hwpmc_mod.c revision 294046
1/*-
2 * Copyright (c) 2003-2008 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/dev/hwpmc/hwpmc_mod.c 294046 2016-01-14 22:02:21Z jtl $");
34
35#include <sys/param.h>
36#include <sys/eventhandler.h>
37#include <sys/jail.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/module.h>
44#include <sys/mount.h>
45#include <sys/mutex.h>
46#include <sys/pmc.h>
47#include <sys/pmckern.h>
48#include <sys/pmclog.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/queue.h>
52#include <sys/resourcevar.h>
53#include <sys/rwlock.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysent.h>
60#include <sys/systm.h>
61#include <sys/vnode.h>
62
63#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64
65#include <machine/atomic.h>
66#include <machine/md_var.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73
74#include "hwpmc_soft.h"
75
76/*
77 * Types
78 */
79
80enum pmc_flags {
81	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84};
85
86/*
87 * The offset in sysent where the syscall is allocated.
88 */
89
90static int pmc_syscall_num = NO_SYSCALL;
91struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93
94#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95
96struct mtx_pool		*pmc_mtxpool;
97static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98
99#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102
103#define	PMC_MARK_ROW_FREE(R) do {					  \
104	pmc_pmcdisp[(R)] = 0;						  \
105} while (0)
106
107#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109		    __LINE__));						  \
110	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112		("[pmc,%d] row disposition error", __LINE__));		  \
113} while (0)
114
115#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118		    __LINE__));						  \
119} while (0)
120
121#define	PMC_MARK_ROW_THREAD(R) do {					  \
122	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123		    __LINE__));						  \
124	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125} while (0)
126
127#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130		    __LINE__));						  \
131} while (0)
132
133
134/* various event handlers */
135static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136    pmc_kld_unload_tag;
137
138/* Module statistics */
139struct pmc_op_getdriverstats pmc_stats;
140
141/* Machine/processor dependent operations */
142static struct pmc_mdep  *md;
143
144/*
145 * Hash tables mapping owner processes and target threads to PMCs.
146 */
147
148struct mtx pmc_processhash_mtx;		/* spin mutex */
149static u_long pmc_processhashmask;
150static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151
152/*
153 * Hash table of PMC owner descriptors.  This table is protected by
154 * the shared PMC "sx" lock.
155 */
156
157static u_long pmc_ownerhashmask;
158static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159
160/*
161 * List of PMC owners with system-wide sampling PMCs.
162 */
163
164static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165
166
167/*
168 * A map of row indices to classdep structures.
169 */
170static struct pmc_classdep **pmc_rowindex_to_classdep;
171
172/*
173 * Prototypes
174 */
175
176#ifdef	HWPMC_DEBUG
177static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178static int	pmc_debugflags_parse(char *newstr, char *fence);
179#endif
180
181static int	load(struct module *module, int cmd, void *arg);
182static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183static struct pmc *pmc_allocate_pmc_descriptor(void);
184static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187    int cpu);
188static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190static void	pmc_cleanup(void);
191static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193    int flags);
194static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199    pmc_id_t pmc);
200static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201    uint32_t mode);
202static void	pmc_force_context_switch(void);
203static void	pmc_link_target_process(struct pmc *pm,
204    struct pmc_process *pp);
205static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206static void	pmc_log_kernel_mappings(struct pmc *pm);
207static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209static void	pmc_process_csw_in(struct thread *td);
210static void	pmc_process_csw_out(struct thread *td);
211static void	pmc_process_exit(void *arg, struct proc *p);
212static void	pmc_process_fork(void *arg, struct proc *p1,
213    struct proc *p2, int n);
214static void	pmc_process_samples(int cpu, int soft);
215static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216static void	pmc_remove_owner(struct pmc_owner *po);
217static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220static void	pmc_select_cpu(int cpu);
221static int	pmc_start(struct pmc *pm);
222static int	pmc_stop(struct pmc *pm);
223static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224static void	pmc_unlink_target_process(struct pmc *pmc,
225    struct pmc_process *pp);
226static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230
231/*
232 * Kernel tunables and sysctl(8) interface.
233 */
234
235SYSCTL_DECL(_kern_hwpmc);
236
237static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "callchaindepth", &pmc_callchaindepth);
239SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_TUN|CTLFLAG_RD,
240    &pmc_callchaindepth, 0, "depth of call chain records");
241
242#ifdef	HWPMC_DEBUG
243struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
244char	pmc_debugstr[PMC_DEBUG_STRSIZE];
245TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
246    sizeof(pmc_debugstr));
247SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
248    CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
249    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
250#endif
251
252/*
253 * kern.hwpmc.hashrows -- determines the number of rows in the
254 * of the hash table used to look up threads
255 */
256
257static int pmc_hashsize = PMC_HASH_SIZE;
258TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
259SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
260    &pmc_hashsize, 0, "rows in hash tables");
261
262/*
263 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
264 */
265
266static int pmc_nsamples = PMC_NSAMPLES;
267TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "nsamples", &pmc_nsamples);
268SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_TUN|CTLFLAG_RD,
269    &pmc_nsamples, 0, "number of PC samples per CPU");
270
271
272/*
273 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
274 */
275
276static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
277TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
278SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
279    &pmc_mtxpool_size, 0, "size of spin mutex pool");
280
281
282/*
283 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
284 * allocate system-wide PMCs.
285 *
286 * Allowing unprivileged processes to allocate system PMCs is convenient
287 * if system-wide measurements need to be taken concurrently with other
288 * per-process measurements.  This feature is turned off by default.
289 */
290
291static int pmc_unprivileged_syspmcs = 0;
292TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
293SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
294    &pmc_unprivileged_syspmcs, 0,
295    "allow unprivileged process to allocate system PMCs");
296
297/*
298 * Hash function.  Discard the lower 2 bits of the pointer since
299 * these are always zero for our uses.  The hash multiplier is
300 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
301 */
302
303#if	LONG_BIT == 64
304#define	_PMC_HM		11400714819323198486u
305#elif	LONG_BIT == 32
306#define	_PMC_HM		2654435769u
307#else
308#error 	Must know the size of 'long' to compile
309#endif
310
311#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
312
313/*
314 * Syscall structures
315 */
316
317/* The `sysent' for the new syscall */
318static struct sysent pmc_sysent = {
319	2,			/* sy_narg */
320	pmc_syscall_handler	/* sy_call */
321};
322
323static struct syscall_module_data pmc_syscall_mod = {
324	load,
325	NULL,
326	&pmc_syscall_num,
327	&pmc_sysent,
328#if (__FreeBSD_version >= 1100000)
329	{ 0, NULL },
330	SY_THR_STATIC_KLD,
331#else
332	{ 0, NULL }
333#endif
334};
335
336static moduledata_t pmc_mod = {
337	PMC_MODULE_NAME,
338	syscall_module_handler,
339	&pmc_syscall_mod
340};
341
342DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
343MODULE_VERSION(pmc, PMC_VERSION);
344
345#ifdef	HWPMC_DEBUG
346enum pmc_dbgparse_state {
347	PMCDS_WS,		/* in whitespace */
348	PMCDS_MAJOR,		/* seen a major keyword */
349	PMCDS_MINOR
350};
351
352static int
353pmc_debugflags_parse(char *newstr, char *fence)
354{
355	char c, *p, *q;
356	struct pmc_debugflags *tmpflags;
357	int error, found, *newbits, tmp;
358	size_t kwlen;
359
360	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
361
362	p = newstr;
363	error = 0;
364
365	for (; p < fence && (c = *p); p++) {
366
367		/* skip white space */
368		if (c == ' ' || c == '\t')
369			continue;
370
371		/* look for a keyword followed by "=" */
372		for (q = p; p < fence && (c = *p) && c != '='; p++)
373			;
374		if (c != '=') {
375			error = EINVAL;
376			goto done;
377		}
378
379		kwlen = p - q;
380		newbits = NULL;
381
382		/* lookup flag group name */
383#define	DBG_SET_FLAG_MAJ(S,F)						\
384		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
385			newbits = &tmpflags->pdb_ ## F;
386
387		DBG_SET_FLAG_MAJ("cpu",		CPU);
388		DBG_SET_FLAG_MAJ("csw",		CSW);
389		DBG_SET_FLAG_MAJ("logging",	LOG);
390		DBG_SET_FLAG_MAJ("module",	MOD);
391		DBG_SET_FLAG_MAJ("md", 		MDP);
392		DBG_SET_FLAG_MAJ("owner",	OWN);
393		DBG_SET_FLAG_MAJ("pmc",		PMC);
394		DBG_SET_FLAG_MAJ("process",	PRC);
395		DBG_SET_FLAG_MAJ("sampling", 	SAM);
396
397		if (newbits == NULL) {
398			error = EINVAL;
399			goto done;
400		}
401
402		p++;		/* skip the '=' */
403
404		/* Now parse the individual flags */
405		tmp = 0;
406	newflag:
407		for (q = p; p < fence && (c = *p); p++)
408			if (c == ' ' || c == '\t' || c == ',')
409				break;
410
411		/* p == fence or c == ws or c == "," or c == 0 */
412
413		if ((kwlen = p - q) == 0) {
414			*newbits = tmp;
415			continue;
416		}
417
418		found = 0;
419#define	DBG_SET_FLAG_MIN(S,F)						\
420		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
421			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
422
423		/* a '*' denotes all possible flags in the group */
424		if (kwlen == 1 && *q == '*')
425			tmp = found = ~0;
426		/* look for individual flag names */
427		DBG_SET_FLAG_MIN("allocaterow", ALR);
428		DBG_SET_FLAG_MIN("allocate",	ALL);
429		DBG_SET_FLAG_MIN("attach",	ATT);
430		DBG_SET_FLAG_MIN("bind",	BND);
431		DBG_SET_FLAG_MIN("config",	CFG);
432		DBG_SET_FLAG_MIN("exec",	EXC);
433		DBG_SET_FLAG_MIN("exit",	EXT);
434		DBG_SET_FLAG_MIN("find",	FND);
435		DBG_SET_FLAG_MIN("flush",	FLS);
436		DBG_SET_FLAG_MIN("fork",	FRK);
437		DBG_SET_FLAG_MIN("getbuf",	GTB);
438		DBG_SET_FLAG_MIN("hook",	PMH);
439		DBG_SET_FLAG_MIN("init",	INI);
440		DBG_SET_FLAG_MIN("intr",	INT);
441		DBG_SET_FLAG_MIN("linktarget",	TLK);
442		DBG_SET_FLAG_MIN("mayberemove", OMR);
443		DBG_SET_FLAG_MIN("ops",		OPS);
444		DBG_SET_FLAG_MIN("read",	REA);
445		DBG_SET_FLAG_MIN("register",	REG);
446		DBG_SET_FLAG_MIN("release",	REL);
447		DBG_SET_FLAG_MIN("remove",	ORM);
448		DBG_SET_FLAG_MIN("sample",	SAM);
449		DBG_SET_FLAG_MIN("scheduleio",	SIO);
450		DBG_SET_FLAG_MIN("select",	SEL);
451		DBG_SET_FLAG_MIN("signal",	SIG);
452		DBG_SET_FLAG_MIN("swi",		SWI);
453		DBG_SET_FLAG_MIN("swo",		SWO);
454		DBG_SET_FLAG_MIN("start",	STA);
455		DBG_SET_FLAG_MIN("stop",	STO);
456		DBG_SET_FLAG_MIN("syscall",	PMS);
457		DBG_SET_FLAG_MIN("unlinktarget", TUL);
458		DBG_SET_FLAG_MIN("write",	WRI);
459		if (found == 0) {
460			/* unrecognized flag name */
461			error = EINVAL;
462			goto done;
463		}
464
465		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
466			*newbits = tmp;
467			continue;
468		}
469
470		p++;
471		goto newflag;
472	}
473
474	/* save the new flag set */
475	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
476
477 done:
478	free(tmpflags, M_PMC);
479	return error;
480}
481
482static int
483pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
484{
485	char *fence, *newstr;
486	int error;
487	unsigned int n;
488
489	(void) arg1; (void) arg2; /* unused parameters */
490
491	n = sizeof(pmc_debugstr);
492	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
493	(void) strlcpy(newstr, pmc_debugstr, n);
494
495	error = sysctl_handle_string(oidp, newstr, n, req);
496
497	/* if there is a new string, parse and copy it */
498	if (error == 0 && req->newptr != NULL) {
499		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
500		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
501			(void) strlcpy(pmc_debugstr, newstr,
502			    sizeof(pmc_debugstr));
503	}
504
505	free(newstr, M_PMC);
506
507	return error;
508}
509#endif
510
511/*
512 * Map a row index to a classdep structure and return the adjusted row
513 * index for the PMC class index.
514 */
515static struct pmc_classdep *
516pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
517{
518	struct pmc_classdep *pcd;
519
520	(void) md;
521
522	KASSERT(ri >= 0 && ri < md->pmd_npmc,
523	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
524
525	pcd = pmc_rowindex_to_classdep[ri];
526
527	KASSERT(pcd != NULL,
528	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
529
530	*adjri = ri - pcd->pcd_ri;
531
532	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
533	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
534
535	return (pcd);
536}
537
538/*
539 * Concurrency Control
540 *
541 * The driver manages the following data structures:
542 *
543 *   - target process descriptors, one per target process
544 *   - owner process descriptors (and attached lists), one per owner process
545 *   - lookup hash tables for owner and target processes
546 *   - PMC descriptors (and attached lists)
547 *   - per-cpu hardware state
548 *   - the 'hook' variable through which the kernel calls into
549 *     this module
550 *   - the machine hardware state (managed by the MD layer)
551 *
552 * These data structures are accessed from:
553 *
554 * - thread context-switch code
555 * - interrupt handlers (possibly on multiple cpus)
556 * - kernel threads on multiple cpus running on behalf of user
557 *   processes doing system calls
558 * - this driver's private kernel threads
559 *
560 * = Locks and Locking strategy =
561 *
562 * The driver uses four locking strategies for its operation:
563 *
564 * - The global SX lock "pmc_sx" is used to protect internal
565 *   data structures.
566 *
567 *   Calls into the module by syscall() start with this lock being
568 *   held in exclusive mode.  Depending on the requested operation,
569 *   the lock may be downgraded to 'shared' mode to allow more
570 *   concurrent readers into the module.  Calls into the module from
571 *   other parts of the kernel acquire the lock in shared mode.
572 *
573 *   This SX lock is held in exclusive mode for any operations that
574 *   modify the linkages between the driver's internal data structures.
575 *
576 *   The 'pmc_hook' function pointer is also protected by this lock.
577 *   It is only examined with the sx lock held in exclusive mode.  The
578 *   kernel module is allowed to be unloaded only with the sx lock held
579 *   in exclusive mode.  In normal syscall handling, after acquiring the
580 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
581 *   proceeding.  This prevents races between the thread unloading the module
582 *   and other threads seeking to use the module.
583 *
584 * - Lookups of target process structures and owner process structures
585 *   cannot use the global "pmc_sx" SX lock because these lookups need
586 *   to happen during context switches and in other critical sections
587 *   where sleeping is not allowed.  We protect these lookup tables
588 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
589 *   "pmc_ownerhash_mtx".
590 *
591 * - Interrupt handlers work in a lock free manner.  At interrupt
592 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
593 *   when the PMC was started.  If this pointer is NULL, the interrupt
594 *   is ignored after updating driver statistics.  We ensure that this
595 *   pointer is set (using an atomic operation if necessary) before the
596 *   PMC hardware is started.  Conversely, this pointer is unset atomically
597 *   only after the PMC hardware is stopped.
598 *
599 *   We ensure that everything needed for the operation of an
600 *   interrupt handler is available without it needing to acquire any
601 *   locks.  We also ensure that a PMC's software state is destroyed only
602 *   after the PMC is taken off hardware (on all CPUs).
603 *
604 * - Context-switch handling with process-private PMCs needs more
605 *   care.
606 *
607 *   A given process may be the target of multiple PMCs.  For example,
608 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
609 *   while the target process is running on another.  A PMC could also
610 *   be getting released because its owner is exiting.  We tackle
611 *   these situations in the following manner:
612 *
613 *   - each target process structure 'pmc_process' has an array
614 *     of 'struct pmc *' pointers, one for each hardware PMC.
615 *
616 *   - At context switch IN time, each "target" PMC in RUNNING state
617 *     gets started on hardware and a pointer to each PMC is copied into
618 *     the per-cpu phw array.  The 'runcount' for the PMC is
619 *     incremented.
620 *
621 *   - At context switch OUT time, all process-virtual PMCs are stopped
622 *     on hardware.  The saved value is added to the PMCs value field
623 *     only if the PMC is in a non-deleted state (the PMCs state could
624 *     have changed during the current time slice).
625 *
626 *     Note that since in-between a switch IN on a processor and a switch
627 *     OUT, the PMC could have been released on another CPU.  Therefore
628 *     context switch OUT always looks at the hardware state to turn
629 *     OFF PMCs and will update a PMC's saved value only if reachable
630 *     from the target process record.
631 *
632 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
633 *     be attached to many processes at the time of the call and could
634 *     be active on multiple CPUs).
635 *
636 *     We prevent further scheduling of the PMC by marking it as in
637 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
638 *     this PMC is currently running on a CPU somewhere.  The thread
639 *     doing the PMCRELEASE operation waits by repeatedly doing a
640 *     pause() till the runcount comes to zero.
641 *
642 * The contents of a PMC descriptor (struct pmc) are protected using
643 * a spin-mutex.  In order to save space, we use a mutex pool.
644 *
645 * In terms of lock types used by witness(4), we use:
646 * - Type "pmc-sx", used by the global SX lock.
647 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
648 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
649 * - Type "pmc-leaf", used for all other spin mutexes.
650 */
651
652/*
653 * save the cpu binding of the current kthread
654 */
655
656static void
657pmc_save_cpu_binding(struct pmc_binding *pb)
658{
659	PMCDBG0(CPU,BND,2, "save-cpu");
660	thread_lock(curthread);
661	pb->pb_bound = sched_is_bound(curthread);
662	pb->pb_cpu   = curthread->td_oncpu;
663	thread_unlock(curthread);
664	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
665}
666
667/*
668 * restore the cpu binding of the current thread
669 */
670
671static void
672pmc_restore_cpu_binding(struct pmc_binding *pb)
673{
674	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
675	    curthread->td_oncpu, pb->pb_cpu);
676	thread_lock(curthread);
677	if (pb->pb_bound)
678		sched_bind(curthread, pb->pb_cpu);
679	else
680		sched_unbind(curthread);
681	thread_unlock(curthread);
682	PMCDBG0(CPU,BND,2, "restore-cpu done");
683}
684
685/*
686 * move execution over the specified cpu and bind it there.
687 */
688
689static void
690pmc_select_cpu(int cpu)
691{
692	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
693	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
694
695	/* Never move to an inactive CPU. */
696	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
697	    "CPU %d", __LINE__, cpu));
698
699	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
700	thread_lock(curthread);
701	sched_bind(curthread, cpu);
702	thread_unlock(curthread);
703
704	KASSERT(curthread->td_oncpu == cpu,
705	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
706		cpu, curthread->td_oncpu));
707
708	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
709}
710
711/*
712 * Force a context switch.
713 *
714 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
715 * guaranteed to force a context switch.
716 */
717
718static void
719pmc_force_context_switch(void)
720{
721
722	pause("pmcctx", 1);
723}
724
725/*
726 * Get the file name for an executable.  This is a simple wrapper
727 * around vn_fullpath(9).
728 */
729
730static void
731pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
732{
733
734	*fullpath = "unknown";
735	*freepath = NULL;
736	vn_fullpath(curthread, v, fullpath, freepath);
737}
738
739/*
740 * remove an process owning PMCs
741 */
742
743void
744pmc_remove_owner(struct pmc_owner *po)
745{
746	struct pmc *pm, *tmp;
747
748	sx_assert(&pmc_sx, SX_XLOCKED);
749
750	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
751
752	/* Remove descriptor from the owner hash table */
753	LIST_REMOVE(po, po_next);
754
755	/* release all owned PMC descriptors */
756	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
757		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
758		KASSERT(pm->pm_owner == po,
759		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
760
761		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
762		pmc_destroy_pmc_descriptor(pm);
763	}
764
765	KASSERT(po->po_sscount == 0,
766	    ("[pmc,%d] SS count not zero", __LINE__));
767	KASSERT(LIST_EMPTY(&po->po_pmcs),
768	    ("[pmc,%d] PMC list not empty", __LINE__));
769
770	/* de-configure the log file if present */
771	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
772		pmclog_deconfigure_log(po);
773}
774
775/*
776 * remove an owner process record if all conditions are met.
777 */
778
779static void
780pmc_maybe_remove_owner(struct pmc_owner *po)
781{
782
783	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
784
785	/*
786	 * Remove owner record if
787	 * - this process does not own any PMCs
788	 * - this process has not allocated a system-wide sampling buffer
789	 */
790
791	if (LIST_EMPTY(&po->po_pmcs) &&
792	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
793		pmc_remove_owner(po);
794		pmc_destroy_owner_descriptor(po);
795	}
796}
797
798/*
799 * Add an association between a target process and a PMC.
800 */
801
802static void
803pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
804{
805	int ri;
806	struct pmc_target *pt;
807
808	sx_assert(&pmc_sx, SX_XLOCKED);
809
810	KASSERT(pm != NULL && pp != NULL,
811	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
812	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
813	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
814		__LINE__, pm, pp->pp_proc->p_pid));
815	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
816	    ("[pmc,%d] Illegal reference count %d for process record %p",
817		__LINE__, pp->pp_refcnt, (void *) pp));
818
819	ri = PMC_TO_ROWINDEX(pm);
820
821	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
822	    pm, ri, pp);
823
824#ifdef	HWPMC_DEBUG
825	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
826	    if (pt->pt_process == pp)
827		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
828				__LINE__, pp, pm));
829#endif
830
831	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
832	pt->pt_process = pp;
833
834	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
835
836	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
837	    (uintptr_t)pm);
838
839	if (pm->pm_owner->po_owner == pp->pp_proc)
840		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
841
842	/*
843	 * Initialize the per-process values at this row index.
844	 */
845	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
846	    pm->pm_sc.pm_reloadcount : 0;
847
848	pp->pp_refcnt++;
849
850}
851
852/*
853 * Removes the association between a target process and a PMC.
854 */
855
856static void
857pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
858{
859	int ri;
860	struct proc *p;
861	struct pmc_target *ptgt;
862
863	sx_assert(&pmc_sx, SX_XLOCKED);
864
865	KASSERT(pm != NULL && pp != NULL,
866	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
867
868	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
869	    ("[pmc,%d] Illegal ref count %d on process record %p",
870		__LINE__, pp->pp_refcnt, (void *) pp));
871
872	ri = PMC_TO_ROWINDEX(pm);
873
874	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
875	    pm, ri, pp);
876
877	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
878	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
879		ri, pm, pp->pp_pmcs[ri].pp_pmc));
880
881	pp->pp_pmcs[ri].pp_pmc = NULL;
882	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
883
884	/* Remove owner-specific flags */
885	if (pm->pm_owner->po_owner == pp->pp_proc) {
886		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
887		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
888	}
889
890	pp->pp_refcnt--;
891
892	/* Remove the target process from the PMC structure */
893	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
894		if (ptgt->pt_process == pp)
895			break;
896
897	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
898		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
899
900	LIST_REMOVE(ptgt, pt_next);
901	free(ptgt, M_PMC);
902
903	/* if the PMC now lacks targets, send the owner a SIGIO */
904	if (LIST_EMPTY(&pm->pm_targets)) {
905		p = pm->pm_owner->po_owner;
906		PROC_LOCK(p);
907		kern_psignal(p, SIGIO);
908		PROC_UNLOCK(p);
909
910		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
911		    SIGIO);
912	}
913}
914
915/*
916 * Check if PMC 'pm' may be attached to target process 't'.
917 */
918
919static int
920pmc_can_attach(struct pmc *pm, struct proc *t)
921{
922	struct proc *o;		/* pmc owner */
923	struct ucred *oc, *tc;	/* owner, target credentials */
924	int decline_attach, i;
925
926	/*
927	 * A PMC's owner can always attach that PMC to itself.
928	 */
929
930	if ((o = pm->pm_owner->po_owner) == t)
931		return 0;
932
933	PROC_LOCK(o);
934	oc = o->p_ucred;
935	crhold(oc);
936	PROC_UNLOCK(o);
937
938	PROC_LOCK(t);
939	tc = t->p_ucred;
940	crhold(tc);
941	PROC_UNLOCK(t);
942
943	/*
944	 * The effective uid of the PMC owner should match at least one
945	 * of the {effective,real,saved} uids of the target process.
946	 */
947
948	decline_attach = oc->cr_uid != tc->cr_uid &&
949	    oc->cr_uid != tc->cr_svuid &&
950	    oc->cr_uid != tc->cr_ruid;
951
952	/*
953	 * Every one of the target's group ids, must be in the owner's
954	 * group list.
955	 */
956	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
957		decline_attach = !groupmember(tc->cr_groups[i], oc);
958
959	/* check the read and saved gids too */
960	if (decline_attach == 0)
961		decline_attach = !groupmember(tc->cr_rgid, oc) ||
962		    !groupmember(tc->cr_svgid, oc);
963
964	crfree(tc);
965	crfree(oc);
966
967	return !decline_attach;
968}
969
970/*
971 * Attach a process to a PMC.
972 */
973
974static int
975pmc_attach_one_process(struct proc *p, struct pmc *pm)
976{
977	int ri;
978	char *fullpath, *freepath;
979	struct pmc_process	*pp;
980
981	sx_assert(&pmc_sx, SX_XLOCKED);
982
983	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
984	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
985
986	/*
987	 * Locate the process descriptor corresponding to process 'p',
988	 * allocating space as needed.
989	 *
990	 * Verify that rowindex 'pm_rowindex' is free in the process
991	 * descriptor.
992	 *
993	 * If not, allocate space for a descriptor and link the
994	 * process descriptor and PMC.
995	 */
996	ri = PMC_TO_ROWINDEX(pm);
997
998	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
999		return ENOMEM;
1000
1001	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
1002		return EEXIST;
1003
1004	if (pp->pp_pmcs[ri].pp_pmc != NULL)
1005		return EBUSY;
1006
1007	pmc_link_target_process(pm, pp);
1008
1009	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1010	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1011		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1012
1013	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1014
1015	/* issue an attach event to a configured log file */
1016	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1017		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1018		if (p->p_flag & P_KTHREAD) {
1019			fullpath = kernelname;
1020			freepath = NULL;
1021		} else
1022			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1023		if (freepath)
1024			free(freepath, M_TEMP);
1025		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1026			pmc_log_process_mappings(pm->pm_owner, p);
1027	}
1028	/* mark process as using HWPMCs */
1029	PROC_LOCK(p);
1030	p->p_flag |= P_HWPMC;
1031	PROC_UNLOCK(p);
1032
1033	return 0;
1034}
1035
1036/*
1037 * Attach a process and optionally its children
1038 */
1039
1040static int
1041pmc_attach_process(struct proc *p, struct pmc *pm)
1042{
1043	int error;
1044	struct proc *top;
1045
1046	sx_assert(&pmc_sx, SX_XLOCKED);
1047
1048	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1049	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1050
1051
1052	/*
1053	 * If this PMC successfully allowed a GETMSR operation
1054	 * in the past, disallow further ATTACHes.
1055	 */
1056
1057	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1058		return EPERM;
1059
1060	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1061		return pmc_attach_one_process(p, pm);
1062
1063	/*
1064	 * Traverse all child processes, attaching them to
1065	 * this PMC.
1066	 */
1067
1068	sx_slock(&proctree_lock);
1069
1070	top = p;
1071
1072	for (;;) {
1073		if ((error = pmc_attach_one_process(p, pm)) != 0)
1074			break;
1075		if (!LIST_EMPTY(&p->p_children))
1076			p = LIST_FIRST(&p->p_children);
1077		else for (;;) {
1078			if (p == top)
1079				goto done;
1080			if (LIST_NEXT(p, p_sibling)) {
1081				p = LIST_NEXT(p, p_sibling);
1082				break;
1083			}
1084			p = p->p_pptr;
1085		}
1086	}
1087
1088	if (error)
1089		(void) pmc_detach_process(top, pm);
1090
1091 done:
1092	sx_sunlock(&proctree_lock);
1093	return error;
1094}
1095
1096/*
1097 * Detach a process from a PMC.  If there are no other PMCs tracking
1098 * this process, remove the process structure from its hash table.  If
1099 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1100 */
1101
1102static int
1103pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1104{
1105	int ri;
1106	struct pmc_process *pp;
1107
1108	sx_assert(&pmc_sx, SX_XLOCKED);
1109
1110	KASSERT(pm != NULL,
1111	    ("[pmc,%d] null pm pointer", __LINE__));
1112
1113	ri = PMC_TO_ROWINDEX(pm);
1114
1115	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1116	    pm, ri, p, p->p_pid, p->p_comm, flags);
1117
1118	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1119		return ESRCH;
1120
1121	if (pp->pp_pmcs[ri].pp_pmc != pm)
1122		return EINVAL;
1123
1124	pmc_unlink_target_process(pm, pp);
1125
1126	/* Issue a detach entry if a log file is configured */
1127	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1128		pmclog_process_pmcdetach(pm, p->p_pid);
1129
1130	/*
1131	 * If there are no PMCs targetting this process, we remove its
1132	 * descriptor from the target hash table and unset the P_HWPMC
1133	 * flag in the struct proc.
1134	 */
1135	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1136	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1137		__LINE__, pp->pp_refcnt, pp));
1138
1139	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1140		return 0;
1141
1142	pmc_remove_process_descriptor(pp);
1143
1144	if (flags & PMC_FLAG_REMOVE)
1145		free(pp, M_PMC);
1146
1147	PROC_LOCK(p);
1148	p->p_flag &= ~P_HWPMC;
1149	PROC_UNLOCK(p);
1150
1151	return 0;
1152}
1153
1154/*
1155 * Detach a process and optionally its descendants from a PMC.
1156 */
1157
1158static int
1159pmc_detach_process(struct proc *p, struct pmc *pm)
1160{
1161	struct proc *top;
1162
1163	sx_assert(&pmc_sx, SX_XLOCKED);
1164
1165	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1166	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1167
1168	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1169		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1170
1171	/*
1172	 * Traverse all children, detaching them from this PMC.  We
1173	 * ignore errors since we could be detaching a PMC from a
1174	 * partially attached proc tree.
1175	 */
1176
1177	sx_slock(&proctree_lock);
1178
1179	top = p;
1180
1181	for (;;) {
1182		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1183
1184		if (!LIST_EMPTY(&p->p_children))
1185			p = LIST_FIRST(&p->p_children);
1186		else for (;;) {
1187			if (p == top)
1188				goto done;
1189			if (LIST_NEXT(p, p_sibling)) {
1190				p = LIST_NEXT(p, p_sibling);
1191				break;
1192			}
1193			p = p->p_pptr;
1194		}
1195	}
1196
1197 done:
1198	sx_sunlock(&proctree_lock);
1199
1200	if (LIST_EMPTY(&pm->pm_targets))
1201		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1202
1203	return 0;
1204}
1205
1206
1207/*
1208 * Thread context switch IN
1209 */
1210
1211static void
1212pmc_process_csw_in(struct thread *td)
1213{
1214	int cpu;
1215	unsigned int adjri, ri;
1216	struct pmc *pm;
1217	struct proc *p;
1218	struct pmc_cpu *pc;
1219	struct pmc_hw *phw;
1220	pmc_value_t newvalue;
1221	struct pmc_process *pp;
1222	struct pmc_classdep *pcd;
1223
1224	p = td->td_proc;
1225
1226	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1227		return;
1228
1229	KASSERT(pp->pp_proc == td->td_proc,
1230	    ("[pmc,%d] not my thread state", __LINE__));
1231
1232	critical_enter(); /* no preemption from this point */
1233
1234	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1235
1236	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1237	    p->p_pid, p->p_comm, pp);
1238
1239	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1240	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1241
1242	pc = pmc_pcpu[cpu];
1243
1244	for (ri = 0; ri < md->pmd_npmc; ri++) {
1245
1246		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1247			continue;
1248
1249		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1250		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1251			__LINE__, PMC_TO_MODE(pm)));
1252
1253		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1254		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1255			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1256
1257		/*
1258		 * Only PMCs that are marked as 'RUNNING' need
1259		 * be placed on hardware.
1260		 */
1261
1262		if (pm->pm_state != PMC_STATE_RUNNING)
1263			continue;
1264
1265		/* increment PMC runcount */
1266		atomic_add_rel_int(&pm->pm_runcount, 1);
1267
1268		/* configure the HWPMC we are going to use. */
1269		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1270		pcd->pcd_config_pmc(cpu, adjri, pm);
1271
1272		phw = pc->pc_hwpmcs[ri];
1273
1274		KASSERT(phw != NULL,
1275		    ("[pmc,%d] null hw pointer", __LINE__));
1276
1277		KASSERT(phw->phw_pmc == pm,
1278		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1279			phw->phw_pmc, pm));
1280
1281		/*
1282		 * Write out saved value and start the PMC.
1283		 *
1284		 * Sampling PMCs use a per-process value, while
1285		 * counting mode PMCs use a per-pmc value that is
1286		 * inherited across descendants.
1287		 */
1288		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1289			mtx_pool_lock_spin(pmc_mtxpool, pm);
1290
1291			/*
1292			 * Use the saved value calculated after the most recent
1293			 * thread switch out to start this counter.  Reset
1294			 * the saved count in case another thread from this
1295			 * process switches in before any threads switch out.
1296			 */
1297			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1298			    pp->pp_pmcs[ri].pp_pmcval;
1299			pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount;
1300			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1301		} else {
1302			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1303			    ("[pmc,%d] illegal mode=%d", __LINE__,
1304			    PMC_TO_MODE(pm)));
1305			mtx_pool_lock_spin(pmc_mtxpool, pm);
1306			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1307			    pm->pm_gv.pm_savedvalue;
1308			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1309		}
1310
1311		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1312
1313		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1314
1315		/* If a sampling mode PMC, reset stalled state. */
1316		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1317			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
1318
1319		/* Indicate that we desire this to run. */
1320		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
1321
1322		/* Start the PMC. */
1323		pcd->pcd_start_pmc(cpu, adjri);
1324	}
1325
1326	/*
1327	 * perform any other architecture/cpu dependent thread
1328	 * switch-in actions.
1329	 */
1330
1331	(void) (*md->pmd_switch_in)(pc, pp);
1332
1333	critical_exit();
1334
1335}
1336
1337/*
1338 * Thread context switch OUT.
1339 */
1340
1341static void
1342pmc_process_csw_out(struct thread *td)
1343{
1344	int cpu;
1345	int64_t tmp;
1346	struct pmc *pm;
1347	struct proc *p;
1348	enum pmc_mode mode;
1349	struct pmc_cpu *pc;
1350	pmc_value_t newvalue;
1351	unsigned int adjri, ri;
1352	struct pmc_process *pp;
1353	struct pmc_classdep *pcd;
1354
1355
1356	/*
1357	 * Locate our process descriptor; this may be NULL if
1358	 * this process is exiting and we have already removed
1359	 * the process from the target process table.
1360	 *
1361	 * Note that due to kernel preemption, multiple
1362	 * context switches may happen while the process is
1363	 * exiting.
1364	 *
1365	 * Note also that if the target process cannot be
1366	 * found we still need to deconfigure any PMCs that
1367	 * are currently running on hardware.
1368	 */
1369
1370	p = td->td_proc;
1371	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1372
1373	/*
1374	 * save PMCs
1375	 */
1376
1377	critical_enter();
1378
1379	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1380
1381	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1382	    p->p_pid, p->p_comm, pp);
1383
1384	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1385	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1386
1387	pc = pmc_pcpu[cpu];
1388
1389	/*
1390	 * When a PMC gets unlinked from a target PMC, it will
1391	 * be removed from the target's pp_pmc[] array.
1392	 *
1393	 * However, on a MP system, the target could have been
1394	 * executing on another CPU at the time of the unlink.
1395	 * So, at context switch OUT time, we need to look at
1396	 * the hardware to determine if a PMC is scheduled on
1397	 * it.
1398	 */
1399
1400	for (ri = 0; ri < md->pmd_npmc; ri++) {
1401
1402		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1403		pm  = NULL;
1404		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1405
1406		if (pm == NULL)	/* nothing at this row index */
1407			continue;
1408
1409		mode = PMC_TO_MODE(pm);
1410		if (!PMC_IS_VIRTUAL_MODE(mode))
1411			continue; /* not a process virtual PMC */
1412
1413		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1414		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1415			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1416
1417		/*
1418		 * Change desired state, and then stop if not stalled.
1419		 * This two-step dance should avoid race conditions where
1420		 * an interrupt re-enables the PMC after this code has
1421		 * already checked the pm_stalled flag.
1422		 */
1423		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
1424		if (!CPU_ISSET(cpu, &pm->pm_stalled))
1425			pcd->pcd_stop_pmc(cpu, adjri);
1426
1427		/* reduce this PMC's runcount */
1428		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1429
1430		/*
1431		 * If this PMC is associated with this process,
1432		 * save the reading.
1433		 */
1434
1435		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1436
1437			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1438			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1439				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1440
1441			KASSERT(pp->pp_refcnt > 0,
1442			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1443				pp->pp_refcnt));
1444
1445			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1446
1447			if (mode == PMC_MODE_TS) {
1448				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (samp)",
1449				    cpu, ri, PMC_PCPU_SAVED(cpu,ri) - newvalue);
1450
1451				/*
1452				 * For sampling process-virtual PMCs,
1453				 * newvalue is the number of events to be seen
1454				 * until the next sampling interrupt.
1455				 * We can just add the events left from this
1456				 * invocation to the counter, then adjust
1457				 * in case we overflow our range.
1458				 *
1459				 * (Recall that we reload the counter every
1460				 * time we use it.)
1461				 */
1462				mtx_pool_lock_spin(pmc_mtxpool, pm);
1463
1464				pp->pp_pmcs[ri].pp_pmcval += newvalue;
1465				if (pp->pp_pmcs[ri].pp_pmcval >
1466				    pm->pm_sc.pm_reloadcount)
1467					pp->pp_pmcs[ri].pp_pmcval -=
1468					    pm->pm_sc.pm_reloadcount;
1469				KASSERT(pp->pp_pmcs[ri].pp_pmcval > 0 &&
1470				    pp->pp_pmcs[ri].pp_pmcval <=
1471				    pm->pm_sc.pm_reloadcount,
1472				    ("[pmc,%d] pp_pmcval outside of expected "
1473				    "range cpu=%d ri=%d pp_pmcval=%jx "
1474				    "pm_reloadcount=%jx", __LINE__, cpu, ri,
1475				    pp->pp_pmcs[ri].pp_pmcval,
1476				    pm->pm_sc.pm_reloadcount));
1477				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1478
1479			} else {
1480				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1481
1482				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1483				    cpu, ri, tmp);
1484
1485				/*
1486				 * For counting process-virtual PMCs,
1487				 * we expect the count to be
1488				 * increasing monotonically, modulo a 64
1489				 * bit wraparound.
1490				 */
1491				KASSERT((int64_t) tmp >= 0,
1492				    ("[pmc,%d] negative increment cpu=%d "
1493				     "ri=%d newvalue=%jx saved=%jx "
1494				     "incr=%jx", __LINE__, cpu, ri,
1495				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1496
1497				mtx_pool_lock_spin(pmc_mtxpool, pm);
1498				pm->pm_gv.pm_savedvalue += tmp;
1499				pp->pp_pmcs[ri].pp_pmcval += tmp;
1500				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1501
1502				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1503					pmclog_process_proccsw(pm, pp, tmp);
1504			}
1505		}
1506
1507		/* mark hardware as free */
1508		pcd->pcd_config_pmc(cpu, adjri, NULL);
1509	}
1510
1511	/*
1512	 * perform any other architecture/cpu dependent thread
1513	 * switch out functions.
1514	 */
1515
1516	(void) (*md->pmd_switch_out)(pc, pp);
1517
1518	critical_exit();
1519}
1520
1521/*
1522 * A mapping change for a process.
1523 */
1524
1525static void
1526pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1527{
1528	int ri;
1529	pid_t pid;
1530	char *fullpath, *freepath;
1531	const struct pmc *pm;
1532	struct pmc_owner *po;
1533	const struct pmc_process *pp;
1534
1535	freepath = fullpath = NULL;
1536	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1537
1538	pid = td->td_proc->p_pid;
1539
1540	/* Inform owners of all system-wide sampling PMCs. */
1541	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1542	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1543		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1544
1545	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1546		goto done;
1547
1548	/*
1549	 * Inform sampling PMC owners tracking this process.
1550	 */
1551	for (ri = 0; ri < md->pmd_npmc; ri++)
1552		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1553		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1554			pmclog_process_map_in(pm->pm_owner,
1555			    pid, pkm->pm_address, fullpath);
1556
1557  done:
1558	if (freepath)
1559		free(freepath, M_TEMP);
1560}
1561
1562
1563/*
1564 * Log an munmap request.
1565 */
1566
1567static void
1568pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1569{
1570	int ri;
1571	pid_t pid;
1572	struct pmc_owner *po;
1573	const struct pmc *pm;
1574	const struct pmc_process *pp;
1575
1576	pid = td->td_proc->p_pid;
1577
1578	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1579	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1580		pmclog_process_map_out(po, pid, pkm->pm_address,
1581		    pkm->pm_address + pkm->pm_size);
1582
1583	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1584		return;
1585
1586	for (ri = 0; ri < md->pmd_npmc; ri++)
1587		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1588		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1589			pmclog_process_map_out(pm->pm_owner, pid,
1590			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1591}
1592
1593/*
1594 * Log mapping information about the kernel.
1595 */
1596
1597static void
1598pmc_log_kernel_mappings(struct pmc *pm)
1599{
1600	struct pmc_owner *po;
1601	struct pmckern_map_in *km, *kmbase;
1602
1603	sx_assert(&pmc_sx, SX_LOCKED);
1604	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1605	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1606		__LINE__, (void *) pm));
1607
1608	po = pm->pm_owner;
1609
1610	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1611		return;
1612
1613	/*
1614	 * Log the current set of kernel modules.
1615	 */
1616	kmbase = linker_hwpmc_list_objects();
1617	for (km = kmbase; km->pm_file != NULL; km++) {
1618		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1619		    (void *) km->pm_address);
1620		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1621		    km->pm_file);
1622	}
1623	free(kmbase, M_LINKER);
1624
1625	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1626}
1627
1628/*
1629 * Log the mappings for a single process.
1630 */
1631
1632static void
1633pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1634{
1635	vm_map_t map;
1636	struct vnode *vp;
1637	struct vmspace *vm;
1638	vm_map_entry_t entry;
1639	vm_offset_t last_end;
1640	u_int last_timestamp;
1641	struct vnode *last_vp;
1642	vm_offset_t start_addr;
1643	vm_object_t obj, lobj, tobj;
1644	char *fullpath, *freepath;
1645
1646	last_vp = NULL;
1647	last_end = (vm_offset_t) 0;
1648	fullpath = freepath = NULL;
1649
1650	if ((vm = vmspace_acquire_ref(p)) == NULL)
1651		return;
1652
1653	map = &vm->vm_map;
1654	vm_map_lock_read(map);
1655
1656	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1657
1658		if (entry == NULL) {
1659			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1660			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1661			break;
1662		}
1663
1664		/*
1665		 * We only care about executable map entries.
1666		 */
1667		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1668		    !(entry->protection & VM_PROT_EXECUTE) ||
1669		    (entry->object.vm_object == NULL)) {
1670			continue;
1671		}
1672
1673		obj = entry->object.vm_object;
1674		VM_OBJECT_RLOCK(obj);
1675
1676		/*
1677		 * Walk the backing_object list to find the base
1678		 * (non-shadowed) vm_object.
1679		 */
1680		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1681			if (tobj != obj)
1682				VM_OBJECT_RLOCK(tobj);
1683			if (lobj != obj)
1684				VM_OBJECT_RUNLOCK(lobj);
1685			lobj = tobj;
1686		}
1687
1688		/*
1689		 * At this point lobj is the base vm_object and it is locked.
1690		 */
1691		if (lobj == NULL) {
1692			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1693			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1694			VM_OBJECT_RUNLOCK(obj);
1695			continue;
1696		}
1697
1698		vp = vm_object_vnode(lobj);
1699		if (vp == NULL) {
1700			if (lobj != obj)
1701				VM_OBJECT_RUNLOCK(lobj);
1702			VM_OBJECT_RUNLOCK(obj);
1703			continue;
1704		}
1705
1706		/*
1707		 * Skip contiguous regions that point to the same
1708		 * vnode, so we don't emit redundant MAP-IN
1709		 * directives.
1710		 */
1711		if (entry->start == last_end && vp == last_vp) {
1712			last_end = entry->end;
1713			if (lobj != obj)
1714				VM_OBJECT_RUNLOCK(lobj);
1715			VM_OBJECT_RUNLOCK(obj);
1716			continue;
1717		}
1718
1719		/*
1720		 * We don't want to keep the proc's vm_map or this
1721		 * vm_object locked while we walk the pathname, since
1722		 * vn_fullpath() can sleep.  However, if we drop the
1723		 * lock, it's possible for concurrent activity to
1724		 * modify the vm_map list.  To protect against this,
1725		 * we save the vm_map timestamp before we release the
1726		 * lock, and check it after we reacquire the lock
1727		 * below.
1728		 */
1729		start_addr = entry->start;
1730		last_end = entry->end;
1731		last_timestamp = map->timestamp;
1732		vm_map_unlock_read(map);
1733
1734		vref(vp);
1735		if (lobj != obj)
1736			VM_OBJECT_RUNLOCK(lobj);
1737
1738		VM_OBJECT_RUNLOCK(obj);
1739
1740		freepath = NULL;
1741		pmc_getfilename(vp, &fullpath, &freepath);
1742		last_vp = vp;
1743
1744		vrele(vp);
1745
1746		vp = NULL;
1747		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1748		if (freepath)
1749			free(freepath, M_TEMP);
1750
1751		vm_map_lock_read(map);
1752
1753		/*
1754		 * If our saved timestamp doesn't match, this means
1755		 * that the vm_map was modified out from under us and
1756		 * we can't trust our current "entry" pointer.  Do a
1757		 * new lookup for this entry.  If there is no entry
1758		 * for this address range, vm_map_lookup_entry() will
1759		 * return the previous one, so we always want to go to
1760		 * entry->next on the next loop iteration.
1761		 *
1762		 * There is an edge condition here that can occur if
1763		 * there is no entry at or before this address.  In
1764		 * this situation, vm_map_lookup_entry returns
1765		 * &map->header, which would cause our loop to abort
1766		 * without processing the rest of the map.  However,
1767		 * in practice this will never happen for process
1768		 * vm_map.  This is because the executable's text
1769		 * segment is the first mapping in the proc's address
1770		 * space, and this mapping is never removed until the
1771		 * process exits, so there will always be a non-header
1772		 * entry at or before the requested address for
1773		 * vm_map_lookup_entry to return.
1774		 */
1775		if (map->timestamp != last_timestamp)
1776			vm_map_lookup_entry(map, last_end - 1, &entry);
1777	}
1778
1779	vm_map_unlock_read(map);
1780	vmspace_free(vm);
1781	return;
1782}
1783
1784/*
1785 * Log mappings for all processes in the system.
1786 */
1787
1788static void
1789pmc_log_all_process_mappings(struct pmc_owner *po)
1790{
1791	struct proc *p, *top;
1792
1793	sx_assert(&pmc_sx, SX_XLOCKED);
1794
1795	if ((p = pfind(1)) == NULL)
1796		panic("[pmc,%d] Cannot find init", __LINE__);
1797
1798	PROC_UNLOCK(p);
1799
1800	sx_slock(&proctree_lock);
1801
1802	top = p;
1803
1804	for (;;) {
1805		pmc_log_process_mappings(po, p);
1806		if (!LIST_EMPTY(&p->p_children))
1807			p = LIST_FIRST(&p->p_children);
1808		else for (;;) {
1809			if (p == top)
1810				goto done;
1811			if (LIST_NEXT(p, p_sibling)) {
1812				p = LIST_NEXT(p, p_sibling);
1813				break;
1814			}
1815			p = p->p_pptr;
1816		}
1817	}
1818 done:
1819	sx_sunlock(&proctree_lock);
1820}
1821
1822/*
1823 * The 'hook' invoked from the kernel proper
1824 */
1825
1826
1827#ifdef	HWPMC_DEBUG
1828const char *pmc_hooknames[] = {
1829	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1830	"",
1831	"EXEC",
1832	"CSW-IN",
1833	"CSW-OUT",
1834	"SAMPLE",
1835	"UNUSED1",
1836	"UNUSED2",
1837	"MMAP",
1838	"MUNMAP",
1839	"CALLCHAIN-NMI",
1840	"CALLCHAIN-SOFT",
1841	"SOFTSAMPLING"
1842};
1843#endif
1844
1845static int
1846pmc_hook_handler(struct thread *td, int function, void *arg)
1847{
1848
1849	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1850	    pmc_hooknames[function], arg);
1851
1852	switch (function)
1853	{
1854
1855	/*
1856	 * Process exec()
1857	 */
1858
1859	case PMC_FN_PROCESS_EXEC:
1860	{
1861		char *fullpath, *freepath;
1862		unsigned int ri;
1863		int is_using_hwpmcs;
1864		struct pmc *pm;
1865		struct proc *p;
1866		struct pmc_owner *po;
1867		struct pmc_process *pp;
1868		struct pmckern_procexec *pk;
1869
1870		sx_assert(&pmc_sx, SX_XLOCKED);
1871
1872		p = td->td_proc;
1873		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1874
1875		pk = (struct pmckern_procexec *) arg;
1876
1877		/* Inform owners of SS mode PMCs of the exec event. */
1878		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1879		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1880			    pmclog_process_procexec(po, PMC_ID_INVALID,
1881				p->p_pid, pk->pm_entryaddr, fullpath);
1882
1883		PROC_LOCK(p);
1884		is_using_hwpmcs = p->p_flag & P_HWPMC;
1885		PROC_UNLOCK(p);
1886
1887		if (!is_using_hwpmcs) {
1888			if (freepath)
1889				free(freepath, M_TEMP);
1890			break;
1891		}
1892
1893		/*
1894		 * PMCs are not inherited across an exec():  remove any
1895		 * PMCs that this process is the owner of.
1896		 */
1897
1898		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1899			pmc_remove_owner(po);
1900			pmc_destroy_owner_descriptor(po);
1901		}
1902
1903		/*
1904		 * If the process being exec'ed is not the target of any
1905		 * PMC, we are done.
1906		 */
1907		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1908			if (freepath)
1909				free(freepath, M_TEMP);
1910			break;
1911		}
1912
1913		/*
1914		 * Log the exec event to all monitoring owners.  Skip
1915		 * owners who have already recieved the event because
1916		 * they had system sampling PMCs active.
1917		 */
1918		for (ri = 0; ri < md->pmd_npmc; ri++)
1919			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1920				po = pm->pm_owner;
1921				if (po->po_sscount == 0 &&
1922				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1923					pmclog_process_procexec(po, pm->pm_id,
1924					    p->p_pid, pk->pm_entryaddr,
1925					    fullpath);
1926			}
1927
1928		if (freepath)
1929			free(freepath, M_TEMP);
1930
1931
1932		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1933		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1934
1935		if (pk->pm_credentialschanged == 0) /* no change */
1936			break;
1937
1938		/*
1939		 * If the newly exec()'ed process has a different credential
1940		 * than before, allow it to be the target of a PMC only if
1941		 * the PMC's owner has sufficient priviledge.
1942		 */
1943
1944		for (ri = 0; ri < md->pmd_npmc; ri++)
1945			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1946				if (pmc_can_attach(pm, td->td_proc) != 0)
1947					pmc_detach_one_process(td->td_proc,
1948					    pm, PMC_FLAG_NONE);
1949
1950		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1951		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1952			pp->pp_refcnt, pp));
1953
1954		/*
1955		 * If this process is no longer the target of any
1956		 * PMCs, we can remove the process entry and free
1957		 * up space.
1958		 */
1959
1960		if (pp->pp_refcnt == 0) {
1961			pmc_remove_process_descriptor(pp);
1962			free(pp, M_PMC);
1963			break;
1964		}
1965
1966	}
1967	break;
1968
1969	case PMC_FN_CSW_IN:
1970		pmc_process_csw_in(td);
1971		break;
1972
1973	case PMC_FN_CSW_OUT:
1974		pmc_process_csw_out(td);
1975		break;
1976
1977	/*
1978	 * Process accumulated PC samples.
1979	 *
1980	 * This function is expected to be called by hardclock() for
1981	 * each CPU that has accumulated PC samples.
1982	 *
1983	 * This function is to be executed on the CPU whose samples
1984	 * are being processed.
1985	 */
1986	case PMC_FN_DO_SAMPLES:
1987
1988		/*
1989		 * Clear the cpu specific bit in the CPU mask before
1990		 * do the rest of the processing.  If the NMI handler
1991		 * gets invoked after the "atomic_clear_int()" call
1992		 * below but before "pmc_process_samples()" gets
1993		 * around to processing the interrupt, then we will
1994		 * come back here at the next hardclock() tick (and
1995		 * may find nothing to do if "pmc_process_samples()"
1996		 * had already processed the interrupt).  We don't
1997		 * lose the interrupt sample.
1998		 */
1999		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
2000		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
2001		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
2002		break;
2003
2004	case PMC_FN_MMAP:
2005		sx_assert(&pmc_sx, SX_LOCKED);
2006		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2007		break;
2008
2009	case PMC_FN_MUNMAP:
2010		sx_assert(&pmc_sx, SX_LOCKED);
2011		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2012		break;
2013
2014	case PMC_FN_USER_CALLCHAIN:
2015		/*
2016		 * Record a call chain.
2017		 */
2018		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2019		    __LINE__));
2020
2021		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2022		    (struct trapframe *) arg);
2023		td->td_pflags &= ~TDP_CALLCHAIN;
2024		break;
2025
2026	case PMC_FN_USER_CALLCHAIN_SOFT:
2027		/*
2028		 * Record a call chain.
2029		 */
2030		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2031		    __LINE__));
2032		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2033		    (struct trapframe *) arg);
2034		td->td_pflags &= ~TDP_CALLCHAIN;
2035		break;
2036
2037	case PMC_FN_SOFT_SAMPLING:
2038		/*
2039		 * Call soft PMC sampling intr.
2040		 */
2041		pmc_soft_intr((struct pmckern_soft *) arg);
2042		break;
2043
2044	default:
2045#ifdef	HWPMC_DEBUG
2046		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2047#endif
2048		break;
2049
2050	}
2051
2052	return 0;
2053}
2054
2055/*
2056 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2057 */
2058
2059static struct pmc_owner *
2060pmc_allocate_owner_descriptor(struct proc *p)
2061{
2062	uint32_t hindex;
2063	struct pmc_owner *po;
2064	struct pmc_ownerhash *poh;
2065
2066	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2067	poh = &pmc_ownerhash[hindex];
2068
2069	/* allocate space for N pointers and one descriptor struct */
2070	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2071	po->po_owner = p;
2072	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2073
2074	TAILQ_INIT(&po->po_logbuffers);
2075	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2076
2077	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2078	    p, p->p_pid, p->p_comm, po);
2079
2080	return po;
2081}
2082
2083static void
2084pmc_destroy_owner_descriptor(struct pmc_owner *po)
2085{
2086
2087	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2088	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2089
2090	mtx_destroy(&po->po_mtx);
2091	free(po, M_PMC);
2092}
2093
2094/*
2095 * find the descriptor corresponding to process 'p', adding or removing it
2096 * as specified by 'mode'.
2097 */
2098
2099static struct pmc_process *
2100pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2101{
2102	uint32_t hindex;
2103	struct pmc_process *pp, *ppnew;
2104	struct pmc_processhash *pph;
2105
2106	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2107	pph = &pmc_processhash[hindex];
2108
2109	ppnew = NULL;
2110
2111	/*
2112	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2113	 * cannot call malloc(9) once we hold a spin lock.
2114	 */
2115	if (mode & PMC_FLAG_ALLOCATE)
2116		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2117		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2118
2119	mtx_lock_spin(&pmc_processhash_mtx);
2120	LIST_FOREACH(pp, pph, pp_next)
2121	    if (pp->pp_proc == p)
2122		    break;
2123
2124	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2125		LIST_REMOVE(pp, pp_next);
2126
2127	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2128	    ppnew != NULL) {
2129		ppnew->pp_proc = p;
2130		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2131		pp = ppnew;
2132		ppnew = NULL;
2133	}
2134	mtx_unlock_spin(&pmc_processhash_mtx);
2135
2136	if (pp != NULL && ppnew != NULL)
2137		free(ppnew, M_PMC);
2138
2139	return pp;
2140}
2141
2142/*
2143 * remove a process descriptor from the process hash table.
2144 */
2145
2146static void
2147pmc_remove_process_descriptor(struct pmc_process *pp)
2148{
2149	KASSERT(pp->pp_refcnt == 0,
2150	    ("[pmc,%d] Removing process descriptor %p with count %d",
2151		__LINE__, pp, pp->pp_refcnt));
2152
2153	mtx_lock_spin(&pmc_processhash_mtx);
2154	LIST_REMOVE(pp, pp_next);
2155	mtx_unlock_spin(&pmc_processhash_mtx);
2156}
2157
2158
2159/*
2160 * find an owner descriptor corresponding to proc 'p'
2161 */
2162
2163static struct pmc_owner *
2164pmc_find_owner_descriptor(struct proc *p)
2165{
2166	uint32_t hindex;
2167	struct pmc_owner *po;
2168	struct pmc_ownerhash *poh;
2169
2170	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2171	poh = &pmc_ownerhash[hindex];
2172
2173	po = NULL;
2174	LIST_FOREACH(po, poh, po_next)
2175	    if (po->po_owner == p)
2176		    break;
2177
2178	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2179	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2180
2181	return po;
2182}
2183
2184/*
2185 * pmc_allocate_pmc_descriptor
2186 *
2187 * Allocate a pmc descriptor and initialize its
2188 * fields.
2189 */
2190
2191static struct pmc *
2192pmc_allocate_pmc_descriptor(void)
2193{
2194	struct pmc *pmc;
2195
2196	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2197
2198	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2199
2200	return pmc;
2201}
2202
2203/*
2204 * Destroy a pmc descriptor.
2205 */
2206
2207static void
2208pmc_destroy_pmc_descriptor(struct pmc *pm)
2209{
2210
2211	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2212	    pm->pm_state == PMC_STATE_FREE,
2213	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2214	KASSERT(LIST_EMPTY(&pm->pm_targets),
2215	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2216	KASSERT(pm->pm_owner == NULL,
2217	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2218	KASSERT(pm->pm_runcount == 0,
2219	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2220		pm->pm_runcount));
2221
2222	free(pm, M_PMC);
2223}
2224
2225static void
2226pmc_wait_for_pmc_idle(struct pmc *pm)
2227{
2228#ifdef HWPMC_DEBUG
2229	volatile int maxloop;
2230
2231	maxloop = 100 * pmc_cpu_max();
2232#endif
2233	/*
2234	 * Loop (with a forced context switch) till the PMC's runcount
2235	 * comes down to zero.
2236	 */
2237	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2238#ifdef HWPMC_DEBUG
2239		maxloop--;
2240		KASSERT(maxloop > 0,
2241		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2242			"pmc to be free", __LINE__,
2243			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2244#endif
2245		pmc_force_context_switch();
2246	}
2247}
2248
2249/*
2250 * This function does the following things:
2251 *
2252 *  - detaches the PMC from hardware
2253 *  - unlinks all target threads that were attached to it
2254 *  - removes the PMC from its owner's list
2255 *  - destroys the PMC private mutex
2256 *
2257 * Once this function completes, the given pmc pointer can be freed by
2258 * calling pmc_destroy_pmc_descriptor().
2259 */
2260
2261static void
2262pmc_release_pmc_descriptor(struct pmc *pm)
2263{
2264	enum pmc_mode mode;
2265	struct pmc_hw *phw;
2266	u_int adjri, ri, cpu;
2267	struct pmc_owner *po;
2268	struct pmc_binding pb;
2269	struct pmc_process *pp;
2270	struct pmc_classdep *pcd;
2271	struct pmc_target *ptgt, *tmp;
2272
2273	sx_assert(&pmc_sx, SX_XLOCKED);
2274
2275	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2276
2277	ri   = PMC_TO_ROWINDEX(pm);
2278	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2279	mode = PMC_TO_MODE(pm);
2280
2281	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2282	    mode);
2283
2284	/*
2285	 * First, we take the PMC off hardware.
2286	 */
2287	cpu = 0;
2288	if (PMC_IS_SYSTEM_MODE(mode)) {
2289
2290		/*
2291		 * A system mode PMC runs on a specific CPU.  Switch
2292		 * to this CPU and turn hardware off.
2293		 */
2294		pmc_save_cpu_binding(&pb);
2295
2296		cpu = PMC_TO_CPU(pm);
2297
2298		pmc_select_cpu(cpu);
2299
2300		/* switch off non-stalled CPUs */
2301		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2302		if (pm->pm_state == PMC_STATE_RUNNING &&
2303		    !CPU_ISSET(cpu, &pm->pm_stalled)) {
2304
2305			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2306
2307			KASSERT(phw->phw_pmc == pm,
2308			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2309				__LINE__, ri, phw->phw_pmc, pm));
2310			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2311
2312			critical_enter();
2313			pcd->pcd_stop_pmc(cpu, adjri);
2314			critical_exit();
2315		}
2316
2317		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2318
2319		critical_enter();
2320		pcd->pcd_config_pmc(cpu, adjri, NULL);
2321		critical_exit();
2322
2323		/* adjust the global and process count of SS mode PMCs */
2324		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2325			po = pm->pm_owner;
2326			po->po_sscount--;
2327			if (po->po_sscount == 0) {
2328				atomic_subtract_rel_int(&pmc_ss_count, 1);
2329				LIST_REMOVE(po, po_ssnext);
2330			}
2331		}
2332
2333		pm->pm_state = PMC_STATE_DELETED;
2334
2335		pmc_restore_cpu_binding(&pb);
2336
2337		/*
2338		 * We could have references to this PMC structure in
2339		 * the per-cpu sample queues.  Wait for the queue to
2340		 * drain.
2341		 */
2342		pmc_wait_for_pmc_idle(pm);
2343
2344	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2345
2346		/*
2347		 * A virtual PMC could be running on multiple CPUs at
2348		 * a given instant.
2349		 *
2350		 * By marking its state as DELETED, we ensure that
2351		 * this PMC is never further scheduled on hardware.
2352		 *
2353		 * Then we wait till all CPUs are done with this PMC.
2354		 */
2355		pm->pm_state = PMC_STATE_DELETED;
2356
2357
2358		/* Wait for the PMCs runcount to come to zero. */
2359		pmc_wait_for_pmc_idle(pm);
2360
2361		/*
2362		 * At this point the PMC is off all CPUs and cannot be
2363		 * freshly scheduled onto a CPU.  It is now safe to
2364		 * unlink all targets from this PMC.  If a
2365		 * process-record's refcount falls to zero, we remove
2366		 * it from the hash table.  The module-wide SX lock
2367		 * protects us from races.
2368		 */
2369		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2370			pp = ptgt->pt_process;
2371			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2372
2373			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2374
2375			/*
2376			 * If the target process record shows that no
2377			 * PMCs are attached to it, reclaim its space.
2378			 */
2379
2380			if (pp->pp_refcnt == 0) {
2381				pmc_remove_process_descriptor(pp);
2382				free(pp, M_PMC);
2383			}
2384		}
2385
2386		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2387
2388	}
2389
2390	/*
2391	 * Release any MD resources
2392	 */
2393	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2394
2395	/*
2396	 * Update row disposition
2397	 */
2398
2399	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2400		PMC_UNMARK_ROW_STANDALONE(ri);
2401	else
2402		PMC_UNMARK_ROW_THREAD(ri);
2403
2404	/* unlink from the owner's list */
2405	if (pm->pm_owner) {
2406		LIST_REMOVE(pm, pm_next);
2407		pm->pm_owner = NULL;
2408	}
2409}
2410
2411/*
2412 * Register an owner and a pmc.
2413 */
2414
2415static int
2416pmc_register_owner(struct proc *p, struct pmc *pmc)
2417{
2418	struct pmc_owner *po;
2419
2420	sx_assert(&pmc_sx, SX_XLOCKED);
2421
2422	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2423		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2424			return ENOMEM;
2425
2426	KASSERT(pmc->pm_owner == NULL,
2427	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2428	pmc->pm_owner  = po;
2429
2430	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2431
2432	PROC_LOCK(p);
2433	p->p_flag |= P_HWPMC;
2434	PROC_UNLOCK(p);
2435
2436	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2437		pmclog_process_pmcallocate(pmc);
2438
2439	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2440	    po, pmc);
2441
2442	return 0;
2443}
2444
2445/*
2446 * Return the current row disposition:
2447 * == 0 => FREE
2448 *  > 0 => PROCESS MODE
2449 *  < 0 => SYSTEM MODE
2450 */
2451
2452int
2453pmc_getrowdisp(int ri)
2454{
2455	return pmc_pmcdisp[ri];
2456}
2457
2458/*
2459 * Check if a PMC at row index 'ri' can be allocated to the current
2460 * process.
2461 *
2462 * Allocation can fail if:
2463 *   - the current process is already being profiled by a PMC at index 'ri',
2464 *     attached to it via OP_PMCATTACH.
2465 *   - the current process has already allocated a PMC at index 'ri'
2466 *     via OP_ALLOCATE.
2467 */
2468
2469static int
2470pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2471{
2472	enum pmc_mode mode;
2473	struct pmc *pm;
2474	struct pmc_owner *po;
2475	struct pmc_process *pp;
2476
2477	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2478	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2479
2480	/*
2481	 * We shouldn't have already allocated a process-mode PMC at
2482	 * row index 'ri'.
2483	 *
2484	 * We shouldn't have allocated a system-wide PMC on the same
2485	 * CPU and same RI.
2486	 */
2487	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2488		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2489		    if (PMC_TO_ROWINDEX(pm) == ri) {
2490			    mode = PMC_TO_MODE(pm);
2491			    if (PMC_IS_VIRTUAL_MODE(mode))
2492				    return EEXIST;
2493			    if (PMC_IS_SYSTEM_MODE(mode) &&
2494				(int) PMC_TO_CPU(pm) == cpu)
2495				    return EEXIST;
2496		    }
2497	        }
2498
2499	/*
2500	 * We also shouldn't be the target of any PMC at this index
2501	 * since otherwise a PMC_ATTACH to ourselves will fail.
2502	 */
2503	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2504		if (pp->pp_pmcs[ri].pp_pmc)
2505			return EEXIST;
2506
2507	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2508	    p, p->p_pid, p->p_comm, ri);
2509
2510	return 0;
2511}
2512
2513/*
2514 * Check if a given PMC at row index 'ri' can be currently used in
2515 * mode 'mode'.
2516 */
2517
2518static int
2519pmc_can_allocate_row(int ri, enum pmc_mode mode)
2520{
2521	enum pmc_disp	disp;
2522
2523	sx_assert(&pmc_sx, SX_XLOCKED);
2524
2525	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2526
2527	if (PMC_IS_SYSTEM_MODE(mode))
2528		disp = PMC_DISP_STANDALONE;
2529	else
2530		disp = PMC_DISP_THREAD;
2531
2532	/*
2533	 * check disposition for PMC row 'ri':
2534	 *
2535	 * Expected disposition		Row-disposition		Result
2536	 *
2537	 * STANDALONE			STANDALONE or FREE	proceed
2538	 * STANDALONE			THREAD			fail
2539	 * THREAD			THREAD or FREE		proceed
2540	 * THREAD			STANDALONE		fail
2541	 */
2542
2543	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2544	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2545	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2546		return EBUSY;
2547
2548	/*
2549	 * All OK
2550	 */
2551
2552	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2553
2554	return 0;
2555
2556}
2557
2558/*
2559 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2560 */
2561
2562static struct pmc *
2563pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2564{
2565	struct pmc *pm;
2566
2567	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2568	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2569		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2570
2571	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2572	    if (pm->pm_id == pmcid)
2573		    return pm;
2574
2575	return NULL;
2576}
2577
2578static int
2579pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2580{
2581
2582	struct pmc *pm;
2583	struct pmc_owner *po;
2584
2585	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
2586
2587	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2588		return ESRCH;
2589
2590	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2591		return EINVAL;
2592
2593	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2594
2595	*pmc = pm;
2596	return 0;
2597}
2598
2599/*
2600 * Start a PMC.
2601 */
2602
2603static int
2604pmc_start(struct pmc *pm)
2605{
2606	enum pmc_mode mode;
2607	struct pmc_owner *po;
2608	struct pmc_binding pb;
2609	struct pmc_classdep *pcd;
2610	int adjri, error, cpu, ri;
2611
2612	KASSERT(pm != NULL,
2613	    ("[pmc,%d] null pm", __LINE__));
2614
2615	mode = PMC_TO_MODE(pm);
2616	ri   = PMC_TO_ROWINDEX(pm);
2617	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2618
2619	error = 0;
2620
2621	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2622
2623	po = pm->pm_owner;
2624
2625	/*
2626	 * Disallow PMCSTART if a logfile is required but has not been
2627	 * configured yet.
2628	 */
2629	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2630	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2631		return (EDOOFUS);	/* programming error */
2632
2633	/*
2634	 * If this is a sampling mode PMC, log mapping information for
2635	 * the kernel modules that are currently loaded.
2636	 */
2637	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2638	    pmc_log_kernel_mappings(pm);
2639
2640	if (PMC_IS_VIRTUAL_MODE(mode)) {
2641
2642		/*
2643		 * If a PMCATTACH has never been done on this PMC,
2644		 * attach it to its owner process.
2645		 */
2646
2647		if (LIST_EMPTY(&pm->pm_targets))
2648			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2649			    pmc_attach_process(po->po_owner, pm);
2650
2651		/*
2652		 * If the PMC is attached to its owner, then force a context
2653		 * switch to ensure that the MD state gets set correctly.
2654		 */
2655
2656		if (error == 0) {
2657			pm->pm_state = PMC_STATE_RUNNING;
2658			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2659				pmc_force_context_switch();
2660		}
2661
2662		return (error);
2663	}
2664
2665
2666	/*
2667	 * A system-wide PMC.
2668	 *
2669	 * Add the owner to the global list if this is a system-wide
2670	 * sampling PMC.
2671	 */
2672
2673	if (mode == PMC_MODE_SS) {
2674		if (po->po_sscount == 0) {
2675			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2676			atomic_add_rel_int(&pmc_ss_count, 1);
2677			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
2678		}
2679		po->po_sscount++;
2680
2681		/*
2682		 * Log mapping information for all existing processes in the
2683		 * system.  Subsequent mappings are logged as they happen;
2684		 * see pmc_process_mmap().
2685		 */
2686		if (po->po_logprocmaps == 0) {
2687			pmc_log_all_process_mappings(po);
2688			po->po_logprocmaps = 1;
2689		}
2690	}
2691
2692	/*
2693	 * Move to the CPU associated with this
2694	 * PMC, and start the hardware.
2695	 */
2696
2697	pmc_save_cpu_binding(&pb);
2698
2699	cpu = PMC_TO_CPU(pm);
2700
2701	if (!pmc_cpu_is_active(cpu))
2702		return (ENXIO);
2703
2704	pmc_select_cpu(cpu);
2705
2706	/*
2707	 * global PMCs are configured at allocation time
2708	 * so write out the initial value and start the PMC.
2709	 */
2710
2711	pm->pm_state = PMC_STATE_RUNNING;
2712
2713	critical_enter();
2714	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2715		 PMC_IS_SAMPLING_MODE(mode) ?
2716		 pm->pm_sc.pm_reloadcount :
2717		 pm->pm_sc.pm_initial)) == 0) {
2718		/* If a sampling mode PMC, reset stalled state. */
2719		if (PMC_IS_SAMPLING_MODE(mode))
2720			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
2721
2722		/* Indicate that we desire this to run. Start it. */
2723		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
2724		error = pcd->pcd_start_pmc(cpu, adjri);
2725	}
2726	critical_exit();
2727
2728	pmc_restore_cpu_binding(&pb);
2729
2730	return (error);
2731}
2732
2733/*
2734 * Stop a PMC.
2735 */
2736
2737static int
2738pmc_stop(struct pmc *pm)
2739{
2740	struct pmc_owner *po;
2741	struct pmc_binding pb;
2742	struct pmc_classdep *pcd;
2743	int adjri, cpu, error, ri;
2744
2745	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2746
2747	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2748	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2749
2750	pm->pm_state = PMC_STATE_STOPPED;
2751
2752	/*
2753	 * If the PMC is a virtual mode one, changing the state to
2754	 * non-RUNNING is enough to ensure that the PMC never gets
2755	 * scheduled.
2756	 *
2757	 * If this PMC is current running on a CPU, then it will
2758	 * handled correctly at the time its target process is context
2759	 * switched out.
2760	 */
2761
2762	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2763		return 0;
2764
2765	/*
2766	 * A system-mode PMC.  Move to the CPU associated with
2767	 * this PMC, and stop the hardware.  We update the
2768	 * 'initial count' so that a subsequent PMCSTART will
2769	 * resume counting from the current hardware count.
2770	 */
2771
2772	pmc_save_cpu_binding(&pb);
2773
2774	cpu = PMC_TO_CPU(pm);
2775
2776	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2777	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2778
2779	if (!pmc_cpu_is_active(cpu))
2780		return ENXIO;
2781
2782	pmc_select_cpu(cpu);
2783
2784	ri = PMC_TO_ROWINDEX(pm);
2785	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2786
2787	CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2788	critical_enter();
2789	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2790		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2791	critical_exit();
2792
2793	pmc_restore_cpu_binding(&pb);
2794
2795	po = pm->pm_owner;
2796
2797	/* remove this owner from the global list of SS PMC owners */
2798	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2799		po->po_sscount--;
2800		if (po->po_sscount == 0) {
2801			atomic_subtract_rel_int(&pmc_ss_count, 1);
2802			LIST_REMOVE(po, po_ssnext);
2803			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
2804		}
2805	}
2806
2807	return (error);
2808}
2809
2810
2811#ifdef	HWPMC_DEBUG
2812static const char *pmc_op_to_name[] = {
2813#undef	__PMC_OP
2814#define	__PMC_OP(N, D)	#N ,
2815	__PMC_OPS()
2816	NULL
2817};
2818#endif
2819
2820/*
2821 * The syscall interface
2822 */
2823
2824#define	PMC_GET_SX_XLOCK(...) do {		\
2825	sx_xlock(&pmc_sx);			\
2826	if (pmc_hook == NULL) {			\
2827		sx_xunlock(&pmc_sx);		\
2828		return __VA_ARGS__;		\
2829	}					\
2830} while (0)
2831
2832#define	PMC_DOWNGRADE_SX() do {			\
2833	sx_downgrade(&pmc_sx);			\
2834	is_sx_downgraded = 1;			\
2835} while (0)
2836
2837static int
2838pmc_syscall_handler(struct thread *td, void *syscall_args)
2839{
2840	int error, is_sx_downgraded, is_sx_locked, op;
2841	struct pmc_syscall_args *c;
2842	void *arg;
2843
2844	PMC_GET_SX_XLOCK(ENOSYS);
2845
2846	DROP_GIANT();
2847
2848	is_sx_downgraded = 0;
2849	is_sx_locked = 1;
2850
2851	c = (struct pmc_syscall_args *) syscall_args;
2852
2853	op = c->pmop_code;
2854	arg = c->pmop_data;
2855
2856	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2857	    pmc_op_to_name[op], arg);
2858
2859	error = 0;
2860	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2861
2862	switch(op)
2863	{
2864
2865
2866	/*
2867	 * Configure a log file.
2868	 *
2869	 * XXX This OP will be reworked.
2870	 */
2871
2872	case PMC_OP_CONFIGURELOG:
2873	{
2874		struct proc *p;
2875		struct pmc *pm;
2876		struct pmc_owner *po;
2877		struct pmc_op_configurelog cl;
2878
2879		sx_assert(&pmc_sx, SX_XLOCKED);
2880
2881		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2882			break;
2883
2884		/* mark this process as owning a log file */
2885		p = td->td_proc;
2886		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2887			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2888				error = ENOMEM;
2889				break;
2890			}
2891
2892		/*
2893		 * If a valid fd was passed in, try to configure that,
2894		 * otherwise if 'fd' was less than zero and there was
2895		 * a log file configured, flush its buffers and
2896		 * de-configure it.
2897		 */
2898		if (cl.pm_logfd >= 0) {
2899			sx_xunlock(&pmc_sx);
2900			is_sx_locked = 0;
2901			error = pmclog_configure_log(md, po, cl.pm_logfd);
2902		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2903			pmclog_process_closelog(po);
2904			error = pmclog_close(po);
2905			if (error == 0) {
2906				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2907				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2908					pm->pm_state == PMC_STATE_RUNNING)
2909					    pmc_stop(pm);
2910				error = pmclog_deconfigure_log(po);
2911			}
2912		} else
2913			error = EINVAL;
2914
2915		if (error)
2916			break;
2917	}
2918	break;
2919
2920	/*
2921	 * Flush a log file.
2922	 */
2923
2924	case PMC_OP_FLUSHLOG:
2925	{
2926		struct pmc_owner *po;
2927
2928		sx_assert(&pmc_sx, SX_XLOCKED);
2929
2930		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2931			error = EINVAL;
2932			break;
2933		}
2934
2935		error = pmclog_flush(po);
2936	}
2937	break;
2938
2939	/*
2940	 * Close a log file.
2941	 */
2942
2943	case PMC_OP_CLOSELOG:
2944	{
2945		struct pmc_owner *po;
2946
2947		sx_assert(&pmc_sx, SX_XLOCKED);
2948
2949		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2950			error = EINVAL;
2951			break;
2952		}
2953
2954		error = pmclog_close(po);
2955	}
2956	break;
2957
2958	/*
2959	 * Retrieve hardware configuration.
2960	 */
2961
2962	case PMC_OP_GETCPUINFO:	/* CPU information */
2963	{
2964		struct pmc_op_getcpuinfo gci;
2965		struct pmc_classinfo *pci;
2966		struct pmc_classdep *pcd;
2967		int cl;
2968
2969		gci.pm_cputype = md->pmd_cputype;
2970		gci.pm_ncpu    = pmc_cpu_max();
2971		gci.pm_npmc    = md->pmd_npmc;
2972		gci.pm_nclass  = md->pmd_nclass;
2973		pci = gci.pm_classes;
2974		pcd = md->pmd_classdep;
2975		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2976			pci->pm_caps  = pcd->pcd_caps;
2977			pci->pm_class = pcd->pcd_class;
2978			pci->pm_width = pcd->pcd_width;
2979			pci->pm_num   = pcd->pcd_num;
2980		}
2981		error = copyout(&gci, arg, sizeof(gci));
2982	}
2983	break;
2984
2985	/*
2986	 * Retrieve soft events list.
2987	 */
2988	case PMC_OP_GETDYNEVENTINFO:
2989	{
2990		enum pmc_class			cl;
2991		enum pmc_event			ev;
2992		struct pmc_op_getdyneventinfo	*gei;
2993		struct pmc_dyn_event_descr	dev;
2994		struct pmc_soft			*ps;
2995		uint32_t			nevent;
2996
2997		sx_assert(&pmc_sx, SX_LOCKED);
2998
2999		gei = (struct pmc_op_getdyneventinfo *) arg;
3000
3001		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3002			break;
3003
3004		/* Only SOFT class is dynamic. */
3005		if (cl != PMC_CLASS_SOFT) {
3006			error = EINVAL;
3007			break;
3008		}
3009
3010		nevent = 0;
3011		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3012			ps = pmc_soft_ev_acquire(ev);
3013			if (ps == NULL)
3014				continue;
3015			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3016			pmc_soft_ev_release(ps);
3017
3018			error = copyout(&dev,
3019			    &gei->pm_events[nevent],
3020			    sizeof(struct pmc_dyn_event_descr));
3021			if (error != 0)
3022				break;
3023			nevent++;
3024		}
3025		if (error != 0)
3026			break;
3027
3028		error = copyout(&nevent, &gei->pm_nevent,
3029		    sizeof(nevent));
3030	}
3031	break;
3032
3033	/*
3034	 * Get module statistics
3035	 */
3036
3037	case PMC_OP_GETDRIVERSTATS:
3038	{
3039		struct pmc_op_getdriverstats gms;
3040
3041		bcopy(&pmc_stats, &gms, sizeof(gms));
3042		error = copyout(&gms, arg, sizeof(gms));
3043	}
3044	break;
3045
3046
3047	/*
3048	 * Retrieve module version number
3049	 */
3050
3051	case PMC_OP_GETMODULEVERSION:
3052	{
3053		uint32_t cv, modv;
3054
3055		/* retrieve the client's idea of the ABI version */
3056		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3057			break;
3058		/* don't service clients newer than our driver */
3059		modv = PMC_VERSION;
3060		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3061			error = EPROGMISMATCH;
3062			break;
3063		}
3064		error = copyout(&modv, arg, sizeof(int));
3065	}
3066	break;
3067
3068
3069	/*
3070	 * Retrieve the state of all the PMCs on a given
3071	 * CPU.
3072	 */
3073
3074	case PMC_OP_GETPMCINFO:
3075	{
3076		int ari;
3077		struct pmc *pm;
3078		size_t pmcinfo_size;
3079		uint32_t cpu, n, npmc;
3080		struct pmc_owner *po;
3081		struct pmc_binding pb;
3082		struct pmc_classdep *pcd;
3083		struct pmc_info *p, *pmcinfo;
3084		struct pmc_op_getpmcinfo *gpi;
3085
3086		PMC_DOWNGRADE_SX();
3087
3088		gpi = (struct pmc_op_getpmcinfo *) arg;
3089
3090		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3091			break;
3092
3093		if (cpu >= pmc_cpu_max()) {
3094			error = EINVAL;
3095			break;
3096		}
3097
3098		if (!pmc_cpu_is_active(cpu)) {
3099			error = ENXIO;
3100			break;
3101		}
3102
3103		/* switch to CPU 'cpu' */
3104		pmc_save_cpu_binding(&pb);
3105		pmc_select_cpu(cpu);
3106
3107		npmc = md->pmd_npmc;
3108
3109		pmcinfo_size = npmc * sizeof(struct pmc_info);
3110		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3111
3112		p = pmcinfo;
3113
3114		for (n = 0; n < md->pmd_npmc; n++, p++) {
3115
3116			pcd = pmc_ri_to_classdep(md, n, &ari);
3117
3118			KASSERT(pcd != NULL,
3119			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3120
3121			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3122				break;
3123
3124			if (PMC_ROW_DISP_IS_STANDALONE(n))
3125				p->pm_rowdisp = PMC_DISP_STANDALONE;
3126			else if (PMC_ROW_DISP_IS_THREAD(n))
3127				p->pm_rowdisp = PMC_DISP_THREAD;
3128			else
3129				p->pm_rowdisp = PMC_DISP_FREE;
3130
3131			p->pm_ownerpid = -1;
3132
3133			if (pm == NULL)	/* no PMC associated */
3134				continue;
3135
3136			po = pm->pm_owner;
3137
3138			KASSERT(po->po_owner != NULL,
3139			    ("[pmc,%d] pmc_owner had a null proc pointer",
3140				__LINE__));
3141
3142			p->pm_ownerpid = po->po_owner->p_pid;
3143			p->pm_mode     = PMC_TO_MODE(pm);
3144			p->pm_event    = pm->pm_event;
3145			p->pm_flags    = pm->pm_flags;
3146
3147			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3148				p->pm_reloadcount =
3149				    pm->pm_sc.pm_reloadcount;
3150		}
3151
3152		pmc_restore_cpu_binding(&pb);
3153
3154		/* now copy out the PMC info collected */
3155		if (error == 0)
3156			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3157
3158		free(pmcinfo, M_PMC);
3159	}
3160	break;
3161
3162
3163	/*
3164	 * Set the administrative state of a PMC.  I.e. whether
3165	 * the PMC is to be used or not.
3166	 */
3167
3168	case PMC_OP_PMCADMIN:
3169	{
3170		int cpu, ri;
3171		enum pmc_state request;
3172		struct pmc_cpu *pc;
3173		struct pmc_hw *phw;
3174		struct pmc_op_pmcadmin pma;
3175		struct pmc_binding pb;
3176
3177		sx_assert(&pmc_sx, SX_XLOCKED);
3178
3179		KASSERT(td == curthread,
3180		    ("[pmc,%d] td != curthread", __LINE__));
3181
3182		error = priv_check(td, PRIV_PMC_MANAGE);
3183		if (error)
3184			break;
3185
3186		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3187			break;
3188
3189		cpu = pma.pm_cpu;
3190
3191		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3192			error = EINVAL;
3193			break;
3194		}
3195
3196		if (!pmc_cpu_is_active(cpu)) {
3197			error = ENXIO;
3198			break;
3199		}
3200
3201		request = pma.pm_state;
3202
3203		if (request != PMC_STATE_DISABLED &&
3204		    request != PMC_STATE_FREE) {
3205			error = EINVAL;
3206			break;
3207		}
3208
3209		ri = pma.pm_pmc; /* pmc id == row index */
3210		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3211			error = EINVAL;
3212			break;
3213		}
3214
3215		/*
3216		 * We can't disable a PMC with a row-index allocated
3217		 * for process virtual PMCs.
3218		 */
3219
3220		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3221		    request == PMC_STATE_DISABLED) {
3222			error = EBUSY;
3223			break;
3224		}
3225
3226		/*
3227		 * otherwise, this PMC on this CPU is either free or
3228		 * in system-wide mode.
3229		 */
3230
3231		pmc_save_cpu_binding(&pb);
3232		pmc_select_cpu(cpu);
3233
3234		pc  = pmc_pcpu[cpu];
3235		phw = pc->pc_hwpmcs[ri];
3236
3237		/*
3238		 * XXX do we need some kind of 'forced' disable?
3239		 */
3240
3241		if (phw->phw_pmc == NULL) {
3242			if (request == PMC_STATE_DISABLED &&
3243			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3244				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3245				PMC_MARK_ROW_STANDALONE(ri);
3246			} else if (request == PMC_STATE_FREE &&
3247			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3248				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3249				PMC_UNMARK_ROW_STANDALONE(ri);
3250			}
3251			/* other cases are a no-op */
3252		} else
3253			error = EBUSY;
3254
3255		pmc_restore_cpu_binding(&pb);
3256	}
3257	break;
3258
3259
3260	/*
3261	 * Allocate a PMC.
3262	 */
3263
3264	case PMC_OP_PMCALLOCATE:
3265	{
3266		int adjri, n;
3267		u_int cpu;
3268		uint32_t caps;
3269		struct pmc *pmc;
3270		enum pmc_mode mode;
3271		struct pmc_hw *phw;
3272		struct pmc_binding pb;
3273		struct pmc_classdep *pcd;
3274		struct pmc_op_pmcallocate pa;
3275
3276		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3277			break;
3278
3279		caps = pa.pm_caps;
3280		mode = pa.pm_mode;
3281		cpu  = pa.pm_cpu;
3282
3283		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3284		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3285		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3286			error = EINVAL;
3287			break;
3288		}
3289
3290		/*
3291		 * Virtual PMCs should only ask for a default CPU.
3292		 * System mode PMCs need to specify a non-default CPU.
3293		 */
3294
3295		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3296		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3297			error = EINVAL;
3298			break;
3299		}
3300
3301		/*
3302		 * Check that an inactive CPU is not being asked for.
3303		 */
3304
3305		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3306			error = ENXIO;
3307			break;
3308		}
3309
3310		/*
3311		 * Refuse an allocation for a system-wide PMC if this
3312		 * process has been jailed, or if this process lacks
3313		 * super-user credentials and the sysctl tunable
3314		 * 'security.bsd.unprivileged_syspmcs' is zero.
3315		 */
3316
3317		if (PMC_IS_SYSTEM_MODE(mode)) {
3318			if (jailed(curthread->td_ucred)) {
3319				error = EPERM;
3320				break;
3321			}
3322			if (!pmc_unprivileged_syspmcs) {
3323				error = priv_check(curthread,
3324				    PRIV_PMC_SYSTEM);
3325				if (error)
3326					break;
3327			}
3328		}
3329
3330		/*
3331		 * Look for valid values for 'pm_flags'
3332		 */
3333
3334		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3335		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3336			error = EINVAL;
3337			break;
3338		}
3339
3340		/* process logging options are not allowed for system PMCs */
3341		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3342		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3343			error = EINVAL;
3344			break;
3345		}
3346
3347		/*
3348		 * All sampling mode PMCs need to be able to interrupt the
3349		 * CPU.
3350		 */
3351		if (PMC_IS_SAMPLING_MODE(mode))
3352			caps |= PMC_CAP_INTERRUPT;
3353
3354		/* A valid class specifier should have been passed in. */
3355		for (n = 0; n < md->pmd_nclass; n++)
3356			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3357				break;
3358		if (n == md->pmd_nclass) {
3359			error = EINVAL;
3360			break;
3361		}
3362
3363		/* The requested PMC capabilities should be feasible. */
3364		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3365			error = EOPNOTSUPP;
3366			break;
3367		}
3368
3369		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3370		    pa.pm_ev, caps, mode, cpu);
3371
3372		pmc = pmc_allocate_pmc_descriptor();
3373		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3374		    PMC_ID_INVALID);
3375		pmc->pm_event = pa.pm_ev;
3376		pmc->pm_state = PMC_STATE_FREE;
3377		pmc->pm_caps  = caps;
3378		pmc->pm_flags = pa.pm_flags;
3379
3380		/* switch thread to CPU 'cpu' */
3381		pmc_save_cpu_binding(&pb);
3382
3383#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3384	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3385	 PMC_PHW_FLAG_IS_SHAREABLE)
3386#define	PMC_IS_UNALLOCATED(cpu, n)				\
3387	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3388
3389		if (PMC_IS_SYSTEM_MODE(mode)) {
3390			pmc_select_cpu(cpu);
3391			for (n = 0; n < (int) md->pmd_npmc; n++) {
3392				pcd = pmc_ri_to_classdep(md, n, &adjri);
3393				if (pmc_can_allocate_row(n, mode) == 0 &&
3394				    pmc_can_allocate_rowindex(
3395					    curthread->td_proc, n, cpu) == 0 &&
3396				    (PMC_IS_UNALLOCATED(cpu, n) ||
3397				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3398				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3399					&pa) == 0)
3400					break;
3401			}
3402		} else {
3403			/* Process virtual mode */
3404			for (n = 0; n < (int) md->pmd_npmc; n++) {
3405				pcd = pmc_ri_to_classdep(md, n, &adjri);
3406				if (pmc_can_allocate_row(n, mode) == 0 &&
3407				    pmc_can_allocate_rowindex(
3408					    curthread->td_proc, n,
3409					    PMC_CPU_ANY) == 0 &&
3410				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3411					adjri, pmc, &pa) == 0)
3412					break;
3413			}
3414		}
3415
3416#undef	PMC_IS_UNALLOCATED
3417#undef	PMC_IS_SHAREABLE_PMC
3418
3419		pmc_restore_cpu_binding(&pb);
3420
3421		if (n == (int) md->pmd_npmc) {
3422			pmc_destroy_pmc_descriptor(pmc);
3423			pmc = NULL;
3424			error = EINVAL;
3425			break;
3426		}
3427
3428		/* Fill in the correct value in the ID field */
3429		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3430
3431		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3432		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3433
3434		/* Process mode PMCs with logging enabled need log files */
3435		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3436			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3437
3438		/* All system mode sampling PMCs require a log file */
3439		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3440			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3441
3442		/*
3443		 * Configure global pmc's immediately
3444		 */
3445
3446		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3447
3448			pmc_save_cpu_binding(&pb);
3449			pmc_select_cpu(cpu);
3450
3451			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3452			pcd = pmc_ri_to_classdep(md, n, &adjri);
3453
3454			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3455			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3456				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3457				pmc_destroy_pmc_descriptor(pmc);
3458				pmc = NULL;
3459				pmc_restore_cpu_binding(&pb);
3460				error = EPERM;
3461				break;
3462			}
3463
3464			pmc_restore_cpu_binding(&pb);
3465		}
3466
3467		pmc->pm_state    = PMC_STATE_ALLOCATED;
3468
3469		/*
3470		 * mark row disposition
3471		 */
3472
3473		if (PMC_IS_SYSTEM_MODE(mode))
3474			PMC_MARK_ROW_STANDALONE(n);
3475		else
3476			PMC_MARK_ROW_THREAD(n);
3477
3478		/*
3479		 * Register this PMC with the current thread as its owner.
3480		 */
3481
3482		if ((error =
3483		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3484			pmc_release_pmc_descriptor(pmc);
3485			pmc_destroy_pmc_descriptor(pmc);
3486			pmc = NULL;
3487			break;
3488		}
3489
3490		/*
3491		 * Return the allocated index.
3492		 */
3493
3494		pa.pm_pmcid = pmc->pm_id;
3495
3496		error = copyout(&pa, arg, sizeof(pa));
3497	}
3498	break;
3499
3500
3501	/*
3502	 * Attach a PMC to a process.
3503	 */
3504
3505	case PMC_OP_PMCATTACH:
3506	{
3507		struct pmc *pm;
3508		struct proc *p;
3509		struct pmc_op_pmcattach a;
3510
3511		sx_assert(&pmc_sx, SX_XLOCKED);
3512
3513		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3514			break;
3515
3516		if (a.pm_pid < 0) {
3517			error = EINVAL;
3518			break;
3519		} else if (a.pm_pid == 0)
3520			a.pm_pid = td->td_proc->p_pid;
3521
3522		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3523			break;
3524
3525		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3526			error = EINVAL;
3527			break;
3528		}
3529
3530		/* PMCs may be (re)attached only when allocated or stopped */
3531		if (pm->pm_state == PMC_STATE_RUNNING) {
3532			error = EBUSY;
3533			break;
3534		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3535		    pm->pm_state != PMC_STATE_STOPPED) {
3536			error = EINVAL;
3537			break;
3538		}
3539
3540		/* lookup pid */
3541		if ((p = pfind(a.pm_pid)) == NULL) {
3542			error = ESRCH;
3543			break;
3544		}
3545
3546		/*
3547		 * Ignore processes that are working on exiting.
3548		 */
3549		if (p->p_flag & P_WEXIT) {
3550			error = ESRCH;
3551			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3552			break;
3553		}
3554
3555		/*
3556		 * we are allowed to attach a PMC to a process if
3557		 * we can debug it.
3558		 */
3559		error = p_candebug(curthread, p);
3560
3561		PROC_UNLOCK(p);
3562
3563		if (error == 0)
3564			error = pmc_attach_process(p, pm);
3565	}
3566	break;
3567
3568
3569	/*
3570	 * Detach an attached PMC from a process.
3571	 */
3572
3573	case PMC_OP_PMCDETACH:
3574	{
3575		struct pmc *pm;
3576		struct proc *p;
3577		struct pmc_op_pmcattach a;
3578
3579		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3580			break;
3581
3582		if (a.pm_pid < 0) {
3583			error = EINVAL;
3584			break;
3585		} else if (a.pm_pid == 0)
3586			a.pm_pid = td->td_proc->p_pid;
3587
3588		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3589			break;
3590
3591		if ((p = pfind(a.pm_pid)) == NULL) {
3592			error = ESRCH;
3593			break;
3594		}
3595
3596		/*
3597		 * Treat processes that are in the process of exiting
3598		 * as if they were not present.
3599		 */
3600
3601		if (p->p_flag & P_WEXIT)
3602			error = ESRCH;
3603
3604		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3605
3606		if (error == 0)
3607			error = pmc_detach_process(p, pm);
3608	}
3609	break;
3610
3611
3612	/*
3613	 * Retrieve the MSR number associated with the counter
3614	 * 'pmc_id'.  This allows processes to directly use RDPMC
3615	 * instructions to read their PMCs, without the overhead of a
3616	 * system call.
3617	 */
3618
3619	case PMC_OP_PMCGETMSR:
3620	{
3621		int adjri, ri;
3622		struct pmc *pm;
3623		struct pmc_target *pt;
3624		struct pmc_op_getmsr gm;
3625		struct pmc_classdep *pcd;
3626
3627		PMC_DOWNGRADE_SX();
3628
3629		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3630			break;
3631
3632		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3633			break;
3634
3635		/*
3636		 * The allocated PMC has to be a process virtual PMC,
3637		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3638		 * read using the PMCREAD operation since they may be
3639		 * allocated on a different CPU than the one we could
3640		 * be running on at the time of the RDPMC instruction.
3641		 *
3642		 * The GETMSR operation is not allowed for PMCs that
3643		 * are inherited across processes.
3644		 */
3645
3646		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3647		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3648			error = EINVAL;
3649			break;
3650		}
3651
3652		/*
3653		 * It only makes sense to use a RDPMC (or its
3654		 * equivalent instruction on non-x86 architectures) on
3655		 * a process that has allocated and attached a PMC to
3656		 * itself.  Conversely the PMC is only allowed to have
3657		 * one process attached to it -- its owner.
3658		 */
3659
3660		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3661		    LIST_NEXT(pt, pt_next) != NULL ||
3662		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3663			error = EINVAL;
3664			break;
3665		}
3666
3667		ri = PMC_TO_ROWINDEX(pm);
3668		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3669
3670		/* PMC class has no 'GETMSR' support */
3671		if (pcd->pcd_get_msr == NULL) {
3672			error = ENOSYS;
3673			break;
3674		}
3675
3676		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3677			break;
3678
3679		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3680			break;
3681
3682		/*
3683		 * Mark our process as using MSRs.  Update machine
3684		 * state using a forced context switch.
3685		 */
3686
3687		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3688		pmc_force_context_switch();
3689
3690	}
3691	break;
3692
3693	/*
3694	 * Release an allocated PMC
3695	 */
3696
3697	case PMC_OP_PMCRELEASE:
3698	{
3699		pmc_id_t pmcid;
3700		struct pmc *pm;
3701		struct pmc_owner *po;
3702		struct pmc_op_simple sp;
3703
3704		/*
3705		 * Find PMC pointer for the named PMC.
3706		 *
3707		 * Use pmc_release_pmc_descriptor() to switch off the
3708		 * PMC, remove all its target threads, and remove the
3709		 * PMC from its owner's list.
3710		 *
3711		 * Remove the owner record if this is the last PMC
3712		 * owned.
3713		 *
3714		 * Free up space.
3715		 */
3716
3717		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3718			break;
3719
3720		pmcid = sp.pm_pmcid;
3721
3722		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3723			break;
3724
3725		po = pm->pm_owner;
3726		pmc_release_pmc_descriptor(pm);
3727		pmc_maybe_remove_owner(po);
3728		pmc_destroy_pmc_descriptor(pm);
3729	}
3730	break;
3731
3732
3733	/*
3734	 * Read and/or write a PMC.
3735	 */
3736
3737	case PMC_OP_PMCRW:
3738	{
3739		int adjri;
3740		struct pmc *pm;
3741		uint32_t cpu, ri;
3742		pmc_value_t oldvalue;
3743		struct pmc_binding pb;
3744		struct pmc_op_pmcrw prw;
3745		struct pmc_classdep *pcd;
3746		struct pmc_op_pmcrw *pprw;
3747
3748		PMC_DOWNGRADE_SX();
3749
3750		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3751			break;
3752
3753		ri = 0;
3754		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3755		    prw.pm_flags);
3756
3757		/* must have at least one flag set */
3758		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3759			error = EINVAL;
3760			break;
3761		}
3762
3763		/* locate pmc descriptor */
3764		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3765			break;
3766
3767		/* Can't read a PMC that hasn't been started. */
3768		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3769		    pm->pm_state != PMC_STATE_STOPPED &&
3770		    pm->pm_state != PMC_STATE_RUNNING) {
3771			error = EINVAL;
3772			break;
3773		}
3774
3775		/* writing a new value is allowed only for 'STOPPED' pmcs */
3776		if (pm->pm_state == PMC_STATE_RUNNING &&
3777		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3778			error = EBUSY;
3779			break;
3780		}
3781
3782		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3783
3784			/*
3785			 * If this PMC is attached to its owner (i.e.,
3786			 * the process requesting this operation) and
3787			 * is running, then attempt to get an
3788			 * upto-date reading from hardware for a READ.
3789			 * Writes are only allowed when the PMC is
3790			 * stopped, so only update the saved value
3791			 * field.
3792			 *
3793			 * If the PMC is not running, or is not
3794			 * attached to its owner, read/write to the
3795			 * savedvalue field.
3796			 */
3797
3798			ri = PMC_TO_ROWINDEX(pm);
3799			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3800
3801			mtx_pool_lock_spin(pmc_mtxpool, pm);
3802			cpu = curthread->td_oncpu;
3803
3804			if (prw.pm_flags & PMC_F_OLDVALUE) {
3805				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3806				    (pm->pm_state == PMC_STATE_RUNNING))
3807					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3808					    &oldvalue);
3809				else
3810					oldvalue = pm->pm_gv.pm_savedvalue;
3811			}
3812			if (prw.pm_flags & PMC_F_NEWVALUE)
3813				pm->pm_gv.pm_savedvalue = prw.pm_value;
3814
3815			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3816
3817		} else { /* System mode PMCs */
3818			cpu = PMC_TO_CPU(pm);
3819			ri  = PMC_TO_ROWINDEX(pm);
3820			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3821
3822			if (!pmc_cpu_is_active(cpu)) {
3823				error = ENXIO;
3824				break;
3825			}
3826
3827			/* move this thread to CPU 'cpu' */
3828			pmc_save_cpu_binding(&pb);
3829			pmc_select_cpu(cpu);
3830
3831			critical_enter();
3832			/* save old value */
3833			if (prw.pm_flags & PMC_F_OLDVALUE)
3834				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3835					 &oldvalue)))
3836					goto error;
3837			/* write out new value */
3838			if (prw.pm_flags & PMC_F_NEWVALUE)
3839				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3840				    prw.pm_value);
3841		error:
3842			critical_exit();
3843			pmc_restore_cpu_binding(&pb);
3844			if (error)
3845				break;
3846		}
3847
3848		pprw = (struct pmc_op_pmcrw *) arg;
3849
3850#ifdef	HWPMC_DEBUG
3851		if (prw.pm_flags & PMC_F_NEWVALUE)
3852			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3853			    ri, prw.pm_value, oldvalue);
3854		else if (prw.pm_flags & PMC_F_OLDVALUE)
3855			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3856#endif
3857
3858		/* return old value if requested */
3859		if (prw.pm_flags & PMC_F_OLDVALUE)
3860			if ((error = copyout(&oldvalue, &pprw->pm_value,
3861				 sizeof(prw.pm_value))))
3862				break;
3863
3864	}
3865	break;
3866
3867
3868	/*
3869	 * Set the sampling rate for a sampling mode PMC and the
3870	 * initial count for a counting mode PMC.
3871	 */
3872
3873	case PMC_OP_PMCSETCOUNT:
3874	{
3875		struct pmc *pm;
3876		struct pmc_op_pmcsetcount sc;
3877
3878		PMC_DOWNGRADE_SX();
3879
3880		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3881			break;
3882
3883		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3884			break;
3885
3886		if (pm->pm_state == PMC_STATE_RUNNING) {
3887			error = EBUSY;
3888			break;
3889		}
3890
3891		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3892			pm->pm_sc.pm_reloadcount = sc.pm_count;
3893		else
3894			pm->pm_sc.pm_initial = sc.pm_count;
3895	}
3896	break;
3897
3898
3899	/*
3900	 * Start a PMC.
3901	 */
3902
3903	case PMC_OP_PMCSTART:
3904	{
3905		pmc_id_t pmcid;
3906		struct pmc *pm;
3907		struct pmc_op_simple sp;
3908
3909		sx_assert(&pmc_sx, SX_XLOCKED);
3910
3911		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3912			break;
3913
3914		pmcid = sp.pm_pmcid;
3915
3916		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3917			break;
3918
3919		KASSERT(pmcid == pm->pm_id,
3920		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3921			pm->pm_id, pmcid));
3922
3923		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3924			break;
3925		else if (pm->pm_state != PMC_STATE_STOPPED &&
3926		    pm->pm_state != PMC_STATE_ALLOCATED) {
3927			error = EINVAL;
3928			break;
3929		}
3930
3931		error = pmc_start(pm);
3932	}
3933	break;
3934
3935
3936	/*
3937	 * Stop a PMC.
3938	 */
3939
3940	case PMC_OP_PMCSTOP:
3941	{
3942		pmc_id_t pmcid;
3943		struct pmc *pm;
3944		struct pmc_op_simple sp;
3945
3946		PMC_DOWNGRADE_SX();
3947
3948		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3949			break;
3950
3951		pmcid = sp.pm_pmcid;
3952
3953		/*
3954		 * Mark the PMC as inactive and invoke the MD stop
3955		 * routines if needed.
3956		 */
3957
3958		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3959			break;
3960
3961		KASSERT(pmcid == pm->pm_id,
3962		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3963			pm->pm_id, pmcid));
3964
3965		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3966			break;
3967		else if (pm->pm_state != PMC_STATE_RUNNING) {
3968			error = EINVAL;
3969			break;
3970		}
3971
3972		error = pmc_stop(pm);
3973	}
3974	break;
3975
3976
3977	/*
3978	 * Write a user supplied value to the log file.
3979	 */
3980
3981	case PMC_OP_WRITELOG:
3982	{
3983		struct pmc_op_writelog wl;
3984		struct pmc_owner *po;
3985
3986		PMC_DOWNGRADE_SX();
3987
3988		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
3989			break;
3990
3991		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3992			error = EINVAL;
3993			break;
3994		}
3995
3996		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
3997			error = EINVAL;
3998			break;
3999		}
4000
4001		error = pmclog_process_userlog(po, &wl);
4002	}
4003	break;
4004
4005
4006	default:
4007		error = EINVAL;
4008		break;
4009	}
4010
4011	if (is_sx_locked != 0) {
4012		if (is_sx_downgraded)
4013			sx_sunlock(&pmc_sx);
4014		else
4015			sx_xunlock(&pmc_sx);
4016	}
4017
4018	if (error)
4019		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4020
4021	PICKUP_GIANT();
4022
4023	return error;
4024}
4025
4026/*
4027 * Helper functions
4028 */
4029
4030
4031/*
4032 * Mark the thread as needing callchain capture and post an AST.  The
4033 * actual callchain capture will be done in a context where it is safe
4034 * to take page faults.
4035 */
4036
4037static void
4038pmc_post_callchain_callback(void)
4039{
4040	struct thread *td;
4041
4042	td = curthread;
4043
4044	/*
4045	 * If there is multiple PMCs for the same interrupt ignore new post
4046	 */
4047	if (td->td_pflags & TDP_CALLCHAIN)
4048		return;
4049
4050	/*
4051	 * Mark this thread as needing callchain capture.
4052	 * `td->td_pflags' will be safe to touch because this thread
4053	 * was in user space when it was interrupted.
4054	 */
4055	td->td_pflags |= TDP_CALLCHAIN;
4056
4057	/*
4058	 * Don't let this thread migrate between CPUs until callchain
4059	 * capture completes.
4060	 */
4061	sched_pin();
4062
4063	return;
4064}
4065
4066/*
4067 * Interrupt processing.
4068 *
4069 * Find a free slot in the per-cpu array of samples and capture the
4070 * current callchain there.  If a sample was successfully added, a bit
4071 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4072 * needs to be invoked from the clock handler.
4073 *
4074 * This function is meant to be called from an NMI handler.  It cannot
4075 * use any of the locking primitives supplied by the OS.
4076 */
4077
4078int
4079pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4080    int inuserspace)
4081{
4082	int error, callchaindepth;
4083	struct thread *td;
4084	struct pmc_sample *ps;
4085	struct pmc_samplebuffer *psb;
4086
4087	error = 0;
4088
4089	/*
4090	 * Allocate space for a sample buffer.
4091	 */
4092	psb = pmc_pcpu[cpu]->pc_sb[ring];
4093
4094	ps = psb->ps_write;
4095	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4096		CPU_SET_ATOMIC(cpu, &pm->pm_stalled);
4097		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4098		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4099		    cpu, pm, (void *) tf, inuserspace,
4100		    (int) (psb->ps_write - psb->ps_samples),
4101		    (int) (psb->ps_read - psb->ps_samples));
4102		callchaindepth = 1;
4103		error = ENOMEM;
4104		goto done;
4105	}
4106
4107
4108	/* Fill in entry. */
4109	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4110	    (void *) tf, inuserspace,
4111	    (int) (psb->ps_write - psb->ps_samples),
4112	    (int) (psb->ps_read - psb->ps_samples));
4113
4114	KASSERT(pm->pm_runcount >= 0,
4115	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4116		pm->pm_runcount));
4117
4118	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4119
4120	ps->ps_pmc = pm;
4121	if ((td = curthread) && td->td_proc)
4122		ps->ps_pid = td->td_proc->p_pid;
4123	else
4124		ps->ps_pid = -1;
4125	ps->ps_cpu = cpu;
4126	ps->ps_td = td;
4127	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4128
4129	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4130	    pmc_callchaindepth : 1;
4131
4132	if (callchaindepth == 1)
4133		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4134	else {
4135		/*
4136		 * Kernel stack traversals can be done immediately,
4137		 * while we defer to an AST for user space traversals.
4138		 */
4139		if (!inuserspace) {
4140			callchaindepth =
4141			    pmc_save_kernel_callchain(ps->ps_pc,
4142				callchaindepth, tf);
4143		} else {
4144			pmc_post_callchain_callback();
4145			callchaindepth = PMC_SAMPLE_INUSE;
4146		}
4147	}
4148
4149	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4150
4151	/* increment write pointer, modulo ring buffer size */
4152	ps++;
4153	if (ps == psb->ps_fence)
4154		psb->ps_write = psb->ps_samples;
4155	else
4156		psb->ps_write = ps;
4157
4158 done:
4159	/* mark CPU as needing processing */
4160	if (callchaindepth != PMC_SAMPLE_INUSE)
4161		CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4162
4163	return (error);
4164}
4165
4166/*
4167 * Capture a user call chain.  This function will be called from ast()
4168 * before control returns to userland and before the process gets
4169 * rescheduled.
4170 */
4171
4172static void
4173pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4174{
4175	struct pmc *pm;
4176	struct thread *td;
4177	struct pmc_sample *ps, *ps_end;
4178	struct pmc_samplebuffer *psb;
4179#ifdef	INVARIANTS
4180	int ncallchains;
4181#endif
4182
4183	psb = pmc_pcpu[cpu]->pc_sb[ring];
4184	td = curthread;
4185
4186	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4187	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4188		__LINE__));
4189
4190#ifdef	INVARIANTS
4191	ncallchains = 0;
4192#endif
4193
4194	/*
4195	 * Iterate through all deferred callchain requests.
4196	 * Walk from the current read pointer to the current
4197	 * write pointer.
4198	 */
4199
4200	ps = psb->ps_read;
4201	ps_end = psb->ps_write;
4202	do {
4203		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4204			goto next;
4205		if (ps->ps_td != td)
4206			goto next;
4207
4208		KASSERT(ps->ps_cpu == cpu,
4209		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4210			ps->ps_cpu, PCPU_GET(cpuid)));
4211
4212		pm = ps->ps_pmc;
4213
4214		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4215		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4216			"want it", __LINE__));
4217
4218		KASSERT(pm->pm_runcount > 0,
4219		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4220
4221		/*
4222		 * Retrieve the callchain and mark the sample buffer
4223		 * as 'processable' by the timer tick sweep code.
4224		 */
4225		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4226		    pmc_callchaindepth, tf);
4227
4228#ifdef	INVARIANTS
4229		ncallchains++;
4230#endif
4231
4232next:
4233		/* increment the pointer, modulo sample ring size */
4234		if (++ps == psb->ps_fence)
4235			ps = psb->ps_samples;
4236	} while (ps != ps_end);
4237
4238	KASSERT(ncallchains > 0,
4239	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4240		cpu));
4241
4242	KASSERT(td->td_pinned == 1,
4243	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4244	sched_unpin();	/* Can migrate safely now. */
4245
4246	/* mark CPU as needing processing */
4247	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4248
4249	return;
4250}
4251
4252/*
4253 * Process saved PC samples.
4254 */
4255
4256static void
4257pmc_process_samples(int cpu, int ring)
4258{
4259	struct pmc *pm;
4260	int adjri, n;
4261	struct thread *td;
4262	struct pmc_owner *po;
4263	struct pmc_sample *ps;
4264	struct pmc_classdep *pcd;
4265	struct pmc_samplebuffer *psb;
4266
4267	KASSERT(PCPU_GET(cpuid) == cpu,
4268	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4269		PCPU_GET(cpuid), cpu));
4270
4271	psb = pmc_pcpu[cpu]->pc_sb[ring];
4272
4273	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4274
4275		ps = psb->ps_read;
4276		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4277			break;
4278
4279		pm = ps->ps_pmc;
4280
4281		KASSERT(pm->pm_runcount > 0,
4282		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4283			pm->pm_runcount));
4284
4285		po = pm->pm_owner;
4286
4287		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4288		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4289			pm, PMC_TO_MODE(pm)));
4290
4291		/* Ignore PMCs that have been switched off */
4292		if (pm->pm_state != PMC_STATE_RUNNING)
4293			goto entrydone;
4294
4295		/* If there is a pending AST wait for completion */
4296		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4297			/* Need a rescan at a later time. */
4298			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4299			break;
4300		}
4301
4302		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4303		    pm, ps->ps_nsamples, ps->ps_flags,
4304		    (int) (psb->ps_write - psb->ps_samples),
4305		    (int) (psb->ps_read - psb->ps_samples));
4306
4307		/*
4308		 * If this is a process-mode PMC that is attached to
4309		 * its owner, and if the PC is in user mode, update
4310		 * profiling statistics like timer-based profiling
4311		 * would have done.
4312		 */
4313		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4314			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4315				td = FIRST_THREAD_IN_PROC(po->po_owner);
4316				addupc_intr(td, ps->ps_pc[0], 1);
4317			}
4318			goto entrydone;
4319		}
4320
4321		/*
4322		 * Otherwise, this is either a sampling mode PMC that
4323		 * is attached to a different process than its owner,
4324		 * or a system-wide sampling PMC.  Dispatch a log
4325		 * entry to the PMC's owner process.
4326		 */
4327		pmclog_process_callchain(pm, ps);
4328
4329	entrydone:
4330		ps->ps_nsamples = 0; /* mark entry as free */
4331		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4332
4333		/* increment read pointer, modulo sample size */
4334		if (++ps == psb->ps_fence)
4335			psb->ps_read = psb->ps_samples;
4336		else
4337			psb->ps_read = ps;
4338	}
4339
4340	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4341
4342	/* Do not re-enable stalled PMCs if we failed to process any samples */
4343	if (n == 0)
4344		return;
4345
4346	/*
4347	 * Restart any stalled sampling PMCs on this CPU.
4348	 *
4349	 * If the NMI handler sets the pm_stalled field of a PMC after
4350	 * the check below, we'll end up processing the stalled PMC at
4351	 * the next hardclock tick.
4352	 */
4353	for (n = 0; n < md->pmd_npmc; n++) {
4354		pcd = pmc_ri_to_classdep(md, n, &adjri);
4355		KASSERT(pcd != NULL,
4356		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4357		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4358
4359		if (pm == NULL ||			 /* !cfg'ed */
4360		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4361		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4362		    !CPU_ISSET(cpu, &pm->pm_cpustate) || /* !desired */
4363		    !CPU_ISSET(cpu, &pm->pm_stalled)) /* !stalled */
4364			continue;
4365
4366		CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
4367		(*pcd->pcd_start_pmc)(cpu, adjri);
4368	}
4369}
4370
4371/*
4372 * Event handlers.
4373 */
4374
4375/*
4376 * Handle a process exit.
4377 *
4378 * Remove this process from all hash tables.  If this process
4379 * owned any PMCs, turn off those PMCs and deallocate them,
4380 * removing any associations with target processes.
4381 *
4382 * This function will be called by the last 'thread' of a
4383 * process.
4384 *
4385 * XXX This eventhandler gets called early in the exit process.
4386 * Consider using a 'hook' invocation from thread_exit() or equivalent
4387 * spot.  Another negative is that kse_exit doesn't seem to call
4388 * exit1() [??].
4389 *
4390 */
4391
4392static void
4393pmc_process_exit(void *arg __unused, struct proc *p)
4394{
4395	struct pmc *pm;
4396	int adjri, cpu;
4397	unsigned int ri;
4398	int is_using_hwpmcs;
4399	struct pmc_owner *po;
4400	struct pmc_process *pp;
4401	struct pmc_classdep *pcd;
4402	pmc_value_t newvalue, tmp;
4403
4404	PROC_LOCK(p);
4405	is_using_hwpmcs = p->p_flag & P_HWPMC;
4406	PROC_UNLOCK(p);
4407
4408	/*
4409	 * Log a sysexit event to all SS PMC owners.
4410	 */
4411	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4412	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4413		    pmclog_process_sysexit(po, p->p_pid);
4414
4415	if (!is_using_hwpmcs)
4416		return;
4417
4418	PMC_GET_SX_XLOCK();
4419	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4420	    p->p_comm);
4421
4422	/*
4423	 * Since this code is invoked by the last thread in an exiting
4424	 * process, we would have context switched IN at some prior
4425	 * point.  However, with PREEMPTION, kernel mode context
4426	 * switches may happen any time, so we want to disable a
4427	 * context switch OUT till we get any PMCs targetting this
4428	 * process off the hardware.
4429	 *
4430	 * We also need to atomically remove this process'
4431	 * entry from our target process hash table, using
4432	 * PMC_FLAG_REMOVE.
4433	 */
4434	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4435	    p->p_comm);
4436
4437	critical_enter(); /* no preemption */
4438
4439	cpu = curthread->td_oncpu;
4440
4441	if ((pp = pmc_find_process_descriptor(p,
4442		 PMC_FLAG_REMOVE)) != NULL) {
4443
4444		PMCDBG2(PRC,EXT,2,
4445		    "process-exit proc=%p pmc-process=%p", p, pp);
4446
4447		/*
4448		 * The exiting process could the target of
4449		 * some PMCs which will be running on
4450		 * currently executing CPU.
4451		 *
4452		 * We need to turn these PMCs off like we
4453		 * would do at context switch OUT time.
4454		 */
4455		for (ri = 0; ri < md->pmd_npmc; ri++) {
4456
4457			/*
4458			 * Pick up the pmc pointer from hardware
4459			 * state similar to the CSW_OUT code.
4460			 */
4461			pm = NULL;
4462
4463			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4464
4465			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4466
4467			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4468
4469			if (pm == NULL ||
4470			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4471				continue;
4472
4473			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4474			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4475			    pm, pm->pm_state);
4476
4477			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4478			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4479				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4480
4481			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4482			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4483				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4484
4485			KASSERT(pm->pm_runcount > 0,
4486			    ("[pmc,%d] bad runcount ri %d rc %d",
4487				__LINE__, ri, pm->pm_runcount));
4488
4489			/*
4490			 * Change desired state, and then stop if not
4491			 * stalled. This two-step dance should avoid
4492			 * race conditions where an interrupt re-enables
4493			 * the PMC after this code has already checked
4494			 * the pm_stalled flag.
4495			 */
4496			if (CPU_ISSET(cpu, &pm->pm_cpustate)) {
4497				CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
4498				if (!CPU_ISSET(cpu, &pm->pm_stalled)) {
4499					(void) pcd->pcd_stop_pmc(cpu, adjri);
4500					pcd->pcd_read_pmc(cpu, adjri,
4501					    &newvalue);
4502					tmp = newvalue -
4503					    PMC_PCPU_SAVED(cpu,ri);
4504
4505					mtx_pool_lock_spin(pmc_mtxpool, pm);
4506					pm->pm_gv.pm_savedvalue += tmp;
4507					pp->pp_pmcs[ri].pp_pmcval += tmp;
4508					mtx_pool_unlock_spin(pmc_mtxpool, pm);
4509				}
4510			}
4511
4512			atomic_subtract_rel_int(&pm->pm_runcount,1);
4513
4514			KASSERT((int) pm->pm_runcount >= 0,
4515			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4516
4517			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4518		}
4519
4520		/*
4521		 * Inform the MD layer of this pseudo "context switch
4522		 * out"
4523		 */
4524		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4525
4526		critical_exit(); /* ok to be pre-empted now */
4527
4528		/*
4529		 * Unlink this process from the PMCs that are
4530		 * targetting it.  This will send a signal to
4531		 * all PMC owner's whose PMCs are orphaned.
4532		 *
4533		 * Log PMC value at exit time if requested.
4534		 */
4535		for (ri = 0; ri < md->pmd_npmc; ri++)
4536			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4537				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4538				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4539					pmclog_process_procexit(pm, pp);
4540				pmc_unlink_target_process(pm, pp);
4541			}
4542		free(pp, M_PMC);
4543
4544	} else
4545		critical_exit(); /* pp == NULL */
4546
4547
4548	/*
4549	 * If the process owned PMCs, free them up and free up
4550	 * memory.
4551	 */
4552	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4553		pmc_remove_owner(po);
4554		pmc_destroy_owner_descriptor(po);
4555	}
4556
4557	sx_xunlock(&pmc_sx);
4558}
4559
4560/*
4561 * Handle a process fork.
4562 *
4563 * If the parent process 'p1' is under HWPMC monitoring, then copy
4564 * over any attached PMCs that have 'do_descendants' semantics.
4565 */
4566
4567static void
4568pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4569    int flags)
4570{
4571	int is_using_hwpmcs;
4572	unsigned int ri;
4573	uint32_t do_descendants;
4574	struct pmc *pm;
4575	struct pmc_owner *po;
4576	struct pmc_process *ppnew, *ppold;
4577
4578	(void) flags;		/* unused parameter */
4579
4580	PROC_LOCK(p1);
4581	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4582	PROC_UNLOCK(p1);
4583
4584	/*
4585	 * If there are system-wide sampling PMCs active, we need to
4586	 * log all fork events to their owner's logs.
4587	 */
4588
4589	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4590	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4591		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4592
4593	if (!is_using_hwpmcs)
4594		return;
4595
4596	PMC_GET_SX_XLOCK();
4597	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4598	    p1->p_pid, p1->p_comm, newproc);
4599
4600	/*
4601	 * If the parent process (curthread->td_proc) is a
4602	 * target of any PMCs, look for PMCs that are to be
4603	 * inherited, and link these into the new process
4604	 * descriptor.
4605	 */
4606	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4607		 PMC_FLAG_NONE)) == NULL)
4608		goto done;		/* nothing to do */
4609
4610	do_descendants = 0;
4611	for (ri = 0; ri < md->pmd_npmc; ri++)
4612		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4613			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4614	if (do_descendants == 0) /* nothing to do */
4615		goto done;
4616
4617	/* allocate a descriptor for the new process  */
4618	if ((ppnew = pmc_find_process_descriptor(newproc,
4619		 PMC_FLAG_ALLOCATE)) == NULL)
4620		goto done;
4621
4622	/*
4623	 * Run through all PMCs that were targeting the old process
4624	 * and which specified F_DESCENDANTS and attach them to the
4625	 * new process.
4626	 *
4627	 * Log the fork event to all owners of PMCs attached to this
4628	 * process, if not already logged.
4629	 */
4630	for (ri = 0; ri < md->pmd_npmc; ri++)
4631		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4632		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4633			pmc_link_target_process(pm, ppnew);
4634			po = pm->pm_owner;
4635			if (po->po_sscount == 0 &&
4636			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4637				pmclog_process_procfork(po, p1->p_pid,
4638				    newproc->p_pid);
4639		}
4640
4641	/*
4642	 * Now mark the new process as being tracked by this driver.
4643	 */
4644	PROC_LOCK(newproc);
4645	newproc->p_flag |= P_HWPMC;
4646	PROC_UNLOCK(newproc);
4647
4648 done:
4649	sx_xunlock(&pmc_sx);
4650}
4651
4652static void
4653pmc_kld_load(void *arg __unused, linker_file_t lf)
4654{
4655	struct pmc_owner *po;
4656
4657	sx_slock(&pmc_sx);
4658
4659	/*
4660	 * Notify owners of system sampling PMCs about KLD operations.
4661	 */
4662	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4663		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4664			pmclog_process_map_in(po, (pid_t) -1,
4665			    (uintfptr_t) lf->address, lf->filename);
4666
4667	/*
4668	 * TODO: Notify owners of (all) process-sampling PMCs too.
4669	 */
4670
4671	sx_sunlock(&pmc_sx);
4672}
4673
4674static void
4675pmc_kld_unload(void *arg __unused, const char *filename __unused,
4676    caddr_t address, size_t size)
4677{
4678	struct pmc_owner *po;
4679
4680	sx_slock(&pmc_sx);
4681
4682	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4683		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4684			pmclog_process_map_out(po, (pid_t) -1,
4685			    (uintfptr_t) address, (uintfptr_t) address + size);
4686
4687	/*
4688	 * TODO: Notify owners of process-sampling PMCs.
4689	 */
4690
4691	sx_sunlock(&pmc_sx);
4692}
4693
4694/*
4695 * initialization
4696 */
4697
4698static const char *pmc_name_of_pmcclass[] = {
4699#undef	__PMC_CLASS
4700#define	__PMC_CLASS(N) #N ,
4701	__PMC_CLASSES()
4702};
4703
4704/*
4705 * Base class initializer: allocate structure and set default classes.
4706 */
4707struct pmc_mdep *
4708pmc_mdep_alloc(int nclasses)
4709{
4710	struct pmc_mdep *md;
4711	int	n;
4712
4713	/* SOFT + md classes */
4714	n = 1 + nclasses;
4715	md = malloc(sizeof(struct pmc_mdep) + n *
4716	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4717	md->pmd_nclass = n;
4718
4719	/* Add base class. */
4720	pmc_soft_initialize(md);
4721	return md;
4722}
4723
4724void
4725pmc_mdep_free(struct pmc_mdep *md)
4726{
4727	pmc_soft_finalize(md);
4728	free(md, M_PMC);
4729}
4730
4731static int
4732generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4733{
4734	(void) pc; (void) pp;
4735
4736	return (0);
4737}
4738
4739static int
4740generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4741{
4742	(void) pc; (void) pp;
4743
4744	return (0);
4745}
4746
4747static struct pmc_mdep *
4748pmc_generic_cpu_initialize(void)
4749{
4750	struct pmc_mdep *md;
4751
4752	md = pmc_mdep_alloc(0);
4753
4754	md->pmd_cputype    = PMC_CPU_GENERIC;
4755
4756	md->pmd_pcpu_init  = NULL;
4757	md->pmd_pcpu_fini  = NULL;
4758	md->pmd_switch_in  = generic_switch_in;
4759	md->pmd_switch_out = generic_switch_out;
4760
4761	return (md);
4762}
4763
4764static void
4765pmc_generic_cpu_finalize(struct pmc_mdep *md)
4766{
4767	(void) md;
4768}
4769
4770
4771static int
4772pmc_initialize(void)
4773{
4774	int c, cpu, error, n, ri;
4775	unsigned int maxcpu;
4776	struct pmc_binding pb;
4777	struct pmc_sample *ps;
4778	struct pmc_classdep *pcd;
4779	struct pmc_samplebuffer *sb;
4780
4781	md = NULL;
4782	error = 0;
4783
4784#ifdef	HWPMC_DEBUG
4785	/* parse debug flags first */
4786	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4787		pmc_debugstr, sizeof(pmc_debugstr)))
4788		pmc_debugflags_parse(pmc_debugstr,
4789		    pmc_debugstr+strlen(pmc_debugstr));
4790#endif
4791
4792	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4793
4794	/* check kernel version */
4795	if (pmc_kernel_version != PMC_VERSION) {
4796		if (pmc_kernel_version == 0)
4797			printf("hwpmc: this kernel has not been compiled with "
4798			    "'options HWPMC_HOOKS'.\n");
4799		else
4800			printf("hwpmc: kernel version (0x%x) does not match "
4801			    "module version (0x%x).\n", pmc_kernel_version,
4802			    PMC_VERSION);
4803		return EPROGMISMATCH;
4804	}
4805
4806	/*
4807	 * check sysctl parameters
4808	 */
4809
4810	if (pmc_hashsize <= 0) {
4811		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4812		    "greater than zero.\n", pmc_hashsize);
4813		pmc_hashsize = PMC_HASH_SIZE;
4814	}
4815
4816	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4817		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4818		    "range.\n", pmc_nsamples);
4819		pmc_nsamples = PMC_NSAMPLES;
4820	}
4821
4822	if (pmc_callchaindepth <= 0 ||
4823	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4824		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4825		    "range - using %d.\n", pmc_callchaindepth,
4826		    PMC_CALLCHAIN_DEPTH_MAX);
4827		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4828	}
4829
4830	md = pmc_md_initialize();
4831	if (md == NULL) {
4832		/* Default to generic CPU. */
4833		md = pmc_generic_cpu_initialize();
4834		if (md == NULL)
4835			return (ENOSYS);
4836        }
4837
4838	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4839	    ("[pmc,%d] no classes or pmcs", __LINE__));
4840
4841	/* Compute the map from row-indices to classdep pointers. */
4842	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4843	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4844
4845	for (n = 0; n < md->pmd_npmc; n++)
4846		pmc_rowindex_to_classdep[n] = NULL;
4847	for (ri = c = 0; c < md->pmd_nclass; c++) {
4848		pcd = &md->pmd_classdep[c];
4849		for (n = 0; n < pcd->pcd_num; n++, ri++)
4850			pmc_rowindex_to_classdep[ri] = pcd;
4851	}
4852
4853	KASSERT(ri == md->pmd_npmc,
4854	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4855	    ri, md->pmd_npmc));
4856
4857	maxcpu = pmc_cpu_max();
4858
4859	/* allocate space for the per-cpu array */
4860	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4861	    M_WAITOK|M_ZERO);
4862
4863	/* per-cpu 'saved values' for managing process-mode PMCs */
4864	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4865	    M_PMC, M_WAITOK);
4866
4867	/* Perform CPU-dependent initialization. */
4868	pmc_save_cpu_binding(&pb);
4869	error = 0;
4870	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4871		if (!pmc_cpu_is_active(cpu))
4872			continue;
4873		pmc_select_cpu(cpu);
4874		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4875		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4876		    M_WAITOK|M_ZERO);
4877		if (md->pmd_pcpu_init)
4878			error = md->pmd_pcpu_init(md, cpu);
4879		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4880			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4881	}
4882	pmc_restore_cpu_binding(&pb);
4883
4884	if (error)
4885		return (error);
4886
4887	/* allocate space for the sample array */
4888	for (cpu = 0; cpu < maxcpu; cpu++) {
4889		if (!pmc_cpu_is_active(cpu))
4890			continue;
4891
4892		sb = malloc(sizeof(struct pmc_samplebuffer) +
4893		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4894		    M_WAITOK|M_ZERO);
4895		sb->ps_read = sb->ps_write = sb->ps_samples;
4896		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4897
4898		KASSERT(pmc_pcpu[cpu] != NULL,
4899		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4900
4901		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4902		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4903
4904		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4905			ps->ps_pc = sb->ps_callchains +
4906			    (n * pmc_callchaindepth);
4907
4908		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4909
4910		sb = malloc(sizeof(struct pmc_samplebuffer) +
4911		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4912		    M_WAITOK|M_ZERO);
4913		sb->ps_read = sb->ps_write = sb->ps_samples;
4914		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4915
4916		KASSERT(pmc_pcpu[cpu] != NULL,
4917		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4918
4919		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4920		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4921
4922		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4923			ps->ps_pc = sb->ps_callchains +
4924			    (n * pmc_callchaindepth);
4925
4926		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4927	}
4928
4929	/* allocate space for the row disposition array */
4930	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4931	    M_PMC, M_WAITOK|M_ZERO);
4932
4933	/* mark all PMCs as available */
4934	for (n = 0; n < (int) md->pmd_npmc; n++)
4935		PMC_MARK_ROW_FREE(n);
4936
4937	/* allocate thread hash tables */
4938	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4939	    &pmc_ownerhashmask);
4940
4941	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4942	    &pmc_processhashmask);
4943	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4944	    MTX_SPIN);
4945
4946	LIST_INIT(&pmc_ss_owners);
4947	pmc_ss_count = 0;
4948
4949	/* allocate a pool of spin mutexes */
4950	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4951	    MTX_SPIN);
4952
4953	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4954	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4955	    pmc_processhash, pmc_processhashmask);
4956
4957	/* register process {exit,fork,exec} handlers */
4958	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4959	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4960	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4961	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4962
4963	/* register kld event handlers */
4964	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
4965	    NULL, EVENTHANDLER_PRI_ANY);
4966	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
4967	    NULL, EVENTHANDLER_PRI_ANY);
4968
4969	/* initialize logging */
4970	pmclog_initialize();
4971
4972	/* set hook functions */
4973	pmc_intr = md->pmd_intr;
4974	pmc_hook = pmc_hook_handler;
4975
4976	if (error == 0) {
4977		printf(PMC_MODULE_NAME ":");
4978		for (n = 0; n < (int) md->pmd_nclass; n++) {
4979			pcd = &md->pmd_classdep[n];
4980			printf(" %s/%d/%d/0x%b",
4981			    pmc_name_of_pmcclass[pcd->pcd_class],
4982			    pcd->pcd_num,
4983			    pcd->pcd_width,
4984			    pcd->pcd_caps,
4985			    "\20"
4986			    "\1INT\2USR\3SYS\4EDG\5THR"
4987			    "\6REA\7WRI\10INV\11QUA\12PRC"
4988			    "\13TAG\14CSC");
4989		}
4990		printf("\n");
4991	}
4992
4993	return (error);
4994}
4995
4996/* prepare to be unloaded */
4997static void
4998pmc_cleanup(void)
4999{
5000	int c, cpu;
5001	unsigned int maxcpu;
5002	struct pmc_ownerhash *ph;
5003	struct pmc_owner *po, *tmp;
5004	struct pmc_binding pb;
5005#ifdef	HWPMC_DEBUG
5006	struct pmc_processhash *prh;
5007#endif
5008
5009	PMCDBG0(MOD,INI,0, "cleanup");
5010
5011	/* switch off sampling */
5012	CPU_ZERO(&pmc_cpumask);
5013	pmc_intr = NULL;
5014
5015	sx_xlock(&pmc_sx);
5016	if (pmc_hook == NULL) {	/* being unloaded already */
5017		sx_xunlock(&pmc_sx);
5018		return;
5019	}
5020
5021	pmc_hook = NULL; /* prevent new threads from entering module */
5022
5023	/* deregister event handlers */
5024	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5025	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5026	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5027	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5028
5029	/* send SIGBUS to all owner threads, free up allocations */
5030	if (pmc_ownerhash)
5031		for (ph = pmc_ownerhash;
5032		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
5033		     ph++) {
5034			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5035				pmc_remove_owner(po);
5036
5037				/* send SIGBUS to owner processes */
5038				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5039				    "(%d, %s)", po->po_owner,
5040				    po->po_owner->p_pid,
5041				    po->po_owner->p_comm);
5042
5043				PROC_LOCK(po->po_owner);
5044				kern_psignal(po->po_owner, SIGBUS);
5045				PROC_UNLOCK(po->po_owner);
5046
5047				pmc_destroy_owner_descriptor(po);
5048			}
5049		}
5050
5051	/* reclaim allocated data structures */
5052	if (pmc_mtxpool)
5053		mtx_pool_destroy(&pmc_mtxpool);
5054
5055	mtx_destroy(&pmc_processhash_mtx);
5056	if (pmc_processhash) {
5057#ifdef	HWPMC_DEBUG
5058		struct pmc_process *pp;
5059
5060		PMCDBG0(MOD,INI,3, "destroy process hash");
5061		for (prh = pmc_processhash;
5062		     prh <= &pmc_processhash[pmc_processhashmask];
5063		     prh++)
5064			LIST_FOREACH(pp, prh, pp_next)
5065			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5066#endif
5067
5068		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5069		pmc_processhash = NULL;
5070	}
5071
5072	if (pmc_ownerhash) {
5073		PMCDBG0(MOD,INI,3, "destroy owner hash");
5074		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5075		pmc_ownerhash = NULL;
5076	}
5077
5078	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5079	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5080	KASSERT(pmc_ss_count == 0,
5081	    ("[pmc,%d] Global SS count not empty", __LINE__));
5082
5083 	/* do processor and pmc-class dependent cleanup */
5084	maxcpu = pmc_cpu_max();
5085
5086	PMCDBG0(MOD,INI,3, "md cleanup");
5087	if (md) {
5088		pmc_save_cpu_binding(&pb);
5089		for (cpu = 0; cpu < maxcpu; cpu++) {
5090			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5091			    cpu, pmc_pcpu[cpu]);
5092			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5093				continue;
5094			pmc_select_cpu(cpu);
5095			for (c = 0; c < md->pmd_nclass; c++)
5096				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5097			if (md->pmd_pcpu_fini)
5098				md->pmd_pcpu_fini(md, cpu);
5099		}
5100
5101		if (md->pmd_cputype == PMC_CPU_GENERIC)
5102			pmc_generic_cpu_finalize(md);
5103		else
5104			pmc_md_finalize(md);
5105
5106		pmc_mdep_free(md);
5107		md = NULL;
5108		pmc_restore_cpu_binding(&pb);
5109	}
5110
5111	/* Free per-cpu descriptors. */
5112	for (cpu = 0; cpu < maxcpu; cpu++) {
5113		if (!pmc_cpu_is_active(cpu))
5114			continue;
5115		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5116		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5117			cpu));
5118		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5119		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5120			cpu));
5121		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5122		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5123		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5124		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5125		free(pmc_pcpu[cpu], M_PMC);
5126	}
5127
5128	free(pmc_pcpu, M_PMC);
5129	pmc_pcpu = NULL;
5130
5131	free(pmc_pcpu_saved, M_PMC);
5132	pmc_pcpu_saved = NULL;
5133
5134	if (pmc_pmcdisp) {
5135		free(pmc_pmcdisp, M_PMC);
5136		pmc_pmcdisp = NULL;
5137	}
5138
5139	if (pmc_rowindex_to_classdep) {
5140		free(pmc_rowindex_to_classdep, M_PMC);
5141		pmc_rowindex_to_classdep = NULL;
5142	}
5143
5144	pmclog_shutdown();
5145
5146	sx_xunlock(&pmc_sx); 	/* we are done */
5147}
5148
5149/*
5150 * The function called at load/unload.
5151 */
5152
5153static int
5154load (struct module *module __unused, int cmd, void *arg __unused)
5155{
5156	int error;
5157
5158	error = 0;
5159
5160	switch (cmd) {
5161	case MOD_LOAD :
5162		/* initialize the subsystem */
5163		error = pmc_initialize();
5164		if (error != 0)
5165			break;
5166		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5167		    pmc_syscall_num, pmc_cpu_max());
5168		break;
5169
5170
5171	case MOD_UNLOAD :
5172	case MOD_SHUTDOWN:
5173		pmc_cleanup();
5174		PMCDBG0(MOD,INI,1, "unloaded");
5175		break;
5176
5177	default :
5178		error = EINVAL;	/* XXX should panic(9) */
5179		break;
5180	}
5181
5182	return error;
5183}
5184
5185/* memory pool */
5186MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5187