uart_dev_lpc.c revision 266084
1161648Smjacob/*-
2161648Smjacob * Copyright (c) 2003 Marcel Moolenaar
3161648Smjacob * All rights reserved.
4161648Smjacob *
5161648Smjacob * Redistribution and use in source and binary forms, with or without
6161648Smjacob * modification, are permitted provided that the following conditions
7161648Smjacob * are met:
8161648Smjacob *
9161648Smjacob * 1. Redistributions of source code must retain the above copyright
10161648Smjacob *    notice, this list of conditions and the following disclaimer.
11161648Smjacob * 2. Redistributions in binary form must reproduce the above copyright
12161648Smjacob *    notice, this list of conditions and the following disclaimer in the
13161648Smjacob *    documentation and/or other materials provided with the distribution.
14161648Smjacob *
15161648Smjacob * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16161648Smjacob * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17161648Smjacob * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18161648Smjacob * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19161648Smjacob * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20161648Smjacob * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21161648Smjacob * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22161648Smjacob * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23161648Smjacob * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24161648Smjacob * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25161648Smjacob */
26161648Smjacob
27161648Smjacob#include <sys/cdefs.h>
28161648Smjacob__FBSDID("$FreeBSD: stable/10/sys/dev/uart/uart_dev_lpc.c 266084 2014-05-14 19:18:58Z ian $");
29161648Smjacob
30161648Smjacob#include <sys/param.h>
31161648Smjacob#include <sys/systm.h>
32161648Smjacob#include <sys/bus.h>
33161648Smjacob#include <sys/conf.h>
34161648Smjacob#include <machine/bus.h>
35161648Smjacob#include <machine/fdt.h>
36161648Smjacob
37#include <dev/uart/uart.h>
38#include <dev/uart/uart_cpu.h>
39#include <dev/uart/uart_bus.h>
40
41#include <dev/ic/ns16550.h>
42#include <arm/lpc/lpcreg.h>
43
44#include "uart_if.h"
45
46#define	DEFAULT_RCLK		(13 * 1000 * 1000)
47
48static bus_space_handle_t bsh_clkpwr;
49
50#define	lpc_ns8250_get_clkreg(_bas, _reg)	\
51    bus_space_read_4(fdtbus_bs_tag, bsh_clkpwr, (_reg))
52#define	lpc_ns8250_set_clkreg(_bas, _reg, _val)	\
53    bus_space_write_4(fdtbus_bs_tag, bsh_clkpwr, (_reg), (_val))
54
55/*
56 * Clear pending interrupts. THRE is cleared by reading IIR. Data
57 * that may have been received gets lost here.
58 */
59static void
60lpc_ns8250_clrint(struct uart_bas *bas)
61{
62	uint8_t iir, lsr;
63
64	iir = uart_getreg(bas, REG_IIR);
65	while ((iir & IIR_NOPEND) == 0) {
66		iir &= IIR_IMASK;
67		if (iir == IIR_RLS) {
68			lsr = uart_getreg(bas, REG_LSR);
69			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
70				(void)uart_getreg(bas, REG_DATA);
71		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
72			(void)uart_getreg(bas, REG_DATA);
73		else if (iir == IIR_MLSC)
74			(void)uart_getreg(bas, REG_MSR);
75		uart_barrier(bas);
76		iir = uart_getreg(bas, REG_IIR);
77	}
78}
79
80static int
81lpc_ns8250_delay(struct uart_bas *bas)
82{
83	uint32_t uclk;
84	int x, y;
85
86	uclk = lpc_ns8250_get_clkreg(bas, LPC_CLKPWR_UART_U5CLK);
87
88	x = (uclk >> 8) & 0xff;
89	y = uclk & 0xff;
90
91	return (16000000 / (bas->rclk * x / y));
92}
93
94static void
95lpc_ns8250_divisor(int rclk, int baudrate, int *x, int *y)
96{
97
98	switch (baudrate) {
99	case 2400:
100		*x = 1;
101		*y = 255;
102		return;
103	case 4800:
104		*x = 1;
105		*y = 169;
106		return;
107	case 9600:
108		*x = 3;
109		*y = 254;
110		return;
111	case 19200:
112		*x = 3;
113		*y = 127;
114		return;
115	case 38400:
116		*x = 6;
117		*y = 127;
118		return;
119	case 57600:
120		*x = 9;
121		*y = 127;
122		return;
123	default:
124	case 115200:
125		*x = 19;
126		*y = 134;
127		return;
128	case 230400:
129		*x = 19;
130		*y = 67;
131		return;
132	case 460800:
133		*x = 38;
134		*y = 67;
135		return;
136	}
137}
138
139static int
140lpc_ns8250_drain(struct uart_bas *bas, int what)
141{
142	int delay, limit;
143
144	delay = lpc_ns8250_delay(bas);
145
146	if (what & UART_DRAIN_TRANSMITTER) {
147		/*
148		 * Pick an arbitrary high limit to avoid getting stuck in
149		 * an infinite loop when the hardware is broken. Make the
150		 * limit high enough to handle large FIFOs.
151		 */
152		limit = 10*1024;
153		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
154			DELAY(delay);
155		if (limit == 0) {
156			/* printf("lpc_ns8250: transmitter appears stuck... "); */
157			return (EIO);
158		}
159	}
160
161	if (what & UART_DRAIN_RECEIVER) {
162		/*
163		 * Pick an arbitrary high limit to avoid getting stuck in
164		 * an infinite loop when the hardware is broken. Make the
165		 * limit high enough to handle large FIFOs and integrated
166		 * UARTs. The HP rx2600 for example has 3 UARTs on the
167		 * management board that tend to get a lot of data send
168		 * to it when the UART is first activated.
169		 */
170		limit=10*4096;
171		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
172			(void)uart_getreg(bas, REG_DATA);
173			uart_barrier(bas);
174			DELAY(delay << 2);
175		}
176		if (limit == 0) {
177			/* printf("lpc_ns8250: receiver appears broken... "); */
178			return (EIO);
179		}
180	}
181
182	return (0);
183}
184
185/*
186 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
187 * drained. WARNING: this function clobbers the FIFO setting!
188 */
189static void
190lpc_ns8250_flush(struct uart_bas *bas, int what)
191{
192	uint8_t fcr;
193
194	fcr = FCR_ENABLE;
195	if (what & UART_FLUSH_TRANSMITTER)
196		fcr |= FCR_XMT_RST;
197	if (what & UART_FLUSH_RECEIVER)
198		fcr |= FCR_RCV_RST;
199	uart_setreg(bas, REG_FCR, fcr);
200	uart_barrier(bas);
201}
202
203static int
204lpc_ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
205    int parity)
206{
207	int xdiv, ydiv;
208	uint8_t lcr;
209
210	lcr = 0;
211	if (databits >= 8)
212		lcr |= LCR_8BITS;
213	else if (databits == 7)
214		lcr |= LCR_7BITS;
215	else if (databits == 6)
216		lcr |= LCR_6BITS;
217	else
218		lcr |= LCR_5BITS;
219	if (stopbits > 1)
220		lcr |= LCR_STOPB;
221	lcr |= parity << 3;
222
223	/* Set baudrate. */
224	if (baudrate > 0) {
225		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
226		uart_barrier(bas);
227		uart_setreg(bas, REG_DLL, 0x00);
228		uart_setreg(bas, REG_DLH, 0x00);
229		uart_barrier(bas);
230
231		lpc_ns8250_divisor(bas->rclk, baudrate, &xdiv, &ydiv);
232		lpc_ns8250_set_clkreg(bas,
233		    LPC_CLKPWR_UART_U5CLK,
234		    LPC_CLKPWR_UART_UCLK_X(xdiv) |
235		    LPC_CLKPWR_UART_UCLK_Y(ydiv));
236	}
237
238	/* Set LCR and clear DLAB. */
239	uart_setreg(bas, REG_LCR, lcr);
240	uart_barrier(bas);
241	return (0);
242}
243
244/*
245 * Low-level UART interface.
246 */
247static int lpc_ns8250_probe(struct uart_bas *bas);
248static void lpc_ns8250_init(struct uart_bas *bas, int, int, int, int);
249static void lpc_ns8250_term(struct uart_bas *bas);
250static void lpc_ns8250_putc(struct uart_bas *bas, int);
251static int lpc_ns8250_rxready(struct uart_bas *bas);
252static int lpc_ns8250_getc(struct uart_bas *bas, struct mtx *);
253
254static struct uart_ops uart_lpc_ns8250_ops = {
255	.probe = lpc_ns8250_probe,
256	.init = lpc_ns8250_init,
257	.term = lpc_ns8250_term,
258	.putc = lpc_ns8250_putc,
259	.rxready = lpc_ns8250_rxready,
260	.getc = lpc_ns8250_getc,
261};
262
263static int
264lpc_ns8250_probe(struct uart_bas *bas)
265{
266#if 0
267	u_char val;
268
269	/* Check known 0 bits that don't depend on DLAB. */
270	val = uart_getreg(bas, REG_IIR);
271	if (val & 0x30)
272		return (ENXIO);
273	/*
274	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
275	 * chip, but otherwise doesn't seem to have a function. In
276	 * other words, uart(4) works regardless. Ignore that bit so
277	 * the probe succeeds.
278	 */
279	val = uart_getreg(bas, REG_MCR);
280	if (val & 0xa0)
281		return (ENXIO);
282#endif
283	return (0);
284}
285
286static void
287lpc_ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
288    int parity)
289{
290	u_char	ier;
291	u_long	clkmode;
292
293	/* Enable UART clock */
294	bus_space_map(fdtbus_bs_tag, LPC_CLKPWR_PHYS_BASE, LPC_CLKPWR_SIZE, 0,
295	    &bsh_clkpwr);
296	clkmode = lpc_ns8250_get_clkreg(bas, LPC_UART_CLKMODE);
297	lpc_ns8250_set_clkreg(bas, LPC_UART_CLKMODE, clkmode |
298	    LPC_UART_CLKMODE_UART5(1));
299
300#if 0
301	/* Work around H/W bug */
302	uart_setreg(bas, REG_DATA, 0x00);
303#endif
304	if (bas->rclk == 0)
305		bas->rclk = DEFAULT_RCLK;
306	lpc_ns8250_param(bas, baudrate, databits, stopbits, parity);
307
308	/* Disable all interrupt sources. */
309	/*
310	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
311	 * UARTs split the receive time-out interrupt bit out separately as
312	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
313	 */
314	ier = uart_getreg(bas, REG_IER) & 0xe0;
315	uart_setreg(bas, REG_IER, ier);
316	uart_barrier(bas);
317
318	/* Disable the FIFO (if present). */
319	uart_setreg(bas, REG_FCR, 0);
320	uart_barrier(bas);
321
322	/* Set RTS & DTR. */
323	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
324	uart_barrier(bas);
325
326	lpc_ns8250_clrint(bas);
327}
328
329static void
330lpc_ns8250_term(struct uart_bas *bas)
331{
332
333	/* Clear RTS & DTR. */
334	uart_setreg(bas, REG_MCR, MCR_IE);
335	uart_barrier(bas);
336}
337
338static void
339lpc_ns8250_putc(struct uart_bas *bas, int c)
340{
341	int limit;
342
343	limit = 250000;
344	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
345		DELAY(4);
346	uart_setreg(bas, REG_DATA, c);
347	uart_barrier(bas);
348	limit = 250000;
349	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
350		DELAY(4);
351}
352
353static int
354lpc_ns8250_rxready(struct uart_bas *bas)
355{
356
357	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
358}
359
360static int
361lpc_ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
362{
363	int c;
364
365	uart_lock(hwmtx);
366
367	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
368		uart_unlock(hwmtx);
369		DELAY(4);
370		uart_lock(hwmtx);
371	}
372
373	c = uart_getreg(bas, REG_DATA);
374
375	uart_unlock(hwmtx);
376
377	return (c);
378}
379
380/*
381 * High-level UART interface.
382 */
383struct lpc_ns8250_softc {
384	struct uart_softc base;
385	uint8_t		fcr;
386	uint8_t		ier;
387	uint8_t		mcr;
388
389	uint8_t		ier_mask;
390	uint8_t		ier_rxbits;
391};
392
393static int lpc_ns8250_bus_attach(struct uart_softc *);
394static int lpc_ns8250_bus_detach(struct uart_softc *);
395static int lpc_ns8250_bus_flush(struct uart_softc *, int);
396static int lpc_ns8250_bus_getsig(struct uart_softc *);
397static int lpc_ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
398static int lpc_ns8250_bus_ipend(struct uart_softc *);
399static int lpc_ns8250_bus_param(struct uart_softc *, int, int, int, int);
400static int lpc_ns8250_bus_probe(struct uart_softc *);
401static int lpc_ns8250_bus_receive(struct uart_softc *);
402static int lpc_ns8250_bus_setsig(struct uart_softc *, int);
403static int lpc_ns8250_bus_transmit(struct uart_softc *);
404static void lpc_ns8250_bus_grab(struct uart_softc *);
405static void lpc_ns8250_bus_ungrab(struct uart_softc *);
406
407static kobj_method_t lpc_ns8250_methods[] = {
408	KOBJMETHOD(uart_attach,		lpc_ns8250_bus_attach),
409	KOBJMETHOD(uart_detach,		lpc_ns8250_bus_detach),
410	KOBJMETHOD(uart_flush,		lpc_ns8250_bus_flush),
411	KOBJMETHOD(uart_getsig,		lpc_ns8250_bus_getsig),
412	KOBJMETHOD(uart_ioctl,		lpc_ns8250_bus_ioctl),
413	KOBJMETHOD(uart_ipend,		lpc_ns8250_bus_ipend),
414	KOBJMETHOD(uart_param,		lpc_ns8250_bus_param),
415	KOBJMETHOD(uart_probe,		lpc_ns8250_bus_probe),
416	KOBJMETHOD(uart_receive,	lpc_ns8250_bus_receive),
417	KOBJMETHOD(uart_setsig,		lpc_ns8250_bus_setsig),
418	KOBJMETHOD(uart_transmit,	lpc_ns8250_bus_transmit),
419	KOBJMETHOD(uart_grab,		lpc_ns8250_bus_grab),
420	KOBJMETHOD(uart_ungrab,		lpc_ns8250_bus_ungrab),
421	{ 0, 0 }
422};
423
424struct uart_class uart_lpc_class = {
425	"lpc_ns8250",
426	lpc_ns8250_methods,
427	sizeof(struct lpc_ns8250_softc),
428	.uc_ops = &uart_lpc_ns8250_ops,
429	.uc_range = 8,
430	.uc_rclk = DEFAULT_RCLK
431};
432
433#define	SIGCHG(c, i, s, d)				\
434	if (c) {					\
435		i |= (i & s) ? s : s | d;		\
436	} else {					\
437		i = (i & s) ? (i & ~s) | d : i;		\
438	}
439
440static int
441lpc_ns8250_bus_attach(struct uart_softc *sc)
442{
443	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
444	struct uart_bas *bas;
445	unsigned int ivar;
446
447	bas = &sc->sc_bas;
448
449	lpc_ns8250->mcr = uart_getreg(bas, REG_MCR);
450	lpc_ns8250->fcr = FCR_ENABLE | FCR_DMA;
451	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
452	    &ivar)) {
453		if (UART_FLAGS_FCR_RX_LOW(ivar))
454			lpc_ns8250->fcr |= FCR_RX_LOW;
455		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
456			lpc_ns8250->fcr |= FCR_RX_MEDL;
457		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
458			lpc_ns8250->fcr |= FCR_RX_HIGH;
459		else
460			lpc_ns8250->fcr |= FCR_RX_MEDH;
461	} else
462		lpc_ns8250->fcr |= FCR_RX_HIGH;
463
464	/* Get IER mask */
465	ivar = 0xf0;
466	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
467	    &ivar);
468	lpc_ns8250->ier_mask = (uint8_t)(ivar & 0xff);
469
470	/* Get IER RX interrupt bits */
471	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
472	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
473	    &ivar);
474	lpc_ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
475
476	uart_setreg(bas, REG_FCR, lpc_ns8250->fcr);
477	uart_barrier(bas);
478	lpc_ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
479
480	if (lpc_ns8250->mcr & MCR_DTR)
481		sc->sc_hwsig |= SER_DTR;
482	if (lpc_ns8250->mcr & MCR_RTS)
483		sc->sc_hwsig |= SER_RTS;
484	lpc_ns8250_bus_getsig(sc);
485
486	lpc_ns8250_clrint(bas);
487	lpc_ns8250->ier = uart_getreg(bas, REG_IER) & lpc_ns8250->ier_mask;
488	lpc_ns8250->ier |= lpc_ns8250->ier_rxbits;
489	uart_setreg(bas, REG_IER, lpc_ns8250->ier);
490	uart_barrier(bas);
491
492	return (0);
493}
494
495static int
496lpc_ns8250_bus_detach(struct uart_softc *sc)
497{
498	struct lpc_ns8250_softc *lpc_ns8250;
499	struct uart_bas *bas;
500	u_char ier;
501
502	lpc_ns8250 = (struct lpc_ns8250_softc *)sc;
503	bas = &sc->sc_bas;
504	ier = uart_getreg(bas, REG_IER) & lpc_ns8250->ier_mask;
505	uart_setreg(bas, REG_IER, ier);
506	uart_barrier(bas);
507	lpc_ns8250_clrint(bas);
508	return (0);
509}
510
511static int
512lpc_ns8250_bus_flush(struct uart_softc *sc, int what)
513{
514	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
515	struct uart_bas *bas;
516	int error;
517
518	bas = &sc->sc_bas;
519	uart_lock(sc->sc_hwmtx);
520	if (sc->sc_rxfifosz > 1) {
521		lpc_ns8250_flush(bas, what);
522		uart_setreg(bas, REG_FCR, lpc_ns8250->fcr);
523		uart_barrier(bas);
524		error = 0;
525	} else
526		error = lpc_ns8250_drain(bas, what);
527	uart_unlock(sc->sc_hwmtx);
528	return (error);
529}
530
531static int
532lpc_ns8250_bus_getsig(struct uart_softc *sc)
533{
534	uint32_t new, old, sig;
535	uint8_t msr;
536
537	do {
538		old = sc->sc_hwsig;
539		sig = old;
540		uart_lock(sc->sc_hwmtx);
541		msr = uart_getreg(&sc->sc_bas, REG_MSR);
542		uart_unlock(sc->sc_hwmtx);
543		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
544		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
545		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
546		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
547		new = sig & ~SER_MASK_DELTA;
548	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
549	return (sig);
550}
551
552static int
553lpc_ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
554{
555	struct uart_bas *bas;
556	int baudrate, divisor, error;
557	uint8_t efr, lcr;
558
559	bas = &sc->sc_bas;
560	error = 0;
561	uart_lock(sc->sc_hwmtx);
562	switch (request) {
563	case UART_IOCTL_BREAK:
564		lcr = uart_getreg(bas, REG_LCR);
565		if (data)
566			lcr |= LCR_SBREAK;
567		else
568			lcr &= ~LCR_SBREAK;
569		uart_setreg(bas, REG_LCR, lcr);
570		uart_barrier(bas);
571		break;
572	case UART_IOCTL_IFLOW:
573		lcr = uart_getreg(bas, REG_LCR);
574		uart_barrier(bas);
575		uart_setreg(bas, REG_LCR, 0xbf);
576		uart_barrier(bas);
577		efr = uart_getreg(bas, REG_EFR);
578		if (data)
579			efr |= EFR_RTS;
580		else
581			efr &= ~EFR_RTS;
582		uart_setreg(bas, REG_EFR, efr);
583		uart_barrier(bas);
584		uart_setreg(bas, REG_LCR, lcr);
585		uart_barrier(bas);
586		break;
587	case UART_IOCTL_OFLOW:
588		lcr = uart_getreg(bas, REG_LCR);
589		uart_barrier(bas);
590		uart_setreg(bas, REG_LCR, 0xbf);
591		uart_barrier(bas);
592		efr = uart_getreg(bas, REG_EFR);
593		if (data)
594			efr |= EFR_CTS;
595		else
596			efr &= ~EFR_CTS;
597		uart_setreg(bas, REG_EFR, efr);
598		uart_barrier(bas);
599		uart_setreg(bas, REG_LCR, lcr);
600		uart_barrier(bas);
601		break;
602	case UART_IOCTL_BAUD:
603		lcr = uart_getreg(bas, REG_LCR);
604		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
605		uart_barrier(bas);
606		divisor = uart_getreg(bas, REG_DLL) |
607		    (uart_getreg(bas, REG_DLH) << 8);
608		uart_barrier(bas);
609		uart_setreg(bas, REG_LCR, lcr);
610		uart_barrier(bas);
611		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
612		if (baudrate > 0)
613			*(int*)data = baudrate;
614		else
615			error = ENXIO;
616		break;
617	default:
618		error = EINVAL;
619		break;
620	}
621	uart_unlock(sc->sc_hwmtx);
622	return (error);
623}
624
625static int
626lpc_ns8250_bus_ipend(struct uart_softc *sc)
627{
628	struct uart_bas *bas;
629	struct lpc_ns8250_softc *lpc_ns8250;
630	int ipend;
631	uint8_t iir, lsr;
632
633	lpc_ns8250 = (struct lpc_ns8250_softc *)sc;
634	bas = &sc->sc_bas;
635	uart_lock(sc->sc_hwmtx);
636	iir = uart_getreg(bas, REG_IIR);
637	if (iir & IIR_NOPEND) {
638		uart_unlock(sc->sc_hwmtx);
639		return (0);
640	}
641	ipend = 0;
642	if (iir & IIR_RXRDY) {
643		lsr = uart_getreg(bas, REG_LSR);
644		if (lsr & LSR_OE)
645			ipend |= SER_INT_OVERRUN;
646		if (lsr & LSR_BI)
647			ipend |= SER_INT_BREAK;
648		if (lsr & LSR_RXRDY)
649			ipend |= SER_INT_RXREADY;
650	} else {
651		if (iir & IIR_TXRDY) {
652			ipend |= SER_INT_TXIDLE;
653			uart_setreg(bas, REG_IER, lpc_ns8250->ier);
654		} else
655			ipend |= SER_INT_SIGCHG;
656	}
657	if (ipend == 0)
658		lpc_ns8250_clrint(bas);
659	uart_unlock(sc->sc_hwmtx);
660	return (ipend);
661}
662
663static int
664lpc_ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
665    int stopbits, int parity)
666{
667	struct uart_bas *bas;
668	int error;
669
670	bas = &sc->sc_bas;
671	uart_lock(sc->sc_hwmtx);
672	error = lpc_ns8250_param(bas, baudrate, databits, stopbits, parity);
673	uart_unlock(sc->sc_hwmtx);
674	return (error);
675}
676
677static int
678lpc_ns8250_bus_probe(struct uart_softc *sc)
679{
680	struct lpc_ns8250_softc *lpc_ns8250;
681	struct uart_bas *bas;
682	int count, delay, error, limit;
683	uint8_t lsr, mcr, ier;
684
685	lpc_ns8250 = (struct lpc_ns8250_softc *)sc;
686	bas = &sc->sc_bas;
687
688	error = lpc_ns8250_probe(bas);
689	if (error)
690		return (error);
691
692	mcr = MCR_IE;
693	if (sc->sc_sysdev == NULL) {
694		/* By using lpc_ns8250_init() we also set DTR and RTS. */
695		lpc_ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
696	} else
697		mcr |= MCR_DTR | MCR_RTS;
698
699	error = lpc_ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
700	if (error)
701		return (error);
702
703	/*
704	 * Set loopback mode. This avoids having garbage on the wire and
705	 * also allows us send and receive data. We set DTR and RTS to
706	 * avoid the possibility that automatic flow-control prevents
707	 * any data from being sent.
708	 */
709	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
710	uart_barrier(bas);
711
712	/*
713	 * Enable FIFOs. And check that the UART has them. If not, we're
714	 * done. Since this is the first time we enable the FIFOs, we reset
715	 * them.
716	 */
717	uart_setreg(bas, REG_FCR, FCR_ENABLE);
718	uart_barrier(bas);
719	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
720		/*
721		 * NS16450 or INS8250. We don't bother to differentiate
722		 * between them. They're too old to be interesting.
723		 */
724		uart_setreg(bas, REG_MCR, mcr);
725		uart_barrier(bas);
726		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
727		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
728		return (0);
729	}
730
731	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
732	uart_barrier(bas);
733
734	count = 0;
735	delay = lpc_ns8250_delay(bas);
736
737	/* We have FIFOs. Drain the transmitter and receiver. */
738	error = lpc_ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
739	if (error) {
740		uart_setreg(bas, REG_MCR, mcr);
741		uart_setreg(bas, REG_FCR, 0);
742		uart_barrier(bas);
743		goto done;
744	}
745
746	/*
747	 * We should have a sufficiently clean "pipe" to determine the
748	 * size of the FIFOs. We send as much characters as is reasonable
749	 * and wait for the overflow bit in the LSR register to be
750	 * asserted, counting the characters as we send them. Based on
751	 * that count we know the FIFO size.
752	 */
753	do {
754		uart_setreg(bas, REG_DATA, 0);
755		uart_barrier(bas);
756		count++;
757
758		limit = 30;
759		lsr = 0;
760		/*
761		 * LSR bits are cleared upon read, so we must accumulate
762		 * them to be able to test LSR_OE below.
763		 */
764		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
765		    --limit)
766			DELAY(delay);
767		if (limit == 0) {
768			ier = uart_getreg(bas, REG_IER) & lpc_ns8250->ier_mask;
769			uart_setreg(bas, REG_IER, ier);
770			uart_setreg(bas, REG_MCR, mcr);
771			uart_setreg(bas, REG_FCR, 0);
772			uart_barrier(bas);
773			count = 0;
774			goto done;
775		}
776	} while ((lsr & LSR_OE) == 0 && count < 130);
777	count--;
778
779	uart_setreg(bas, REG_MCR, mcr);
780
781	/* Reset FIFOs. */
782	lpc_ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
783
784done:
785	sc->sc_rxfifosz = 64;
786	device_set_desc(sc->sc_dev, "LPC32x0 UART with FIFOs");
787
788	/*
789	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
790	 * Tx trigger. Also, we assume that all data has been sent when the
791	 * interrupt happens.
792	 */
793	sc->sc_txfifosz = 16;
794
795#if 0
796	/*
797	 * XXX there are some issues related to hardware flow control and
798	 * it's likely that uart(4) is the cause. This basicly needs more
799	 * investigation, but we avoid using for hardware flow control
800	 * until then.
801	 */
802	/* 16650s or higher have automatic flow control. */
803	if (sc->sc_rxfifosz > 16) {
804		sc->sc_hwiflow = 1;
805		sc->sc_hwoflow = 1;
806	}
807#endif
808	return (0);
809}
810
811static int
812lpc_ns8250_bus_receive(struct uart_softc *sc)
813{
814	struct uart_bas *bas;
815	int xc;
816	uint8_t lsr;
817
818	bas = &sc->sc_bas;
819	uart_lock(sc->sc_hwmtx);
820	lsr = uart_getreg(bas, REG_LSR);
821	while (lsr & LSR_RXRDY) {
822		if (uart_rx_full(sc)) {
823			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
824			break;
825		}
826		xc = uart_getreg(bas, REG_DATA);
827		if (lsr & LSR_FE)
828			xc |= UART_STAT_FRAMERR;
829		if (lsr & LSR_PE)
830			xc |= UART_STAT_PARERR;
831		uart_rx_put(sc, xc);
832		lsr = uart_getreg(bas, REG_LSR);
833	}
834	/* Discard everything left in the Rx FIFO. */
835	while (lsr & LSR_RXRDY) {
836		(void)uart_getreg(bas, REG_DATA);
837		uart_barrier(bas);
838		lsr = uart_getreg(bas, REG_LSR);
839	}
840	uart_unlock(sc->sc_hwmtx);
841 	return (0);
842}
843
844static int
845lpc_ns8250_bus_setsig(struct uart_softc *sc, int sig)
846{
847	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
848	struct uart_bas *bas;
849	uint32_t new, old;
850
851	bas = &sc->sc_bas;
852	do {
853		old = sc->sc_hwsig;
854		new = old;
855		if (sig & SER_DDTR) {
856			SIGCHG(sig & SER_DTR, new, SER_DTR,
857			    SER_DDTR);
858		}
859		if (sig & SER_DRTS) {
860			SIGCHG(sig & SER_RTS, new, SER_RTS,
861			    SER_DRTS);
862		}
863	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
864	uart_lock(sc->sc_hwmtx);
865	lpc_ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
866	if (new & SER_DTR)
867		lpc_ns8250->mcr |= MCR_DTR;
868	if (new & SER_RTS)
869		lpc_ns8250->mcr |= MCR_RTS;
870	uart_setreg(bas, REG_MCR, lpc_ns8250->mcr);
871	uart_barrier(bas);
872	uart_unlock(sc->sc_hwmtx);
873	return (0);
874}
875
876static int
877lpc_ns8250_bus_transmit(struct uart_softc *sc)
878{
879	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
880	struct uart_bas *bas;
881	int i;
882
883	bas = &sc->sc_bas;
884	uart_lock(sc->sc_hwmtx);
885	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
886		;
887	uart_setreg(bas, REG_IER, lpc_ns8250->ier | IER_ETXRDY);
888	uart_barrier(bas);
889	for (i = 0; i < sc->sc_txdatasz; i++) {
890		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
891		uart_barrier(bas);
892	}
893	sc->sc_txbusy = 1;
894	uart_unlock(sc->sc_hwmtx);
895	return (0);
896}
897
898void
899lpc_ns8250_bus_grab(struct uart_softc *sc)
900{
901	struct uart_bas *bas = &sc->sc_bas;
902
903	/*
904	 * turn off all interrupts to enter polling mode. Leave the
905	 * saved mask alone. We'll restore whatever it was in ungrab.
906	 * All pending interupt signals are reset when IER is set to 0.
907	 */
908	uart_lock(sc->sc_hwmtx);
909	uart_setreg(bas, REG_IER, 0);
910	uart_barrier(bas);
911	uart_unlock(sc->sc_hwmtx);
912}
913
914void
915lpc_ns8250_bus_ungrab(struct uart_softc *sc)
916{
917	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
918	struct uart_bas *bas = &sc->sc_bas;
919
920	/*
921	 * Restore previous interrupt mask
922	 */
923	uart_lock(sc->sc_hwmtx);
924	uart_setreg(bas, REG_IER, lpc_ns8250->ier);
925	uart_barrier(bas);
926	uart_unlock(sc->sc_hwmtx);
927}
928