hwpmc_mod.c revision 280455
1/*-
2 * Copyright (c) 2003-2008 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/dev/hwpmc/hwpmc_mod.c 280455 2015-03-24 20:00:11Z rrs $");
34
35#include <sys/param.h>
36#include <sys/eventhandler.h>
37#include <sys/jail.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/module.h>
44#include <sys/mount.h>
45#include <sys/mutex.h>
46#include <sys/pmc.h>
47#include <sys/pmckern.h>
48#include <sys/pmclog.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/queue.h>
52#include <sys/resourcevar.h>
53#include <sys/rwlock.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysent.h>
60#include <sys/systm.h>
61#include <sys/vnode.h>
62
63#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64
65#include <machine/atomic.h>
66#include <machine/md_var.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73
74#include "hwpmc_soft.h"
75
76/*
77 * Types
78 */
79
80enum pmc_flags {
81	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84};
85
86/*
87 * The offset in sysent where the syscall is allocated.
88 */
89
90static int pmc_syscall_num = NO_SYSCALL;
91struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93
94#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95
96struct mtx_pool		*pmc_mtxpool;
97static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98
99#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102
103#define	PMC_MARK_ROW_FREE(R) do {					  \
104	pmc_pmcdisp[(R)] = 0;						  \
105} while (0)
106
107#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109		    __LINE__));						  \
110	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112		("[pmc,%d] row disposition error", __LINE__));		  \
113} while (0)
114
115#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118		    __LINE__));						  \
119} while (0)
120
121#define	PMC_MARK_ROW_THREAD(R) do {					  \
122	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123		    __LINE__));						  \
124	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125} while (0)
126
127#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130		    __LINE__));						  \
131} while (0)
132
133
134/* various event handlers */
135static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136    pmc_kld_unload_tag;
137
138/* Module statistics */
139struct pmc_op_getdriverstats pmc_stats;
140
141/* Machine/processor dependent operations */
142static struct pmc_mdep  *md;
143
144/*
145 * Hash tables mapping owner processes and target threads to PMCs.
146 */
147
148struct mtx pmc_processhash_mtx;		/* spin mutex */
149static u_long pmc_processhashmask;
150static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151
152/*
153 * Hash table of PMC owner descriptors.  This table is protected by
154 * the shared PMC "sx" lock.
155 */
156
157static u_long pmc_ownerhashmask;
158static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159
160/*
161 * List of PMC owners with system-wide sampling PMCs.
162 */
163
164static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165
166
167/*
168 * A map of row indices to classdep structures.
169 */
170static struct pmc_classdep **pmc_rowindex_to_classdep;
171
172/*
173 * Prototypes
174 */
175
176#ifdef	DEBUG
177static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178static int	pmc_debugflags_parse(char *newstr, char *fence);
179#endif
180
181static int	load(struct module *module, int cmd, void *arg);
182static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183static struct pmc *pmc_allocate_pmc_descriptor(void);
184static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187    int cpu);
188static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190static void	pmc_cleanup(void);
191static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193    int flags);
194static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199    pmc_id_t pmc);
200static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201    uint32_t mode);
202static void	pmc_force_context_switch(void);
203static void	pmc_link_target_process(struct pmc *pm,
204    struct pmc_process *pp);
205static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206static void	pmc_log_kernel_mappings(struct pmc *pm);
207static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209static void	pmc_process_csw_in(struct thread *td);
210static void	pmc_process_csw_out(struct thread *td);
211static void	pmc_process_exit(void *arg, struct proc *p);
212static void	pmc_process_fork(void *arg, struct proc *p1,
213    struct proc *p2, int n);
214static void	pmc_process_samples(int cpu, int soft);
215static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216static void	pmc_remove_owner(struct pmc_owner *po);
217static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220static void	pmc_select_cpu(int cpu);
221static int	pmc_start(struct pmc *pm);
222static int	pmc_stop(struct pmc *pm);
223static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224static void	pmc_unlink_target_process(struct pmc *pmc,
225    struct pmc_process *pp);
226static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230
231/*
232 * Kernel tunables and sysctl(8) interface.
233 */
234
235SYSCTL_DECL(_kern_hwpmc);
236
237static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "callchaindepth", &pmc_callchaindepth);
239SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_TUN|CTLFLAG_RD,
240    &pmc_callchaindepth, 0, "depth of call chain records");
241
242#ifdef	DEBUG
243struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
244char	pmc_debugstr[PMC_DEBUG_STRSIZE];
245TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
246    sizeof(pmc_debugstr));
247SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
248    CTLTYPE_STRING|CTLFLAG_RW|CTLFLAG_TUN,
249    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
250#endif
251
252/*
253 * kern.hwpmc.hashrows -- determines the number of rows in the
254 * of the hash table used to look up threads
255 */
256
257static int pmc_hashsize = PMC_HASH_SIZE;
258TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "hashsize", &pmc_hashsize);
259SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_TUN|CTLFLAG_RD,
260    &pmc_hashsize, 0, "rows in hash tables");
261
262/*
263 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
264 */
265
266static int pmc_nsamples = PMC_NSAMPLES;
267TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "nsamples", &pmc_nsamples);
268SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_TUN|CTLFLAG_RD,
269    &pmc_nsamples, 0, "number of PC samples per CPU");
270
271
272/*
273 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
274 */
275
276static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
277TUNABLE_INT(PMC_SYSCTL_NAME_PREFIX "mtxpoolsize", &pmc_mtxpool_size);
278SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_TUN|CTLFLAG_RD,
279    &pmc_mtxpool_size, 0, "size of spin mutex pool");
280
281
282/*
283 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
284 * allocate system-wide PMCs.
285 *
286 * Allowing unprivileged processes to allocate system PMCs is convenient
287 * if system-wide measurements need to be taken concurrently with other
288 * per-process measurements.  This feature is turned off by default.
289 */
290
291static int pmc_unprivileged_syspmcs = 0;
292TUNABLE_INT("security.bsd.unprivileged_syspmcs", &pmc_unprivileged_syspmcs);
293SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RW,
294    &pmc_unprivileged_syspmcs, 0,
295    "allow unprivileged process to allocate system PMCs");
296
297/*
298 * Hash function.  Discard the lower 2 bits of the pointer since
299 * these are always zero for our uses.  The hash multiplier is
300 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
301 */
302
303#if	LONG_BIT == 64
304#define	_PMC_HM		11400714819323198486u
305#elif	LONG_BIT == 32
306#define	_PMC_HM		2654435769u
307#else
308#error 	Must know the size of 'long' to compile
309#endif
310
311#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
312
313/*
314 * Syscall structures
315 */
316
317/* The `sysent' for the new syscall */
318static struct sysent pmc_sysent = {
319	2,			/* sy_narg */
320	pmc_syscall_handler	/* sy_call */
321};
322
323static struct syscall_module_data pmc_syscall_mod = {
324	load,
325	NULL,
326	&pmc_syscall_num,
327	&pmc_sysent,
328#if (__FreeBSD_version >= 1100000)
329	{ 0, NULL },
330	SY_THR_STATIC_KLD,
331#else
332	{ 0, NULL }
333#endif
334};
335
336static moduledata_t pmc_mod = {
337	PMC_MODULE_NAME,
338	syscall_module_handler,
339	&pmc_syscall_mod
340};
341
342DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
343MODULE_VERSION(pmc, PMC_VERSION);
344
345#ifdef	DEBUG
346enum pmc_dbgparse_state {
347	PMCDS_WS,		/* in whitespace */
348	PMCDS_MAJOR,		/* seen a major keyword */
349	PMCDS_MINOR
350};
351
352static int
353pmc_debugflags_parse(char *newstr, char *fence)
354{
355	char c, *p, *q;
356	struct pmc_debugflags *tmpflags;
357	int error, found, *newbits, tmp;
358	size_t kwlen;
359
360	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
361
362	p = newstr;
363	error = 0;
364
365	for (; p < fence && (c = *p); p++) {
366
367		/* skip white space */
368		if (c == ' ' || c == '\t')
369			continue;
370
371		/* look for a keyword followed by "=" */
372		for (q = p; p < fence && (c = *p) && c != '='; p++)
373			;
374		if (c != '=') {
375			error = EINVAL;
376			goto done;
377		}
378
379		kwlen = p - q;
380		newbits = NULL;
381
382		/* lookup flag group name */
383#define	DBG_SET_FLAG_MAJ(S,F)						\
384		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
385			newbits = &tmpflags->pdb_ ## F;
386
387		DBG_SET_FLAG_MAJ("cpu",		CPU);
388		DBG_SET_FLAG_MAJ("csw",		CSW);
389		DBG_SET_FLAG_MAJ("logging",	LOG);
390		DBG_SET_FLAG_MAJ("module",	MOD);
391		DBG_SET_FLAG_MAJ("md", 		MDP);
392		DBG_SET_FLAG_MAJ("owner",	OWN);
393		DBG_SET_FLAG_MAJ("pmc",		PMC);
394		DBG_SET_FLAG_MAJ("process",	PRC);
395		DBG_SET_FLAG_MAJ("sampling", 	SAM);
396
397		if (newbits == NULL) {
398			error = EINVAL;
399			goto done;
400		}
401
402		p++;		/* skip the '=' */
403
404		/* Now parse the individual flags */
405		tmp = 0;
406	newflag:
407		for (q = p; p < fence && (c = *p); p++)
408			if (c == ' ' || c == '\t' || c == ',')
409				break;
410
411		/* p == fence or c == ws or c == "," or c == 0 */
412
413		if ((kwlen = p - q) == 0) {
414			*newbits = tmp;
415			continue;
416		}
417
418		found = 0;
419#define	DBG_SET_FLAG_MIN(S,F)						\
420		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
421			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
422
423		/* a '*' denotes all possible flags in the group */
424		if (kwlen == 1 && *q == '*')
425			tmp = found = ~0;
426		/* look for individual flag names */
427		DBG_SET_FLAG_MIN("allocaterow", ALR);
428		DBG_SET_FLAG_MIN("allocate",	ALL);
429		DBG_SET_FLAG_MIN("attach",	ATT);
430		DBG_SET_FLAG_MIN("bind",	BND);
431		DBG_SET_FLAG_MIN("config",	CFG);
432		DBG_SET_FLAG_MIN("exec",	EXC);
433		DBG_SET_FLAG_MIN("exit",	EXT);
434		DBG_SET_FLAG_MIN("find",	FND);
435		DBG_SET_FLAG_MIN("flush",	FLS);
436		DBG_SET_FLAG_MIN("fork",	FRK);
437		DBG_SET_FLAG_MIN("getbuf",	GTB);
438		DBG_SET_FLAG_MIN("hook",	PMH);
439		DBG_SET_FLAG_MIN("init",	INI);
440		DBG_SET_FLAG_MIN("intr",	INT);
441		DBG_SET_FLAG_MIN("linktarget",	TLK);
442		DBG_SET_FLAG_MIN("mayberemove", OMR);
443		DBG_SET_FLAG_MIN("ops",		OPS);
444		DBG_SET_FLAG_MIN("read",	REA);
445		DBG_SET_FLAG_MIN("register",	REG);
446		DBG_SET_FLAG_MIN("release",	REL);
447		DBG_SET_FLAG_MIN("remove",	ORM);
448		DBG_SET_FLAG_MIN("sample",	SAM);
449		DBG_SET_FLAG_MIN("scheduleio",	SIO);
450		DBG_SET_FLAG_MIN("select",	SEL);
451		DBG_SET_FLAG_MIN("signal",	SIG);
452		DBG_SET_FLAG_MIN("swi",		SWI);
453		DBG_SET_FLAG_MIN("swo",		SWO);
454		DBG_SET_FLAG_MIN("start",	STA);
455		DBG_SET_FLAG_MIN("stop",	STO);
456		DBG_SET_FLAG_MIN("syscall",	PMS);
457		DBG_SET_FLAG_MIN("unlinktarget", TUL);
458		DBG_SET_FLAG_MIN("write",	WRI);
459		if (found == 0) {
460			/* unrecognized flag name */
461			error = EINVAL;
462			goto done;
463		}
464
465		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
466			*newbits = tmp;
467			continue;
468		}
469
470		p++;
471		goto newflag;
472	}
473
474	/* save the new flag set */
475	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
476
477 done:
478	free(tmpflags, M_PMC);
479	return error;
480}
481
482static int
483pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
484{
485	char *fence, *newstr;
486	int error;
487	unsigned int n;
488
489	(void) arg1; (void) arg2; /* unused parameters */
490
491	n = sizeof(pmc_debugstr);
492	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
493	(void) strlcpy(newstr, pmc_debugstr, n);
494
495	error = sysctl_handle_string(oidp, newstr, n, req);
496
497	/* if there is a new string, parse and copy it */
498	if (error == 0 && req->newptr != NULL) {
499		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
500		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
501			(void) strlcpy(pmc_debugstr, newstr,
502			    sizeof(pmc_debugstr));
503	}
504
505	free(newstr, M_PMC);
506
507	return error;
508}
509#endif
510
511/*
512 * Map a row index to a classdep structure and return the adjusted row
513 * index for the PMC class index.
514 */
515static struct pmc_classdep *
516pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
517{
518	struct pmc_classdep *pcd;
519
520	(void) md;
521
522	KASSERT(ri >= 0 && ri < md->pmd_npmc,
523	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
524
525	pcd = pmc_rowindex_to_classdep[ri];
526
527	KASSERT(pcd != NULL,
528	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
529
530	*adjri = ri - pcd->pcd_ri;
531
532	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
533	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
534
535	return (pcd);
536}
537
538/*
539 * Concurrency Control
540 *
541 * The driver manages the following data structures:
542 *
543 *   - target process descriptors, one per target process
544 *   - owner process descriptors (and attached lists), one per owner process
545 *   - lookup hash tables for owner and target processes
546 *   - PMC descriptors (and attached lists)
547 *   - per-cpu hardware state
548 *   - the 'hook' variable through which the kernel calls into
549 *     this module
550 *   - the machine hardware state (managed by the MD layer)
551 *
552 * These data structures are accessed from:
553 *
554 * - thread context-switch code
555 * - interrupt handlers (possibly on multiple cpus)
556 * - kernel threads on multiple cpus running on behalf of user
557 *   processes doing system calls
558 * - this driver's private kernel threads
559 *
560 * = Locks and Locking strategy =
561 *
562 * The driver uses four locking strategies for its operation:
563 *
564 * - The global SX lock "pmc_sx" is used to protect internal
565 *   data structures.
566 *
567 *   Calls into the module by syscall() start with this lock being
568 *   held in exclusive mode.  Depending on the requested operation,
569 *   the lock may be downgraded to 'shared' mode to allow more
570 *   concurrent readers into the module.  Calls into the module from
571 *   other parts of the kernel acquire the lock in shared mode.
572 *
573 *   This SX lock is held in exclusive mode for any operations that
574 *   modify the linkages between the driver's internal data structures.
575 *
576 *   The 'pmc_hook' function pointer is also protected by this lock.
577 *   It is only examined with the sx lock held in exclusive mode.  The
578 *   kernel module is allowed to be unloaded only with the sx lock held
579 *   in exclusive mode.  In normal syscall handling, after acquiring the
580 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
581 *   proceeding.  This prevents races between the thread unloading the module
582 *   and other threads seeking to use the module.
583 *
584 * - Lookups of target process structures and owner process structures
585 *   cannot use the global "pmc_sx" SX lock because these lookups need
586 *   to happen during context switches and in other critical sections
587 *   where sleeping is not allowed.  We protect these lookup tables
588 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
589 *   "pmc_ownerhash_mtx".
590 *
591 * - Interrupt handlers work in a lock free manner.  At interrupt
592 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
593 *   when the PMC was started.  If this pointer is NULL, the interrupt
594 *   is ignored after updating driver statistics.  We ensure that this
595 *   pointer is set (using an atomic operation if necessary) before the
596 *   PMC hardware is started.  Conversely, this pointer is unset atomically
597 *   only after the PMC hardware is stopped.
598 *
599 *   We ensure that everything needed for the operation of an
600 *   interrupt handler is available without it needing to acquire any
601 *   locks.  We also ensure that a PMC's software state is destroyed only
602 *   after the PMC is taken off hardware (on all CPUs).
603 *
604 * - Context-switch handling with process-private PMCs needs more
605 *   care.
606 *
607 *   A given process may be the target of multiple PMCs.  For example,
608 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
609 *   while the target process is running on another.  A PMC could also
610 *   be getting released because its owner is exiting.  We tackle
611 *   these situations in the following manner:
612 *
613 *   - each target process structure 'pmc_process' has an array
614 *     of 'struct pmc *' pointers, one for each hardware PMC.
615 *
616 *   - At context switch IN time, each "target" PMC in RUNNING state
617 *     gets started on hardware and a pointer to each PMC is copied into
618 *     the per-cpu phw array.  The 'runcount' for the PMC is
619 *     incremented.
620 *
621 *   - At context switch OUT time, all process-virtual PMCs are stopped
622 *     on hardware.  The saved value is added to the PMCs value field
623 *     only if the PMC is in a non-deleted state (the PMCs state could
624 *     have changed during the current time slice).
625 *
626 *     Note that since in-between a switch IN on a processor and a switch
627 *     OUT, the PMC could have been released on another CPU.  Therefore
628 *     context switch OUT always looks at the hardware state to turn
629 *     OFF PMCs and will update a PMC's saved value only if reachable
630 *     from the target process record.
631 *
632 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
633 *     be attached to many processes at the time of the call and could
634 *     be active on multiple CPUs).
635 *
636 *     We prevent further scheduling of the PMC by marking it as in
637 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
638 *     this PMC is currently running on a CPU somewhere.  The thread
639 *     doing the PMCRELEASE operation waits by repeatedly doing a
640 *     pause() till the runcount comes to zero.
641 *
642 * The contents of a PMC descriptor (struct pmc) are protected using
643 * a spin-mutex.  In order to save space, we use a mutex pool.
644 *
645 * In terms of lock types used by witness(4), we use:
646 * - Type "pmc-sx", used by the global SX lock.
647 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
648 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
649 * - Type "pmc-leaf", used for all other spin mutexes.
650 */
651
652/*
653 * save the cpu binding of the current kthread
654 */
655
656static void
657pmc_save_cpu_binding(struct pmc_binding *pb)
658{
659	PMCDBG(CPU,BND,2, "%s", "save-cpu");
660	thread_lock(curthread);
661	pb->pb_bound = sched_is_bound(curthread);
662	pb->pb_cpu   = curthread->td_oncpu;
663	thread_unlock(curthread);
664	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
665}
666
667/*
668 * restore the cpu binding of the current thread
669 */
670
671static void
672pmc_restore_cpu_binding(struct pmc_binding *pb)
673{
674	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
675	    curthread->td_oncpu, pb->pb_cpu);
676	thread_lock(curthread);
677	if (pb->pb_bound)
678		sched_bind(curthread, pb->pb_cpu);
679	else
680		sched_unbind(curthread);
681	thread_unlock(curthread);
682	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
683}
684
685/*
686 * move execution over the specified cpu and bind it there.
687 */
688
689static void
690pmc_select_cpu(int cpu)
691{
692	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
693	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
694
695	/* Never move to an inactive CPU. */
696	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
697	    "CPU %d", __LINE__, cpu));
698
699	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
700	thread_lock(curthread);
701	sched_bind(curthread, cpu);
702	thread_unlock(curthread);
703
704	KASSERT(curthread->td_oncpu == cpu,
705	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
706		cpu, curthread->td_oncpu));
707
708	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
709}
710
711/*
712 * Force a context switch.
713 *
714 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
715 * guaranteed to force a context switch.
716 */
717
718static void
719pmc_force_context_switch(void)
720{
721
722	pause("pmcctx", 1);
723}
724
725/*
726 * Get the file name for an executable.  This is a simple wrapper
727 * around vn_fullpath(9).
728 */
729
730static void
731pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
732{
733
734	*fullpath = "unknown";
735	*freepath = NULL;
736	vn_fullpath(curthread, v, fullpath, freepath);
737}
738
739/*
740 * remove an process owning PMCs
741 */
742
743void
744pmc_remove_owner(struct pmc_owner *po)
745{
746	struct pmc *pm, *tmp;
747
748	sx_assert(&pmc_sx, SX_XLOCKED);
749
750	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
751
752	/* Remove descriptor from the owner hash table */
753	LIST_REMOVE(po, po_next);
754
755	/* release all owned PMC descriptors */
756	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
757		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
758		KASSERT(pm->pm_owner == po,
759		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
760
761		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
762		pmc_destroy_pmc_descriptor(pm);
763	}
764
765	KASSERT(po->po_sscount == 0,
766	    ("[pmc,%d] SS count not zero", __LINE__));
767	KASSERT(LIST_EMPTY(&po->po_pmcs),
768	    ("[pmc,%d] PMC list not empty", __LINE__));
769
770	/* de-configure the log file if present */
771	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
772		pmclog_deconfigure_log(po);
773}
774
775/*
776 * remove an owner process record if all conditions are met.
777 */
778
779static void
780pmc_maybe_remove_owner(struct pmc_owner *po)
781{
782
783	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
784
785	/*
786	 * Remove owner record if
787	 * - this process does not own any PMCs
788	 * - this process has not allocated a system-wide sampling buffer
789	 */
790
791	if (LIST_EMPTY(&po->po_pmcs) &&
792	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
793		pmc_remove_owner(po);
794		pmc_destroy_owner_descriptor(po);
795	}
796}
797
798/*
799 * Add an association between a target process and a PMC.
800 */
801
802static void
803pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
804{
805	int ri;
806	struct pmc_target *pt;
807
808	sx_assert(&pmc_sx, SX_XLOCKED);
809
810	KASSERT(pm != NULL && pp != NULL,
811	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
812	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
813	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
814		__LINE__, pm, pp->pp_proc->p_pid));
815	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
816	    ("[pmc,%d] Illegal reference count %d for process record %p",
817		__LINE__, pp->pp_refcnt, (void *) pp));
818
819	ri = PMC_TO_ROWINDEX(pm);
820
821	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
822	    pm, ri, pp);
823
824#ifdef	DEBUG
825	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
826	    if (pt->pt_process == pp)
827		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
828				__LINE__, pp, pm));
829#endif
830
831	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
832	pt->pt_process = pp;
833
834	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
835
836	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
837	    (uintptr_t)pm);
838
839	if (pm->pm_owner->po_owner == pp->pp_proc)
840		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
841
842	/*
843	 * Initialize the per-process values at this row index.
844	 */
845	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
846	    pm->pm_sc.pm_reloadcount : 0;
847
848	pp->pp_refcnt++;
849
850}
851
852/*
853 * Removes the association between a target process and a PMC.
854 */
855
856static void
857pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
858{
859	int ri;
860	struct proc *p;
861	struct pmc_target *ptgt;
862
863	sx_assert(&pmc_sx, SX_XLOCKED);
864
865	KASSERT(pm != NULL && pp != NULL,
866	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
867
868	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
869	    ("[pmc,%d] Illegal ref count %d on process record %p",
870		__LINE__, pp->pp_refcnt, (void *) pp));
871
872	ri = PMC_TO_ROWINDEX(pm);
873
874	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
875	    pm, ri, pp);
876
877	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
878	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
879		ri, pm, pp->pp_pmcs[ri].pp_pmc));
880
881	pp->pp_pmcs[ri].pp_pmc = NULL;
882	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
883
884	/* Remove owner-specific flags */
885	if (pm->pm_owner->po_owner == pp->pp_proc) {
886		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
887		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
888	}
889
890	pp->pp_refcnt--;
891
892	/* Remove the target process from the PMC structure */
893	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
894		if (ptgt->pt_process == pp)
895			break;
896
897	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
898		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
899
900	LIST_REMOVE(ptgt, pt_next);
901	free(ptgt, M_PMC);
902
903	/* if the PMC now lacks targets, send the owner a SIGIO */
904	if (LIST_EMPTY(&pm->pm_targets)) {
905		p = pm->pm_owner->po_owner;
906		PROC_LOCK(p);
907		kern_psignal(p, SIGIO);
908		PROC_UNLOCK(p);
909
910		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
911		    SIGIO);
912	}
913}
914
915/*
916 * Check if PMC 'pm' may be attached to target process 't'.
917 */
918
919static int
920pmc_can_attach(struct pmc *pm, struct proc *t)
921{
922	struct proc *o;		/* pmc owner */
923	struct ucred *oc, *tc;	/* owner, target credentials */
924	int decline_attach, i;
925
926	/*
927	 * A PMC's owner can always attach that PMC to itself.
928	 */
929
930	if ((o = pm->pm_owner->po_owner) == t)
931		return 0;
932
933	PROC_LOCK(o);
934	oc = o->p_ucred;
935	crhold(oc);
936	PROC_UNLOCK(o);
937
938	PROC_LOCK(t);
939	tc = t->p_ucred;
940	crhold(tc);
941	PROC_UNLOCK(t);
942
943	/*
944	 * The effective uid of the PMC owner should match at least one
945	 * of the {effective,real,saved} uids of the target process.
946	 */
947
948	decline_attach = oc->cr_uid != tc->cr_uid &&
949	    oc->cr_uid != tc->cr_svuid &&
950	    oc->cr_uid != tc->cr_ruid;
951
952	/*
953	 * Every one of the target's group ids, must be in the owner's
954	 * group list.
955	 */
956	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
957		decline_attach = !groupmember(tc->cr_groups[i], oc);
958
959	/* check the read and saved gids too */
960	if (decline_attach == 0)
961		decline_attach = !groupmember(tc->cr_rgid, oc) ||
962		    !groupmember(tc->cr_svgid, oc);
963
964	crfree(tc);
965	crfree(oc);
966
967	return !decline_attach;
968}
969
970/*
971 * Attach a process to a PMC.
972 */
973
974static int
975pmc_attach_one_process(struct proc *p, struct pmc *pm)
976{
977	int ri;
978	char *fullpath, *freepath;
979	struct pmc_process	*pp;
980
981	sx_assert(&pmc_sx, SX_XLOCKED);
982
983	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
984	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
985
986	/*
987	 * Locate the process descriptor corresponding to process 'p',
988	 * allocating space as needed.
989	 *
990	 * Verify that rowindex 'pm_rowindex' is free in the process
991	 * descriptor.
992	 *
993	 * If not, allocate space for a descriptor and link the
994	 * process descriptor and PMC.
995	 */
996	ri = PMC_TO_ROWINDEX(pm);
997
998	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
999		return ENOMEM;
1000
1001	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
1002		return EEXIST;
1003
1004	if (pp->pp_pmcs[ri].pp_pmc != NULL)
1005		return EBUSY;
1006
1007	pmc_link_target_process(pm, pp);
1008
1009	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1010	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1011		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1012
1013	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1014
1015	/* issue an attach event to a configured log file */
1016	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1017		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1018		if (p->p_flag & P_KTHREAD) {
1019			fullpath = kernelname;
1020			freepath = NULL;
1021		} else
1022			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1023		if (freepath)
1024			free(freepath, M_TEMP);
1025		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1026			pmc_log_process_mappings(pm->pm_owner, p);
1027	}
1028	/* mark process as using HWPMCs */
1029	PROC_LOCK(p);
1030	p->p_flag |= P_HWPMC;
1031	PROC_UNLOCK(p);
1032
1033	return 0;
1034}
1035
1036/*
1037 * Attach a process and optionally its children
1038 */
1039
1040static int
1041pmc_attach_process(struct proc *p, struct pmc *pm)
1042{
1043	int error;
1044	struct proc *top;
1045
1046	sx_assert(&pmc_sx, SX_XLOCKED);
1047
1048	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1049	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1050
1051
1052	/*
1053	 * If this PMC successfully allowed a GETMSR operation
1054	 * in the past, disallow further ATTACHes.
1055	 */
1056
1057	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1058		return EPERM;
1059
1060	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1061		return pmc_attach_one_process(p, pm);
1062
1063	/*
1064	 * Traverse all child processes, attaching them to
1065	 * this PMC.
1066	 */
1067
1068	sx_slock(&proctree_lock);
1069
1070	top = p;
1071
1072	for (;;) {
1073		if ((error = pmc_attach_one_process(p, pm)) != 0)
1074			break;
1075		if (!LIST_EMPTY(&p->p_children))
1076			p = LIST_FIRST(&p->p_children);
1077		else for (;;) {
1078			if (p == top)
1079				goto done;
1080			if (LIST_NEXT(p, p_sibling)) {
1081				p = LIST_NEXT(p, p_sibling);
1082				break;
1083			}
1084			p = p->p_pptr;
1085		}
1086	}
1087
1088	if (error)
1089		(void) pmc_detach_process(top, pm);
1090
1091 done:
1092	sx_sunlock(&proctree_lock);
1093	return error;
1094}
1095
1096/*
1097 * Detach a process from a PMC.  If there are no other PMCs tracking
1098 * this process, remove the process structure from its hash table.  If
1099 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1100 */
1101
1102static int
1103pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1104{
1105	int ri;
1106	struct pmc_process *pp;
1107
1108	sx_assert(&pmc_sx, SX_XLOCKED);
1109
1110	KASSERT(pm != NULL,
1111	    ("[pmc,%d] null pm pointer", __LINE__));
1112
1113	ri = PMC_TO_ROWINDEX(pm);
1114
1115	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1116	    pm, ri, p, p->p_pid, p->p_comm, flags);
1117
1118	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1119		return ESRCH;
1120
1121	if (pp->pp_pmcs[ri].pp_pmc != pm)
1122		return EINVAL;
1123
1124	pmc_unlink_target_process(pm, pp);
1125
1126	/* Issue a detach entry if a log file is configured */
1127	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1128		pmclog_process_pmcdetach(pm, p->p_pid);
1129
1130	/*
1131	 * If there are no PMCs targetting this process, we remove its
1132	 * descriptor from the target hash table and unset the P_HWPMC
1133	 * flag in the struct proc.
1134	 */
1135	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1136	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1137		__LINE__, pp->pp_refcnt, pp));
1138
1139	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1140		return 0;
1141
1142	pmc_remove_process_descriptor(pp);
1143
1144	if (flags & PMC_FLAG_REMOVE)
1145		free(pp, M_PMC);
1146
1147	PROC_LOCK(p);
1148	p->p_flag &= ~P_HWPMC;
1149	PROC_UNLOCK(p);
1150
1151	return 0;
1152}
1153
1154/*
1155 * Detach a process and optionally its descendants from a PMC.
1156 */
1157
1158static int
1159pmc_detach_process(struct proc *p, struct pmc *pm)
1160{
1161	struct proc *top;
1162
1163	sx_assert(&pmc_sx, SX_XLOCKED);
1164
1165	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1166	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1167
1168	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1169		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1170
1171	/*
1172	 * Traverse all children, detaching them from this PMC.  We
1173	 * ignore errors since we could be detaching a PMC from a
1174	 * partially attached proc tree.
1175	 */
1176
1177	sx_slock(&proctree_lock);
1178
1179	top = p;
1180
1181	for (;;) {
1182		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1183
1184		if (!LIST_EMPTY(&p->p_children))
1185			p = LIST_FIRST(&p->p_children);
1186		else for (;;) {
1187			if (p == top)
1188				goto done;
1189			if (LIST_NEXT(p, p_sibling)) {
1190				p = LIST_NEXT(p, p_sibling);
1191				break;
1192			}
1193			p = p->p_pptr;
1194		}
1195	}
1196
1197 done:
1198	sx_sunlock(&proctree_lock);
1199
1200	if (LIST_EMPTY(&pm->pm_targets))
1201		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1202
1203	return 0;
1204}
1205
1206
1207/*
1208 * Thread context switch IN
1209 */
1210
1211static void
1212pmc_process_csw_in(struct thread *td)
1213{
1214	int cpu;
1215	unsigned int adjri, ri;
1216	struct pmc *pm;
1217	struct proc *p;
1218	struct pmc_cpu *pc;
1219	struct pmc_hw *phw;
1220	pmc_value_t newvalue;
1221	struct pmc_process *pp;
1222	struct pmc_classdep *pcd;
1223
1224	p = td->td_proc;
1225
1226	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1227		return;
1228
1229	KASSERT(pp->pp_proc == td->td_proc,
1230	    ("[pmc,%d] not my thread state", __LINE__));
1231
1232	critical_enter(); /* no preemption from this point */
1233
1234	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1235
1236	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1237	    p->p_pid, p->p_comm, pp);
1238
1239	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1240	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
1241
1242	pc = pmc_pcpu[cpu];
1243
1244	for (ri = 0; ri < md->pmd_npmc; ri++) {
1245
1246		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1247			continue;
1248
1249		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1250		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1251			__LINE__, PMC_TO_MODE(pm)));
1252
1253		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1254		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1255			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1256
1257		/*
1258		 * Only PMCs that are marked as 'RUNNING' need
1259		 * be placed on hardware.
1260		 */
1261
1262		if (pm->pm_state != PMC_STATE_RUNNING)
1263			continue;
1264
1265		/* increment PMC runcount */
1266		atomic_add_rel_int(&pm->pm_runcount, 1);
1267
1268		/* configure the HWPMC we are going to use. */
1269		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1270		pcd->pcd_config_pmc(cpu, adjri, pm);
1271
1272		phw = pc->pc_hwpmcs[ri];
1273
1274		KASSERT(phw != NULL,
1275		    ("[pmc,%d] null hw pointer", __LINE__));
1276
1277		KASSERT(phw->phw_pmc == pm,
1278		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1279			phw->phw_pmc, pm));
1280
1281		/*
1282		 * Write out saved value and start the PMC.
1283		 *
1284		 * Sampling PMCs use a per-process value, while
1285		 * counting mode PMCs use a per-pmc value that is
1286		 * inherited across descendants.
1287		 */
1288		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1289			mtx_pool_lock_spin(pmc_mtxpool, pm);
1290			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1291			    pp->pp_pmcs[ri].pp_pmcval;
1292			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1293		} else {
1294			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1295			    ("[pmc,%d] illegal mode=%d", __LINE__,
1296			    PMC_TO_MODE(pm)));
1297			mtx_pool_lock_spin(pmc_mtxpool, pm);
1298			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1299			    pm->pm_gv.pm_savedvalue;
1300			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1301		}
1302
1303		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1304
1305		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1306		pcd->pcd_start_pmc(cpu, adjri);
1307	}
1308
1309	/*
1310	 * perform any other architecture/cpu dependent thread
1311	 * switch-in actions.
1312	 */
1313
1314	(void) (*md->pmd_switch_in)(pc, pp);
1315
1316	critical_exit();
1317
1318}
1319
1320/*
1321 * Thread context switch OUT.
1322 */
1323
1324static void
1325pmc_process_csw_out(struct thread *td)
1326{
1327	int cpu;
1328	int64_t tmp;
1329	struct pmc *pm;
1330	struct proc *p;
1331	enum pmc_mode mode;
1332	struct pmc_cpu *pc;
1333	pmc_value_t newvalue;
1334	unsigned int adjri, ri;
1335	struct pmc_process *pp;
1336	struct pmc_classdep *pcd;
1337
1338
1339	/*
1340	 * Locate our process descriptor; this may be NULL if
1341	 * this process is exiting and we have already removed
1342	 * the process from the target process table.
1343	 *
1344	 * Note that due to kernel preemption, multiple
1345	 * context switches may happen while the process is
1346	 * exiting.
1347	 *
1348	 * Note also that if the target process cannot be
1349	 * found we still need to deconfigure any PMCs that
1350	 * are currently running on hardware.
1351	 */
1352
1353	p = td->td_proc;
1354	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1355
1356	/*
1357	 * save PMCs
1358	 */
1359
1360	critical_enter();
1361
1362	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1363
1364	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1365	    p->p_pid, p->p_comm, pp);
1366
1367	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1368	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
1369
1370	pc = pmc_pcpu[cpu];
1371
1372	/*
1373	 * When a PMC gets unlinked from a target PMC, it will
1374	 * be removed from the target's pp_pmc[] array.
1375	 *
1376	 * However, on a MP system, the target could have been
1377	 * executing on another CPU at the time of the unlink.
1378	 * So, at context switch OUT time, we need to look at
1379	 * the hardware to determine if a PMC is scheduled on
1380	 * it.
1381	 */
1382
1383	for (ri = 0; ri < md->pmd_npmc; ri++) {
1384
1385		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1386		pm  = NULL;
1387		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1388
1389		if (pm == NULL)	/* nothing at this row index */
1390			continue;
1391
1392		mode = PMC_TO_MODE(pm);
1393		if (!PMC_IS_VIRTUAL_MODE(mode))
1394			continue; /* not a process virtual PMC */
1395
1396		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1397		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1398			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1399
1400		/* Stop hardware if not already stopped */
1401		if (pm->pm_stalled == 0)
1402			pcd->pcd_stop_pmc(cpu, adjri);
1403
1404		/* reduce this PMC's runcount */
1405		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1406
1407		/*
1408		 * If this PMC is associated with this process,
1409		 * save the reading.
1410		 */
1411
1412		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
1413
1414			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1415			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1416				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1417
1418			KASSERT(pp->pp_refcnt > 0,
1419			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1420				pp->pp_refcnt));
1421
1422			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1423
1424			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1425
1426			PMCDBG(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
1427			    tmp);
1428
1429			if (mode == PMC_MODE_TS) {
1430
1431				/*
1432				 * For sampling process-virtual PMCs,
1433				 * we expect the count to be
1434				 * decreasing as the 'value'
1435				 * programmed into the PMC is the
1436				 * number of events to be seen till
1437				 * the next sampling interrupt.
1438				 */
1439				if (tmp < 0)
1440					tmp += pm->pm_sc.pm_reloadcount;
1441				mtx_pool_lock_spin(pmc_mtxpool, pm);
1442				pp->pp_pmcs[ri].pp_pmcval -= tmp;
1443				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
1444					pp->pp_pmcs[ri].pp_pmcval +=
1445					    pm->pm_sc.pm_reloadcount;
1446				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1447
1448			} else {
1449
1450				/*
1451				 * For counting process-virtual PMCs,
1452				 * we expect the count to be
1453				 * increasing monotonically, modulo a 64
1454				 * bit wraparound.
1455				 */
1456				KASSERT((int64_t) tmp >= 0,
1457				    ("[pmc,%d] negative increment cpu=%d "
1458				     "ri=%d newvalue=%jx saved=%jx "
1459				     "incr=%jx", __LINE__, cpu, ri,
1460				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1461
1462				mtx_pool_lock_spin(pmc_mtxpool, pm);
1463				pm->pm_gv.pm_savedvalue += tmp;
1464				pp->pp_pmcs[ri].pp_pmcval += tmp;
1465				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1466
1467				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1468					pmclog_process_proccsw(pm, pp, tmp);
1469			}
1470		}
1471
1472		/* mark hardware as free */
1473		pcd->pcd_config_pmc(cpu, adjri, NULL);
1474	}
1475
1476	/*
1477	 * perform any other architecture/cpu dependent thread
1478	 * switch out functions.
1479	 */
1480
1481	(void) (*md->pmd_switch_out)(pc, pp);
1482
1483	critical_exit();
1484}
1485
1486/*
1487 * A mapping change for a process.
1488 */
1489
1490static void
1491pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1492{
1493	int ri;
1494	pid_t pid;
1495	char *fullpath, *freepath;
1496	const struct pmc *pm;
1497	struct pmc_owner *po;
1498	const struct pmc_process *pp;
1499
1500	freepath = fullpath = NULL;
1501	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1502
1503	pid = td->td_proc->p_pid;
1504
1505	/* Inform owners of all system-wide sampling PMCs. */
1506	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1507	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1508		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1509
1510	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1511		goto done;
1512
1513	/*
1514	 * Inform sampling PMC owners tracking this process.
1515	 */
1516	for (ri = 0; ri < md->pmd_npmc; ri++)
1517		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1518		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1519			pmclog_process_map_in(pm->pm_owner,
1520			    pid, pkm->pm_address, fullpath);
1521
1522  done:
1523	if (freepath)
1524		free(freepath, M_TEMP);
1525}
1526
1527
1528/*
1529 * Log an munmap request.
1530 */
1531
1532static void
1533pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1534{
1535	int ri;
1536	pid_t pid;
1537	struct pmc_owner *po;
1538	const struct pmc *pm;
1539	const struct pmc_process *pp;
1540
1541	pid = td->td_proc->p_pid;
1542
1543	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1544	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1545		pmclog_process_map_out(po, pid, pkm->pm_address,
1546		    pkm->pm_address + pkm->pm_size);
1547
1548	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1549		return;
1550
1551	for (ri = 0; ri < md->pmd_npmc; ri++)
1552		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1553		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1554			pmclog_process_map_out(pm->pm_owner, pid,
1555			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1556}
1557
1558/*
1559 * Log mapping information about the kernel.
1560 */
1561
1562static void
1563pmc_log_kernel_mappings(struct pmc *pm)
1564{
1565	struct pmc_owner *po;
1566	struct pmckern_map_in *km, *kmbase;
1567
1568	sx_assert(&pmc_sx, SX_LOCKED);
1569	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1570	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1571		__LINE__, (void *) pm));
1572
1573	po = pm->pm_owner;
1574
1575	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1576		return;
1577
1578	/*
1579	 * Log the current set of kernel modules.
1580	 */
1581	kmbase = linker_hwpmc_list_objects();
1582	for (km = kmbase; km->pm_file != NULL; km++) {
1583		PMCDBG(LOG,REG,1,"%s %p", (char *) km->pm_file,
1584		    (void *) km->pm_address);
1585		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1586		    km->pm_file);
1587	}
1588	free(kmbase, M_LINKER);
1589
1590	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1591}
1592
1593/*
1594 * Log the mappings for a single process.
1595 */
1596
1597static void
1598pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1599{
1600	vm_map_t map;
1601	struct vnode *vp;
1602	struct vmspace *vm;
1603	vm_map_entry_t entry;
1604	vm_offset_t last_end;
1605	u_int last_timestamp;
1606	struct vnode *last_vp;
1607	vm_offset_t start_addr;
1608	vm_object_t obj, lobj, tobj;
1609	char *fullpath, *freepath;
1610
1611	last_vp = NULL;
1612	last_end = (vm_offset_t) 0;
1613	fullpath = freepath = NULL;
1614
1615	if ((vm = vmspace_acquire_ref(p)) == NULL)
1616		return;
1617
1618	map = &vm->vm_map;
1619	vm_map_lock_read(map);
1620
1621	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1622
1623		if (entry == NULL) {
1624			PMCDBG(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1625			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1626			break;
1627		}
1628
1629		/*
1630		 * We only care about executable map entries.
1631		 */
1632		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1633		    !(entry->protection & VM_PROT_EXECUTE) ||
1634		    (entry->object.vm_object == NULL)) {
1635			continue;
1636		}
1637
1638		obj = entry->object.vm_object;
1639		VM_OBJECT_RLOCK(obj);
1640
1641		/*
1642		 * Walk the backing_object list to find the base
1643		 * (non-shadowed) vm_object.
1644		 */
1645		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1646			if (tobj != obj)
1647				VM_OBJECT_RLOCK(tobj);
1648			if (lobj != obj)
1649				VM_OBJECT_RUNLOCK(lobj);
1650			lobj = tobj;
1651		}
1652
1653		/*
1654		 * At this point lobj is the base vm_object and it is locked.
1655		 */
1656		if (lobj == NULL) {
1657			PMCDBG(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1658			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1659			VM_OBJECT_RUNLOCK(obj);
1660			continue;
1661		}
1662
1663		if (lobj->type != OBJT_VNODE || lobj->handle == NULL) {
1664			if (lobj != obj)
1665				VM_OBJECT_RUNLOCK(lobj);
1666			VM_OBJECT_RUNLOCK(obj);
1667			continue;
1668		}
1669
1670		/*
1671		 * Skip contiguous regions that point to the same
1672		 * vnode, so we don't emit redundant MAP-IN
1673		 * directives.
1674		 */
1675		if (entry->start == last_end && lobj->handle == last_vp) {
1676			last_end = entry->end;
1677			if (lobj != obj)
1678				VM_OBJECT_RUNLOCK(lobj);
1679			VM_OBJECT_RUNLOCK(obj);
1680			continue;
1681		}
1682
1683		/*
1684		 * We don't want to keep the proc's vm_map or this
1685		 * vm_object locked while we walk the pathname, since
1686		 * vn_fullpath() can sleep.  However, if we drop the
1687		 * lock, it's possible for concurrent activity to
1688		 * modify the vm_map list.  To protect against this,
1689		 * we save the vm_map timestamp before we release the
1690		 * lock, and check it after we reacquire the lock
1691		 * below.
1692		 */
1693		start_addr = entry->start;
1694		last_end = entry->end;
1695		last_timestamp = map->timestamp;
1696		vm_map_unlock_read(map);
1697
1698		vp = lobj->handle;
1699		vref(vp);
1700		if (lobj != obj)
1701			VM_OBJECT_RUNLOCK(lobj);
1702
1703		VM_OBJECT_RUNLOCK(obj);
1704
1705		freepath = NULL;
1706		pmc_getfilename(vp, &fullpath, &freepath);
1707		last_vp = vp;
1708
1709		vrele(vp);
1710
1711		vp = NULL;
1712		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1713		if (freepath)
1714			free(freepath, M_TEMP);
1715
1716		vm_map_lock_read(map);
1717
1718		/*
1719		 * If our saved timestamp doesn't match, this means
1720		 * that the vm_map was modified out from under us and
1721		 * we can't trust our current "entry" pointer.  Do a
1722		 * new lookup for this entry.  If there is no entry
1723		 * for this address range, vm_map_lookup_entry() will
1724		 * return the previous one, so we always want to go to
1725		 * entry->next on the next loop iteration.
1726		 *
1727		 * There is an edge condition here that can occur if
1728		 * there is no entry at or before this address.  In
1729		 * this situation, vm_map_lookup_entry returns
1730		 * &map->header, which would cause our loop to abort
1731		 * without processing the rest of the map.  However,
1732		 * in practice this will never happen for process
1733		 * vm_map.  This is because the executable's text
1734		 * segment is the first mapping in the proc's address
1735		 * space, and this mapping is never removed until the
1736		 * process exits, so there will always be a non-header
1737		 * entry at or before the requested address for
1738		 * vm_map_lookup_entry to return.
1739		 */
1740		if (map->timestamp != last_timestamp)
1741			vm_map_lookup_entry(map, last_end - 1, &entry);
1742	}
1743
1744	vm_map_unlock_read(map);
1745	vmspace_free(vm);
1746	return;
1747}
1748
1749/*
1750 * Log mappings for all processes in the system.
1751 */
1752
1753static void
1754pmc_log_all_process_mappings(struct pmc_owner *po)
1755{
1756	struct proc *p, *top;
1757
1758	sx_assert(&pmc_sx, SX_XLOCKED);
1759
1760	if ((p = pfind(1)) == NULL)
1761		panic("[pmc,%d] Cannot find init", __LINE__);
1762
1763	PROC_UNLOCK(p);
1764
1765	sx_slock(&proctree_lock);
1766
1767	top = p;
1768
1769	for (;;) {
1770		pmc_log_process_mappings(po, p);
1771		if (!LIST_EMPTY(&p->p_children))
1772			p = LIST_FIRST(&p->p_children);
1773		else for (;;) {
1774			if (p == top)
1775				goto done;
1776			if (LIST_NEXT(p, p_sibling)) {
1777				p = LIST_NEXT(p, p_sibling);
1778				break;
1779			}
1780			p = p->p_pptr;
1781		}
1782	}
1783 done:
1784	sx_sunlock(&proctree_lock);
1785}
1786
1787/*
1788 * The 'hook' invoked from the kernel proper
1789 */
1790
1791
1792#ifdef	DEBUG
1793const char *pmc_hooknames[] = {
1794	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1795	"",
1796	"EXEC",
1797	"CSW-IN",
1798	"CSW-OUT",
1799	"SAMPLE",
1800	"UNUSED1",
1801	"UNUSED2",
1802	"MMAP",
1803	"MUNMAP",
1804	"CALLCHAIN-NMI",
1805	"CALLCHAIN-SOFT",
1806	"SOFTSAMPLING"
1807};
1808#endif
1809
1810static int
1811pmc_hook_handler(struct thread *td, int function, void *arg)
1812{
1813
1814	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1815	    pmc_hooknames[function], arg);
1816
1817	switch (function)
1818	{
1819
1820	/*
1821	 * Process exec()
1822	 */
1823
1824	case PMC_FN_PROCESS_EXEC:
1825	{
1826		char *fullpath, *freepath;
1827		unsigned int ri;
1828		int is_using_hwpmcs;
1829		struct pmc *pm;
1830		struct proc *p;
1831		struct pmc_owner *po;
1832		struct pmc_process *pp;
1833		struct pmckern_procexec *pk;
1834
1835		sx_assert(&pmc_sx, SX_XLOCKED);
1836
1837		p = td->td_proc;
1838		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1839
1840		pk = (struct pmckern_procexec *) arg;
1841
1842		/* Inform owners of SS mode PMCs of the exec event. */
1843		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1844		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1845			    pmclog_process_procexec(po, PMC_ID_INVALID,
1846				p->p_pid, pk->pm_entryaddr, fullpath);
1847
1848		PROC_LOCK(p);
1849		is_using_hwpmcs = p->p_flag & P_HWPMC;
1850		PROC_UNLOCK(p);
1851
1852		if (!is_using_hwpmcs) {
1853			if (freepath)
1854				free(freepath, M_TEMP);
1855			break;
1856		}
1857
1858		/*
1859		 * PMCs are not inherited across an exec():  remove any
1860		 * PMCs that this process is the owner of.
1861		 */
1862
1863		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1864			pmc_remove_owner(po);
1865			pmc_destroy_owner_descriptor(po);
1866		}
1867
1868		/*
1869		 * If the process being exec'ed is not the target of any
1870		 * PMC, we are done.
1871		 */
1872		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1873			if (freepath)
1874				free(freepath, M_TEMP);
1875			break;
1876		}
1877
1878		/*
1879		 * Log the exec event to all monitoring owners.  Skip
1880		 * owners who have already recieved the event because
1881		 * they had system sampling PMCs active.
1882		 */
1883		for (ri = 0; ri < md->pmd_npmc; ri++)
1884			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1885				po = pm->pm_owner;
1886				if (po->po_sscount == 0 &&
1887				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1888					pmclog_process_procexec(po, pm->pm_id,
1889					    p->p_pid, pk->pm_entryaddr,
1890					    fullpath);
1891			}
1892
1893		if (freepath)
1894			free(freepath, M_TEMP);
1895
1896
1897		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1898		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1899
1900		if (pk->pm_credentialschanged == 0) /* no change */
1901			break;
1902
1903		/*
1904		 * If the newly exec()'ed process has a different credential
1905		 * than before, allow it to be the target of a PMC only if
1906		 * the PMC's owner has sufficient priviledge.
1907		 */
1908
1909		for (ri = 0; ri < md->pmd_npmc; ri++)
1910			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1911				if (pmc_can_attach(pm, td->td_proc) != 0)
1912					pmc_detach_one_process(td->td_proc,
1913					    pm, PMC_FLAG_NONE);
1914
1915		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1916		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1917			pp->pp_refcnt, pp));
1918
1919		/*
1920		 * If this process is no longer the target of any
1921		 * PMCs, we can remove the process entry and free
1922		 * up space.
1923		 */
1924
1925		if (pp->pp_refcnt == 0) {
1926			pmc_remove_process_descriptor(pp);
1927			free(pp, M_PMC);
1928			break;
1929		}
1930
1931	}
1932	break;
1933
1934	case PMC_FN_CSW_IN:
1935		pmc_process_csw_in(td);
1936		break;
1937
1938	case PMC_FN_CSW_OUT:
1939		pmc_process_csw_out(td);
1940		break;
1941
1942	/*
1943	 * Process accumulated PC samples.
1944	 *
1945	 * This function is expected to be called by hardclock() for
1946	 * each CPU that has accumulated PC samples.
1947	 *
1948	 * This function is to be executed on the CPU whose samples
1949	 * are being processed.
1950	 */
1951	case PMC_FN_DO_SAMPLES:
1952
1953		/*
1954		 * Clear the cpu specific bit in the CPU mask before
1955		 * do the rest of the processing.  If the NMI handler
1956		 * gets invoked after the "atomic_clear_int()" call
1957		 * below but before "pmc_process_samples()" gets
1958		 * around to processing the interrupt, then we will
1959		 * come back here at the next hardclock() tick (and
1960		 * may find nothing to do if "pmc_process_samples()"
1961		 * had already processed the interrupt).  We don't
1962		 * lose the interrupt sample.
1963		 */
1964		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1965		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1966		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1967		break;
1968
1969	case PMC_FN_MMAP:
1970		sx_assert(&pmc_sx, SX_LOCKED);
1971		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
1972		break;
1973
1974	case PMC_FN_MUNMAP:
1975		sx_assert(&pmc_sx, SX_LOCKED);
1976		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
1977		break;
1978
1979	case PMC_FN_USER_CALLCHAIN:
1980		/*
1981		 * Record a call chain.
1982		 */
1983		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
1984		    __LINE__));
1985
1986		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
1987		    (struct trapframe *) arg);
1988		td->td_pflags &= ~TDP_CALLCHAIN;
1989		break;
1990
1991	case PMC_FN_USER_CALLCHAIN_SOFT:
1992		/*
1993		 * Record a call chain.
1994		 */
1995		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
1996		    __LINE__));
1997		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
1998		    (struct trapframe *) arg);
1999		td->td_pflags &= ~TDP_CALLCHAIN;
2000		break;
2001
2002	case PMC_FN_SOFT_SAMPLING:
2003		/*
2004		 * Call soft PMC sampling intr.
2005		 */
2006		pmc_soft_intr((struct pmckern_soft *) arg);
2007		break;
2008
2009	default:
2010#ifdef	DEBUG
2011		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2012#endif
2013		break;
2014
2015	}
2016
2017	return 0;
2018}
2019
2020/*
2021 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2022 */
2023
2024static struct pmc_owner *
2025pmc_allocate_owner_descriptor(struct proc *p)
2026{
2027	uint32_t hindex;
2028	struct pmc_owner *po;
2029	struct pmc_ownerhash *poh;
2030
2031	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2032	poh = &pmc_ownerhash[hindex];
2033
2034	/* allocate space for N pointers and one descriptor struct */
2035	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2036	po->po_owner = p;
2037	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2038
2039	TAILQ_INIT(&po->po_logbuffers);
2040	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2041
2042	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2043	    p, p->p_pid, p->p_comm, po);
2044
2045	return po;
2046}
2047
2048static void
2049pmc_destroy_owner_descriptor(struct pmc_owner *po)
2050{
2051
2052	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2053	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2054
2055	mtx_destroy(&po->po_mtx);
2056	free(po, M_PMC);
2057}
2058
2059/*
2060 * find the descriptor corresponding to process 'p', adding or removing it
2061 * as specified by 'mode'.
2062 */
2063
2064static struct pmc_process *
2065pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2066{
2067	uint32_t hindex;
2068	struct pmc_process *pp, *ppnew;
2069	struct pmc_processhash *pph;
2070
2071	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2072	pph = &pmc_processhash[hindex];
2073
2074	ppnew = NULL;
2075
2076	/*
2077	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2078	 * cannot call malloc(9) once we hold a spin lock.
2079	 */
2080	if (mode & PMC_FLAG_ALLOCATE)
2081		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2082		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2083
2084	mtx_lock_spin(&pmc_processhash_mtx);
2085	LIST_FOREACH(pp, pph, pp_next)
2086	    if (pp->pp_proc == p)
2087		    break;
2088
2089	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2090		LIST_REMOVE(pp, pp_next);
2091
2092	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2093	    ppnew != NULL) {
2094		ppnew->pp_proc = p;
2095		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2096		pp = ppnew;
2097		ppnew = NULL;
2098	}
2099	mtx_unlock_spin(&pmc_processhash_mtx);
2100
2101	if (pp != NULL && ppnew != NULL)
2102		free(ppnew, M_PMC);
2103
2104	return pp;
2105}
2106
2107/*
2108 * remove a process descriptor from the process hash table.
2109 */
2110
2111static void
2112pmc_remove_process_descriptor(struct pmc_process *pp)
2113{
2114	KASSERT(pp->pp_refcnt == 0,
2115	    ("[pmc,%d] Removing process descriptor %p with count %d",
2116		__LINE__, pp, pp->pp_refcnt));
2117
2118	mtx_lock_spin(&pmc_processhash_mtx);
2119	LIST_REMOVE(pp, pp_next);
2120	mtx_unlock_spin(&pmc_processhash_mtx);
2121}
2122
2123
2124/*
2125 * find an owner descriptor corresponding to proc 'p'
2126 */
2127
2128static struct pmc_owner *
2129pmc_find_owner_descriptor(struct proc *p)
2130{
2131	uint32_t hindex;
2132	struct pmc_owner *po;
2133	struct pmc_ownerhash *poh;
2134
2135	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2136	poh = &pmc_ownerhash[hindex];
2137
2138	po = NULL;
2139	LIST_FOREACH(po, poh, po_next)
2140	    if (po->po_owner == p)
2141		    break;
2142
2143	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2144	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2145
2146	return po;
2147}
2148
2149/*
2150 * pmc_allocate_pmc_descriptor
2151 *
2152 * Allocate a pmc descriptor and initialize its
2153 * fields.
2154 */
2155
2156static struct pmc *
2157pmc_allocate_pmc_descriptor(void)
2158{
2159	struct pmc *pmc;
2160
2161	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2162
2163	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2164
2165	return pmc;
2166}
2167
2168/*
2169 * Destroy a pmc descriptor.
2170 */
2171
2172static void
2173pmc_destroy_pmc_descriptor(struct pmc *pm)
2174{
2175
2176	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2177	    pm->pm_state == PMC_STATE_FREE,
2178	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2179	KASSERT(LIST_EMPTY(&pm->pm_targets),
2180	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2181	KASSERT(pm->pm_owner == NULL,
2182	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2183	KASSERT(pm->pm_runcount == 0,
2184	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2185		pm->pm_runcount));
2186
2187	free(pm, M_PMC);
2188}
2189
2190static void
2191pmc_wait_for_pmc_idle(struct pmc *pm)
2192{
2193#ifdef DEBUG
2194	volatile int maxloop;
2195
2196	maxloop = 100 * pmc_cpu_max();
2197#endif
2198	/*
2199	 * Loop (with a forced context switch) till the PMC's runcount
2200	 * comes down to zero.
2201	 */
2202	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2203#ifdef DEBUG
2204		maxloop--;
2205		KASSERT(maxloop > 0,
2206		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2207			"pmc to be free", __LINE__,
2208			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2209#endif
2210		pmc_force_context_switch();
2211	}
2212}
2213
2214/*
2215 * This function does the following things:
2216 *
2217 *  - detaches the PMC from hardware
2218 *  - unlinks all target threads that were attached to it
2219 *  - removes the PMC from its owner's list
2220 *  - destroys the PMC private mutex
2221 *
2222 * Once this function completes, the given pmc pointer can be freed by
2223 * calling pmc_destroy_pmc_descriptor().
2224 */
2225
2226static void
2227pmc_release_pmc_descriptor(struct pmc *pm)
2228{
2229	enum pmc_mode mode;
2230	struct pmc_hw *phw;
2231	u_int adjri, ri, cpu;
2232	struct pmc_owner *po;
2233	struct pmc_binding pb;
2234	struct pmc_process *pp;
2235	struct pmc_classdep *pcd;
2236	struct pmc_target *ptgt, *tmp;
2237
2238	sx_assert(&pmc_sx, SX_XLOCKED);
2239
2240	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2241
2242	ri   = PMC_TO_ROWINDEX(pm);
2243	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2244	mode = PMC_TO_MODE(pm);
2245
2246	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2247	    mode);
2248
2249	/*
2250	 * First, we take the PMC off hardware.
2251	 */
2252	cpu = 0;
2253	if (PMC_IS_SYSTEM_MODE(mode)) {
2254
2255		/*
2256		 * A system mode PMC runs on a specific CPU.  Switch
2257		 * to this CPU and turn hardware off.
2258		 */
2259		pmc_save_cpu_binding(&pb);
2260
2261		cpu = PMC_TO_CPU(pm);
2262
2263		pmc_select_cpu(cpu);
2264
2265		/* switch off non-stalled CPUs */
2266		if (pm->pm_state == PMC_STATE_RUNNING &&
2267		    pm->pm_stalled == 0) {
2268
2269			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2270
2271			KASSERT(phw->phw_pmc == pm,
2272			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2273				__LINE__, ri, phw->phw_pmc, pm));
2274			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2275
2276			critical_enter();
2277			pcd->pcd_stop_pmc(cpu, adjri);
2278			critical_exit();
2279		}
2280
2281		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2282
2283		critical_enter();
2284		pcd->pcd_config_pmc(cpu, adjri, NULL);
2285		critical_exit();
2286
2287		/* adjust the global and process count of SS mode PMCs */
2288		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2289			po = pm->pm_owner;
2290			po->po_sscount--;
2291			if (po->po_sscount == 0) {
2292				atomic_subtract_rel_int(&pmc_ss_count, 1);
2293				LIST_REMOVE(po, po_ssnext);
2294			}
2295		}
2296
2297		pm->pm_state = PMC_STATE_DELETED;
2298
2299		pmc_restore_cpu_binding(&pb);
2300
2301		/*
2302		 * We could have references to this PMC structure in
2303		 * the per-cpu sample queues.  Wait for the queue to
2304		 * drain.
2305		 */
2306		pmc_wait_for_pmc_idle(pm);
2307
2308	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2309
2310		/*
2311		 * A virtual PMC could be running on multiple CPUs at
2312		 * a given instant.
2313		 *
2314		 * By marking its state as DELETED, we ensure that
2315		 * this PMC is never further scheduled on hardware.
2316		 *
2317		 * Then we wait till all CPUs are done with this PMC.
2318		 */
2319		pm->pm_state = PMC_STATE_DELETED;
2320
2321
2322		/* Wait for the PMCs runcount to come to zero. */
2323		pmc_wait_for_pmc_idle(pm);
2324
2325		/*
2326		 * At this point the PMC is off all CPUs and cannot be
2327		 * freshly scheduled onto a CPU.  It is now safe to
2328		 * unlink all targets from this PMC.  If a
2329		 * process-record's refcount falls to zero, we remove
2330		 * it from the hash table.  The module-wide SX lock
2331		 * protects us from races.
2332		 */
2333		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2334			pp = ptgt->pt_process;
2335			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2336
2337			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2338
2339			/*
2340			 * If the target process record shows that no
2341			 * PMCs are attached to it, reclaim its space.
2342			 */
2343
2344			if (pp->pp_refcnt == 0) {
2345				pmc_remove_process_descriptor(pp);
2346				free(pp, M_PMC);
2347			}
2348		}
2349
2350		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2351
2352	}
2353
2354	/*
2355	 * Release any MD resources
2356	 */
2357	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2358
2359	/*
2360	 * Update row disposition
2361	 */
2362
2363	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2364		PMC_UNMARK_ROW_STANDALONE(ri);
2365	else
2366		PMC_UNMARK_ROW_THREAD(ri);
2367
2368	/* unlink from the owner's list */
2369	if (pm->pm_owner) {
2370		LIST_REMOVE(pm, pm_next);
2371		pm->pm_owner = NULL;
2372	}
2373}
2374
2375/*
2376 * Register an owner and a pmc.
2377 */
2378
2379static int
2380pmc_register_owner(struct proc *p, struct pmc *pmc)
2381{
2382	struct pmc_owner *po;
2383
2384	sx_assert(&pmc_sx, SX_XLOCKED);
2385
2386	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2387		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2388			return ENOMEM;
2389
2390	KASSERT(pmc->pm_owner == NULL,
2391	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2392	pmc->pm_owner  = po;
2393
2394	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2395
2396	PROC_LOCK(p);
2397	p->p_flag |= P_HWPMC;
2398	PROC_UNLOCK(p);
2399
2400	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2401		pmclog_process_pmcallocate(pmc);
2402
2403	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2404	    po, pmc);
2405
2406	return 0;
2407}
2408
2409/*
2410 * Return the current row disposition:
2411 * == 0 => FREE
2412 *  > 0 => PROCESS MODE
2413 *  < 0 => SYSTEM MODE
2414 */
2415
2416int
2417pmc_getrowdisp(int ri)
2418{
2419	return pmc_pmcdisp[ri];
2420}
2421
2422/*
2423 * Check if a PMC at row index 'ri' can be allocated to the current
2424 * process.
2425 *
2426 * Allocation can fail if:
2427 *   - the current process is already being profiled by a PMC at index 'ri',
2428 *     attached to it via OP_PMCATTACH.
2429 *   - the current process has already allocated a PMC at index 'ri'
2430 *     via OP_ALLOCATE.
2431 */
2432
2433static int
2434pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2435{
2436	enum pmc_mode mode;
2437	struct pmc *pm;
2438	struct pmc_owner *po;
2439	struct pmc_process *pp;
2440
2441	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2442	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2443
2444	/*
2445	 * We shouldn't have already allocated a process-mode PMC at
2446	 * row index 'ri'.
2447	 *
2448	 * We shouldn't have allocated a system-wide PMC on the same
2449	 * CPU and same RI.
2450	 */
2451	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2452		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2453		    if (PMC_TO_ROWINDEX(pm) == ri) {
2454			    mode = PMC_TO_MODE(pm);
2455			    if (PMC_IS_VIRTUAL_MODE(mode))
2456				    return EEXIST;
2457			    if (PMC_IS_SYSTEM_MODE(mode) &&
2458				(int) PMC_TO_CPU(pm) == cpu)
2459				    return EEXIST;
2460		    }
2461	        }
2462
2463	/*
2464	 * We also shouldn't be the target of any PMC at this index
2465	 * since otherwise a PMC_ATTACH to ourselves will fail.
2466	 */
2467	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2468		if (pp->pp_pmcs[ri].pp_pmc)
2469			return EEXIST;
2470
2471	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2472	    p, p->p_pid, p->p_comm, ri);
2473
2474	return 0;
2475}
2476
2477/*
2478 * Check if a given PMC at row index 'ri' can be currently used in
2479 * mode 'mode'.
2480 */
2481
2482static int
2483pmc_can_allocate_row(int ri, enum pmc_mode mode)
2484{
2485	enum pmc_disp	disp;
2486
2487	sx_assert(&pmc_sx, SX_XLOCKED);
2488
2489	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2490
2491	if (PMC_IS_SYSTEM_MODE(mode))
2492		disp = PMC_DISP_STANDALONE;
2493	else
2494		disp = PMC_DISP_THREAD;
2495
2496	/*
2497	 * check disposition for PMC row 'ri':
2498	 *
2499	 * Expected disposition		Row-disposition		Result
2500	 *
2501	 * STANDALONE			STANDALONE or FREE	proceed
2502	 * STANDALONE			THREAD			fail
2503	 * THREAD			THREAD or FREE		proceed
2504	 * THREAD			STANDALONE		fail
2505	 */
2506
2507	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2508	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2509	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2510		return EBUSY;
2511
2512	/*
2513	 * All OK
2514	 */
2515
2516	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2517
2518	return 0;
2519
2520}
2521
2522/*
2523 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2524 */
2525
2526static struct pmc *
2527pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2528{
2529	struct pmc *pm;
2530
2531	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2532	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2533		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2534
2535	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2536	    if (pm->pm_id == pmcid)
2537		    return pm;
2538
2539	return NULL;
2540}
2541
2542static int
2543pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2544{
2545
2546	struct pmc *pm;
2547	struct pmc_owner *po;
2548
2549	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
2550
2551	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
2552		return ESRCH;
2553
2554	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2555		return EINVAL;
2556
2557	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2558
2559	*pmc = pm;
2560	return 0;
2561}
2562
2563/*
2564 * Start a PMC.
2565 */
2566
2567static int
2568pmc_start(struct pmc *pm)
2569{
2570	enum pmc_mode mode;
2571	struct pmc_owner *po;
2572	struct pmc_binding pb;
2573	struct pmc_classdep *pcd;
2574	int adjri, error, cpu, ri;
2575
2576	KASSERT(pm != NULL,
2577	    ("[pmc,%d] null pm", __LINE__));
2578
2579	mode = PMC_TO_MODE(pm);
2580	ri   = PMC_TO_ROWINDEX(pm);
2581	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2582
2583	error = 0;
2584
2585	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2586
2587	po = pm->pm_owner;
2588
2589	/*
2590	 * Disallow PMCSTART if a logfile is required but has not been
2591	 * configured yet.
2592	 */
2593	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2594	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2595		return (EDOOFUS);	/* programming error */
2596
2597	/*
2598	 * If this is a sampling mode PMC, log mapping information for
2599	 * the kernel modules that are currently loaded.
2600	 */
2601	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2602	    pmc_log_kernel_mappings(pm);
2603
2604	if (PMC_IS_VIRTUAL_MODE(mode)) {
2605
2606		/*
2607		 * If a PMCATTACH has never been done on this PMC,
2608		 * attach it to its owner process.
2609		 */
2610
2611		if (LIST_EMPTY(&pm->pm_targets))
2612			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2613			    pmc_attach_process(po->po_owner, pm);
2614
2615		/*
2616		 * If the PMC is attached to its owner, then force a context
2617		 * switch to ensure that the MD state gets set correctly.
2618		 */
2619
2620		if (error == 0) {
2621			pm->pm_state = PMC_STATE_RUNNING;
2622			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2623				pmc_force_context_switch();
2624		}
2625
2626		return (error);
2627	}
2628
2629
2630	/*
2631	 * A system-wide PMC.
2632	 *
2633	 * Add the owner to the global list if this is a system-wide
2634	 * sampling PMC.
2635	 */
2636
2637	if (mode == PMC_MODE_SS) {
2638		if (po->po_sscount == 0) {
2639			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2640			atomic_add_rel_int(&pmc_ss_count, 1);
2641			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
2642		}
2643		po->po_sscount++;
2644
2645		/*
2646		 * Log mapping information for all existing processes in the
2647		 * system.  Subsequent mappings are logged as they happen;
2648		 * see pmc_process_mmap().
2649		 */
2650		if (po->po_logprocmaps == 0) {
2651			pmc_log_all_process_mappings(po);
2652			po->po_logprocmaps = 1;
2653		}
2654	}
2655
2656	/*
2657	 * Move to the CPU associated with this
2658	 * PMC, and start the hardware.
2659	 */
2660
2661	pmc_save_cpu_binding(&pb);
2662
2663	cpu = PMC_TO_CPU(pm);
2664
2665	if (!pmc_cpu_is_active(cpu))
2666		return (ENXIO);
2667
2668	pmc_select_cpu(cpu);
2669
2670	/*
2671	 * global PMCs are configured at allocation time
2672	 * so write out the initial value and start the PMC.
2673	 */
2674
2675	pm->pm_state = PMC_STATE_RUNNING;
2676
2677	critical_enter();
2678	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2679		 PMC_IS_SAMPLING_MODE(mode) ?
2680		 pm->pm_sc.pm_reloadcount :
2681		 pm->pm_sc.pm_initial)) == 0)
2682		error = pcd->pcd_start_pmc(cpu, adjri);
2683	critical_exit();
2684
2685	pmc_restore_cpu_binding(&pb);
2686
2687	return (error);
2688}
2689
2690/*
2691 * Stop a PMC.
2692 */
2693
2694static int
2695pmc_stop(struct pmc *pm)
2696{
2697	struct pmc_owner *po;
2698	struct pmc_binding pb;
2699	struct pmc_classdep *pcd;
2700	int adjri, cpu, error, ri;
2701
2702	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2703
2704	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2705	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2706
2707	pm->pm_state = PMC_STATE_STOPPED;
2708
2709	/*
2710	 * If the PMC is a virtual mode one, changing the state to
2711	 * non-RUNNING is enough to ensure that the PMC never gets
2712	 * scheduled.
2713	 *
2714	 * If this PMC is current running on a CPU, then it will
2715	 * handled correctly at the time its target process is context
2716	 * switched out.
2717	 */
2718
2719	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2720		return 0;
2721
2722	/*
2723	 * A system-mode PMC.  Move to the CPU associated with
2724	 * this PMC, and stop the hardware.  We update the
2725	 * 'initial count' so that a subsequent PMCSTART will
2726	 * resume counting from the current hardware count.
2727	 */
2728
2729	pmc_save_cpu_binding(&pb);
2730
2731	cpu = PMC_TO_CPU(pm);
2732
2733	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2734	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2735
2736	if (!pmc_cpu_is_active(cpu))
2737		return ENXIO;
2738
2739	pmc_select_cpu(cpu);
2740
2741	ri = PMC_TO_ROWINDEX(pm);
2742	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2743
2744	critical_enter();
2745	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2746		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2747	critical_exit();
2748
2749	pmc_restore_cpu_binding(&pb);
2750
2751	po = pm->pm_owner;
2752
2753	/* remove this owner from the global list of SS PMC owners */
2754	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2755		po->po_sscount--;
2756		if (po->po_sscount == 0) {
2757			atomic_subtract_rel_int(&pmc_ss_count, 1);
2758			LIST_REMOVE(po, po_ssnext);
2759			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
2760		}
2761	}
2762
2763	return (error);
2764}
2765
2766
2767#ifdef	DEBUG
2768static const char *pmc_op_to_name[] = {
2769#undef	__PMC_OP
2770#define	__PMC_OP(N, D)	#N ,
2771	__PMC_OPS()
2772	NULL
2773};
2774#endif
2775
2776/*
2777 * The syscall interface
2778 */
2779
2780#define	PMC_GET_SX_XLOCK(...) do {		\
2781	sx_xlock(&pmc_sx);			\
2782	if (pmc_hook == NULL) {			\
2783		sx_xunlock(&pmc_sx);		\
2784		return __VA_ARGS__;		\
2785	}					\
2786} while (0)
2787
2788#define	PMC_DOWNGRADE_SX() do {			\
2789	sx_downgrade(&pmc_sx);			\
2790	is_sx_downgraded = 1;			\
2791} while (0)
2792
2793static int
2794pmc_syscall_handler(struct thread *td, void *syscall_args)
2795{
2796	int error, is_sx_downgraded, is_sx_locked, op;
2797	struct pmc_syscall_args *c;
2798	void *arg;
2799
2800	PMC_GET_SX_XLOCK(ENOSYS);
2801
2802	DROP_GIANT();
2803
2804	is_sx_downgraded = 0;
2805	is_sx_locked = 1;
2806
2807	c = (struct pmc_syscall_args *) syscall_args;
2808
2809	op = c->pmop_code;
2810	arg = c->pmop_data;
2811
2812	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2813	    pmc_op_to_name[op], arg);
2814
2815	error = 0;
2816	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2817
2818	switch(op)
2819	{
2820
2821
2822	/*
2823	 * Configure a log file.
2824	 *
2825	 * XXX This OP will be reworked.
2826	 */
2827
2828	case PMC_OP_CONFIGURELOG:
2829	{
2830		struct proc *p;
2831		struct pmc *pm;
2832		struct pmc_owner *po;
2833		struct pmc_op_configurelog cl;
2834
2835		sx_assert(&pmc_sx, SX_XLOCKED);
2836
2837		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2838			break;
2839
2840		/* mark this process as owning a log file */
2841		p = td->td_proc;
2842		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2843			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2844				error = ENOMEM;
2845				break;
2846			}
2847
2848		/*
2849		 * If a valid fd was passed in, try to configure that,
2850		 * otherwise if 'fd' was less than zero and there was
2851		 * a log file configured, flush its buffers and
2852		 * de-configure it.
2853		 */
2854		if (cl.pm_logfd >= 0) {
2855			sx_xunlock(&pmc_sx);
2856			is_sx_locked = 0;
2857			error = pmclog_configure_log(md, po, cl.pm_logfd);
2858		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2859			pmclog_process_closelog(po);
2860			error = pmclog_close(po);
2861			if (error == 0) {
2862				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2863				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2864					pm->pm_state == PMC_STATE_RUNNING)
2865					    pmc_stop(pm);
2866				error = pmclog_deconfigure_log(po);
2867			}
2868		} else
2869			error = EINVAL;
2870
2871		if (error)
2872			break;
2873	}
2874	break;
2875
2876	/*
2877	 * Flush a log file.
2878	 */
2879
2880	case PMC_OP_FLUSHLOG:
2881	{
2882		struct pmc_owner *po;
2883
2884		sx_assert(&pmc_sx, SX_XLOCKED);
2885
2886		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2887			error = EINVAL;
2888			break;
2889		}
2890
2891		error = pmclog_flush(po);
2892	}
2893	break;
2894
2895	/*
2896	 * Close a log file.
2897	 */
2898
2899	case PMC_OP_CLOSELOG:
2900	{
2901		struct pmc_owner *po;
2902
2903		sx_assert(&pmc_sx, SX_XLOCKED);
2904
2905		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2906			error = EINVAL;
2907			break;
2908		}
2909
2910		error = pmclog_close(po);
2911	}
2912	break;
2913
2914	/*
2915	 * Retrieve hardware configuration.
2916	 */
2917
2918	case PMC_OP_GETCPUINFO:	/* CPU information */
2919	{
2920		struct pmc_op_getcpuinfo gci;
2921		struct pmc_classinfo *pci;
2922		struct pmc_classdep *pcd;
2923		int cl;
2924
2925		gci.pm_cputype = md->pmd_cputype;
2926		gci.pm_ncpu    = pmc_cpu_max();
2927		gci.pm_npmc    = md->pmd_npmc;
2928		gci.pm_nclass  = md->pmd_nclass;
2929		pci = gci.pm_classes;
2930		pcd = md->pmd_classdep;
2931		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2932			pci->pm_caps  = pcd->pcd_caps;
2933			pci->pm_class = pcd->pcd_class;
2934			pci->pm_width = pcd->pcd_width;
2935			pci->pm_num   = pcd->pcd_num;
2936		}
2937		error = copyout(&gci, arg, sizeof(gci));
2938	}
2939	break;
2940
2941	/*
2942	 * Retrieve soft events list.
2943	 */
2944	case PMC_OP_GETDYNEVENTINFO:
2945	{
2946		enum pmc_class			cl;
2947		enum pmc_event			ev;
2948		struct pmc_op_getdyneventinfo	*gei;
2949		struct pmc_dyn_event_descr	dev;
2950		struct pmc_soft			*ps;
2951		uint32_t			nevent;
2952
2953		sx_assert(&pmc_sx, SX_LOCKED);
2954
2955		gei = (struct pmc_op_getdyneventinfo *) arg;
2956
2957		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
2958			break;
2959
2960		/* Only SOFT class is dynamic. */
2961		if (cl != PMC_CLASS_SOFT) {
2962			error = EINVAL;
2963			break;
2964		}
2965
2966		nevent = 0;
2967		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
2968			ps = pmc_soft_ev_acquire(ev);
2969			if (ps == NULL)
2970				continue;
2971			bcopy(&ps->ps_ev, &dev, sizeof(dev));
2972			pmc_soft_ev_release(ps);
2973
2974			error = copyout(&dev,
2975			    &gei->pm_events[nevent],
2976			    sizeof(struct pmc_dyn_event_descr));
2977			if (error != 0)
2978				break;
2979			nevent++;
2980		}
2981		if (error != 0)
2982			break;
2983
2984		error = copyout(&nevent, &gei->pm_nevent,
2985		    sizeof(nevent));
2986	}
2987	break;
2988
2989	/*
2990	 * Get module statistics
2991	 */
2992
2993	case PMC_OP_GETDRIVERSTATS:
2994	{
2995		struct pmc_op_getdriverstats gms;
2996
2997		bcopy(&pmc_stats, &gms, sizeof(gms));
2998		error = copyout(&gms, arg, sizeof(gms));
2999	}
3000	break;
3001
3002
3003	/*
3004	 * Retrieve module version number
3005	 */
3006
3007	case PMC_OP_GETMODULEVERSION:
3008	{
3009		uint32_t cv, modv;
3010
3011		/* retrieve the client's idea of the ABI version */
3012		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3013			break;
3014		/* don't service clients newer than our driver */
3015		modv = PMC_VERSION;
3016		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3017			error = EPROGMISMATCH;
3018			break;
3019		}
3020		error = copyout(&modv, arg, sizeof(int));
3021	}
3022	break;
3023
3024
3025	/*
3026	 * Retrieve the state of all the PMCs on a given
3027	 * CPU.
3028	 */
3029
3030	case PMC_OP_GETPMCINFO:
3031	{
3032		int ari;
3033		struct pmc *pm;
3034		size_t pmcinfo_size;
3035		uint32_t cpu, n, npmc;
3036		struct pmc_owner *po;
3037		struct pmc_binding pb;
3038		struct pmc_classdep *pcd;
3039		struct pmc_info *p, *pmcinfo;
3040		struct pmc_op_getpmcinfo *gpi;
3041
3042		PMC_DOWNGRADE_SX();
3043
3044		gpi = (struct pmc_op_getpmcinfo *) arg;
3045
3046		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3047			break;
3048
3049		if (cpu >= pmc_cpu_max()) {
3050			error = EINVAL;
3051			break;
3052		}
3053
3054		if (!pmc_cpu_is_active(cpu)) {
3055			error = ENXIO;
3056			break;
3057		}
3058
3059		/* switch to CPU 'cpu' */
3060		pmc_save_cpu_binding(&pb);
3061		pmc_select_cpu(cpu);
3062
3063		npmc = md->pmd_npmc;
3064
3065		pmcinfo_size = npmc * sizeof(struct pmc_info);
3066		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3067
3068		p = pmcinfo;
3069
3070		for (n = 0; n < md->pmd_npmc; n++, p++) {
3071
3072			pcd = pmc_ri_to_classdep(md, n, &ari);
3073
3074			KASSERT(pcd != NULL,
3075			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3076
3077			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3078				break;
3079
3080			if (PMC_ROW_DISP_IS_STANDALONE(n))
3081				p->pm_rowdisp = PMC_DISP_STANDALONE;
3082			else if (PMC_ROW_DISP_IS_THREAD(n))
3083				p->pm_rowdisp = PMC_DISP_THREAD;
3084			else
3085				p->pm_rowdisp = PMC_DISP_FREE;
3086
3087			p->pm_ownerpid = -1;
3088
3089			if (pm == NULL)	/* no PMC associated */
3090				continue;
3091
3092			po = pm->pm_owner;
3093
3094			KASSERT(po->po_owner != NULL,
3095			    ("[pmc,%d] pmc_owner had a null proc pointer",
3096				__LINE__));
3097
3098			p->pm_ownerpid = po->po_owner->p_pid;
3099			p->pm_mode     = PMC_TO_MODE(pm);
3100			p->pm_event    = pm->pm_event;
3101			p->pm_flags    = pm->pm_flags;
3102
3103			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3104				p->pm_reloadcount =
3105				    pm->pm_sc.pm_reloadcount;
3106		}
3107
3108		pmc_restore_cpu_binding(&pb);
3109
3110		/* now copy out the PMC info collected */
3111		if (error == 0)
3112			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3113
3114		free(pmcinfo, M_PMC);
3115	}
3116	break;
3117
3118
3119	/*
3120	 * Set the administrative state of a PMC.  I.e. whether
3121	 * the PMC is to be used or not.
3122	 */
3123
3124	case PMC_OP_PMCADMIN:
3125	{
3126		int cpu, ri;
3127		enum pmc_state request;
3128		struct pmc_cpu *pc;
3129		struct pmc_hw *phw;
3130		struct pmc_op_pmcadmin pma;
3131		struct pmc_binding pb;
3132
3133		sx_assert(&pmc_sx, SX_XLOCKED);
3134
3135		KASSERT(td == curthread,
3136		    ("[pmc,%d] td != curthread", __LINE__));
3137
3138		error = priv_check(td, PRIV_PMC_MANAGE);
3139		if (error)
3140			break;
3141
3142		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3143			break;
3144
3145		cpu = pma.pm_cpu;
3146
3147		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3148			error = EINVAL;
3149			break;
3150		}
3151
3152		if (!pmc_cpu_is_active(cpu)) {
3153			error = ENXIO;
3154			break;
3155		}
3156
3157		request = pma.pm_state;
3158
3159		if (request != PMC_STATE_DISABLED &&
3160		    request != PMC_STATE_FREE) {
3161			error = EINVAL;
3162			break;
3163		}
3164
3165		ri = pma.pm_pmc; /* pmc id == row index */
3166		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3167			error = EINVAL;
3168			break;
3169		}
3170
3171		/*
3172		 * We can't disable a PMC with a row-index allocated
3173		 * for process virtual PMCs.
3174		 */
3175
3176		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3177		    request == PMC_STATE_DISABLED) {
3178			error = EBUSY;
3179			break;
3180		}
3181
3182		/*
3183		 * otherwise, this PMC on this CPU is either free or
3184		 * in system-wide mode.
3185		 */
3186
3187		pmc_save_cpu_binding(&pb);
3188		pmc_select_cpu(cpu);
3189
3190		pc  = pmc_pcpu[cpu];
3191		phw = pc->pc_hwpmcs[ri];
3192
3193		/*
3194		 * XXX do we need some kind of 'forced' disable?
3195		 */
3196
3197		if (phw->phw_pmc == NULL) {
3198			if (request == PMC_STATE_DISABLED &&
3199			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3200				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3201				PMC_MARK_ROW_STANDALONE(ri);
3202			} else if (request == PMC_STATE_FREE &&
3203			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3204				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3205				PMC_UNMARK_ROW_STANDALONE(ri);
3206			}
3207			/* other cases are a no-op */
3208		} else
3209			error = EBUSY;
3210
3211		pmc_restore_cpu_binding(&pb);
3212	}
3213	break;
3214
3215
3216	/*
3217	 * Allocate a PMC.
3218	 */
3219
3220	case PMC_OP_PMCALLOCATE:
3221	{
3222		int adjri, n;
3223		u_int cpu;
3224		uint32_t caps;
3225		struct pmc *pmc;
3226		enum pmc_mode mode;
3227		struct pmc_hw *phw;
3228		struct pmc_binding pb;
3229		struct pmc_classdep *pcd;
3230		struct pmc_op_pmcallocate pa;
3231
3232		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3233			break;
3234
3235		caps = pa.pm_caps;
3236		mode = pa.pm_mode;
3237		cpu  = pa.pm_cpu;
3238
3239		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3240		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3241		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3242			error = EINVAL;
3243			break;
3244		}
3245
3246		/*
3247		 * Virtual PMCs should only ask for a default CPU.
3248		 * System mode PMCs need to specify a non-default CPU.
3249		 */
3250
3251		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3252		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3253			error = EINVAL;
3254			break;
3255		}
3256
3257		/*
3258		 * Check that an inactive CPU is not being asked for.
3259		 */
3260
3261		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3262			error = ENXIO;
3263			break;
3264		}
3265
3266		/*
3267		 * Refuse an allocation for a system-wide PMC if this
3268		 * process has been jailed, or if this process lacks
3269		 * super-user credentials and the sysctl tunable
3270		 * 'security.bsd.unprivileged_syspmcs' is zero.
3271		 */
3272
3273		if (PMC_IS_SYSTEM_MODE(mode)) {
3274			if (jailed(curthread->td_ucred)) {
3275				error = EPERM;
3276				break;
3277			}
3278			if (!pmc_unprivileged_syspmcs) {
3279				error = priv_check(curthread,
3280				    PRIV_PMC_SYSTEM);
3281				if (error)
3282					break;
3283			}
3284		}
3285
3286		/*
3287		 * Look for valid values for 'pm_flags'
3288		 */
3289
3290		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3291		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3292			error = EINVAL;
3293			break;
3294		}
3295
3296		/* process logging options are not allowed for system PMCs */
3297		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3298		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3299			error = EINVAL;
3300			break;
3301		}
3302
3303		/*
3304		 * All sampling mode PMCs need to be able to interrupt the
3305		 * CPU.
3306		 */
3307		if (PMC_IS_SAMPLING_MODE(mode))
3308			caps |= PMC_CAP_INTERRUPT;
3309
3310		/* A valid class specifier should have been passed in. */
3311		for (n = 0; n < md->pmd_nclass; n++)
3312			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3313				break;
3314		if (n == md->pmd_nclass) {
3315			error = EINVAL;
3316			break;
3317		}
3318
3319		/* The requested PMC capabilities should be feasible. */
3320		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3321			error = EOPNOTSUPP;
3322			break;
3323		}
3324
3325		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3326		    pa.pm_ev, caps, mode, cpu);
3327
3328		pmc = pmc_allocate_pmc_descriptor();
3329		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3330		    PMC_ID_INVALID);
3331		pmc->pm_event = pa.pm_ev;
3332		pmc->pm_state = PMC_STATE_FREE;
3333		pmc->pm_caps  = caps;
3334		pmc->pm_flags = pa.pm_flags;
3335
3336		/* switch thread to CPU 'cpu' */
3337		pmc_save_cpu_binding(&pb);
3338
3339#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3340	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3341	 PMC_PHW_FLAG_IS_SHAREABLE)
3342#define	PMC_IS_UNALLOCATED(cpu, n)				\
3343	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3344
3345		if (PMC_IS_SYSTEM_MODE(mode)) {
3346			pmc_select_cpu(cpu);
3347			for (n = 0; n < (int) md->pmd_npmc; n++) {
3348				pcd = pmc_ri_to_classdep(md, n, &adjri);
3349				if (pmc_can_allocate_row(n, mode) == 0 &&
3350				    pmc_can_allocate_rowindex(
3351					    curthread->td_proc, n, cpu) == 0 &&
3352				    (PMC_IS_UNALLOCATED(cpu, n) ||
3353				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3354				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3355					&pa) == 0)
3356					break;
3357			}
3358		} else {
3359			/* Process virtual mode */
3360			for (n = 0; n < (int) md->pmd_npmc; n++) {
3361				pcd = pmc_ri_to_classdep(md, n, &adjri);
3362				if (pmc_can_allocate_row(n, mode) == 0 &&
3363				    pmc_can_allocate_rowindex(
3364					    curthread->td_proc, n,
3365					    PMC_CPU_ANY) == 0 &&
3366				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3367					adjri, pmc, &pa) == 0)
3368					break;
3369			}
3370		}
3371
3372#undef	PMC_IS_UNALLOCATED
3373#undef	PMC_IS_SHAREABLE_PMC
3374
3375		pmc_restore_cpu_binding(&pb);
3376
3377		if (n == (int) md->pmd_npmc) {
3378			pmc_destroy_pmc_descriptor(pmc);
3379			pmc = NULL;
3380			error = EINVAL;
3381			break;
3382		}
3383
3384		/* Fill in the correct value in the ID field */
3385		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3386
3387		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3388		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3389
3390		/* Process mode PMCs with logging enabled need log files */
3391		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3392			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3393
3394		/* All system mode sampling PMCs require a log file */
3395		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3396			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3397
3398		/*
3399		 * Configure global pmc's immediately
3400		 */
3401
3402		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3403
3404			pmc_save_cpu_binding(&pb);
3405			pmc_select_cpu(cpu);
3406
3407			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3408			pcd = pmc_ri_to_classdep(md, n, &adjri);
3409
3410			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3411			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3412				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3413				pmc_destroy_pmc_descriptor(pmc);
3414				pmc = NULL;
3415				pmc_restore_cpu_binding(&pb);
3416				error = EPERM;
3417				break;
3418			}
3419
3420			pmc_restore_cpu_binding(&pb);
3421		}
3422
3423		pmc->pm_state    = PMC_STATE_ALLOCATED;
3424
3425		/*
3426		 * mark row disposition
3427		 */
3428
3429		if (PMC_IS_SYSTEM_MODE(mode))
3430			PMC_MARK_ROW_STANDALONE(n);
3431		else
3432			PMC_MARK_ROW_THREAD(n);
3433
3434		/*
3435		 * Register this PMC with the current thread as its owner.
3436		 */
3437
3438		if ((error =
3439		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3440			pmc_release_pmc_descriptor(pmc);
3441			pmc_destroy_pmc_descriptor(pmc);
3442			pmc = NULL;
3443			break;
3444		}
3445
3446		/*
3447		 * Return the allocated index.
3448		 */
3449
3450		pa.pm_pmcid = pmc->pm_id;
3451
3452		error = copyout(&pa, arg, sizeof(pa));
3453	}
3454	break;
3455
3456
3457	/*
3458	 * Attach a PMC to a process.
3459	 */
3460
3461	case PMC_OP_PMCATTACH:
3462	{
3463		struct pmc *pm;
3464		struct proc *p;
3465		struct pmc_op_pmcattach a;
3466
3467		sx_assert(&pmc_sx, SX_XLOCKED);
3468
3469		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3470			break;
3471
3472		if (a.pm_pid < 0) {
3473			error = EINVAL;
3474			break;
3475		} else if (a.pm_pid == 0)
3476			a.pm_pid = td->td_proc->p_pid;
3477
3478		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3479			break;
3480
3481		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3482			error = EINVAL;
3483			break;
3484		}
3485
3486		/* PMCs may be (re)attached only when allocated or stopped */
3487		if (pm->pm_state == PMC_STATE_RUNNING) {
3488			error = EBUSY;
3489			break;
3490		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3491		    pm->pm_state != PMC_STATE_STOPPED) {
3492			error = EINVAL;
3493			break;
3494		}
3495
3496		/* lookup pid */
3497		if ((p = pfind(a.pm_pid)) == NULL) {
3498			error = ESRCH;
3499			break;
3500		}
3501
3502		/*
3503		 * Ignore processes that are working on exiting.
3504		 */
3505		if (p->p_flag & P_WEXIT) {
3506			error = ESRCH;
3507			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3508			break;
3509		}
3510
3511		/*
3512		 * we are allowed to attach a PMC to a process if
3513		 * we can debug it.
3514		 */
3515		error = p_candebug(curthread, p);
3516
3517		PROC_UNLOCK(p);
3518
3519		if (error == 0)
3520			error = pmc_attach_process(p, pm);
3521	}
3522	break;
3523
3524
3525	/*
3526	 * Detach an attached PMC from a process.
3527	 */
3528
3529	case PMC_OP_PMCDETACH:
3530	{
3531		struct pmc *pm;
3532		struct proc *p;
3533		struct pmc_op_pmcattach a;
3534
3535		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3536			break;
3537
3538		if (a.pm_pid < 0) {
3539			error = EINVAL;
3540			break;
3541		} else if (a.pm_pid == 0)
3542			a.pm_pid = td->td_proc->p_pid;
3543
3544		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3545			break;
3546
3547		if ((p = pfind(a.pm_pid)) == NULL) {
3548			error = ESRCH;
3549			break;
3550		}
3551
3552		/*
3553		 * Treat processes that are in the process of exiting
3554		 * as if they were not present.
3555		 */
3556
3557		if (p->p_flag & P_WEXIT)
3558			error = ESRCH;
3559
3560		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3561
3562		if (error == 0)
3563			error = pmc_detach_process(p, pm);
3564	}
3565	break;
3566
3567
3568	/*
3569	 * Retrieve the MSR number associated with the counter
3570	 * 'pmc_id'.  This allows processes to directly use RDPMC
3571	 * instructions to read their PMCs, without the overhead of a
3572	 * system call.
3573	 */
3574
3575	case PMC_OP_PMCGETMSR:
3576	{
3577		int adjri, ri;
3578		struct pmc *pm;
3579		struct pmc_target *pt;
3580		struct pmc_op_getmsr gm;
3581		struct pmc_classdep *pcd;
3582
3583		PMC_DOWNGRADE_SX();
3584
3585		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3586			break;
3587
3588		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3589			break;
3590
3591		/*
3592		 * The allocated PMC has to be a process virtual PMC,
3593		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3594		 * read using the PMCREAD operation since they may be
3595		 * allocated on a different CPU than the one we could
3596		 * be running on at the time of the RDPMC instruction.
3597		 *
3598		 * The GETMSR operation is not allowed for PMCs that
3599		 * are inherited across processes.
3600		 */
3601
3602		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3603		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3604			error = EINVAL;
3605			break;
3606		}
3607
3608		/*
3609		 * It only makes sense to use a RDPMC (or its
3610		 * equivalent instruction on non-x86 architectures) on
3611		 * a process that has allocated and attached a PMC to
3612		 * itself.  Conversely the PMC is only allowed to have
3613		 * one process attached to it -- its owner.
3614		 */
3615
3616		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3617		    LIST_NEXT(pt, pt_next) != NULL ||
3618		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3619			error = EINVAL;
3620			break;
3621		}
3622
3623		ri = PMC_TO_ROWINDEX(pm);
3624		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3625
3626		/* PMC class has no 'GETMSR' support */
3627		if (pcd->pcd_get_msr == NULL) {
3628			error = ENOSYS;
3629			break;
3630		}
3631
3632		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3633			break;
3634
3635		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3636			break;
3637
3638		/*
3639		 * Mark our process as using MSRs.  Update machine
3640		 * state using a forced context switch.
3641		 */
3642
3643		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3644		pmc_force_context_switch();
3645
3646	}
3647	break;
3648
3649	/*
3650	 * Release an allocated PMC
3651	 */
3652
3653	case PMC_OP_PMCRELEASE:
3654	{
3655		pmc_id_t pmcid;
3656		struct pmc *pm;
3657		struct pmc_owner *po;
3658		struct pmc_op_simple sp;
3659
3660		/*
3661		 * Find PMC pointer for the named PMC.
3662		 *
3663		 * Use pmc_release_pmc_descriptor() to switch off the
3664		 * PMC, remove all its target threads, and remove the
3665		 * PMC from its owner's list.
3666		 *
3667		 * Remove the owner record if this is the last PMC
3668		 * owned.
3669		 *
3670		 * Free up space.
3671		 */
3672
3673		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3674			break;
3675
3676		pmcid = sp.pm_pmcid;
3677
3678		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3679			break;
3680
3681		po = pm->pm_owner;
3682		pmc_release_pmc_descriptor(pm);
3683		pmc_maybe_remove_owner(po);
3684		pmc_destroy_pmc_descriptor(pm);
3685	}
3686	break;
3687
3688
3689	/*
3690	 * Read and/or write a PMC.
3691	 */
3692
3693	case PMC_OP_PMCRW:
3694	{
3695		int adjri;
3696		struct pmc *pm;
3697		uint32_t cpu, ri;
3698		pmc_value_t oldvalue;
3699		struct pmc_binding pb;
3700		struct pmc_op_pmcrw prw;
3701		struct pmc_classdep *pcd;
3702		struct pmc_op_pmcrw *pprw;
3703
3704		PMC_DOWNGRADE_SX();
3705
3706		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3707			break;
3708
3709		ri = 0;
3710		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3711		    prw.pm_flags);
3712
3713		/* must have at least one flag set */
3714		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3715			error = EINVAL;
3716			break;
3717		}
3718
3719		/* locate pmc descriptor */
3720		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3721			break;
3722
3723		/* Can't read a PMC that hasn't been started. */
3724		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3725		    pm->pm_state != PMC_STATE_STOPPED &&
3726		    pm->pm_state != PMC_STATE_RUNNING) {
3727			error = EINVAL;
3728			break;
3729		}
3730
3731		/* writing a new value is allowed only for 'STOPPED' pmcs */
3732		if (pm->pm_state == PMC_STATE_RUNNING &&
3733		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3734			error = EBUSY;
3735			break;
3736		}
3737
3738		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3739
3740			/*
3741			 * If this PMC is attached to its owner (i.e.,
3742			 * the process requesting this operation) and
3743			 * is running, then attempt to get an
3744			 * upto-date reading from hardware for a READ.
3745			 * Writes are only allowed when the PMC is
3746			 * stopped, so only update the saved value
3747			 * field.
3748			 *
3749			 * If the PMC is not running, or is not
3750			 * attached to its owner, read/write to the
3751			 * savedvalue field.
3752			 */
3753
3754			ri = PMC_TO_ROWINDEX(pm);
3755			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3756
3757			mtx_pool_lock_spin(pmc_mtxpool, pm);
3758			cpu = curthread->td_oncpu;
3759
3760			if (prw.pm_flags & PMC_F_OLDVALUE) {
3761				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3762				    (pm->pm_state == PMC_STATE_RUNNING))
3763					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3764					    &oldvalue);
3765				else
3766					oldvalue = pm->pm_gv.pm_savedvalue;
3767			}
3768			if (prw.pm_flags & PMC_F_NEWVALUE)
3769				pm->pm_gv.pm_savedvalue = prw.pm_value;
3770
3771			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3772
3773		} else { /* System mode PMCs */
3774			cpu = PMC_TO_CPU(pm);
3775			ri  = PMC_TO_ROWINDEX(pm);
3776			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3777
3778			if (!pmc_cpu_is_active(cpu)) {
3779				error = ENXIO;
3780				break;
3781			}
3782
3783			/* move this thread to CPU 'cpu' */
3784			pmc_save_cpu_binding(&pb);
3785			pmc_select_cpu(cpu);
3786
3787			critical_enter();
3788			/* save old value */
3789			if (prw.pm_flags & PMC_F_OLDVALUE)
3790				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3791					 &oldvalue)))
3792					goto error;
3793			/* write out new value */
3794			if (prw.pm_flags & PMC_F_NEWVALUE)
3795				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3796				    prw.pm_value);
3797		error:
3798			critical_exit();
3799			pmc_restore_cpu_binding(&pb);
3800			if (error)
3801				break;
3802		}
3803
3804		pprw = (struct pmc_op_pmcrw *) arg;
3805
3806#ifdef	DEBUG
3807		if (prw.pm_flags & PMC_F_NEWVALUE)
3808			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3809			    ri, prw.pm_value, oldvalue);
3810		else if (prw.pm_flags & PMC_F_OLDVALUE)
3811			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3812#endif
3813
3814		/* return old value if requested */
3815		if (prw.pm_flags & PMC_F_OLDVALUE)
3816			if ((error = copyout(&oldvalue, &pprw->pm_value,
3817				 sizeof(prw.pm_value))))
3818				break;
3819
3820	}
3821	break;
3822
3823
3824	/*
3825	 * Set the sampling rate for a sampling mode PMC and the
3826	 * initial count for a counting mode PMC.
3827	 */
3828
3829	case PMC_OP_PMCSETCOUNT:
3830	{
3831		struct pmc *pm;
3832		struct pmc_op_pmcsetcount sc;
3833
3834		PMC_DOWNGRADE_SX();
3835
3836		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3837			break;
3838
3839		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3840			break;
3841
3842		if (pm->pm_state == PMC_STATE_RUNNING) {
3843			error = EBUSY;
3844			break;
3845		}
3846
3847		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3848			pm->pm_sc.pm_reloadcount = sc.pm_count;
3849		else
3850			pm->pm_sc.pm_initial = sc.pm_count;
3851	}
3852	break;
3853
3854
3855	/*
3856	 * Start a PMC.
3857	 */
3858
3859	case PMC_OP_PMCSTART:
3860	{
3861		pmc_id_t pmcid;
3862		struct pmc *pm;
3863		struct pmc_op_simple sp;
3864
3865		sx_assert(&pmc_sx, SX_XLOCKED);
3866
3867		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3868			break;
3869
3870		pmcid = sp.pm_pmcid;
3871
3872		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3873			break;
3874
3875		KASSERT(pmcid == pm->pm_id,
3876		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3877			pm->pm_id, pmcid));
3878
3879		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3880			break;
3881		else if (pm->pm_state != PMC_STATE_STOPPED &&
3882		    pm->pm_state != PMC_STATE_ALLOCATED) {
3883			error = EINVAL;
3884			break;
3885		}
3886
3887		error = pmc_start(pm);
3888	}
3889	break;
3890
3891
3892	/*
3893	 * Stop a PMC.
3894	 */
3895
3896	case PMC_OP_PMCSTOP:
3897	{
3898		pmc_id_t pmcid;
3899		struct pmc *pm;
3900		struct pmc_op_simple sp;
3901
3902		PMC_DOWNGRADE_SX();
3903
3904		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3905			break;
3906
3907		pmcid = sp.pm_pmcid;
3908
3909		/*
3910		 * Mark the PMC as inactive and invoke the MD stop
3911		 * routines if needed.
3912		 */
3913
3914		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3915			break;
3916
3917		KASSERT(pmcid == pm->pm_id,
3918		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3919			pm->pm_id, pmcid));
3920
3921		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3922			break;
3923		else if (pm->pm_state != PMC_STATE_RUNNING) {
3924			error = EINVAL;
3925			break;
3926		}
3927
3928		error = pmc_stop(pm);
3929	}
3930	break;
3931
3932
3933	/*
3934	 * Write a user supplied value to the log file.
3935	 */
3936
3937	case PMC_OP_WRITELOG:
3938	{
3939		struct pmc_op_writelog wl;
3940		struct pmc_owner *po;
3941
3942		PMC_DOWNGRADE_SX();
3943
3944		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
3945			break;
3946
3947		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3948			error = EINVAL;
3949			break;
3950		}
3951
3952		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
3953			error = EINVAL;
3954			break;
3955		}
3956
3957		error = pmclog_process_userlog(po, &wl);
3958	}
3959	break;
3960
3961
3962	default:
3963		error = EINVAL;
3964		break;
3965	}
3966
3967	if (is_sx_locked != 0) {
3968		if (is_sx_downgraded)
3969			sx_sunlock(&pmc_sx);
3970		else
3971			sx_xunlock(&pmc_sx);
3972	}
3973
3974	if (error)
3975		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
3976
3977	PICKUP_GIANT();
3978
3979	return error;
3980}
3981
3982/*
3983 * Helper functions
3984 */
3985
3986
3987/*
3988 * Mark the thread as needing callchain capture and post an AST.  The
3989 * actual callchain capture will be done in a context where it is safe
3990 * to take page faults.
3991 */
3992
3993static void
3994pmc_post_callchain_callback(void)
3995{
3996	struct thread *td;
3997
3998	td = curthread;
3999
4000	/*
4001	 * If there is multiple PMCs for the same interrupt ignore new post
4002	 */
4003	if (td->td_pflags & TDP_CALLCHAIN)
4004		return;
4005
4006	/*
4007	 * Mark this thread as needing callchain capture.
4008	 * `td->td_pflags' will be safe to touch because this thread
4009	 * was in user space when it was interrupted.
4010	 */
4011	td->td_pflags |= TDP_CALLCHAIN;
4012
4013	/*
4014	 * Don't let this thread migrate between CPUs until callchain
4015	 * capture completes.
4016	 */
4017	sched_pin();
4018
4019	return;
4020}
4021
4022/*
4023 * Interrupt processing.
4024 *
4025 * Find a free slot in the per-cpu array of samples and capture the
4026 * current callchain there.  If a sample was successfully added, a bit
4027 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4028 * needs to be invoked from the clock handler.
4029 *
4030 * This function is meant to be called from an NMI handler.  It cannot
4031 * use any of the locking primitives supplied by the OS.
4032 */
4033
4034int
4035pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4036    int inuserspace)
4037{
4038	int error, callchaindepth;
4039	struct thread *td;
4040	struct pmc_sample *ps;
4041	struct pmc_samplebuffer *psb;
4042
4043	error = 0;
4044
4045	/*
4046	 * Allocate space for a sample buffer.
4047	 */
4048	psb = pmc_pcpu[cpu]->pc_sb[ring];
4049
4050	ps = psb->ps_write;
4051	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4052		pm->pm_stalled = 1;
4053		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4054		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4055		    cpu, pm, (void *) tf, inuserspace,
4056		    (int) (psb->ps_write - psb->ps_samples),
4057		    (int) (psb->ps_read - psb->ps_samples));
4058		error = ENOMEM;
4059		goto done;
4060	}
4061
4062
4063	/* Fill in entry. */
4064	PMCDBG(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4065	    (void *) tf, inuserspace,
4066	    (int) (psb->ps_write - psb->ps_samples),
4067	    (int) (psb->ps_read - psb->ps_samples));
4068
4069	KASSERT(pm->pm_runcount >= 0,
4070	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4071		pm->pm_runcount));
4072
4073	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4074
4075	ps->ps_pmc = pm;
4076	if ((td = curthread) && td->td_proc)
4077		ps->ps_pid = td->td_proc->p_pid;
4078	else
4079		ps->ps_pid = -1;
4080	ps->ps_cpu = cpu;
4081	ps->ps_td = td;
4082	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4083
4084	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4085	    pmc_callchaindepth : 1;
4086
4087	if (callchaindepth == 1)
4088		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4089	else {
4090		/*
4091		 * Kernel stack traversals can be done immediately,
4092		 * while we defer to an AST for user space traversals.
4093		 */
4094		if (!inuserspace) {
4095			callchaindepth =
4096			    pmc_save_kernel_callchain(ps->ps_pc,
4097				callchaindepth, tf);
4098		} else {
4099			pmc_post_callchain_callback();
4100			callchaindepth = PMC_SAMPLE_INUSE;
4101		}
4102	}
4103
4104	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4105
4106	/* increment write pointer, modulo ring buffer size */
4107	ps++;
4108	if (ps == psb->ps_fence)
4109		psb->ps_write = psb->ps_samples;
4110	else
4111		psb->ps_write = ps;
4112
4113 done:
4114	/* mark CPU as needing processing */
4115	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4116
4117	return (error);
4118}
4119
4120/*
4121 * Capture a user call chain.  This function will be called from ast()
4122 * before control returns to userland and before the process gets
4123 * rescheduled.
4124 */
4125
4126static void
4127pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4128{
4129	int i;
4130	struct pmc *pm;
4131	struct thread *td;
4132	struct pmc_sample *ps;
4133	struct pmc_samplebuffer *psb;
4134#ifdef	INVARIANTS
4135	int ncallchains;
4136#endif
4137
4138	psb = pmc_pcpu[cpu]->pc_sb[ring];
4139	td = curthread;
4140
4141	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4142	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4143		__LINE__));
4144
4145#ifdef	INVARIANTS
4146	ncallchains = 0;
4147#endif
4148
4149	/*
4150	 * Iterate through all deferred callchain requests.
4151	 */
4152
4153	ps = psb->ps_samples;
4154	for (i = 0; i < pmc_nsamples; i++, ps++) {
4155
4156		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4157			continue;
4158		if (ps->ps_td != td)
4159			continue;
4160
4161		KASSERT(ps->ps_cpu == cpu,
4162		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4163			ps->ps_cpu, PCPU_GET(cpuid)));
4164
4165		pm = ps->ps_pmc;
4166
4167		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4168		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4169			"want it", __LINE__));
4170
4171		KASSERT(pm->pm_runcount > 0,
4172		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4173
4174		/*
4175		 * Retrieve the callchain and mark the sample buffer
4176		 * as 'processable' by the timer tick sweep code.
4177		 */
4178		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4179		    pmc_callchaindepth, tf);
4180
4181#ifdef	INVARIANTS
4182		ncallchains++;
4183#endif
4184	}
4185
4186	KASSERT(ncallchains > 0,
4187	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4188		cpu));
4189
4190	KASSERT(td->td_pinned == 1,
4191	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4192	sched_unpin();	/* Can migrate safely now. */
4193
4194	return;
4195}
4196
4197/*
4198 * Process saved PC samples.
4199 */
4200
4201static void
4202pmc_process_samples(int cpu, int ring)
4203{
4204	struct pmc *pm;
4205	int adjri, n;
4206	struct thread *td;
4207	struct pmc_owner *po;
4208	struct pmc_sample *ps;
4209	struct pmc_classdep *pcd;
4210	struct pmc_samplebuffer *psb;
4211
4212	KASSERT(PCPU_GET(cpuid) == cpu,
4213	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4214		PCPU_GET(cpuid), cpu));
4215
4216	psb = pmc_pcpu[cpu]->pc_sb[ring];
4217
4218	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4219
4220		ps = psb->ps_read;
4221		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4222			break;
4223
4224		pm = ps->ps_pmc;
4225
4226		KASSERT(pm->pm_runcount > 0,
4227		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4228			pm->pm_runcount));
4229
4230		po = pm->pm_owner;
4231
4232		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4233		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4234			pm, PMC_TO_MODE(pm)));
4235
4236		/* Ignore PMCs that have been switched off */
4237		if (pm->pm_state != PMC_STATE_RUNNING)
4238			goto entrydone;
4239
4240		/* If there is a pending AST wait for completion */
4241		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4242			/* Need a rescan at a later time. */
4243			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4244			break;
4245		}
4246
4247		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4248		    pm, ps->ps_nsamples, ps->ps_flags,
4249		    (int) (psb->ps_write - psb->ps_samples),
4250		    (int) (psb->ps_read - psb->ps_samples));
4251
4252		/*
4253		 * If this is a process-mode PMC that is attached to
4254		 * its owner, and if the PC is in user mode, update
4255		 * profiling statistics like timer-based profiling
4256		 * would have done.
4257		 */
4258		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4259			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4260				td = FIRST_THREAD_IN_PROC(po->po_owner);
4261				addupc_intr(td, ps->ps_pc[0], 1);
4262			}
4263			goto entrydone;
4264		}
4265
4266		/*
4267		 * Otherwise, this is either a sampling mode PMC that
4268		 * is attached to a different process than its owner,
4269		 * or a system-wide sampling PMC.  Dispatch a log
4270		 * entry to the PMC's owner process.
4271		 */
4272		pmclog_process_callchain(pm, ps);
4273
4274	entrydone:
4275		ps->ps_nsamples = 0; /* mark entry as free */
4276		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4277
4278		/* increment read pointer, modulo sample size */
4279		if (++ps == psb->ps_fence)
4280			psb->ps_read = psb->ps_samples;
4281		else
4282			psb->ps_read = ps;
4283	}
4284
4285	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4286
4287	/* Do not re-enable stalled PMCs if we failed to process any samples */
4288	if (n == 0)
4289		return;
4290
4291	/*
4292	 * Restart any stalled sampling PMCs on this CPU.
4293	 *
4294	 * If the NMI handler sets the pm_stalled field of a PMC after
4295	 * the check below, we'll end up processing the stalled PMC at
4296	 * the next hardclock tick.
4297	 */
4298	for (n = 0; n < md->pmd_npmc; n++) {
4299		pcd = pmc_ri_to_classdep(md, n, &adjri);
4300		KASSERT(pcd != NULL,
4301		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4302		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4303
4304		if (pm == NULL ||			 /* !cfg'ed */
4305		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4306		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4307		    pm->pm_stalled == 0) /* !stalled */
4308			continue;
4309
4310		pm->pm_stalled = 0;
4311		(*pcd->pcd_start_pmc)(cpu, adjri);
4312	}
4313}
4314
4315/*
4316 * Event handlers.
4317 */
4318
4319/*
4320 * Handle a process exit.
4321 *
4322 * Remove this process from all hash tables.  If this process
4323 * owned any PMCs, turn off those PMCs and deallocate them,
4324 * removing any associations with target processes.
4325 *
4326 * This function will be called by the last 'thread' of a
4327 * process.
4328 *
4329 * XXX This eventhandler gets called early in the exit process.
4330 * Consider using a 'hook' invocation from thread_exit() or equivalent
4331 * spot.  Another negative is that kse_exit doesn't seem to call
4332 * exit1() [??].
4333 *
4334 */
4335
4336static void
4337pmc_process_exit(void *arg __unused, struct proc *p)
4338{
4339	struct pmc *pm;
4340	int adjri, cpu;
4341	unsigned int ri;
4342	int is_using_hwpmcs;
4343	struct pmc_owner *po;
4344	struct pmc_process *pp;
4345	struct pmc_classdep *pcd;
4346	pmc_value_t newvalue, tmp;
4347
4348	PROC_LOCK(p);
4349	is_using_hwpmcs = p->p_flag & P_HWPMC;
4350	PROC_UNLOCK(p);
4351
4352	/*
4353	 * Log a sysexit event to all SS PMC owners.
4354	 */
4355	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4356	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4357		    pmclog_process_sysexit(po, p->p_pid);
4358
4359	if (!is_using_hwpmcs)
4360		return;
4361
4362	PMC_GET_SX_XLOCK();
4363	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4364	    p->p_comm);
4365
4366	/*
4367	 * Since this code is invoked by the last thread in an exiting
4368	 * process, we would have context switched IN at some prior
4369	 * point.  However, with PREEMPTION, kernel mode context
4370	 * switches may happen any time, so we want to disable a
4371	 * context switch OUT till we get any PMCs targetting this
4372	 * process off the hardware.
4373	 *
4374	 * We also need to atomically remove this process'
4375	 * entry from our target process hash table, using
4376	 * PMC_FLAG_REMOVE.
4377	 */
4378	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4379	    p->p_comm);
4380
4381	critical_enter(); /* no preemption */
4382
4383	cpu = curthread->td_oncpu;
4384
4385	if ((pp = pmc_find_process_descriptor(p,
4386		 PMC_FLAG_REMOVE)) != NULL) {
4387
4388		PMCDBG(PRC,EXT,2,
4389		    "process-exit proc=%p pmc-process=%p", p, pp);
4390
4391		/*
4392		 * The exiting process could the target of
4393		 * some PMCs which will be running on
4394		 * currently executing CPU.
4395		 *
4396		 * We need to turn these PMCs off like we
4397		 * would do at context switch OUT time.
4398		 */
4399		for (ri = 0; ri < md->pmd_npmc; ri++) {
4400
4401			/*
4402			 * Pick up the pmc pointer from hardware
4403			 * state similar to the CSW_OUT code.
4404			 */
4405			pm = NULL;
4406
4407			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4408
4409			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4410
4411			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4412
4413			if (pm == NULL ||
4414			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4415				continue;
4416
4417			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4418			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4419			    pm, pm->pm_state);
4420
4421			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4422			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4423				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4424
4425			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4426			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4427				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4428
4429			(void) pcd->pcd_stop_pmc(cpu, adjri);
4430
4431			KASSERT(pm->pm_runcount > 0,
4432			    ("[pmc,%d] bad runcount ri %d rc %d",
4433				__LINE__, ri, pm->pm_runcount));
4434
4435			/* Stop hardware only if it is actually running */
4436			if (pm->pm_state == PMC_STATE_RUNNING &&
4437			    pm->pm_stalled == 0) {
4438				pcd->pcd_read_pmc(cpu, adjri, &newvalue);
4439				tmp = newvalue -
4440				    PMC_PCPU_SAVED(cpu,ri);
4441
4442				mtx_pool_lock_spin(pmc_mtxpool, pm);
4443				pm->pm_gv.pm_savedvalue += tmp;
4444				pp->pp_pmcs[ri].pp_pmcval += tmp;
4445				mtx_pool_unlock_spin(pmc_mtxpool, pm);
4446			}
4447
4448			atomic_subtract_rel_int(&pm->pm_runcount,1);
4449
4450			KASSERT((int) pm->pm_runcount >= 0,
4451			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4452
4453			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4454		}
4455
4456		/*
4457		 * Inform the MD layer of this pseudo "context switch
4458		 * out"
4459		 */
4460		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4461
4462		critical_exit(); /* ok to be pre-empted now */
4463
4464		/*
4465		 * Unlink this process from the PMCs that are
4466		 * targetting it.  This will send a signal to
4467		 * all PMC owner's whose PMCs are orphaned.
4468		 *
4469		 * Log PMC value at exit time if requested.
4470		 */
4471		for (ri = 0; ri < md->pmd_npmc; ri++)
4472			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4473				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4474				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4475					pmclog_process_procexit(pm, pp);
4476				pmc_unlink_target_process(pm, pp);
4477			}
4478		free(pp, M_PMC);
4479
4480	} else
4481		critical_exit(); /* pp == NULL */
4482
4483
4484	/*
4485	 * If the process owned PMCs, free them up and free up
4486	 * memory.
4487	 */
4488	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4489		pmc_remove_owner(po);
4490		pmc_destroy_owner_descriptor(po);
4491	}
4492
4493	sx_xunlock(&pmc_sx);
4494}
4495
4496/*
4497 * Handle a process fork.
4498 *
4499 * If the parent process 'p1' is under HWPMC monitoring, then copy
4500 * over any attached PMCs that have 'do_descendants' semantics.
4501 */
4502
4503static void
4504pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4505    int flags)
4506{
4507	int is_using_hwpmcs;
4508	unsigned int ri;
4509	uint32_t do_descendants;
4510	struct pmc *pm;
4511	struct pmc_owner *po;
4512	struct pmc_process *ppnew, *ppold;
4513
4514	(void) flags;		/* unused parameter */
4515
4516	PROC_LOCK(p1);
4517	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4518	PROC_UNLOCK(p1);
4519
4520	/*
4521	 * If there are system-wide sampling PMCs active, we need to
4522	 * log all fork events to their owner's logs.
4523	 */
4524
4525	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4526	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4527		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4528
4529	if (!is_using_hwpmcs)
4530		return;
4531
4532	PMC_GET_SX_XLOCK();
4533	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4534	    p1->p_pid, p1->p_comm, newproc);
4535
4536	/*
4537	 * If the parent process (curthread->td_proc) is a
4538	 * target of any PMCs, look for PMCs that are to be
4539	 * inherited, and link these into the new process
4540	 * descriptor.
4541	 */
4542	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4543		 PMC_FLAG_NONE)) == NULL)
4544		goto done;		/* nothing to do */
4545
4546	do_descendants = 0;
4547	for (ri = 0; ri < md->pmd_npmc; ri++)
4548		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4549			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4550	if (do_descendants == 0) /* nothing to do */
4551		goto done;
4552
4553	/* allocate a descriptor for the new process  */
4554	if ((ppnew = pmc_find_process_descriptor(newproc,
4555		 PMC_FLAG_ALLOCATE)) == NULL)
4556		goto done;
4557
4558	/*
4559	 * Run through all PMCs that were targeting the old process
4560	 * and which specified F_DESCENDANTS and attach them to the
4561	 * new process.
4562	 *
4563	 * Log the fork event to all owners of PMCs attached to this
4564	 * process, if not already logged.
4565	 */
4566	for (ri = 0; ri < md->pmd_npmc; ri++)
4567		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4568		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4569			pmc_link_target_process(pm, ppnew);
4570			po = pm->pm_owner;
4571			if (po->po_sscount == 0 &&
4572			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4573				pmclog_process_procfork(po, p1->p_pid,
4574				    newproc->p_pid);
4575		}
4576
4577	/*
4578	 * Now mark the new process as being tracked by this driver.
4579	 */
4580	PROC_LOCK(newproc);
4581	newproc->p_flag |= P_HWPMC;
4582	PROC_UNLOCK(newproc);
4583
4584 done:
4585	sx_xunlock(&pmc_sx);
4586}
4587
4588static void
4589pmc_kld_load(void *arg __unused, linker_file_t lf)
4590{
4591	struct pmc_owner *po;
4592
4593	sx_slock(&pmc_sx);
4594
4595	/*
4596	 * Notify owners of system sampling PMCs about KLD operations.
4597	 */
4598	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4599		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4600			pmclog_process_map_in(po, (pid_t) -1,
4601			    (uintfptr_t) lf->address, lf->filename);
4602
4603	/*
4604	 * TODO: Notify owners of (all) process-sampling PMCs too.
4605	 */
4606
4607	sx_sunlock(&pmc_sx);
4608}
4609
4610static void
4611pmc_kld_unload(void *arg __unused, const char *filename __unused,
4612    caddr_t address, size_t size)
4613{
4614	struct pmc_owner *po;
4615
4616	sx_slock(&pmc_sx);
4617
4618	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4619		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4620			pmclog_process_map_out(po, (pid_t) -1,
4621			    (uintfptr_t) address, (uintfptr_t) address + size);
4622
4623	/*
4624	 * TODO: Notify owners of process-sampling PMCs.
4625	 */
4626
4627	sx_sunlock(&pmc_sx);
4628}
4629
4630/*
4631 * initialization
4632 */
4633
4634static const char *pmc_name_of_pmcclass[] = {
4635#undef	__PMC_CLASS
4636#define	__PMC_CLASS(N) #N ,
4637	__PMC_CLASSES()
4638};
4639
4640/*
4641 * Base class initializer: allocate structure and set default classes.
4642 */
4643struct pmc_mdep *
4644pmc_mdep_alloc(int nclasses)
4645{
4646	struct pmc_mdep *md;
4647	int	n;
4648
4649	/* SOFT + md classes */
4650	n = 1 + nclasses;
4651	md = malloc(sizeof(struct pmc_mdep) + n *
4652	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4653	md->pmd_nclass = n;
4654
4655	/* Add base class. */
4656	pmc_soft_initialize(md);
4657	return md;
4658}
4659
4660void
4661pmc_mdep_free(struct pmc_mdep *md)
4662{
4663	pmc_soft_finalize(md);
4664	free(md, M_PMC);
4665}
4666
4667static int
4668generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4669{
4670	(void) pc; (void) pp;
4671
4672	return (0);
4673}
4674
4675static int
4676generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4677{
4678	(void) pc; (void) pp;
4679
4680	return (0);
4681}
4682
4683static struct pmc_mdep *
4684pmc_generic_cpu_initialize(void)
4685{
4686	struct pmc_mdep *md;
4687
4688	md = pmc_mdep_alloc(0);
4689
4690	md->pmd_cputype    = PMC_CPU_GENERIC;
4691
4692	md->pmd_pcpu_init  = NULL;
4693	md->pmd_pcpu_fini  = NULL;
4694	md->pmd_switch_in  = generic_switch_in;
4695	md->pmd_switch_out = generic_switch_out;
4696
4697	return (md);
4698}
4699
4700static void
4701pmc_generic_cpu_finalize(struct pmc_mdep *md)
4702{
4703	(void) md;
4704}
4705
4706
4707static int
4708pmc_initialize(void)
4709{
4710	int c, cpu, error, n, ri;
4711	unsigned int maxcpu;
4712	struct pmc_binding pb;
4713	struct pmc_sample *ps;
4714	struct pmc_classdep *pcd;
4715	struct pmc_samplebuffer *sb;
4716
4717	md = NULL;
4718	error = 0;
4719
4720#ifdef	DEBUG
4721	/* parse debug flags first */
4722	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4723		pmc_debugstr, sizeof(pmc_debugstr)))
4724		pmc_debugflags_parse(pmc_debugstr,
4725		    pmc_debugstr+strlen(pmc_debugstr));
4726#endif
4727
4728	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4729
4730	/* check kernel version */
4731	if (pmc_kernel_version != PMC_VERSION) {
4732		if (pmc_kernel_version == 0)
4733			printf("hwpmc: this kernel has not been compiled with "
4734			    "'options HWPMC_HOOKS'.\n");
4735		else
4736			printf("hwpmc: kernel version (0x%x) does not match "
4737			    "module version (0x%x).\n", pmc_kernel_version,
4738			    PMC_VERSION);
4739		return EPROGMISMATCH;
4740	}
4741
4742	/*
4743	 * check sysctl parameters
4744	 */
4745
4746	if (pmc_hashsize <= 0) {
4747		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4748		    "greater than zero.\n", pmc_hashsize);
4749		pmc_hashsize = PMC_HASH_SIZE;
4750	}
4751
4752	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4753		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4754		    "range.\n", pmc_nsamples);
4755		pmc_nsamples = PMC_NSAMPLES;
4756	}
4757
4758	if (pmc_callchaindepth <= 0 ||
4759	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4760		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4761		    "range - using %d.\n", pmc_callchaindepth,
4762		    PMC_CALLCHAIN_DEPTH_MAX);
4763		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4764	}
4765
4766	md = pmc_md_initialize();
4767	if (md == NULL) {
4768		/* Default to generic CPU. */
4769		md = pmc_generic_cpu_initialize();
4770		if (md == NULL)
4771			return (ENOSYS);
4772        }
4773
4774	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4775	    ("[pmc,%d] no classes or pmcs", __LINE__));
4776
4777	/* Compute the map from row-indices to classdep pointers. */
4778	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4779	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4780
4781	for (n = 0; n < md->pmd_npmc; n++)
4782		pmc_rowindex_to_classdep[n] = NULL;
4783	for (ri = c = 0; c < md->pmd_nclass; c++) {
4784		pcd = &md->pmd_classdep[c];
4785		for (n = 0; n < pcd->pcd_num; n++, ri++)
4786			pmc_rowindex_to_classdep[ri] = pcd;
4787	}
4788
4789	KASSERT(ri == md->pmd_npmc,
4790	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4791	    ri, md->pmd_npmc));
4792
4793	maxcpu = pmc_cpu_max();
4794
4795	/* allocate space for the per-cpu array */
4796	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4797	    M_WAITOK|M_ZERO);
4798
4799	/* per-cpu 'saved values' for managing process-mode PMCs */
4800	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4801	    M_PMC, M_WAITOK);
4802
4803	/* Perform CPU-dependent initialization. */
4804	pmc_save_cpu_binding(&pb);
4805	error = 0;
4806	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4807		if (!pmc_cpu_is_active(cpu))
4808			continue;
4809		pmc_select_cpu(cpu);
4810		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4811		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4812		    M_WAITOK|M_ZERO);
4813		if (md->pmd_pcpu_init)
4814			error = md->pmd_pcpu_init(md, cpu);
4815		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4816			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4817	}
4818	pmc_restore_cpu_binding(&pb);
4819
4820	if (error)
4821		return (error);
4822
4823	/* allocate space for the sample array */
4824	for (cpu = 0; cpu < maxcpu; cpu++) {
4825		if (!pmc_cpu_is_active(cpu))
4826			continue;
4827
4828		sb = malloc(sizeof(struct pmc_samplebuffer) +
4829		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4830		    M_WAITOK|M_ZERO);
4831		sb->ps_read = sb->ps_write = sb->ps_samples;
4832		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4833
4834		KASSERT(pmc_pcpu[cpu] != NULL,
4835		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4836
4837		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4838		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4839
4840		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4841			ps->ps_pc = sb->ps_callchains +
4842			    (n * pmc_callchaindepth);
4843
4844		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4845
4846		sb = malloc(sizeof(struct pmc_samplebuffer) +
4847		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4848		    M_WAITOK|M_ZERO);
4849		sb->ps_read = sb->ps_write = sb->ps_samples;
4850		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4851
4852		KASSERT(pmc_pcpu[cpu] != NULL,
4853		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4854
4855		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4856		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4857
4858		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4859			ps->ps_pc = sb->ps_callchains +
4860			    (n * pmc_callchaindepth);
4861
4862		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4863	}
4864
4865	/* allocate space for the row disposition array */
4866	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4867	    M_PMC, M_WAITOK|M_ZERO);
4868
4869	/* mark all PMCs as available */
4870	for (n = 0; n < (int) md->pmd_npmc; n++)
4871		PMC_MARK_ROW_FREE(n);
4872
4873	/* allocate thread hash tables */
4874	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4875	    &pmc_ownerhashmask);
4876
4877	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4878	    &pmc_processhashmask);
4879	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4880	    MTX_SPIN);
4881
4882	LIST_INIT(&pmc_ss_owners);
4883	pmc_ss_count = 0;
4884
4885	/* allocate a pool of spin mutexes */
4886	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4887	    MTX_SPIN);
4888
4889	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4890	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4891	    pmc_processhash, pmc_processhashmask);
4892
4893	/* register process {exit,fork,exec} handlers */
4894	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4895	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4896	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4897	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4898
4899	/* register kld event handlers */
4900	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
4901	    NULL, EVENTHANDLER_PRI_ANY);
4902	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
4903	    NULL, EVENTHANDLER_PRI_ANY);
4904
4905	/* initialize logging */
4906	pmclog_initialize();
4907
4908	/* set hook functions */
4909	pmc_intr = md->pmd_intr;
4910	pmc_hook = pmc_hook_handler;
4911
4912	if (error == 0) {
4913		printf(PMC_MODULE_NAME ":");
4914		for (n = 0; n < (int) md->pmd_nclass; n++) {
4915			pcd = &md->pmd_classdep[n];
4916			printf(" %s/%d/%d/0x%b",
4917			    pmc_name_of_pmcclass[pcd->pcd_class],
4918			    pcd->pcd_num,
4919			    pcd->pcd_width,
4920			    pcd->pcd_caps,
4921			    "\20"
4922			    "\1INT\2USR\3SYS\4EDG\5THR"
4923			    "\6REA\7WRI\10INV\11QUA\12PRC"
4924			    "\13TAG\14CSC");
4925		}
4926		printf("\n");
4927	}
4928
4929	return (error);
4930}
4931
4932/* prepare to be unloaded */
4933static void
4934pmc_cleanup(void)
4935{
4936	int c, cpu;
4937	unsigned int maxcpu;
4938	struct pmc_ownerhash *ph;
4939	struct pmc_owner *po, *tmp;
4940	struct pmc_binding pb;
4941#ifdef	DEBUG
4942	struct pmc_processhash *prh;
4943#endif
4944
4945	PMCDBG(MOD,INI,0, "%s", "cleanup");
4946
4947	/* switch off sampling */
4948	CPU_ZERO(&pmc_cpumask);
4949	pmc_intr = NULL;
4950
4951	sx_xlock(&pmc_sx);
4952	if (pmc_hook == NULL) {	/* being unloaded already */
4953		sx_xunlock(&pmc_sx);
4954		return;
4955	}
4956
4957	pmc_hook = NULL; /* prevent new threads from entering module */
4958
4959	/* deregister event handlers */
4960	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
4961	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
4962	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
4963	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
4964
4965	/* send SIGBUS to all owner threads, free up allocations */
4966	if (pmc_ownerhash)
4967		for (ph = pmc_ownerhash;
4968		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
4969		     ph++) {
4970			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
4971				pmc_remove_owner(po);
4972
4973				/* send SIGBUS to owner processes */
4974				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
4975				    "(%d, %s)", po->po_owner,
4976				    po->po_owner->p_pid,
4977				    po->po_owner->p_comm);
4978
4979				PROC_LOCK(po->po_owner);
4980				kern_psignal(po->po_owner, SIGBUS);
4981				PROC_UNLOCK(po->po_owner);
4982
4983				pmc_destroy_owner_descriptor(po);
4984			}
4985		}
4986
4987	/* reclaim allocated data structures */
4988	if (pmc_mtxpool)
4989		mtx_pool_destroy(&pmc_mtxpool);
4990
4991	mtx_destroy(&pmc_processhash_mtx);
4992	if (pmc_processhash) {
4993#ifdef	DEBUG
4994		struct pmc_process *pp;
4995
4996		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
4997		for (prh = pmc_processhash;
4998		     prh <= &pmc_processhash[pmc_processhashmask];
4999		     prh++)
5000			LIST_FOREACH(pp, prh, pp_next)
5001			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5002#endif
5003
5004		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5005		pmc_processhash = NULL;
5006	}
5007
5008	if (pmc_ownerhash) {
5009		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
5010		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5011		pmc_ownerhash = NULL;
5012	}
5013
5014	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5015	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5016	KASSERT(pmc_ss_count == 0,
5017	    ("[pmc,%d] Global SS count not empty", __LINE__));
5018
5019 	/* do processor and pmc-class dependent cleanup */
5020	maxcpu = pmc_cpu_max();
5021
5022	PMCDBG(MOD,INI,3, "%s", "md cleanup");
5023	if (md) {
5024		pmc_save_cpu_binding(&pb);
5025		for (cpu = 0; cpu < maxcpu; cpu++) {
5026			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5027			    cpu, pmc_pcpu[cpu]);
5028			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5029				continue;
5030			pmc_select_cpu(cpu);
5031			for (c = 0; c < md->pmd_nclass; c++)
5032				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5033			if (md->pmd_pcpu_fini)
5034				md->pmd_pcpu_fini(md, cpu);
5035		}
5036
5037		if (md->pmd_cputype == PMC_CPU_GENERIC)
5038			pmc_generic_cpu_finalize(md);
5039		else
5040			pmc_md_finalize(md);
5041
5042		pmc_mdep_free(md);
5043		md = NULL;
5044		pmc_restore_cpu_binding(&pb);
5045	}
5046
5047	/* Free per-cpu descriptors. */
5048	for (cpu = 0; cpu < maxcpu; cpu++) {
5049		if (!pmc_cpu_is_active(cpu))
5050			continue;
5051		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5052		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5053			cpu));
5054		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5055		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5056			cpu));
5057		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5058		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5059		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5060		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5061		free(pmc_pcpu[cpu], M_PMC);
5062	}
5063
5064	free(pmc_pcpu, M_PMC);
5065	pmc_pcpu = NULL;
5066
5067	free(pmc_pcpu_saved, M_PMC);
5068	pmc_pcpu_saved = NULL;
5069
5070	if (pmc_pmcdisp) {
5071		free(pmc_pmcdisp, M_PMC);
5072		pmc_pmcdisp = NULL;
5073	}
5074
5075	if (pmc_rowindex_to_classdep) {
5076		free(pmc_rowindex_to_classdep, M_PMC);
5077		pmc_rowindex_to_classdep = NULL;
5078	}
5079
5080	pmclog_shutdown();
5081
5082	sx_xunlock(&pmc_sx); 	/* we are done */
5083}
5084
5085/*
5086 * The function called at load/unload.
5087 */
5088
5089static int
5090load (struct module *module __unused, int cmd, void *arg __unused)
5091{
5092	int error;
5093
5094	error = 0;
5095
5096	switch (cmd) {
5097	case MOD_LOAD :
5098		/* initialize the subsystem */
5099		error = pmc_initialize();
5100		if (error != 0)
5101			break;
5102		PMCDBG(MOD,INI,1, "syscall=%d maxcpu=%d",
5103		    pmc_syscall_num, pmc_cpu_max());
5104		break;
5105
5106
5107	case MOD_UNLOAD :
5108	case MOD_SHUTDOWN:
5109		pmc_cleanup();
5110		PMCDBG(MOD,INI,1, "%s", "unloaded");
5111		break;
5112
5113	default :
5114		error = EINVAL;	/* XXX should panic(9) */
5115		break;
5116	}
5117
5118	return error;
5119}
5120
5121/* memory pool */
5122MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5123