uart_dev_ns8250.c revision 266046
1/*-
2 * Copyright (c) 2003 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include "opt_platform.h"
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/dev/uart/uart_dev_ns8250.c 266046 2014-05-14 16:32:27Z ian $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/bus.h>
35#include <sys/conf.h>
36#include <sys/kernel.h>
37#include <sys/sysctl.h>
38#include <machine/bus.h>
39
40#ifdef FDT
41#include <dev/fdt/fdt_common.h>
42#include <dev/ofw/ofw_bus.h>
43#include <dev/ofw/ofw_bus_subr.h>
44#endif
45
46#include <dev/uart/uart.h>
47#include <dev/uart/uart_cpu.h>
48#include <dev/uart/uart_bus.h>
49#include <dev/uart/uart_dev_ns8250.h>
50
51#include <dev/ic/ns16550.h>
52
53#include "uart_if.h"
54
55#define	DEFAULT_RCLK	1843200
56
57static int broken_txfifo = 0;
58SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RW | CTLFLAG_TUN,
59	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
60TUNABLE_INT("hw.broken_txfifo", &broken_txfifo);
61
62/*
63 * Clear pending interrupts. THRE is cleared by reading IIR. Data
64 * that may have been received gets lost here.
65 */
66static void
67ns8250_clrint(struct uart_bas *bas)
68{
69	uint8_t iir, lsr;
70
71	iir = uart_getreg(bas, REG_IIR);
72	while ((iir & IIR_NOPEND) == 0) {
73		iir &= IIR_IMASK;
74		if (iir == IIR_RLS) {
75			lsr = uart_getreg(bas, REG_LSR);
76			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
77				(void)uart_getreg(bas, REG_DATA);
78		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
79			(void)uart_getreg(bas, REG_DATA);
80		else if (iir == IIR_MLSC)
81			(void)uart_getreg(bas, REG_MSR);
82		uart_barrier(bas);
83		iir = uart_getreg(bas, REG_IIR);
84	}
85}
86
87static int
88ns8250_delay(struct uart_bas *bas)
89{
90	int divisor;
91	u_char lcr;
92
93	lcr = uart_getreg(bas, REG_LCR);
94	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
95	uart_barrier(bas);
96	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
97	uart_barrier(bas);
98	uart_setreg(bas, REG_LCR, lcr);
99	uart_barrier(bas);
100
101	/* 1/10th the time to transmit 1 character (estimate). */
102	if (divisor <= 134)
103		return (16000000 * divisor / bas->rclk);
104	return (16000 * divisor / (bas->rclk / 1000));
105}
106
107static int
108ns8250_divisor(int rclk, int baudrate)
109{
110	int actual_baud, divisor;
111	int error;
112
113	if (baudrate == 0)
114		return (0);
115
116	divisor = (rclk / (baudrate << 3) + 1) >> 1;
117	if (divisor == 0 || divisor >= 65536)
118		return (0);
119	actual_baud = rclk / (divisor << 4);
120
121	/* 10 times error in percent: */
122	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
123
124	/* 3.0% maximum error tolerance: */
125	if (error < -30 || error > 30)
126		return (0);
127
128	return (divisor);
129}
130
131static int
132ns8250_drain(struct uart_bas *bas, int what)
133{
134	int delay, limit;
135
136	delay = ns8250_delay(bas);
137
138	if (what & UART_DRAIN_TRANSMITTER) {
139		/*
140		 * Pick an arbitrary high limit to avoid getting stuck in
141		 * an infinite loop when the hardware is broken. Make the
142		 * limit high enough to handle large FIFOs.
143		 */
144		limit = 10*1024;
145		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
146			DELAY(delay);
147		if (limit == 0) {
148			/* printf("ns8250: transmitter appears stuck... "); */
149			return (EIO);
150		}
151	}
152
153	if (what & UART_DRAIN_RECEIVER) {
154		/*
155		 * Pick an arbitrary high limit to avoid getting stuck in
156		 * an infinite loop when the hardware is broken. Make the
157		 * limit high enough to handle large FIFOs and integrated
158		 * UARTs. The HP rx2600 for example has 3 UARTs on the
159		 * management board that tend to get a lot of data send
160		 * to it when the UART is first activated.
161		 */
162		limit=10*4096;
163		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
164			(void)uart_getreg(bas, REG_DATA);
165			uart_barrier(bas);
166			DELAY(delay << 2);
167		}
168		if (limit == 0) {
169			/* printf("ns8250: receiver appears broken... "); */
170			return (EIO);
171		}
172	}
173
174	return (0);
175}
176
177/*
178 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
179 * drained. WARNING: this function clobbers the FIFO setting!
180 */
181static void
182ns8250_flush(struct uart_bas *bas, int what)
183{
184	uint8_t fcr;
185
186	fcr = FCR_ENABLE;
187	if (what & UART_FLUSH_TRANSMITTER)
188		fcr |= FCR_XMT_RST;
189	if (what & UART_FLUSH_RECEIVER)
190		fcr |= FCR_RCV_RST;
191	uart_setreg(bas, REG_FCR, fcr);
192	uart_barrier(bas);
193}
194
195static int
196ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
197    int parity)
198{
199	int divisor;
200	uint8_t lcr;
201
202	lcr = 0;
203	if (databits >= 8)
204		lcr |= LCR_8BITS;
205	else if (databits == 7)
206		lcr |= LCR_7BITS;
207	else if (databits == 6)
208		lcr |= LCR_6BITS;
209	else
210		lcr |= LCR_5BITS;
211	if (stopbits > 1)
212		lcr |= LCR_STOPB;
213	lcr |= parity << 3;
214
215	/* Set baudrate. */
216	if (baudrate > 0) {
217		divisor = ns8250_divisor(bas->rclk, baudrate);
218		if (divisor == 0)
219			return (EINVAL);
220		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
221		uart_barrier(bas);
222		uart_setreg(bas, REG_DLL, divisor & 0xff);
223		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
224		uart_barrier(bas);
225	}
226
227	/* Set LCR and clear DLAB. */
228	uart_setreg(bas, REG_LCR, lcr);
229	uart_barrier(bas);
230	return (0);
231}
232
233/*
234 * Low-level UART interface.
235 */
236static int ns8250_probe(struct uart_bas *bas);
237static void ns8250_init(struct uart_bas *bas, int, int, int, int);
238static void ns8250_term(struct uart_bas *bas);
239static void ns8250_putc(struct uart_bas *bas, int);
240static int ns8250_rxready(struct uart_bas *bas);
241static int ns8250_getc(struct uart_bas *bas, struct mtx *);
242
243struct uart_ops uart_ns8250_ops = {
244	.probe = ns8250_probe,
245	.init = ns8250_init,
246	.term = ns8250_term,
247	.putc = ns8250_putc,
248	.rxready = ns8250_rxready,
249	.getc = ns8250_getc,
250};
251
252static int
253ns8250_probe(struct uart_bas *bas)
254{
255	u_char val;
256
257	/* Check known 0 bits that don't depend on DLAB. */
258	val = uart_getreg(bas, REG_IIR);
259	if (val & 0x30)
260		return (ENXIO);
261	/*
262	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
263	 * chip, but otherwise doesn't seem to have a function. In
264	 * other words, uart(4) works regardless. Ignore that bit so
265	 * the probe succeeds.
266	 */
267	val = uart_getreg(bas, REG_MCR);
268	if (val & 0xa0)
269		return (ENXIO);
270
271	return (0);
272}
273
274static void
275ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
276    int parity)
277{
278	u_char	ier;
279
280	if (bas->rclk == 0)
281		bas->rclk = DEFAULT_RCLK;
282	ns8250_param(bas, baudrate, databits, stopbits, parity);
283
284	/* Disable all interrupt sources. */
285	/*
286	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
287	 * UARTs split the receive time-out interrupt bit out separately as
288	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
289	 */
290	ier = uart_getreg(bas, REG_IER) & 0xe0;
291	uart_setreg(bas, REG_IER, ier);
292	uart_barrier(bas);
293
294	/* Disable the FIFO (if present). */
295	uart_setreg(bas, REG_FCR, 0);
296	uart_barrier(bas);
297
298	/* Set RTS & DTR. */
299	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
300	uart_barrier(bas);
301
302	ns8250_clrint(bas);
303}
304
305static void
306ns8250_term(struct uart_bas *bas)
307{
308
309	/* Clear RTS & DTR. */
310	uart_setreg(bas, REG_MCR, MCR_IE);
311	uart_barrier(bas);
312}
313
314static void
315ns8250_putc(struct uart_bas *bas, int c)
316{
317	int limit;
318
319	limit = 250000;
320	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
321		DELAY(4);
322	uart_setreg(bas, REG_DATA, c);
323	uart_barrier(bas);
324	limit = 250000;
325	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
326		DELAY(4);
327}
328
329static int
330ns8250_rxready(struct uart_bas *bas)
331{
332
333	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
334}
335
336static int
337ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
338{
339	int c;
340
341	uart_lock(hwmtx);
342
343	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
344		uart_unlock(hwmtx);
345		DELAY(4);
346		uart_lock(hwmtx);
347	}
348
349	c = uart_getreg(bas, REG_DATA);
350
351	uart_unlock(hwmtx);
352
353	return (c);
354}
355
356static kobj_method_t ns8250_methods[] = {
357	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
358	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
359	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
360	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
361	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
362	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
363	KOBJMETHOD(uart_param,		ns8250_bus_param),
364	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
365	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
366	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
367	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
368	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
369	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
370	{ 0, 0 }
371};
372
373struct uart_class uart_ns8250_class = {
374	"ns8250",
375	ns8250_methods,
376	sizeof(struct ns8250_softc),
377	.uc_ops = &uart_ns8250_ops,
378	.uc_range = 8,
379	.uc_rclk = DEFAULT_RCLK
380};
381
382#define	SIGCHG(c, i, s, d)				\
383	if (c) {					\
384		i |= (i & s) ? s : s | d;		\
385	} else {					\
386		i = (i & s) ? (i & ~s) | d : i;		\
387	}
388
389int
390ns8250_bus_attach(struct uart_softc *sc)
391{
392	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
393	struct uart_bas *bas;
394	unsigned int ivar;
395#ifdef FDT
396	phandle_t node;
397	pcell_t cell;
398#endif
399
400	ns8250->busy_detect = 0;
401
402#ifdef FDT
403	/*
404	 * Check whether uart requires to read USR reg when IIR_BUSY and
405	 * has broken txfifo.
406	 */
407	node = ofw_bus_get_node(sc->sc_dev);
408	if ((OF_getprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
409		ns8250->busy_detect = 1;
410	if ((OF_getprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
411		broken_txfifo = 1;
412#endif
413
414	bas = &sc->sc_bas;
415
416	ns8250->mcr = uart_getreg(bas, REG_MCR);
417	ns8250->fcr = FCR_ENABLE;
418	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
419	    &ivar)) {
420		if (UART_FLAGS_FCR_RX_LOW(ivar))
421			ns8250->fcr |= FCR_RX_LOW;
422		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
423			ns8250->fcr |= FCR_RX_MEDL;
424		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
425			ns8250->fcr |= FCR_RX_HIGH;
426		else
427			ns8250->fcr |= FCR_RX_MEDH;
428	} else
429		ns8250->fcr |= FCR_RX_MEDH;
430
431	/* Get IER mask */
432	ivar = 0xf0;
433	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
434	    &ivar);
435	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
436
437	/* Get IER RX interrupt bits */
438	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
439	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
440	    &ivar);
441	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
442
443	uart_setreg(bas, REG_FCR, ns8250->fcr);
444	uart_barrier(bas);
445	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
446
447	if (ns8250->mcr & MCR_DTR)
448		sc->sc_hwsig |= SER_DTR;
449	if (ns8250->mcr & MCR_RTS)
450		sc->sc_hwsig |= SER_RTS;
451	ns8250_bus_getsig(sc);
452
453	ns8250_clrint(bas);
454	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
455	ns8250->ier |= ns8250->ier_rxbits;
456	uart_setreg(bas, REG_IER, ns8250->ier);
457	uart_barrier(bas);
458
459	/*
460	 * Timing of the H/W access was changed with r253161 of uart_core.c
461	 * It has been observed that an ITE IT8513E would signal a break
462	 * condition with pretty much every character it received, unless
463	 * it had enough time to settle between ns8250_bus_attach() and
464	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
465	 * It's not understood why the UART chip behaves this way and it
466	 * could very well be that the DELAY make the H/W work in the same
467	 * accidental manner as before. More analysis is warranted, but
468	 * at least now we fixed a known regression.
469	 */
470	DELAY(200);
471	return (0);
472}
473
474int
475ns8250_bus_detach(struct uart_softc *sc)
476{
477	struct ns8250_softc *ns8250;
478	struct uart_bas *bas;
479	u_char ier;
480
481	ns8250 = (struct ns8250_softc *)sc;
482	bas = &sc->sc_bas;
483	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
484	uart_setreg(bas, REG_IER, ier);
485	uart_barrier(bas);
486	ns8250_clrint(bas);
487	return (0);
488}
489
490int
491ns8250_bus_flush(struct uart_softc *sc, int what)
492{
493	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
494	struct uart_bas *bas;
495	int error;
496
497	bas = &sc->sc_bas;
498	uart_lock(sc->sc_hwmtx);
499	if (sc->sc_rxfifosz > 1) {
500		ns8250_flush(bas, what);
501		uart_setreg(bas, REG_FCR, ns8250->fcr);
502		uart_barrier(bas);
503		error = 0;
504	} else
505		error = ns8250_drain(bas, what);
506	uart_unlock(sc->sc_hwmtx);
507	return (error);
508}
509
510int
511ns8250_bus_getsig(struct uart_softc *sc)
512{
513	uint32_t new, old, sig;
514	uint8_t msr;
515
516	do {
517		old = sc->sc_hwsig;
518		sig = old;
519		uart_lock(sc->sc_hwmtx);
520		msr = uart_getreg(&sc->sc_bas, REG_MSR);
521		uart_unlock(sc->sc_hwmtx);
522		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
523		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
524		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
525		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
526		new = sig & ~SER_MASK_DELTA;
527	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
528	return (sig);
529}
530
531int
532ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
533{
534	struct uart_bas *bas;
535	int baudrate, divisor, error;
536	uint8_t efr, lcr;
537
538	bas = &sc->sc_bas;
539	error = 0;
540	uart_lock(sc->sc_hwmtx);
541	switch (request) {
542	case UART_IOCTL_BREAK:
543		lcr = uart_getreg(bas, REG_LCR);
544		if (data)
545			lcr |= LCR_SBREAK;
546		else
547			lcr &= ~LCR_SBREAK;
548		uart_setreg(bas, REG_LCR, lcr);
549		uart_barrier(bas);
550		break;
551	case UART_IOCTL_IFLOW:
552		lcr = uart_getreg(bas, REG_LCR);
553		uart_barrier(bas);
554		uart_setreg(bas, REG_LCR, 0xbf);
555		uart_barrier(bas);
556		efr = uart_getreg(bas, REG_EFR);
557		if (data)
558			efr |= EFR_RTS;
559		else
560			efr &= ~EFR_RTS;
561		uart_setreg(bas, REG_EFR, efr);
562		uart_barrier(bas);
563		uart_setreg(bas, REG_LCR, lcr);
564		uart_barrier(bas);
565		break;
566	case UART_IOCTL_OFLOW:
567		lcr = uart_getreg(bas, REG_LCR);
568		uart_barrier(bas);
569		uart_setreg(bas, REG_LCR, 0xbf);
570		uart_barrier(bas);
571		efr = uart_getreg(bas, REG_EFR);
572		if (data)
573			efr |= EFR_CTS;
574		else
575			efr &= ~EFR_CTS;
576		uart_setreg(bas, REG_EFR, efr);
577		uart_barrier(bas);
578		uart_setreg(bas, REG_LCR, lcr);
579		uart_barrier(bas);
580		break;
581	case UART_IOCTL_BAUD:
582		lcr = uart_getreg(bas, REG_LCR);
583		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
584		uart_barrier(bas);
585		divisor = uart_getreg(bas, REG_DLL) |
586		    (uart_getreg(bas, REG_DLH) << 8);
587		uart_barrier(bas);
588		uart_setreg(bas, REG_LCR, lcr);
589		uart_barrier(bas);
590		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
591		if (baudrate > 0)
592			*(int*)data = baudrate;
593		else
594			error = ENXIO;
595		break;
596	default:
597		error = EINVAL;
598		break;
599	}
600	uart_unlock(sc->sc_hwmtx);
601	return (error);
602}
603
604int
605ns8250_bus_ipend(struct uart_softc *sc)
606{
607	struct uart_bas *bas;
608	struct ns8250_softc *ns8250;
609	int ipend;
610	uint8_t iir, lsr;
611
612	ns8250 = (struct ns8250_softc *)sc;
613	bas = &sc->sc_bas;
614	uart_lock(sc->sc_hwmtx);
615	iir = uart_getreg(bas, REG_IIR);
616
617	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
618		(void)uart_getreg(bas, DW_REG_USR);
619		uart_unlock(sc->sc_hwmtx);
620		return (0);
621	}
622	if (iir & IIR_NOPEND) {
623		uart_unlock(sc->sc_hwmtx);
624		return (0);
625	}
626	ipend = 0;
627	if (iir & IIR_RXRDY) {
628		lsr = uart_getreg(bas, REG_LSR);
629		if (lsr & LSR_OE)
630			ipend |= SER_INT_OVERRUN;
631		if (lsr & LSR_BI)
632			ipend |= SER_INT_BREAK;
633		if (lsr & LSR_RXRDY)
634			ipend |= SER_INT_RXREADY;
635	} else {
636		if (iir & IIR_TXRDY) {
637			ipend |= SER_INT_TXIDLE;
638			uart_setreg(bas, REG_IER, ns8250->ier);
639		} else
640			ipend |= SER_INT_SIGCHG;
641	}
642	if (ipend == 0)
643		ns8250_clrint(bas);
644	uart_unlock(sc->sc_hwmtx);
645	return (ipend);
646}
647
648int
649ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
650    int stopbits, int parity)
651{
652	struct ns8250_softc *ns8250;
653	struct uart_bas *bas;
654	int error, limit;
655
656	ns8250 = (struct ns8250_softc*)sc;
657	bas = &sc->sc_bas;
658	uart_lock(sc->sc_hwmtx);
659	/*
660	 * When using DW UART with BUSY detection it is necessary to wait
661	 * until all serial transfers are finished before manipulating the
662	 * line control. LCR will not be affected when UART is busy.
663	 */
664	if (ns8250->busy_detect != 0) {
665		/*
666		 * Pick an arbitrary high limit to avoid getting stuck in
667		 * an infinite loop in case when the hardware is broken.
668		 */
669		limit = 10 * 1024;
670		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
671		    --limit)
672			DELAY(4);
673
674		if (limit <= 0) {
675			/* UART appears to be stuck */
676			uart_unlock(sc->sc_hwmtx);
677			return (EIO);
678		}
679	}
680
681	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
682	uart_unlock(sc->sc_hwmtx);
683	return (error);
684}
685
686int
687ns8250_bus_probe(struct uart_softc *sc)
688{
689	struct ns8250_softc *ns8250;
690	struct uart_bas *bas;
691	int count, delay, error, limit;
692	uint8_t lsr, mcr, ier;
693
694	ns8250 = (struct ns8250_softc *)sc;
695	bas = &sc->sc_bas;
696
697	error = ns8250_probe(bas);
698	if (error)
699		return (error);
700
701	mcr = MCR_IE;
702	if (sc->sc_sysdev == NULL) {
703		/* By using ns8250_init() we also set DTR and RTS. */
704		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
705	} else
706		mcr |= MCR_DTR | MCR_RTS;
707
708	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
709	if (error)
710		return (error);
711
712	/*
713	 * Set loopback mode. This avoids having garbage on the wire and
714	 * also allows us send and receive data. We set DTR and RTS to
715	 * avoid the possibility that automatic flow-control prevents
716	 * any data from being sent.
717	 */
718	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
719	uart_barrier(bas);
720
721	/*
722	 * Enable FIFOs. And check that the UART has them. If not, we're
723	 * done. Since this is the first time we enable the FIFOs, we reset
724	 * them.
725	 */
726	uart_setreg(bas, REG_FCR, FCR_ENABLE);
727	uart_barrier(bas);
728	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
729		/*
730		 * NS16450 or INS8250. We don't bother to differentiate
731		 * between them. They're too old to be interesting.
732		 */
733		uart_setreg(bas, REG_MCR, mcr);
734		uart_barrier(bas);
735		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
736		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
737		return (0);
738	}
739
740	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
741	uart_barrier(bas);
742
743	count = 0;
744	delay = ns8250_delay(bas);
745
746	/* We have FIFOs. Drain the transmitter and receiver. */
747	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
748	if (error) {
749		uart_setreg(bas, REG_MCR, mcr);
750		uart_setreg(bas, REG_FCR, 0);
751		uart_barrier(bas);
752		goto describe;
753	}
754
755	/*
756	 * We should have a sufficiently clean "pipe" to determine the
757	 * size of the FIFOs. We send as much characters as is reasonable
758	 * and wait for the overflow bit in the LSR register to be
759	 * asserted, counting the characters as we send them. Based on
760	 * that count we know the FIFO size.
761	 */
762	do {
763		uart_setreg(bas, REG_DATA, 0);
764		uart_barrier(bas);
765		count++;
766
767		limit = 30;
768		lsr = 0;
769		/*
770		 * LSR bits are cleared upon read, so we must accumulate
771		 * them to be able to test LSR_OE below.
772		 */
773		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
774		    --limit)
775			DELAY(delay);
776		if (limit == 0) {
777			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
778			uart_setreg(bas, REG_IER, ier);
779			uart_setreg(bas, REG_MCR, mcr);
780			uart_setreg(bas, REG_FCR, 0);
781			uart_barrier(bas);
782			count = 0;
783			goto describe;
784		}
785	} while ((lsr & LSR_OE) == 0 && count < 130);
786	count--;
787
788	uart_setreg(bas, REG_MCR, mcr);
789
790	/* Reset FIFOs. */
791	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
792
793 describe:
794	if (count >= 14 && count <= 16) {
795		sc->sc_rxfifosz = 16;
796		device_set_desc(sc->sc_dev, "16550 or compatible");
797	} else if (count >= 28 && count <= 32) {
798		sc->sc_rxfifosz = 32;
799		device_set_desc(sc->sc_dev, "16650 or compatible");
800	} else if (count >= 56 && count <= 64) {
801		sc->sc_rxfifosz = 64;
802		device_set_desc(sc->sc_dev, "16750 or compatible");
803	} else if (count >= 112 && count <= 128) {
804		sc->sc_rxfifosz = 128;
805		device_set_desc(sc->sc_dev, "16950 or compatible");
806	} else {
807		sc->sc_rxfifosz = 16;
808		device_set_desc(sc->sc_dev,
809		    "Non-standard ns8250 class UART with FIFOs");
810	}
811
812	/*
813	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
814	 * Tx trigger. Also, we assume that all data has been sent when the
815	 * interrupt happens.
816	 */
817	sc->sc_txfifosz = 16;
818
819#if 0
820	/*
821	 * XXX there are some issues related to hardware flow control and
822	 * it's likely that uart(4) is the cause. This basicly needs more
823	 * investigation, but we avoid using for hardware flow control
824	 * until then.
825	 */
826	/* 16650s or higher have automatic flow control. */
827	if (sc->sc_rxfifosz > 16) {
828		sc->sc_hwiflow = 1;
829		sc->sc_hwoflow = 1;
830	}
831#endif
832
833	return (0);
834}
835
836int
837ns8250_bus_receive(struct uart_softc *sc)
838{
839	struct uart_bas *bas;
840	int xc;
841	uint8_t lsr;
842
843	bas = &sc->sc_bas;
844	uart_lock(sc->sc_hwmtx);
845	lsr = uart_getreg(bas, REG_LSR);
846	while (lsr & LSR_RXRDY) {
847		if (uart_rx_full(sc)) {
848			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
849			break;
850		}
851		xc = uart_getreg(bas, REG_DATA);
852		if (lsr & LSR_FE)
853			xc |= UART_STAT_FRAMERR;
854		if (lsr & LSR_PE)
855			xc |= UART_STAT_PARERR;
856		uart_rx_put(sc, xc);
857		lsr = uart_getreg(bas, REG_LSR);
858	}
859	/* Discard everything left in the Rx FIFO. */
860	while (lsr & LSR_RXRDY) {
861		(void)uart_getreg(bas, REG_DATA);
862		uart_barrier(bas);
863		lsr = uart_getreg(bas, REG_LSR);
864	}
865	uart_unlock(sc->sc_hwmtx);
866 	return (0);
867}
868
869int
870ns8250_bus_setsig(struct uart_softc *sc, int sig)
871{
872	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
873	struct uart_bas *bas;
874	uint32_t new, old;
875
876	bas = &sc->sc_bas;
877	do {
878		old = sc->sc_hwsig;
879		new = old;
880		if (sig & SER_DDTR) {
881			SIGCHG(sig & SER_DTR, new, SER_DTR,
882			    SER_DDTR);
883		}
884		if (sig & SER_DRTS) {
885			SIGCHG(sig & SER_RTS, new, SER_RTS,
886			    SER_DRTS);
887		}
888	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
889	uart_lock(sc->sc_hwmtx);
890	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
891	if (new & SER_DTR)
892		ns8250->mcr |= MCR_DTR;
893	if (new & SER_RTS)
894		ns8250->mcr |= MCR_RTS;
895	uart_setreg(bas, REG_MCR, ns8250->mcr);
896	uart_barrier(bas);
897	uart_unlock(sc->sc_hwmtx);
898	return (0);
899}
900
901int
902ns8250_bus_transmit(struct uart_softc *sc)
903{
904	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
905	struct uart_bas *bas;
906	int i;
907
908	bas = &sc->sc_bas;
909	uart_lock(sc->sc_hwmtx);
910	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
911		;
912	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
913	uart_barrier(bas);
914	for (i = 0; i < sc->sc_txdatasz; i++) {
915		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
916		uart_barrier(bas);
917	}
918	if (broken_txfifo)
919		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
920	else
921		sc->sc_txbusy = 1;
922	uart_unlock(sc->sc_hwmtx);
923	if (broken_txfifo)
924		uart_sched_softih(sc, SER_INT_TXIDLE);
925	return (0);
926}
927
928void
929ns8250_bus_grab(struct uart_softc *sc)
930{
931	struct uart_bas *bas = &sc->sc_bas;
932
933	/*
934	 * turn off all interrupts to enter polling mode. Leave the
935	 * saved mask alone. We'll restore whatever it was in ungrab.
936	 * All pending interupt signals are reset when IER is set to 0.
937	 */
938	uart_lock(sc->sc_hwmtx);
939	uart_setreg(bas, REG_IER, 0);
940	uart_barrier(bas);
941	uart_unlock(sc->sc_hwmtx);
942}
943
944void
945ns8250_bus_ungrab(struct uart_softc *sc)
946{
947	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
948	struct uart_bas *bas = &sc->sc_bas;
949
950	/*
951	 * Restore previous interrupt mask
952	 */
953	uart_lock(sc->sc_hwmtx);
954	uart_setreg(bas, REG_IER, ns8250->ier);
955	uart_barrier(bas);
956	uart_unlock(sc->sc_hwmtx);
957}
958