568	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1569	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1570		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1571		    BUS_DMASYNC_POSTREAD);
1572		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1573		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1574	}
1575	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1576	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1577	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1578
1579	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1580		m_freem(q->q_src_m);
1581		crp->crp_buf = (caddr_t)q->q_dst_m;
1582	}
1583
1584	/* copy out IV for future use */
1585	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1586		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1587			if (crd->crd_alg != CRYPTO_DES_CBC &&
1588			    crd->crd_alg != CRYPTO_3DES_CBC)
1589				continue;
1590			crypto_copydata(crp->crp_flags, crp->crp_buf,
1591			    crd->crd_skip + crd->crd_len - 8, 8,
1592			    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1593			break;
1594		}
1595	}
1596
1597	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1598		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1599		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1600			continue;
1601		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1602		    sc->sc_sessions[q->q_sesn].ses_mlen,
1603		    (caddr_t)dmap->d_dma->d_macbuf);
1604		break;
1605	}
1606	mtx_lock(&sc->sc_freeqlock);
1607	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1608	mtx_unlock(&sc->sc_freeqlock);
1609	crypto_done(crp);
1610}
1611
1612static void
1613ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1614{
1615	int i, j, dlen, slen;
1616	caddr_t dptr, sptr;
1617
1618	j = 0;
1619	sptr = srcm->m_data;
1620	slen = srcm->m_len;
1621	dptr = dstm->m_data;
1622	dlen = dstm->m_len;
1623
1624	while (1) {
1625		for (i = 0; i < min(slen, dlen); i++) {
1626			if (j < hoffset || j >= toffset)
1627				*dptr++ = *sptr++;
1628			slen--;
1629			dlen--;
1630			j++;
1631		}
1632		if (slen == 0) {
1633			srcm = srcm->m_next;
1634			if (srcm == NULL)
1635				return;
1636			sptr = srcm->m_data;
1637			slen = srcm->m_len;
1638		}
1639		if (dlen == 0) {
1640			dstm = dstm->m_next;
1641			if (dstm == NULL)
1642				return;
1643			dptr = dstm->m_data;
1644			dlen = dstm->m_len;
1645		}
1646	}
1647}
1648
1649/*
1650 * feed the key generator, must be called at splimp() or higher.
1651 */
1652static int
1653ubsec_feed2(struct ubsec_softc *sc)
1654{
1655	struct ubsec_q2 *q;
1656
1657	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1658		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1659			break;
1660		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1661
1662		ubsec_dma_sync(&q->q_mcr,
1663		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1664		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1665
1666		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1667		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1668		--sc->sc_nqueue2;
1669		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1670	}
1671	return (0);
1672}
1673
1674/*
1675 * Callback for handling random numbers
1676 */
1677static void
1678ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1679{
1680	struct cryptkop *krp;
1681	struct ubsec_ctx_keyop *ctx;
1682
1683	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1684	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1685
1686	switch (q->q_type) {
1687#ifndef UBSEC_NO_RNG
1688	case UBS_CTXOP_RNGBYPASS: {
1689		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1690
1691		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1692		(*sc->sc_harvest)(sc->sc_rndtest,
1693			rng->rng_buf.dma_vaddr,
1694			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1695		rng->rng_used = 0;
1696		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1697		break;
1698	}
1699#endif
1700	case UBS_CTXOP_MODEXP: {
1701		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1702		u_int rlen, clen;
1703
1704		krp = me->me_krp;
1705		rlen = (me->me_modbits + 7) / 8;
1706		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1707
1708		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1709		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1710		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1711		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1712
1713		if (clen < rlen)
1714			krp->krp_status = E2BIG;
1715		else {
1716			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1717				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1718				    (krp->krp_param[krp->krp_iparams].crp_nbits
1719					+ 7) / 8);
1720				bcopy(me->me_C.dma_vaddr,
1721				    krp->krp_param[krp->krp_iparams].crp_p,
1722				    (me->me_modbits + 7) / 8);
1723			} else
1724				ubsec_kshift_l(me->me_shiftbits,
1725				    me->me_C.dma_vaddr, me->me_normbits,
1726				    krp->krp_param[krp->krp_iparams].crp_p,
1727				    krp->krp_param[krp->krp_iparams].crp_nbits);
1728		}
1729
1730		crypto_kdone(krp);
1731
1732		/* bzero all potentially sensitive data */
1733		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1734		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1735		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1736		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1737
1738		/* Can't free here, so put us on the free list. */
1739		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1740		break;
1741	}
1742	case UBS_CTXOP_RSAPRIV: {
1743		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1744		u_int len;
1745
1746		krp = rp->rpr_krp;
1747		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1748		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1749
1750		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1751		bcopy(rp->rpr_msgout.dma_vaddr,
1752		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1753
1754		crypto_kdone(krp);
1755
1756		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1757		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1758		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1759
1760		/* Can't free here, so put us on the free list. */
1761		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1762		break;
1763	}
1764	default:
1765		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1766		    letoh16(ctx->ctx_op));
1767		break;
1768	}
1769}
1770
1771#ifndef UBSEC_NO_RNG
1772static void
1773ubsec_rng(void *vsc)
1774{
1775	struct ubsec_softc *sc = vsc;
1776	struct ubsec_q2_rng *rng = &sc->sc_rng;
1777	struct ubsec_mcr *mcr;
1778	struct ubsec_ctx_rngbypass *ctx;
1779
1780	mtx_lock(&sc->sc_mcr2lock);
1781	if (rng->rng_used) {
1782		mtx_unlock(&sc->sc_mcr2lock);
1783		return;
1784	}
1785	sc->sc_nqueue2++;
1786	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1787		goto out;
1788
1789	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1790	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1791
1792	mcr->mcr_pkts = htole16(1);
1793	mcr->mcr_flags = 0;
1794	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1795	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1796	mcr->mcr_ipktbuf.pb_len = 0;
1797	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1798	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1799	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1800	    UBS_PKTBUF_LEN);
1801	mcr->mcr_opktbuf.pb_next = 0;
1802
1803	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1804	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1805	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1806
1807	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1808
1809	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1810	rng->rng_used = 1;
1811	ubsec_feed2(sc);
1812	ubsecstats.hst_rng++;
1813	mtx_unlock(&sc->sc_mcr2lock);
1814
1815	return;
1816
1817out:
1818	/*
1819	 * Something weird happened, generate our own call back.
1820	 */
1821	sc->sc_nqueue2--;
1822	mtx_unlock(&sc->sc_mcr2lock);
1823	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1824}
1825#endif /* UBSEC_NO_RNG */
1826
1827static void
1828ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1829{
1830	bus_addr_t *paddr = (bus_addr_t*) arg;
1831	*paddr = segs->ds_addr;
1832}
1833
1834static int
1835ubsec_dma_malloc(
1836	struct ubsec_softc *sc,
1837	bus_size_t size,
1838	struct ubsec_dma_alloc *dma,
1839	int mapflags
1840)
1841{
1842	int r;
1843
1844	/* XXX could specify sc_dmat as parent but that just adds overhead */
1845	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1846			       1, 0,			/* alignment, bounds */
1847			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1848			       BUS_SPACE_MAXADDR,	/* highaddr */
1849			       NULL, NULL,		/* filter, filterarg */
1850			       size,			/* maxsize */
1851			       1,			/* nsegments */
1852			       size,			/* maxsegsize */
1853			       BUS_DMA_ALLOCNOW,	/* flags */
1854			       NULL, NULL,		/* lockfunc, lockarg */
1855			       &dma->dma_tag);
1856	if (r != 0) {
1857		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1858			"bus_dma_tag_create failed; error %u\n", r);
1859		goto fail_0;
1860	}
1861
1862	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1863	if (r != 0) {
1864		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1865			"bus_dmamap_create failed; error %u\n", r);
1866		goto fail_1;
1867	}
1868
1869	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1870			     BUS_DMA_NOWAIT, &dma->dma_map);
1871	if (r != 0) {
1872		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1873			"bus_dmammem_alloc failed; size %ju, error %u\n",
1874			(intmax_t)size, r);
1875		goto fail_2;
1876	}
1877
1878	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1879		            size,
1880			    ubsec_dmamap_cb,
1881			    &dma->dma_paddr,
1882			    mapflags | BUS_DMA_NOWAIT);
1883	if (r != 0) {
1884		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1885			"bus_dmamap_load failed; error %u\n", r);
1886		goto fail_3;
1887	}
1888
1889	dma->dma_size = size;
1890	return (0);
1891
1892fail_3:
1893	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1894fail_2:
1895	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1896fail_1:
1897	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1898	bus_dma_tag_destroy(dma->dma_tag);
1899fail_0:
1900	dma->dma_map = NULL;
1901	dma->dma_tag = NULL;
1902	return (r);
1903}
1904
1905static void
1906ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1907{
1908	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1909	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1910	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1911	bus_dma_tag_destroy(dma->dma_tag);
1912}
1913
1914/*
1915 * Resets the board.  Values in the regesters are left as is
1916 * from the reset (i.e. initial values are assigned elsewhere).
1917 */
1918static void
1919ubsec_reset_board(struct ubsec_softc *sc)
1920{
1921    volatile u_int32_t ctrl;
1922
1923    ctrl = READ_REG(sc, BS_CTRL);
1924    ctrl |= BS_CTRL_RESET;
1925    WRITE_REG(sc, BS_CTRL, ctrl);
1926
1927    /*
1928     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1929     */
1930    DELAY(10);
1931}
1932
1933/*
1934 * Init Broadcom registers
1935 */
1936static void
1937ubsec_init_board(struct ubsec_softc *sc)
1938{
1939	u_int32_t ctrl;
1940
1941	ctrl = READ_REG(sc, BS_CTRL);
1942	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1943	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1944
1945	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1946		ctrl |= BS_CTRL_MCR2INT;
1947	else
1948		ctrl &= ~BS_CTRL_MCR2INT;
1949
1950	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1951		ctrl &= ~BS_CTRL_SWNORM;
1952
1953	WRITE_REG(sc, BS_CTRL, ctrl);
1954}
1955
1956/*
1957 * Init Broadcom PCI registers
1958 */
1959static void
1960ubsec_init_pciregs(device_t dev)
1961{
1962#if 0
1963	u_int32_t misc;
1964
1965	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1966	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1967	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1968	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1969	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1970	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1971#endif
1972
1973	/*
1974	 * This will set the cache line size to 1, this will
1975	 * force the BCM58xx chip just to do burst read/writes.
1976	 * Cache line read/writes are to slow
1977	 */
1978	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1979}
1980
1981/*
1982 * Clean up after a chip crash.
1983 * It is assumed that the caller in splimp()
1984 */
1985static void
1986ubsec_cleanchip(struct ubsec_softc *sc)
1987{
1988	struct ubsec_q *q;
1989
1990	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1991		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1992		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
1993		ubsec_free_q(sc, q);
1994	}
1995	sc->sc_nqchip = 0;
1996}
1997
1998/*
1999 * free a ubsec_q
2000 * It is assumed that the caller is within splimp().
2001 */
2002static int
2003ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2004{
2005	struct ubsec_q *q2;
2006	struct cryptop *crp;
2007	int npkts;
2008	int i;
2009
2010	npkts = q->q_nstacked_mcrs;
2011
2012	for (i = 0; i < npkts; i++) {
2013		if(q->q_stacked_mcr[i]) {
2014			q2 = q->q_stacked_mcr[i];
2015
2016			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2017				m_freem(q2->q_dst_m);
2018
2019			crp = (struct cryptop *)q2->q_crp;
2020
2021			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2022
2023			crp->crp_etype = EFAULT;
2024			crypto_done(crp);
2025		} else {
2026			break;
2027		}
2028	}
2029
2030	/*
2031	 * Free header MCR
2032	 */
2033	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2034		m_freem(q->q_dst_m);
2035
2036	crp = (struct cryptop *)q->q_crp;
2037
2038	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2039
2040	crp->crp_etype = EFAULT;
2041	crypto_done(crp);
2042	return(0);
2043}
2044
2045/*
2046 * Routine to reset the chip and clean up.
2047 * It is assumed that the caller is in splimp()
2048 */
2049static void
2050ubsec_totalreset(struct ubsec_softc *sc)
2051{
2052	ubsec_reset_board(sc);
2053	ubsec_init_board(sc);
2054	ubsec_cleanchip(sc);
2055}
2056
2057static int
2058ubsec_dmamap_aligned(struct ubsec_operand *op)
2059{
2060	int i;
2061
2062	for (i = 0; i < op->nsegs; i++) {
2063		if (op->segs[i].ds_addr & 3)
2064			return (0);
2065		if ((i != (op->nsegs - 1)) &&
2066		    (op->segs[i].ds_len & 3))
2067			return (0);
2068	}
2069	return (1);
2070}
2071
2072static void
2073ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2074{
2075	switch (q->q_type) {
2076	case UBS_CTXOP_MODEXP: {
2077		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2078
2079		ubsec_dma_free(sc, &me->me_q.q_mcr);
2080		ubsec_dma_free(sc, &me->me_q.q_ctx);
2081		ubsec_dma_free(sc, &me->me_M);
2082		ubsec_dma_free(sc, &me->me_E);
2083		ubsec_dma_free(sc, &me->me_C);
2084		ubsec_dma_free(sc, &me->me_epb);
2085		free(me, M_DEVBUF);
2086		break;
2087	}
2088	case UBS_CTXOP_RSAPRIV: {
2089		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2090
2091		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2092		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2093		ubsec_dma_free(sc, &rp->rpr_msgin);
2094		ubsec_dma_free(sc, &rp->rpr_msgout);
2095		free(rp, M_DEVBUF);
2096		break;
2097	}
2098	default:
2099		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2100		break;
2101	}
2102}
2103
2104static int
2105ubsec_kprocess(device_t dev, struct cryptkop *krp, int hint)
2106{
2107	struct ubsec_softc *sc = device_get_softc(dev);
2108	int r;
2109
2110	if (krp == NULL || krp->krp_callback == NULL)
2111		return (EINVAL);
2112
2113	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2114		struct ubsec_q2 *q;
2115
2116		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2117		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2118		ubsec_kfree(sc, q);
2119	}
2120
2121	switch (krp->krp_op) {
2122	case CRK_MOD_EXP:
2123		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2124			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2125		else
2126			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2127		break;
2128	case CRK_MOD_EXP_CRT:
2129		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2130	default:
2131		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2132		    krp->krp_op);
2133		krp->krp_status = EOPNOTSUPP;
2134		crypto_kdone(krp);
2135		return (0);
2136	}
2137	return (0);			/* silence compiler */
2138}
2139
2140/*
2141 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2142 */
2143static int
2144ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2145{
2146	struct ubsec_q2_modexp *me;
2147	struct ubsec_mcr *mcr;
2148	struct ubsec_ctx_modexp *ctx;
2149	struct ubsec_pktbuf *epb;
2150	int err = 0;
2151	u_int nbits, normbits, mbits, shiftbits, ebits;
2152
2153	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2154	if (me == NULL) {
2155		err = ENOMEM;
2156		goto errout;
2157	}
2158	bzero(me, sizeof *me);
2159	me->me_krp = krp;
2160	me->me_q.q_type = UBS_CTXOP_MODEXP;
2161
2162	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2163	if (nbits <= 512)
2164		normbits = 512;
2165	else if (nbits <= 768)
2166		normbits = 768;
2167	else if (nbits <= 1024)
2168		normbits = 1024;
2169	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2170		normbits = 1536;
2171	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2172		normbits = 2048;
2173	else {
2174		err = E2BIG;
2175		goto errout;
2176	}
2177
2178	shiftbits = normbits - nbits;
2179
2180	me->me_modbits = nbits;
2181	me->me_shiftbits = shiftbits;
2182	me->me_normbits = normbits;
2183
2184	/* Sanity check: result bits must be >= true modulus bits. */
2185	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2186		err = ERANGE;
2187		goto errout;
2188	}
2189
2190	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2191	    &me->me_q.q_mcr, 0)) {
2192		err = ENOMEM;
2193		goto errout;
2194	}
2195	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2196
2197	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2198	    &me->me_q.q_ctx, 0)) {
2199		err = ENOMEM;
2200		goto errout;
2201	}
2202
2203	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2204	if (mbits > nbits) {
2205		err = E2BIG;
2206		goto errout;
2207	}
2208	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2209		err = ENOMEM;
2210		goto errout;
2211	}
2212	ubsec_kshift_r(shiftbits,
2213	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2214	    me->me_M.dma_vaddr, normbits);
2215
2216	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2217		err = ENOMEM;
2218		goto errout;
2219	}
2220	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2221
2222	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2223	if (ebits > nbits) {
2224		err = E2BIG;
2225		goto errout;
2226	}
2227	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2228		err = ENOMEM;
2229		goto errout;
2230	}
2231	ubsec_kshift_r(shiftbits,
2232	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2233	    me->me_E.dma_vaddr, normbits);
2234
2235	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2236	    &me->me_epb, 0)) {
2237		err = ENOMEM;
2238		goto errout;
2239	}
2240	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2241	epb->pb_addr = htole32(me->me_E.dma_paddr);
2242	epb->pb_next = 0;
2243	epb->pb_len = htole32(normbits / 8);
2244
2245#ifdef UBSEC_DEBUG
2246	if (ubsec_debug) {
2247		printf("Epb ");
2248		ubsec_dump_pb(epb);
2249	}
2250#endif
2251
2252	mcr->mcr_pkts = htole16(1);
2253	mcr->mcr_flags = 0;
2254	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2255	mcr->mcr_reserved = 0;
2256	mcr->mcr_pktlen = 0;
2257
2258	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2259	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2260	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2261
2262	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2263	mcr->mcr_opktbuf.pb_next = 0;
2264	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2265
2266#ifdef DIAGNOSTIC
2267	/* Misaligned output buffer will hang the chip. */
2268	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2269		panic("%s: modexp invalid addr 0x%x\n",
2270		    device_get_nameunit(sc->sc_dev),
2271		    letoh32(mcr->mcr_opktbuf.pb_addr));
2272	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2273		panic("%s: modexp invalid len 0x%x\n",
2274		    device_get_nameunit(sc->sc_dev),
2275		    letoh32(mcr->mcr_opktbuf.pb_len));
2276#endif
2277
2278	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2279	bzero(ctx, sizeof(*ctx));
2280	ubsec_kshift_r(shiftbits,
2281	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2282	    ctx->me_N, normbits);
2283	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2284	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2285	ctx->me_E_len = htole16(nbits);
2286	ctx->me_N_len = htole16(nbits);
2287
2288#ifdef UBSEC_DEBUG
2289	if (ubsec_debug) {
2290		ubsec_dump_mcr(mcr);
2291		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2292	}
2293#endif
2294
2295	/*
2296	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2297	 * everything else.
2298	 */
2299	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2300	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2301	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2302	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2303
2304	/* Enqueue and we're done... */
2305	mtx_lock(&sc->sc_mcr2lock);
2306	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2307	ubsec_feed2(sc);
2308	ubsecstats.hst_modexp++;
2309	mtx_unlock(&sc->sc_mcr2lock);
2310
2311	return (0);
2312
2313errout:
2314	if (me != NULL) {
2315		if (me->me_q.q_mcr.dma_map != NULL)
2316			ubsec_dma_free(sc, &me->me_q.q_mcr);
2317		if (me->me_q.q_ctx.dma_map != NULL) {
2318			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2319			ubsec_dma_free(sc, &me->me_q.q_ctx);
2320		}
2321		if (me->me_M.dma_map != NULL) {
2322			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2323			ubsec_dma_free(sc, &me->me_M);
2324		}
2325		if (me->me_E.dma_map != NULL) {
2326			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2327			ubsec_dma_free(sc, &me->me_E);
2328		}
2329		if (me->me_C.dma_map != NULL) {
2330			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2331			ubsec_dma_free(sc, &me->me_C);
2332		}
2333		if (me->me_epb.dma_map != NULL)
2334			ubsec_dma_free(sc, &me->me_epb);
2335		free(me, M_DEVBUF);
2336	}
2337	krp->krp_status = err;
2338	crypto_kdone(krp);
2339	return (0);
2340}
2341
2342/*
2343 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2344 */
2345static int
2346ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2347{
2348	struct ubsec_q2_modexp *me;
2349	struct ubsec_mcr *mcr;
2350	struct ubsec_ctx_modexp *ctx;
2351	struct ubsec_pktbuf *epb;
2352	int err = 0;
2353	u_int nbits, normbits, mbits, shiftbits, ebits;
2354
2355	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2356	if (me == NULL) {
2357		err = ENOMEM;
2358		goto errout;
2359	}
2360	bzero(me, sizeof *me);
2361	me->me_krp = krp;
2362	me->me_q.q_type = UBS_CTXOP_MODEXP;
2363
2364	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2365	if (nbits <= 512)
2366		normbits = 512;
2367	else if (nbits <= 768)
2368		normbits = 768;
2369	else if (nbits <= 1024)
2370		normbits = 1024;
2371	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2372		normbits = 1536;
2373	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2374		normbits = 2048;
2375	else {
2376		err = E2BIG;
2377		goto errout;
2378	}
2379
2380	shiftbits = normbits - nbits;
2381
2382	/* XXX ??? */
2383	me->me_modbits = nbits;
2384	me->me_shiftbits = shiftbits;
2385	me->me_normbits = normbits;
2386
2387	/* Sanity check: result bits must be >= true modulus bits. */
2388	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2389		err = ERANGE;
2390		goto errout;
2391	}
2392
2393	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2394	    &me->me_q.q_mcr, 0)) {
2395		err = ENOMEM;
2396		goto errout;
2397	}
2398	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2399
2400	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2401	    &me->me_q.q_ctx, 0)) {
2402		err = ENOMEM;
2403		goto errout;
2404	}
2405
2406	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2407	if (mbits > nbits) {
2408		err = E2BIG;
2409		goto errout;
2410	}
2411	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2412		err = ENOMEM;
2413		goto errout;
2414	}
2415	bzero(me->me_M.dma_vaddr, normbits / 8);
2416	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2417	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2418
2419	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2420		err = ENOMEM;
2421		goto errout;
2422	}
2423	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2424
2425	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2426	if (ebits > nbits) {
2427		err = E2BIG;
2428		goto errout;
2429	}
2430	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2431		err = ENOMEM;
2432		goto errout;
2433	}
2434	bzero(me->me_E.dma_vaddr, normbits / 8);
2435	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2436	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2437
2438	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2439	    &me->me_epb, 0)) {
2440		err = ENOMEM;
2441		goto errout;
2442	}
2443	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2444	epb->pb_addr = htole32(me->me_E.dma_paddr);
2445	epb->pb_next = 0;
2446	epb->pb_len = htole32((ebits + 7) / 8);
2447
2448#ifdef UBSEC_DEBUG
2449	if (ubsec_debug) {
2450		printf("Epb ");
2451		ubsec_dump_pb(epb);
2452	}
2453#endif
2454
2455	mcr->mcr_pkts = htole16(1);
2456	mcr->mcr_flags = 0;
2457	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2458	mcr->mcr_reserved = 0;
2459	mcr->mcr_pktlen = 0;
2460
2461	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2462	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2463	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2464
2465	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2466	mcr->mcr_opktbuf.pb_next = 0;
2467	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2468
2469#ifdef DIAGNOSTIC
2470	/* Misaligned output buffer will hang the chip. */
2471	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2472		panic("%s: modexp invalid addr 0x%x\n",
2473		    device_get_nameunit(sc->sc_dev),
2474		    letoh32(mcr->mcr_opktbuf.pb_addr));
2475	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2476		panic("%s: modexp invalid len 0x%x\n",
2477		    device_get_nameunit(sc->sc_dev),
2478		    letoh32(mcr->mcr_opktbuf.pb_len));
2479#endif
2480
2481	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2482	bzero(ctx, sizeof(*ctx));
2483	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2484	    (nbits + 7) / 8);
2485	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2486	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2487	ctx->me_E_len = htole16(ebits);
2488	ctx->me_N_len = htole16(nbits);
2489
2490#ifdef UBSEC_DEBUG
2491	if (ubsec_debug) {
2492		ubsec_dump_mcr(mcr);
2493		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2494	}
2495#endif
2496
2497	/*
2498	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2499	 * everything else.
2500	 */
2501	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2502	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2503	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2504	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2505
2506	/* Enqueue and we're done... */
2507	mtx_lock(&sc->sc_mcr2lock);
2508	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2509	ubsec_feed2(sc);
2510	mtx_unlock(&sc->sc_mcr2lock);
2511
2512	return (0);
2513
2514errout:
2515	if (me != NULL) {
2516		if (me->me_q.q_mcr.dma_map != NULL)
2517			ubsec_dma_free(sc, &me->me_q.q_mcr);
2518		if (me->me_q.q_ctx.dma_map != NULL) {
2519			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2520			ubsec_dma_free(sc, &me->me_q.q_ctx);
2521		}
2522		if (me->me_M.dma_map != NULL) {
2523			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2524			ubsec_dma_free(sc, &me->me_M);
2525		}
2526		if (me->me_E.dma_map != NULL) {
2527			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2528			ubsec_dma_free(sc, &me->me_E);
2529		}
2530		if (me->me_C.dma_map != NULL) {
2531			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2532			ubsec_dma_free(sc, &me->me_C);
2533		}
2534		if (me->me_epb.dma_map != NULL)
2535			ubsec_dma_free(sc, &me->me_epb);
2536		free(me, M_DEVBUF);
2537	}
2538	krp->krp_status = err;
2539	crypto_kdone(krp);
2540	return (0);
2541}
2542
2543static int
2544ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2545{
2546	struct ubsec_q2_rsapriv *rp = NULL;
2547	struct ubsec_mcr *mcr;
2548	struct ubsec_ctx_rsapriv *ctx;
2549	int err = 0;
2550	u_int padlen, msglen;
2551
2552	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2553	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2554	if (msglen > padlen)
2555		padlen = msglen;
2556
2557	if (padlen <= 256)
2558		padlen = 256;
2559	else if (padlen <= 384)
2560		padlen = 384;
2561	else if (padlen <= 512)
2562		padlen = 512;
2563	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2564		padlen = 768;
2565	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2566		padlen = 1024;
2567	else {
2568		err = E2BIG;
2569		goto errout;
2570	}
2571
2572	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2573		err = E2BIG;
2574		goto errout;
2575	}
2576
2577	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2578		err = E2BIG;
2579		goto errout;
2580	}
2581
2582	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2583		err = E2BIG;
2584		goto errout;
2585	}
2586
2587	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2588	if (rp == NULL)
2589		return (ENOMEM);
2590	bzero(rp, sizeof *rp);
2591	rp->rpr_krp = krp;
2592	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2593
2594	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2595	    &rp->rpr_q.q_mcr, 0)) {
2596		err = ENOMEM;
2597		goto errout;
2598	}
2599	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2600
2601	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2602	    &rp->rpr_q.q_ctx, 0)) {
2603		err = ENOMEM;
2604		goto errout;
2605	}
2606	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2607	bzero(ctx, sizeof *ctx);
2608
2609	/* Copy in p */
2610	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2611	    &ctx->rpr_buf[0 * (padlen / 8)],
2612	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2613
2614	/* Copy in q */
2615	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2616	    &ctx->rpr_buf[1 * (padlen / 8)],
2617	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2618
2619	/* Copy in dp */
2620	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2621	    &ctx->rpr_buf[2 * (padlen / 8)],
2622	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2623
2624	/* Copy in dq */
2625	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2626	    &ctx->rpr_buf[3 * (padlen / 8)],
2627	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2628
2629	/* Copy in pinv */
2630	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2631	    &ctx->rpr_buf[4 * (padlen / 8)],
2632	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2633
2634	msglen = padlen * 2;
2635
2636	/* Copy in input message (aligned buffer/length). */
2637	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2638		/* Is this likely? */
2639		err = E2BIG;
2640		goto errout;
2641	}
2642	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2643		err = ENOMEM;
2644		goto errout;
2645	}
2646	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2647	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2648	    rp->rpr_msgin.dma_vaddr,
2649	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2650
2651	/* Prepare space for output message (aligned buffer/length). */
2652	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2653		/* Is this likely? */
2654		err = E2BIG;
2655		goto errout;
2656	}
2657	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2658		err = ENOMEM;
2659		goto errout;
2660	}
2661	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2662
2663	mcr->mcr_pkts = htole16(1);
2664	mcr->mcr_flags = 0;
2665	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2666	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2667	mcr->mcr_ipktbuf.pb_next = 0;
2668	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2669	mcr->mcr_reserved = 0;
2670	mcr->mcr_pktlen = htole16(msglen);
2671	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2672	mcr->mcr_opktbuf.pb_next = 0;
2673	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2674
2675#ifdef DIAGNOSTIC
2676	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2677		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2678		    device_get_nameunit(sc->sc_dev),
2679		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2680	}
2681	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2682		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2683		    device_get_nameunit(sc->sc_dev),
2684		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2685	}
2686#endif
2687
2688	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2689	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2690	ctx->rpr_q_len = htole16(padlen);
2691	ctx->rpr_p_len = htole16(padlen);
2692
2693	/*
2694	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2695	 * everything else.
2696	 */
2697	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2698	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2699
2700	/* Enqueue and we're done... */
2701	mtx_lock(&sc->sc_mcr2lock);
2702	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2703	ubsec_feed2(sc);
2704	ubsecstats.hst_modexpcrt++;
2705	mtx_unlock(&sc->sc_mcr2lock);
2706	return (0);
2707
2708errout:
2709	if (rp != NULL) {
2710		if (rp->rpr_q.q_mcr.dma_map != NULL)
2711			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2712		if (rp->rpr_msgin.dma_map != NULL) {
2713			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2714			ubsec_dma_free(sc, &rp->rpr_msgin);
2715		}
2716		if (rp->rpr_msgout.dma_map != NULL) {
2717			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2718			ubsec_dma_free(sc, &rp->rpr_msgout);
2719		}
2720		free(rp, M_DEVBUF);
2721	}
2722	krp->krp_status = err;
2723	crypto_kdone(krp);
2724	return (0);
2725}
2726
2727#ifdef UBSEC_DEBUG
2728static void
2729ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2730{
2731	printf("addr 0x%x (0x%x) next 0x%x\n",
2732	    pb->pb_addr, pb->pb_len, pb->pb_next);
2733}
2734
2735static void
2736ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2737{
2738	printf("CTX (0x%x):\n", c->ctx_len);
2739	switch (letoh16(c->ctx_op)) {
2740	case UBS_CTXOP_RNGBYPASS:
2741	case UBS_CTXOP_RNGSHA1:
2742		break;
2743	case UBS_CTXOP_MODEXP:
2744	{
2745		struct ubsec_ctx_modexp *cx = (void *)c;
2746		int i, len;
2747
2748		printf(" Elen %u, Nlen %u\n",
2749		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2750		len = (cx->me_N_len + 7)/8;
2751		for (i = 0; i < len; i++)
2752			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2753		printf("\n");
2754		break;
2755	}
2756	default:
2757		printf("unknown context: %x\n", c->ctx_op);
2758	}
2759	printf("END CTX\n");
2760}
2761
2762static void
2763ubsec_dump_mcr(struct ubsec_mcr *mcr)
2764{
2765	volatile struct ubsec_mcr_add *ma;
2766	int i;
2767
2768	printf("MCR:\n");
2769	printf(" pkts: %u, flags 0x%x\n",
2770	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2771	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2772	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2773		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2774		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2775		    letoh16(ma->mcr_reserved));
2776		printf(" %d: ipkt ", i);
2777		ubsec_dump_pb(&ma->mcr_ipktbuf);
2778		printf(" %d: opkt ", i);
2779		ubsec_dump_pb(&ma->mcr_opktbuf);
2780		ma++;
2781	}
2782	printf("END MCR\n");
2783}
2784#endif /* UBSEC_DEBUG */
2785
2786/*
2787 * Return the number of significant bits of a big number.
2788 */
2789static int
2790ubsec_ksigbits(struct crparam *cr)
2791{
2792	u_int plen = (cr->crp_nbits + 7) / 8;
2793	int i, sig = plen * 8;
2794	u_int8_t c, *p = cr->crp_p;
2795
2796	for (i = plen - 1; i >= 0; i--) {
2797		c = p[i];
2798		if (c != 0) {
2799			while ((c & 0x80) == 0) {
2800				sig--;
2801				c <<= 1;
2802			}
2803			break;
2804		}
2805		sig -= 8;
2806	}
2807	return (sig);
2808}
2809
2810static void
2811ubsec_kshift_r(
2812	u_int shiftbits,
2813	u_int8_t *src, u_int srcbits,
2814	u_int8_t *dst, u_int dstbits)
2815{
2816	u_int slen, dlen;
2817	int i, si, di, n;
2818
2819	slen = (srcbits + 7) / 8;
2820	dlen = (dstbits + 7) / 8;
2821
2822	for (i = 0; i < slen; i++)
2823		dst[i] = src[i];
2824	for (i = 0; i < dlen - slen; i++)
2825		dst[slen + i] = 0;
2826
2827	n = shiftbits / 8;
2828	if (n != 0) {
2829		si = dlen - n - 1;
2830		di = dlen - 1;
2831		while (si >= 0)
2832			dst[di--] = dst[si--];
2833		while (di >= 0)
2834			dst[di--] = 0;
2835	}
2836
2837	n = shiftbits % 8;
2838	if (n != 0) {
2839		for (i = dlen - 1; i > 0; i--)
2840			dst[i] = (dst[i] << n) |
2841			    (dst[i - 1] >> (8 - n));
2842		dst[0] = dst[0] << n;
2843	}
2844}
2845
2846static void
2847ubsec_kshift_l(
2848	u_int shiftbits,
2849	u_int8_t *src, u_int srcbits,
2850	u_int8_t *dst, u_int dstbits)
2851{
2852	int slen, dlen, i, n;
2853
2854	slen = (srcbits + 7) / 8;
2855	dlen = (dstbits + 7) / 8;
2856
2857	n = shiftbits / 8;
2858	for (i = 0; i < slen; i++)
2859		dst[i] = src[i + n];
2860	for (i = 0; i < dlen - slen; i++)
2861		dst[slen + i] = 0;
2862
2863	n = shiftbits % 8;
2864	if (n != 0) {
2865		for (i = 0; i < (dlen - 1); i++)
2866			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2867		dst[dlen - 1] = dst[dlen - 1] >> n;
2868	}
2869}
2870