t4_sge.c revision 259142
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/dev/cxgbe/t4_sge.c 259142 2013-12-09 22:40:22Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/mbuf.h>
36#include <sys/socket.h>
37#include <sys/kernel.h>
38#include <sys/kdb.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/taskqueue.h>
42#include <sys/time.h>
43#include <sys/sysctl.h>
44#include <sys/smp.h>
45#include <net/bpf.h>
46#include <net/ethernet.h>
47#include <net/if.h>
48#include <net/if_vlan_var.h>
49#include <netinet/in.h>
50#include <netinet/ip.h>
51#include <netinet/ip6.h>
52#include <netinet/tcp.h>
53#include <machine/md_var.h>
54
55#include "common/common.h"
56#include "common/t4_regs.h"
57#include "common/t4_regs_values.h"
58#include "common/t4_msg.h"
59
60#ifdef T4_PKT_TIMESTAMP
61#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
62#else
63#define RX_COPY_THRESHOLD MINCLSIZE
64#endif
65
66/*
67 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
68 * 0-7 are valid values.
69 */
70static int fl_pktshift = 2;
71TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
72
73/*
74 * Pad ethernet payload up to this boundary.
75 * -1: driver should figure out a good value.
76 *  0: disable padding.
77 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
78 */
79static int fl_pad = -1;
80TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
81
82/*
83 * Status page length.
84 * -1: driver should figure out a good value.
85 *  64 or 128 are the only other valid values.
86 */
87static int spg_len = -1;
88TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
89
90/*
91 * Congestion drops.
92 * -1: no congestion feedback (not recommended).
93 *  0: backpressure the channel instead of dropping packets right away.
94 *  1: no backpressure, drop packets for the congested queue immediately.
95 */
96static int cong_drop = 0;
97TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
98
99/*
100 * Deliver multiple frames in the same free list buffer if they fit.
101 * -1: let the driver decide whether to enable buffer packing or not.
102 *  0: disable buffer packing.
103 *  1: enable buffer packing.
104 */
105static int buffer_packing = -1;
106TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
107
108/*
109 * Start next frame in a packed buffer at this boundary.
110 * -1: driver should figure out a good value.
111 * T4:
112 * ---
113 * if fl_pad != 0
114 * 	value specified here will be overridden by fl_pad.
115 * else
116 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
117 * T5:
118 * ---
119 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
120 */
121static int fl_pack = -1;
122static int t4_fl_pack;
123static int t5_fl_pack;
124TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
125
126/* Used to track coalesced tx work request */
127struct txpkts {
128	uint64_t *flitp;	/* ptr to flit where next pkt should start */
129	uint8_t npkt;		/* # of packets in this work request */
130	uint8_t nflits;		/* # of flits used by this work request */
131	uint16_t plen;		/* total payload (sum of all packets) */
132};
133
134/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
135struct sgl {
136	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
137	int nflits;		/* # of flits needed for the SGL */
138	bus_dma_segment_t seg[TX_SGL_SEGS];
139};
140
141static int service_iq(struct sge_iq *, int);
142static struct mbuf *get_fl_payload1(struct adapter *, struct sge_fl *, uint32_t,
143    int *);
144static struct mbuf *get_fl_payload2(struct adapter *, struct sge_fl *, uint32_t,
145    int *);
146static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
147static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
148    int);
149static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
150    char *);
151static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
152    char *);
153static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
154    bus_addr_t *, void **);
155static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
156    void *);
157static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
158    int, int);
159static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
160static int alloc_fwq(struct adapter *);
161static int free_fwq(struct adapter *);
162static int alloc_mgmtq(struct adapter *);
163static int free_mgmtq(struct adapter *);
164static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
165    struct sysctl_oid *);
166static int free_rxq(struct port_info *, struct sge_rxq *);
167#ifdef TCP_OFFLOAD
168static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
169    struct sysctl_oid *);
170static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
171#endif
172static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
173static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
174#ifdef TCP_OFFLOAD
175static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
176#endif
177static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
178static int free_eq(struct adapter *, struct sge_eq *);
179static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
180    struct sysctl_oid *);
181static int free_wrq(struct adapter *, struct sge_wrq *);
182static int alloc_txq(struct port_info *, struct sge_txq *, int,
183    struct sysctl_oid *);
184static int free_txq(struct port_info *, struct sge_txq *);
185static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
186static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
187static inline void iq_next(struct sge_iq *);
188static inline void ring_fl_db(struct adapter *, struct sge_fl *);
189static int refill_fl(struct adapter *, struct sge_fl *, int);
190static void refill_sfl(void *);
191static int alloc_fl_sdesc(struct sge_fl *);
192static void free_fl_sdesc(struct adapter *, struct sge_fl *);
193static void set_fl_tag_idx(struct adapter *, struct sge_fl *, int);
194static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
195
196static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
197static int free_pkt_sgl(struct sge_txq *, struct sgl *);
198static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
199    struct sgl *);
200static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
201    struct mbuf *, struct sgl *);
202static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
203static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
204    struct txpkts *, struct mbuf *, struct sgl *);
205static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
206static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
207static inline void ring_eq_db(struct adapter *, struct sge_eq *);
208static inline int reclaimable(struct sge_eq *);
209static int reclaim_tx_descs(struct sge_txq *, int, int);
210static void write_eqflush_wr(struct sge_eq *);
211static __be64 get_flit(bus_dma_segment_t *, int, int);
212static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
213    struct mbuf *);
214static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
215    struct mbuf *);
216
217static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
218
219/*
220 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
221 */
222void
223t4_sge_modload(void)
224{
225	int pad;
226
227	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
228#if defined(__i386__) || defined(__amd64__)
229	pad = max(cpu_clflush_line_size, 16);
230#else
231	pad = max(CACHE_LINE_SIZE, 16);
232#endif
233	pad = min(pad, 4096);
234
235	if (fl_pktshift < 0 || fl_pktshift > 7) {
236		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
237		    " using 2 instead.\n", fl_pktshift);
238		fl_pktshift = 2;
239	}
240
241	if (fl_pad != 0 &&
242	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
243
244		if (fl_pad != -1) {
245			printf("Invalid hw.cxgbe.fl_pad value (%d),"
246			    " using %d instead.\n", fl_pad, max(pad, 32));
247		}
248		fl_pad = max(pad, 32);
249	}
250
251	/*
252	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
253	 * pack boundary must be set to the same value.  Otherwise take the
254	 * specified value or auto-calculate something reasonable.
255	 */
256	if (fl_pad)
257		t4_fl_pack = fl_pad;
258	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
259		t4_fl_pack = max(pad, 32);
260	else
261		t4_fl_pack = fl_pack;
262
263	/* T5's pack boundary is independent of the pad boundary. */
264	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
265	    !powerof2(fl_pack))
266	       t5_fl_pack = max(pad, 64);
267	else
268	       t5_fl_pack = fl_pack;
269
270	if (spg_len != 64 && spg_len != 128) {
271		int len;
272
273#if defined(__i386__) || defined(__amd64__)
274		len = cpu_clflush_line_size > 64 ? 128 : 64;
275#else
276		len = 64;
277#endif
278		if (spg_len != -1) {
279			printf("Invalid hw.cxgbe.spg_len value (%d),"
280			    " using %d instead.\n", spg_len, len);
281		}
282		spg_len = len;
283	}
284
285	if (cong_drop < -1 || cong_drop > 1) {
286		printf("Invalid hw.cxgbe.cong_drop value (%d),"
287		    " using 0 instead.\n", cong_drop);
288		cong_drop = 0;
289	}
290}
291
292void
293t4_init_sge_cpl_handlers(struct adapter *sc)
294{
295
296	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
297	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
298	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
299	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
300	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
301}
302
303/*
304 * adap->params.vpd.cclk must be set up before this is called.
305 */
306void
307t4_tweak_chip_settings(struct adapter *sc)
308{
309	int i;
310	uint32_t v, m;
311	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
312	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
313	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
314	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
315	int sw_flbuf_sizes[] = {
316		MCLBYTES,
317#if MJUMPAGESIZE != MCLBYTES
318		MJUMPAGESIZE,
319#endif
320		MJUM9BYTES,
321		MJUM16BYTES,
322		MJUMPAGESIZE - MSIZE
323	};
324
325	KASSERT(sc->flags & MASTER_PF,
326	    ("%s: trying to change chip settings when not master.", __func__));
327
328	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
329	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
330	    V_EGRSTATUSPAGESIZE(spg_len == 128);
331	if (is_t4(sc) && (fl_pad || buffer_packing)) {
332		/* t4_fl_pack has the correct value even when fl_pad = 0 */
333		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
334		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
335	} else if (is_t5(sc) && fl_pad) {
336		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
337		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
338	}
339	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
340
341	if (is_t5(sc) && buffer_packing) {
342		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
343		if (t5_fl_pack == 16)
344			v = V_INGPACKBOUNDARY(0);
345		else
346			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
347		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
348	}
349
350	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
351	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
352	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
353	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
354	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
355	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
356	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
357	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
358	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
359
360	for (i = 0; i < min(nitems(sw_flbuf_sizes), 16); i++) {
361		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
362		    sw_flbuf_sizes[i]);
363	}
364
365	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
366	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
367	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
368
369	KASSERT(intr_timer[0] <= timer_max,
370	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
371	    timer_max));
372	for (i = 1; i < nitems(intr_timer); i++) {
373		KASSERT(intr_timer[i] >= intr_timer[i - 1],
374		    ("%s: timers not listed in increasing order (%d)",
375		    __func__, i));
376
377		while (intr_timer[i] > timer_max) {
378			if (i == nitems(intr_timer) - 1) {
379				intr_timer[i] = timer_max;
380				break;
381			}
382			intr_timer[i] += intr_timer[i - 1];
383			intr_timer[i] /= 2;
384		}
385	}
386
387	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
388	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
389	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
390	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
391	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
392	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
393	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
394	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
395	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
396
397	if (cong_drop == 0) {
398		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
399		    F_TUNNELCNGDROP3;
400		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
401	}
402
403	/* 4K, 16K, 64K, 256K DDP "page sizes" */
404	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
405	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
406
407	m = v = F_TDDPTAGTCB;
408	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
409
410	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
411	    F_RESETDDPOFFSET;
412	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
413	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
414}
415
416/*
417 * XXX: driver really should be able to deal with unexpected settings.
418 */
419int
420t4_read_chip_settings(struct adapter *sc)
421{
422	struct sge *s = &sc->sge;
423	int i, j, n, rc = 0;
424	uint32_t m, v, r;
425	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
426	uint32_t sge_flbuf_sizes[16], sw_flbuf_sizes[] = {
427		MCLBYTES,
428#if MJUMPAGESIZE != MCLBYTES
429		MJUMPAGESIZE,
430#endif
431		MJUM9BYTES,
432		MJUM16BYTES
433	};
434
435	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
436	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
437	    V_EGRSTATUSPAGESIZE(spg_len == 128);
438	if (is_t4(sc) && (fl_pad || buffer_packing)) {
439		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
440		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
441	} else if (is_t5(sc) && fl_pad) {
442		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
443		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
444	}
445	r = t4_read_reg(sc, A_SGE_CONTROL);
446	if ((r & m) != v) {
447		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
448		rc = EINVAL;
449	}
450
451	if (is_t5(sc) && buffer_packing) {
452		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
453		if (t5_fl_pack == 16)
454			v = V_INGPACKBOUNDARY(0);
455		else
456			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
457		r = t4_read_reg(sc, A_SGE_CONTROL2);
458		if ((r & m) != v) {
459			device_printf(sc->dev,
460			    "invalid SGE_CONTROL2(0x%x)\n", r);
461			rc = EINVAL;
462		}
463	}
464
465	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
466	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
467	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
468	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
469	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
470	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
471	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
472	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
473	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
474	if (r != v) {
475		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
476		rc = EINVAL;
477	}
478
479	/*
480	 * Make a list of SGE FL buffer sizes programmed in the chip and tally
481	 * it with the FL buffer sizes that we'd like to use.
482	 */
483	n = 0;
484	for (i = 0; i < nitems(sge_flbuf_sizes); i++) {
485		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
486		sge_flbuf_sizes[i] = r;
487		if (r == MJUMPAGESIZE - MSIZE &&
488		    (sc->flags & BUF_PACKING_OK) == 0) {
489			sc->flags |= BUF_PACKING_OK;
490			FL_BUF_HWTAG(sc, n) = i;
491			FL_BUF_SIZE(sc, n) = MJUMPAGESIZE - MSIZE;
492			FL_BUF_TYPE(sc, n) = m_gettype(MJUMPAGESIZE);
493			FL_BUF_ZONE(sc, n) = m_getzone(MJUMPAGESIZE);
494			n++;
495		}
496	}
497	for (i = 0; i < nitems(sw_flbuf_sizes); i++) {
498		for (j = 0; j < nitems(sge_flbuf_sizes); j++) {
499			if (sw_flbuf_sizes[i] != sge_flbuf_sizes[j])
500				continue;
501			FL_BUF_HWTAG(sc, n) = j;
502			FL_BUF_SIZE(sc, n) = sw_flbuf_sizes[i];
503			FL_BUF_TYPE(sc, n) = m_gettype(sw_flbuf_sizes[i]);
504			FL_BUF_ZONE(sc, n) = m_getzone(sw_flbuf_sizes[i]);
505			n++;
506			break;
507		}
508	}
509	if (n == 0) {
510		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
511		rc = EINVAL;
512	} else if (n == 1 && (sc->flags & BUF_PACKING_OK)) {
513		device_printf(sc->dev,
514		    "no usable SGE FL buffer size when not packing buffers.\n");
515		rc = EINVAL;
516	}
517	FL_BUF_SIZES(sc) = n;
518
519	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
520	s->counter_val[0] = G_THRESHOLD_0(r);
521	s->counter_val[1] = G_THRESHOLD_1(r);
522	s->counter_val[2] = G_THRESHOLD_2(r);
523	s->counter_val[3] = G_THRESHOLD_3(r);
524
525	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
526	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
527	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
528	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
529	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
530	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
531	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
532	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
533	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
534
535	if (cong_drop == 0) {
536		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
537		    F_TUNNELCNGDROP3;
538		r = t4_read_reg(sc, A_TP_PARA_REG3);
539		if (r & m) {
540			device_printf(sc->dev,
541			    "invalid TP_PARA_REG3(0x%x)\n", r);
542			rc = EINVAL;
543		}
544	}
545
546	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
547	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
548	if (r != v) {
549		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
550		rc = EINVAL;
551	}
552
553	m = v = F_TDDPTAGTCB;
554	r = t4_read_reg(sc, A_ULP_RX_CTL);
555	if ((r & m) != v) {
556		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
557		rc = EINVAL;
558	}
559
560	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
561	    F_RESETDDPOFFSET;
562	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
563	r = t4_read_reg(sc, A_TP_PARA_REG5);
564	if ((r & m) != v) {
565		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
566		rc = EINVAL;
567	}
568
569	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
570	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
571
572	/* egress queues: log2 of # of doorbells per BAR2 page */
573	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
574	r >>= S_QUEUESPERPAGEPF0 +
575	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
576	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
577
578	/* ingress queues: log2 of # of doorbells per BAR2 page */
579	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
580	r >>= S_QUEUESPERPAGEPF0 +
581	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
582	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
583
584	t4_init_tp_params(sc);
585
586	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
587	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
588
589	return (rc);
590}
591
592int
593t4_create_dma_tag(struct adapter *sc)
594{
595	int rc;
596
597	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
598	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
599	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
600	    NULL, &sc->dmat);
601	if (rc != 0) {
602		device_printf(sc->dev,
603		    "failed to create main DMA tag: %d\n", rc);
604	}
605
606	return (rc);
607}
608
609static inline int
610enable_buffer_packing(struct adapter *sc)
611{
612
613	if (sc->flags & BUF_PACKING_OK &&
614	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
615	    (is_t4(sc) && buffer_packing == 1)))
616		return (1);
617	return (0);
618}
619
620void
621t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
622    struct sysctl_oid_list *children)
623{
624
625	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
626	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
627
628	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
629	    NULL, fl_pad, "payload pad boundary (bytes)");
630
631	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
632	    NULL, spg_len, "status page size (bytes)");
633
634	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
635	    NULL, cong_drop, "congestion drop setting");
636
637	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
638	    NULL, enable_buffer_packing(sc),
639	    "pack multiple frames in one fl buffer");
640
641	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
642	    NULL, is_t5(sc) ? t5_fl_pack : t4_fl_pack,
643	    "payload pack boundary (bytes)");
644}
645
646int
647t4_destroy_dma_tag(struct adapter *sc)
648{
649	if (sc->dmat)
650		bus_dma_tag_destroy(sc->dmat);
651
652	return (0);
653}
654
655/*
656 * Allocate and initialize the firmware event queue and the management queue.
657 *
658 * Returns errno on failure.  Resources allocated up to that point may still be
659 * allocated.  Caller is responsible for cleanup in case this function fails.
660 */
661int
662t4_setup_adapter_queues(struct adapter *sc)
663{
664	int rc;
665
666	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
667
668	sysctl_ctx_init(&sc->ctx);
669	sc->flags |= ADAP_SYSCTL_CTX;
670
671	/*
672	 * Firmware event queue
673	 */
674	rc = alloc_fwq(sc);
675	if (rc != 0)
676		return (rc);
677
678	/*
679	 * Management queue.  This is just a control queue that uses the fwq as
680	 * its associated iq.
681	 */
682	rc = alloc_mgmtq(sc);
683
684	return (rc);
685}
686
687/*
688 * Idempotent
689 */
690int
691t4_teardown_adapter_queues(struct adapter *sc)
692{
693
694	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
695
696	/* Do this before freeing the queue */
697	if (sc->flags & ADAP_SYSCTL_CTX) {
698		sysctl_ctx_free(&sc->ctx);
699		sc->flags &= ~ADAP_SYSCTL_CTX;
700	}
701
702	free_mgmtq(sc);
703	free_fwq(sc);
704
705	return (0);
706}
707
708static inline int
709first_vector(struct port_info *pi)
710{
711	struct adapter *sc = pi->adapter;
712	int rc = T4_EXTRA_INTR, i;
713
714	if (sc->intr_count == 1)
715		return (0);
716
717	for_each_port(sc, i) {
718		struct port_info *p = sc->port[i];
719
720		if (i == pi->port_id)
721			break;
722
723#ifdef TCP_OFFLOAD
724		if (sc->flags & INTR_DIRECT)
725			rc += p->nrxq + p->nofldrxq;
726		else
727			rc += max(p->nrxq, p->nofldrxq);
728#else
729		/*
730		 * Not compiled with offload support and intr_count > 1.  Only
731		 * NIC queues exist and they'd better be taking direct
732		 * interrupts.
733		 */
734		KASSERT(sc->flags & INTR_DIRECT,
735		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
736		    sc->intr_count));
737
738		rc += p->nrxq;
739#endif
740	}
741
742	return (rc);
743}
744
745/*
746 * Given an arbitrary "index," come up with an iq that can be used by other
747 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
748 * The iq returned is guaranteed to be something that takes direct interrupts.
749 */
750static struct sge_iq *
751port_intr_iq(struct port_info *pi, int idx)
752{
753	struct adapter *sc = pi->adapter;
754	struct sge *s = &sc->sge;
755	struct sge_iq *iq = NULL;
756
757	if (sc->intr_count == 1)
758		return (&sc->sge.fwq);
759
760#ifdef TCP_OFFLOAD
761	if (sc->flags & INTR_DIRECT) {
762		idx %= pi->nrxq + pi->nofldrxq;
763
764		if (idx >= pi->nrxq) {
765			idx -= pi->nrxq;
766			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
767		} else
768			iq = &s->rxq[pi->first_rxq + idx].iq;
769
770	} else {
771		idx %= max(pi->nrxq, pi->nofldrxq);
772
773		if (pi->nrxq >= pi->nofldrxq)
774			iq = &s->rxq[pi->first_rxq + idx].iq;
775		else
776			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
777	}
778#else
779	/*
780	 * Not compiled with offload support and intr_count > 1.  Only NIC
781	 * queues exist and they'd better be taking direct interrupts.
782	 */
783	KASSERT(sc->flags & INTR_DIRECT,
784	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
785
786	idx %= pi->nrxq;
787	iq = &s->rxq[pi->first_rxq + idx].iq;
788#endif
789
790	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
791	return (iq);
792}
793
794static inline int
795mtu_to_bufsize(int mtu)
796{
797	int bufsize;
798
799	/* large enough for a frame even when VLAN extraction is disabled */
800	bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu;
801	bufsize = roundup2(bufsize + fl_pktshift, fl_pad);
802
803	return (bufsize);
804}
805
806#ifdef TCP_OFFLOAD
807static inline int
808mtu_to_bufsize_toe(struct adapter *sc, int mtu)
809{
810
811	if (sc->tt.rx_coalesce)
812		return (G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)));
813
814	return (mtu);
815}
816#endif
817
818int
819t4_setup_port_queues(struct port_info *pi)
820{
821	int rc = 0, i, j, intr_idx, iqid;
822	struct sge_rxq *rxq;
823	struct sge_txq *txq;
824	struct sge_wrq *ctrlq;
825#ifdef TCP_OFFLOAD
826	struct sge_ofld_rxq *ofld_rxq;
827	struct sge_wrq *ofld_txq;
828	struct sysctl_oid *oid2 = NULL;
829#endif
830	char name[16];
831	struct adapter *sc = pi->adapter;
832	struct ifnet *ifp = pi->ifp;
833	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
834	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
835	int bufsize, pack;
836
837	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
838	    NULL, "rx queues");
839
840#ifdef TCP_OFFLOAD
841	if (is_offload(sc)) {
842		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
843		    CTLFLAG_RD, NULL,
844		    "rx queues for offloaded TCP connections");
845	}
846#endif
847
848	/* Interrupt vector to start from (when using multiple vectors) */
849	intr_idx = first_vector(pi);
850
851	/*
852	 * First pass over all rx queues (NIC and TOE):
853	 * a) initialize iq and fl
854	 * b) allocate queue iff it will take direct interrupts.
855	 */
856	bufsize = mtu_to_bufsize(ifp->if_mtu);
857	pack = enable_buffer_packing(sc);
858	for_each_rxq(pi, i, rxq) {
859
860		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
861		    RX_IQ_ESIZE);
862
863		snprintf(name, sizeof(name), "%s rxq%d-fl",
864		    device_get_nameunit(pi->dev), i);
865		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, bufsize, pack, name);
866
867		if (sc->flags & INTR_DIRECT
868#ifdef TCP_OFFLOAD
869		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
870#endif
871		   ) {
872			rxq->iq.flags |= IQ_INTR;
873			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
874			if (rc != 0)
875				goto done;
876			intr_idx++;
877		}
878	}
879
880#ifdef TCP_OFFLOAD
881	bufsize = mtu_to_bufsize_toe(sc, ifp->if_mtu);
882	pack = 0;	/* XXX: think about this some more */
883	for_each_ofld_rxq(pi, i, ofld_rxq) {
884
885		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
886		    pi->qsize_rxq, RX_IQ_ESIZE);
887
888		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
889		    device_get_nameunit(pi->dev), i);
890		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, bufsize, pack,
891		    name);
892
893		if (sc->flags & INTR_DIRECT ||
894		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
895			ofld_rxq->iq.flags |= IQ_INTR;
896			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
897			if (rc != 0)
898				goto done;
899			intr_idx++;
900		}
901	}
902#endif
903
904	/*
905	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
906	 * their interrupts are allocated now.
907	 */
908	j = 0;
909	for_each_rxq(pi, i, rxq) {
910		if (rxq->iq.flags & IQ_INTR)
911			continue;
912
913		intr_idx = port_intr_iq(pi, j)->abs_id;
914
915		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
916		if (rc != 0)
917			goto done;
918		j++;
919	}
920
921#ifdef TCP_OFFLOAD
922	for_each_ofld_rxq(pi, i, ofld_rxq) {
923		if (ofld_rxq->iq.flags & IQ_INTR)
924			continue;
925
926		intr_idx = port_intr_iq(pi, j)->abs_id;
927
928		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
929		if (rc != 0)
930			goto done;
931		j++;
932	}
933#endif
934
935	/*
936	 * Now the tx queues.  Only one pass needed.
937	 */
938	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
939	    NULL, "tx queues");
940	j = 0;
941	for_each_txq(pi, i, txq) {
942		uint16_t iqid;
943
944		iqid = port_intr_iq(pi, j)->cntxt_id;
945
946		snprintf(name, sizeof(name), "%s txq%d",
947		    device_get_nameunit(pi->dev), i);
948		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
949		    name);
950
951		rc = alloc_txq(pi, txq, i, oid);
952		if (rc != 0)
953			goto done;
954		j++;
955	}
956
957#ifdef TCP_OFFLOAD
958	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
959	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
960	for_each_ofld_txq(pi, i, ofld_txq) {
961		uint16_t iqid;
962
963		iqid = port_intr_iq(pi, j)->cntxt_id;
964
965		snprintf(name, sizeof(name), "%s ofld_txq%d",
966		    device_get_nameunit(pi->dev), i);
967		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
968		    iqid, name);
969
970		snprintf(name, sizeof(name), "%d", i);
971		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
972		    name, CTLFLAG_RD, NULL, "offload tx queue");
973
974		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
975		if (rc != 0)
976			goto done;
977		j++;
978	}
979#endif
980
981	/*
982	 * Finally, the control queue.
983	 */
984	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
985	    NULL, "ctrl queue");
986	ctrlq = &sc->sge.ctrlq[pi->port_id];
987	iqid = port_intr_iq(pi, 0)->cntxt_id;
988	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
989	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
990	rc = alloc_wrq(sc, pi, ctrlq, oid);
991
992done:
993	if (rc)
994		t4_teardown_port_queues(pi);
995
996	return (rc);
997}
998
999/*
1000 * Idempotent
1001 */
1002int
1003t4_teardown_port_queues(struct port_info *pi)
1004{
1005	int i;
1006	struct adapter *sc = pi->adapter;
1007	struct sge_rxq *rxq;
1008	struct sge_txq *txq;
1009#ifdef TCP_OFFLOAD
1010	struct sge_ofld_rxq *ofld_rxq;
1011	struct sge_wrq *ofld_txq;
1012#endif
1013
1014	/* Do this before freeing the queues */
1015	if (pi->flags & PORT_SYSCTL_CTX) {
1016		sysctl_ctx_free(&pi->ctx);
1017		pi->flags &= ~PORT_SYSCTL_CTX;
1018	}
1019
1020	/*
1021	 * Take down all the tx queues first, as they reference the rx queues
1022	 * (for egress updates, etc.).
1023	 */
1024
1025	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1026
1027	for_each_txq(pi, i, txq) {
1028		free_txq(pi, txq);
1029	}
1030
1031#ifdef TCP_OFFLOAD
1032	for_each_ofld_txq(pi, i, ofld_txq) {
1033		free_wrq(sc, ofld_txq);
1034	}
1035#endif
1036
1037	/*
1038	 * Then take down the rx queues that forward their interrupts, as they
1039	 * reference other rx queues.
1040	 */
1041
1042	for_each_rxq(pi, i, rxq) {
1043		if ((rxq->iq.flags & IQ_INTR) == 0)
1044			free_rxq(pi, rxq);
1045	}
1046
1047#ifdef TCP_OFFLOAD
1048	for_each_ofld_rxq(pi, i, ofld_rxq) {
1049		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1050			free_ofld_rxq(pi, ofld_rxq);
1051	}
1052#endif
1053
1054	/*
1055	 * Then take down the rx queues that take direct interrupts.
1056	 */
1057
1058	for_each_rxq(pi, i, rxq) {
1059		if (rxq->iq.flags & IQ_INTR)
1060			free_rxq(pi, rxq);
1061	}
1062
1063#ifdef TCP_OFFLOAD
1064	for_each_ofld_rxq(pi, i, ofld_rxq) {
1065		if (ofld_rxq->iq.flags & IQ_INTR)
1066			free_ofld_rxq(pi, ofld_rxq);
1067	}
1068#endif
1069
1070	return (0);
1071}
1072
1073/*
1074 * Deals with errors and the firmware event queue.  All data rx queues forward
1075 * their interrupt to the firmware event queue.
1076 */
1077void
1078t4_intr_all(void *arg)
1079{
1080	struct adapter *sc = arg;
1081	struct sge_iq *fwq = &sc->sge.fwq;
1082
1083	t4_intr_err(arg);
1084	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1085		service_iq(fwq, 0);
1086		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1087	}
1088}
1089
1090/* Deals with error interrupts */
1091void
1092t4_intr_err(void *arg)
1093{
1094	struct adapter *sc = arg;
1095
1096	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1097	t4_slow_intr_handler(sc);
1098}
1099
1100void
1101t4_intr_evt(void *arg)
1102{
1103	struct sge_iq *iq = arg;
1104
1105	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1106		service_iq(iq, 0);
1107		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1108	}
1109}
1110
1111void
1112t4_intr(void *arg)
1113{
1114	struct sge_iq *iq = arg;
1115
1116	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1117		service_iq(iq, 0);
1118		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1119	}
1120}
1121
1122/*
1123 * Deals with anything and everything on the given ingress queue.
1124 */
1125static int
1126service_iq(struct sge_iq *iq, int budget)
1127{
1128	struct sge_iq *q;
1129	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1130	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1131	struct adapter *sc = iq->adapter;
1132	struct rsp_ctrl *ctrl;
1133	const struct rss_header *rss;
1134	int ndescs = 0, limit, fl_bufs_used = 0;
1135	int rsp_type;
1136	uint32_t lq;
1137	struct mbuf *m0;
1138	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1139#if defined(INET) || defined(INET6)
1140	const struct timeval lro_timeout = {0, sc->lro_timeout};
1141#endif
1142
1143	limit = budget ? budget : iq->qsize / 8;
1144
1145	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1146
1147	/*
1148	 * We always come back and check the descriptor ring for new indirect
1149	 * interrupts and other responses after running a single handler.
1150	 */
1151	for (;;) {
1152		while (is_new_response(iq, &ctrl)) {
1153
1154			rmb();
1155
1156			m0 = NULL;
1157			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1158			lq = be32toh(ctrl->pldbuflen_qid);
1159			rss = (const void *)iq->cdesc;
1160
1161			switch (rsp_type) {
1162			case X_RSPD_TYPE_FLBUF:
1163
1164				KASSERT(iq->flags & IQ_HAS_FL,
1165				    ("%s: data for an iq (%p) with no freelist",
1166				    __func__, iq));
1167
1168				m0 = fl->flags & FL_BUF_PACKING ?
1169				    get_fl_payload1(sc, fl, lq, &fl_bufs_used) :
1170				    get_fl_payload2(sc, fl, lq, &fl_bufs_used);
1171
1172				if (__predict_false(m0 == NULL))
1173					goto process_iql;
1174#ifdef T4_PKT_TIMESTAMP
1175				/*
1176				 * 60 bit timestamp for the payload is
1177				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1178				 * in the leading free-space in the mbuf.  The
1179				 * kernel can clobber it during a pullup,
1180				 * m_copymdata, etc.  You need to make sure that
1181				 * the mbuf reaches you unmolested if you care
1182				 * about the timestamp.
1183				 */
1184				*(uint64_t *)m0->m_pktdat =
1185				    be64toh(ctrl->u.last_flit) &
1186				    0xfffffffffffffff;
1187#endif
1188
1189				/* fall through */
1190
1191			case X_RSPD_TYPE_CPL:
1192				KASSERT(rss->opcode < NUM_CPL_CMDS,
1193				    ("%s: bad opcode %02x.", __func__,
1194				    rss->opcode));
1195				sc->cpl_handler[rss->opcode](iq, rss, m0);
1196				break;
1197
1198			case X_RSPD_TYPE_INTR:
1199
1200				/*
1201				 * Interrupts should be forwarded only to queues
1202				 * that are not forwarding their interrupts.
1203				 * This means service_iq can recurse but only 1
1204				 * level deep.
1205				 */
1206				KASSERT(budget == 0,
1207				    ("%s: budget %u, rsp_type %u", __func__,
1208				    budget, rsp_type));
1209
1210				/*
1211				 * There are 1K interrupt-capable queues (qids 0
1212				 * through 1023).  A response type indicating a
1213				 * forwarded interrupt with a qid >= 1K is an
1214				 * iWARP async notification.
1215				 */
1216				if (lq >= 1024) {
1217                                        sc->an_handler(iq, ctrl);
1218                                        break;
1219                                }
1220
1221				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1222				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1223				    IQS_BUSY)) {
1224					if (service_iq(q, q->qsize / 8) == 0) {
1225						atomic_cmpset_int(&q->state,
1226						    IQS_BUSY, IQS_IDLE);
1227					} else {
1228						STAILQ_INSERT_TAIL(&iql, q,
1229						    link);
1230					}
1231				}
1232				break;
1233
1234			default:
1235				KASSERT(0,
1236				    ("%s: illegal response type %d on iq %p",
1237				    __func__, rsp_type, iq));
1238				log(LOG_ERR,
1239				    "%s: illegal response type %d on iq %p",
1240				    device_get_nameunit(sc->dev), rsp_type, iq);
1241				break;
1242			}
1243
1244			iq_next(iq);
1245			if (++ndescs == limit) {
1246				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1247				    V_CIDXINC(ndescs) |
1248				    V_INGRESSQID(iq->cntxt_id) |
1249				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1250				ndescs = 0;
1251
1252#if defined(INET) || defined(INET6)
1253				if (iq->flags & IQ_LRO_ENABLED &&
1254				    sc->lro_timeout != 0) {
1255					tcp_lro_flush_inactive(&rxq->lro,
1256					    &lro_timeout);
1257				}
1258#endif
1259
1260				if (fl_bufs_used > 0) {
1261					FL_LOCK(fl);
1262					fl->needed += fl_bufs_used;
1263					refill_fl(sc, fl, fl->cap / 8);
1264					FL_UNLOCK(fl);
1265					fl_bufs_used = 0;
1266				}
1267
1268				if (budget)
1269					return (EINPROGRESS);
1270			}
1271		}
1272
1273process_iql:
1274		if (STAILQ_EMPTY(&iql))
1275			break;
1276
1277		/*
1278		 * Process the head only, and send it to the back of the list if
1279		 * it's still not done.
1280		 */
1281		q = STAILQ_FIRST(&iql);
1282		STAILQ_REMOVE_HEAD(&iql, link);
1283		if (service_iq(q, q->qsize / 8) == 0)
1284			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1285		else
1286			STAILQ_INSERT_TAIL(&iql, q, link);
1287	}
1288
1289#if defined(INET) || defined(INET6)
1290	if (iq->flags & IQ_LRO_ENABLED) {
1291		struct lro_ctrl *lro = &rxq->lro;
1292		struct lro_entry *l;
1293
1294		while (!SLIST_EMPTY(&lro->lro_active)) {
1295			l = SLIST_FIRST(&lro->lro_active);
1296			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1297			tcp_lro_flush(lro, l);
1298		}
1299	}
1300#endif
1301
1302	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1303	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1304
1305	if (iq->flags & IQ_HAS_FL) {
1306		int starved;
1307
1308		FL_LOCK(fl);
1309		fl->needed += fl_bufs_used;
1310		starved = refill_fl(sc, fl, fl->cap / 4);
1311		FL_UNLOCK(fl);
1312		if (__predict_false(starved != 0))
1313			add_fl_to_sfl(sc, fl);
1314	}
1315
1316	return (0);
1317}
1318
1319static int
1320fill_mbuf_stash(struct sge_fl *fl)
1321{
1322	int i;
1323
1324	for (i = 0; i < nitems(fl->mstash); i++) {
1325		if (fl->mstash[i] == NULL) {
1326			struct mbuf *m;
1327			if ((m = m_get(M_NOWAIT, MT_NOINIT)) == NULL)
1328				return (ENOBUFS);
1329			fl->mstash[i] = m;
1330		}
1331	}
1332	return (0);
1333}
1334
1335static struct mbuf *
1336get_mbuf_from_stash(struct sge_fl *fl)
1337{
1338	int i;
1339
1340	for (i = 0; i < nitems(fl->mstash); i++) {
1341		if (fl->mstash[i] != NULL) {
1342			struct mbuf *m;
1343
1344			m = fl->mstash[i];
1345			fl->mstash[i] = NULL;
1346			return (m);
1347		} else
1348			fl->mstash[i] = m_get(M_NOWAIT, MT_NOINIT);
1349	}
1350
1351	return (m_get(M_NOWAIT, MT_NOINIT));
1352}
1353
1354static void
1355return_mbuf_to_stash(struct sge_fl *fl, struct mbuf *m)
1356{
1357	int i;
1358
1359	if (m == NULL)
1360		return;
1361
1362	for (i = 0; i < nitems(fl->mstash); i++) {
1363		if (fl->mstash[i] == NULL) {
1364			fl->mstash[i] = m;
1365			return;
1366		}
1367	}
1368	m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1369	m_free(m);
1370}
1371
1372/* buf can be any address within the buffer */
1373static inline u_int *
1374find_buf_refcnt(caddr_t buf)
1375{
1376	uintptr_t ptr = (uintptr_t)buf;
1377
1378	return ((u_int *)((ptr & ~(MJUMPAGESIZE - 1)) + MSIZE - sizeof(u_int)));
1379}
1380
1381static inline struct mbuf *
1382find_buf_mbuf(caddr_t buf)
1383{
1384	uintptr_t ptr = (uintptr_t)buf;
1385
1386	return ((struct mbuf *)(ptr & ~(MJUMPAGESIZE - 1)));
1387}
1388
1389static int
1390rxb_free(struct mbuf *m, void *arg1, void *arg2)
1391{
1392	uma_zone_t zone = arg1;
1393	caddr_t cl = arg2;
1394#ifdef notyet
1395	u_int refcount;
1396
1397	refcount = *find_buf_refcnt(cl);
1398	KASSERT(refcount == 0, ("%s: cl %p refcount is %u", __func__,
1399	    cl - MSIZE, refcount));
1400#endif
1401	cl -= MSIZE;
1402	uma_zfree(zone, cl);
1403
1404	return (EXT_FREE_OK);
1405}
1406
1407static struct mbuf *
1408get_fl_payload1(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1409    int *fl_bufs_used)
1410{
1411	struct mbuf *m0, *m;
1412	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1413	unsigned int nbuf, len;
1414	int pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
1415
1416	/*
1417	 * No assertion for the fl lock because we don't need it.  This routine
1418	 * is called only from the rx interrupt handler and it only updates
1419	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1420	 * updated in the rx interrupt handler or the starvation helper routine.
1421	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1422	 * lock but this routine does not).
1423	 */
1424
1425	KASSERT(fl->flags & FL_BUF_PACKING,
1426	    ("%s: buffer packing disabled for fl %p", __func__, fl));
1427
1428	len = G_RSPD_LEN(len_newbuf);
1429
1430	if ((len_newbuf & F_RSPD_NEWBUF) == 0) {
1431		KASSERT(fl->rx_offset > 0,
1432		    ("%s: packed frame but driver at offset=0", __func__));
1433
1434		/* A packed frame is guaranteed to fit entirely in this buf. */
1435		KASSERT(FL_BUF_SIZE(sc, sd->tag_idx) - fl->rx_offset >= len,
1436		    ("%s: packing error.  bufsz=%u, offset=%u, len=%u",
1437		    __func__, FL_BUF_SIZE(sc, sd->tag_idx), fl->rx_offset,
1438		    len));
1439
1440		m0 = get_mbuf_from_stash(fl);
1441		if (m0 == NULL ||
1442		    m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR) != 0) {
1443			return_mbuf_to_stash(fl, m0);
1444			return (NULL);
1445		}
1446
1447		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1448		    BUS_DMASYNC_POSTREAD);
1449		if (len < RX_COPY_THRESHOLD) {
1450#ifdef T4_PKT_TIMESTAMP
1451			/* Leave room for a timestamp */
1452			m0->m_data += 8;
1453#endif
1454			bcopy(sd->cl + fl->rx_offset, mtod(m0, caddr_t), len);
1455			m0->m_pkthdr.len = len;
1456			m0->m_len = len;
1457		} else {
1458			m0->m_pkthdr.len = len;
1459			m0->m_len = len;
1460			m_extaddref(m0, sd->cl + fl->rx_offset,
1461			    roundup2(m0->m_len, fl_pad),
1462			    find_buf_refcnt(sd->cl), rxb_free,
1463			    FL_BUF_ZONE(sc, sd->tag_idx), sd->cl);
1464		}
1465		fl->rx_offset += len;
1466		fl->rx_offset = roundup2(fl->rx_offset, fl_pad);
1467		fl->rx_offset = roundup2(fl->rx_offset, pack_boundary);
1468		if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) {
1469			fl->rx_offset = 0;
1470			(*fl_bufs_used) += 1;
1471			if (__predict_false(++fl->cidx == fl->cap))
1472				fl->cidx = 0;
1473		}
1474
1475		return (m0);
1476	}
1477
1478	KASSERT(len_newbuf & F_RSPD_NEWBUF,
1479	    ("%s: only new buffer handled here", __func__));
1480
1481	nbuf = 0;
1482
1483	/*
1484	 * Move to the start of the next buffer if we are still in the middle of
1485	 * some buffer.  This is the case where there was some room left in the
1486	 * previous buffer but not enough to fit this frame in its entirety.
1487	 */
1488	if (fl->rx_offset > 0) {
1489		KASSERT(roundup2(len, fl_pad) > FL_BUF_SIZE(sc, sd->tag_idx) -
1490		    fl->rx_offset, ("%s: frame (%u bytes) should have fit at "
1491		    "cidx %u offset %u bufsize %u", __func__, len, fl->cidx,
1492		    fl->rx_offset, FL_BUF_SIZE(sc, sd->tag_idx)));
1493		nbuf++;
1494		fl->rx_offset = 0;
1495		sd++;
1496		if (__predict_false(++fl->cidx == fl->cap)) {
1497			sd = fl->sdesc;
1498			fl->cidx = 0;
1499		}
1500	}
1501
1502	m0 = find_buf_mbuf(sd->cl);
1503	if (m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR | M_NOFREE))
1504		goto done;
1505	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1506	m0->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1507	m_extaddref(m0, sd->cl, roundup2(m0->m_len, fl_pad),
1508	    find_buf_refcnt(sd->cl), rxb_free, FL_BUF_ZONE(sc, sd->tag_idx),
1509	    sd->cl);
1510	m0->m_pkthdr.len = len;
1511
1512	fl->rx_offset = roundup2(m0->m_len, fl_pad);
1513	fl->rx_offset = roundup2(fl->rx_offset, pack_boundary);
1514	if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) {
1515		fl->rx_offset = 0;
1516		nbuf++;
1517		sd++;
1518		if (__predict_false(++fl->cidx == fl->cap)) {
1519			sd = fl->sdesc;
1520			fl->cidx = 0;
1521		}
1522	}
1523
1524	m = m0;
1525	len -= m->m_len;
1526
1527	while (len > 0) {
1528		m->m_next = find_buf_mbuf(sd->cl);
1529		m = m->m_next;
1530
1531		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1532		    BUS_DMASYNC_POSTREAD);
1533
1534		/* m_init for !M_PKTHDR can't fail so don't bother */
1535		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, M_NOFREE);
1536		m->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1537		m_extaddref(m, sd->cl, roundup2(m->m_len, fl_pad),
1538		    find_buf_refcnt(sd->cl), rxb_free,
1539		    FL_BUF_ZONE(sc, sd->tag_idx), sd->cl);
1540
1541		fl->rx_offset = roundup2(m->m_len, fl_pad);
1542		fl->rx_offset = roundup2(fl->rx_offset, pack_boundary);
1543		if (fl->rx_offset >= FL_BUF_SIZE(sc, sd->tag_idx)) {
1544			fl->rx_offset = 0;
1545			nbuf++;
1546			sd++;
1547			if (__predict_false(++fl->cidx == fl->cap)) {
1548				sd = fl->sdesc;
1549				fl->cidx = 0;
1550			}
1551		}
1552
1553		len -= m->m_len;
1554	}
1555done:
1556	(*fl_bufs_used) += nbuf;
1557	return (m0);
1558}
1559
1560static struct mbuf *
1561get_fl_payload2(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1562    int *fl_bufs_used)
1563{
1564	struct mbuf *m0, *m;
1565	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1566	unsigned int nbuf, len;
1567
1568	/*
1569	 * No assertion for the fl lock because we don't need it.  This routine
1570	 * is called only from the rx interrupt handler and it only updates
1571	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1572	 * updated in the rx interrupt handler or the starvation helper routine.
1573	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1574	 * lock but this routine does not).
1575	 */
1576
1577	KASSERT((fl->flags & FL_BUF_PACKING) == 0,
1578	    ("%s: buffer packing enabled for fl %p", __func__, fl));
1579	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
1580		panic("%s: cannot handle packed frames", __func__);
1581	len = G_RSPD_LEN(len_newbuf);
1582
1583	/*
1584	 * We never want to run out of mbufs in between a frame when a frame
1585	 * spans multiple fl buffers.  If the fl's mbuf stash isn't full and
1586	 * can't be filled up to the brim then fail early.
1587	 */
1588	if (len > FL_BUF_SIZE(sc, sd->tag_idx) && fill_mbuf_stash(fl) != 0)
1589		return (NULL);
1590
1591	m0 = get_mbuf_from_stash(fl);
1592	if (m0 == NULL ||
1593	    m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR) != 0) {
1594		return_mbuf_to_stash(fl, m0);
1595		return (NULL);
1596	}
1597
1598	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1599
1600	if (len < RX_COPY_THRESHOLD) {
1601#ifdef T4_PKT_TIMESTAMP
1602		/* Leave room for a timestamp */
1603		m0->m_data += 8;
1604#endif
1605		/* copy data to mbuf, buffer will be recycled */
1606		bcopy(sd->cl, mtod(m0, caddr_t), len);
1607		m0->m_len = len;
1608	} else {
1609		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1610		m_cljset(m0, sd->cl, FL_BUF_TYPE(sc, sd->tag_idx));
1611		sd->cl = NULL;	/* consumed */
1612		m0->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1613	}
1614	m0->m_pkthdr.len = len;
1615
1616	sd++;
1617	if (__predict_false(++fl->cidx == fl->cap)) {
1618		sd = fl->sdesc;
1619		fl->cidx = 0;
1620	}
1621
1622	m = m0;
1623	len -= m->m_len;
1624	nbuf = 1;	/* # of fl buffers used */
1625
1626	while (len > 0) {
1627		/* Can't fail, we checked earlier that the stash was full. */
1628		m->m_next = get_mbuf_from_stash(fl);
1629		m = m->m_next;
1630
1631		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1632		    BUS_DMASYNC_POSTREAD);
1633
1634		/* m_init for !M_PKTHDR can't fail so don't bother */
1635		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1636		if (len <= MLEN) {
1637			bcopy(sd->cl, mtod(m, caddr_t), len);
1638			m->m_len = len;
1639		} else {
1640			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1641			m_cljset(m, sd->cl, FL_BUF_TYPE(sc, sd->tag_idx));
1642			sd->cl = NULL;	/* consumed */
1643			m->m_len = min(len, FL_BUF_SIZE(sc, sd->tag_idx));
1644		}
1645
1646		sd++;
1647		if (__predict_false(++fl->cidx == fl->cap)) {
1648			sd = fl->sdesc;
1649			fl->cidx = 0;
1650		}
1651
1652		len -= m->m_len;
1653		nbuf++;
1654	}
1655
1656	(*fl_bufs_used) += nbuf;
1657
1658	return (m0);
1659}
1660
1661static int
1662t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1663{
1664	struct sge_rxq *rxq = iq_to_rxq(iq);
1665	struct ifnet *ifp = rxq->ifp;
1666	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1667#if defined(INET) || defined(INET6)
1668	struct lro_ctrl *lro = &rxq->lro;
1669#endif
1670
1671	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1672	    rss->opcode));
1673
1674	m0->m_pkthdr.len -= fl_pktshift;
1675	m0->m_len -= fl_pktshift;
1676	m0->m_data += fl_pktshift;
1677
1678	m0->m_pkthdr.rcvif = ifp;
1679	m0->m_flags |= M_FLOWID;
1680	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1681
1682	if (cpl->csum_calc && !cpl->err_vec) {
1683		if (ifp->if_capenable & IFCAP_RXCSUM &&
1684		    cpl->l2info & htobe32(F_RXF_IP)) {
1685			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1686			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1687			rxq->rxcsum++;
1688		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1689		    cpl->l2info & htobe32(F_RXF_IP6)) {
1690			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1691			    CSUM_PSEUDO_HDR);
1692			rxq->rxcsum++;
1693		}
1694
1695		if (__predict_false(cpl->ip_frag))
1696			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1697		else
1698			m0->m_pkthdr.csum_data = 0xffff;
1699	}
1700
1701	if (cpl->vlan_ex) {
1702		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1703		m0->m_flags |= M_VLANTAG;
1704		rxq->vlan_extraction++;
1705	}
1706
1707#if defined(INET) || defined(INET6)
1708	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1709	    iq->flags & IQ_LRO_ENABLED &&
1710	    tcp_lro_rx(lro, m0, 0) == 0) {
1711		/* queued for LRO */
1712	} else
1713#endif
1714	ifp->if_input(ifp, m0);
1715
1716	return (0);
1717}
1718
1719/*
1720 * Doesn't fail.  Holds on to work requests it can't send right away.
1721 */
1722void
1723t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1724{
1725	struct sge_eq *eq = &wrq->eq;
1726	int can_reclaim;
1727	caddr_t dst;
1728
1729	TXQ_LOCK_ASSERT_OWNED(wrq);
1730#ifdef TCP_OFFLOAD
1731	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1732	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1733	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1734#else
1735	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1736	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1737#endif
1738
1739	if (__predict_true(wr != NULL))
1740		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1741
1742	can_reclaim = reclaimable(eq);
1743	if (__predict_false(eq->flags & EQ_STALLED)) {
1744		if (can_reclaim < tx_resume_threshold(eq))
1745			return;
1746		eq->flags &= ~EQ_STALLED;
1747		eq->unstalled++;
1748	}
1749	eq->cidx += can_reclaim;
1750	eq->avail += can_reclaim;
1751	if (__predict_false(eq->cidx >= eq->cap))
1752		eq->cidx -= eq->cap;
1753
1754	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1755		int ndesc;
1756
1757		if (__predict_false(wr->wr_len < 0 ||
1758		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1759
1760#ifdef INVARIANTS
1761			panic("%s: work request with length %d", __func__,
1762			    wr->wr_len);
1763#endif
1764#ifdef KDB
1765			kdb_backtrace();
1766#endif
1767			log(LOG_ERR, "%s: %s work request with length %d",
1768			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1769			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1770			free_wrqe(wr);
1771			continue;
1772		}
1773
1774		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1775		if (eq->avail < ndesc) {
1776			wrq->no_desc++;
1777			break;
1778		}
1779
1780		dst = (void *)&eq->desc[eq->pidx];
1781		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1782
1783		eq->pidx += ndesc;
1784		eq->avail -= ndesc;
1785		if (__predict_false(eq->pidx >= eq->cap))
1786			eq->pidx -= eq->cap;
1787
1788		eq->pending += ndesc;
1789		if (eq->pending >= 8)
1790			ring_eq_db(sc, eq);
1791
1792		wrq->tx_wrs++;
1793		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1794		free_wrqe(wr);
1795
1796		if (eq->avail < 8) {
1797			can_reclaim = reclaimable(eq);
1798			eq->cidx += can_reclaim;
1799			eq->avail += can_reclaim;
1800			if (__predict_false(eq->cidx >= eq->cap))
1801				eq->cidx -= eq->cap;
1802		}
1803	}
1804
1805	if (eq->pending)
1806		ring_eq_db(sc, eq);
1807
1808	if (wr != NULL) {
1809		eq->flags |= EQ_STALLED;
1810		if (callout_pending(&eq->tx_callout) == 0)
1811			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1812	}
1813}
1814
1815/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1816#define TXPKTS_PKT_HDR ((\
1817    sizeof(struct ulp_txpkt) + \
1818    sizeof(struct ulptx_idata) + \
1819    sizeof(struct cpl_tx_pkt_core) \
1820    ) / 8)
1821
1822/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1823#define TXPKTS_WR_HDR (\
1824    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1825    TXPKTS_PKT_HDR)
1826
1827/* Header of a tx WR, before SGL of first packet (in flits) */
1828#define TXPKT_WR_HDR ((\
1829    sizeof(struct fw_eth_tx_pkt_wr) + \
1830    sizeof(struct cpl_tx_pkt_core) \
1831    ) / 8 )
1832
1833/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1834#define TXPKT_LSO_WR_HDR ((\
1835    sizeof(struct fw_eth_tx_pkt_wr) + \
1836    sizeof(struct cpl_tx_pkt_lso_core) + \
1837    sizeof(struct cpl_tx_pkt_core) \
1838    ) / 8 )
1839
1840int
1841t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1842{
1843	struct port_info *pi = (void *)ifp->if_softc;
1844	struct adapter *sc = pi->adapter;
1845	struct sge_eq *eq = &txq->eq;
1846	struct buf_ring *br = txq->br;
1847	struct mbuf *next;
1848	int rc, coalescing, can_reclaim;
1849	struct txpkts txpkts;
1850	struct sgl sgl;
1851
1852	TXQ_LOCK_ASSERT_OWNED(txq);
1853	KASSERT(m, ("%s: called with nothing to do.", __func__));
1854	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1855	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1856
1857	prefetch(&eq->desc[eq->pidx]);
1858	prefetch(&txq->sdesc[eq->pidx]);
1859
1860	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1861	coalescing = 0;
1862
1863	can_reclaim = reclaimable(eq);
1864	if (__predict_false(eq->flags & EQ_STALLED)) {
1865		if (can_reclaim < tx_resume_threshold(eq)) {
1866			txq->m = m;
1867			return (0);
1868		}
1869		eq->flags &= ~EQ_STALLED;
1870		eq->unstalled++;
1871	}
1872
1873	if (__predict_false(eq->flags & EQ_DOOMED)) {
1874		m_freem(m);
1875		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1876			m_freem(m);
1877		return (ENETDOWN);
1878	}
1879
1880	if (eq->avail < 8 && can_reclaim)
1881		reclaim_tx_descs(txq, can_reclaim, 32);
1882
1883	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1884
1885		if (eq->avail < 8)
1886			break;
1887
1888		next = m->m_nextpkt;
1889		m->m_nextpkt = NULL;
1890
1891		if (next || buf_ring_peek(br))
1892			coalescing = 1;
1893
1894		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1895		if (rc != 0) {
1896			if (rc == ENOMEM) {
1897
1898				/* Short of resources, suspend tx */
1899
1900				m->m_nextpkt = next;
1901				break;
1902			}
1903
1904			/*
1905			 * Unrecoverable error for this packet, throw it away
1906			 * and move on to the next.  get_pkt_sgl may already
1907			 * have freed m (it will be NULL in that case and the
1908			 * m_freem here is still safe).
1909			 */
1910
1911			m_freem(m);
1912			continue;
1913		}
1914
1915		if (coalescing &&
1916		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1917
1918			/* Successfully absorbed into txpkts */
1919
1920			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1921			goto doorbell;
1922		}
1923
1924		/*
1925		 * We weren't coalescing to begin with, or current frame could
1926		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1927		 * given to it can't be coalesced).  Either way there should be
1928		 * nothing in txpkts.
1929		 */
1930		KASSERT(txpkts.npkt == 0,
1931		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1932
1933		/* We're sending out individual packets now */
1934		coalescing = 0;
1935
1936		if (eq->avail < 8)
1937			reclaim_tx_descs(txq, 0, 8);
1938		rc = write_txpkt_wr(pi, txq, m, &sgl);
1939		if (rc != 0) {
1940
1941			/* Short of hardware descriptors, suspend tx */
1942
1943			/*
1944			 * This is an unlikely but expensive failure.  We've
1945			 * done all the hard work (DMA mappings etc.) and now we
1946			 * can't send out the packet.  What's worse, we have to
1947			 * spend even more time freeing up everything in sgl.
1948			 */
1949			txq->no_desc++;
1950			free_pkt_sgl(txq, &sgl);
1951
1952			m->m_nextpkt = next;
1953			break;
1954		}
1955
1956		ETHER_BPF_MTAP(ifp, m);
1957		if (sgl.nsegs == 0)
1958			m_freem(m);
1959doorbell:
1960		if (eq->pending >= 8)
1961			ring_eq_db(sc, eq);
1962
1963		can_reclaim = reclaimable(eq);
1964		if (can_reclaim >= 32)
1965			reclaim_tx_descs(txq, can_reclaim, 64);
1966	}
1967
1968	if (txpkts.npkt > 0)
1969		write_txpkts_wr(txq, &txpkts);
1970
1971	/*
1972	 * m not NULL means there was an error but we haven't thrown it away.
1973	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1974	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1975	 * will get things going again.
1976	 */
1977	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1978		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1979
1980		/*
1981		 * If EQ_CRFLUSHED is not set then we know we have at least one
1982		 * available descriptor because any WR that reduces eq->avail to
1983		 * 0 also sets EQ_CRFLUSHED.
1984		 */
1985		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1986
1987		txsd->desc_used = 1;
1988		txsd->credits = 0;
1989		write_eqflush_wr(eq);
1990	}
1991	txq->m = m;
1992
1993	if (eq->pending)
1994		ring_eq_db(sc, eq);
1995
1996	reclaim_tx_descs(txq, 0, 128);
1997
1998	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1999		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2000
2001	return (0);
2002}
2003
2004void
2005t4_update_fl_bufsize(struct ifnet *ifp)
2006{
2007	struct port_info *pi = ifp->if_softc;
2008	struct adapter *sc = pi->adapter;
2009	struct sge_rxq *rxq;
2010#ifdef TCP_OFFLOAD
2011	struct sge_ofld_rxq *ofld_rxq;
2012#endif
2013	struct sge_fl *fl;
2014	int i, bufsize;
2015
2016	bufsize = mtu_to_bufsize(ifp->if_mtu);
2017	for_each_rxq(pi, i, rxq) {
2018		fl = &rxq->fl;
2019
2020		FL_LOCK(fl);
2021		set_fl_tag_idx(sc, fl, bufsize);
2022		FL_UNLOCK(fl);
2023	}
2024#ifdef TCP_OFFLOAD
2025	bufsize = mtu_to_bufsize_toe(pi->adapter, ifp->if_mtu);
2026	for_each_ofld_rxq(pi, i, ofld_rxq) {
2027		fl = &ofld_rxq->fl;
2028
2029		FL_LOCK(fl);
2030		set_fl_tag_idx(sc, fl, bufsize);
2031		FL_UNLOCK(fl);
2032	}
2033#endif
2034}
2035
2036int
2037can_resume_tx(struct sge_eq *eq)
2038{
2039	return (reclaimable(eq) >= tx_resume_threshold(eq));
2040}
2041
2042static inline void
2043init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2044    int qsize, int esize)
2045{
2046	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2047	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2048	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2049	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2050
2051	iq->flags = 0;
2052	iq->adapter = sc;
2053	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2054	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2055	if (pktc_idx >= 0) {
2056		iq->intr_params |= F_QINTR_CNT_EN;
2057		iq->intr_pktc_idx = pktc_idx;
2058	}
2059	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2060	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
2061}
2062
2063static inline void
2064init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int bufsize, int pack,
2065    char *name)
2066{
2067
2068	fl->qsize = qsize;
2069	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2070	if (pack)
2071		fl->flags |= FL_BUF_PACKING;
2072	set_fl_tag_idx(sc, fl, bufsize);
2073}
2074
2075static inline void
2076init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2077    uint16_t iqid, char *name)
2078{
2079	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2080	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2081
2082	eq->flags = eqtype & EQ_TYPEMASK;
2083	eq->tx_chan = tx_chan;
2084	eq->iqid = iqid;
2085	eq->qsize = qsize;
2086	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2087
2088	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2089	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2090}
2091
2092static int
2093alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2094    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2095{
2096	int rc;
2097
2098	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2099	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2100	if (rc != 0) {
2101		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2102		goto done;
2103	}
2104
2105	rc = bus_dmamem_alloc(*tag, va,
2106	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2107	if (rc != 0) {
2108		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2109		goto done;
2110	}
2111
2112	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2113	if (rc != 0) {
2114		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2115		goto done;
2116	}
2117done:
2118	if (rc)
2119		free_ring(sc, *tag, *map, *pa, *va);
2120
2121	return (rc);
2122}
2123
2124static int
2125free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2126    bus_addr_t pa, void *va)
2127{
2128	if (pa)
2129		bus_dmamap_unload(tag, map);
2130	if (va)
2131		bus_dmamem_free(tag, va, map);
2132	if (tag)
2133		bus_dma_tag_destroy(tag);
2134
2135	return (0);
2136}
2137
2138/*
2139 * Allocates the ring for an ingress queue and an optional freelist.  If the
2140 * freelist is specified it will be allocated and then associated with the
2141 * ingress queue.
2142 *
2143 * Returns errno on failure.  Resources allocated up to that point may still be
2144 * allocated.  Caller is responsible for cleanup in case this function fails.
2145 *
2146 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2147 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2148 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2149 */
2150static int
2151alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2152    int intr_idx, int cong)
2153{
2154	int rc, i, cntxt_id;
2155	size_t len;
2156	struct fw_iq_cmd c;
2157	struct adapter *sc = iq->adapter;
2158	__be32 v = 0;
2159
2160	len = iq->qsize * iq->esize;
2161	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2162	    (void **)&iq->desc);
2163	if (rc != 0)
2164		return (rc);
2165
2166	bzero(&c, sizeof(c));
2167	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2168	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2169	    V_FW_IQ_CMD_VFN(0));
2170
2171	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2172	    FW_LEN16(c));
2173
2174	/* Special handling for firmware event queue */
2175	if (iq == &sc->sge.fwq)
2176		v |= F_FW_IQ_CMD_IQASYNCH;
2177
2178	if (iq->flags & IQ_INTR) {
2179		KASSERT(intr_idx < sc->intr_count,
2180		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2181	} else
2182		v |= F_FW_IQ_CMD_IQANDST;
2183	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2184
2185	c.type_to_iqandstindex = htobe32(v |
2186	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2187	    V_FW_IQ_CMD_VIID(pi->viid) |
2188	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2189	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2190	    F_FW_IQ_CMD_IQGTSMODE |
2191	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2192	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2193	c.iqsize = htobe16(iq->qsize);
2194	c.iqaddr = htobe64(iq->ba);
2195	if (cong >= 0)
2196		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2197
2198	if (fl) {
2199		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2200
2201		for (i = 0; i < FL_BUF_SIZES(sc); i++) {
2202
2203			/*
2204			 * A freelist buffer must be 16 byte aligned as the SGE
2205			 * uses the low 4 bits of the bus addr to figure out the
2206			 * buffer size.
2207			 */
2208			rc = bus_dma_tag_create(sc->dmat, 16, 0,
2209			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2210			    FL_BUF_SIZE(sc, i), 1, FL_BUF_SIZE(sc, i),
2211			    BUS_DMA_ALLOCNOW, NULL, NULL, &fl->tag[i]);
2212			if (rc != 0) {
2213				device_printf(sc->dev,
2214				    "failed to create fl DMA tag[%d]: %d\n",
2215				    i, rc);
2216				return (rc);
2217			}
2218		}
2219		len = fl->qsize * RX_FL_ESIZE;
2220		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2221		    &fl->ba, (void **)&fl->desc);
2222		if (rc)
2223			return (rc);
2224
2225		/* Allocate space for one software descriptor per buffer. */
2226		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2227		rc = alloc_fl_sdesc(fl);
2228		if (rc != 0) {
2229			device_printf(sc->dev,
2230			    "failed to setup fl software descriptors: %d\n",
2231			    rc);
2232			return (rc);
2233		}
2234		fl->needed = fl->cap;
2235		fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
2236
2237		c.iqns_to_fl0congen |=
2238		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2239			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2240			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2241			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2242			    0));
2243		if (cong >= 0) {
2244			c.iqns_to_fl0congen |=
2245				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2246				    F_FW_IQ_CMD_FL0CONGCIF |
2247				    F_FW_IQ_CMD_FL0CONGEN);
2248		}
2249		c.fl0dcaen_to_fl0cidxfthresh =
2250		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2251			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2252		c.fl0size = htobe16(fl->qsize);
2253		c.fl0addr = htobe64(fl->ba);
2254	}
2255
2256	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2257	if (rc != 0) {
2258		device_printf(sc->dev,
2259		    "failed to create ingress queue: %d\n", rc);
2260		return (rc);
2261	}
2262
2263	iq->cdesc = iq->desc;
2264	iq->cidx = 0;
2265	iq->gen = 1;
2266	iq->intr_next = iq->intr_params;
2267	iq->cntxt_id = be16toh(c.iqid);
2268	iq->abs_id = be16toh(c.physiqid);
2269	iq->flags |= IQ_ALLOCATED;
2270
2271	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2272	if (cntxt_id >= sc->sge.niq) {
2273		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2274		    cntxt_id, sc->sge.niq - 1);
2275	}
2276	sc->sge.iqmap[cntxt_id] = iq;
2277
2278	if (fl) {
2279		fl->cntxt_id = be16toh(c.fl0id);
2280		fl->pidx = fl->cidx = 0;
2281
2282		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2283		if (cntxt_id >= sc->sge.neq) {
2284			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2285			    __func__, cntxt_id, sc->sge.neq - 1);
2286		}
2287		sc->sge.eqmap[cntxt_id] = (void *)fl;
2288
2289		FL_LOCK(fl);
2290		/* Enough to make sure the SGE doesn't think it's starved */
2291		refill_fl(sc, fl, fl->lowat);
2292		FL_UNLOCK(fl);
2293
2294		iq->flags |= IQ_HAS_FL;
2295	}
2296
2297	if (is_t5(sc) && cong >= 0) {
2298		uint32_t param, val;
2299
2300		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2301		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2302		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2303		if (cong == 0)
2304			val = 1 << 19;
2305		else {
2306			val = 2 << 19;
2307			for (i = 0; i < 4; i++) {
2308				if (cong & (1 << i))
2309					val |= 1 << (i << 2);
2310			}
2311		}
2312
2313		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2314		if (rc != 0) {
2315			/* report error but carry on */
2316			device_printf(sc->dev,
2317			    "failed to set congestion manager context for "
2318			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2319		}
2320	}
2321
2322	/* Enable IQ interrupts */
2323	atomic_store_rel_int(&iq->state, IQS_IDLE);
2324	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2325	    V_INGRESSQID(iq->cntxt_id));
2326
2327	return (0);
2328}
2329
2330static int
2331free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2332{
2333	int i, rc;
2334	struct adapter *sc = iq->adapter;
2335	device_t dev;
2336
2337	if (sc == NULL)
2338		return (0);	/* nothing to do */
2339
2340	dev = pi ? pi->dev : sc->dev;
2341
2342	if (iq->flags & IQ_ALLOCATED) {
2343		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2344		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2345		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2346		if (rc != 0) {
2347			device_printf(dev,
2348			    "failed to free queue %p: %d\n", iq, rc);
2349			return (rc);
2350		}
2351		iq->flags &= ~IQ_ALLOCATED;
2352	}
2353
2354	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2355
2356	bzero(iq, sizeof(*iq));
2357
2358	if (fl) {
2359		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2360		    fl->desc);
2361
2362		if (fl->sdesc)
2363			free_fl_sdesc(sc, fl);
2364
2365		for (i = 0; i < nitems(fl->mstash); i++) {
2366			struct mbuf *m = fl->mstash[i];
2367
2368			if (m != NULL) {
2369				m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2370				m_free(m);
2371			}
2372		}
2373
2374		if (mtx_initialized(&fl->fl_lock))
2375			mtx_destroy(&fl->fl_lock);
2376
2377		for (i = 0; i < FL_BUF_SIZES(sc); i++) {
2378			if (fl->tag[i])
2379				bus_dma_tag_destroy(fl->tag[i]);
2380		}
2381
2382		bzero(fl, sizeof(*fl));
2383	}
2384
2385	return (0);
2386}
2387
2388static int
2389alloc_fwq(struct adapter *sc)
2390{
2391	int rc, intr_idx;
2392	struct sge_iq *fwq = &sc->sge.fwq;
2393	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2394	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2395
2396	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2397	fwq->flags |= IQ_INTR;	/* always */
2398	intr_idx = sc->intr_count > 1 ? 1 : 0;
2399	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2400	if (rc != 0) {
2401		device_printf(sc->dev,
2402		    "failed to create firmware event queue: %d\n", rc);
2403		return (rc);
2404	}
2405
2406	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2407	    NULL, "firmware event queue");
2408	children = SYSCTL_CHILDREN(oid);
2409
2410	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2411	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2412	    "absolute id of the queue");
2413	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2414	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2415	    "SGE context id of the queue");
2416	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2417	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2418	    "consumer index");
2419
2420	return (0);
2421}
2422
2423static int
2424free_fwq(struct adapter *sc)
2425{
2426	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2427}
2428
2429static int
2430alloc_mgmtq(struct adapter *sc)
2431{
2432	int rc;
2433	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2434	char name[16];
2435	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2436	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2437
2438	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2439	    NULL, "management queue");
2440
2441	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2442	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2443	    sc->sge.fwq.cntxt_id, name);
2444	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2445	if (rc != 0) {
2446		device_printf(sc->dev,
2447		    "failed to create management queue: %d\n", rc);
2448		return (rc);
2449	}
2450
2451	return (0);
2452}
2453
2454static int
2455free_mgmtq(struct adapter *sc)
2456{
2457
2458	return free_wrq(sc, &sc->sge.mgmtq);
2459}
2460
2461static inline int
2462tnl_cong(struct port_info *pi)
2463{
2464
2465	if (cong_drop == -1)
2466		return (-1);
2467	else if (cong_drop == 1)
2468		return (0);
2469	else
2470		return (1 << pi->tx_chan);
2471}
2472
2473static int
2474alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2475    struct sysctl_oid *oid)
2476{
2477	int rc;
2478	struct sysctl_oid_list *children;
2479	char name[16];
2480
2481	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2482	if (rc != 0)
2483		return (rc);
2484
2485	FL_LOCK(&rxq->fl);
2486	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2487	FL_UNLOCK(&rxq->fl);
2488
2489#if defined(INET) || defined(INET6)
2490	rc = tcp_lro_init(&rxq->lro);
2491	if (rc != 0)
2492		return (rc);
2493	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2494
2495	if (pi->ifp->if_capenable & IFCAP_LRO)
2496		rxq->iq.flags |= IQ_LRO_ENABLED;
2497#endif
2498	rxq->ifp = pi->ifp;
2499
2500	children = SYSCTL_CHILDREN(oid);
2501
2502	snprintf(name, sizeof(name), "%d", idx);
2503	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2504	    NULL, "rx queue");
2505	children = SYSCTL_CHILDREN(oid);
2506
2507	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2508	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2509	    "absolute id of the queue");
2510	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2511	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2512	    "SGE context id of the queue");
2513	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2514	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2515	    "consumer index");
2516#if defined(INET) || defined(INET6)
2517	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2518	    &rxq->lro.lro_queued, 0, NULL);
2519	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2520	    &rxq->lro.lro_flushed, 0, NULL);
2521#endif
2522	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2523	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2524	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2525	    CTLFLAG_RD, &rxq->vlan_extraction,
2526	    "# of times hardware extracted 802.1Q tag");
2527
2528	children = SYSCTL_CHILDREN(oid);
2529	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2530	    NULL, "freelist");
2531	children = SYSCTL_CHILDREN(oid);
2532
2533	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2534	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
2535	    "SGE context id of the queue");
2536	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2537	    &rxq->fl.cidx, 0, "consumer index");
2538	if (rxq->fl.flags & FL_BUF_PACKING) {
2539		SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "rx_offset",
2540		    CTLFLAG_RD, &rxq->fl.rx_offset, 0, "packing rx offset");
2541	}
2542	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2543	    &rxq->fl.pidx, 0, "producer index");
2544
2545	return (rc);
2546}
2547
2548static int
2549free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2550{
2551	int rc;
2552
2553#if defined(INET) || defined(INET6)
2554	if (rxq->lro.ifp) {
2555		tcp_lro_free(&rxq->lro);
2556		rxq->lro.ifp = NULL;
2557	}
2558#endif
2559
2560	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2561	if (rc == 0)
2562		bzero(rxq, sizeof(*rxq));
2563
2564	return (rc);
2565}
2566
2567#ifdef TCP_OFFLOAD
2568static int
2569alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2570    int intr_idx, int idx, struct sysctl_oid *oid)
2571{
2572	int rc;
2573	struct sysctl_oid_list *children;
2574	char name[16];
2575
2576	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2577	    1 << pi->tx_chan);
2578	if (rc != 0)
2579		return (rc);
2580
2581	children = SYSCTL_CHILDREN(oid);
2582
2583	snprintf(name, sizeof(name), "%d", idx);
2584	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2585	    NULL, "rx queue");
2586	children = SYSCTL_CHILDREN(oid);
2587
2588	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2589	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2590	    "I", "absolute id of the queue");
2591	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2592	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2593	    "I", "SGE context id of the queue");
2594	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2595	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2596	    "consumer index");
2597
2598	children = SYSCTL_CHILDREN(oid);
2599	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2600	    NULL, "freelist");
2601	children = SYSCTL_CHILDREN(oid);
2602
2603	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2604	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
2605	    "I", "SGE context id of the queue");
2606	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2607	    &ofld_rxq->fl.cidx, 0, "consumer index");
2608	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2609	    &ofld_rxq->fl.pidx, 0, "producer index");
2610
2611	return (rc);
2612}
2613
2614static int
2615free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2616{
2617	int rc;
2618
2619	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2620	if (rc == 0)
2621		bzero(ofld_rxq, sizeof(*ofld_rxq));
2622
2623	return (rc);
2624}
2625#endif
2626
2627static int
2628ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2629{
2630	int rc, cntxt_id;
2631	struct fw_eq_ctrl_cmd c;
2632
2633	bzero(&c, sizeof(c));
2634
2635	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2636	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2637	    V_FW_EQ_CTRL_CMD_VFN(0));
2638	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2639	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2640	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2641	c.physeqid_pkd = htobe32(0);
2642	c.fetchszm_to_iqid =
2643	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2644		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2645		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2646	c.dcaen_to_eqsize =
2647	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2648		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2649		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2650		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2651	c.eqaddr = htobe64(eq->ba);
2652
2653	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2654	if (rc != 0) {
2655		device_printf(sc->dev,
2656		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2657		return (rc);
2658	}
2659	eq->flags |= EQ_ALLOCATED;
2660
2661	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2662	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2663	if (cntxt_id >= sc->sge.neq)
2664	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2665		cntxt_id, sc->sge.neq - 1);
2666	sc->sge.eqmap[cntxt_id] = eq;
2667
2668	return (rc);
2669}
2670
2671static int
2672eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2673{
2674	int rc, cntxt_id;
2675	struct fw_eq_eth_cmd c;
2676
2677	bzero(&c, sizeof(c));
2678
2679	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2680	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2681	    V_FW_EQ_ETH_CMD_VFN(0));
2682	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2683	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2684	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2685	c.fetchszm_to_iqid =
2686	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2687		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2688		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2689	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2690		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2691		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2692		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2693	c.eqaddr = htobe64(eq->ba);
2694
2695	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2696	if (rc != 0) {
2697		device_printf(pi->dev,
2698		    "failed to create Ethernet egress queue: %d\n", rc);
2699		return (rc);
2700	}
2701	eq->flags |= EQ_ALLOCATED;
2702
2703	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2704	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2705	if (cntxt_id >= sc->sge.neq)
2706	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2707		cntxt_id, sc->sge.neq - 1);
2708	sc->sge.eqmap[cntxt_id] = eq;
2709
2710	return (rc);
2711}
2712
2713#ifdef TCP_OFFLOAD
2714static int
2715ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2716{
2717	int rc, cntxt_id;
2718	struct fw_eq_ofld_cmd c;
2719
2720	bzero(&c, sizeof(c));
2721
2722	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2723	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2724	    V_FW_EQ_OFLD_CMD_VFN(0));
2725	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2726	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2727	c.fetchszm_to_iqid =
2728		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2729		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2730		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2731	c.dcaen_to_eqsize =
2732	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2733		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2734		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2735		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2736	c.eqaddr = htobe64(eq->ba);
2737
2738	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2739	if (rc != 0) {
2740		device_printf(pi->dev,
2741		    "failed to create egress queue for TCP offload: %d\n", rc);
2742		return (rc);
2743	}
2744	eq->flags |= EQ_ALLOCATED;
2745
2746	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2747	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2748	if (cntxt_id >= sc->sge.neq)
2749	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2750		cntxt_id, sc->sge.neq - 1);
2751	sc->sge.eqmap[cntxt_id] = eq;
2752
2753	return (rc);
2754}
2755#endif
2756
2757static int
2758alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2759{
2760	int rc;
2761	size_t len;
2762
2763	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2764
2765	len = eq->qsize * EQ_ESIZE;
2766	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2767	    &eq->ba, (void **)&eq->desc);
2768	if (rc)
2769		return (rc);
2770
2771	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2772	eq->spg = (void *)&eq->desc[eq->cap];
2773	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2774	eq->pidx = eq->cidx = 0;
2775	eq->doorbells = sc->doorbells;
2776
2777	switch (eq->flags & EQ_TYPEMASK) {
2778	case EQ_CTRL:
2779		rc = ctrl_eq_alloc(sc, eq);
2780		break;
2781
2782	case EQ_ETH:
2783		rc = eth_eq_alloc(sc, pi, eq);
2784		break;
2785
2786#ifdef TCP_OFFLOAD
2787	case EQ_OFLD:
2788		rc = ofld_eq_alloc(sc, pi, eq);
2789		break;
2790#endif
2791
2792	default:
2793		panic("%s: invalid eq type %d.", __func__,
2794		    eq->flags & EQ_TYPEMASK);
2795	}
2796	if (rc != 0) {
2797		device_printf(sc->dev,
2798		    "failed to allocate egress queue(%d): %d",
2799		    eq->flags & EQ_TYPEMASK, rc);
2800	}
2801
2802	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2803
2804	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2805	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2806	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2807		uint32_t s_qpp = sc->sge.eq_s_qpp;
2808		uint32_t mask = (1 << s_qpp) - 1;
2809		volatile uint8_t *udb;
2810
2811		udb = sc->udbs_base + UDBS_DB_OFFSET;
2812		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2813		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2814		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2815	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2816		else {
2817			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2818			eq->udb_qid = 0;
2819		}
2820		eq->udb = (volatile void *)udb;
2821	}
2822
2823	return (rc);
2824}
2825
2826static int
2827free_eq(struct adapter *sc, struct sge_eq *eq)
2828{
2829	int rc;
2830
2831	if (eq->flags & EQ_ALLOCATED) {
2832		switch (eq->flags & EQ_TYPEMASK) {
2833		case EQ_CTRL:
2834			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2835			    eq->cntxt_id);
2836			break;
2837
2838		case EQ_ETH:
2839			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2840			    eq->cntxt_id);
2841			break;
2842
2843#ifdef TCP_OFFLOAD
2844		case EQ_OFLD:
2845			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2846			    eq->cntxt_id);
2847			break;
2848#endif
2849
2850		default:
2851			panic("%s: invalid eq type %d.", __func__,
2852			    eq->flags & EQ_TYPEMASK);
2853		}
2854		if (rc != 0) {
2855			device_printf(sc->dev,
2856			    "failed to free egress queue (%d): %d\n",
2857			    eq->flags & EQ_TYPEMASK, rc);
2858			return (rc);
2859		}
2860		eq->flags &= ~EQ_ALLOCATED;
2861	}
2862
2863	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2864
2865	if (mtx_initialized(&eq->eq_lock))
2866		mtx_destroy(&eq->eq_lock);
2867
2868	bzero(eq, sizeof(*eq));
2869	return (0);
2870}
2871
2872static int
2873alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2874    struct sysctl_oid *oid)
2875{
2876	int rc;
2877	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2878	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2879
2880	rc = alloc_eq(sc, pi, &wrq->eq);
2881	if (rc)
2882		return (rc);
2883
2884	wrq->adapter = sc;
2885	STAILQ_INIT(&wrq->wr_list);
2886
2887	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2888	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2889	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2890	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2891	    "consumer index");
2892	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2893	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2894	    "producer index");
2895	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2896	    &wrq->tx_wrs, "# of work requests");
2897	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2898	    &wrq->no_desc, 0,
2899	    "# of times queue ran out of hardware descriptors");
2900	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2901	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2902
2903
2904	return (rc);
2905}
2906
2907static int
2908free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2909{
2910	int rc;
2911
2912	rc = free_eq(sc, &wrq->eq);
2913	if (rc)
2914		return (rc);
2915
2916	bzero(wrq, sizeof(*wrq));
2917	return (0);
2918}
2919
2920static int
2921alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2922    struct sysctl_oid *oid)
2923{
2924	int rc;
2925	struct adapter *sc = pi->adapter;
2926	struct sge_eq *eq = &txq->eq;
2927	char name[16];
2928	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2929
2930	rc = alloc_eq(sc, pi, eq);
2931	if (rc)
2932		return (rc);
2933
2934	txq->ifp = pi->ifp;
2935
2936	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2937	    M_ZERO | M_WAITOK);
2938	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2939
2940	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2941	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2942	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2943	if (rc != 0) {
2944		device_printf(sc->dev,
2945		    "failed to create tx DMA tag: %d\n", rc);
2946		return (rc);
2947	}
2948
2949	/*
2950	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2951	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2952	 * sized for the worst case.
2953	 */
2954	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2955	    M_WAITOK);
2956	if (rc != 0) {
2957		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2958		return (rc);
2959	}
2960
2961	snprintf(name, sizeof(name), "%d", idx);
2962	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2963	    NULL, "tx queue");
2964	children = SYSCTL_CHILDREN(oid);
2965
2966	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2967	    &eq->cntxt_id, 0, "SGE context id of the queue");
2968	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2969	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2970	    "consumer index");
2971	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2972	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2973	    "producer index");
2974
2975	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2976	    &txq->txcsum, "# of times hardware assisted with checksum");
2977	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2978	    CTLFLAG_RD, &txq->vlan_insertion,
2979	    "# of times hardware inserted 802.1Q tag");
2980	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2981	    &txq->tso_wrs, "# of TSO work requests");
2982	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2983	    &txq->imm_wrs, "# of work requests with immediate data");
2984	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2985	    &txq->sgl_wrs, "# of work requests with direct SGL");
2986	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2987	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2988	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2989	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2990	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2991	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2992
2993	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2994	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2995	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2996	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2997	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2998	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2999	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3000	    &eq->egr_update, 0, "egress update notifications from the SGE");
3001	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3002	    &eq->unstalled, 0, "# of times txq recovered after stall");
3003
3004	return (rc);
3005}
3006
3007static int
3008free_txq(struct port_info *pi, struct sge_txq *txq)
3009{
3010	int rc;
3011	struct adapter *sc = pi->adapter;
3012	struct sge_eq *eq = &txq->eq;
3013
3014	rc = free_eq(sc, eq);
3015	if (rc)
3016		return (rc);
3017
3018	free(txq->sdesc, M_CXGBE);
3019
3020	if (txq->txmaps.maps)
3021		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3022
3023	buf_ring_free(txq->br, M_CXGBE);
3024
3025	if (txq->tx_tag)
3026		bus_dma_tag_destroy(txq->tx_tag);
3027
3028	bzero(txq, sizeof(*txq));
3029	return (0);
3030}
3031
3032static void
3033oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3034{
3035	bus_addr_t *ba = arg;
3036
3037	KASSERT(nseg == 1,
3038	    ("%s meant for single segment mappings only.", __func__));
3039
3040	*ba = error ? 0 : segs->ds_addr;
3041}
3042
3043static inline bool
3044is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
3045{
3046	*ctrl = (void *)((uintptr_t)iq->cdesc +
3047	    (iq->esize - sizeof(struct rsp_ctrl)));
3048
3049	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
3050}
3051
3052static inline void
3053iq_next(struct sge_iq *iq)
3054{
3055	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
3056	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
3057		iq->cidx = 0;
3058		iq->gen ^= 1;
3059		iq->cdesc = iq->desc;
3060	}
3061}
3062
3063#define FL_HW_IDX(x) ((x) >> 3)
3064static inline void
3065ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3066{
3067	int ndesc = fl->pending / 8;
3068	uint32_t v;
3069
3070	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3071		ndesc--;	/* hold back one credit */
3072
3073	if (ndesc <= 0)
3074		return;		/* nothing to do */
3075
3076	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3077	if (is_t5(sc))
3078		v |= F_DBTYPE;
3079
3080	wmb();
3081
3082	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3083	fl->pending -= ndesc * 8;
3084}
3085
3086/*
3087 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3088 *
3089 * Returns non-zero to indicate that it should be added to the list of starving
3090 * freelists.
3091 */
3092static int
3093refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3094{
3095	__be64 *d = &fl->desc[fl->pidx];
3096	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3097	bus_dma_tag_t tag;
3098	bus_addr_t pa;
3099	caddr_t cl;
3100	int rc;
3101
3102	FL_LOCK_ASSERT_OWNED(fl);
3103#ifdef INVARIANTS
3104	if (fl->flags & FL_BUF_PACKING)
3105		KASSERT(sd->tag_idx == 0,
3106		    ("%s: expected tag 0 but found tag %d at pidx %u instead",
3107		    __func__, sd->tag_idx, fl->pidx));
3108#endif
3109
3110	if (nbufs > fl->needed)
3111		nbufs = fl->needed;
3112
3113	while (nbufs--) {
3114
3115		if (sd->cl != NULL) {
3116
3117			KASSERT(*d == sd->ba_hwtag,
3118			    ("%s: recyling problem at pidx %d",
3119			    __func__, fl->pidx));
3120
3121			if (fl->flags & FL_BUF_PACKING) {
3122				u_int *refcount = find_buf_refcnt(sd->cl);
3123
3124				if (atomic_fetchadd_int(refcount, -1) == 1) {
3125					*refcount = 1;	/* reinstate */
3126					d++;
3127					goto recycled;
3128				}
3129				sd->cl = NULL;	/* gave up my reference */
3130			} else {
3131				/*
3132				 * This happens when a frame small enough to fit
3133				 * entirely in an mbuf was received in cl last
3134				 * time.  We'd held on to cl and can reuse it
3135				 * now.  Note that we reuse a cluster of the old
3136				 * size if fl->tag_idx is no longer the same as
3137				 * sd->tag_idx.
3138				 */
3139				d++;
3140				goto recycled;
3141			}
3142		}
3143
3144		if (__predict_false(fl->tag_idx != sd->tag_idx)) {
3145			bus_dmamap_t map;
3146			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
3147			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
3148
3149			/*
3150			 * An MTU change can get us here.  Discard the old map
3151			 * which was created with the old tag, but only if
3152			 * we're able to get a new one.
3153			 */
3154			rc = bus_dmamap_create(newtag, 0, &map);
3155			if (rc == 0) {
3156				bus_dmamap_destroy(oldtag, sd->map);
3157				sd->map = map;
3158				sd->tag_idx = fl->tag_idx;
3159			}
3160		}
3161
3162		tag = fl->tag[sd->tag_idx];
3163
3164		cl = uma_zalloc(FL_BUF_ZONE(sc, sd->tag_idx), M_NOWAIT);
3165		if (cl == NULL)
3166			break;
3167		if (fl->flags & FL_BUF_PACKING) {
3168			*find_buf_refcnt(cl) = 1;
3169			cl += MSIZE;
3170		}
3171
3172		rc = bus_dmamap_load(tag, sd->map, cl,
3173		    FL_BUF_SIZE(sc, sd->tag_idx), oneseg_dma_callback, &pa, 0);
3174		if (rc != 0 || pa == 0) {
3175			fl->dmamap_failed++;
3176			if (fl->flags & FL_BUF_PACKING)
3177				cl -= MSIZE;
3178			uma_zfree(FL_BUF_ZONE(sc, sd->tag_idx), cl);
3179			break;
3180		}
3181
3182		sd->cl = cl;
3183		*d++ = htobe64(pa | FL_BUF_HWTAG(sc, sd->tag_idx));
3184
3185#ifdef INVARIANTS
3186		sd->ba_hwtag = htobe64(pa | FL_BUF_HWTAG(sc, sd->tag_idx));
3187#endif
3188
3189recycled:
3190		fl->pending++;
3191		fl->needed--;
3192		sd++;
3193		if (++fl->pidx == fl->cap) {
3194			fl->pidx = 0;
3195			sd = fl->sdesc;
3196			d = fl->desc;
3197		}
3198	}
3199
3200	if (fl->pending >= 8)
3201		ring_fl_db(sc, fl);
3202
3203	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3204}
3205
3206/*
3207 * Attempt to refill all starving freelists.
3208 */
3209static void
3210refill_sfl(void *arg)
3211{
3212	struct adapter *sc = arg;
3213	struct sge_fl *fl, *fl_temp;
3214
3215	mtx_lock(&sc->sfl_lock);
3216	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3217		FL_LOCK(fl);
3218		refill_fl(sc, fl, 64);
3219		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3220			TAILQ_REMOVE(&sc->sfl, fl, link);
3221			fl->flags &= ~FL_STARVING;
3222		}
3223		FL_UNLOCK(fl);
3224	}
3225
3226	if (!TAILQ_EMPTY(&sc->sfl))
3227		callout_schedule(&sc->sfl_callout, hz / 5);
3228	mtx_unlock(&sc->sfl_lock);
3229}
3230
3231static int
3232alloc_fl_sdesc(struct sge_fl *fl)
3233{
3234	struct fl_sdesc *sd;
3235	bus_dma_tag_t tag;
3236	int i, rc;
3237
3238	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3239	    M_ZERO | M_WAITOK);
3240
3241	tag = fl->tag[fl->tag_idx];
3242	sd = fl->sdesc;
3243	for (i = 0; i < fl->cap; i++, sd++) {
3244
3245		sd->tag_idx = fl->tag_idx;
3246		rc = bus_dmamap_create(tag, 0, &sd->map);
3247		if (rc != 0)
3248			goto failed;
3249	}
3250
3251	return (0);
3252failed:
3253	while (--i >= 0) {
3254		sd--;
3255		bus_dmamap_destroy(tag, sd->map);
3256	}
3257	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
3258
3259	free(fl->sdesc, M_CXGBE);
3260	fl->sdesc = NULL;
3261
3262	return (rc);
3263}
3264
3265static void
3266free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3267{
3268	struct fl_sdesc *sd;
3269	int i;
3270
3271	sd = fl->sdesc;
3272	for (i = 0; i < fl->cap; i++, sd++) {
3273
3274		if (sd->cl) {
3275			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
3276			uma_zfree(FL_BUF_ZONE(sc, sd->tag_idx), sd->cl);
3277			sd->cl = NULL;
3278		}
3279
3280		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
3281	}
3282
3283	free(fl->sdesc, M_CXGBE);
3284	fl->sdesc = NULL;
3285}
3286
3287int
3288t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3289    int flags)
3290{
3291	struct tx_map *txm;
3292	int i, rc;
3293
3294	txmaps->map_total = txmaps->map_avail = count;
3295	txmaps->map_cidx = txmaps->map_pidx = 0;
3296
3297	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3298	    M_ZERO | flags);
3299
3300	txm = txmaps->maps;
3301	for (i = 0; i < count; i++, txm++) {
3302		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3303		if (rc != 0)
3304			goto failed;
3305	}
3306
3307	return (0);
3308failed:
3309	while (--i >= 0) {
3310		txm--;
3311		bus_dmamap_destroy(tx_tag, txm->map);
3312	}
3313	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3314
3315	free(txmaps->maps, M_CXGBE);
3316	txmaps->maps = NULL;
3317
3318	return (rc);
3319}
3320
3321void
3322t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3323{
3324	struct tx_map *txm;
3325	int i;
3326
3327	txm = txmaps->maps;
3328	for (i = 0; i < txmaps->map_total; i++, txm++) {
3329
3330		if (txm->m) {
3331			bus_dmamap_unload(tx_tag, txm->map);
3332			m_freem(txm->m);
3333			txm->m = NULL;
3334		}
3335
3336		bus_dmamap_destroy(tx_tag, txm->map);
3337	}
3338
3339	free(txmaps->maps, M_CXGBE);
3340	txmaps->maps = NULL;
3341}
3342
3343/*
3344 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3345 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3346 * of immediate data.
3347 */
3348#define IMM_LEN ( \
3349      2 * EQ_ESIZE \
3350    - sizeof(struct fw_eth_tx_pkt_wr) \
3351    - sizeof(struct cpl_tx_pkt_core))
3352
3353/*
3354 * Returns non-zero on failure, no need to cleanup anything in that case.
3355 *
3356 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3357 * if the resulting chain still won't fit in a tx descriptor.
3358 *
3359 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3360 * does not have the TCP header in it.
3361 */
3362static int
3363get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3364    int sgl_only)
3365{
3366	struct mbuf *m = *fp;
3367	struct tx_maps *txmaps;
3368	struct tx_map *txm;
3369	int rc, defragged = 0, n;
3370
3371	TXQ_LOCK_ASSERT_OWNED(txq);
3372
3373	if (m->m_pkthdr.tso_segsz)
3374		sgl_only = 1;	/* Do not allow immediate data with LSO */
3375
3376start:	sgl->nsegs = 0;
3377
3378	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3379		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3380
3381	txmaps = &txq->txmaps;
3382	if (txmaps->map_avail == 0) {
3383		txq->no_dmamap++;
3384		return (ENOMEM);
3385	}
3386	txm = &txmaps->maps[txmaps->map_pidx];
3387
3388	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3389		*fp = m_pullup(m, 50);
3390		m = *fp;
3391		if (m == NULL)
3392			return (ENOBUFS);
3393	}
3394
3395	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3396	    &sgl->nsegs, BUS_DMA_NOWAIT);
3397	if (rc == EFBIG && defragged == 0) {
3398		m = m_defrag(m, M_NOWAIT);
3399		if (m == NULL)
3400			return (EFBIG);
3401
3402		defragged = 1;
3403		*fp = m;
3404		goto start;
3405	}
3406	if (rc != 0)
3407		return (rc);
3408
3409	txm->m = m;
3410	txmaps->map_avail--;
3411	if (++txmaps->map_pidx == txmaps->map_total)
3412		txmaps->map_pidx = 0;
3413
3414	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3415	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3416
3417	/*
3418	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3419	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3420	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3421	 * then len1 must be set to 0.
3422	 */
3423	n = sgl->nsegs - 1;
3424	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3425
3426	return (0);
3427}
3428
3429
3430/*
3431 * Releases all the txq resources used up in the specified sgl.
3432 */
3433static int
3434free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3435{
3436	struct tx_maps *txmaps;
3437	struct tx_map *txm;
3438
3439	TXQ_LOCK_ASSERT_OWNED(txq);
3440
3441	if (sgl->nsegs == 0)
3442		return (0);	/* didn't use any map */
3443
3444	txmaps = &txq->txmaps;
3445
3446	/* 1 pkt uses exactly 1 map, back it out */
3447
3448	txmaps->map_avail++;
3449	if (txmaps->map_pidx > 0)
3450		txmaps->map_pidx--;
3451	else
3452		txmaps->map_pidx = txmaps->map_total - 1;
3453
3454	txm = &txmaps->maps[txmaps->map_pidx];
3455	bus_dmamap_unload(txq->tx_tag, txm->map);
3456	txm->m = NULL;
3457
3458	return (0);
3459}
3460
3461static int
3462write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3463    struct sgl *sgl)
3464{
3465	struct sge_eq *eq = &txq->eq;
3466	struct fw_eth_tx_pkt_wr *wr;
3467	struct cpl_tx_pkt_core *cpl;
3468	uint32_t ctrl;	/* used in many unrelated places */
3469	uint64_t ctrl1;
3470	int nflits, ndesc, pktlen;
3471	struct tx_sdesc *txsd;
3472	caddr_t dst;
3473
3474	TXQ_LOCK_ASSERT_OWNED(txq);
3475
3476	pktlen = m->m_pkthdr.len;
3477
3478	/*
3479	 * Do we have enough flits to send this frame out?
3480	 */
3481	ctrl = sizeof(struct cpl_tx_pkt_core);
3482	if (m->m_pkthdr.tso_segsz) {
3483		nflits = TXPKT_LSO_WR_HDR;
3484		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3485	} else
3486		nflits = TXPKT_WR_HDR;
3487	if (sgl->nsegs > 0)
3488		nflits += sgl->nflits;
3489	else {
3490		nflits += howmany(pktlen, 8);
3491		ctrl += pktlen;
3492	}
3493	ndesc = howmany(nflits, 8);
3494	if (ndesc > eq->avail)
3495		return (ENOMEM);
3496
3497	/* Firmware work request header */
3498	wr = (void *)&eq->desc[eq->pidx];
3499	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3500	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3501	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3502	if (eq->avail == ndesc) {
3503		if (!(eq->flags & EQ_CRFLUSHED)) {
3504			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3505			eq->flags |= EQ_CRFLUSHED;
3506		}
3507		eq->flags |= EQ_STALLED;
3508	}
3509
3510	wr->equiq_to_len16 = htobe32(ctrl);
3511	wr->r3 = 0;
3512
3513	if (m->m_pkthdr.tso_segsz) {
3514		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3515		struct ether_header *eh;
3516		void *l3hdr;
3517#if defined(INET) || defined(INET6)
3518		struct tcphdr *tcp;
3519#endif
3520		uint16_t eh_type;
3521
3522		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3523		    F_LSO_LAST_SLICE;
3524
3525		eh = mtod(m, struct ether_header *);
3526		eh_type = ntohs(eh->ether_type);
3527		if (eh_type == ETHERTYPE_VLAN) {
3528			struct ether_vlan_header *evh = (void *)eh;
3529
3530			ctrl |= V_LSO_ETHHDR_LEN(1);
3531			l3hdr = evh + 1;
3532			eh_type = ntohs(evh->evl_proto);
3533		} else
3534			l3hdr = eh + 1;
3535
3536		switch (eh_type) {
3537#ifdef INET6
3538		case ETHERTYPE_IPV6:
3539		{
3540			struct ip6_hdr *ip6 = l3hdr;
3541
3542			/*
3543			 * XXX-BZ For now we do not pretend to support
3544			 * IPv6 extension headers.
3545			 */
3546			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3547			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3548			tcp = (struct tcphdr *)(ip6 + 1);
3549			ctrl |= F_LSO_IPV6;
3550			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3551			    V_LSO_TCPHDR_LEN(tcp->th_off);
3552			break;
3553		}
3554#endif
3555#ifdef INET
3556		case ETHERTYPE_IP:
3557		{
3558			struct ip *ip = l3hdr;
3559
3560			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3561			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3562			    V_LSO_TCPHDR_LEN(tcp->th_off);
3563			break;
3564		}
3565#endif
3566		default:
3567			panic("%s: CSUM_TSO but no supported IP version "
3568			    "(0x%04x)", __func__, eh_type);
3569		}
3570
3571		lso->lso_ctrl = htobe32(ctrl);
3572		lso->ipid_ofst = htobe16(0);
3573		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3574		lso->seqno_offset = htobe32(0);
3575		lso->len = htobe32(pktlen);
3576
3577		cpl = (void *)(lso + 1);
3578
3579		txq->tso_wrs++;
3580	} else
3581		cpl = (void *)(wr + 1);
3582
3583	/* Checksum offload */
3584	ctrl1 = 0;
3585	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3586		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3587	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3588	    CSUM_TCP_IPV6 | CSUM_TSO)))
3589		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3590	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3591	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3592		txq->txcsum++;	/* some hardware assistance provided */
3593
3594	/* VLAN tag insertion */
3595	if (m->m_flags & M_VLANTAG) {
3596		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3597		txq->vlan_insertion++;
3598	}
3599
3600	/* CPL header */
3601	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3602	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3603	cpl->pack = 0;
3604	cpl->len = htobe16(pktlen);
3605	cpl->ctrl1 = htobe64(ctrl1);
3606
3607	/* Software descriptor */
3608	txsd = &txq->sdesc[eq->pidx];
3609	txsd->desc_used = ndesc;
3610
3611	eq->pending += ndesc;
3612	eq->avail -= ndesc;
3613	eq->pidx += ndesc;
3614	if (eq->pidx >= eq->cap)
3615		eq->pidx -= eq->cap;
3616
3617	/* SGL */
3618	dst = (void *)(cpl + 1);
3619	if (sgl->nsegs > 0) {
3620		txsd->credits = 1;
3621		txq->sgl_wrs++;
3622		write_sgl_to_txd(eq, sgl, &dst);
3623	} else {
3624		txsd->credits = 0;
3625		txq->imm_wrs++;
3626		for (; m; m = m->m_next) {
3627			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3628#ifdef INVARIANTS
3629			pktlen -= m->m_len;
3630#endif
3631		}
3632#ifdef INVARIANTS
3633		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3634#endif
3635
3636	}
3637
3638	txq->txpkt_wrs++;
3639	return (0);
3640}
3641
3642/*
3643 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3644 * request.  It has either been folded into txpkts or txpkts was flushed and m
3645 * has started a new coalesced work request (as the first frame in a fresh
3646 * txpkts).
3647 *
3648 * Returns non-zero to indicate a failure - caller is responsible for
3649 * transmitting m, if there was anything in txpkts it has been flushed.
3650 */
3651static int
3652add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3653    struct mbuf *m, struct sgl *sgl)
3654{
3655	struct sge_eq *eq = &txq->eq;
3656	int can_coalesce;
3657	struct tx_sdesc *txsd;
3658	int flits;
3659
3660	TXQ_LOCK_ASSERT_OWNED(txq);
3661
3662	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3663
3664	if (txpkts->npkt > 0) {
3665		flits = TXPKTS_PKT_HDR + sgl->nflits;
3666		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3667		    txpkts->nflits + flits <= TX_WR_FLITS &&
3668		    txpkts->nflits + flits <= eq->avail * 8 &&
3669		    txpkts->plen + m->m_pkthdr.len < 65536;
3670
3671		if (can_coalesce) {
3672			txpkts->npkt++;
3673			txpkts->nflits += flits;
3674			txpkts->plen += m->m_pkthdr.len;
3675
3676			txsd = &txq->sdesc[eq->pidx];
3677			txsd->credits++;
3678
3679			return (0);
3680		}
3681
3682		/*
3683		 * Couldn't coalesce m into txpkts.  The first order of business
3684		 * is to send txpkts on its way.  Then we'll revisit m.
3685		 */
3686		write_txpkts_wr(txq, txpkts);
3687	}
3688
3689	/*
3690	 * Check if we can start a new coalesced tx work request with m as
3691	 * the first packet in it.
3692	 */
3693
3694	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3695
3696	flits = TXPKTS_WR_HDR + sgl->nflits;
3697	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3698	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3699
3700	if (can_coalesce == 0)
3701		return (EINVAL);
3702
3703	/*
3704	 * Start a fresh coalesced tx WR with m as the first frame in it.
3705	 */
3706	txpkts->npkt = 1;
3707	txpkts->nflits = flits;
3708	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3709	txpkts->plen = m->m_pkthdr.len;
3710
3711	txsd = &txq->sdesc[eq->pidx];
3712	txsd->credits = 1;
3713
3714	return (0);
3715}
3716
3717/*
3718 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3719 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3720 * coalescing only if sufficient hardware descriptors are available.
3721 */
3722static void
3723write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3724{
3725	struct sge_eq *eq = &txq->eq;
3726	struct fw_eth_tx_pkts_wr *wr;
3727	struct tx_sdesc *txsd;
3728	uint32_t ctrl;
3729	int ndesc;
3730
3731	TXQ_LOCK_ASSERT_OWNED(txq);
3732
3733	ndesc = howmany(txpkts->nflits, 8);
3734
3735	wr = (void *)&eq->desc[eq->pidx];
3736	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3737	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3738	if (eq->avail == ndesc) {
3739		if (!(eq->flags & EQ_CRFLUSHED)) {
3740			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3741			eq->flags |= EQ_CRFLUSHED;
3742		}
3743		eq->flags |= EQ_STALLED;
3744	}
3745	wr->equiq_to_len16 = htobe32(ctrl);
3746	wr->plen = htobe16(txpkts->plen);
3747	wr->npkt = txpkts->npkt;
3748	wr->r3 = wr->type = 0;
3749
3750	/* Everything else already written */
3751
3752	txsd = &txq->sdesc[eq->pidx];
3753	txsd->desc_used = ndesc;
3754
3755	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3756
3757	eq->pending += ndesc;
3758	eq->avail -= ndesc;
3759	eq->pidx += ndesc;
3760	if (eq->pidx >= eq->cap)
3761		eq->pidx -= eq->cap;
3762
3763	txq->txpkts_pkts += txpkts->npkt;
3764	txq->txpkts_wrs++;
3765	txpkts->npkt = 0;	/* emptied */
3766}
3767
3768static inline void
3769write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3770    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3771{
3772	struct ulp_txpkt *ulpmc;
3773	struct ulptx_idata *ulpsc;
3774	struct cpl_tx_pkt_core *cpl;
3775	struct sge_eq *eq = &txq->eq;
3776	uintptr_t flitp, start, end;
3777	uint64_t ctrl;
3778	caddr_t dst;
3779
3780	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3781
3782	start = (uintptr_t)eq->desc;
3783	end = (uintptr_t)eq->spg;
3784
3785	/* Checksum offload */
3786	ctrl = 0;
3787	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3788		ctrl |= F_TXPKT_IPCSUM_DIS;
3789	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3790	    CSUM_TCP_IPV6 | CSUM_TSO)))
3791		ctrl |= F_TXPKT_L4CSUM_DIS;
3792	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3793	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3794		txq->txcsum++;	/* some hardware assistance provided */
3795
3796	/* VLAN tag insertion */
3797	if (m->m_flags & M_VLANTAG) {
3798		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3799		txq->vlan_insertion++;
3800	}
3801
3802	/*
3803	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3804	 * is required by the firmware/hardware).  It follows that flitp cannot
3805	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3806	 * bytes each), and that it can not wrap around in the middle of the
3807	 * cpl_tx_pkt_core either.
3808	 */
3809	flitp = (uintptr_t)txpkts->flitp;
3810	KASSERT((flitp & 0xf) == 0,
3811	    ("%s: last SGL did not end at 16 byte boundary: %p",
3812	    __func__, txpkts->flitp));
3813
3814	/* ULP master command */
3815	ulpmc = (void *)flitp;
3816	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3817	    V_ULP_TXPKT_FID(eq->iqid));
3818	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3819	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3820
3821	/* ULP subcommand */
3822	ulpsc = (void *)(ulpmc + 1);
3823	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3824	    F_ULP_TX_SC_MORE);
3825	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3826
3827	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3828	if (flitp == end)
3829		flitp = start;
3830
3831	/* CPL_TX_PKT */
3832	cpl = (void *)flitp;
3833	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3834	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3835	cpl->pack = 0;
3836	cpl->len = htobe16(m->m_pkthdr.len);
3837	cpl->ctrl1 = htobe64(ctrl);
3838
3839	flitp += sizeof(*cpl);
3840	if (flitp == end)
3841		flitp = start;
3842
3843	/* SGL for this frame */
3844	dst = (caddr_t)flitp;
3845	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3846	txpkts->flitp = (void *)dst;
3847
3848	KASSERT(((uintptr_t)dst & 0xf) == 0,
3849	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3850}
3851
3852/*
3853 * If the SGL ends on an address that is not 16 byte aligned, this function will
3854 * add a 0 filled flit at the end.  It returns 1 in that case.
3855 */
3856static int
3857write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3858{
3859	__be64 *flitp, *end;
3860	struct ulptx_sgl *usgl;
3861	bus_dma_segment_t *seg;
3862	int i, padded;
3863
3864	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3865	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3866	    __func__, sgl->nsegs, sgl->nflits));
3867
3868	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3869	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3870
3871	flitp = (__be64 *)(*to);
3872	end = flitp + sgl->nflits;
3873	seg = &sgl->seg[0];
3874	usgl = (void *)flitp;
3875
3876	/*
3877	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3878	 * ring, so we're at least 16 bytes away from the status page.  There is
3879	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3880	 */
3881
3882	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3883	    V_ULPTX_NSGE(sgl->nsegs));
3884	usgl->len0 = htobe32(seg->ds_len);
3885	usgl->addr0 = htobe64(seg->ds_addr);
3886	seg++;
3887
3888	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3889
3890		/* Won't wrap around at all */
3891
3892		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3893			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3894			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3895		}
3896		if (i & 1)
3897			usgl->sge[i / 2].len[1] = htobe32(0);
3898	} else {
3899
3900		/* Will wrap somewhere in the rest of the SGL */
3901
3902		/* 2 flits already written, write the rest flit by flit */
3903		flitp = (void *)(usgl + 1);
3904		for (i = 0; i < sgl->nflits - 2; i++) {
3905			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3906				flitp = (void *)eq->desc;
3907			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3908		}
3909		end = flitp;
3910	}
3911
3912	if ((uintptr_t)end & 0xf) {
3913		*(uint64_t *)end = 0;
3914		end++;
3915		padded = 1;
3916	} else
3917		padded = 0;
3918
3919	if ((uintptr_t)end == (uintptr_t)eq->spg)
3920		*to = (void *)eq->desc;
3921	else
3922		*to = (void *)end;
3923
3924	return (padded);
3925}
3926
3927static inline void
3928copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3929{
3930	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3931		bcopy(from, *to, len);
3932		(*to) += len;
3933	} else {
3934		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3935
3936		bcopy(from, *to, portion);
3937		from += portion;
3938		portion = len - portion;	/* remaining */
3939		bcopy(from, (void *)eq->desc, portion);
3940		(*to) = (caddr_t)eq->desc + portion;
3941	}
3942}
3943
3944static inline void
3945ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3946{
3947	u_int db, pending;
3948
3949	db = eq->doorbells;
3950	pending = eq->pending;
3951	if (pending > 1)
3952		clrbit(&db, DOORBELL_WCWR);
3953	eq->pending = 0;
3954	wmb();
3955
3956	switch (ffs(db) - 1) {
3957	case DOORBELL_UDB:
3958		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3959		return;
3960
3961	case DOORBELL_WCWR: {
3962		volatile uint64_t *dst, *src;
3963		int i;
3964
3965		/*
3966		 * Queues whose 128B doorbell segment fits in the page do not
3967		 * use relative qid (udb_qid is always 0).  Only queues with
3968		 * doorbell segments can do WCWR.
3969		 */
3970		KASSERT(eq->udb_qid == 0 && pending == 1,
3971		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
3972		    __func__, eq->doorbells, pending, eq->pidx, eq));
3973
3974		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
3975		    UDBS_DB_OFFSET);
3976		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3977		src = (void *)&eq->desc[i];
3978		while (src != (void *)&eq->desc[i + 1])
3979			*dst++ = *src++;
3980		wmb();
3981		return;
3982	}
3983
3984	case DOORBELL_UDBWC:
3985		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3986		wmb();
3987		return;
3988
3989	case DOORBELL_KDB:
3990		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3991		    V_QID(eq->cntxt_id) | V_PIDX(pending));
3992		return;
3993	}
3994}
3995
3996static inline int
3997reclaimable(struct sge_eq *eq)
3998{
3999	unsigned int cidx;
4000
4001	cidx = eq->spg->cidx;	/* stable snapshot */
4002	cidx = be16toh(cidx);
4003
4004	if (cidx >= eq->cidx)
4005		return (cidx - eq->cidx);
4006	else
4007		return (cidx + eq->cap - eq->cidx);
4008}
4009
4010/*
4011 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4012 * many as possible but stop when there are around "n" mbufs to free.
4013 *
4014 * The actual number reclaimed is provided as the return value.
4015 */
4016static int
4017reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4018{
4019	struct tx_sdesc *txsd;
4020	struct tx_maps *txmaps;
4021	struct tx_map *txm;
4022	unsigned int reclaimed, maps;
4023	struct sge_eq *eq = &txq->eq;
4024
4025	TXQ_LOCK_ASSERT_OWNED(txq);
4026
4027	if (can_reclaim == 0)
4028		can_reclaim = reclaimable(eq);
4029
4030	maps = reclaimed = 0;
4031	while (can_reclaim && maps < n) {
4032		int ndesc;
4033
4034		txsd = &txq->sdesc[eq->cidx];
4035		ndesc = txsd->desc_used;
4036
4037		/* Firmware doesn't return "partial" credits. */
4038		KASSERT(can_reclaim >= ndesc,
4039		    ("%s: unexpected number of credits: %d, %d",
4040		    __func__, can_reclaim, ndesc));
4041
4042		maps += txsd->credits;
4043
4044		reclaimed += ndesc;
4045		can_reclaim -= ndesc;
4046
4047		eq->cidx += ndesc;
4048		if (__predict_false(eq->cidx >= eq->cap))
4049			eq->cidx -= eq->cap;
4050	}
4051
4052	txmaps = &txq->txmaps;
4053	txm = &txmaps->maps[txmaps->map_cidx];
4054	if (maps)
4055		prefetch(txm->m);
4056
4057	eq->avail += reclaimed;
4058	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4059	    ("%s: too many descriptors available", __func__));
4060
4061	txmaps->map_avail += maps;
4062	KASSERT(txmaps->map_avail <= txmaps->map_total,
4063	    ("%s: too many maps available", __func__));
4064
4065	while (maps--) {
4066		struct tx_map *next;
4067
4068		next = txm + 1;
4069		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4070			next = txmaps->maps;
4071		prefetch(next->m);
4072
4073		bus_dmamap_unload(txq->tx_tag, txm->map);
4074		m_freem(txm->m);
4075		txm->m = NULL;
4076
4077		txm = next;
4078		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4079			txmaps->map_cidx = 0;
4080	}
4081
4082	return (reclaimed);
4083}
4084
4085static void
4086write_eqflush_wr(struct sge_eq *eq)
4087{
4088	struct fw_eq_flush_wr *wr;
4089
4090	EQ_LOCK_ASSERT_OWNED(eq);
4091	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4092	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4093
4094	wr = (void *)&eq->desc[eq->pidx];
4095	bzero(wr, sizeof(*wr));
4096	wr->opcode = FW_EQ_FLUSH_WR;
4097	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4098	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4099
4100	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4101	eq->pending++;
4102	eq->avail--;
4103	if (++eq->pidx == eq->cap)
4104		eq->pidx = 0;
4105}
4106
4107static __be64
4108get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4109{
4110	int i = (idx / 3) * 2;
4111
4112	switch (idx % 3) {
4113	case 0: {
4114		__be64 rc;
4115
4116		rc = htobe32(sgl[i].ds_len);
4117		if (i + 1 < nsegs)
4118			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4119
4120		return (rc);
4121	}
4122	case 1:
4123		return htobe64(sgl[i].ds_addr);
4124	case 2:
4125		return htobe64(sgl[i + 1].ds_addr);
4126	}
4127
4128	return (0);
4129}
4130
4131/*
4132 * Find an SGE FL buffer size to use for the given bufsize.  Look for the the
4133 * smallest size that is large enough to hold bufsize or pick the largest size
4134 * if all sizes are less than bufsize.
4135 */
4136static void
4137set_fl_tag_idx(struct adapter *sc, struct sge_fl *fl, int bufsize)
4138{
4139	int i, largest, best, delta, start;
4140
4141	if (fl->flags & FL_BUF_PACKING) {
4142		fl->tag_idx = 0;	/* first tag is the one for packing */
4143		return;
4144	}
4145
4146	start = sc->flags & BUF_PACKING_OK ? 1 : 0;
4147	delta = FL_BUF_SIZE(sc, start) - bufsize;
4148	if (delta == 0) {
4149		fl->tag_idx = start;	/* ideal fit, look no further */
4150		return;
4151	}
4152	best = start;
4153	largest = start;
4154
4155	for (i = start + 1; i < FL_BUF_SIZES(sc); i++) {
4156		int d, fl_buf_size;
4157
4158		fl_buf_size = FL_BUF_SIZE(sc, i);
4159		d = fl_buf_size - bufsize;
4160
4161		if (d == 0) {
4162			fl->tag_idx = i;	/* ideal fit, look no further */
4163			return;
4164		}
4165		if (fl_buf_size > FL_BUF_SIZE(sc, largest))
4166			largest = i;
4167		if (d > 0 && (delta < 0 || delta > d)) {
4168			delta = d;
4169			best = i;
4170		}
4171	}
4172
4173	if (delta > 0)
4174		fl->tag_idx = best;	/* Found a buf bigger than bufsize */
4175	else
4176		fl->tag_idx = largest;	/* No buf large enough for bufsize */
4177}
4178
4179static void
4180add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4181{
4182	mtx_lock(&sc->sfl_lock);
4183	FL_LOCK(fl);
4184	if ((fl->flags & FL_DOOMED) == 0) {
4185		fl->flags |= FL_STARVING;
4186		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4187		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4188	}
4189	FL_UNLOCK(fl);
4190	mtx_unlock(&sc->sfl_lock);
4191}
4192
4193static int
4194handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4195    struct mbuf *m)
4196{
4197	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4198	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4199	struct adapter *sc = iq->adapter;
4200	struct sge *s = &sc->sge;
4201	struct sge_eq *eq;
4202
4203	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4204	    rss->opcode));
4205
4206	eq = s->eqmap[qid - s->eq_start];
4207	EQ_LOCK(eq);
4208	KASSERT(eq->flags & EQ_CRFLUSHED,
4209	    ("%s: unsolicited egress update", __func__));
4210	eq->flags &= ~EQ_CRFLUSHED;
4211	eq->egr_update++;
4212
4213	if (__predict_false(eq->flags & EQ_DOOMED))
4214		wakeup_one(eq);
4215	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4216		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4217	EQ_UNLOCK(eq);
4218
4219	return (0);
4220}
4221
4222/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4223CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4224    offsetof(struct cpl_fw6_msg, data));
4225
4226static int
4227handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4228{
4229	struct adapter *sc = iq->adapter;
4230	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4231
4232	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4233	    rss->opcode));
4234
4235	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4236		const struct rss_header *rss2;
4237
4238		rss2 = (const struct rss_header *)&cpl->data[0];
4239		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4240	}
4241
4242	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4243}
4244
4245static int
4246sysctl_uint16(SYSCTL_HANDLER_ARGS)
4247{
4248	uint16_t *id = arg1;
4249	int i = *id;
4250
4251	return sysctl_handle_int(oidp, &i, 0, req);
4252}
4253