mpr.c revision 273736
1/*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2012-2014 LSI Corp.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/dev/mpr/mpr.c 273736 2014-10-27 14:38:00Z hselasky $");
31
32/* Communications core for LSI MPT2 */
33
34/* TODO Move headers to mprvar */
35#include <sys/types.h>
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/selinfo.h>
40#include <sys/lock.h>
41#include <sys/mutex.h>
42#include <sys/module.h>
43#include <sys/bus.h>
44#include <sys/conf.h>
45#include <sys/bio.h>
46#include <sys/malloc.h>
47#include <sys/uio.h>
48#include <sys/sysctl.h>
49#include <sys/queue.h>
50#include <sys/kthread.h>
51#include <sys/taskqueue.h>
52#include <sys/endian.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus.h>
56#include <machine/resource.h>
57#include <sys/rman.h>
58#include <sys/proc.h>
59
60#include <dev/pci/pcivar.h>
61
62#include <cam/cam.h>
63#include <cam/scsi/scsi_all.h>
64
65#include <dev/mpr/mpi/mpi2_type.h>
66#include <dev/mpr/mpi/mpi2.h>
67#include <dev/mpr/mpi/mpi2_ioc.h>
68#include <dev/mpr/mpi/mpi2_sas.h>
69#include <dev/mpr/mpi/mpi2_cnfg.h>
70#include <dev/mpr/mpi/mpi2_init.h>
71#include <dev/mpr/mpi/mpi2_tool.h>
72#include <dev/mpr/mpr_ioctl.h>
73#include <dev/mpr/mprvar.h>
74#include <dev/mpr/mpr_table.h>
75#include <dev/mpr/mpr_sas.h>
76
77static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
78static int mpr_init_queues(struct mpr_softc *sc);
79static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
80static int mpr_transition_operational(struct mpr_softc *sc);
81static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
82static void mpr_iocfacts_free(struct mpr_softc *sc);
83static void mpr_startup(void *arg);
84static int mpr_send_iocinit(struct mpr_softc *sc);
85static int mpr_alloc_queues(struct mpr_softc *sc);
86static int mpr_alloc_replies(struct mpr_softc *sc);
87static int mpr_alloc_requests(struct mpr_softc *sc);
88static int mpr_attach_log(struct mpr_softc *sc);
89static __inline void mpr_complete_command(struct mpr_softc *sc,
90    struct mpr_command *cm);
91static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
92    MPI2_EVENT_NOTIFICATION_REPLY *reply);
93static void mpr_config_complete(struct mpr_softc *sc,
94    struct mpr_command *cm);
95static void mpr_periodic(void *);
96static int mpr_reregister_events(struct mpr_softc *sc);
97static void mpr_enqueue_request(struct mpr_softc *sc,
98    struct mpr_command *cm);
99static int mpr_get_iocfacts(struct mpr_softc *sc,
100    MPI2_IOC_FACTS_REPLY *facts);
101static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
102SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
103
104MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
105
106/*
107 * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
108 * any state and back to its initialization state machine.
109 */
110static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
111
112/*
113 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
114 * Compiler only supports unint64_t to be passed as an argument.
115 * Otherwise it will through this error:
116 * "aggregate value used where an integer was expected"
117 */
118typedef union _reply_descriptor {
119        u64 word;
120        struct {
121                u32 low;
122                u32 high;
123        } u;
124}reply_descriptor,address_descriptor;
125
126/* Rate limit chain-fail messages to 1 per minute */
127static struct timeval mpr_chainfail_interval = { 60, 0 };
128
129/*
130 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
131 * If this function is called from process context, it can sleep
132 * and there is no harm to sleep, in case if this fuction is called
133 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
134 * based on sleep flags driver will call either msleep, pause or DELAY.
135 * msleep and pause are of same variant, but pause is used when mpr_mtx
136 * is not hold by driver.
137 */
138static int
139mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
140{
141	uint32_t reg;
142	int i, error, tries = 0;
143	uint8_t first_wait_done = FALSE;
144
145	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
146
147	/* Clear any pending interrupts */
148	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
149
150	/*
151	 * Force NO_SLEEP for threads prohibited to sleep
152 	 * e.a Thread from interrupt handler are prohibited to sleep.
153 	 */
154#if __FreeBSD_version >= 1000029
155	if (curthread->td_no_sleeping)
156#else //__FreeBSD_version < 1000029
157	if (curthread->td_pflags & TDP_NOSLEEPING)
158#endif //__FreeBSD_version >= 1000029
159		sleep_flag = NO_SLEEP;
160
161	/* Push the magic sequence */
162	error = ETIMEDOUT;
163	while (tries++ < 20) {
164		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
165			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
166			    mpt2_reset_magic[i]);
167
168		/* wait 100 msec */
169		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
170			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
171			    "mprdiag", hz/10);
172		else if (sleep_flag == CAN_SLEEP)
173			pause("mprdiag", hz/10);
174		else
175			DELAY(100 * 1000);
176
177		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
178		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
179			error = 0;
180			break;
181		}
182	}
183	if (error)
184		return (error);
185
186	/* Send the actual reset.  XXX need to refresh the reg? */
187	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
188	    reg | MPI2_DIAG_RESET_ADAPTER);
189
190	/* Wait up to 300 seconds in 50ms intervals */
191	error = ETIMEDOUT;
192	for (i = 0; i < 6000; i++) {
193		/*
194		 * Wait 50 msec. If this is the first time through, wait 256
195		 * msec to satisfy Diag Reset timing requirements.
196		 */
197		if (first_wait_done) {
198			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
199				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
200				    "mprdiag", hz/20);
201			else if (sleep_flag == CAN_SLEEP)
202				pause("mprdiag", hz/20);
203			else
204				DELAY(50 * 1000);
205		} else {
206			DELAY(256 * 1000);
207			first_wait_done = TRUE;
208		}
209		/*
210		 * Check for the RESET_ADAPTER bit to be cleared first, then
211		 * wait for the RESET state to be cleared, which takes a little
212		 * longer.
213		 */
214		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
215		if (reg & MPI2_DIAG_RESET_ADAPTER) {
216			continue;
217		}
218		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
219		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
220			error = 0;
221			break;
222		}
223	}
224	if (error)
225		return (error);
226
227	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
228
229	return (0);
230}
231
232static int
233mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
234{
235
236	MPR_FUNCTRACE(sc);
237
238	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
239	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
240	    MPI2_DOORBELL_FUNCTION_SHIFT);
241
242	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
243		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
244				__func__);
245		return (ETIMEDOUT);
246	}
247
248	return (0);
249}
250
251static int
252mpr_transition_ready(struct mpr_softc *sc)
253{
254	uint32_t reg, state;
255	int error, tries = 0;
256	int sleep_flags;
257
258	MPR_FUNCTRACE(sc);
259	/* If we are in attach call, do not sleep */
260	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
261	    ? CAN_SLEEP : NO_SLEEP;
262
263	error = 0;
264	while (tries++ < 1200) {
265		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
266		mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
267
268		/*
269		 * Ensure the IOC is ready to talk.  If it's not, try
270		 * resetting it.
271		 */
272		if (reg & MPI2_DOORBELL_USED) {
273			mpr_diag_reset(sc, sleep_flags);
274			DELAY(50000);
275			continue;
276		}
277
278		/* Is the adapter owned by another peer? */
279		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
280		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
281			device_printf(sc->mpr_dev, "IOC is under the control "
282			    "of another peer host, aborting initialization.\n");
283			return (ENXIO);
284		}
285
286		state = reg & MPI2_IOC_STATE_MASK;
287		if (state == MPI2_IOC_STATE_READY) {
288			/* Ready to go! */
289			error = 0;
290			break;
291		} else if (state == MPI2_IOC_STATE_FAULT) {
292			mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
293			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
294			mpr_diag_reset(sc, sleep_flags);
295		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
296			/* Need to take ownership */
297			mpr_message_unit_reset(sc, sleep_flags);
298		} else if (state == MPI2_IOC_STATE_RESET) {
299			/* Wait a bit, IOC might be in transition */
300			mpr_dprint(sc, MPR_FAULT,
301			    "IOC in unexpected reset state\n");
302		} else {
303			mpr_dprint(sc, MPR_FAULT,
304			    "IOC in unknown state 0x%x\n", state);
305			error = EINVAL;
306			break;
307		}
308
309		/* Wait 50ms for things to settle down. */
310		DELAY(50000);
311	}
312
313	if (error)
314		device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
315
316	return (error);
317}
318
319static int
320mpr_transition_operational(struct mpr_softc *sc)
321{
322	uint32_t reg, state;
323	int error;
324
325	MPR_FUNCTRACE(sc);
326
327	error = 0;
328	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
329	mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
330
331	state = reg & MPI2_IOC_STATE_MASK;
332	if (state != MPI2_IOC_STATE_READY) {
333		if ((error = mpr_transition_ready(sc)) != 0) {
334			mpr_dprint(sc, MPR_FAULT,
335			    "%s failed to transition ready\n", __func__);
336			return (error);
337		}
338	}
339
340	error = mpr_send_iocinit(sc);
341	return (error);
342}
343
344/*
345 * This is called during attach and when re-initializing due to a Diag Reset.
346 * IOC Facts is used to allocate many of the structures needed by the driver.
347 * If called from attach, de-allocation is not required because the driver has
348 * not allocated any structures yet, but if called from a Diag Reset, previously
349 * allocated structures based on IOC Facts will need to be freed and re-
350 * allocated bases on the latest IOC Facts.
351 */
352static int
353mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
354{
355	int error, i;
356	Mpi2IOCFactsReply_t saved_facts;
357	uint8_t saved_mode, reallocating;
358	struct mprsas_lun *lun, *lun_tmp;
359	struct mprsas_target *targ;
360
361	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
362
363	/* Save old IOC Facts and then only reallocate if Facts have changed */
364	if (!attaching) {
365		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
366	}
367
368	/*
369	 * Get IOC Facts.  In all cases throughout this function, panic if doing
370	 * a re-initialization and only return the error if attaching so the OS
371	 * can handle it.
372	 */
373	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
374		if (attaching) {
375			mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
376			    "with error %d\n", __func__, error);
377			return (error);
378		} else {
379			panic("%s failed to get IOC Facts with error %d\n",
380			    __func__, error);
381		}
382	}
383
384	mpr_print_iocfacts(sc, sc->facts);
385
386	snprintf(sc->fw_version, sizeof(sc->fw_version),
387	    "%02d.%02d.%02d.%02d",
388	    sc->facts->FWVersion.Struct.Major,
389	    sc->facts->FWVersion.Struct.Minor,
390	    sc->facts->FWVersion.Struct.Unit,
391	    sc->facts->FWVersion.Struct.Dev);
392
393	mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
394	    MPR_DRIVER_VERSION);
395	mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
396	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
397	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
398	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
399
400	/*
401	 * If the chip doesn't support event replay then a hard reset will be
402	 * required to trigger a full discovery.  Do the reset here then
403	 * retransition to Ready.  A hard reset might have already been done,
404	 * but it doesn't hurt to do it again.  Only do this if attaching, not
405	 * for a Diag Reset.
406	 */
407	if (attaching) {
408		if ((sc->facts->IOCCapabilities &
409		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
410			mpr_diag_reset(sc, NO_SLEEP);
411			if ((error = mpr_transition_ready(sc)) != 0) {
412				mpr_dprint(sc, MPR_FAULT, "%s failed to "
413				    "transition to ready with error %d\n",
414				    __func__, error);
415				return (error);
416			}
417		}
418	}
419
420	/*
421	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
422	 * changed from the previous IOC Facts, log a warning, but only if
423	 * checking this after a Diag Reset and not during attach.
424	 */
425	saved_mode = sc->ir_firmware;
426	if (sc->facts->IOCCapabilities &
427	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
428		sc->ir_firmware = 1;
429	if (!attaching) {
430		if (sc->ir_firmware != saved_mode) {
431			mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
432			    "Facts does not match previous mode\n", __func__);
433		}
434	}
435
436	/* Only deallocate and reallocate if relevant IOC Facts have changed */
437	reallocating = FALSE;
438	if ((!attaching) &&
439	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
440	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
441	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
442	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
443	    (saved_facts.ProductID != sc->facts->ProductID) ||
444	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
445	    (saved_facts.IOCRequestFrameSize !=
446	    sc->facts->IOCRequestFrameSize) ||
447	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
448	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
449	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
450	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
451	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
452	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
453	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
454	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
455	    (saved_facts.MaxPersistentEntries !=
456	    sc->facts->MaxPersistentEntries))) {
457		reallocating = TRUE;
458	}
459
460	/*
461	 * Some things should be done if attaching or re-allocating after a Diag
462	 * Reset, but are not needed after a Diag Reset if the FW has not
463	 * changed.
464	 */
465	if (attaching || reallocating) {
466		/*
467		 * Check if controller supports FW diag buffers and set flag to
468		 * enable each type.
469		 */
470		if (sc->facts->IOCCapabilities &
471		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
472			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
473			    enabled = TRUE;
474		if (sc->facts->IOCCapabilities &
475		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
476			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
477			    enabled = TRUE;
478		if (sc->facts->IOCCapabilities &
479		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
480			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
481			    enabled = TRUE;
482
483		/*
484		 * Set flag if EEDP is supported and if TLR is supported.
485		 */
486		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
487			sc->eedp_enabled = TRUE;
488		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
489			sc->control_TLR = TRUE;
490
491		/*
492		 * Size the queues. Since the reply queues always need one free
493		 * entry, we'll just deduct one reply message here.
494		 */
495		sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit);
496		sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
497		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
498
499		/*
500		 * Initialize all Tail Queues
501		 */
502		TAILQ_INIT(&sc->req_list);
503		TAILQ_INIT(&sc->high_priority_req_list);
504		TAILQ_INIT(&sc->chain_list);
505		TAILQ_INIT(&sc->tm_list);
506	}
507
508	/*
509	 * If doing a Diag Reset and the FW is significantly different
510	 * (reallocating will be set above in IOC Facts comparison), then all
511	 * buffers based on the IOC Facts will need to be freed before they are
512	 * reallocated.
513	 */
514	if (reallocating) {
515		mpr_iocfacts_free(sc);
516
517		/*
518		 * The number of targets is based on IOC Facts, so free all of
519		 * the allocated LUNs for each target and then the target buffer
520		 * itself.
521		 */
522		for (i=0; i< saved_facts.MaxTargets; i++) {
523			targ = &sc->sassc->targets[i];
524			SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link,
525			    lun_tmp) {
526				free(lun, M_MPR);
527			}
528		}
529		free(sc->sassc->targets, M_MPR);
530
531		sc->sassc->targets = malloc(sizeof(struct mprsas_target) *
532		    sc->facts->MaxTargets, M_MPR, M_WAITOK|M_ZERO);
533		if (!sc->sassc->targets) {
534			panic("%s failed to alloc targets with error %d\n",
535			    __func__, ENOMEM);
536		}
537	}
538
539	/*
540	 * Any deallocation has been completed.  Now start reallocating
541	 * if needed.  Will only need to reallocate if attaching or if the new
542	 * IOC Facts are different from the previous IOC Facts after a Diag
543	 * Reset. Targets have already been allocated above if needed.
544	 */
545	if (attaching || reallocating) {
546		if (((error = mpr_alloc_queues(sc)) != 0) ||
547		    ((error = mpr_alloc_replies(sc)) != 0) ||
548		    ((error = mpr_alloc_requests(sc)) != 0)) {
549			if (attaching ) {
550				mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
551				    "queues with error %d\n", __func__, error);
552				mpr_free(sc);
553				return (error);
554			} else {
555				panic("%s failed to alloc queues with error "
556				    "%d\n", __func__, error);
557			}
558		}
559	}
560
561	/* Always initialize the queues */
562	bzero(sc->free_queue, sc->fqdepth * 4);
563	mpr_init_queues(sc);
564
565	/*
566	 * Always get the chip out of the reset state, but only panic if not
567	 * attaching.  If attaching and there is an error, that is handled by
568	 * the OS.
569	 */
570	error = mpr_transition_operational(sc);
571	if (error != 0) {
572		if (attaching) {
573			mpr_printf(sc, "%s failed to transition to "
574			    "operational with error %d\n", __func__, error);
575			mpr_free(sc);
576			return (error);
577		} else {
578			panic("%s failed to transition to operational with "
579			    "error %d\n", __func__, error);
580		}
581	}
582
583	/*
584	 * Finish the queue initialization.
585	 * These are set here instead of in mpr_init_queues() because the
586	 * IOC resets these values during the state transition in
587	 * mpr_transition_operational().  The free index is set to 1
588	 * because the corresponding index in the IOC is set to 0, and the
589	 * IOC treats the queues as full if both are set to the same value.
590	 * Hence the reason that the queue can't hold all of the possible
591	 * replies.
592	 */
593	sc->replypostindex = 0;
594	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
595	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
596
597	/*
598	 * Attach the subsystems so they can prepare their event masks.
599	 */
600	/* XXX Should be dynamic so that IM/IR and user modules can attach */
601	if (attaching) {
602		if (((error = mpr_attach_log(sc)) != 0) ||
603		    ((error = mpr_attach_sas(sc)) != 0) ||
604		    ((error = mpr_attach_user(sc)) != 0)) {
605			mpr_printf(sc, "%s failed to attach all subsystems: "
606			    "error %d\n", __func__, error);
607			mpr_free(sc);
608			return (error);
609		}
610
611		if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
612			mpr_printf(sc, "%s failed to setup interrupts\n",
613			    __func__);
614			mpr_free(sc);
615			return (error);
616		}
617	}
618
619	return (error);
620}
621
622/*
623 * This is called if memory is being free (during detach for example) and when
624 * buffers need to be reallocated due to a Diag Reset.
625 */
626static void
627mpr_iocfacts_free(struct mpr_softc *sc)
628{
629	struct mpr_command *cm;
630	int i;
631
632	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
633
634	if (sc->free_busaddr != 0)
635		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
636	if (sc->free_queue != NULL)
637		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
638		    sc->queues_map);
639	if (sc->queues_dmat != NULL)
640		bus_dma_tag_destroy(sc->queues_dmat);
641
642	if (sc->chain_busaddr != 0)
643		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
644	if (sc->chain_frames != NULL)
645		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
646		    sc->chain_map);
647	if (sc->chain_dmat != NULL)
648		bus_dma_tag_destroy(sc->chain_dmat);
649
650	if (sc->sense_busaddr != 0)
651		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
652	if (sc->sense_frames != NULL)
653		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
654		    sc->sense_map);
655	if (sc->sense_dmat != NULL)
656		bus_dma_tag_destroy(sc->sense_dmat);
657
658	if (sc->reply_busaddr != 0)
659		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
660	if (sc->reply_frames != NULL)
661		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
662		    sc->reply_map);
663	if (sc->reply_dmat != NULL)
664		bus_dma_tag_destroy(sc->reply_dmat);
665
666	if (sc->req_busaddr != 0)
667		bus_dmamap_unload(sc->req_dmat, sc->req_map);
668	if (sc->req_frames != NULL)
669		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
670	if (sc->req_dmat != NULL)
671		bus_dma_tag_destroy(sc->req_dmat);
672
673	if (sc->chains != NULL)
674		free(sc->chains, M_MPR);
675	if (sc->commands != NULL) {
676		for (i = 1; i < sc->num_reqs; i++) {
677			cm = &sc->commands[i];
678			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
679		}
680		free(sc->commands, M_MPR);
681	}
682	if (sc->buffer_dmat != NULL)
683		bus_dma_tag_destroy(sc->buffer_dmat);
684}
685
686/*
687 * The terms diag reset and hard reset are used interchangeably in the MPI
688 * docs to mean resetting the controller chip.  In this code diag reset
689 * cleans everything up, and the hard reset function just sends the reset
690 * sequence to the chip.  This should probably be refactored so that every
691 * subsystem gets a reset notification of some sort, and can clean up
692 * appropriately.
693 */
694int
695mpr_reinit(struct mpr_softc *sc)
696{
697	int error;
698	struct mprsas_softc *sassc;
699
700	sassc = sc->sassc;
701
702	MPR_FUNCTRACE(sc);
703
704	mtx_assert(&sc->mpr_mtx, MA_OWNED);
705
706	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
707		mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
708			   __func__);
709		return 0;
710	}
711
712	mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
713	/* make sure the completion callbacks can recognize they're getting
714	 * a NULL cm_reply due to a reset.
715	 */
716	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
717
718	/*
719	 * Mask interrupts here.
720	 */
721	mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
722	mpr_mask_intr(sc);
723
724	error = mpr_diag_reset(sc, CAN_SLEEP);
725	if (error != 0) {
726		panic("%s hard reset failed with error %d\n", __func__, error);
727	}
728
729	/* Restore the PCI state, including the MSI-X registers */
730	mpr_pci_restore(sc);
731
732	/* Give the I/O subsystem special priority to get itself prepared */
733	mprsas_handle_reinit(sc);
734
735	/*
736	 * Get IOC Facts and allocate all structures based on this information.
737	 * The attach function will also call mpr_iocfacts_allocate at startup.
738	 * If relevant values have changed in IOC Facts, this function will free
739	 * all of the memory based on IOC Facts and reallocate that memory.
740	 */
741	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
742		panic("%s IOC Facts based allocation failed with error %d\n",
743		    __func__, error);
744	}
745
746	/*
747	 * Mapping structures will be re-allocated after getting IOC Page8, so
748	 * free these structures here.
749	 */
750	mpr_mapping_exit(sc);
751
752	/*
753	 * The static page function currently read is IOC Page8.  Others can be
754	 * added in future.  It's possible that the values in IOC Page8 have
755	 * changed after a Diag Reset due to user modification, so always read
756	 * these.  Interrupts are masked, so unmask them before getting config
757	 * pages.
758	 */
759	mpr_unmask_intr(sc);
760	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
761	mpr_base_static_config_pages(sc);
762
763	/*
764	 * Some mapping info is based in IOC Page8 data, so re-initialize the
765	 * mapping tables.
766	 */
767	mpr_mapping_initialize(sc);
768
769	/*
770	 * Restart will reload the event masks clobbered by the reset, and
771	 * then enable the port.
772	 */
773	mpr_reregister_events(sc);
774
775	/* the end of discovery will release the simq, so we're done. */
776	mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
777	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
778	mprsas_release_simq_reinit(sassc);
779
780	return 0;
781}
782
783/* Wait for the chip to ACK a word that we've put into its FIFO
784 * Wait for <timeout> seconds. In single loop wait for busy loop
785 * for 500 microseconds.
786 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
787 * */
788static int
789mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
790{
791	u32 cntdn, count;
792	u32 int_status;
793	u32 doorbell;
794
795	count = 0;
796	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
797	do {
798		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
799		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
800			mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
801			    "timeout(%d)\n", __func__, count, timeout);
802			return 0;
803		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
804			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
805			if ((doorbell & MPI2_IOC_STATE_MASK) ==
806			    MPI2_IOC_STATE_FAULT) {
807				mpr_dprint(sc, MPR_FAULT,
808				    "fault_state(0x%04x)!\n", doorbell);
809				return (EFAULT);
810			}
811		} else if (int_status == 0xFFFFFFFF)
812			goto out;
813
814		/*
815		 * If it can sleep, sleep for 1 milisecond, else busy loop for
816 		 * 0.5 milisecond
817		 */
818		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
819			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",			    hz/1000);
820		else if (sleep_flag == CAN_SLEEP)
821			pause("mprdba", hz/1000);
822		else
823			DELAY(500);
824		count++;
825	} while (--cntdn);
826
827	out:
828	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
829		"int_status(%x)!\n", __func__, count, int_status);
830	return (ETIMEDOUT);
831}
832
833/* Wait for the chip to signal that the next word in its FIFO can be fetched */
834static int
835mpr_wait_db_int(struct mpr_softc *sc)
836{
837	int retry;
838
839	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
840		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
841		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
842			return (0);
843		DELAY(2000);
844	}
845	return (ETIMEDOUT);
846}
847
848/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
849static int
850mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
851    int req_sz, int reply_sz, int timeout)
852{
853	uint32_t *data32;
854	uint16_t *data16;
855	int i, count, ioc_sz, residual;
856	int sleep_flags = CAN_SLEEP;
857
858#if __FreeBSD_version >= 1000029
859	if (curthread->td_no_sleeping)
860#else //__FreeBSD_version < 1000029
861	if (curthread->td_pflags & TDP_NOSLEEPING)
862#endif //__FreeBSD_version >= 1000029
863		sleep_flags = NO_SLEEP;
864
865	/* Step 1 */
866	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
867
868	/* Step 2 */
869	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
870		return (EBUSY);
871
872	/* Step 3
873	 * Announce that a message is coming through the doorbell.  Messages
874	 * are pushed at 32bit words, so round up if needed.
875	 */
876	count = (req_sz + 3) / 4;
877	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
878	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
879	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
880
881	/* Step 4 */
882	if (mpr_wait_db_int(sc) ||
883	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
884		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
885		return (ENXIO);
886	}
887	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
888	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
889		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
890		return (ENXIO);
891	}
892
893	/* Step 5 */
894	/* Clock out the message data synchronously in 32-bit dwords*/
895	data32 = (uint32_t *)req;
896	for (i = 0; i < count; i++) {
897		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
898		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
899			mpr_dprint(sc, MPR_FAULT,
900			    "Timeout while writing doorbell\n");
901			return (ENXIO);
902		}
903	}
904
905	/* Step 6 */
906	/* Clock in the reply in 16-bit words.  The total length of the
907	 * message is always in the 4th byte, so clock out the first 2 words
908	 * manually, then loop the rest.
909	 */
910	data16 = (uint16_t *)reply;
911	if (mpr_wait_db_int(sc) != 0) {
912		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
913		return (ENXIO);
914	}
915	data16[0] =
916	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
917	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
918	if (mpr_wait_db_int(sc) != 0) {
919		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
920		return (ENXIO);
921	}
922	data16[1] =
923	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
924	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
925
926	/* Number of 32bit words in the message */
927	ioc_sz = reply->MsgLength;
928
929	/*
930	 * Figure out how many 16bit words to clock in without overrunning.
931	 * The precision loss with dividing reply_sz can safely be
932	 * ignored because the messages can only be multiples of 32bits.
933	 */
934	residual = 0;
935	count = MIN((reply_sz / 4), ioc_sz) * 2;
936	if (count < ioc_sz * 2) {
937		residual = ioc_sz * 2 - count;
938		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
939		    "residual message words\n", residual);
940	}
941
942	for (i = 2; i < count; i++) {
943		if (mpr_wait_db_int(sc) != 0) {
944			mpr_dprint(sc, MPR_FAULT,
945			    "Timeout reading doorbell %d\n", i);
946			return (ENXIO);
947		}
948		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
949		    MPI2_DOORBELL_DATA_MASK;
950		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
951	}
952
953	/*
954	 * Pull out residual words that won't fit into the provided buffer.
955	 * This keeps the chip from hanging due to a driver programming
956	 * error.
957	 */
958	while (residual--) {
959		if (mpr_wait_db_int(sc) != 0) {
960			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
961			return (ENXIO);
962		}
963		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
964		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
965	}
966
967	/* Step 7 */
968	if (mpr_wait_db_int(sc) != 0) {
969		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
970		return (ENXIO);
971	}
972	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
973		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
974	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
975
976	return (0);
977}
978
979static void
980mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
981{
982	reply_descriptor rd;
983
984	MPR_FUNCTRACE(sc);
985	mpr_dprint(sc, MPR_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
986	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
987
988	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
989	    MPR_FLAGS_SHUTDOWN))
990		mtx_assert(&sc->mpr_mtx, MA_OWNED);
991
992	if (++sc->io_cmds_active > sc->io_cmds_highwater)
993		sc->io_cmds_highwater++;
994
995	rd.u.low = cm->cm_desc.Words.Low;
996	rd.u.high = cm->cm_desc.Words.High;
997	rd.word = htole64(rd.word);
998	/* TODO-We may need to make below regwrite atomic */
999	mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1000	    rd.u.low);
1001	mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1002	    rd.u.high);
1003}
1004
1005/*
1006 * Just the FACTS, ma'am.
1007 */
1008static int
1009mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1010{
1011	MPI2_DEFAULT_REPLY *reply;
1012	MPI2_IOC_FACTS_REQUEST request;
1013	int error, req_sz, reply_sz;
1014
1015	MPR_FUNCTRACE(sc);
1016
1017	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1018	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1019	reply = (MPI2_DEFAULT_REPLY *)facts;
1020
1021	bzero(&request, req_sz);
1022	request.Function = MPI2_FUNCTION_IOC_FACTS;
1023	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1024
1025	return (error);
1026}
1027
1028static int
1029mpr_send_iocinit(struct mpr_softc *sc)
1030{
1031	MPI2_IOC_INIT_REQUEST	init;
1032	MPI2_DEFAULT_REPLY	reply;
1033	int req_sz, reply_sz, error;
1034	struct timeval now;
1035	uint64_t time_in_msec;
1036
1037	MPR_FUNCTRACE(sc);
1038
1039	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1040	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1041	bzero(&init, req_sz);
1042	bzero(&reply, reply_sz);
1043
1044	/*
1045	 * Fill in the init block.  Note that most addresses are
1046	 * deliberately in the lower 32bits of memory.  This is a micro-
1047	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1048	 */
1049	init.Function = MPI2_FUNCTION_IOC_INIT;
1050	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1051	init.MsgVersion = htole16(MPI2_VERSION);
1052	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1053	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1054	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1055	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1056	init.SenseBufferAddressHigh = 0;
1057	init.SystemReplyAddressHigh = 0;
1058	init.SystemRequestFrameBaseAddress.High = 0;
1059	init.SystemRequestFrameBaseAddress.Low =
1060	    htole32((uint32_t)sc->req_busaddr);
1061	init.ReplyDescriptorPostQueueAddress.High = 0;
1062	init.ReplyDescriptorPostQueueAddress.Low =
1063	    htole32((uint32_t)sc->post_busaddr);
1064	init.ReplyFreeQueueAddress.High = 0;
1065	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1066	getmicrotime(&now);
1067	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1068	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1069	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1070
1071	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1072	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1073		error = ENXIO;
1074
1075	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1076	return (error);
1077}
1078
1079void
1080mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1081{
1082	bus_addr_t *addr;
1083
1084	addr = arg;
1085	*addr = segs[0].ds_addr;
1086}
1087
1088static int
1089mpr_alloc_queues(struct mpr_softc *sc)
1090{
1091	bus_addr_t queues_busaddr;
1092	uint8_t *queues;
1093	int qsize, fqsize, pqsize;
1094
1095	/*
1096	 * The reply free queue contains 4 byte entries in multiples of 16 and
1097	 * aligned on a 16 byte boundary. There must always be an unused entry.
1098	 * This queue supplies fresh reply frames for the firmware to use.
1099	 *
1100	 * The reply descriptor post queue contains 8 byte entries in
1101	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1102	 * contains filled-in reply frames sent from the firmware to the host.
1103	 *
1104	 * These two queues are allocated together for simplicity.
1105	 */
1106	sc->fqdepth = roundup2((sc->num_replies + 1), 16);
1107	sc->pqdepth = roundup2((sc->num_replies + 1), 16);
1108	fqsize= sc->fqdepth * 4;
1109	pqsize = sc->pqdepth * 8;
1110	qsize = fqsize + pqsize;
1111
1112        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1113				16, 0,			/* algnmnt, boundary */
1114				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1115				BUS_SPACE_MAXADDR,	/* highaddr */
1116				NULL, NULL,		/* filter, filterarg */
1117                                qsize,			/* maxsize */
1118                                1,			/* nsegments */
1119                                qsize,			/* maxsegsize */
1120                                0,			/* flags */
1121                                NULL, NULL,		/* lockfunc, lockarg */
1122                                &sc->queues_dmat)) {
1123		device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
1124		return (ENOMEM);
1125        }
1126        if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1127	    &sc->queues_map)) {
1128		device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
1129		return (ENOMEM);
1130        }
1131        bzero(queues, qsize);
1132        bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1133	    mpr_memaddr_cb, &queues_busaddr, 0);
1134
1135	sc->free_queue = (uint32_t *)queues;
1136	sc->free_busaddr = queues_busaddr;
1137	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1138	sc->post_busaddr = queues_busaddr + fqsize;
1139
1140	return (0);
1141}
1142
1143static int
1144mpr_alloc_replies(struct mpr_softc *sc)
1145{
1146	int rsize, num_replies;
1147
1148	/*
1149	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1150	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1151	 * replies can be used at once.
1152	 */
1153	num_replies = max(sc->fqdepth, sc->num_replies);
1154
1155	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1156        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1157				4, 0,			/* algnmnt, boundary */
1158				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1159				BUS_SPACE_MAXADDR,	/* highaddr */
1160				NULL, NULL,		/* filter, filterarg */
1161                                rsize,			/* maxsize */
1162                                1,			/* nsegments */
1163                                rsize,			/* maxsegsize */
1164                                0,			/* flags */
1165                                NULL, NULL,		/* lockfunc, lockarg */
1166                                &sc->reply_dmat)) {
1167		device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
1168		return (ENOMEM);
1169        }
1170        if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1171	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1172		device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
1173		return (ENOMEM);
1174        }
1175        bzero(sc->reply_frames, rsize);
1176        bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1177	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1178
1179	return (0);
1180}
1181
1182static int
1183mpr_alloc_requests(struct mpr_softc *sc)
1184{
1185	struct mpr_command *cm;
1186	struct mpr_chain *chain;
1187	int i, rsize, nsegs;
1188
1189	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1190        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1191				16, 0,			/* algnmnt, boundary */
1192				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1193				BUS_SPACE_MAXADDR,	/* highaddr */
1194				NULL, NULL,		/* filter, filterarg */
1195                                rsize,			/* maxsize */
1196                                1,			/* nsegments */
1197                                rsize,			/* maxsegsize */
1198                                0,			/* flags */
1199                                NULL, NULL,		/* lockfunc, lockarg */
1200                                &sc->req_dmat)) {
1201		device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
1202		return (ENOMEM);
1203        }
1204        if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1205	    BUS_DMA_NOWAIT, &sc->req_map)) {
1206		device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
1207		return (ENOMEM);
1208        }
1209        bzero(sc->req_frames, rsize);
1210        bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1211	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1212
1213	rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
1214        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1215				16, 0,			/* algnmnt, boundary */
1216				BUS_SPACE_MAXADDR,	/* lowaddr */
1217				BUS_SPACE_MAXADDR,	/* highaddr */
1218				NULL, NULL,		/* filter, filterarg */
1219                                rsize,			/* maxsize */
1220                                1,			/* nsegments */
1221                                rsize,			/* maxsegsize */
1222                                0,			/* flags */
1223                                NULL, NULL,		/* lockfunc, lockarg */
1224                                &sc->chain_dmat)) {
1225		device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
1226		return (ENOMEM);
1227        }
1228        if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1229	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1230		device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
1231		return (ENOMEM);
1232        }
1233        bzero(sc->chain_frames, rsize);
1234        bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1235	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1236
1237	rsize = MPR_SENSE_LEN * sc->num_reqs;
1238	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1239				1, 0,			/* algnmnt, boundary */
1240				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1241				BUS_SPACE_MAXADDR,	/* highaddr */
1242				NULL, NULL,		/* filter, filterarg */
1243                                rsize,			/* maxsize */
1244                                1,			/* nsegments */
1245                                rsize,			/* maxsegsize */
1246                                0,			/* flags */
1247                                NULL, NULL,		/* lockfunc, lockarg */
1248                                &sc->sense_dmat)) {
1249		device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
1250		return (ENOMEM);
1251        }
1252        if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1253	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1254		device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
1255		return (ENOMEM);
1256        }
1257        bzero(sc->sense_frames, rsize);
1258        bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1259	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1260
1261	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1262	    M_WAITOK | M_ZERO);
1263	if (!sc->chains) {
1264		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1265		    __func__, __LINE__);
1266		return (ENOMEM);
1267	}
1268	for (i = 0; i < sc->max_chains; i++) {
1269		chain = &sc->chains[i];
1270		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1271		    i * sc->facts->IOCRequestFrameSize * 4);
1272		chain->chain_busaddr = sc->chain_busaddr +
1273		    i * sc->facts->IOCRequestFrameSize * 4;
1274		mpr_free_chain(sc, chain);
1275		sc->chain_free_lowwater++;
1276	}
1277
1278	/* XXX Need to pick a more precise value */
1279	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1280        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1281				1, 0,			/* algnmnt, boundary */
1282				BUS_SPACE_MAXADDR,	/* lowaddr */
1283				BUS_SPACE_MAXADDR,	/* highaddr */
1284				NULL, NULL,		/* filter, filterarg */
1285                                BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1286                                nsegs,			/* nsegments */
1287                                BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1288                                BUS_DMA_ALLOCNOW,	/* flags */
1289                                busdma_lock_mutex,	/* lockfunc */
1290				&sc->mpr_mtx,		/* lockarg */
1291                                &sc->buffer_dmat)) {
1292		device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
1293		return (ENOMEM);
1294        }
1295
1296	/*
1297	 * SMID 0 cannot be used as a free command per the firmware spec.
1298	 * Just drop that command instead of risking accounting bugs.
1299	 */
1300	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1301	    M_MPR, M_WAITOK | M_ZERO);
1302	if (!sc->commands) {
1303		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1304		    __func__, __LINE__);
1305		return (ENOMEM);
1306	}
1307	for (i = 1; i < sc->num_reqs; i++) {
1308		cm = &sc->commands[i];
1309		cm->cm_req = sc->req_frames +
1310		    i * sc->facts->IOCRequestFrameSize * 4;
1311		cm->cm_req_busaddr = sc->req_busaddr +
1312		    i * sc->facts->IOCRequestFrameSize * 4;
1313		cm->cm_sense = &sc->sense_frames[i];
1314		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1315		cm->cm_desc.Default.SMID = i;
1316		cm->cm_sc = sc;
1317		TAILQ_INIT(&cm->cm_chain_list);
1318		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1319
1320		/* XXX Is a failure here a critical problem? */
1321		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1322			if (i <= sc->facts->HighPriorityCredit)
1323				mpr_free_high_priority_command(sc, cm);
1324			else
1325				mpr_free_command(sc, cm);
1326		else {
1327			panic("failed to allocate command %d\n", i);
1328			sc->num_reqs = i;
1329			break;
1330		}
1331	}
1332
1333	return (0);
1334}
1335
1336static int
1337mpr_init_queues(struct mpr_softc *sc)
1338{
1339	int i;
1340
1341	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1342
1343	/*
1344	 * According to the spec, we need to use one less reply than we
1345	 * have space for on the queue.  So sc->num_replies (the number we
1346	 * use) should be less than sc->fqdepth (allocated size).
1347	 */
1348	if (sc->num_replies >= sc->fqdepth)
1349		return (EINVAL);
1350
1351	/*
1352	 * Initialize all of the free queue entries.
1353	 */
1354	for (i = 0; i < sc->fqdepth; i++)
1355		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
1356	sc->replyfreeindex = sc->num_replies;
1357
1358	return (0);
1359}
1360
1361/* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1362 * Next are the global settings, if they exist.  Highest are the per-unit
1363 * settings, if they exist.
1364 */
1365static void
1366mpr_get_tunables(struct mpr_softc *sc)
1367{
1368	char tmpstr[80];
1369
1370	/* XXX default to some debugging for now */
1371	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1372	sc->disable_msix = 0;
1373	sc->disable_msi = 0;
1374	sc->max_chains = MPR_CHAIN_FRAMES;
1375
1376	/*
1377	 * Grab the global variables.
1378	 */
1379	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1380	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1381	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1382	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1383
1384	/* Grab the unit-instance variables */
1385	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1386	    device_get_unit(sc->mpr_dev));
1387	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1388
1389	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1390	    device_get_unit(sc->mpr_dev));
1391	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1392
1393	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1394	    device_get_unit(sc->mpr_dev));
1395	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1396
1397	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1398	    device_get_unit(sc->mpr_dev));
1399	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1400
1401	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1402	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1403	    device_get_unit(sc->mpr_dev));
1404	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1405}
1406
1407static void
1408mpr_setup_sysctl(struct mpr_softc *sc)
1409{
1410	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1411	struct sysctl_oid	*sysctl_tree = NULL;
1412	char tmpstr[80], tmpstr2[80];
1413
1414	/*
1415	 * Setup the sysctl variable so the user can change the debug level
1416	 * on the fly.
1417	 */
1418	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1419	    device_get_unit(sc->mpr_dev));
1420	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1421
1422	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1423	if (sysctl_ctx != NULL)
1424		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1425
1426	if (sysctl_tree == NULL) {
1427		sysctl_ctx_init(&sc->sysctl_ctx);
1428		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1429		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1430		    CTLFLAG_RD, 0, tmpstr);
1431		if (sc->sysctl_tree == NULL)
1432			return;
1433		sysctl_ctx = &sc->sysctl_ctx;
1434		sysctl_tree = sc->sysctl_tree;
1435	}
1436
1437	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1438	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1439	    "mpr debug level");
1440
1441	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1442	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1443	    "Disable the use of MSI-X interrupts");
1444
1445	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1446	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1447	    "Disable the use of MSI interrupts");
1448
1449	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1450	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1451	    strlen(sc->fw_version), "firmware version");
1452
1453	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1454	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1455	    strlen(MPR_DRIVER_VERSION), "driver version");
1456
1457	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1458	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1459	    &sc->io_cmds_active, 0, "number of currently active commands");
1460
1461	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1462	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1463	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1464
1465	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1466	    OID_AUTO, "chain_free", CTLFLAG_RD,
1467	    &sc->chain_free, 0, "number of free chain elements");
1468
1469	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1470	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1471	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1472
1473	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1474	    OID_AUTO, "max_chains", CTLFLAG_RD,
1475	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1476
1477#if __FreeBSD_version >= 900030
1478	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1479	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1480	    &sc->chain_alloc_fail, "chain allocation failures");
1481#endif //FreeBSD_version >= 900030
1482}
1483
1484int
1485mpr_attach(struct mpr_softc *sc)
1486{
1487	int error;
1488
1489	mpr_get_tunables(sc);
1490
1491	MPR_FUNCTRACE(sc);
1492
1493	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1494	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1495	TAILQ_INIT(&sc->event_list);
1496	timevalclear(&sc->lastfail);
1497
1498	if ((error = mpr_transition_ready(sc)) != 0) {
1499		mpr_printf(sc, "%s failed to transition ready\n", __func__);
1500		return (error);
1501	}
1502
1503	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1504	    M_ZERO|M_NOWAIT);
1505	if (!sc->facts) {
1506		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1507		    __func__, __LINE__);
1508		return (ENOMEM);
1509	}
1510
1511	/*
1512	 * Get IOC Facts and allocate all structures based on this information.
1513	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1514	 * Facts. If relevant values have changed in IOC Facts, this function
1515	 * will free all of the memory based on IOC Facts and reallocate that
1516	 * memory.  If this fails, any allocated memory should already be freed.
1517	 */
1518	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1519		mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
1520		    "failed with error %d\n", __func__, error);
1521		return (error);
1522	}
1523
1524	/* Start the periodic watchdog check on the IOC Doorbell */
1525	mpr_periodic(sc);
1526
1527	/*
1528	 * The portenable will kick off discovery events that will drive the
1529	 * rest of the initialization process.  The CAM/SAS module will
1530	 * hold up the boot sequence until discovery is complete.
1531	 */
1532	sc->mpr_ich.ich_func = mpr_startup;
1533	sc->mpr_ich.ich_arg = sc;
1534	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1535		mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
1536		error = EINVAL;
1537	}
1538
1539	/*
1540	 * Allow IR to shutdown gracefully when shutdown occurs.
1541	 */
1542	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1543	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1544
1545	if (sc->shutdown_eh == NULL)
1546		mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
1547		    "failed\n");
1548
1549	mpr_setup_sysctl(sc);
1550
1551	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1552
1553	return (error);
1554}
1555
1556/* Run through any late-start handlers. */
1557static void
1558mpr_startup(void *arg)
1559{
1560	struct mpr_softc *sc;
1561
1562	sc = (struct mpr_softc *)arg;
1563
1564	mpr_lock(sc);
1565	mpr_unmask_intr(sc);
1566
1567	/* initialize device mapping tables */
1568	mpr_base_static_config_pages(sc);
1569	mpr_mapping_initialize(sc);
1570	mprsas_startup(sc);
1571	mpr_unlock(sc);
1572}
1573
1574/* Periodic watchdog.  Is called with the driver lock already held. */
1575static void
1576mpr_periodic(void *arg)
1577{
1578	struct mpr_softc *sc;
1579	uint32_t db;
1580
1581	sc = (struct mpr_softc *)arg;
1582	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
1583		return;
1584
1585	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1586	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1587		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
1588		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
1589			panic("TEMPERATURE FAULT: STOPPING.");
1590		}
1591		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1592		mpr_reinit(sc);
1593	}
1594
1595	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
1596}
1597
1598static void
1599mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
1600    MPI2_EVENT_NOTIFICATION_REPLY *event)
1601{
1602	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1603
1604	mpr_print_event(sc, event);
1605
1606	switch (event->Event) {
1607	case MPI2_EVENT_LOG_DATA:
1608		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1609		if (sc->mpr_debug & MPR_EVENT)
1610			hexdump(event->EventData, event->EventDataLength, NULL,
1611			    0);
1612		break;
1613	case MPI2_EVENT_LOG_ENTRY_ADDED:
1614		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1615		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1616		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1617		     entry->LogSequence);
1618		break;
1619	default:
1620		break;
1621	}
1622	return;
1623}
1624
1625static int
1626mpr_attach_log(struct mpr_softc *sc)
1627{
1628	uint8_t events[16];
1629
1630	bzero(events, 16);
1631	setbit(events, MPI2_EVENT_LOG_DATA);
1632	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1633
1634	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
1635	    &sc->mpr_log_eh);
1636
1637	return (0);
1638}
1639
1640static int
1641mpr_detach_log(struct mpr_softc *sc)
1642{
1643
1644	if (sc->mpr_log_eh != NULL)
1645		mpr_deregister_events(sc, sc->mpr_log_eh);
1646	return (0);
1647}
1648
1649/*
1650 * Free all of the driver resources and detach submodules.  Should be called
1651 * without the lock held.
1652 */
1653int
1654mpr_free(struct mpr_softc *sc)
1655{
1656	int error;
1657
1658	/* Turn off the watchdog */
1659	mpr_lock(sc);
1660	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
1661	mpr_unlock(sc);
1662	/* Lock must not be held for this */
1663	callout_drain(&sc->periodic);
1664
1665	if (((error = mpr_detach_log(sc)) != 0) ||
1666	    ((error = mpr_detach_sas(sc)) != 0))
1667		return (error);
1668
1669	mpr_detach_user(sc);
1670
1671	/* Put the IOC back in the READY state. */
1672	mpr_lock(sc);
1673	if ((error = mpr_transition_ready(sc)) != 0) {
1674		mpr_unlock(sc);
1675		return (error);
1676	}
1677	mpr_unlock(sc);
1678
1679	if (sc->facts != NULL)
1680		free(sc->facts, M_MPR);
1681
1682	/*
1683	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1684	 * to free these buffers too.
1685	 */
1686	mpr_iocfacts_free(sc);
1687
1688	if (sc->sysctl_tree != NULL)
1689		sysctl_ctx_free(&sc->sysctl_ctx);
1690
1691	/* Deregister the shutdown function */
1692	if (sc->shutdown_eh != NULL)
1693		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1694
1695	mtx_destroy(&sc->mpr_mtx);
1696
1697	return (0);
1698}
1699
1700static __inline void
1701mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
1702{
1703	MPR_FUNCTRACE(sc);
1704
1705	if (cm == NULL) {
1706		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
1707		return;
1708	}
1709
1710	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1711		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1712
1713	if (cm->cm_complete != NULL) {
1714		mpr_dprint(sc, MPR_TRACE,
1715			   "%s cm %p calling cm_complete %p data %p reply %p\n",
1716			   __func__, cm, cm->cm_complete, cm->cm_complete_data,
1717			   cm->cm_reply);
1718		cm->cm_complete(sc, cm);
1719	}
1720
1721	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1722		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
1723		wakeup(cm);
1724	}
1725
1726	if (sc->io_cmds_active != 0) {
1727		sc->io_cmds_active--;
1728	} else {
1729		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
1730		    "out of sync - resynching to 0\n");
1731	}
1732}
1733
1734static void
1735mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
1736{
1737	union loginfo_type {
1738		u32	loginfo;
1739		struct {
1740			u32	subcode:16;
1741			u32	code:8;
1742			u32	originator:4;
1743			u32	bus_type:4;
1744		} dw;
1745	};
1746	union loginfo_type sas_loginfo;
1747	char *originator_str = NULL;
1748
1749	sas_loginfo.loginfo = log_info;
1750	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1751		return;
1752
1753	/* each nexus loss loginfo */
1754	if (log_info == 0x31170000)
1755		return;
1756
1757	/* eat the loginfos associated with task aborts */
1758	if ((log_info == 30050000) || (log_info == 0x31140000) ||
1759	    (log_info == 0x31130000))
1760		return;
1761
1762	switch (sas_loginfo.dw.originator) {
1763	case 0:
1764		originator_str = "IOP";
1765		break;
1766	case 1:
1767		originator_str = "PL";
1768		break;
1769	case 2:
1770		originator_str = "IR";
1771		break;
1772	}
1773
1774	mpr_dprint(sc, MPR_INFO, "log_info(0x%08x): originator(%s), "
1775	    "code(0x%02x), sub_code(0x%04x)\n", log_info,
1776	    originator_str, sas_loginfo.dw.code,
1777	    sas_loginfo.dw.subcode);
1778}
1779
1780static void
1781mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
1782{
1783	MPI2DefaultReply_t *mpi_reply;
1784	u16 sc_status;
1785
1786	mpi_reply = (MPI2DefaultReply_t*)reply;
1787	sc_status = le16toh(mpi_reply->IOCStatus);
1788	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1789		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1790}
1791
1792void
1793mpr_intr(void *data)
1794{
1795	struct mpr_softc *sc;
1796	uint32_t status;
1797
1798	sc = (struct mpr_softc *)data;
1799	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1800
1801	/*
1802	 * Check interrupt status register to flush the bus.  This is
1803	 * needed for both INTx interrupts and driver-driven polling
1804	 */
1805	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1806	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1807		return;
1808
1809	mpr_lock(sc);
1810	mpr_intr_locked(data);
1811	mpr_unlock(sc);
1812	return;
1813}
1814
1815/*
1816 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1817 * chip.  Hopefully this theory is correct.
1818 */
1819void
1820mpr_intr_msi(void *data)
1821{
1822	struct mpr_softc *sc;
1823
1824	sc = (struct mpr_softc *)data;
1825	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1826	mpr_lock(sc);
1827	mpr_intr_locked(data);
1828	mpr_unlock(sc);
1829	return;
1830}
1831
1832/*
1833 * The locking is overly broad and simplistic, but easy to deal with for now.
1834 */
1835void
1836mpr_intr_locked(void *data)
1837{
1838	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1839	struct mpr_softc *sc;
1840	struct mpr_command *cm = NULL;
1841	uint8_t flags;
1842	u_int pq;
1843	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1844	mpr_fw_diagnostic_buffer_t *pBuffer;
1845
1846	sc = (struct mpr_softc *)data;
1847
1848	pq = sc->replypostindex;
1849	mpr_dprint(sc, MPR_TRACE,
1850	    "%s sc %p starting with replypostindex %u\n",
1851	    __func__, sc, sc->replypostindex);
1852
1853	for ( ;; ) {
1854		cm = NULL;
1855		desc = &sc->post_queue[sc->replypostindex];
1856		flags = desc->Default.ReplyFlags &
1857		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1858		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
1859		    (le32toh(desc->Words.High) == 0xffffffff))
1860			break;
1861
1862		/* increment the replypostindex now, so that event handlers
1863		 * and cm completion handlers which decide to do a diag
1864		 * reset can zero it without it getting incremented again
1865		 * afterwards, and we break out of this loop on the next
1866		 * iteration since the reply post queue has been cleared to
1867		 * 0xFF and all descriptors look unused (which they are).
1868		 */
1869		if (++sc->replypostindex >= sc->pqdepth)
1870			sc->replypostindex = 0;
1871
1872		switch (flags) {
1873		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1874		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
1875			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
1876			cm->cm_reply = NULL;
1877			break;
1878		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1879		{
1880			uint32_t baddr;
1881			uint8_t *reply;
1882
1883			/*
1884			 * Re-compose the reply address from the address
1885			 * sent back from the chip.  The ReplyFrameAddress
1886			 * is the lower 32 bits of the physical address of
1887			 * particular reply frame.  Convert that address to
1888			 * host format, and then use that to provide the
1889			 * offset against the virtual address base
1890			 * (sc->reply_frames).
1891			 */
1892			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1893			reply = sc->reply_frames +
1894				(baddr - ((uint32_t)sc->reply_busaddr));
1895			/*
1896			 * Make sure the reply we got back is in a valid
1897			 * range.  If not, go ahead and panic here, since
1898			 * we'll probably panic as soon as we deference the
1899			 * reply pointer anyway.
1900			 */
1901			if ((reply < sc->reply_frames)
1902			 || (reply > (sc->reply_frames +
1903			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1904				printf("%s: WARNING: reply %p out of range!\n",
1905				       __func__, reply);
1906				printf("%s: reply_frames %p, fqdepth %d, "
1907				       "frame size %d\n", __func__,
1908				       sc->reply_frames, sc->fqdepth,
1909				       sc->facts->ReplyFrameSize * 4);
1910				printf("%s: baddr %#x,\n", __func__, baddr);
1911				/* LSI-TODO. See Linux Code for Graceful exit */
1912				panic("Reply address out of range");
1913			}
1914			if (le16toh(desc->AddressReply.SMID) == 0) {
1915				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1916				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1917					/*
1918					 * If SMID is 0 for Diag Buffer Post,
1919					 * this implies that the reply is due to
1920					 * a release function with a status that
1921					 * the buffer has been released.  Set
1922					 * the buffer flags accordingly.
1923					 */
1924					rel_rep =
1925					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1926					if (le16toh(rel_rep->IOCStatus) ==
1927					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1928					    {
1929						pBuffer =
1930						    &sc->fw_diag_buffer_list[
1931						    rel_rep->BufferType];
1932						pBuffer->valid_data = TRUE;
1933						pBuffer->owned_by_firmware =
1934						    FALSE;
1935						pBuffer->immediate = FALSE;
1936					}
1937				} else
1938					mpr_dispatch_event(sc, baddr,
1939					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1940					    reply);
1941			} else {
1942				cm = &sc->commands[
1943				    le16toh(desc->AddressReply.SMID)];
1944				cm->cm_reply = reply;
1945				cm->cm_reply_data =
1946				    le32toh(desc->AddressReply.
1947				    ReplyFrameAddress);
1948			}
1949			break;
1950		}
1951		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1952		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1953		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1954		default:
1955			/* Unhandled */
1956			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
1957			    desc->Default.ReplyFlags);
1958			cm = NULL;
1959			break;
1960		}
1961
1962		if (cm != NULL) {
1963			// Print Error reply frame
1964			if (cm->cm_reply)
1965				mpr_display_reply_info(sc,cm->cm_reply);
1966			mpr_complete_command(sc, cm);
1967		}
1968
1969		desc->Words.Low = 0xffffffff;
1970		desc->Words.High = 0xffffffff;
1971	}
1972
1973	if (pq != sc->replypostindex) {
1974		mpr_dprint(sc, MPR_TRACE,
1975		    "%s sc %p writing postindex %d\n",
1976		    __func__, sc, sc->replypostindex);
1977		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
1978		    sc->replypostindex);
1979	}
1980
1981	return;
1982}
1983
1984static void
1985mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
1986    MPI2_EVENT_NOTIFICATION_REPLY *reply)
1987{
1988	struct mpr_event_handle *eh;
1989	int event, handled = 0;
1990
1991	event = le16toh(reply->Event);
1992	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1993		if (isset(eh->mask, event)) {
1994			eh->callback(sc, data, reply);
1995			handled++;
1996		}
1997	}
1998
1999	if (handled == 0)
2000		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2001		    le16toh(event));
2002
2003	/*
2004	 * This is the only place that the event/reply should be freed.
2005	 * Anything wanting to hold onto the event data should have
2006	 * already copied it into their own storage.
2007	 */
2008	mpr_free_reply(sc, data);
2009}
2010
2011static void
2012mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2013{
2014	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2015
2016	if (cm->cm_reply)
2017		mpr_print_event(sc,
2018			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2019
2020	mpr_free_command(sc, cm);
2021
2022	/* next, send a port enable */
2023	mprsas_startup(sc);
2024}
2025
2026/*
2027 * For both register_events and update_events, the caller supplies a bitmap
2028 * of events that it _wants_.  These functions then turn that into a bitmask
2029 * suitable for the controller.
2030 */
2031int
2032mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2033    mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2034{
2035	struct mpr_event_handle *eh;
2036	int error = 0;
2037
2038	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2039	if (!eh) {
2040		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
2041		    __func__, __LINE__);
2042		return (ENOMEM);
2043	}
2044	eh->callback = cb;
2045	eh->data = data;
2046	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2047	if (mask != NULL)
2048		error = mpr_update_events(sc, eh, mask);
2049	*handle = eh;
2050
2051	return (error);
2052}
2053
2054int
2055mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2056    uint8_t *mask)
2057{
2058	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2059	MPI2_EVENT_NOTIFICATION_REPLY *reply;
2060	struct mpr_command *cm;
2061	struct mpr_event_handle *eh;
2062	int error, i;
2063
2064	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2065
2066	if ((mask != NULL) && (handle != NULL))
2067		bcopy(mask, &handle->mask[0], 16);
2068	memset(sc->event_mask, 0xff, 16);
2069
2070	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2071		for (i = 0; i < 16; i++)
2072			sc->event_mask[i] &= ~eh->mask[i];
2073	}
2074
2075	if ((cm = mpr_alloc_command(sc)) == NULL)
2076		return (EBUSY);
2077	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2078	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2079	evtreq->MsgFlags = 0;
2080	evtreq->SASBroadcastPrimitiveMasks = 0;
2081#ifdef MPR_DEBUG_ALL_EVENTS
2082	{
2083		u_char fullmask[16];
2084		memset(fullmask, 0x00, 16);
2085		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2086	}
2087#else
2088		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2089#endif
2090	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2091	cm->cm_data = NULL;
2092
2093	error = mpr_request_polled(sc, cm);
2094	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2095	if ((reply == NULL) ||
2096	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2097		error = ENXIO;
2098
2099	if(reply)
2100		mpr_print_event(sc, reply);
2101
2102	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2103
2104	mpr_free_command(sc, cm);
2105	return (error);
2106}
2107
2108static int
2109mpr_reregister_events(struct mpr_softc *sc)
2110{
2111	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2112	struct mpr_command *cm;
2113	struct mpr_event_handle *eh;
2114	int error, i;
2115
2116	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2117
2118	/* first, reregister events */
2119
2120	memset(sc->event_mask, 0xff, 16);
2121
2122	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2123		for (i = 0; i < 16; i++)
2124			sc->event_mask[i] &= ~eh->mask[i];
2125	}
2126
2127	if ((cm = mpr_alloc_command(sc)) == NULL)
2128		return (EBUSY);
2129	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2130	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2131	evtreq->MsgFlags = 0;
2132	evtreq->SASBroadcastPrimitiveMasks = 0;
2133#ifdef MPR_DEBUG_ALL_EVENTS
2134	{
2135		u_char fullmask[16];
2136		memset(fullmask, 0x00, 16);
2137		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2138	}
2139#else
2140		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2141#endif
2142	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2143	cm->cm_data = NULL;
2144	cm->cm_complete = mpr_reregister_events_complete;
2145
2146	error = mpr_map_command(sc, cm);
2147
2148	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2149	    error);
2150	return (error);
2151}
2152
2153int
2154mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2155{
2156
2157	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2158	free(handle, M_MPR);
2159	return (mpr_update_events(sc, NULL, NULL));
2160}
2161
2162/*
2163 * Add a chain element as the next SGE for the specified command.
2164 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
2165 * only required for IEEE commands.  Therefore there is no code for commands
2166 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands shouldn't
2167 * be requesting chains).
2168 */
2169static int
2170mpr_add_chain(struct mpr_command *cm, int segsleft)
2171{
2172	struct mpr_softc *sc = cm->cm_sc;
2173	MPI2_REQUEST_HEADER *req;
2174	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
2175	struct mpr_chain *chain;
2176	int space, sgc_size, current_segs, rem_segs, segs_per_frame;
2177	uint8_t next_chain_offset = 0;
2178
2179	/*
2180	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
2181	 * only IEEE commands should be requesting chains.  Return some error
2182	 * code other than 0.
2183	 */
2184	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
2185		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
2186		    "an MPI SGL.\n");
2187		return(ENOBUFS);
2188	}
2189
2190	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
2191	if (cm->cm_sglsize < sgc_size)
2192		panic("MPR: Need SGE Error Code\n");
2193
2194	chain = mpr_alloc_chain(cm->cm_sc);
2195	if (chain == NULL)
2196		return (ENOBUFS);
2197
2198	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
2199
2200	/*
2201	 * Note: a double-linked list is used to make it easier to walk for
2202	 * debugging.
2203	 */
2204	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2205
2206	/*
2207	 * Need to know if the number of frames left is more than 1 or not.  If
2208	 * more than 1 frame is required, NextChainOffset will need to be set,
2209	 * which will just be the last segment of the frame.
2210	 */
2211	rem_segs = 0;
2212	if (cm->cm_sglsize < (sgc_size * segsleft)) {
2213		/*
2214		 * rem_segs is the number of segements remaining after the
2215		 * segments that will go into the current frame.  Since it is
2216		 * known that at least one more frame is required, account for
2217		 * the chain element.  To know if more than one more frame is
2218		 * required, just check if there will be a remainder after using
2219		 * the current frame (with this chain) and the next frame.  If
2220		 * so the NextChainOffset must be the last element of the next
2221		 * frame.
2222		 */
2223		current_segs = (cm->cm_sglsize / sgc_size) - 1;
2224		rem_segs = segsleft - current_segs;
2225		segs_per_frame = space / sgc_size;
2226		if (rem_segs > segs_per_frame) {
2227			next_chain_offset = segs_per_frame - 1;
2228		}
2229	}
2230	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
2231	ieee_sgc->Length = next_chain_offset ? htole32((uint32_t)space) :
2232	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
2233	ieee_sgc->NextChainOffset = next_chain_offset;
2234	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2235	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2236	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
2237	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2238	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
2239	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
2240	req->ChainOffset = ((sc->facts->IOCRequestFrameSize * 4) -
2241	    sgc_size) >> 4;
2242
2243	cm->cm_sglsize = space;
2244	return (0);
2245}
2246
2247/*
2248 * Add one scatter-gather element to the scatter-gather list for a command.
2249 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the next
2250 * SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a chain,
2251 * so don't consider any chain additions.
2252 */
2253int
2254mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
2255    int segsleft)
2256{
2257	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2258	u32 sge_flags;
2259
2260	/*
2261	 * case 1: >=1 more segment, no room for anything (error)
2262	 * case 2: 1 more segment and enough room for it
2263         */
2264
2265	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
2266		mpr_dprint(cm->cm_sc, MPR_ERROR,
2267		    "%s: warning: Not enough room for MPI SGL in frame.\n",
2268		    __func__);
2269		return(ENOBUFS);
2270	}
2271
2272	KASSERT(segsleft == 1,
2273	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
2274	    segsleft));
2275
2276	/*
2277	 * There is one more segment left to add for the MPI SGL and there is
2278	 * enough room in the frame to add it.  This is the normal case because
2279	 * MPI SGL's don't have chains, otherwise something is wrong.
2280	 *
2281	 * If this is a bi-directional request, need to account for that
2282	 * here.  Save the pre-filled sge values.  These will be used
2283	 * either for the 2nd SGL or for a single direction SGL.  If
2284	 * cm_out_len is non-zero, this is a bi-directional request, so
2285	 * fill in the OUT SGL first, then the IN SGL, otherwise just
2286	 * fill in the IN SGL.  Note that at this time, when filling in
2287	 * 2 SGL's for a bi-directional request, they both use the same
2288	 * DMA buffer (same cm command).
2289	 */
2290	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
2291	saved_address_low = sge->Address.Low;
2292	saved_address_high = sge->Address.High;
2293	if (cm->cm_out_len) {
2294		sge->FlagsLength = cm->cm_out_len |
2295		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2296		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2297		    MPI2_SGE_FLAGS_HOST_TO_IOC |
2298		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2299		    MPI2_SGE_FLAGS_SHIFT);
2300		cm->cm_sglsize -= len;
2301		/* Endian Safe code */
2302		sge_flags = sge->FlagsLength;
2303		sge->FlagsLength = htole32(sge_flags);
2304		sge->Address.High = htole32(sge->Address.High);
2305		sge->Address.Low = htole32(sge->Address.Low);
2306		bcopy(sge, cm->cm_sge, len);
2307		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2308	}
2309	sge->FlagsLength = saved_buf_len |
2310	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2311	    MPI2_SGE_FLAGS_END_OF_BUFFER |
2312	    MPI2_SGE_FLAGS_LAST_ELEMENT |
2313	    MPI2_SGE_FLAGS_END_OF_LIST |
2314	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2315	    MPI2_SGE_FLAGS_SHIFT);
2316	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
2317		sge->FlagsLength |=
2318		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2319		    MPI2_SGE_FLAGS_SHIFT);
2320	} else {
2321		sge->FlagsLength |=
2322		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2323		    MPI2_SGE_FLAGS_SHIFT);
2324	}
2325	sge->Address.Low = saved_address_low;
2326	sge->Address.High = saved_address_high;
2327
2328	cm->cm_sglsize -= len;
2329	/* Endian Safe code */
2330	sge_flags = sge->FlagsLength;
2331	sge->FlagsLength = htole32(sge_flags);
2332	sge->Address.High = htole32(sge->Address.High);
2333	sge->Address.Low = htole32(sge->Address.Low);
2334	bcopy(sge, cm->cm_sge, len);
2335	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2336	return (0);
2337}
2338
2339/*
2340 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
2341 * gather list for a command.  Maintain cm_sglsize and cm_sge as the
2342 * remaining size and pointer to the next SGE to fill in, respectively.
2343 */
2344int
2345mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
2346{
2347	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
2348	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
2349	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2350	uint32_t sge_length;
2351
2352	/*
2353	 * case 1: No room for chain or segment (error).
2354	 * case 2: Two or more segments left but only room for chain.
2355	 * case 3: Last segment and room for it, so set flags.
2356	 */
2357
2358	/*
2359	 * There should be room for at least one element, or there is a big
2360	 * problem.
2361	 */
2362	if (cm->cm_sglsize < ieee_sge_size)
2363		panic("MPR: Need SGE Error Code\n");
2364
2365	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
2366		if ((error = mpr_add_chain(cm, segsleft)) != 0)
2367			return (error);
2368	}
2369
2370	if (segsleft == 1) {
2371		/*
2372		 * If this is a bi-directional request, need to account for that
2373		 * here.  Save the pre-filled sge values.  These will be used
2374		 * either for the 2nd SGL or for a single direction SGL.  If
2375		 * cm_out_len is non-zero, this is a bi-directional request, so
2376		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2377		 * fill in the IN SGL.  Note that at this time, when filling in
2378		 * 2 SGL's for a bi-directional request, they both use the same
2379		 * DMA buffer (same cm command).
2380		 */
2381		saved_buf_len = sge->Length;
2382		saved_address_low = sge->Address.Low;
2383		saved_address_high = sge->Address.High;
2384		if (cm->cm_out_len) {
2385			sge->Length = cm->cm_out_len;
2386			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2387			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2388			cm->cm_sglsize -= ieee_sge_size;
2389			/* Endian Safe code */
2390			sge_length = sge->Length;
2391			sge->Length = htole32(sge_length);
2392			sge->Address.High = htole32(sge->Address.High);
2393			sge->Address.Low = htole32(sge->Address.Low);
2394			bcopy(sgep, cm->cm_sge, ieee_sge_size);
2395			cm->cm_sge =
2396			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
2397			    ieee_sge_size);
2398		}
2399		sge->Length = saved_buf_len;
2400		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2401		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2402		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2403		sge->Address.Low = saved_address_low;
2404		sge->Address.High = saved_address_high;
2405	}
2406
2407	cm->cm_sglsize -= ieee_sge_size;
2408	/* Endian Safe code */
2409	sge_length = sge->Length;
2410	sge->Length = htole32(sge_length);
2411	sge->Address.High = htole32(sge->Address.High);
2412	sge->Address.Low = htole32(sge->Address.Low);
2413	bcopy(sgep, cm->cm_sge, ieee_sge_size);
2414	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
2415	    ieee_sge_size);
2416	return (0);
2417}
2418
2419/*
2420 * Add one dma segment to the scatter-gather list for a command.
2421 */
2422int
2423mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2424    int segsleft)
2425{
2426	MPI2_SGE_SIMPLE64 sge;
2427	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
2428
2429	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
2430		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2431		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2432		ieee_sge.Length = len;
2433		mpr_from_u64(pa, &ieee_sge.Address);
2434
2435		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
2436	} else {
2437		/*
2438		 * This driver always uses 64-bit address elements for
2439		 * simplicity.
2440		 */
2441		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2442		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2443		/* Set Endian safe macro in mpr_push_sge */
2444		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
2445		mpr_from_u64(pa, &sge.Address);
2446
2447		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
2448	}
2449}
2450
2451static void
2452mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2453{
2454	struct mpr_softc *sc;
2455	struct mpr_command *cm;
2456	u_int i, dir, sflags;
2457
2458	cm = (struct mpr_command *)arg;
2459	sc = cm->cm_sc;
2460
2461	/*
2462	 * In this case, just print out a warning and let the chip tell the
2463	 * user they did the wrong thing.
2464	 */
2465	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2466		mpr_dprint(sc, MPR_ERROR,
2467			   "%s: warning: busdma returned %d segments, "
2468			   "more than the %d allowed\n", __func__, nsegs,
2469			   cm->cm_max_segs);
2470	}
2471
2472	/*
2473	 * Set up DMA direction flags.  Bi-directional requests are also handled
2474	 * here.  In that case, both direction flags will be set.
2475	 */
2476	sflags = 0;
2477	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
2478		/*
2479		 * We have to add a special case for SMP passthrough, there
2480		 * is no easy way to generically handle it.  The first
2481		 * S/G element is used for the command (therefore the
2482		 * direction bit needs to be set).  The second one is used
2483		 * for the reply.  We'll leave it to the caller to make
2484		 * sure we only have two buffers.
2485		 */
2486		/*
2487		 * Even though the busdma man page says it doesn't make
2488		 * sense to have both direction flags, it does in this case.
2489		 * We have one s/g element being accessed in each direction.
2490		 */
2491		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2492
2493		/*
2494		 * Set the direction flag on the first buffer in the SMP
2495		 * passthrough request.  We'll clear it for the second one.
2496		 */
2497		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2498			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2499	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
2500		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2501		dir = BUS_DMASYNC_PREWRITE;
2502	} else
2503		dir = BUS_DMASYNC_PREREAD;
2504
2505	for (i = 0; i < nsegs; i++) {
2506		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
2507			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2508		}
2509		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2510		    sflags, nsegs - i);
2511		if (error != 0) {
2512			/* Resource shortage, roll back! */
2513			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
2514				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
2515				    "consider increasing hw.mpr.max_chains.\n");
2516			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
2517			mpr_complete_command(sc, cm);
2518			return;
2519		}
2520	}
2521
2522	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2523	mpr_enqueue_request(sc, cm);
2524
2525	return;
2526}
2527
2528static void
2529mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2530	     int error)
2531{
2532	mpr_data_cb(arg, segs, nsegs, error);
2533}
2534
2535/*
2536 * This is the routine to enqueue commands ansynchronously.
2537 * Note that the only error path here is from bus_dmamap_load(), which can
2538 * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2539 * assumed that if you have a command in-hand, then you have enough credits
2540 * to use it.
2541 */
2542int
2543mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
2544{
2545	int error = 0;
2546
2547	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
2548		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2549		    &cm->cm_uio, mpr_data_cb2, cm, 0);
2550	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
2551		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
2552		    cm->cm_data, mpr_data_cb, cm, 0);
2553	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2554		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2555		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
2556	} else {
2557		/* Add a zero-length element as needed */
2558		if (cm->cm_sge != NULL)
2559			mpr_add_dmaseg(cm, 0, 0, 0, 1);
2560		mpr_enqueue_request(sc, cm);
2561	}
2562
2563	return (error);
2564}
2565
2566/*
2567 * This is the routine to enqueue commands synchronously.  An error of
2568 * EINPROGRESS from mpr_map_command() is ignored since the command will
2569 * be executed and enqueued automatically.  Other errors come from msleep().
2570 */
2571int
2572mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout,
2573    int sleep_flag)
2574{
2575	int error, rc;
2576	struct timeval cur_time, start_time;
2577
2578	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
2579		return  EBUSY;
2580
2581	cm->cm_complete = NULL;
2582	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
2583	error = mpr_map_command(sc, cm);
2584	if ((error != 0) && (error != EINPROGRESS))
2585		return (error);
2586
2587	// Check for context and wait for 50 mSec at a time until time has
2588	// expired or the command has finished.  If msleep can't be used, need
2589	// to poll.
2590#if __FreeBSD_version >= 1000029
2591	if (curthread->td_no_sleeping)
2592#else //__FreeBSD_version < 1000029
2593	if (curthread->td_pflags & TDP_NOSLEEPING)
2594#endif //__FreeBSD_version >= 1000029
2595		sleep_flag = NO_SLEEP;
2596	getmicrotime(&start_time);
2597	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
2598		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
2599	} else {
2600		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
2601			mpr_intr_locked(sc);
2602			if (sleep_flag == CAN_SLEEP)
2603				pause("mprwait", hz/20);
2604			else
2605				DELAY(50000);
2606
2607			getmicrotime(&cur_time);
2608			if ((cur_time.tv_sec - start_time.tv_sec) > timeout) {
2609				error = EWOULDBLOCK;
2610				break;
2611			}
2612		}
2613	}
2614
2615	if (error == EWOULDBLOCK) {
2616		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
2617		rc = mpr_reinit(sc);
2618		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
2619		    "failed");
2620		error = ETIMEDOUT;
2621	}
2622	return (error);
2623}
2624
2625/*
2626 * This is the routine to enqueue a command synchonously and poll for
2627 * completion.  Its use should be rare.
2628 */
2629int
2630mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm)
2631{
2632	int error, timeout = 0, rc;
2633	struct timeval cur_time, start_time;
2634
2635	error = 0;
2636
2637	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
2638	cm->cm_complete = NULL;
2639	mpr_map_command(sc, cm);
2640
2641	getmicrotime(&start_time);
2642	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
2643		mpr_intr_locked(sc);
2644
2645		if (mtx_owned(&sc->mpr_mtx))
2646			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
2647			    "mprpoll", hz/20);
2648		else
2649			pause("mprpoll", hz/20);
2650
2651		/*
2652		 * Check for real-time timeout and fail if more than 60 seconds.
2653		 */
2654		getmicrotime(&cur_time);
2655		timeout = cur_time.tv_sec - start_time.tv_sec;
2656		if (timeout > 60) {
2657			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
2658			error = ETIMEDOUT;
2659			break;
2660		}
2661	}
2662
2663	if(error) {
2664		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
2665		rc = mpr_reinit(sc);
2666		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ?
2667		    "success" : "failed");
2668	}
2669	return (error);
2670}
2671
2672/*
2673 * The MPT driver had a verbose interface for config pages.  In this driver,
2674 * reduce it to much simplier terms, similar to the Linux driver.
2675 */
2676int
2677mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
2678{
2679	MPI2_CONFIG_REQUEST *req;
2680	struct mpr_command *cm;
2681	int error;
2682
2683	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2684		return (EBUSY);
2685	}
2686
2687	cm = mpr_alloc_command(sc);
2688	if (cm == NULL) {
2689		return (EBUSY);
2690	}
2691
2692	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2693	req->Function = MPI2_FUNCTION_CONFIG;
2694	req->Action = params->action;
2695	req->SGLFlags = 0;
2696	req->ChainOffset = 0;
2697	req->PageAddress = params->page_address;
2698	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2699		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2700
2701		hdr = &params->hdr.Ext;
2702		req->ExtPageType = hdr->ExtPageType;
2703		req->ExtPageLength = hdr->ExtPageLength;
2704		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2705		req->Header.PageLength = 0; /* Must be set to zero */
2706		req->Header.PageNumber = hdr->PageNumber;
2707		req->Header.PageVersion = hdr->PageVersion;
2708	} else {
2709		MPI2_CONFIG_PAGE_HEADER *hdr;
2710
2711		hdr = &params->hdr.Struct;
2712		req->Header.PageType = hdr->PageType;
2713		req->Header.PageNumber = hdr->PageNumber;
2714		req->Header.PageLength = hdr->PageLength;
2715		req->Header.PageVersion = hdr->PageVersion;
2716	}
2717
2718	cm->cm_data = params->buffer;
2719	cm->cm_length = params->length;
2720	cm->cm_sge = &req->PageBufferSGE;
2721	cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2722	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
2723	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2724
2725	cm->cm_complete_data = params;
2726	if (params->callback != NULL) {
2727		cm->cm_complete = mpr_config_complete;
2728		return (mpr_map_command(sc, cm));
2729	} else {
2730		error = mpr_wait_command(sc, cm, 0, CAN_SLEEP);
2731		if (error) {
2732			mpr_dprint(sc, MPR_FAULT,
2733			    "Error %d reading config page\n", error);
2734			mpr_free_command(sc, cm);
2735			return (error);
2736		}
2737		mpr_config_complete(sc, cm);
2738	}
2739
2740	return (0);
2741}
2742
2743int
2744mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
2745{
2746	return (EINVAL);
2747}
2748
2749static void
2750mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
2751{
2752	MPI2_CONFIG_REPLY *reply;
2753	struct mpr_config_params *params;
2754
2755	MPR_FUNCTRACE(sc);
2756	params = cm->cm_complete_data;
2757
2758	if (cm->cm_data != NULL) {
2759		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2760		    BUS_DMASYNC_POSTREAD);
2761		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2762	}
2763
2764	/*
2765	 * XXX KDM need to do more error recovery?  This results in the
2766	 * device in question not getting probed.
2767	 */
2768	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2769		params->status = MPI2_IOCSTATUS_BUSY;
2770		goto done;
2771	}
2772
2773	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2774	if (reply == NULL) {
2775		params->status = MPI2_IOCSTATUS_BUSY;
2776		goto done;
2777	}
2778	params->status = reply->IOCStatus;
2779	if (params->hdr.Ext.ExtPageType != 0) {
2780		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2781		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2782	} else {
2783		params->hdr.Struct.PageType = reply->Header.PageType;
2784		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2785		params->hdr.Struct.PageLength = reply->Header.PageLength;
2786		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2787	}
2788
2789done:
2790	mpr_free_command(sc, cm);
2791	if (params->callback != NULL)
2792		params->callback(sc, params);
2793
2794	return;
2795}
2796