glxsb.c revision 314667
1/* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
2
3/*
4 * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5 * Copyright (c) 2003, 2004 Theo de Raadt
6 * Copyright (c) 2003 Jason Wright
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*
22 * Driver for the security block on the AMD Geode LX processors
23 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/10/sys/dev/glxsb/glxsb.c 314667 2017-03-04 13:03:31Z avg $");
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/bus.h>
32#include <sys/errno.h>
33#include <sys/kernel.h>
34#include <sys/lock.h>
35#include <sys/malloc.h>
36#include <sys/mbuf.h>
37#include <sys/module.h>
38#include <sys/mutex.h>
39#include <sys/proc.h>
40#include <sys/random.h>
41#include <sys/rman.h>
42#include <sys/rwlock.h>
43#include <sys/sysctl.h>
44#include <sys/taskqueue.h>
45
46#include <machine/bus.h>
47#include <machine/cpufunc.h>
48#include <machine/resource.h>
49
50#include <dev/pci/pcivar.h>
51#include <dev/pci/pcireg.h>
52
53#include <opencrypto/cryptodev.h>
54#include <opencrypto/cryptosoft.h>
55#include <opencrypto/xform.h>
56
57#include "cryptodev_if.h"
58#include "glxsb.h"
59
60#define PCI_VENDOR_AMD			0x1022	/* AMD */
61#define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO	0x2082	/* Geode LX Crypto */
62
63#define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
64#define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
65#define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
66#define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
67#define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
68#define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
69#define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
70
71						/* For GLD_MSR_CTRL: */
72#define SB_GMC_DIV0		0x0000		/* AES update divisor values */
73#define SB_GMC_DIV1		0x0001
74#define SB_GMC_DIV2		0x0002
75#define SB_GMC_DIV3		0x0003
76#define SB_GMC_DIV_MASK		0x0003
77#define SB_GMC_SBI		0x0004		/* AES swap bits */
78#define SB_GMC_SBY		0x0008		/* AES swap bytes */
79#define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
80#define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
81#define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
82#define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
83#define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
84#define SB_GMC_T_SEL_MASK	0x0300
85#define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
86#define SB_GMC_T_TM		0x0800		/* RNG test mode */
87						/*     (deterministic) */
88
89/* Security Block configuration/control registers (offsets from base) */
90#define SB_CTL_A		0x0000		/* RW - SB Control A */
91#define SB_CTL_B		0x0004		/* RW - SB Control B */
92#define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
93#define SB_SOURCE_A		0x0010		/* RW - Source A */
94#define SB_DEST_A		0x0014		/* RW - Destination A */
95#define SB_LENGTH_A		0x0018		/* RW - Length A */
96#define SB_SOURCE_B		0x0020		/* RW - Source B */
97#define SB_DEST_B		0x0024		/* RW - Destination B */
98#define SB_LENGTH_B		0x0028		/* RW - Length B */
99#define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
100#define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
101#define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
102#define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
103#define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
104#define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
105#define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
106#define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
107#define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
108#define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
109#define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
110#define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
111#define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
112#define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
113#define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
114#define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
115
116						/* For SB_CTL_A and _B */
117#define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
118#define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
119#define SB_CTL_DEC		0x0000		/* Decrypt */
120#define SB_CTL_WK		0x0004		/* Use writable key (we set) */
121#define SB_CTL_DC		0x0008		/* Destination coherent */
122#define SB_CTL_SC		0x0010		/* Source coherent */
123#define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
124
125						/* For SB_AES_INT */
126#define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
127#define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
128#define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
129#define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
130#define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
131#define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
132#define SB_AI_AES_A_COMPLETE   0x10000		/* AES A operation complete */
133#define SB_AI_AES_B_COMPLETE   0x20000		/* AES B operation complete */
134#define SB_AI_EEPROM_COMPLETE  0x40000		/* EEPROM operation complete */
135
136#define SB_AI_CLEAR_INTR \
137	(SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
138	SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
139	SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
140
141#define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
142
143#define SB_MEM_SIZE		0x0810		/* Size of memory block */
144
145#define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
146						/* must be 16-byte aligned */
147#define SB_AES_BLOCK_SIZE	0x0010
148
149/*
150 * The Geode LX security block AES acceleration doesn't perform scatter-
151 * gather: it just takes source and destination addresses.  Therefore the
152 * plain- and ciphertexts need to be contiguous.  To this end, we allocate
153 * a buffer for both, and accept the overhead of copying in and out.  If
154 * the number of bytes in one operation is bigger than allowed for by the
155 * buffer (buffer is twice the size of the max length, as it has both input
156 * and output) then we have to perform multiple encryptions/decryptions.
157 */
158
159#define GLXSB_MAX_AES_LEN	16384
160
161MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
162
163struct glxsb_dma_map {
164	bus_dmamap_t		dma_map;	/* DMA map */
165	bus_dma_segment_t	dma_seg;	/* segments */
166	int			dma_nsegs;	/* #segments */
167	int			dma_size;	/* size */
168	caddr_t			dma_vaddr;	/* virtual address */
169	bus_addr_t		dma_paddr;	/* physical address */
170};
171
172struct glxsb_taskop {
173	struct glxsb_session	*to_ses;	/* crypto session */
174	struct cryptop		*to_crp;	/* cryptop to perfom */
175	struct cryptodesc	*to_enccrd;	/* enccrd to perform */
176	struct cryptodesc	*to_maccrd;	/* maccrd to perform */
177};
178
179struct glxsb_softc {
180	device_t		sc_dev;		/* device backpointer */
181	struct resource		*sc_sr;		/* resource */
182	int			sc_rid;		/* resource rid */
183	struct callout		sc_rngco;	/* RNG callout */
184	int			sc_rnghz;	/* RNG callout ticks */
185	bus_dma_tag_t		sc_dmat;	/* DMA tag */
186	struct glxsb_dma_map	sc_dma;		/* DMA map */
187	int32_t			sc_cid;		/* crypto tag */
188	uint32_t		sc_sid;		/* session id */
189	TAILQ_HEAD(ses_head, glxsb_session)
190				sc_sessions;	/* crypto sessions */
191	struct rwlock		sc_sessions_lock;/* sessions lock */
192	struct mtx		sc_task_mtx;	/* task mutex */
193	struct taskqueue	*sc_tq;		/* task queue */
194	struct task		sc_cryptotask;	/* task */
195	struct glxsb_taskop	sc_to;		/* task's crypto operation */
196	int			sc_task_count;	/* tasks count */
197};
198
199static int glxsb_probe(device_t);
200static int glxsb_attach(device_t);
201static int glxsb_detach(device_t);
202
203static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
204static int  glxsb_dma_alloc(struct glxsb_softc *);
205static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
206static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
207static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
208
209static void glxsb_rnd(void *);
210static int  glxsb_crypto_setup(struct glxsb_softc *);
211static int  glxsb_crypto_newsession(device_t, uint32_t *, struct cryptoini *);
212static int  glxsb_crypto_freesession(device_t, uint64_t);
213static int  glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
214	uint32_t, void *, int, void *);
215
216static int  glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *,
217	struct glxsb_session *, struct glxsb_softc *);
218
219static void glxsb_crypto_task(void *, int);
220static int  glxsb_crypto_process(device_t, struct cryptop *, int);
221
222static device_method_t glxsb_methods[] = {
223	/* device interface */
224	DEVMETHOD(device_probe,		glxsb_probe),
225	DEVMETHOD(device_attach,	glxsb_attach),
226	DEVMETHOD(device_detach,	glxsb_detach),
227
228	/* crypto device methods */
229	DEVMETHOD(cryptodev_newsession,		glxsb_crypto_newsession),
230	DEVMETHOD(cryptodev_freesession,	glxsb_crypto_freesession),
231	DEVMETHOD(cryptodev_process,		glxsb_crypto_process),
232
233	{0,0}
234};
235
236static driver_t glxsb_driver = {
237	"glxsb",
238	glxsb_methods,
239	sizeof(struct glxsb_softc)
240};
241
242static devclass_t glxsb_devclass;
243
244DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0);
245MODULE_VERSION(glxsb, 1);
246MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
247
248static int
249glxsb_probe(device_t dev)
250{
251
252	if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
253	    pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
254		device_set_desc(dev,
255		    "AMD Geode LX Security Block (AES-128-CBC, RNG)");
256		return (BUS_PROBE_DEFAULT);
257	}
258
259	return (ENXIO);
260}
261
262static int
263glxsb_attach(device_t dev)
264{
265	struct glxsb_softc *sc = device_get_softc(dev);
266	uint64_t msr;
267
268	sc->sc_dev = dev;
269	msr = rdmsr(SB_GLD_MSR_CAP);
270
271	if ((msr & 0xFFFF00) != 0x130400) {
272		device_printf(dev, "unknown ID 0x%x\n",
273		    (int)((msr & 0xFFFF00) >> 16));
274		return (ENXIO);
275	}
276
277	pci_enable_busmaster(dev);
278
279	/* Map in the security block configuration/control registers */
280	sc->sc_rid = PCIR_BAR(0);
281	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
282	    RF_ACTIVE);
283	if (sc->sc_sr == NULL) {
284		device_printf(dev, "cannot map register space\n");
285		return (ENXIO);
286	}
287
288	/*
289	 * Configure the Security Block.
290	 *
291	 * We want to enable the noise generator (T_NE), and enable the
292	 * linear feedback shift register and whitener post-processing
293	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
294	 * is disabled.
295	 */
296	msr = rdmsr(SB_GLD_MSR_CTRL);
297	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
298	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
299#if 0
300	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
301#endif
302	wrmsr(SB_GLD_MSR_CTRL, msr);
303
304	/* Disable interrupts */
305	bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
306
307	/* Allocate a contiguous DMA-able buffer to work in */
308	if (glxsb_dma_alloc(sc) != 0)
309		goto fail0;
310
311	/* Initialize our task queue */
312	sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
313	    taskqueue_thread_enqueue, &sc->sc_tq);
314	if (sc->sc_tq == NULL) {
315		device_printf(dev, "cannot create task queue\n");
316		goto fail0;
317	}
318	if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
319	    device_get_nameunit(dev)) != 0) {
320		device_printf(dev, "cannot start task queue\n");
321		goto fail1;
322	}
323	TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
324
325	/* Initialize crypto */
326	if (glxsb_crypto_setup(sc) != 0)
327		goto fail1;
328
329	/* Install a periodic collector for the "true" (AMD's word) RNG */
330	if (hz > 100)
331		sc->sc_rnghz = hz / 100;
332	else
333		sc->sc_rnghz = 1;
334	callout_init(&sc->sc_rngco, 1);
335	glxsb_rnd(sc);
336
337	return (0);
338
339fail1:
340	taskqueue_free(sc->sc_tq);
341fail0:
342	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
343	return (ENXIO);
344}
345
346static int
347glxsb_detach(device_t dev)
348{
349	struct glxsb_softc *sc = device_get_softc(dev);
350	struct glxsb_session *ses;
351
352	rw_wlock(&sc->sc_sessions_lock);
353	TAILQ_FOREACH(ses, &sc->sc_sessions, ses_next) {
354		if (ses->ses_used) {
355			rw_wunlock(&sc->sc_sessions_lock);
356			device_printf(dev,
357				"cannot detach, sessions still active.\n");
358			return (EBUSY);
359		}
360	}
361	while (!TAILQ_EMPTY(&sc->sc_sessions)) {
362		ses = TAILQ_FIRST(&sc->sc_sessions);
363		TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
364		free(ses, M_GLXSB);
365	}
366	rw_wunlock(&sc->sc_sessions_lock);
367	crypto_unregister_all(sc->sc_cid);
368	callout_drain(&sc->sc_rngco);
369	taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
370	bus_generic_detach(dev);
371	glxsb_dma_free(sc, &sc->sc_dma);
372	bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
373	taskqueue_free(sc->sc_tq);
374	rw_destroy(&sc->sc_sessions_lock);
375	mtx_destroy(&sc->sc_task_mtx);
376	return (0);
377}
378
379/*
380 *	callback for bus_dmamap_load()
381 */
382static void
383glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
384{
385
386	bus_addr_t *paddr = (bus_addr_t*) arg;
387	*paddr = seg[0].ds_addr;
388}
389
390static int
391glxsb_dma_alloc(struct glxsb_softc *sc)
392{
393	struct glxsb_dma_map *dma = &sc->sc_dma;
394	int rc;
395
396	dma->dma_nsegs = 1;
397	dma->dma_size = GLXSB_MAX_AES_LEN * 2;
398
399	/* Setup DMA descriptor area */
400	rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
401				SB_AES_ALIGN, 0,	/* alignments, bounds */
402				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
403				BUS_SPACE_MAXADDR,	/* highaddr */
404				NULL, NULL,		/* filter, filterarg */
405				dma->dma_size,		/* maxsize */
406				dma->dma_nsegs,		/* nsegments */
407				dma->dma_size,		/* maxsegsize */
408				BUS_DMA_ALLOCNOW,	/* flags */
409				NULL, NULL,		/* lockfunc, lockarg */
410				&sc->sc_dmat);
411	if (rc != 0) {
412		device_printf(sc->sc_dev,
413		    "cannot allocate DMA tag (%d)\n", rc);
414		return (rc);
415	}
416
417	rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
418	    BUS_DMA_NOWAIT, &dma->dma_map);
419	if (rc != 0) {
420		device_printf(sc->sc_dev,
421		    "cannot allocate DMA memory of %d bytes (%d)\n",
422			dma->dma_size, rc);
423		goto fail0;
424	}
425
426	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
427	    dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
428	if (rc != 0) {
429		device_printf(sc->sc_dev,
430		    "cannot load DMA memory for %d bytes (%d)\n",
431		   dma->dma_size, rc);
432		goto fail1;
433	}
434
435	return (0);
436
437fail1:
438	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
439fail0:
440	bus_dma_tag_destroy(sc->sc_dmat);
441	return (rc);
442}
443
444static void
445glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
446{
447
448	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
449	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
450}
451
452static void
453glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
454{
455
456	bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
457	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
458}
459
460static void
461glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
462{
463
464	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
465	bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
466	bus_dma_tag_destroy(sc->sc_dmat);
467}
468
469static void
470glxsb_rnd(void *v)
471{
472	struct glxsb_softc *sc = v;
473	uint32_t status, value;
474
475	status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
476	if (status & SB_RNS_TRNG_VALID) {
477		value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
478		/* feed with one uint32 */
479		random_harvest(&value, 4, 32/2, RANDOM_PURE_GLXSB);
480	}
481
482	callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
483}
484
485static int
486glxsb_crypto_setup(struct glxsb_softc *sc)
487{
488
489	sc->sc_cid = crypto_get_driverid(sc->sc_dev, CRYPTOCAP_F_HARDWARE);
490
491	if (sc->sc_cid < 0) {
492		device_printf(sc->sc_dev, "cannot get crypto driver id\n");
493		return (ENOMEM);
494	}
495
496	TAILQ_INIT(&sc->sc_sessions);
497	sc->sc_sid = 1;
498	rw_init(&sc->sc_sessions_lock, "glxsb_sessions_lock");
499	mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
500
501	if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0)
502		goto crypto_fail;
503	if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0)
504		goto crypto_fail;
505	if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0)
506		goto crypto_fail;
507	if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0)
508		goto crypto_fail;
509	if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0)
510		goto crypto_fail;
511	if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0)
512		goto crypto_fail;
513	if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0)
514		goto crypto_fail;
515	if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0)
516		goto crypto_fail;
517
518	return (0);
519
520crypto_fail:
521	device_printf(sc->sc_dev, "cannot register crypto\n");
522	crypto_unregister_all(sc->sc_cid);
523	rw_destroy(&sc->sc_sessions_lock);
524	mtx_destroy(&sc->sc_task_mtx);
525	return (ENOMEM);
526}
527
528static int
529glxsb_crypto_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
530{
531	struct glxsb_softc *sc = device_get_softc(dev);
532	struct glxsb_session *ses = NULL;
533	struct cryptoini *encini, *macini;
534	int error;
535
536	if (sc == NULL || sidp == NULL || cri == NULL)
537		return (EINVAL);
538
539	encini = macini = NULL;
540	for (; cri != NULL; cri = cri->cri_next) {
541		switch(cri->cri_alg) {
542		case CRYPTO_NULL_HMAC:
543		case CRYPTO_MD5_HMAC:
544		case CRYPTO_SHA1_HMAC:
545		case CRYPTO_RIPEMD160_HMAC:
546		case CRYPTO_SHA2_256_HMAC:
547		case CRYPTO_SHA2_384_HMAC:
548		case CRYPTO_SHA2_512_HMAC:
549			if (macini != NULL)
550				return (EINVAL);
551			macini = cri;
552			break;
553		case CRYPTO_AES_CBC:
554			if (encini != NULL)
555				return (EINVAL);
556			encini = cri;
557			break;
558		default:
559			return (EINVAL);
560		}
561	}
562
563	/*
564	 * We only support HMAC algorithms to be able to work with
565	 * ipsec(4), so if we are asked only for authentication without
566	 * encryption, don't pretend we can accellerate it.
567	 */
568	if (encini == NULL)
569		return (EINVAL);
570
571	/*
572	 * Look for a free session
573	 *
574	 * Free sessions goes first, so if first session is used, we need to
575	 * allocate one.
576	 */
577
578	rw_wlock(&sc->sc_sessions_lock);
579	ses = TAILQ_FIRST(&sc->sc_sessions);
580	if (ses == NULL || ses->ses_used) {
581		ses = malloc(sizeof(*ses), M_GLXSB, M_NOWAIT | M_ZERO);
582		if (ses == NULL) {
583			rw_wunlock(&sc->sc_sessions_lock);
584			return (ENOMEM);
585		}
586		ses->ses_id = sc->sc_sid++;
587	} else {
588		TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
589	}
590	ses->ses_used = 1;
591	TAILQ_INSERT_TAIL(&sc->sc_sessions, ses, ses_next);
592	rw_wunlock(&sc->sc_sessions_lock);
593
594	if (encini->cri_alg == CRYPTO_AES_CBC) {
595		if (encini->cri_klen != 128) {
596			glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
597			return (EINVAL);
598		}
599		arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0);
600		ses->ses_klen = encini->cri_klen;
601
602		/* Copy the key (Geode LX wants the primary key only) */
603		bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key));
604	}
605
606	if (macini != NULL) {
607		error = glxsb_hash_setup(ses, macini);
608		if (error != 0) {
609			glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
610			return (error);
611		}
612	}
613
614	*sidp = ses->ses_id;
615	return (0);
616}
617
618static int
619glxsb_crypto_freesession(device_t dev, uint64_t tid)
620{
621	struct glxsb_softc *sc = device_get_softc(dev);
622	struct glxsb_session *ses = NULL;
623	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
624
625	if (sc == NULL)
626		return (EINVAL);
627
628	rw_wlock(&sc->sc_sessions_lock);
629	TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
630		if (ses->ses_id == sid)
631			break;
632	}
633	if (ses == NULL) {
634		rw_wunlock(&sc->sc_sessions_lock);
635		return (EINVAL);
636	}
637	TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
638	glxsb_hash_free(ses);
639	bzero(ses, sizeof(*ses));
640	ses->ses_used = 0;
641	ses->ses_id = sid;
642	TAILQ_INSERT_HEAD(&sc->sc_sessions, ses, ses_next);
643	rw_wunlock(&sc->sc_sessions_lock);
644
645	return (0);
646}
647
648static int
649glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
650    uint32_t pdst, void *key, int len, void *iv)
651{
652	uint32_t status;
653	int i;
654
655	if (len & 0xF) {
656		device_printf(sc->sc_dev,
657		    "len must be a multiple of 16 (not %d)\n", len);
658		return (EINVAL);
659	}
660
661	/* Set the source */
662	bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
663
664	/* Set the destination address */
665	bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
666
667	/* Set the data length */
668	bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
669
670	/* Set the IV */
671	if (iv != NULL) {
672		bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
673		control |= SB_CTL_CBC;
674	}
675
676	/* Set the key */
677	bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
678
679	/* Ask the security block to do it */
680	bus_write_4(sc->sc_sr, SB_CTL_A,
681	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
682
683	/*
684	 * Now wait until it is done.
685	 *
686	 * We do a busy wait.  Obviously the number of iterations of
687	 * the loop required to perform the AES operation depends upon
688	 * the number of bytes to process.
689	 *
690	 * On a 500 MHz Geode LX we see
691	 *
692	 *	length (bytes)	typical max iterations
693	 *	    16		   12
694	 *	    64		   22
695	 *	   256		   59
696	 *	  1024		  212
697	 *	  8192		1,537
698	 *
699	 * Since we have a maximum size of operation defined in
700	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
701	 * to wait.  Allow an order of magnitude longer than it should
702	 * really take, just in case.
703	 */
704
705	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
706		status = bus_read_4(sc->sc_sr, SB_CTL_A);
707		if ((status & SB_CTL_ST) == 0)		/* Done */
708			return (0);
709	}
710
711	device_printf(sc->sc_dev, "operation failed to complete\n");
712	return (EIO);
713}
714
715static int
716glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
717    struct glxsb_session *ses, struct glxsb_softc *sc)
718{
719	char *op_src, *op_dst;
720	uint32_t op_psrc, op_pdst;
721	uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
722	int error;
723	int len, tlen, xlen;
724	int offset;
725	uint32_t control;
726
727	if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0)
728		return (EINVAL);
729
730	/* How much of our buffer will we need to use? */
731	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
732	    GLXSB_MAX_AES_LEN : crd->crd_len;
733
734	/*
735	 * XXX Check if we can have input == output on Geode LX.
736	 * XXX In the meantime, use two separate (adjacent) buffers.
737	 */
738	op_src = sc->sc_dma.dma_vaddr;
739	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
740
741	op_psrc = sc->sc_dma.dma_paddr;
742	op_pdst = sc->sc_dma.dma_paddr + xlen;
743
744	if (crd->crd_flags & CRD_F_ENCRYPT) {
745		control = SB_CTL_ENC;
746		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
747			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
748		else
749			bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
750
751		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
752			crypto_copyback(crp->crp_flags, crp->crp_buf,
753			    crd->crd_inject, sizeof(op_iv), op_iv);
754		}
755	} else {
756		control = SB_CTL_DEC;
757		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
758			bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
759		else {
760			crypto_copydata(crp->crp_flags, crp->crp_buf,
761			    crd->crd_inject, sizeof(op_iv), op_iv);
762		}
763	}
764
765	offset = 0;
766	tlen = crd->crd_len;
767	piv = op_iv;
768
769	/* Process the data in GLXSB_MAX_AES_LEN chunks */
770	while (tlen > 0) {
771		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
772		crypto_copydata(crp->crp_flags, crp->crp_buf,
773		    crd->crd_skip + offset, len, op_src);
774
775		glxsb_dma_pre_op(sc, &sc->sc_dma);
776
777		error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
778		    len, op_iv);
779
780		glxsb_dma_post_op(sc, &sc->sc_dma);
781		if (error != 0)
782			return (error);
783
784		crypto_copyback(crp->crp_flags, crp->crp_buf,
785		    crd->crd_skip + offset, len, op_dst);
786
787		offset += len;
788		tlen -= len;
789
790		if (tlen <= 0) {	/* Ideally, just == 0 */
791			/* Finished - put the IV in session IV */
792			piv = ses->ses_iv;
793		}
794
795		/*
796		 * Copy out last block for use as next iteration/session IV.
797		 *
798		 * piv is set to op_iv[] before the loop starts, but is
799		 * set to ses->ses_iv if we're going to exit the loop this
800		 * time.
801		 */
802		if (crd->crd_flags & CRD_F_ENCRYPT)
803			bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
804		else {
805			/* Decryption, only need this if another iteration */
806			if (tlen > 0) {
807				bcopy(op_src + len - sizeof(op_iv), piv,
808				    sizeof(op_iv));
809			}
810		}
811	} /* while */
812
813	/* All AES processing has now been done. */
814	bzero(sc->sc_dma.dma_vaddr, xlen * 2);
815
816	return (0);
817}
818
819static void
820glxsb_crypto_task(void *arg, int pending)
821{
822	struct glxsb_softc *sc = arg;
823	struct glxsb_session *ses;
824	struct cryptop *crp;
825	struct cryptodesc *enccrd, *maccrd;
826	int error;
827
828	maccrd = sc->sc_to.to_maccrd;
829	enccrd = sc->sc_to.to_enccrd;
830	crp = sc->sc_to.to_crp;
831	ses = sc->sc_to.to_ses;
832
833	/* Perform data authentication if requested before encryption */
834	if (maccrd != NULL && maccrd->crd_next == enccrd) {
835		error = glxsb_hash_process(ses, maccrd, crp);
836		if (error != 0)
837			goto out;
838	}
839
840	error = glxsb_crypto_encdec(crp, enccrd, ses, sc);
841	if (error != 0)
842		goto out;
843
844	/* Perform data authentication if requested after encryption */
845	if (maccrd != NULL && enccrd->crd_next == maccrd) {
846		error = glxsb_hash_process(ses, maccrd, crp);
847		if (error != 0)
848			goto out;
849	}
850out:
851	mtx_lock(&sc->sc_task_mtx);
852	sc->sc_task_count--;
853	mtx_unlock(&sc->sc_task_mtx);
854
855	crp->crp_etype = error;
856	crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
857	crypto_done(crp);
858}
859
860static int
861glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
862{
863	struct glxsb_softc *sc = device_get_softc(dev);
864	struct glxsb_session *ses;
865	struct cryptodesc *crd, *enccrd, *maccrd;
866	uint32_t sid;
867	int error = 0;
868
869	enccrd = maccrd = NULL;
870
871	/* Sanity check. */
872	if (crp == NULL)
873		return (EINVAL);
874
875	if (crp->crp_callback == NULL || crp->crp_desc == NULL) {
876		error = EINVAL;
877		goto fail;
878	}
879
880	for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) {
881		switch (crd->crd_alg) {
882		case CRYPTO_NULL_HMAC:
883		case CRYPTO_MD5_HMAC:
884		case CRYPTO_SHA1_HMAC:
885		case CRYPTO_RIPEMD160_HMAC:
886		case CRYPTO_SHA2_256_HMAC:
887		case CRYPTO_SHA2_384_HMAC:
888		case CRYPTO_SHA2_512_HMAC:
889			if (maccrd != NULL) {
890				error = EINVAL;
891				goto fail;
892			}
893			maccrd = crd;
894			break;
895		case CRYPTO_AES_CBC:
896			if (enccrd != NULL) {
897				error = EINVAL;
898				goto fail;
899			}
900			enccrd = crd;
901			break;
902		default:
903			error = EINVAL;
904			goto fail;
905		}
906	}
907
908	if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) {
909		error = EINVAL;
910		goto fail;
911	}
912
913	sid = crp->crp_sid & 0xffffffff;
914	rw_rlock(&sc->sc_sessions_lock);
915	TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
916		if (ses->ses_id == sid)
917			break;
918	}
919	rw_runlock(&sc->sc_sessions_lock);
920	if (ses == NULL || !ses->ses_used) {
921		error = EINVAL;
922		goto fail;
923	}
924
925	mtx_lock(&sc->sc_task_mtx);
926	if (sc->sc_task_count != 0) {
927		mtx_unlock(&sc->sc_task_mtx);
928		return (ERESTART);
929	}
930	sc->sc_task_count++;
931
932	sc->sc_to.to_maccrd = maccrd;
933	sc->sc_to.to_enccrd = enccrd;
934	sc->sc_to.to_crp = crp;
935	sc->sc_to.to_ses = ses;
936	mtx_unlock(&sc->sc_task_mtx);
937
938	taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
939	return(0);
940
941fail:
942	crp->crp_etype = error;
943	crypto_done(crp);
944	return (error);
945}
946