t4_sge.c revision 270297
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/dev/cxgbe/t4_sge.c 270297 2014-08-21 19:54:02Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/mbuf.h>
36#include <sys/socket.h>
37#include <sys/kernel.h>
38#include <sys/kdb.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/sbuf.h>
42#include <sys/taskqueue.h>
43#include <sys/time.h>
44#include <sys/sysctl.h>
45#include <sys/smp.h>
46#include <sys/counter.h>
47#include <net/bpf.h>
48#include <net/ethernet.h>
49#include <net/if.h>
50#include <net/if_vlan_var.h>
51#include <netinet/in.h>
52#include <netinet/ip.h>
53#include <netinet/ip6.h>
54#include <netinet/tcp.h>
55#include <machine/md_var.h>
56#include <vm/vm.h>
57#include <vm/pmap.h>
58#ifdef DEV_NETMAP
59#include <machine/bus.h>
60#include <sys/selinfo.h>
61#include <net/if_var.h>
62#include <net/netmap.h>
63#include <dev/netmap/netmap_kern.h>
64#endif
65
66#include "common/common.h"
67#include "common/t4_regs.h"
68#include "common/t4_regs_values.h"
69#include "common/t4_msg.h"
70
71#ifdef T4_PKT_TIMESTAMP
72#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73#else
74#define RX_COPY_THRESHOLD MINCLSIZE
75#endif
76
77/*
78 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79 * 0-7 are valid values.
80 */
81int fl_pktshift = 2;
82TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83
84/*
85 * Pad ethernet payload up to this boundary.
86 * -1: driver should figure out a good value.
87 *  0: disable padding.
88 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
89 */
90int fl_pad = -1;
91TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
92
93/*
94 * Status page length.
95 * -1: driver should figure out a good value.
96 *  64 or 128 are the only other valid values.
97 */
98int spg_len = -1;
99TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
100
101/*
102 * Congestion drops.
103 * -1: no congestion feedback (not recommended).
104 *  0: backpressure the channel instead of dropping packets right away.
105 *  1: no backpressure, drop packets for the congested queue immediately.
106 */
107static int cong_drop = 0;
108TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
109
110/*
111 * Deliver multiple frames in the same free list buffer if they fit.
112 * -1: let the driver decide whether to enable buffer packing or not.
113 *  0: disable buffer packing.
114 *  1: enable buffer packing.
115 */
116static int buffer_packing = -1;
117TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
118
119/*
120 * Start next frame in a packed buffer at this boundary.
121 * -1: driver should figure out a good value.
122 * T4:
123 * ---
124 * if fl_pad != 0
125 * 	value specified here will be overridden by fl_pad.
126 * else
127 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
128 * T5:
129 * ---
130 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
131 */
132static int fl_pack = -1;
133static int t4_fl_pack;
134static int t5_fl_pack;
135TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
136
137/*
138 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
139 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
140 * 1: ok to create mbuf(s) within a cluster if there is room.
141 */
142static int allow_mbufs_in_cluster = 1;
143TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
144
145/*
146 * Largest rx cluster size that the driver is allowed to allocate.
147 */
148static int largest_rx_cluster = MJUM16BYTES;
149TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
150
151/*
152 * Size of cluster allocation that's most likely to succeed.  The driver will
153 * fall back to this size if it fails to allocate clusters larger than this.
154 */
155static int safest_rx_cluster = PAGE_SIZE;
156TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
157
158/* Used to track coalesced tx work request */
159struct txpkts {
160	uint64_t *flitp;	/* ptr to flit where next pkt should start */
161	uint8_t npkt;		/* # of packets in this work request */
162	uint8_t nflits;		/* # of flits used by this work request */
163	uint16_t plen;		/* total payload (sum of all packets) */
164};
165
166/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
167struct sgl {
168	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
169	int nflits;		/* # of flits needed for the SGL */
170	bus_dma_segment_t seg[TX_SGL_SEGS];
171};
172
173static int service_iq(struct sge_iq *, int);
174static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
175static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
176static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
177static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
178    char *);
179static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
180    char *);
181static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
182    bus_addr_t *, void **);
183static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
184    void *);
185static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
186    int, int);
187static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
188static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
189    struct sge_fl *);
190static int alloc_fwq(struct adapter *);
191static int free_fwq(struct adapter *);
192static int alloc_mgmtq(struct adapter *);
193static int free_mgmtq(struct adapter *);
194static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
195    struct sysctl_oid *);
196static int free_rxq(struct port_info *, struct sge_rxq *);
197#ifdef TCP_OFFLOAD
198static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
199    struct sysctl_oid *);
200static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
201#endif
202#ifdef DEV_NETMAP
203static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
204    struct sysctl_oid *);
205static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
206static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
207    struct sysctl_oid *);
208static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
209#endif
210static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
211static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
212#ifdef TCP_OFFLOAD
213static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
214#endif
215static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
216static int free_eq(struct adapter *, struct sge_eq *);
217static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
218    struct sysctl_oid *);
219static int free_wrq(struct adapter *, struct sge_wrq *);
220static int alloc_txq(struct port_info *, struct sge_txq *, int,
221    struct sysctl_oid *);
222static int free_txq(struct port_info *, struct sge_txq *);
223static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
224static inline void ring_fl_db(struct adapter *, struct sge_fl *);
225static int refill_fl(struct adapter *, struct sge_fl *, int);
226static void refill_sfl(void *);
227static int alloc_fl_sdesc(struct sge_fl *);
228static void free_fl_sdesc(struct adapter *, struct sge_fl *);
229static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
230static void find_safe_refill_source(struct adapter *, struct sge_fl *);
231static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
232
233static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
234static int free_pkt_sgl(struct sge_txq *, struct sgl *);
235static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
236    struct sgl *);
237static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
238    struct mbuf *, struct sgl *);
239static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
240static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
241    struct txpkts *, struct mbuf *, struct sgl *);
242static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
243static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
244static inline void ring_eq_db(struct adapter *, struct sge_eq *);
245static inline int reclaimable(struct sge_eq *);
246static int reclaim_tx_descs(struct sge_txq *, int, int);
247static void write_eqflush_wr(struct sge_eq *);
248static __be64 get_flit(bus_dma_segment_t *, int, int);
249static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
250    struct mbuf *);
251static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
252    struct mbuf *);
253
254static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
255static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
256
257static counter_u64_t extfree_refs;
258static counter_u64_t extfree_rels;
259
260/*
261 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
262 */
263void
264t4_sge_modload(void)
265{
266	int pad;
267
268	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
269#if defined(__i386__) || defined(__amd64__)
270	pad = max(cpu_clflush_line_size, 16);
271#else
272	pad = max(CACHE_LINE_SIZE, 16);
273#endif
274	pad = min(pad, 4096);
275
276	if (fl_pktshift < 0 || fl_pktshift > 7) {
277		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
278		    " using 2 instead.\n", fl_pktshift);
279		fl_pktshift = 2;
280	}
281
282	if (fl_pad != 0 &&
283	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
284
285		if (fl_pad != -1) {
286			printf("Invalid hw.cxgbe.fl_pad value (%d),"
287			    " using %d instead.\n", fl_pad, max(pad, 32));
288		}
289		fl_pad = max(pad, 32);
290	}
291
292	/*
293	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
294	 * pack boundary must be set to the same value.  Otherwise take the
295	 * specified value or auto-calculate something reasonable.
296	 */
297	if (fl_pad)
298		t4_fl_pack = fl_pad;
299	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
300		t4_fl_pack = max(pad, 32);
301	else
302		t4_fl_pack = fl_pack;
303
304	/* T5's pack boundary is independent of the pad boundary. */
305	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
306	    !powerof2(fl_pack))
307	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
308	else
309	       t5_fl_pack = fl_pack;
310
311	if (spg_len != 64 && spg_len != 128) {
312		int len;
313
314#if defined(__i386__) || defined(__amd64__)
315		len = cpu_clflush_line_size > 64 ? 128 : 64;
316#else
317		len = 64;
318#endif
319		if (spg_len != -1) {
320			printf("Invalid hw.cxgbe.spg_len value (%d),"
321			    " using %d instead.\n", spg_len, len);
322		}
323		spg_len = len;
324	}
325
326	if (cong_drop < -1 || cong_drop > 1) {
327		printf("Invalid hw.cxgbe.cong_drop value (%d),"
328		    " using 0 instead.\n", cong_drop);
329		cong_drop = 0;
330	}
331
332	extfree_refs = counter_u64_alloc(M_WAITOK);
333	extfree_rels = counter_u64_alloc(M_WAITOK);
334	counter_u64_zero(extfree_refs);
335	counter_u64_zero(extfree_rels);
336}
337
338void
339t4_sge_modunload(void)
340{
341
342	counter_u64_free(extfree_refs);
343	counter_u64_free(extfree_rels);
344}
345
346uint64_t
347t4_sge_extfree_refs(void)
348{
349	uint64_t refs, rels;
350
351	rels = counter_u64_fetch(extfree_rels);
352	refs = counter_u64_fetch(extfree_refs);
353
354	return (refs - rels);
355}
356
357void
358t4_init_sge_cpl_handlers(struct adapter *sc)
359{
360
361	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
362	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
363	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
364	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
365	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
366}
367
368/*
369 * adap->params.vpd.cclk must be set up before this is called.
370 */
371void
372t4_tweak_chip_settings(struct adapter *sc)
373{
374	int i;
375	uint32_t v, m;
376	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
377	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
378	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
379	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
380	static int sge_flbuf_sizes[] = {
381		MCLBYTES,
382#if MJUMPAGESIZE != MCLBYTES
383		MJUMPAGESIZE,
384		MJUMPAGESIZE - CL_METADATA_SIZE,
385		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
386#endif
387		MJUM9BYTES,
388		MJUM16BYTES,
389		MCLBYTES - MSIZE - CL_METADATA_SIZE,
390		MJUM9BYTES - CL_METADATA_SIZE,
391		MJUM16BYTES - CL_METADATA_SIZE,
392	};
393
394	KASSERT(sc->flags & MASTER_PF,
395	    ("%s: trying to change chip settings when not master.", __func__));
396
397	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
398	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
399	    V_EGRSTATUSPAGESIZE(spg_len == 128);
400	if (is_t4(sc) && (fl_pad || buffer_packing)) {
401		/* t4_fl_pack has the correct value even when fl_pad = 0 */
402		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
403		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
404	} else if (is_t5(sc) && fl_pad) {
405		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
406		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
407	}
408	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
409
410	if (is_t5(sc) && buffer_packing) {
411		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
412		if (t5_fl_pack == 16)
413			v = V_INGPACKBOUNDARY(0);
414		else
415			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
416		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
417	}
418
419	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
420	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
421	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
422	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
423	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
424	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
425	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
426	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
427	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
428
429	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
430	    ("%s: hw buffer size table too big", __func__));
431	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
432		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
433		    sge_flbuf_sizes[i]);
434	}
435
436	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
437	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
438	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
439
440	KASSERT(intr_timer[0] <= timer_max,
441	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
442	    timer_max));
443	for (i = 1; i < nitems(intr_timer); i++) {
444		KASSERT(intr_timer[i] >= intr_timer[i - 1],
445		    ("%s: timers not listed in increasing order (%d)",
446		    __func__, i));
447
448		while (intr_timer[i] > timer_max) {
449			if (i == nitems(intr_timer) - 1) {
450				intr_timer[i] = timer_max;
451				break;
452			}
453			intr_timer[i] += intr_timer[i - 1];
454			intr_timer[i] /= 2;
455		}
456	}
457
458	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
459	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
460	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
461	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
462	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
463	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
464	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
465	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
466	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
467
468	if (cong_drop == 0) {
469		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
470		    F_TUNNELCNGDROP3;
471		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
472	}
473
474	/* 4K, 16K, 64K, 256K DDP "page sizes" */
475	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
476	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
477
478	m = v = F_TDDPTAGTCB;
479	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
480
481	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
482	    F_RESETDDPOFFSET;
483	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
484	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
485}
486
487/*
488 * SGE wants the buffer to be at least 64B and then a multiple of the pad
489 * boundary or 16, whichever is greater.
490 */
491static inline int
492hwsz_ok(int hwsz)
493{
494	int mask = max(fl_pad, 16) - 1;
495
496	return (hwsz >= 64 && (hwsz & mask) == 0);
497}
498
499/*
500 * XXX: driver really should be able to deal with unexpected settings.
501 */
502int
503t4_read_chip_settings(struct adapter *sc)
504{
505	struct sge *s = &sc->sge;
506	int i, j, n, rc = 0;
507	uint32_t m, v, r;
508	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
509	static int sw_buf_sizes[] = {	/* Sorted by size */
510		MCLBYTES,
511#if MJUMPAGESIZE != MCLBYTES
512		MJUMPAGESIZE,
513#endif
514		MJUM9BYTES,
515		MJUM16BYTES
516	};
517	struct sw_zone_info *swz, *safe_swz;
518	struct hw_buf_info *hwb;
519
520	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
521	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
522	    V_EGRSTATUSPAGESIZE(spg_len == 128);
523	if (is_t4(sc) && (fl_pad || buffer_packing)) {
524		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
525		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
526	} else if (is_t5(sc) && fl_pad) {
527		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
528		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
529	}
530	r = t4_read_reg(sc, A_SGE_CONTROL);
531	if ((r & m) != v) {
532		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
533		rc = EINVAL;
534	}
535
536	if (is_t5(sc) && buffer_packing) {
537		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
538		if (t5_fl_pack == 16)
539			v = V_INGPACKBOUNDARY(0);
540		else
541			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
542		r = t4_read_reg(sc, A_SGE_CONTROL2);
543		if ((r & m) != v) {
544			device_printf(sc->dev,
545			    "invalid SGE_CONTROL2(0x%x)\n", r);
546			rc = EINVAL;
547		}
548	}
549	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
550
551	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
552	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
553	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
554	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
555	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
556	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
557	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
558	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
559	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
560	if (r != v) {
561		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
562		rc = EINVAL;
563	}
564
565	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
566	hwb = &s->hw_buf_info[0];
567	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
568		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
569		hwb->size = r;
570		hwb->zidx = hwsz_ok(r) ? -1 : -2;
571		hwb->next = -1;
572	}
573
574	/*
575	 * Create a sorted list in decreasing order of hw buffer sizes (and so
576	 * increasing order of spare area) for each software zone.
577	 */
578	n = 0;	/* no usable buffer size to begin with */
579	swz = &s->sw_zone_info[0];
580	safe_swz = NULL;
581	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
582		int8_t head = -1, tail = -1;
583
584		swz->size = sw_buf_sizes[i];
585		swz->zone = m_getzone(swz->size);
586		swz->type = m_gettype(swz->size);
587
588		if (swz->size == safest_rx_cluster)
589			safe_swz = swz;
590
591		hwb = &s->hw_buf_info[0];
592		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
593			if (hwb->zidx != -1 || hwb->size > swz->size)
594				continue;
595			hwb->zidx = i;
596			if (head == -1)
597				head = tail = j;
598			else if (hwb->size < s->hw_buf_info[tail].size) {
599				s->hw_buf_info[tail].next = j;
600				tail = j;
601			} else {
602				int8_t *cur;
603				struct hw_buf_info *t;
604
605				for (cur = &head; *cur != -1; cur = &t->next) {
606					t = &s->hw_buf_info[*cur];
607					if (hwb->size == t->size) {
608						hwb->zidx = -2;
609						break;
610					}
611					if (hwb->size > t->size) {
612						hwb->next = *cur;
613						*cur = j;
614						break;
615					}
616				}
617			}
618		}
619		swz->head_hwidx = head;
620		swz->tail_hwidx = tail;
621
622		if (tail != -1) {
623			n++;
624			if (swz->size - s->hw_buf_info[tail].size >=
625			    CL_METADATA_SIZE)
626				sc->flags |= BUF_PACKING_OK;
627		}
628	}
629	if (n == 0) {
630		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
631		rc = EINVAL;
632	}
633
634	s->safe_hwidx1 = -1;
635	s->safe_hwidx2 = -1;
636	if (safe_swz != NULL) {
637		s->safe_hwidx1 = safe_swz->head_hwidx;
638		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
639			int spare;
640
641			hwb = &s->hw_buf_info[i];
642			spare = safe_swz->size - hwb->size;
643			if (spare < CL_METADATA_SIZE)
644				continue;
645			if (s->safe_hwidx2 == -1 ||
646			    spare == CL_METADATA_SIZE + MSIZE)
647				s->safe_hwidx2 = i;
648			if (spare >= CL_METADATA_SIZE + MSIZE)
649				break;
650		}
651	}
652
653	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
654	s->counter_val[0] = G_THRESHOLD_0(r);
655	s->counter_val[1] = G_THRESHOLD_1(r);
656	s->counter_val[2] = G_THRESHOLD_2(r);
657	s->counter_val[3] = G_THRESHOLD_3(r);
658
659	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
660	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
661	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
662	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
663	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
664	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
665	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
666	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
667	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
668
669	if (cong_drop == 0) {
670		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
671		    F_TUNNELCNGDROP3;
672		r = t4_read_reg(sc, A_TP_PARA_REG3);
673		if (r & m) {
674			device_printf(sc->dev,
675			    "invalid TP_PARA_REG3(0x%x)\n", r);
676			rc = EINVAL;
677		}
678	}
679
680	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
681	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
682	if (r != v) {
683		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
684		rc = EINVAL;
685	}
686
687	m = v = F_TDDPTAGTCB;
688	r = t4_read_reg(sc, A_ULP_RX_CTL);
689	if ((r & m) != v) {
690		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
691		rc = EINVAL;
692	}
693
694	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
695	    F_RESETDDPOFFSET;
696	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
697	r = t4_read_reg(sc, A_TP_PARA_REG5);
698	if ((r & m) != v) {
699		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
700		rc = EINVAL;
701	}
702
703	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
704	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
705	if (is_t4(sc))
706		s->fl_starve_threshold2 = s->fl_starve_threshold;
707	else
708		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
709
710	/* egress queues: log2 of # of doorbells per BAR2 page */
711	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
712	r >>= S_QUEUESPERPAGEPF0 +
713	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
714	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
715
716	/* ingress queues: log2 of # of doorbells per BAR2 page */
717	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
718	r >>= S_QUEUESPERPAGEPF0 +
719	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
720	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
721
722	t4_init_tp_params(sc);
723
724	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
725	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
726
727	return (rc);
728}
729
730int
731t4_create_dma_tag(struct adapter *sc)
732{
733	int rc;
734
735	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
736	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
737	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
738	    NULL, &sc->dmat);
739	if (rc != 0) {
740		device_printf(sc->dev,
741		    "failed to create main DMA tag: %d\n", rc);
742	}
743
744	return (rc);
745}
746
747static inline int
748enable_buffer_packing(struct adapter *sc)
749{
750
751	if (sc->flags & BUF_PACKING_OK &&
752	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
753	    (is_t4(sc) && buffer_packing == 1)))
754		return (1);
755	return (0);
756}
757
758void
759t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
760    struct sysctl_oid_list *children)
761{
762
763	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
764	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
765	    "freelist buffer sizes");
766
767	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
768	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
769
770	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
771	    NULL, fl_pad, "payload pad boundary (bytes)");
772
773	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
774	    NULL, spg_len, "status page size (bytes)");
775
776	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
777	    NULL, cong_drop, "congestion drop setting");
778
779	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
780	    NULL, enable_buffer_packing(sc),
781	    "pack multiple frames in one fl buffer");
782
783	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
784	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
785}
786
787int
788t4_destroy_dma_tag(struct adapter *sc)
789{
790	if (sc->dmat)
791		bus_dma_tag_destroy(sc->dmat);
792
793	return (0);
794}
795
796/*
797 * Allocate and initialize the firmware event queue and the management queue.
798 *
799 * Returns errno on failure.  Resources allocated up to that point may still be
800 * allocated.  Caller is responsible for cleanup in case this function fails.
801 */
802int
803t4_setup_adapter_queues(struct adapter *sc)
804{
805	int rc;
806
807	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
808
809	sysctl_ctx_init(&sc->ctx);
810	sc->flags |= ADAP_SYSCTL_CTX;
811
812	/*
813	 * Firmware event queue
814	 */
815	rc = alloc_fwq(sc);
816	if (rc != 0)
817		return (rc);
818
819	/*
820	 * Management queue.  This is just a control queue that uses the fwq as
821	 * its associated iq.
822	 */
823	rc = alloc_mgmtq(sc);
824
825	return (rc);
826}
827
828/*
829 * Idempotent
830 */
831int
832t4_teardown_adapter_queues(struct adapter *sc)
833{
834
835	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
836
837	/* Do this before freeing the queue */
838	if (sc->flags & ADAP_SYSCTL_CTX) {
839		sysctl_ctx_free(&sc->ctx);
840		sc->flags &= ~ADAP_SYSCTL_CTX;
841	}
842
843	free_mgmtq(sc);
844	free_fwq(sc);
845
846	return (0);
847}
848
849static inline int
850port_intr_count(struct port_info *pi)
851{
852	int rc = 0;
853
854	if (pi->flags & INTR_RXQ)
855		rc += pi->nrxq;
856#ifdef TCP_OFFLOAD
857	if (pi->flags & INTR_OFLD_RXQ)
858		rc += pi->nofldrxq;
859#endif
860#ifdef DEV_NETMAP
861	if (pi->flags & INTR_NM_RXQ)
862		rc += pi->nnmrxq;
863#endif
864	return (rc);
865}
866
867static inline int
868first_vector(struct port_info *pi)
869{
870	struct adapter *sc = pi->adapter;
871	int rc = T4_EXTRA_INTR, i;
872
873	if (sc->intr_count == 1)
874		return (0);
875
876	for_each_port(sc, i) {
877		if (i == pi->port_id)
878			break;
879
880		rc += port_intr_count(sc->port[i]);
881	}
882
883	return (rc);
884}
885
886/*
887 * Given an arbitrary "index," come up with an iq that can be used by other
888 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
889 * The iq returned is guaranteed to be something that takes direct interrupts.
890 */
891static struct sge_iq *
892port_intr_iq(struct port_info *pi, int idx)
893{
894	struct adapter *sc = pi->adapter;
895	struct sge *s = &sc->sge;
896	struct sge_iq *iq = NULL;
897	int nintr, i;
898
899	if (sc->intr_count == 1)
900		return (&sc->sge.fwq);
901
902	nintr = port_intr_count(pi);
903	KASSERT(nintr != 0,
904	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
905	    __func__, pi, sc->intr_count));
906#ifdef DEV_NETMAP
907	/* Exclude netmap queues as they can't take anyone else's interrupts */
908	if (pi->flags & INTR_NM_RXQ)
909		nintr -= pi->nnmrxq;
910	KASSERT(nintr > 0,
911	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
912	    pi, nintr, pi->nnmrxq));
913#endif
914	i = idx % nintr;
915
916	if (pi->flags & INTR_RXQ) {
917	       	if (i < pi->nrxq) {
918			iq = &s->rxq[pi->first_rxq + i].iq;
919			goto done;
920		}
921		i -= pi->nrxq;
922	}
923#ifdef TCP_OFFLOAD
924	if (pi->flags & INTR_OFLD_RXQ) {
925	       	if (i < pi->nofldrxq) {
926			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
927			goto done;
928		}
929		i -= pi->nofldrxq;
930	}
931#endif
932	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
933	    pi, pi->flags & INTR_ALL, idx, nintr);
934done:
935	MPASS(iq != NULL);
936	KASSERT(iq->flags & IQ_INTR,
937	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
938	    pi->flags & INTR_ALL, idx));
939	return (iq);
940}
941
942/* Maximum payload that can be delivered with a single iq descriptor */
943static inline int
944mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
945{
946	int payload;
947
948#ifdef TCP_OFFLOAD
949	if (toe) {
950		payload = sc->tt.rx_coalesce ?
951		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
952	} else {
953#endif
954		/* large enough even when hw VLAN extraction is disabled */
955		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
956		    mtu;
957#ifdef TCP_OFFLOAD
958	}
959#endif
960	payload = roundup2(payload, fl_pad);
961
962	return (payload);
963}
964
965int
966t4_setup_port_queues(struct port_info *pi)
967{
968	int rc = 0, i, j, intr_idx, iqid;
969	struct sge_rxq *rxq;
970	struct sge_txq *txq;
971	struct sge_wrq *ctrlq;
972#ifdef TCP_OFFLOAD
973	struct sge_ofld_rxq *ofld_rxq;
974	struct sge_wrq *ofld_txq;
975#endif
976#ifdef DEV_NETMAP
977	struct sge_nm_rxq *nm_rxq;
978	struct sge_nm_txq *nm_txq;
979#endif
980	char name[16];
981	struct adapter *sc = pi->adapter;
982	struct ifnet *ifp = pi->ifp;
983	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
984	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
985	int maxp, pack, mtu = ifp->if_mtu;
986
987	/* Interrupt vector to start from (when using multiple vectors) */
988	intr_idx = first_vector(pi);
989
990	/*
991	 * First pass over all NIC and TOE rx queues:
992	 * a) initialize iq and fl
993	 * b) allocate queue iff it will take direct interrupts.
994	 */
995	maxp = mtu_to_max_payload(sc, mtu, 0);
996	pack = enable_buffer_packing(sc);
997	if (pi->flags & INTR_RXQ) {
998		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
999		    CTLFLAG_RD, NULL, "rx queues");
1000	}
1001	for_each_rxq(pi, i, rxq) {
1002
1003		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq);
1004
1005		snprintf(name, sizeof(name), "%s rxq%d-fl",
1006		    device_get_nameunit(pi->dev), i);
1007		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1008
1009		if (pi->flags & INTR_RXQ) {
1010			rxq->iq.flags |= IQ_INTR;
1011			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1012			if (rc != 0)
1013				goto done;
1014			intr_idx++;
1015		}
1016	}
1017#ifdef TCP_OFFLOAD
1018	maxp = mtu_to_max_payload(sc, mtu, 1);
1019	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
1020		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1021		    CTLFLAG_RD, NULL,
1022		    "rx queues for offloaded TCP connections");
1023	}
1024	for_each_ofld_rxq(pi, i, ofld_rxq) {
1025
1026		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1027		    pi->qsize_rxq);
1028
1029		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1030		    device_get_nameunit(pi->dev), i);
1031		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1032
1033		if (pi->flags & INTR_OFLD_RXQ) {
1034			ofld_rxq->iq.flags |= IQ_INTR;
1035			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1036			if (rc != 0)
1037				goto done;
1038			intr_idx++;
1039		}
1040	}
1041#endif
1042#ifdef DEV_NETMAP
1043	/*
1044	 * We don't have buffers to back the netmap rx queues right now so we
1045	 * create the queues in a way that doesn't set off any congestion signal
1046	 * in the chip.
1047	 */
1048	if (pi->flags & INTR_NM_RXQ) {
1049		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1050		    CTLFLAG_RD, NULL, "rx queues for netmap");
1051		for_each_nm_rxq(pi, i, nm_rxq) {
1052			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1053			if (rc != 0)
1054				goto done;
1055			intr_idx++;
1056		}
1057	}
1058#endif
1059
1060	/*
1061	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1062	 * their interrupts are allocated now.
1063	 */
1064	j = 0;
1065	if (!(pi->flags & INTR_RXQ)) {
1066		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1067		    CTLFLAG_RD, NULL, "rx queues");
1068		for_each_rxq(pi, i, rxq) {
1069			MPASS(!(rxq->iq.flags & IQ_INTR));
1070
1071			intr_idx = port_intr_iq(pi, j)->abs_id;
1072
1073			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1074			if (rc != 0)
1075				goto done;
1076			j++;
1077		}
1078	}
1079#ifdef TCP_OFFLOAD
1080	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1081		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1082		    CTLFLAG_RD, NULL,
1083		    "rx queues for offloaded TCP connections");
1084		for_each_ofld_rxq(pi, i, ofld_rxq) {
1085			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1086
1087			intr_idx = port_intr_iq(pi, j)->abs_id;
1088
1089			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1090			if (rc != 0)
1091				goto done;
1092			j++;
1093		}
1094	}
1095#endif
1096#ifdef DEV_NETMAP
1097	if (!(pi->flags & INTR_NM_RXQ))
1098		CXGBE_UNIMPLEMENTED(__func__);
1099#endif
1100
1101	/*
1102	 * Now the tx queues.  Only one pass needed.
1103	 */
1104	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1105	    NULL, "tx queues");
1106	j = 0;
1107	for_each_txq(pi, i, txq) {
1108		iqid = port_intr_iq(pi, j)->cntxt_id;
1109		snprintf(name, sizeof(name), "%s txq%d",
1110		    device_get_nameunit(pi->dev), i);
1111		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1112		    name);
1113
1114		rc = alloc_txq(pi, txq, i, oid);
1115		if (rc != 0)
1116			goto done;
1117		j++;
1118	}
1119#ifdef TCP_OFFLOAD
1120	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1121	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1122	for_each_ofld_txq(pi, i, ofld_txq) {
1123		struct sysctl_oid *oid2;
1124
1125		iqid = port_intr_iq(pi, j)->cntxt_id;
1126		snprintf(name, sizeof(name), "%s ofld_txq%d",
1127		    device_get_nameunit(pi->dev), i);
1128		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1129		    iqid, name);
1130
1131		snprintf(name, sizeof(name), "%d", i);
1132		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1133		    name, CTLFLAG_RD, NULL, "offload tx queue");
1134
1135		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1136		if (rc != 0)
1137			goto done;
1138		j++;
1139	}
1140#endif
1141#ifdef DEV_NETMAP
1142	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1143	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1144	for_each_nm_txq(pi, i, nm_txq) {
1145		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1146		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1147		if (rc != 0)
1148			goto done;
1149		j++;
1150	}
1151#endif
1152
1153	/*
1154	 * Finally, the control queue.
1155	 */
1156	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1157	    NULL, "ctrl queue");
1158	ctrlq = &sc->sge.ctrlq[pi->port_id];
1159	iqid = port_intr_iq(pi, 0)->cntxt_id;
1160	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1161	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1162	rc = alloc_wrq(sc, pi, ctrlq, oid);
1163
1164done:
1165	if (rc)
1166		t4_teardown_port_queues(pi);
1167
1168	return (rc);
1169}
1170
1171/*
1172 * Idempotent
1173 */
1174int
1175t4_teardown_port_queues(struct port_info *pi)
1176{
1177	int i;
1178	struct adapter *sc = pi->adapter;
1179	struct sge_rxq *rxq;
1180	struct sge_txq *txq;
1181#ifdef TCP_OFFLOAD
1182	struct sge_ofld_rxq *ofld_rxq;
1183	struct sge_wrq *ofld_txq;
1184#endif
1185#ifdef DEV_NETMAP
1186	struct sge_nm_rxq *nm_rxq;
1187	struct sge_nm_txq *nm_txq;
1188#endif
1189
1190	/* Do this before freeing the queues */
1191	if (pi->flags & PORT_SYSCTL_CTX) {
1192		sysctl_ctx_free(&pi->ctx);
1193		pi->flags &= ~PORT_SYSCTL_CTX;
1194	}
1195
1196	/*
1197	 * Take down all the tx queues first, as they reference the rx queues
1198	 * (for egress updates, etc.).
1199	 */
1200
1201	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1202
1203	for_each_txq(pi, i, txq) {
1204		free_txq(pi, txq);
1205	}
1206#ifdef TCP_OFFLOAD
1207	for_each_ofld_txq(pi, i, ofld_txq) {
1208		free_wrq(sc, ofld_txq);
1209	}
1210#endif
1211#ifdef DEV_NETMAP
1212	for_each_nm_txq(pi, i, nm_txq)
1213	    free_nm_txq(pi, nm_txq);
1214#endif
1215
1216	/*
1217	 * Then take down the rx queues that forward their interrupts, as they
1218	 * reference other rx queues.
1219	 */
1220
1221	for_each_rxq(pi, i, rxq) {
1222		if ((rxq->iq.flags & IQ_INTR) == 0)
1223			free_rxq(pi, rxq);
1224	}
1225#ifdef TCP_OFFLOAD
1226	for_each_ofld_rxq(pi, i, ofld_rxq) {
1227		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1228			free_ofld_rxq(pi, ofld_rxq);
1229	}
1230#endif
1231#ifdef DEV_NETMAP
1232	for_each_nm_rxq(pi, i, nm_rxq)
1233	    free_nm_rxq(pi, nm_rxq);
1234#endif
1235
1236	/*
1237	 * Then take down the rx queues that take direct interrupts.
1238	 */
1239
1240	for_each_rxq(pi, i, rxq) {
1241		if (rxq->iq.flags & IQ_INTR)
1242			free_rxq(pi, rxq);
1243	}
1244#ifdef TCP_OFFLOAD
1245	for_each_ofld_rxq(pi, i, ofld_rxq) {
1246		if (ofld_rxq->iq.flags & IQ_INTR)
1247			free_ofld_rxq(pi, ofld_rxq);
1248	}
1249#endif
1250#ifdef DEV_NETMAP
1251	CXGBE_UNIMPLEMENTED(__func__);
1252#endif
1253
1254	return (0);
1255}
1256
1257/*
1258 * Deals with errors and the firmware event queue.  All data rx queues forward
1259 * their interrupt to the firmware event queue.
1260 */
1261void
1262t4_intr_all(void *arg)
1263{
1264	struct adapter *sc = arg;
1265	struct sge_iq *fwq = &sc->sge.fwq;
1266
1267	t4_intr_err(arg);
1268	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1269		service_iq(fwq, 0);
1270		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1271	}
1272}
1273
1274/* Deals with error interrupts */
1275void
1276t4_intr_err(void *arg)
1277{
1278	struct adapter *sc = arg;
1279
1280	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1281	t4_slow_intr_handler(sc);
1282}
1283
1284void
1285t4_intr_evt(void *arg)
1286{
1287	struct sge_iq *iq = arg;
1288
1289	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1290		service_iq(iq, 0);
1291		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1292	}
1293}
1294
1295void
1296t4_intr(void *arg)
1297{
1298	struct sge_iq *iq = arg;
1299
1300	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1301		service_iq(iq, 0);
1302		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1303	}
1304}
1305
1306/*
1307 * Deals with anything and everything on the given ingress queue.
1308 */
1309static int
1310service_iq(struct sge_iq *iq, int budget)
1311{
1312	struct sge_iq *q;
1313	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1314	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1315	struct adapter *sc = iq->adapter;
1316	struct iq_desc *d = &iq->desc[iq->cidx];
1317	int ndescs = 0, limit;
1318	int rsp_type, refill;
1319	uint32_t lq;
1320	uint16_t fl_hw_cidx;
1321	struct mbuf *m0;
1322	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1323#if defined(INET) || defined(INET6)
1324	const struct timeval lro_timeout = {0, sc->lro_timeout};
1325#endif
1326
1327	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1328
1329	limit = budget ? budget : iq->qsize / 16;
1330
1331	if (iq->flags & IQ_HAS_FL) {
1332		fl = &rxq->fl;
1333		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1334	} else {
1335		fl = NULL;
1336		fl_hw_cidx = 0;			/* to silence gcc warning */
1337	}
1338
1339	/*
1340	 * We always come back and check the descriptor ring for new indirect
1341	 * interrupts and other responses after running a single handler.
1342	 */
1343	for (;;) {
1344		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1345
1346			rmb();
1347
1348			refill = 0;
1349			m0 = NULL;
1350			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1351			lq = be32toh(d->rsp.pldbuflen_qid);
1352
1353			switch (rsp_type) {
1354			case X_RSPD_TYPE_FLBUF:
1355
1356				KASSERT(iq->flags & IQ_HAS_FL,
1357				    ("%s: data for an iq (%p) with no freelist",
1358				    __func__, iq));
1359
1360				m0 = get_fl_payload(sc, fl, lq);
1361				if (__predict_false(m0 == NULL))
1362					goto process_iql;
1363				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1364#ifdef T4_PKT_TIMESTAMP
1365				/*
1366				 * 60 bit timestamp for the payload is
1367				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1368				 * in the leading free-space in the mbuf.  The
1369				 * kernel can clobber it during a pullup,
1370				 * m_copymdata, etc.  You need to make sure that
1371				 * the mbuf reaches you unmolested if you care
1372				 * about the timestamp.
1373				 */
1374				*(uint64_t *)m0->m_pktdat =
1375				    be64toh(ctrl->u.last_flit) &
1376				    0xfffffffffffffff;
1377#endif
1378
1379				/* fall through */
1380
1381			case X_RSPD_TYPE_CPL:
1382				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1383				    ("%s: bad opcode %02x.", __func__,
1384				    d->rss.opcode));
1385				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1386				break;
1387
1388			case X_RSPD_TYPE_INTR:
1389
1390				/*
1391				 * Interrupts should be forwarded only to queues
1392				 * that are not forwarding their interrupts.
1393				 * This means service_iq can recurse but only 1
1394				 * level deep.
1395				 */
1396				KASSERT(budget == 0,
1397				    ("%s: budget %u, rsp_type %u", __func__,
1398				    budget, rsp_type));
1399
1400				/*
1401				 * There are 1K interrupt-capable queues (qids 0
1402				 * through 1023).  A response type indicating a
1403				 * forwarded interrupt with a qid >= 1K is an
1404				 * iWARP async notification.
1405				 */
1406				if (lq >= 1024) {
1407                                        sc->an_handler(iq, &d->rsp);
1408                                        break;
1409                                }
1410
1411				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1412				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1413				    IQS_BUSY)) {
1414					if (service_iq(q, q->qsize / 16) == 0) {
1415						atomic_cmpset_int(&q->state,
1416						    IQS_BUSY, IQS_IDLE);
1417					} else {
1418						STAILQ_INSERT_TAIL(&iql, q,
1419						    link);
1420					}
1421				}
1422				break;
1423
1424			default:
1425				KASSERT(0,
1426				    ("%s: illegal response type %d on iq %p",
1427				    __func__, rsp_type, iq));
1428				log(LOG_ERR,
1429				    "%s: illegal response type %d on iq %p",
1430				    device_get_nameunit(sc->dev), rsp_type, iq);
1431				break;
1432			}
1433
1434			d++;
1435			if (__predict_false(++iq->cidx == iq->sidx)) {
1436				iq->cidx = 0;
1437				iq->gen ^= F_RSPD_GEN;
1438				d = &iq->desc[0];
1439			}
1440			if (__predict_false(++ndescs == limit)) {
1441				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1442				    V_CIDXINC(ndescs) |
1443				    V_INGRESSQID(iq->cntxt_id) |
1444				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1445				ndescs = 0;
1446
1447#if defined(INET) || defined(INET6)
1448				if (iq->flags & IQ_LRO_ENABLED &&
1449				    sc->lro_timeout != 0) {
1450					tcp_lro_flush_inactive(&rxq->lro,
1451					    &lro_timeout);
1452				}
1453#endif
1454
1455				if (budget) {
1456					if (iq->flags & IQ_HAS_FL) {
1457						FL_LOCK(fl);
1458						refill_fl(sc, fl, 32);
1459						FL_UNLOCK(fl);
1460					}
1461					return (EINPROGRESS);
1462				}
1463			}
1464			if (refill) {
1465				FL_LOCK(fl);
1466				refill_fl(sc, fl, 32);
1467				FL_UNLOCK(fl);
1468				fl_hw_cidx = fl->hw_cidx;
1469			}
1470		}
1471
1472process_iql:
1473		if (STAILQ_EMPTY(&iql))
1474			break;
1475
1476		/*
1477		 * Process the head only, and send it to the back of the list if
1478		 * it's still not done.
1479		 */
1480		q = STAILQ_FIRST(&iql);
1481		STAILQ_REMOVE_HEAD(&iql, link);
1482		if (service_iq(q, q->qsize / 8) == 0)
1483			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1484		else
1485			STAILQ_INSERT_TAIL(&iql, q, link);
1486	}
1487
1488#if defined(INET) || defined(INET6)
1489	if (iq->flags & IQ_LRO_ENABLED) {
1490		struct lro_ctrl *lro = &rxq->lro;
1491		struct lro_entry *l;
1492
1493		while (!SLIST_EMPTY(&lro->lro_active)) {
1494			l = SLIST_FIRST(&lro->lro_active);
1495			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1496			tcp_lro_flush(lro, l);
1497		}
1498	}
1499#endif
1500
1501	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1502	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1503
1504	if (iq->flags & IQ_HAS_FL) {
1505		int starved;
1506
1507		FL_LOCK(fl);
1508		starved = refill_fl(sc, fl, 64);
1509		FL_UNLOCK(fl);
1510		if (__predict_false(starved != 0))
1511			add_fl_to_sfl(sc, fl);
1512	}
1513
1514	return (0);
1515}
1516
1517static inline int
1518cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1519{
1520	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1521
1522	if (rc)
1523		MPASS(cll->region3 >= CL_METADATA_SIZE);
1524
1525	return (rc);
1526}
1527
1528static inline struct cluster_metadata *
1529cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1530    caddr_t cl)
1531{
1532
1533	if (cl_has_metadata(fl, cll)) {
1534		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1535
1536		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1537	}
1538	return (NULL);
1539}
1540
1541static int
1542rxb_free(struct mbuf *m, void *arg1, void *arg2)
1543{
1544	uma_zone_t zone = arg1;
1545	caddr_t cl = arg2;
1546
1547	uma_zfree(zone, cl);
1548	counter_u64_add(extfree_rels, 1);
1549
1550	return (EXT_FREE_OK);
1551}
1552
1553/*
1554 * The mbuf returned by this function could be allocated from zone_mbuf or
1555 * constructed in spare room in the cluster.
1556 *
1557 * The mbuf carries the payload in one of these ways
1558 * a) frame inside the mbuf (mbuf from zone_mbuf)
1559 * b) m_cljset (for clusters without metadata) zone_mbuf
1560 * c) m_extaddref (cluster with metadata) inline mbuf
1561 * d) m_extaddref (cluster with metadata) zone_mbuf
1562 */
1563static struct mbuf *
1564get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1565{
1566	struct mbuf *m;
1567	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1568	struct cluster_layout *cll = &sd->cll;
1569	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1570	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1571	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1572	int len, padded_len;
1573	caddr_t payload;
1574
1575	len = min(total, hwb->size - fl->rx_offset);
1576	padded_len = roundup2(len, fl->buf_boundary);
1577	payload = sd->cl + cll->region1 + fl->rx_offset;
1578
1579	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1580
1581		/*
1582		 * Copy payload into a freshly allocated mbuf.
1583		 */
1584
1585		m = flags & M_PKTHDR ?
1586		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1587		if (m == NULL)
1588			return (NULL);
1589		fl->mbuf_allocated++;
1590#ifdef T4_PKT_TIMESTAMP
1591		/* Leave room for a timestamp */
1592		m->m_data += 8;
1593#endif
1594		/* copy data to mbuf */
1595		bcopy(payload, mtod(m, caddr_t), len);
1596
1597	} else if (sd->nmbuf * MSIZE < cll->region1) {
1598
1599		/*
1600		 * There's spare room in the cluster for an mbuf.  Create one
1601		 * and associate it with the payload that's in the cluster.
1602		 */
1603
1604		MPASS(clm != NULL);
1605		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1606		/* No bzero required */
1607		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1608			return (NULL);
1609		fl->mbuf_inlined++;
1610		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1611		    swz->zone, sd->cl);
1612		if (sd->nmbuf++ == 0)
1613			counter_u64_add(extfree_refs, 1);
1614
1615	} else {
1616
1617		/*
1618		 * Grab an mbuf from zone_mbuf and associate it with the
1619		 * payload in the cluster.
1620		 */
1621
1622		m = flags & M_PKTHDR ?
1623		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1624		if (m == NULL)
1625			return (NULL);
1626		fl->mbuf_allocated++;
1627		if (clm != NULL) {
1628			m_extaddref(m, payload, padded_len, &clm->refcount,
1629			    rxb_free, swz->zone, sd->cl);
1630			if (sd->nmbuf++ == 0)
1631				counter_u64_add(extfree_refs, 1);
1632		} else {
1633			m_cljset(m, sd->cl, swz->type);
1634			sd->cl = NULL;	/* consumed, not a recycle candidate */
1635		}
1636	}
1637	if (flags & M_PKTHDR)
1638		m->m_pkthdr.len = total;
1639	m->m_len = len;
1640
1641	if (fl->flags & FL_BUF_PACKING) {
1642		fl->rx_offset += padded_len;
1643		MPASS(fl->rx_offset <= hwb->size);
1644		if (fl->rx_offset < hwb->size)
1645			return (m);	/* without advancing the cidx */
1646	}
1647
1648	if (__predict_false(++fl->cidx % 8 == 0)) {
1649		uint16_t cidx = fl->cidx / 8;
1650
1651		if (__predict_false(cidx == fl->sidx))
1652			fl->cidx = cidx = 0;
1653		fl->hw_cidx = cidx;
1654	}
1655	fl->rx_offset = 0;
1656
1657	return (m);
1658}
1659
1660static struct mbuf *
1661get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1662{
1663	struct mbuf *m0, *m, **pnext;
1664	u_int len;
1665
1666	len = G_RSPD_LEN(len_newbuf);
1667	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1668		M_ASSERTPKTHDR(fl->m0);
1669		MPASS(len == fl->m0->m_pkthdr.len);
1670		MPASS(fl->remaining < len);
1671
1672		m0 = fl->m0;
1673		pnext = fl->pnext;
1674		len = fl->remaining;
1675		fl->flags &= ~FL_BUF_RESUME;
1676		goto get_segment;
1677	}
1678
1679	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1680		fl->rx_offset = 0;
1681		if (__predict_false(++fl->cidx % 8 == 0)) {
1682			uint16_t cidx = fl->cidx / 8;
1683
1684			if (__predict_false(cidx == fl->sidx))
1685				fl->cidx = cidx = 0;
1686			fl->hw_cidx = cidx;
1687		}
1688	}
1689
1690	/*
1691	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1692	 * 'len' and it may span multiple hw buffers.
1693	 */
1694
1695	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1696	if (m0 == NULL)
1697		return (NULL);
1698	len -= m0->m_len;
1699	pnext = &m0->m_next;
1700	while (len > 0) {
1701get_segment:
1702		MPASS(fl->rx_offset == 0);
1703		m = get_scatter_segment(sc, fl, len, 0);
1704		if (__predict_false(m == NULL)) {
1705			fl->m0 = m0;
1706			fl->pnext = pnext;
1707			fl->remaining = len;
1708			fl->flags |= FL_BUF_RESUME;
1709			return (NULL);
1710		}
1711		*pnext = m;
1712		pnext = &m->m_next;
1713		len -= m->m_len;
1714	}
1715	*pnext = NULL;
1716
1717	return (m0);
1718}
1719
1720static int
1721t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1722{
1723	struct sge_rxq *rxq = iq_to_rxq(iq);
1724	struct ifnet *ifp = rxq->ifp;
1725	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1726#if defined(INET) || defined(INET6)
1727	struct lro_ctrl *lro = &rxq->lro;
1728#endif
1729
1730	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1731	    rss->opcode));
1732
1733	m0->m_pkthdr.len -= fl_pktshift;
1734	m0->m_len -= fl_pktshift;
1735	m0->m_data += fl_pktshift;
1736
1737	m0->m_pkthdr.rcvif = ifp;
1738	m0->m_flags |= M_FLOWID;
1739	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1740
1741	if (cpl->csum_calc && !cpl->err_vec) {
1742		if (ifp->if_capenable & IFCAP_RXCSUM &&
1743		    cpl->l2info & htobe32(F_RXF_IP)) {
1744			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1745			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1746			rxq->rxcsum++;
1747		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1748		    cpl->l2info & htobe32(F_RXF_IP6)) {
1749			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1750			    CSUM_PSEUDO_HDR);
1751			rxq->rxcsum++;
1752		}
1753
1754		if (__predict_false(cpl->ip_frag))
1755			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1756		else
1757			m0->m_pkthdr.csum_data = 0xffff;
1758	}
1759
1760	if (cpl->vlan_ex) {
1761		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1762		m0->m_flags |= M_VLANTAG;
1763		rxq->vlan_extraction++;
1764	}
1765
1766#if defined(INET) || defined(INET6)
1767	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1768	    iq->flags & IQ_LRO_ENABLED &&
1769	    tcp_lro_rx(lro, m0, 0) == 0) {
1770		/* queued for LRO */
1771	} else
1772#endif
1773	ifp->if_input(ifp, m0);
1774
1775	return (0);
1776}
1777
1778/*
1779 * Doesn't fail.  Holds on to work requests it can't send right away.
1780 */
1781void
1782t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1783{
1784	struct sge_eq *eq = &wrq->eq;
1785	int can_reclaim;
1786	caddr_t dst;
1787
1788	TXQ_LOCK_ASSERT_OWNED(wrq);
1789#ifdef TCP_OFFLOAD
1790	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1791	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1792	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1793#else
1794	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1795	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1796#endif
1797
1798	if (__predict_true(wr != NULL))
1799		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1800
1801	can_reclaim = reclaimable(eq);
1802	if (__predict_false(eq->flags & EQ_STALLED)) {
1803		if (eq->avail + can_reclaim < tx_resume_threshold(eq))
1804			return;
1805		eq->flags &= ~EQ_STALLED;
1806		eq->unstalled++;
1807	}
1808	eq->cidx += can_reclaim;
1809	eq->avail += can_reclaim;
1810	if (__predict_false(eq->cidx >= eq->cap))
1811		eq->cidx -= eq->cap;
1812
1813	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1814		int ndesc;
1815
1816		if (__predict_false(wr->wr_len < 0 ||
1817		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1818
1819#ifdef INVARIANTS
1820			panic("%s: work request with length %d", __func__,
1821			    wr->wr_len);
1822#endif
1823#ifdef KDB
1824			kdb_backtrace();
1825#endif
1826			log(LOG_ERR, "%s: %s work request with length %d",
1827			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1828			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1829			free_wrqe(wr);
1830			continue;
1831		}
1832
1833		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1834		if (eq->avail < ndesc) {
1835			wrq->no_desc++;
1836			break;
1837		}
1838
1839		dst = (void *)&eq->desc[eq->pidx];
1840		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1841
1842		eq->pidx += ndesc;
1843		eq->avail -= ndesc;
1844		if (__predict_false(eq->pidx >= eq->cap))
1845			eq->pidx -= eq->cap;
1846
1847		eq->pending += ndesc;
1848		if (eq->pending >= 8)
1849			ring_eq_db(sc, eq);
1850
1851		wrq->tx_wrs++;
1852		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1853		free_wrqe(wr);
1854
1855		if (eq->avail < 8) {
1856			can_reclaim = reclaimable(eq);
1857			eq->cidx += can_reclaim;
1858			eq->avail += can_reclaim;
1859			if (__predict_false(eq->cidx >= eq->cap))
1860				eq->cidx -= eq->cap;
1861		}
1862	}
1863
1864	if (eq->pending)
1865		ring_eq_db(sc, eq);
1866
1867	if (wr != NULL) {
1868		eq->flags |= EQ_STALLED;
1869		if (callout_pending(&eq->tx_callout) == 0)
1870			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1871	}
1872}
1873
1874/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1875#define TXPKTS_PKT_HDR ((\
1876    sizeof(struct ulp_txpkt) + \
1877    sizeof(struct ulptx_idata) + \
1878    sizeof(struct cpl_tx_pkt_core) \
1879    ) / 8)
1880
1881/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1882#define TXPKTS_WR_HDR (\
1883    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1884    TXPKTS_PKT_HDR)
1885
1886/* Header of a tx WR, before SGL of first packet (in flits) */
1887#define TXPKT_WR_HDR ((\
1888    sizeof(struct fw_eth_tx_pkt_wr) + \
1889    sizeof(struct cpl_tx_pkt_core) \
1890    ) / 8 )
1891
1892/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1893#define TXPKT_LSO_WR_HDR ((\
1894    sizeof(struct fw_eth_tx_pkt_wr) + \
1895    sizeof(struct cpl_tx_pkt_lso_core) + \
1896    sizeof(struct cpl_tx_pkt_core) \
1897    ) / 8 )
1898
1899int
1900t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1901{
1902	struct port_info *pi = (void *)ifp->if_softc;
1903	struct adapter *sc = pi->adapter;
1904	struct sge_eq *eq = &txq->eq;
1905	struct buf_ring *br = txq->br;
1906	struct mbuf *next;
1907	int rc, coalescing, can_reclaim;
1908	struct txpkts txpkts;
1909	struct sgl sgl;
1910
1911	TXQ_LOCK_ASSERT_OWNED(txq);
1912	KASSERT(m, ("%s: called with nothing to do.", __func__));
1913	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1914	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1915
1916	prefetch(&eq->desc[eq->pidx]);
1917	prefetch(&txq->sdesc[eq->pidx]);
1918
1919	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1920	coalescing = 0;
1921
1922	can_reclaim = reclaimable(eq);
1923	if (__predict_false(eq->flags & EQ_STALLED)) {
1924		if (eq->avail + can_reclaim < tx_resume_threshold(eq)) {
1925			txq->m = m;
1926			return (0);
1927		}
1928		eq->flags &= ~EQ_STALLED;
1929		eq->unstalled++;
1930	}
1931
1932	if (__predict_false(eq->flags & EQ_DOOMED)) {
1933		m_freem(m);
1934		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1935			m_freem(m);
1936		return (ENETDOWN);
1937	}
1938
1939	if (eq->avail < 8 && can_reclaim)
1940		reclaim_tx_descs(txq, can_reclaim, 32);
1941
1942	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1943
1944		if (eq->avail < 8)
1945			break;
1946
1947		next = m->m_nextpkt;
1948		m->m_nextpkt = NULL;
1949
1950		if (next || buf_ring_peek(br))
1951			coalescing = 1;
1952
1953		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1954		if (rc != 0) {
1955			if (rc == ENOMEM) {
1956
1957				/* Short of resources, suspend tx */
1958
1959				m->m_nextpkt = next;
1960				break;
1961			}
1962
1963			/*
1964			 * Unrecoverable error for this packet, throw it away
1965			 * and move on to the next.  get_pkt_sgl may already
1966			 * have freed m (it will be NULL in that case and the
1967			 * m_freem here is still safe).
1968			 */
1969
1970			m_freem(m);
1971			continue;
1972		}
1973
1974		if (coalescing &&
1975		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1976
1977			/* Successfully absorbed into txpkts */
1978
1979			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1980			goto doorbell;
1981		}
1982
1983		/*
1984		 * We weren't coalescing to begin with, or current frame could
1985		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1986		 * given to it can't be coalesced).  Either way there should be
1987		 * nothing in txpkts.
1988		 */
1989		KASSERT(txpkts.npkt == 0,
1990		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1991
1992		/* We're sending out individual packets now */
1993		coalescing = 0;
1994
1995		if (eq->avail < 8)
1996			reclaim_tx_descs(txq, 0, 8);
1997		rc = write_txpkt_wr(pi, txq, m, &sgl);
1998		if (rc != 0) {
1999
2000			/* Short of hardware descriptors, suspend tx */
2001
2002			/*
2003			 * This is an unlikely but expensive failure.  We've
2004			 * done all the hard work (DMA mappings etc.) and now we
2005			 * can't send out the packet.  What's worse, we have to
2006			 * spend even more time freeing up everything in sgl.
2007			 */
2008			txq->no_desc++;
2009			free_pkt_sgl(txq, &sgl);
2010
2011			m->m_nextpkt = next;
2012			break;
2013		}
2014
2015		ETHER_BPF_MTAP(ifp, m);
2016		if (sgl.nsegs == 0)
2017			m_freem(m);
2018doorbell:
2019		if (eq->pending >= 8)
2020			ring_eq_db(sc, eq);
2021
2022		can_reclaim = reclaimable(eq);
2023		if (can_reclaim >= 32)
2024			reclaim_tx_descs(txq, can_reclaim, 64);
2025	}
2026
2027	if (txpkts.npkt > 0)
2028		write_txpkts_wr(txq, &txpkts);
2029
2030	/*
2031	 * m not NULL means there was an error but we haven't thrown it away.
2032	 * This can happen when we're short of tx descriptors (no_desc) or maybe
2033	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
2034	 * will get things going again.
2035	 */
2036	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2037		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2038
2039		/*
2040		 * If EQ_CRFLUSHED is not set then we know we have at least one
2041		 * available descriptor because any WR that reduces eq->avail to
2042		 * 0 also sets EQ_CRFLUSHED.
2043		 */
2044		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2045
2046		txsd->desc_used = 1;
2047		txsd->credits = 0;
2048		write_eqflush_wr(eq);
2049	}
2050	txq->m = m;
2051
2052	if (eq->pending)
2053		ring_eq_db(sc, eq);
2054
2055	reclaim_tx_descs(txq, 0, 128);
2056
2057	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2058		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2059
2060	return (0);
2061}
2062
2063void
2064t4_update_fl_bufsize(struct ifnet *ifp)
2065{
2066	struct port_info *pi = ifp->if_softc;
2067	struct adapter *sc = pi->adapter;
2068	struct sge_rxq *rxq;
2069#ifdef TCP_OFFLOAD
2070	struct sge_ofld_rxq *ofld_rxq;
2071#endif
2072	struct sge_fl *fl;
2073	int i, maxp, mtu = ifp->if_mtu;
2074
2075	maxp = mtu_to_max_payload(sc, mtu, 0);
2076	for_each_rxq(pi, i, rxq) {
2077		fl = &rxq->fl;
2078
2079		FL_LOCK(fl);
2080		find_best_refill_source(sc, fl, maxp);
2081		FL_UNLOCK(fl);
2082	}
2083#ifdef TCP_OFFLOAD
2084	maxp = mtu_to_max_payload(sc, mtu, 1);
2085	for_each_ofld_rxq(pi, i, ofld_rxq) {
2086		fl = &ofld_rxq->fl;
2087
2088		FL_LOCK(fl);
2089		find_best_refill_source(sc, fl, maxp);
2090		FL_UNLOCK(fl);
2091	}
2092#endif
2093}
2094
2095int
2096can_resume_tx(struct sge_eq *eq)
2097{
2098
2099	return (eq->avail + reclaimable(eq) >= tx_resume_threshold(eq));
2100}
2101
2102static inline void
2103init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2104    int qsize)
2105{
2106
2107	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2108	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2109	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2110	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2111
2112	iq->flags = 0;
2113	iq->adapter = sc;
2114	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2115	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2116	if (pktc_idx >= 0) {
2117		iq->intr_params |= F_QINTR_CNT_EN;
2118		iq->intr_pktc_idx = pktc_idx;
2119	}
2120	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2121	iq->sidx = iq->qsize - spg_len / IQ_ESIZE;
2122}
2123
2124static inline void
2125init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2126    char *name)
2127{
2128
2129	fl->qsize = qsize;
2130	fl->sidx = qsize - spg_len / EQ_ESIZE;
2131	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2132	if (pack)
2133		fl->flags |= FL_BUF_PACKING;
2134	find_best_refill_source(sc, fl, maxp);
2135	find_safe_refill_source(sc, fl);
2136}
2137
2138static inline void
2139init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2140    uint16_t iqid, char *name)
2141{
2142	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2143	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2144
2145	eq->flags = eqtype & EQ_TYPEMASK;
2146	eq->tx_chan = tx_chan;
2147	eq->iqid = iqid;
2148	eq->qsize = qsize;
2149	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2150
2151	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2152	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2153}
2154
2155static int
2156alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2157    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2158{
2159	int rc;
2160
2161	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2162	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2163	if (rc != 0) {
2164		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2165		goto done;
2166	}
2167
2168	rc = bus_dmamem_alloc(*tag, va,
2169	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2170	if (rc != 0) {
2171		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2172		goto done;
2173	}
2174
2175	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2176	if (rc != 0) {
2177		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2178		goto done;
2179	}
2180done:
2181	if (rc)
2182		free_ring(sc, *tag, *map, *pa, *va);
2183
2184	return (rc);
2185}
2186
2187static int
2188free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2189    bus_addr_t pa, void *va)
2190{
2191	if (pa)
2192		bus_dmamap_unload(tag, map);
2193	if (va)
2194		bus_dmamem_free(tag, va, map);
2195	if (tag)
2196		bus_dma_tag_destroy(tag);
2197
2198	return (0);
2199}
2200
2201/*
2202 * Allocates the ring for an ingress queue and an optional freelist.  If the
2203 * freelist is specified it will be allocated and then associated with the
2204 * ingress queue.
2205 *
2206 * Returns errno on failure.  Resources allocated up to that point may still be
2207 * allocated.  Caller is responsible for cleanup in case this function fails.
2208 *
2209 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2210 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2211 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2212 */
2213static int
2214alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2215    int intr_idx, int cong)
2216{
2217	int rc, i, cntxt_id;
2218	size_t len;
2219	struct fw_iq_cmd c;
2220	struct adapter *sc = iq->adapter;
2221	__be32 v = 0;
2222
2223	len = iq->qsize * IQ_ESIZE;
2224	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2225	    (void **)&iq->desc);
2226	if (rc != 0)
2227		return (rc);
2228
2229	bzero(&c, sizeof(c));
2230	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2231	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2232	    V_FW_IQ_CMD_VFN(0));
2233
2234	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2235	    FW_LEN16(c));
2236
2237	/* Special handling for firmware event queue */
2238	if (iq == &sc->sge.fwq)
2239		v |= F_FW_IQ_CMD_IQASYNCH;
2240
2241	if (iq->flags & IQ_INTR) {
2242		KASSERT(intr_idx < sc->intr_count,
2243		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2244	} else
2245		v |= F_FW_IQ_CMD_IQANDST;
2246	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2247
2248	c.type_to_iqandstindex = htobe32(v |
2249	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2250	    V_FW_IQ_CMD_VIID(pi->viid) |
2251	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2252	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2253	    F_FW_IQ_CMD_IQGTSMODE |
2254	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2255	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2256	c.iqsize = htobe16(iq->qsize);
2257	c.iqaddr = htobe64(iq->ba);
2258	if (cong >= 0)
2259		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2260
2261	if (fl) {
2262		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2263
2264		len = fl->qsize * EQ_ESIZE;
2265		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2266		    &fl->ba, (void **)&fl->desc);
2267		if (rc)
2268			return (rc);
2269
2270		/* Allocate space for one software descriptor per buffer. */
2271		rc = alloc_fl_sdesc(fl);
2272		if (rc != 0) {
2273			device_printf(sc->dev,
2274			    "failed to setup fl software descriptors: %d\n",
2275			    rc);
2276			return (rc);
2277		}
2278
2279		if (fl->flags & FL_BUF_PACKING) {
2280			fl->lowat = roundup2(sc->sge.fl_starve_threshold2, 8);
2281			fl->buf_boundary = max(fl_pad, sc->sge.pack_boundary);
2282		} else {
2283			fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
2284			fl->buf_boundary = fl_pad;
2285		}
2286
2287		c.iqns_to_fl0congen |=
2288		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2289			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2290			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2291			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2292			    0));
2293		if (cong >= 0) {
2294			c.iqns_to_fl0congen |=
2295				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2296				    F_FW_IQ_CMD_FL0CONGCIF |
2297				    F_FW_IQ_CMD_FL0CONGEN);
2298		}
2299		c.fl0dcaen_to_fl0cidxfthresh =
2300		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2301			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2302		c.fl0size = htobe16(fl->qsize);
2303		c.fl0addr = htobe64(fl->ba);
2304	}
2305
2306	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2307	if (rc != 0) {
2308		device_printf(sc->dev,
2309		    "failed to create ingress queue: %d\n", rc);
2310		return (rc);
2311	}
2312
2313	iq->cidx = 0;
2314	iq->gen = F_RSPD_GEN;
2315	iq->intr_next = iq->intr_params;
2316	iq->cntxt_id = be16toh(c.iqid);
2317	iq->abs_id = be16toh(c.physiqid);
2318	iq->flags |= IQ_ALLOCATED;
2319
2320	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2321	if (cntxt_id >= sc->sge.niq) {
2322		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2323		    cntxt_id, sc->sge.niq - 1);
2324	}
2325	sc->sge.iqmap[cntxt_id] = iq;
2326
2327	if (fl) {
2328		u_int qid;
2329
2330		iq->flags |= IQ_HAS_FL;
2331		fl->cntxt_id = be16toh(c.fl0id);
2332		fl->pidx = fl->cidx = 0;
2333
2334		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2335		if (cntxt_id >= sc->sge.neq) {
2336			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2337			    __func__, cntxt_id, sc->sge.neq - 1);
2338		}
2339		sc->sge.eqmap[cntxt_id] = (void *)fl;
2340
2341		qid = fl->cntxt_id;
2342		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2343			uint32_t s_qpp = sc->sge.eq_s_qpp;
2344			uint32_t mask = (1 << s_qpp) - 1;
2345			volatile uint8_t *udb;
2346
2347			udb = sc->udbs_base + UDBS_DB_OFFSET;
2348			udb += (qid >> s_qpp) << PAGE_SHIFT;
2349			qid &= mask;
2350			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2351				udb += qid << UDBS_SEG_SHIFT;
2352				qid = 0;
2353			}
2354			fl->udb = (volatile void *)udb;
2355		}
2356		fl->dbval = F_DBPRIO | V_QID(qid);
2357		if (is_t5(sc))
2358			fl->dbval |= F_DBTYPE;
2359
2360		FL_LOCK(fl);
2361		/* Enough to make sure the SGE doesn't think it's starved */
2362		refill_fl(sc, fl, fl->lowat);
2363		FL_UNLOCK(fl);
2364	}
2365
2366	if (is_t5(sc) && cong >= 0) {
2367		uint32_t param, val;
2368
2369		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2370		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2371		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2372		if (cong == 0)
2373			val = 1 << 19;
2374		else {
2375			val = 2 << 19;
2376			for (i = 0; i < 4; i++) {
2377				if (cong & (1 << i))
2378					val |= 1 << (i << 2);
2379			}
2380		}
2381
2382		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2383		if (rc != 0) {
2384			/* report error but carry on */
2385			device_printf(sc->dev,
2386			    "failed to set congestion manager context for "
2387			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2388		}
2389	}
2390
2391	/* Enable IQ interrupts */
2392	atomic_store_rel_int(&iq->state, IQS_IDLE);
2393	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2394	    V_INGRESSQID(iq->cntxt_id));
2395
2396	return (0);
2397}
2398
2399static int
2400free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2401{
2402	int rc;
2403	struct adapter *sc = iq->adapter;
2404	device_t dev;
2405
2406	if (sc == NULL)
2407		return (0);	/* nothing to do */
2408
2409	dev = pi ? pi->dev : sc->dev;
2410
2411	if (iq->flags & IQ_ALLOCATED) {
2412		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2413		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2414		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2415		if (rc != 0) {
2416			device_printf(dev,
2417			    "failed to free queue %p: %d\n", iq, rc);
2418			return (rc);
2419		}
2420		iq->flags &= ~IQ_ALLOCATED;
2421	}
2422
2423	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2424
2425	bzero(iq, sizeof(*iq));
2426
2427	if (fl) {
2428		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2429		    fl->desc);
2430
2431		if (fl->sdesc)
2432			free_fl_sdesc(sc, fl);
2433
2434		if (mtx_initialized(&fl->fl_lock))
2435			mtx_destroy(&fl->fl_lock);
2436
2437		bzero(fl, sizeof(*fl));
2438	}
2439
2440	return (0);
2441}
2442
2443static void
2444add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2445    struct sge_fl *fl)
2446{
2447	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2448
2449	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2450	    "freelist");
2451	children = SYSCTL_CHILDREN(oid);
2452
2453	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2454	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2455	    "SGE context id of the freelist");
2456	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2457	    0, "consumer index");
2458	if (fl->flags & FL_BUF_PACKING) {
2459		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2460		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2461	}
2462	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2463	    0, "producer index");
2464	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2465	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2466	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2467	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2468	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2469	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2470	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2471	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2472	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2473	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2474}
2475
2476static int
2477alloc_fwq(struct adapter *sc)
2478{
2479	int rc, intr_idx;
2480	struct sge_iq *fwq = &sc->sge.fwq;
2481	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2482	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2483
2484	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2485	fwq->flags |= IQ_INTR;	/* always */
2486	intr_idx = sc->intr_count > 1 ? 1 : 0;
2487	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2488	if (rc != 0) {
2489		device_printf(sc->dev,
2490		    "failed to create firmware event queue: %d\n", rc);
2491		return (rc);
2492	}
2493
2494	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2495	    NULL, "firmware event queue");
2496	children = SYSCTL_CHILDREN(oid);
2497
2498	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2499	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2500	    "absolute id of the queue");
2501	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2502	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2503	    "SGE context id of the queue");
2504	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2505	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2506	    "consumer index");
2507
2508	return (0);
2509}
2510
2511static int
2512free_fwq(struct adapter *sc)
2513{
2514	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2515}
2516
2517static int
2518alloc_mgmtq(struct adapter *sc)
2519{
2520	int rc;
2521	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2522	char name[16];
2523	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2524	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2525
2526	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2527	    NULL, "management queue");
2528
2529	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2530	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2531	    sc->sge.fwq.cntxt_id, name);
2532	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2533	if (rc != 0) {
2534		device_printf(sc->dev,
2535		    "failed to create management queue: %d\n", rc);
2536		return (rc);
2537	}
2538
2539	return (0);
2540}
2541
2542static int
2543free_mgmtq(struct adapter *sc)
2544{
2545
2546	return free_wrq(sc, &sc->sge.mgmtq);
2547}
2548
2549static inline int
2550tnl_cong(struct port_info *pi)
2551{
2552
2553	if (cong_drop == -1)
2554		return (-1);
2555	else if (cong_drop == 1)
2556		return (0);
2557	else
2558		return (pi->rx_chan_map);
2559}
2560
2561static int
2562alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2563    struct sysctl_oid *oid)
2564{
2565	int rc;
2566	struct sysctl_oid_list *children;
2567	char name[16];
2568
2569	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2570	if (rc != 0)
2571		return (rc);
2572
2573	/*
2574	 * The freelist is just barely above the starvation threshold right now,
2575	 * fill it up a bit more.
2576	 */
2577	FL_LOCK(&rxq->fl);
2578	refill_fl(pi->adapter, &rxq->fl, 128);
2579	FL_UNLOCK(&rxq->fl);
2580
2581#if defined(INET) || defined(INET6)
2582	rc = tcp_lro_init(&rxq->lro);
2583	if (rc != 0)
2584		return (rc);
2585	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2586
2587	if (pi->ifp->if_capenable & IFCAP_LRO)
2588		rxq->iq.flags |= IQ_LRO_ENABLED;
2589#endif
2590	rxq->ifp = pi->ifp;
2591
2592	children = SYSCTL_CHILDREN(oid);
2593
2594	snprintf(name, sizeof(name), "%d", idx);
2595	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2596	    NULL, "rx queue");
2597	children = SYSCTL_CHILDREN(oid);
2598
2599	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2600	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2601	    "absolute id of the queue");
2602	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2603	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2604	    "SGE context id of the queue");
2605	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2606	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2607	    "consumer index");
2608#if defined(INET) || defined(INET6)
2609	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2610	    &rxq->lro.lro_queued, 0, NULL);
2611	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2612	    &rxq->lro.lro_flushed, 0, NULL);
2613#endif
2614	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2615	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2616	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2617	    CTLFLAG_RD, &rxq->vlan_extraction,
2618	    "# of times hardware extracted 802.1Q tag");
2619
2620	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2621
2622	return (rc);
2623}
2624
2625static int
2626free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2627{
2628	int rc;
2629
2630#if defined(INET) || defined(INET6)
2631	if (rxq->lro.ifp) {
2632		tcp_lro_free(&rxq->lro);
2633		rxq->lro.ifp = NULL;
2634	}
2635#endif
2636
2637	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2638	if (rc == 0)
2639		bzero(rxq, sizeof(*rxq));
2640
2641	return (rc);
2642}
2643
2644#ifdef TCP_OFFLOAD
2645static int
2646alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2647    int intr_idx, int idx, struct sysctl_oid *oid)
2648{
2649	int rc;
2650	struct sysctl_oid_list *children;
2651	char name[16];
2652
2653	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2654	    pi->rx_chan_map);
2655	if (rc != 0)
2656		return (rc);
2657
2658	children = SYSCTL_CHILDREN(oid);
2659
2660	snprintf(name, sizeof(name), "%d", idx);
2661	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2662	    NULL, "rx queue");
2663	children = SYSCTL_CHILDREN(oid);
2664
2665	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2666	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2667	    "I", "absolute id of the queue");
2668	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2669	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2670	    "I", "SGE context id of the queue");
2671	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2672	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2673	    "consumer index");
2674
2675	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2676
2677	return (rc);
2678}
2679
2680static int
2681free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2682{
2683	int rc;
2684
2685	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2686	if (rc == 0)
2687		bzero(ofld_rxq, sizeof(*ofld_rxq));
2688
2689	return (rc);
2690}
2691#endif
2692
2693#ifdef DEV_NETMAP
2694static int
2695alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2696    int idx, struct sysctl_oid *oid)
2697{
2698	int rc;
2699	struct sysctl_oid_list *children;
2700	struct sysctl_ctx_list *ctx;
2701	char name[16];
2702	size_t len;
2703	struct adapter *sc = pi->adapter;
2704	struct netmap_adapter *na = NA(pi->nm_ifp);
2705
2706	MPASS(na != NULL);
2707
2708	len = pi->qsize_rxq * IQ_ESIZE;
2709	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2710	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2711	if (rc != 0)
2712		return (rc);
2713
2714	len = na->num_rx_desc * EQ_ESIZE + spg_len;
2715	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2716	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2717	if (rc != 0)
2718		return (rc);
2719
2720	nm_rxq->pi = pi;
2721	nm_rxq->nid = idx;
2722	nm_rxq->iq_cidx = 0;
2723	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / IQ_ESIZE;
2724	nm_rxq->iq_gen = F_RSPD_GEN;
2725	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2726	nm_rxq->fl_sidx = na->num_rx_desc;
2727	nm_rxq->intr_idx = intr_idx;
2728
2729	ctx = &pi->ctx;
2730	children = SYSCTL_CHILDREN(oid);
2731
2732	snprintf(name, sizeof(name), "%d", idx);
2733	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2734	    "rx queue");
2735	children = SYSCTL_CHILDREN(oid);
2736
2737	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2738	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2739	    "I", "absolute id of the queue");
2740	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2741	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2742	    "I", "SGE context id of the queue");
2743	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2744	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2745	    "consumer index");
2746
2747	children = SYSCTL_CHILDREN(oid);
2748	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2749	    "freelist");
2750	children = SYSCTL_CHILDREN(oid);
2751
2752	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2753	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2754	    "I", "SGE context id of the freelist");
2755	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2756	    &nm_rxq->fl_cidx, 0, "consumer index");
2757	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2758	    &nm_rxq->fl_pidx, 0, "producer index");
2759
2760	return (rc);
2761}
2762
2763
2764static int
2765free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2766{
2767	struct adapter *sc = pi->adapter;
2768
2769	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2770	    nm_rxq->iq_desc);
2771	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2772	    nm_rxq->fl_desc);
2773
2774	return (0);
2775}
2776
2777static int
2778alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2779    struct sysctl_oid *oid)
2780{
2781	int rc;
2782	size_t len;
2783	struct adapter *sc = pi->adapter;
2784	struct netmap_adapter *na = NA(pi->nm_ifp);
2785	char name[16];
2786	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2787
2788	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2789	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2790	    &nm_txq->ba, (void **)&nm_txq->desc);
2791	if (rc)
2792		return (rc);
2793
2794	nm_txq->pidx = nm_txq->cidx = 0;
2795	nm_txq->sidx = na->num_tx_desc;
2796	nm_txq->nid = idx;
2797	nm_txq->iqidx = iqidx;
2798	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2799	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2800
2801	snprintf(name, sizeof(name), "%d", idx);
2802	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2803	    NULL, "netmap tx queue");
2804	children = SYSCTL_CHILDREN(oid);
2805
2806	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2807	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2808	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2809	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2810	    "consumer index");
2811	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2812	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2813	    "producer index");
2814
2815	return (rc);
2816}
2817
2818static int
2819free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2820{
2821	struct adapter *sc = pi->adapter;
2822
2823	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2824	    nm_txq->desc);
2825
2826	return (0);
2827}
2828#endif
2829
2830static int
2831ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2832{
2833	int rc, cntxt_id;
2834	struct fw_eq_ctrl_cmd c;
2835
2836	bzero(&c, sizeof(c));
2837
2838	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2839	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2840	    V_FW_EQ_CTRL_CMD_VFN(0));
2841	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2842	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2843	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2844	c.physeqid_pkd = htobe32(0);
2845	c.fetchszm_to_iqid =
2846	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2847		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2848		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2849	c.dcaen_to_eqsize =
2850	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2851		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2852		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2853		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2854	c.eqaddr = htobe64(eq->ba);
2855
2856	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2857	if (rc != 0) {
2858		device_printf(sc->dev,
2859		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2860		return (rc);
2861	}
2862	eq->flags |= EQ_ALLOCATED;
2863
2864	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2865	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2866	if (cntxt_id >= sc->sge.neq)
2867	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2868		cntxt_id, sc->sge.neq - 1);
2869	sc->sge.eqmap[cntxt_id] = eq;
2870
2871	return (rc);
2872}
2873
2874static int
2875eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2876{
2877	int rc, cntxt_id;
2878	struct fw_eq_eth_cmd c;
2879
2880	bzero(&c, sizeof(c));
2881
2882	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2883	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2884	    V_FW_EQ_ETH_CMD_VFN(0));
2885	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2886	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2887	c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2888	c.fetchszm_to_iqid =
2889	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2890		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2891		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2892	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2893		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2894		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2895		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2896	c.eqaddr = htobe64(eq->ba);
2897
2898	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2899	if (rc != 0) {
2900		device_printf(pi->dev,
2901		    "failed to create Ethernet egress queue: %d\n", rc);
2902		return (rc);
2903	}
2904	eq->flags |= EQ_ALLOCATED;
2905
2906	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2907	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2908	if (cntxt_id >= sc->sge.neq)
2909	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2910		cntxt_id, sc->sge.neq - 1);
2911	sc->sge.eqmap[cntxt_id] = eq;
2912
2913	return (rc);
2914}
2915
2916#ifdef TCP_OFFLOAD
2917static int
2918ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2919{
2920	int rc, cntxt_id;
2921	struct fw_eq_ofld_cmd c;
2922
2923	bzero(&c, sizeof(c));
2924
2925	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2926	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2927	    V_FW_EQ_OFLD_CMD_VFN(0));
2928	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2929	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2930	c.fetchszm_to_iqid =
2931		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2932		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2933		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2934	c.dcaen_to_eqsize =
2935	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2936		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2937		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2938		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2939	c.eqaddr = htobe64(eq->ba);
2940
2941	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2942	if (rc != 0) {
2943		device_printf(pi->dev,
2944		    "failed to create egress queue for TCP offload: %d\n", rc);
2945		return (rc);
2946	}
2947	eq->flags |= EQ_ALLOCATED;
2948
2949	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2950	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2951	if (cntxt_id >= sc->sge.neq)
2952	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2953		cntxt_id, sc->sge.neq - 1);
2954	sc->sge.eqmap[cntxt_id] = eq;
2955
2956	return (rc);
2957}
2958#endif
2959
2960static int
2961alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2962{
2963	int rc;
2964	size_t len;
2965
2966	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2967
2968	len = eq->qsize * EQ_ESIZE;
2969	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2970	    &eq->ba, (void **)&eq->desc);
2971	if (rc)
2972		return (rc);
2973
2974	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2975	eq->spg = (void *)&eq->desc[eq->cap];
2976	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2977	eq->pidx = eq->cidx = 0;
2978	eq->doorbells = sc->doorbells;
2979
2980	switch (eq->flags & EQ_TYPEMASK) {
2981	case EQ_CTRL:
2982		rc = ctrl_eq_alloc(sc, eq);
2983		break;
2984
2985	case EQ_ETH:
2986		rc = eth_eq_alloc(sc, pi, eq);
2987		break;
2988
2989#ifdef TCP_OFFLOAD
2990	case EQ_OFLD:
2991		rc = ofld_eq_alloc(sc, pi, eq);
2992		break;
2993#endif
2994
2995	default:
2996		panic("%s: invalid eq type %d.", __func__,
2997		    eq->flags & EQ_TYPEMASK);
2998	}
2999	if (rc != 0) {
3000		device_printf(sc->dev,
3001		    "failed to allocate egress queue(%d): %d\n",
3002		    eq->flags & EQ_TYPEMASK, rc);
3003	}
3004
3005	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
3006
3007	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3008	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3009	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3010		uint32_t s_qpp = sc->sge.eq_s_qpp;
3011		uint32_t mask = (1 << s_qpp) - 1;
3012		volatile uint8_t *udb;
3013
3014		udb = sc->udbs_base + UDBS_DB_OFFSET;
3015		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3016		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3017		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3018	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3019		else {
3020			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3021			eq->udb_qid = 0;
3022		}
3023		eq->udb = (volatile void *)udb;
3024	}
3025
3026	return (rc);
3027}
3028
3029static int
3030free_eq(struct adapter *sc, struct sge_eq *eq)
3031{
3032	int rc;
3033
3034	if (eq->flags & EQ_ALLOCATED) {
3035		switch (eq->flags & EQ_TYPEMASK) {
3036		case EQ_CTRL:
3037			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3038			    eq->cntxt_id);
3039			break;
3040
3041		case EQ_ETH:
3042			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3043			    eq->cntxt_id);
3044			break;
3045
3046#ifdef TCP_OFFLOAD
3047		case EQ_OFLD:
3048			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3049			    eq->cntxt_id);
3050			break;
3051#endif
3052
3053		default:
3054			panic("%s: invalid eq type %d.", __func__,
3055			    eq->flags & EQ_TYPEMASK);
3056		}
3057		if (rc != 0) {
3058			device_printf(sc->dev,
3059			    "failed to free egress queue (%d): %d\n",
3060			    eq->flags & EQ_TYPEMASK, rc);
3061			return (rc);
3062		}
3063		eq->flags &= ~EQ_ALLOCATED;
3064	}
3065
3066	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3067
3068	if (mtx_initialized(&eq->eq_lock))
3069		mtx_destroy(&eq->eq_lock);
3070
3071	bzero(eq, sizeof(*eq));
3072	return (0);
3073}
3074
3075static int
3076alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3077    struct sysctl_oid *oid)
3078{
3079	int rc;
3080	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3081	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3082
3083	rc = alloc_eq(sc, pi, &wrq->eq);
3084	if (rc)
3085		return (rc);
3086
3087	wrq->adapter = sc;
3088	STAILQ_INIT(&wrq->wr_list);
3089
3090	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3091	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3092	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3093	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3094	    "consumer index");
3095	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3096	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3097	    "producer index");
3098	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3099	    &wrq->tx_wrs, "# of work requests");
3100	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3101	    &wrq->no_desc, 0,
3102	    "# of times queue ran out of hardware descriptors");
3103	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3104	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3105
3106	return (rc);
3107}
3108
3109static int
3110free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3111{
3112	int rc;
3113
3114	rc = free_eq(sc, &wrq->eq);
3115	if (rc)
3116		return (rc);
3117
3118	bzero(wrq, sizeof(*wrq));
3119	return (0);
3120}
3121
3122static int
3123alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3124    struct sysctl_oid *oid)
3125{
3126	int rc;
3127	struct adapter *sc = pi->adapter;
3128	struct sge_eq *eq = &txq->eq;
3129	char name[16];
3130	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3131
3132	rc = alloc_eq(sc, pi, eq);
3133	if (rc)
3134		return (rc);
3135
3136	txq->ifp = pi->ifp;
3137
3138	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3139	    M_ZERO | M_WAITOK);
3140	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3141
3142	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3143	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3144	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3145	if (rc != 0) {
3146		device_printf(sc->dev,
3147		    "failed to create tx DMA tag: %d\n", rc);
3148		return (rc);
3149	}
3150
3151	/*
3152	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3153	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3154	 * sized for the worst case.
3155	 */
3156	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3157	    M_WAITOK);
3158	if (rc != 0) {
3159		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3160		return (rc);
3161	}
3162
3163	snprintf(name, sizeof(name), "%d", idx);
3164	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3165	    NULL, "tx queue");
3166	children = SYSCTL_CHILDREN(oid);
3167
3168	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3169	    &eq->cntxt_id, 0, "SGE context id of the queue");
3170	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3171	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3172	    "consumer index");
3173	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3174	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3175	    "producer index");
3176
3177	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3178	    &txq->txcsum, "# of times hardware assisted with checksum");
3179	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3180	    CTLFLAG_RD, &txq->vlan_insertion,
3181	    "# of times hardware inserted 802.1Q tag");
3182	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3183	    &txq->tso_wrs, "# of TSO work requests");
3184	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3185	    &txq->imm_wrs, "# of work requests with immediate data");
3186	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3187	    &txq->sgl_wrs, "# of work requests with direct SGL");
3188	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3189	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3190	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3191	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3192	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3193	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3194
3195	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3196	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3197	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3198	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3199	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3200	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3201	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3202	    &eq->egr_update, 0, "egress update notifications from the SGE");
3203	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3204	    &eq->unstalled, 0, "# of times txq recovered after stall");
3205
3206	return (rc);
3207}
3208
3209static int
3210free_txq(struct port_info *pi, struct sge_txq *txq)
3211{
3212	int rc;
3213	struct adapter *sc = pi->adapter;
3214	struct sge_eq *eq = &txq->eq;
3215
3216	rc = free_eq(sc, eq);
3217	if (rc)
3218		return (rc);
3219
3220	free(txq->sdesc, M_CXGBE);
3221
3222	if (txq->txmaps.maps)
3223		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3224
3225	buf_ring_free(txq->br, M_CXGBE);
3226
3227	if (txq->tx_tag)
3228		bus_dma_tag_destroy(txq->tx_tag);
3229
3230	bzero(txq, sizeof(*txq));
3231	return (0);
3232}
3233
3234static void
3235oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3236{
3237	bus_addr_t *ba = arg;
3238
3239	KASSERT(nseg == 1,
3240	    ("%s meant for single segment mappings only.", __func__));
3241
3242	*ba = error ? 0 : segs->ds_addr;
3243}
3244
3245static inline void
3246ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3247{
3248	uint32_t n, v;
3249
3250	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3251	MPASS(n > 0);
3252
3253	wmb();
3254	v = fl->dbval | V_PIDX(n);
3255	if (fl->udb)
3256		*fl->udb = htole32(v);
3257	else
3258		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3259	IDXINCR(fl->dbidx, n, fl->sidx);
3260}
3261
3262/*
3263 * Fills up the freelist by allocating upto 'n' buffers.  Buffers that are
3264 * recycled do not count towards this allocation budget.
3265 *
3266 * Returns non-zero to indicate that this freelist should be added to the list
3267 * of starving freelists.
3268 */
3269static int
3270refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3271{
3272	__be64 *d;
3273	struct fl_sdesc *sd;
3274	uintptr_t pa;
3275	caddr_t cl;
3276	struct cluster_layout *cll;
3277	struct sw_zone_info *swz;
3278	struct cluster_metadata *clm;
3279	uint16_t max_pidx;
3280	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3281
3282	FL_LOCK_ASSERT_OWNED(fl);
3283
3284	/*
3285	 * We always stop at the begining of the hardware descriptor that's just
3286	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3287	 * which would mean an empty freelist to the chip.
3288	 */
3289	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3290	if (fl->pidx == max_pidx * 8)
3291		return (0);
3292
3293	d = &fl->desc[fl->pidx];
3294	sd = &fl->sdesc[fl->pidx];
3295	cll = &fl->cll_def;	/* default layout */
3296	swz = &sc->sge.sw_zone_info[cll->zidx];
3297
3298	while (n > 0) {
3299
3300		if (sd->cl != NULL) {
3301
3302			if (sd->nmbuf == 0) {
3303				/*
3304				 * Fast recycle without involving any atomics on
3305				 * the cluster's metadata (if the cluster has
3306				 * metadata).  This happens when all frames
3307				 * received in the cluster were small enough to
3308				 * fit within a single mbuf each.
3309				 */
3310				fl->cl_fast_recycled++;
3311#ifdef INVARIANTS
3312				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3313				if (clm != NULL)
3314					MPASS(clm->refcount == 1);
3315#endif
3316				goto recycled_fast;
3317			}
3318
3319			/*
3320			 * Cluster is guaranteed to have metadata.  Clusters
3321			 * without metadata always take the fast recycle path
3322			 * when they're recycled.
3323			 */
3324			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3325			MPASS(clm != NULL);
3326
3327			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3328				fl->cl_recycled++;
3329				counter_u64_add(extfree_rels, 1);
3330				goto recycled;
3331			}
3332			sd->cl = NULL;	/* gave up my reference */
3333		}
3334		MPASS(sd->cl == NULL);
3335alloc:
3336		cl = uma_zalloc(swz->zone, M_NOWAIT);
3337		if (__predict_false(cl == NULL)) {
3338			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3339			    fl->cll_def.zidx == fl->cll_alt.zidx)
3340				break;
3341
3342			/* fall back to the safe zone */
3343			cll = &fl->cll_alt;
3344			swz = &sc->sge.sw_zone_info[cll->zidx];
3345			goto alloc;
3346		}
3347		fl->cl_allocated++;
3348		n--;
3349
3350		pa = pmap_kextract((vm_offset_t)cl);
3351		pa += cll->region1;
3352		sd->cl = cl;
3353		sd->cll = *cll;
3354		*d = htobe64(pa | cll->hwidx);
3355		clm = cl_metadata(sc, fl, cll, cl);
3356		if (clm != NULL) {
3357recycled:
3358#ifdef INVARIANTS
3359			clm->sd = sd;
3360#endif
3361			clm->refcount = 1;
3362		}
3363		sd->nmbuf = 0;
3364recycled_fast:
3365		d++;
3366		sd++;
3367		if (__predict_false(++fl->pidx % 8 == 0)) {
3368			uint16_t pidx = fl->pidx / 8;
3369
3370			if (__predict_false(pidx == fl->sidx)) {
3371				fl->pidx = 0;
3372				pidx = 0;
3373				sd = fl->sdesc;
3374				d = fl->desc;
3375			}
3376			if (pidx == max_pidx)
3377				break;
3378
3379			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3380				ring_fl_db(sc, fl);
3381		}
3382	}
3383
3384	if (fl->pidx / 8 != fl->dbidx)
3385		ring_fl_db(sc, fl);
3386
3387	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3388}
3389
3390/*
3391 * Attempt to refill all starving freelists.
3392 */
3393static void
3394refill_sfl(void *arg)
3395{
3396	struct adapter *sc = arg;
3397	struct sge_fl *fl, *fl_temp;
3398
3399	mtx_lock(&sc->sfl_lock);
3400	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3401		FL_LOCK(fl);
3402		refill_fl(sc, fl, 64);
3403		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3404			TAILQ_REMOVE(&sc->sfl, fl, link);
3405			fl->flags &= ~FL_STARVING;
3406		}
3407		FL_UNLOCK(fl);
3408	}
3409
3410	if (!TAILQ_EMPTY(&sc->sfl))
3411		callout_schedule(&sc->sfl_callout, hz / 5);
3412	mtx_unlock(&sc->sfl_lock);
3413}
3414
3415static int
3416alloc_fl_sdesc(struct sge_fl *fl)
3417{
3418
3419	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3420	    M_ZERO | M_WAITOK);
3421
3422	return (0);
3423}
3424
3425static void
3426free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3427{
3428	struct fl_sdesc *sd;
3429	struct cluster_metadata *clm;
3430	struct cluster_layout *cll;
3431	int i;
3432
3433	sd = fl->sdesc;
3434	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3435		if (sd->cl == NULL)
3436			continue;
3437
3438		cll = &sd->cll;
3439		clm = cl_metadata(sc, fl, cll, sd->cl);
3440		if (sd->nmbuf == 0)
3441			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3442		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3443			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3444			counter_u64_add(extfree_rels, 1);
3445		}
3446		sd->cl = NULL;
3447	}
3448
3449	free(fl->sdesc, M_CXGBE);
3450	fl->sdesc = NULL;
3451}
3452
3453int
3454t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3455    int flags)
3456{
3457	struct tx_map *txm;
3458	int i, rc;
3459
3460	txmaps->map_total = txmaps->map_avail = count;
3461	txmaps->map_cidx = txmaps->map_pidx = 0;
3462
3463	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3464	    M_ZERO | flags);
3465
3466	txm = txmaps->maps;
3467	for (i = 0; i < count; i++, txm++) {
3468		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3469		if (rc != 0)
3470			goto failed;
3471	}
3472
3473	return (0);
3474failed:
3475	while (--i >= 0) {
3476		txm--;
3477		bus_dmamap_destroy(tx_tag, txm->map);
3478	}
3479	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3480
3481	free(txmaps->maps, M_CXGBE);
3482	txmaps->maps = NULL;
3483
3484	return (rc);
3485}
3486
3487void
3488t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3489{
3490	struct tx_map *txm;
3491	int i;
3492
3493	txm = txmaps->maps;
3494	for (i = 0; i < txmaps->map_total; i++, txm++) {
3495
3496		if (txm->m) {
3497			bus_dmamap_unload(tx_tag, txm->map);
3498			m_freem(txm->m);
3499			txm->m = NULL;
3500		}
3501
3502		bus_dmamap_destroy(tx_tag, txm->map);
3503	}
3504
3505	free(txmaps->maps, M_CXGBE);
3506	txmaps->maps = NULL;
3507}
3508
3509/*
3510 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3511 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3512 * of immediate data.
3513 */
3514#define IMM_LEN ( \
3515      2 * EQ_ESIZE \
3516    - sizeof(struct fw_eth_tx_pkt_wr) \
3517    - sizeof(struct cpl_tx_pkt_core))
3518
3519/*
3520 * Returns non-zero on failure, no need to cleanup anything in that case.
3521 *
3522 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3523 * if the resulting chain still won't fit in a tx descriptor.
3524 *
3525 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3526 * does not have the TCP header in it.
3527 */
3528static int
3529get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3530    int sgl_only)
3531{
3532	struct mbuf *m = *fp;
3533	struct tx_maps *txmaps;
3534	struct tx_map *txm;
3535	int rc, defragged = 0, n;
3536
3537	TXQ_LOCK_ASSERT_OWNED(txq);
3538
3539	if (m->m_pkthdr.tso_segsz)
3540		sgl_only = 1;	/* Do not allow immediate data with LSO */
3541
3542start:	sgl->nsegs = 0;
3543
3544	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3545		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3546
3547	txmaps = &txq->txmaps;
3548	if (txmaps->map_avail == 0) {
3549		txq->no_dmamap++;
3550		return (ENOMEM);
3551	}
3552	txm = &txmaps->maps[txmaps->map_pidx];
3553
3554	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3555		*fp = m_pullup(m, 50);
3556		m = *fp;
3557		if (m == NULL)
3558			return (ENOBUFS);
3559	}
3560
3561	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3562	    &sgl->nsegs, BUS_DMA_NOWAIT);
3563	if (rc == EFBIG && defragged == 0) {
3564		m = m_defrag(m, M_NOWAIT);
3565		if (m == NULL)
3566			return (EFBIG);
3567
3568		defragged = 1;
3569		*fp = m;
3570		goto start;
3571	}
3572	if (rc != 0)
3573		return (rc);
3574
3575	txm->m = m;
3576	txmaps->map_avail--;
3577	if (++txmaps->map_pidx == txmaps->map_total)
3578		txmaps->map_pidx = 0;
3579
3580	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3581	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3582
3583	/*
3584	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3585	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3586	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3587	 * then len1 must be set to 0.
3588	 */
3589	n = sgl->nsegs - 1;
3590	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3591
3592	return (0);
3593}
3594
3595
3596/*
3597 * Releases all the txq resources used up in the specified sgl.
3598 */
3599static int
3600free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3601{
3602	struct tx_maps *txmaps;
3603	struct tx_map *txm;
3604
3605	TXQ_LOCK_ASSERT_OWNED(txq);
3606
3607	if (sgl->nsegs == 0)
3608		return (0);	/* didn't use any map */
3609
3610	txmaps = &txq->txmaps;
3611
3612	/* 1 pkt uses exactly 1 map, back it out */
3613
3614	txmaps->map_avail++;
3615	if (txmaps->map_pidx > 0)
3616		txmaps->map_pidx--;
3617	else
3618		txmaps->map_pidx = txmaps->map_total - 1;
3619
3620	txm = &txmaps->maps[txmaps->map_pidx];
3621	bus_dmamap_unload(txq->tx_tag, txm->map);
3622	txm->m = NULL;
3623
3624	return (0);
3625}
3626
3627static int
3628write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3629    struct sgl *sgl)
3630{
3631	struct sge_eq *eq = &txq->eq;
3632	struct fw_eth_tx_pkt_wr *wr;
3633	struct cpl_tx_pkt_core *cpl;
3634	uint32_t ctrl;	/* used in many unrelated places */
3635	uint64_t ctrl1;
3636	int nflits, ndesc, pktlen;
3637	struct tx_sdesc *txsd;
3638	caddr_t dst;
3639
3640	TXQ_LOCK_ASSERT_OWNED(txq);
3641
3642	pktlen = m->m_pkthdr.len;
3643
3644	/*
3645	 * Do we have enough flits to send this frame out?
3646	 */
3647	ctrl = sizeof(struct cpl_tx_pkt_core);
3648	if (m->m_pkthdr.tso_segsz) {
3649		nflits = TXPKT_LSO_WR_HDR;
3650		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3651	} else
3652		nflits = TXPKT_WR_HDR;
3653	if (sgl->nsegs > 0)
3654		nflits += sgl->nflits;
3655	else {
3656		nflits += howmany(pktlen, 8);
3657		ctrl += pktlen;
3658	}
3659	ndesc = howmany(nflits, 8);
3660	if (ndesc > eq->avail)
3661		return (ENOMEM);
3662
3663	/* Firmware work request header */
3664	wr = (void *)&eq->desc[eq->pidx];
3665	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3666	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3667	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3668	if (eq->avail == ndesc) {
3669		if (!(eq->flags & EQ_CRFLUSHED)) {
3670			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3671			eq->flags |= EQ_CRFLUSHED;
3672		}
3673		eq->flags |= EQ_STALLED;
3674	}
3675
3676	wr->equiq_to_len16 = htobe32(ctrl);
3677	wr->r3 = 0;
3678
3679	if (m->m_pkthdr.tso_segsz) {
3680		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3681		struct ether_header *eh;
3682		void *l3hdr;
3683#if defined(INET) || defined(INET6)
3684		struct tcphdr *tcp;
3685#endif
3686		uint16_t eh_type;
3687
3688		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3689		    F_LSO_LAST_SLICE;
3690
3691		eh = mtod(m, struct ether_header *);
3692		eh_type = ntohs(eh->ether_type);
3693		if (eh_type == ETHERTYPE_VLAN) {
3694			struct ether_vlan_header *evh = (void *)eh;
3695
3696			ctrl |= V_LSO_ETHHDR_LEN(1);
3697			l3hdr = evh + 1;
3698			eh_type = ntohs(evh->evl_proto);
3699		} else
3700			l3hdr = eh + 1;
3701
3702		switch (eh_type) {
3703#ifdef INET6
3704		case ETHERTYPE_IPV6:
3705		{
3706			struct ip6_hdr *ip6 = l3hdr;
3707
3708			/*
3709			 * XXX-BZ For now we do not pretend to support
3710			 * IPv6 extension headers.
3711			 */
3712			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3713			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3714			tcp = (struct tcphdr *)(ip6 + 1);
3715			ctrl |= F_LSO_IPV6;
3716			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3717			    V_LSO_TCPHDR_LEN(tcp->th_off);
3718			break;
3719		}
3720#endif
3721#ifdef INET
3722		case ETHERTYPE_IP:
3723		{
3724			struct ip *ip = l3hdr;
3725
3726			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3727			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3728			    V_LSO_TCPHDR_LEN(tcp->th_off);
3729			break;
3730		}
3731#endif
3732		default:
3733			panic("%s: CSUM_TSO but no supported IP version "
3734			    "(0x%04x)", __func__, eh_type);
3735		}
3736
3737		lso->lso_ctrl = htobe32(ctrl);
3738		lso->ipid_ofst = htobe16(0);
3739		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3740		lso->seqno_offset = htobe32(0);
3741		lso->len = htobe32(pktlen);
3742
3743		cpl = (void *)(lso + 1);
3744
3745		txq->tso_wrs++;
3746	} else
3747		cpl = (void *)(wr + 1);
3748
3749	/* Checksum offload */
3750	ctrl1 = 0;
3751	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3752		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3753	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3754	    CSUM_TCP_IPV6 | CSUM_TSO)))
3755		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3756	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3757	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3758		txq->txcsum++;	/* some hardware assistance provided */
3759
3760	/* VLAN tag insertion */
3761	if (m->m_flags & M_VLANTAG) {
3762		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3763		txq->vlan_insertion++;
3764	}
3765
3766	/* CPL header */
3767	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3768	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3769	cpl->pack = 0;
3770	cpl->len = htobe16(pktlen);
3771	cpl->ctrl1 = htobe64(ctrl1);
3772
3773	/* Software descriptor */
3774	txsd = &txq->sdesc[eq->pidx];
3775	txsd->desc_used = ndesc;
3776
3777	eq->pending += ndesc;
3778	eq->avail -= ndesc;
3779	eq->pidx += ndesc;
3780	if (eq->pidx >= eq->cap)
3781		eq->pidx -= eq->cap;
3782
3783	/* SGL */
3784	dst = (void *)(cpl + 1);
3785	if (sgl->nsegs > 0) {
3786		txsd->credits = 1;
3787		txq->sgl_wrs++;
3788		write_sgl_to_txd(eq, sgl, &dst);
3789	} else {
3790		txsd->credits = 0;
3791		txq->imm_wrs++;
3792		for (; m; m = m->m_next) {
3793			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3794#ifdef INVARIANTS
3795			pktlen -= m->m_len;
3796#endif
3797		}
3798#ifdef INVARIANTS
3799		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3800#endif
3801
3802	}
3803
3804	txq->txpkt_wrs++;
3805	return (0);
3806}
3807
3808/*
3809 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3810 * request.  It has either been folded into txpkts or txpkts was flushed and m
3811 * has started a new coalesced work request (as the first frame in a fresh
3812 * txpkts).
3813 *
3814 * Returns non-zero to indicate a failure - caller is responsible for
3815 * transmitting m, if there was anything in txpkts it has been flushed.
3816 */
3817static int
3818add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3819    struct mbuf *m, struct sgl *sgl)
3820{
3821	struct sge_eq *eq = &txq->eq;
3822	int can_coalesce;
3823	struct tx_sdesc *txsd;
3824	int flits;
3825
3826	TXQ_LOCK_ASSERT_OWNED(txq);
3827
3828	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3829
3830	if (txpkts->npkt > 0) {
3831		flits = TXPKTS_PKT_HDR + sgl->nflits;
3832		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3833		    txpkts->nflits + flits <= TX_WR_FLITS &&
3834		    txpkts->nflits + flits <= eq->avail * 8 &&
3835		    txpkts->plen + m->m_pkthdr.len < 65536;
3836
3837		if (can_coalesce) {
3838			txpkts->npkt++;
3839			txpkts->nflits += flits;
3840			txpkts->plen += m->m_pkthdr.len;
3841
3842			txsd = &txq->sdesc[eq->pidx];
3843			txsd->credits++;
3844
3845			return (0);
3846		}
3847
3848		/*
3849		 * Couldn't coalesce m into txpkts.  The first order of business
3850		 * is to send txpkts on its way.  Then we'll revisit m.
3851		 */
3852		write_txpkts_wr(txq, txpkts);
3853	}
3854
3855	/*
3856	 * Check if we can start a new coalesced tx work request with m as
3857	 * the first packet in it.
3858	 */
3859
3860	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3861
3862	flits = TXPKTS_WR_HDR + sgl->nflits;
3863	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3864	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3865
3866	if (can_coalesce == 0)
3867		return (EINVAL);
3868
3869	/*
3870	 * Start a fresh coalesced tx WR with m as the first frame in it.
3871	 */
3872	txpkts->npkt = 1;
3873	txpkts->nflits = flits;
3874	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3875	txpkts->plen = m->m_pkthdr.len;
3876
3877	txsd = &txq->sdesc[eq->pidx];
3878	txsd->credits = 1;
3879
3880	return (0);
3881}
3882
3883/*
3884 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3885 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3886 * coalescing only if sufficient hardware descriptors are available.
3887 */
3888static void
3889write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3890{
3891	struct sge_eq *eq = &txq->eq;
3892	struct fw_eth_tx_pkts_wr *wr;
3893	struct tx_sdesc *txsd;
3894	uint32_t ctrl;
3895	int ndesc;
3896
3897	TXQ_LOCK_ASSERT_OWNED(txq);
3898
3899	ndesc = howmany(txpkts->nflits, 8);
3900
3901	wr = (void *)&eq->desc[eq->pidx];
3902	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3903	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3904	if (eq->avail == ndesc) {
3905		if (!(eq->flags & EQ_CRFLUSHED)) {
3906			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3907			eq->flags |= EQ_CRFLUSHED;
3908		}
3909		eq->flags |= EQ_STALLED;
3910	}
3911	wr->equiq_to_len16 = htobe32(ctrl);
3912	wr->plen = htobe16(txpkts->plen);
3913	wr->npkt = txpkts->npkt;
3914	wr->r3 = wr->type = 0;
3915
3916	/* Everything else already written */
3917
3918	txsd = &txq->sdesc[eq->pidx];
3919	txsd->desc_used = ndesc;
3920
3921	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3922
3923	eq->pending += ndesc;
3924	eq->avail -= ndesc;
3925	eq->pidx += ndesc;
3926	if (eq->pidx >= eq->cap)
3927		eq->pidx -= eq->cap;
3928
3929	txq->txpkts_pkts += txpkts->npkt;
3930	txq->txpkts_wrs++;
3931	txpkts->npkt = 0;	/* emptied */
3932}
3933
3934static inline void
3935write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3936    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3937{
3938	struct ulp_txpkt *ulpmc;
3939	struct ulptx_idata *ulpsc;
3940	struct cpl_tx_pkt_core *cpl;
3941	struct sge_eq *eq = &txq->eq;
3942	uintptr_t flitp, start, end;
3943	uint64_t ctrl;
3944	caddr_t dst;
3945
3946	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3947
3948	start = (uintptr_t)eq->desc;
3949	end = (uintptr_t)eq->spg;
3950
3951	/* Checksum offload */
3952	ctrl = 0;
3953	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3954		ctrl |= F_TXPKT_IPCSUM_DIS;
3955	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3956	    CSUM_TCP_IPV6 | CSUM_TSO)))
3957		ctrl |= F_TXPKT_L4CSUM_DIS;
3958	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3959	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3960		txq->txcsum++;	/* some hardware assistance provided */
3961
3962	/* VLAN tag insertion */
3963	if (m->m_flags & M_VLANTAG) {
3964		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3965		txq->vlan_insertion++;
3966	}
3967
3968	/*
3969	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3970	 * is required by the firmware/hardware).  It follows that flitp cannot
3971	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3972	 * bytes each), and that it can not wrap around in the middle of the
3973	 * cpl_tx_pkt_core either.
3974	 */
3975	flitp = (uintptr_t)txpkts->flitp;
3976	KASSERT((flitp & 0xf) == 0,
3977	    ("%s: last SGL did not end at 16 byte boundary: %p",
3978	    __func__, txpkts->flitp));
3979
3980	/* ULP master command */
3981	ulpmc = (void *)flitp;
3982	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3983	    V_ULP_TXPKT_FID(eq->iqid));
3984	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3985	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3986
3987	/* ULP subcommand */
3988	ulpsc = (void *)(ulpmc + 1);
3989	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3990	    F_ULP_TX_SC_MORE);
3991	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3992
3993	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3994	if (flitp == end)
3995		flitp = start;
3996
3997	/* CPL_TX_PKT */
3998	cpl = (void *)flitp;
3999	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
4000	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
4001	cpl->pack = 0;
4002	cpl->len = htobe16(m->m_pkthdr.len);
4003	cpl->ctrl1 = htobe64(ctrl);
4004
4005	flitp += sizeof(*cpl);
4006	if (flitp == end)
4007		flitp = start;
4008
4009	/* SGL for this frame */
4010	dst = (caddr_t)flitp;
4011	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
4012	txpkts->flitp = (void *)dst;
4013
4014	KASSERT(((uintptr_t)dst & 0xf) == 0,
4015	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
4016}
4017
4018/*
4019 * If the SGL ends on an address that is not 16 byte aligned, this function will
4020 * add a 0 filled flit at the end.  It returns 1 in that case.
4021 */
4022static int
4023write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
4024{
4025	__be64 *flitp, *end;
4026	struct ulptx_sgl *usgl;
4027	bus_dma_segment_t *seg;
4028	int i, padded;
4029
4030	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
4031	    ("%s: bad SGL - nsegs=%d, nflits=%d",
4032	    __func__, sgl->nsegs, sgl->nflits));
4033
4034	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4035	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4036
4037	flitp = (__be64 *)(*to);
4038	end = flitp + sgl->nflits;
4039	seg = &sgl->seg[0];
4040	usgl = (void *)flitp;
4041
4042	/*
4043	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4044	 * ring, so we're at least 16 bytes away from the status page.  There is
4045	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4046	 */
4047
4048	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4049	    V_ULPTX_NSGE(sgl->nsegs));
4050	usgl->len0 = htobe32(seg->ds_len);
4051	usgl->addr0 = htobe64(seg->ds_addr);
4052	seg++;
4053
4054	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
4055
4056		/* Won't wrap around at all */
4057
4058		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
4059			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
4060			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
4061		}
4062		if (i & 1)
4063			usgl->sge[i / 2].len[1] = htobe32(0);
4064	} else {
4065
4066		/* Will wrap somewhere in the rest of the SGL */
4067
4068		/* 2 flits already written, write the rest flit by flit */
4069		flitp = (void *)(usgl + 1);
4070		for (i = 0; i < sgl->nflits - 2; i++) {
4071			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4072				flitp = (void *)eq->desc;
4073			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4074		}
4075		end = flitp;
4076	}
4077
4078	if ((uintptr_t)end & 0xf) {
4079		*(uint64_t *)end = 0;
4080		end++;
4081		padded = 1;
4082	} else
4083		padded = 0;
4084
4085	if ((uintptr_t)end == (uintptr_t)eq->spg)
4086		*to = (void *)eq->desc;
4087	else
4088		*to = (void *)end;
4089
4090	return (padded);
4091}
4092
4093static inline void
4094copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4095{
4096	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4097		bcopy(from, *to, len);
4098		(*to) += len;
4099	} else {
4100		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4101
4102		bcopy(from, *to, portion);
4103		from += portion;
4104		portion = len - portion;	/* remaining */
4105		bcopy(from, (void *)eq->desc, portion);
4106		(*to) = (caddr_t)eq->desc + portion;
4107	}
4108}
4109
4110static inline void
4111ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4112{
4113	u_int db, pending;
4114
4115	db = eq->doorbells;
4116	pending = eq->pending;
4117	if (pending > 1)
4118		clrbit(&db, DOORBELL_WCWR);
4119	eq->pending = 0;
4120	wmb();
4121
4122	switch (ffs(db) - 1) {
4123	case DOORBELL_UDB:
4124		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4125		return;
4126
4127	case DOORBELL_WCWR: {
4128		volatile uint64_t *dst, *src;
4129		int i;
4130
4131		/*
4132		 * Queues whose 128B doorbell segment fits in the page do not
4133		 * use relative qid (udb_qid is always 0).  Only queues with
4134		 * doorbell segments can do WCWR.
4135		 */
4136		KASSERT(eq->udb_qid == 0 && pending == 1,
4137		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4138		    __func__, eq->doorbells, pending, eq->pidx, eq));
4139
4140		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4141		    UDBS_DB_OFFSET);
4142		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4143		src = (void *)&eq->desc[i];
4144		while (src != (void *)&eq->desc[i + 1])
4145			*dst++ = *src++;
4146		wmb();
4147		return;
4148	}
4149
4150	case DOORBELL_UDBWC:
4151		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4152		wmb();
4153		return;
4154
4155	case DOORBELL_KDB:
4156		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4157		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4158		return;
4159	}
4160}
4161
4162static inline int
4163reclaimable(struct sge_eq *eq)
4164{
4165	unsigned int cidx;
4166
4167	cidx = eq->spg->cidx;	/* stable snapshot */
4168	cidx = be16toh(cidx);
4169
4170	if (cidx >= eq->cidx)
4171		return (cidx - eq->cidx);
4172	else
4173		return (cidx + eq->cap - eq->cidx);
4174}
4175
4176/*
4177 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4178 * many as possible but stop when there are around "n" mbufs to free.
4179 *
4180 * The actual number reclaimed is provided as the return value.
4181 */
4182static int
4183reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4184{
4185	struct tx_sdesc *txsd;
4186	struct tx_maps *txmaps;
4187	struct tx_map *txm;
4188	unsigned int reclaimed, maps;
4189	struct sge_eq *eq = &txq->eq;
4190
4191	TXQ_LOCK_ASSERT_OWNED(txq);
4192
4193	if (can_reclaim == 0)
4194		can_reclaim = reclaimable(eq);
4195
4196	maps = reclaimed = 0;
4197	while (can_reclaim && maps < n) {
4198		int ndesc;
4199
4200		txsd = &txq->sdesc[eq->cidx];
4201		ndesc = txsd->desc_used;
4202
4203		/* Firmware doesn't return "partial" credits. */
4204		KASSERT(can_reclaim >= ndesc,
4205		    ("%s: unexpected number of credits: %d, %d",
4206		    __func__, can_reclaim, ndesc));
4207
4208		maps += txsd->credits;
4209
4210		reclaimed += ndesc;
4211		can_reclaim -= ndesc;
4212
4213		eq->cidx += ndesc;
4214		if (__predict_false(eq->cidx >= eq->cap))
4215			eq->cidx -= eq->cap;
4216	}
4217
4218	txmaps = &txq->txmaps;
4219	txm = &txmaps->maps[txmaps->map_cidx];
4220	if (maps)
4221		prefetch(txm->m);
4222
4223	eq->avail += reclaimed;
4224	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4225	    ("%s: too many descriptors available", __func__));
4226
4227	txmaps->map_avail += maps;
4228	KASSERT(txmaps->map_avail <= txmaps->map_total,
4229	    ("%s: too many maps available", __func__));
4230
4231	while (maps--) {
4232		struct tx_map *next;
4233
4234		next = txm + 1;
4235		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4236			next = txmaps->maps;
4237		prefetch(next->m);
4238
4239		bus_dmamap_unload(txq->tx_tag, txm->map);
4240		m_freem(txm->m);
4241		txm->m = NULL;
4242
4243		txm = next;
4244		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4245			txmaps->map_cidx = 0;
4246	}
4247
4248	return (reclaimed);
4249}
4250
4251static void
4252write_eqflush_wr(struct sge_eq *eq)
4253{
4254	struct fw_eq_flush_wr *wr;
4255
4256	EQ_LOCK_ASSERT_OWNED(eq);
4257	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4258	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4259
4260	wr = (void *)&eq->desc[eq->pidx];
4261	bzero(wr, sizeof(*wr));
4262	wr->opcode = FW_EQ_FLUSH_WR;
4263	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4264	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4265
4266	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4267	eq->pending++;
4268	eq->avail--;
4269	if (++eq->pidx == eq->cap)
4270		eq->pidx = 0;
4271}
4272
4273static __be64
4274get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4275{
4276	int i = (idx / 3) * 2;
4277
4278	switch (idx % 3) {
4279	case 0: {
4280		__be64 rc;
4281
4282		rc = htobe32(sgl[i].ds_len);
4283		if (i + 1 < nsegs)
4284			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4285
4286		return (rc);
4287	}
4288	case 1:
4289		return htobe64(sgl[i].ds_addr);
4290	case 2:
4291		return htobe64(sgl[i + 1].ds_addr);
4292	}
4293
4294	return (0);
4295}
4296
4297static void
4298find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4299{
4300	int8_t zidx, hwidx, idx;
4301	uint16_t region1, region3;
4302	int spare, spare_needed, n;
4303	struct sw_zone_info *swz;
4304	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4305
4306	/*
4307	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4308	 * large enough for the max payload and cluster metadata.  Otherwise
4309	 * settle for the largest bufsize that leaves enough room in the cluster
4310	 * for metadata.
4311	 *
4312	 * Without buffer packing: Look for the smallest zone which has a
4313	 * bufsize large enough for the max payload.  Settle for the largest
4314	 * bufsize available if there's nothing big enough for max payload.
4315	 */
4316	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4317	swz = &sc->sge.sw_zone_info[0];
4318	hwidx = -1;
4319	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4320		if (swz->size > largest_rx_cluster) {
4321			if (__predict_true(hwidx != -1))
4322				break;
4323
4324			/*
4325			 * This is a misconfiguration.  largest_rx_cluster is
4326			 * preventing us from finding a refill source.  See
4327			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4328			 */
4329			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4330			    " refill source for fl %p (dma %u).  Ignored.\n",
4331			    largest_rx_cluster, fl, maxp);
4332		}
4333		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4334			hwb = &hwb_list[idx];
4335			spare = swz->size - hwb->size;
4336			if (spare < spare_needed)
4337				continue;
4338
4339			hwidx = idx;		/* best option so far */
4340			if (hwb->size >= maxp) {
4341
4342				if ((fl->flags & FL_BUF_PACKING) == 0)
4343					goto done; /* stop looking (not packing) */
4344
4345				if (swz->size >= safest_rx_cluster)
4346					goto done; /* stop looking (packing) */
4347			}
4348			break;		/* keep looking, next zone */
4349		}
4350	}
4351done:
4352	/* A usable hwidx has been located. */
4353	MPASS(hwidx != -1);
4354	hwb = &hwb_list[hwidx];
4355	zidx = hwb->zidx;
4356	swz = &sc->sge.sw_zone_info[zidx];
4357	region1 = 0;
4358	region3 = swz->size - hwb->size;
4359
4360	/*
4361	 * Stay within this zone and see if there is a better match when mbuf
4362	 * inlining is allowed.  Remember that the hwidx's are sorted in
4363	 * decreasing order of size (so in increasing order of spare area).
4364	 */
4365	for (idx = hwidx; idx != -1; idx = hwb->next) {
4366		hwb = &hwb_list[idx];
4367		spare = swz->size - hwb->size;
4368
4369		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4370			break;
4371		if (spare < CL_METADATA_SIZE + MSIZE)
4372			continue;
4373		n = (spare - CL_METADATA_SIZE) / MSIZE;
4374		if (n > howmany(hwb->size, maxp))
4375			break;
4376
4377		hwidx = idx;
4378		if (fl->flags & FL_BUF_PACKING) {
4379			region1 = n * MSIZE;
4380			region3 = spare - region1;
4381		} else {
4382			region1 = MSIZE;
4383			region3 = spare - region1;
4384			break;
4385		}
4386	}
4387
4388	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4389	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4390	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4391	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4392	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4393	    sc->sge.sw_zone_info[zidx].size,
4394	    ("%s: bad buffer layout for fl %p, maxp %d. "
4395		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4396		sc->sge.sw_zone_info[zidx].size, region1,
4397		sc->sge.hw_buf_info[hwidx].size, region3));
4398	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4399		KASSERT(region3 >= CL_METADATA_SIZE,
4400		    ("%s: no room for metadata.  fl %p, maxp %d; "
4401		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4402		    sc->sge.sw_zone_info[zidx].size, region1,
4403		    sc->sge.hw_buf_info[hwidx].size, region3));
4404		KASSERT(region1 % MSIZE == 0,
4405		    ("%s: bad mbuf region for fl %p, maxp %d. "
4406		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4407		    sc->sge.sw_zone_info[zidx].size, region1,
4408		    sc->sge.hw_buf_info[hwidx].size, region3));
4409	}
4410
4411	fl->cll_def.zidx = zidx;
4412	fl->cll_def.hwidx = hwidx;
4413	fl->cll_def.region1 = region1;
4414	fl->cll_def.region3 = region3;
4415}
4416
4417static void
4418find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4419{
4420	struct sge *s = &sc->sge;
4421	struct hw_buf_info *hwb;
4422	struct sw_zone_info *swz;
4423	int spare;
4424	int8_t hwidx;
4425
4426	if (fl->flags & FL_BUF_PACKING)
4427		hwidx = s->safe_hwidx2;	/* with room for metadata */
4428	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4429		hwidx = s->safe_hwidx2;
4430		hwb = &s->hw_buf_info[hwidx];
4431		swz = &s->sw_zone_info[hwb->zidx];
4432		spare = swz->size - hwb->size;
4433
4434		/* no good if there isn't room for an mbuf as well */
4435		if (spare < CL_METADATA_SIZE + MSIZE)
4436			hwidx = s->safe_hwidx1;
4437	} else
4438		hwidx = s->safe_hwidx1;
4439
4440	if (hwidx == -1) {
4441		/* No fallback source */
4442		fl->cll_alt.hwidx = -1;
4443		fl->cll_alt.zidx = -1;
4444
4445		return;
4446	}
4447
4448	hwb = &s->hw_buf_info[hwidx];
4449	swz = &s->sw_zone_info[hwb->zidx];
4450	spare = swz->size - hwb->size;
4451	fl->cll_alt.hwidx = hwidx;
4452	fl->cll_alt.zidx = hwb->zidx;
4453	if (allow_mbufs_in_cluster)
4454		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4455	else
4456		fl->cll_alt.region1 = 0;
4457	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4458}
4459
4460static void
4461add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4462{
4463	mtx_lock(&sc->sfl_lock);
4464	FL_LOCK(fl);
4465	if ((fl->flags & FL_DOOMED) == 0) {
4466		fl->flags |= FL_STARVING;
4467		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4468		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4469	}
4470	FL_UNLOCK(fl);
4471	mtx_unlock(&sc->sfl_lock);
4472}
4473
4474static int
4475handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4476    struct mbuf *m)
4477{
4478	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4479	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4480	struct adapter *sc = iq->adapter;
4481	struct sge *s = &sc->sge;
4482	struct sge_eq *eq;
4483
4484	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4485	    rss->opcode));
4486
4487	eq = s->eqmap[qid - s->eq_start];
4488	EQ_LOCK(eq);
4489	KASSERT(eq->flags & EQ_CRFLUSHED,
4490	    ("%s: unsolicited egress update", __func__));
4491	eq->flags &= ~EQ_CRFLUSHED;
4492	eq->egr_update++;
4493
4494	if (__predict_false(eq->flags & EQ_DOOMED))
4495		wakeup_one(eq);
4496	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4497		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4498	EQ_UNLOCK(eq);
4499
4500	return (0);
4501}
4502
4503/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4504CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4505    offsetof(struct cpl_fw6_msg, data));
4506
4507static int
4508handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4509{
4510	struct adapter *sc = iq->adapter;
4511	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4512
4513	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4514	    rss->opcode));
4515
4516	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4517		const struct rss_header *rss2;
4518
4519		rss2 = (const struct rss_header *)&cpl->data[0];
4520		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4521	}
4522
4523	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4524}
4525
4526static int
4527sysctl_uint16(SYSCTL_HANDLER_ARGS)
4528{
4529	uint16_t *id = arg1;
4530	int i = *id;
4531
4532	return sysctl_handle_int(oidp, &i, 0, req);
4533}
4534
4535static int
4536sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4537{
4538	struct sge *s = arg1;
4539	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4540	struct sw_zone_info *swz = &s->sw_zone_info[0];
4541	int i, rc;
4542	struct sbuf sb;
4543	char c;
4544
4545	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4546	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4547		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4548			c = '*';
4549		else
4550			c = '\0';
4551
4552		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4553	}
4554	sbuf_trim(&sb);
4555	sbuf_finish(&sb);
4556	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4557	sbuf_delete(&sb);
4558	return (rc);
4559}
4560