t4_hw.c revision 309447
1/*-
2 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/cxgbe/common/t4_hw.c 309447 2016-12-02 22:53:33Z jhb $");
29
30#include "opt_inet.h"
31
32#include "common.h"
33#include "t4_regs.h"
34#include "t4_regs_values.h"
35#include "firmware/t4fw_interface.h"
36
37#undef msleep
38#define msleep(x) do { \
39	if (cold) \
40		DELAY((x) * 1000); \
41	else \
42		pause("t4hw", (x) * hz / 1000); \
43} while (0)
44
45/**
46 *	t4_wait_op_done_val - wait until an operation is completed
47 *	@adapter: the adapter performing the operation
48 *	@reg: the register to check for completion
49 *	@mask: a single-bit field within @reg that indicates completion
50 *	@polarity: the value of the field when the operation is completed
51 *	@attempts: number of check iterations
52 *	@delay: delay in usecs between iterations
53 *	@valp: where to store the value of the register at completion time
54 *
55 *	Wait until an operation is completed by checking a bit in a register
56 *	up to @attempts times.  If @valp is not NULL the value of the register
57 *	at the time it indicated completion is stored there.  Returns 0 if the
58 *	operation completes and	-EAGAIN	otherwise.
59 */
60static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
61			       int polarity, int attempts, int delay, u32 *valp)
62{
63	while (1) {
64		u32 val = t4_read_reg(adapter, reg);
65
66		if (!!(val & mask) == polarity) {
67			if (valp)
68				*valp = val;
69			return 0;
70		}
71		if (--attempts == 0)
72			return -EAGAIN;
73		if (delay)
74			udelay(delay);
75	}
76}
77
78static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
79				  int polarity, int attempts, int delay)
80{
81	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
82				   delay, NULL);
83}
84
85/**
86 *	t4_set_reg_field - set a register field to a value
87 *	@adapter: the adapter to program
88 *	@addr: the register address
89 *	@mask: specifies the portion of the register to modify
90 *	@val: the new value for the register field
91 *
92 *	Sets a register field specified by the supplied mask to the
93 *	given value.
94 */
95void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
96		      u32 val)
97{
98	u32 v = t4_read_reg(adapter, addr) & ~mask;
99
100	t4_write_reg(adapter, addr, v | val);
101	(void) t4_read_reg(adapter, addr);      /* flush */
102}
103
104/**
105 *	t4_read_indirect - read indirectly addressed registers
106 *	@adap: the adapter
107 *	@addr_reg: register holding the indirect address
108 *	@data_reg: register holding the value of the indirect register
109 *	@vals: where the read register values are stored
110 *	@nregs: how many indirect registers to read
111 *	@start_idx: index of first indirect register to read
112 *
113 *	Reads registers that are accessed indirectly through an address/data
114 *	register pair.
115 */
116void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
117			     unsigned int data_reg, u32 *vals,
118			     unsigned int nregs, unsigned int start_idx)
119{
120	while (nregs--) {
121		t4_write_reg(adap, addr_reg, start_idx);
122		*vals++ = t4_read_reg(adap, data_reg);
123		start_idx++;
124	}
125}
126
127/**
128 *	t4_write_indirect - write indirectly addressed registers
129 *	@adap: the adapter
130 *	@addr_reg: register holding the indirect addresses
131 *	@data_reg: register holding the value for the indirect registers
132 *	@vals: values to write
133 *	@nregs: how many indirect registers to write
134 *	@start_idx: address of first indirect register to write
135 *
136 *	Writes a sequential block of registers that are accessed indirectly
137 *	through an address/data register pair.
138 */
139void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
140		       unsigned int data_reg, const u32 *vals,
141		       unsigned int nregs, unsigned int start_idx)
142{
143	while (nregs--) {
144		t4_write_reg(adap, addr_reg, start_idx++);
145		t4_write_reg(adap, data_reg, *vals++);
146	}
147}
148
149/*
150 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
151 * mechanism.  This guarantees that we get the real value even if we're
152 * operating within a Virtual Machine and the Hypervisor is trapping our
153 * Configuration Space accesses.
154 *
155 * N.B. This routine should only be used as a last resort: the firmware uses
156 *      the backdoor registers on a regular basis and we can end up
157 *      conflicting with it's uses!
158 */
159u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
160{
161	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
162	u32 val;
163
164	if (chip_id(adap) <= CHELSIO_T5)
165		req |= F_ENABLE;
166	else
167		req |= F_T6_ENABLE;
168
169	if (is_t4(adap))
170		req |= F_LOCALCFG;
171
172	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
173	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
174
175	/*
176	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
177	 * Configuration Space read.  (None of the other fields matter when
178	 * F_ENABLE is 0 so a simple register write is easier than a
179	 * read-modify-write via t4_set_reg_field().)
180	 */
181	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
182
183	return val;
184}
185
186/*
187 * t4_report_fw_error - report firmware error
188 * @adap: the adapter
189 *
190 * The adapter firmware can indicate error conditions to the host.
191 * If the firmware has indicated an error, print out the reason for
192 * the firmware error.
193 */
194static void t4_report_fw_error(struct adapter *adap)
195{
196	static const char *const reason[] = {
197		"Crash",			/* PCIE_FW_EVAL_CRASH */
198		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
199		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
200		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
201		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
202		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
203		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
204		"Reserved",			/* reserved */
205	};
206	u32 pcie_fw;
207
208	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
209	if (pcie_fw & F_PCIE_FW_ERR)
210		CH_ERR(adap, "Firmware reports adapter error: %s\n",
211			reason[G_PCIE_FW_EVAL(pcie_fw)]);
212}
213
214/*
215 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
216 */
217static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
218			 u32 mbox_addr)
219{
220	for ( ; nflit; nflit--, mbox_addr += 8)
221		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
222}
223
224/*
225 * Handle a FW assertion reported in a mailbox.
226 */
227static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
228{
229	CH_ALERT(adap,
230		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
231		  asrt->u.assert.filename_0_7,
232		  be32_to_cpu(asrt->u.assert.line),
233		  be32_to_cpu(asrt->u.assert.x),
234		  be32_to_cpu(asrt->u.assert.y));
235}
236
237#define X_CIM_PF_NOACCESS 0xeeeeeeee
238/**
239 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
240 *	@adap: the adapter
241 *	@mbox: index of the mailbox to use
242 *	@cmd: the command to write
243 *	@size: command length in bytes
244 *	@rpl: where to optionally store the reply
245 *	@sleep_ok: if true we may sleep while awaiting command completion
246 *	@timeout: time to wait for command to finish before timing out
247 *		(negative implies @sleep_ok=false)
248 *
249 *	Sends the given command to FW through the selected mailbox and waits
250 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
251 *	store the FW's reply to the command.  The command and its optional
252 *	reply are of the same length.  Some FW commands like RESET and
253 *	INITIALIZE can take a considerable amount of time to execute.
254 *	@sleep_ok determines whether we may sleep while awaiting the response.
255 *	If sleeping is allowed we use progressive backoff otherwise we spin.
256 *	Note that passing in a negative @timeout is an alternate mechanism
257 *	for specifying @sleep_ok=false.  This is useful when a higher level
258 *	interface allows for specification of @timeout but not @sleep_ok ...
259 *
260 *	The return value is 0 on success or a negative errno on failure.  A
261 *	failure can happen either because we are not able to execute the
262 *	command or FW executes it but signals an error.  In the latter case
263 *	the return value is the error code indicated by FW (negated).
264 */
265int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
266			    int size, void *rpl, bool sleep_ok, int timeout)
267{
268	/*
269	 * We delay in small increments at first in an effort to maintain
270	 * responsiveness for simple, fast executing commands but then back
271	 * off to larger delays to a maximum retry delay.
272	 */
273	static const int delay[] = {
274		1, 1, 3, 5, 10, 10, 20, 50, 100
275	};
276	u32 v;
277	u64 res;
278	int i, ms, delay_idx, ret;
279	const __be64 *p = cmd;
280	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
281	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
282	u32 ctl;
283	__be64 cmd_rpl[MBOX_LEN/8];
284	u32 pcie_fw;
285
286	if ((size & 15) || size > MBOX_LEN)
287		return -EINVAL;
288
289	if (adap->flags & IS_VF) {
290		if (is_t6(adap))
291			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
292		else
293			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
294		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
295	}
296
297	/*
298	 * If we have a negative timeout, that implies that we can't sleep.
299	 */
300	if (timeout < 0) {
301		sleep_ok = false;
302		timeout = -timeout;
303	}
304
305	/*
306	 * Attempt to gain access to the mailbox.
307	 */
308	for (i = 0; i < 4; i++) {
309		ctl = t4_read_reg(adap, ctl_reg);
310		v = G_MBOWNER(ctl);
311		if (v != X_MBOWNER_NONE)
312			break;
313	}
314
315	/*
316	 * If we were unable to gain access, dequeue ourselves from the
317	 * mailbox atomic access list and report the error to our caller.
318	 */
319	if (v != X_MBOWNER_PL) {
320		t4_report_fw_error(adap);
321		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
322		return ret;
323	}
324
325	/*
326	 * If we gain ownership of the mailbox and there's a "valid" message
327	 * in it, this is likely an asynchronous error message from the
328	 * firmware.  So we'll report that and then proceed on with attempting
329	 * to issue our own command ... which may well fail if the error
330	 * presaged the firmware crashing ...
331	 */
332	if (ctl & F_MBMSGVALID) {
333		CH_ERR(adap, "found VALID command in mbox %u: "
334		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
335		       (unsigned long long)t4_read_reg64(adap, data_reg),
336		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
337		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
338		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
339		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
340		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
341		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
342		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
343	}
344
345	/*
346	 * Copy in the new mailbox command and send it on its way ...
347	 */
348	for (i = 0; i < size; i += 8, p++)
349		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
350
351	if (adap->flags & IS_VF) {
352		/*
353		 * For the VFs, the Mailbox Data "registers" are
354		 * actually backed by T4's "MA" interface rather than
355		 * PL Registers (as is the case for the PFs).  Because
356		 * these are in different coherency domains, the write
357		 * to the VF's PL-register-backed Mailbox Control can
358		 * race in front of the writes to the MA-backed VF
359		 * Mailbox Data "registers".  So we need to do a
360		 * read-back on at least one byte of the VF Mailbox
361		 * Data registers before doing the write to the VF
362		 * Mailbox Control register.
363		 */
364		t4_read_reg(adap, data_reg);
365	}
366
367	CH_DUMP_MBOX(adap, mbox, data_reg);
368
369	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
370	t4_read_reg(adap, ctl_reg);	/* flush write */
371
372	delay_idx = 0;
373	ms = delay[0];
374
375	/*
376	 * Loop waiting for the reply; bail out if we time out or the firmware
377	 * reports an error.
378	 */
379	pcie_fw = 0;
380	for (i = 0; i < timeout; i += ms) {
381		if (!(adap->flags & IS_VF)) {
382			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
383			if (pcie_fw & F_PCIE_FW_ERR)
384				break;
385		}
386		if (sleep_ok) {
387			ms = delay[delay_idx];  /* last element may repeat */
388			if (delay_idx < ARRAY_SIZE(delay) - 1)
389				delay_idx++;
390			msleep(ms);
391		} else {
392			mdelay(ms);
393		}
394
395		v = t4_read_reg(adap, ctl_reg);
396		if (v == X_CIM_PF_NOACCESS)
397			continue;
398		if (G_MBOWNER(v) == X_MBOWNER_PL) {
399			if (!(v & F_MBMSGVALID)) {
400				t4_write_reg(adap, ctl_reg,
401					     V_MBOWNER(X_MBOWNER_NONE));
402				continue;
403			}
404
405			/*
406			 * Retrieve the command reply and release the mailbox.
407			 */
408			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
409			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
410
411			CH_DUMP_MBOX(adap, mbox, data_reg);
412
413			res = be64_to_cpu(cmd_rpl[0]);
414			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
415				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
416				res = V_FW_CMD_RETVAL(EIO);
417			} else if (rpl)
418				memcpy(rpl, cmd_rpl, size);
419			return -G_FW_CMD_RETVAL((int)res);
420		}
421	}
422
423	/*
424	 * We timed out waiting for a reply to our mailbox command.  Report
425	 * the error and also check to see if the firmware reported any
426	 * errors ...
427	 */
428	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
429	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
430	       *(const u8 *)cmd, mbox);
431
432	t4_report_fw_error(adap);
433	t4_fatal_err(adap);
434	return ret;
435}
436
437int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
438		    void *rpl, bool sleep_ok)
439{
440		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
441					       sleep_ok, FW_CMD_MAX_TIMEOUT);
442
443}
444
445static int t4_edc_err_read(struct adapter *adap, int idx)
446{
447	u32 edc_ecc_err_addr_reg;
448	u32 edc_bist_status_rdata_reg;
449
450	if (is_t4(adap)) {
451		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
452		return 0;
453	}
454	if (idx != 0 && idx != 1) {
455		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
456		return 0;
457	}
458
459	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
460	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
461
462	CH_WARN(adap,
463		"edc%d err addr 0x%x: 0x%x.\n",
464		idx, edc_ecc_err_addr_reg,
465		t4_read_reg(adap, edc_ecc_err_addr_reg));
466	CH_WARN(adap,
467	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
468		edc_bist_status_rdata_reg,
469		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
470		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
471		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
472		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
473		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
474		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
475		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
476		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
477		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
478
479	return 0;
480}
481
482/**
483 *	t4_mc_read - read from MC through backdoor accesses
484 *	@adap: the adapter
485 *	@idx: which MC to access
486 *	@addr: address of first byte requested
487 *	@data: 64 bytes of data containing the requested address
488 *	@ecc: where to store the corresponding 64-bit ECC word
489 *
490 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
491 *	that covers the requested address @addr.  If @parity is not %NULL it
492 *	is assigned the 64-bit ECC word for the read data.
493 */
494int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
495{
496	int i;
497	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
498	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
499
500	if (is_t4(adap)) {
501		mc_bist_cmd_reg = A_MC_BIST_CMD;
502		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
503		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
504		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
505		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
506	} else {
507		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
508		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
509		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
510		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
511						  idx);
512		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
513						  idx);
514	}
515
516	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
517		return -EBUSY;
518	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
519	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
520	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
521	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
522		     F_START_BIST | V_BIST_CMD_GAP(1));
523	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
524	if (i)
525		return i;
526
527#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
528
529	for (i = 15; i >= 0; i--)
530		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
531	if (ecc)
532		*ecc = t4_read_reg64(adap, MC_DATA(16));
533#undef MC_DATA
534	return 0;
535}
536
537/**
538 *	t4_edc_read - read from EDC through backdoor accesses
539 *	@adap: the adapter
540 *	@idx: which EDC to access
541 *	@addr: address of first byte requested
542 *	@data: 64 bytes of data containing the requested address
543 *	@ecc: where to store the corresponding 64-bit ECC word
544 *
545 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
546 *	that covers the requested address @addr.  If @parity is not %NULL it
547 *	is assigned the 64-bit ECC word for the read data.
548 */
549int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
550{
551	int i;
552	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
553	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
554
555	if (is_t4(adap)) {
556		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
557		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
558		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
559		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
560						    idx);
561		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
562						    idx);
563	} else {
564/*
565 * These macro are missing in t4_regs.h file.
566 * Added temporarily for testing.
567 */
568#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
569#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
570		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
571		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
572		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
573		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
574						    idx);
575		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
576						    idx);
577#undef EDC_REG_T5
578#undef EDC_STRIDE_T5
579	}
580
581	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
582		return -EBUSY;
583	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
584	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
585	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
586	t4_write_reg(adap, edc_bist_cmd_reg,
587		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
588	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
589	if (i)
590		return i;
591
592#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
593
594	for (i = 15; i >= 0; i--)
595		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
596	if (ecc)
597		*ecc = t4_read_reg64(adap, EDC_DATA(16));
598#undef EDC_DATA
599	return 0;
600}
601
602/**
603 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
604 *	@adap: the adapter
605 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
606 *	@addr: address within indicated memory type
607 *	@len: amount of memory to read
608 *	@buf: host memory buffer
609 *
610 *	Reads an [almost] arbitrary memory region in the firmware: the
611 *	firmware memory address, length and host buffer must be aligned on
612 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
613 *	the firmware's memory.  If this memory contains data structures which
614 *	contain multi-byte integers, it's the callers responsibility to
615 *	perform appropriate byte order conversions.
616 */
617int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
618		__be32 *buf)
619{
620	u32 pos, start, end, offset;
621	int ret;
622
623	/*
624	 * Argument sanity checks ...
625	 */
626	if ((addr & 0x3) || (len & 0x3))
627		return -EINVAL;
628
629	/*
630	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
631	 * need to round down the start and round up the end.  We'll start
632	 * copying out of the first line at (addr - start) a word at a time.
633	 */
634	start = addr & ~(64-1);
635	end = (addr + len + 64-1) & ~(64-1);
636	offset = (addr - start)/sizeof(__be32);
637
638	for (pos = start; pos < end; pos += 64, offset = 0) {
639		__be32 data[16];
640
641		/*
642		 * Read the chip's memory block and bail if there's an error.
643		 */
644		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
645			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
646		else
647			ret = t4_edc_read(adap, mtype, pos, data, NULL);
648		if (ret)
649			return ret;
650
651		/*
652		 * Copy the data into the caller's memory buffer.
653		 */
654		while (offset < 16 && len > 0) {
655			*buf++ = data[offset++];
656			len -= sizeof(__be32);
657		}
658	}
659
660	return 0;
661}
662
663/*
664 * Return the specified PCI-E Configuration Space register from our Physical
665 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
666 * since we prefer to let the firmware own all of these registers, but if that
667 * fails we go for it directly ourselves.
668 */
669u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
670{
671
672	/*
673	 * If fw_attach != 0, construct and send the Firmware LDST Command to
674	 * retrieve the specified PCI-E Configuration Space register.
675	 */
676	if (drv_fw_attach != 0) {
677		struct fw_ldst_cmd ldst_cmd;
678		int ret;
679
680		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
681		ldst_cmd.op_to_addrspace =
682			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
683				    F_FW_CMD_REQUEST |
684				    F_FW_CMD_READ |
685				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
686		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
687		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
688		ldst_cmd.u.pcie.ctrl_to_fn =
689			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
690		ldst_cmd.u.pcie.r = reg;
691
692		/*
693		 * If the LDST Command succeeds, return the result, otherwise
694		 * fall through to reading it directly ourselves ...
695		 */
696		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
697				 &ldst_cmd);
698		if (ret == 0)
699			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
700
701		CH_WARN(adap, "Firmware failed to return "
702			"Configuration Space register %d, err = %d\n",
703			reg, -ret);
704	}
705
706	/*
707	 * Read the desired Configuration Space register via the PCI-E
708	 * Backdoor mechanism.
709	 */
710	return t4_hw_pci_read_cfg4(adap, reg);
711}
712
713/**
714 *	t4_get_regs_len - return the size of the chips register set
715 *	@adapter: the adapter
716 *
717 *	Returns the size of the chip's BAR0 register space.
718 */
719unsigned int t4_get_regs_len(struct adapter *adapter)
720{
721	unsigned int chip_version = chip_id(adapter);
722
723	switch (chip_version) {
724	case CHELSIO_T4:
725		if (adapter->flags & IS_VF)
726			return FW_T4VF_REGMAP_SIZE;
727		return T4_REGMAP_SIZE;
728
729	case CHELSIO_T5:
730	case CHELSIO_T6:
731		if (adapter->flags & IS_VF)
732			return FW_T4VF_REGMAP_SIZE;
733		return T5_REGMAP_SIZE;
734	}
735
736	CH_ERR(adapter,
737		"Unsupported chip version %d\n", chip_version);
738	return 0;
739}
740
741/**
742 *	t4_get_regs - read chip registers into provided buffer
743 *	@adap: the adapter
744 *	@buf: register buffer
745 *	@buf_size: size (in bytes) of register buffer
746 *
747 *	If the provided register buffer isn't large enough for the chip's
748 *	full register range, the register dump will be truncated to the
749 *	register buffer's size.
750 */
751void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
752{
753	static const unsigned int t4_reg_ranges[] = {
754		0x1008, 0x1108,
755		0x1180, 0x1184,
756		0x1190, 0x1194,
757		0x11a0, 0x11a4,
758		0x11b0, 0x11b4,
759		0x11fc, 0x123c,
760		0x1300, 0x173c,
761		0x1800, 0x18fc,
762		0x3000, 0x30d8,
763		0x30e0, 0x30e4,
764		0x30ec, 0x5910,
765		0x5920, 0x5924,
766		0x5960, 0x5960,
767		0x5968, 0x5968,
768		0x5970, 0x5970,
769		0x5978, 0x5978,
770		0x5980, 0x5980,
771		0x5988, 0x5988,
772		0x5990, 0x5990,
773		0x5998, 0x5998,
774		0x59a0, 0x59d4,
775		0x5a00, 0x5ae0,
776		0x5ae8, 0x5ae8,
777		0x5af0, 0x5af0,
778		0x5af8, 0x5af8,
779		0x6000, 0x6098,
780		0x6100, 0x6150,
781		0x6200, 0x6208,
782		0x6240, 0x6248,
783		0x6280, 0x62b0,
784		0x62c0, 0x6338,
785		0x6370, 0x638c,
786		0x6400, 0x643c,
787		0x6500, 0x6524,
788		0x6a00, 0x6a04,
789		0x6a14, 0x6a38,
790		0x6a60, 0x6a70,
791		0x6a78, 0x6a78,
792		0x6b00, 0x6b0c,
793		0x6b1c, 0x6b84,
794		0x6bf0, 0x6bf8,
795		0x6c00, 0x6c0c,
796		0x6c1c, 0x6c84,
797		0x6cf0, 0x6cf8,
798		0x6d00, 0x6d0c,
799		0x6d1c, 0x6d84,
800		0x6df0, 0x6df8,
801		0x6e00, 0x6e0c,
802		0x6e1c, 0x6e84,
803		0x6ef0, 0x6ef8,
804		0x6f00, 0x6f0c,
805		0x6f1c, 0x6f84,
806		0x6ff0, 0x6ff8,
807		0x7000, 0x700c,
808		0x701c, 0x7084,
809		0x70f0, 0x70f8,
810		0x7100, 0x710c,
811		0x711c, 0x7184,
812		0x71f0, 0x71f8,
813		0x7200, 0x720c,
814		0x721c, 0x7284,
815		0x72f0, 0x72f8,
816		0x7300, 0x730c,
817		0x731c, 0x7384,
818		0x73f0, 0x73f8,
819		0x7400, 0x7450,
820		0x7500, 0x7530,
821		0x7600, 0x760c,
822		0x7614, 0x761c,
823		0x7680, 0x76cc,
824		0x7700, 0x7798,
825		0x77c0, 0x77fc,
826		0x7900, 0x79fc,
827		0x7b00, 0x7b58,
828		0x7b60, 0x7b84,
829		0x7b8c, 0x7c38,
830		0x7d00, 0x7d38,
831		0x7d40, 0x7d80,
832		0x7d8c, 0x7ddc,
833		0x7de4, 0x7e04,
834		0x7e10, 0x7e1c,
835		0x7e24, 0x7e38,
836		0x7e40, 0x7e44,
837		0x7e4c, 0x7e78,
838		0x7e80, 0x7ea4,
839		0x7eac, 0x7edc,
840		0x7ee8, 0x7efc,
841		0x8dc0, 0x8e04,
842		0x8e10, 0x8e1c,
843		0x8e30, 0x8e78,
844		0x8ea0, 0x8eb8,
845		0x8ec0, 0x8f6c,
846		0x8fc0, 0x9008,
847		0x9010, 0x9058,
848		0x9060, 0x9060,
849		0x9068, 0x9074,
850		0x90fc, 0x90fc,
851		0x9400, 0x9408,
852		0x9410, 0x9458,
853		0x9600, 0x9600,
854		0x9608, 0x9638,
855		0x9640, 0x96bc,
856		0x9800, 0x9808,
857		0x9820, 0x983c,
858		0x9850, 0x9864,
859		0x9c00, 0x9c6c,
860		0x9c80, 0x9cec,
861		0x9d00, 0x9d6c,
862		0x9d80, 0x9dec,
863		0x9e00, 0x9e6c,
864		0x9e80, 0x9eec,
865		0x9f00, 0x9f6c,
866		0x9f80, 0x9fec,
867		0xd004, 0xd004,
868		0xd010, 0xd03c,
869		0xdfc0, 0xdfe0,
870		0xe000, 0xea7c,
871		0xf000, 0x11190,
872		0x19040, 0x1906c,
873		0x19078, 0x19080,
874		0x1908c, 0x190e4,
875		0x190f0, 0x190f8,
876		0x19100, 0x19110,
877		0x19120, 0x19124,
878		0x19150, 0x19194,
879		0x1919c, 0x191b0,
880		0x191d0, 0x191e8,
881		0x19238, 0x1924c,
882		0x193f8, 0x1943c,
883		0x1944c, 0x19474,
884		0x19490, 0x194e0,
885		0x194f0, 0x194f8,
886		0x19800, 0x19c08,
887		0x19c10, 0x19c90,
888		0x19ca0, 0x19ce4,
889		0x19cf0, 0x19d40,
890		0x19d50, 0x19d94,
891		0x19da0, 0x19de8,
892		0x19df0, 0x19e40,
893		0x19e50, 0x19e90,
894		0x19ea0, 0x19f4c,
895		0x1a000, 0x1a004,
896		0x1a010, 0x1a06c,
897		0x1a0b0, 0x1a0e4,
898		0x1a0ec, 0x1a0f4,
899		0x1a100, 0x1a108,
900		0x1a114, 0x1a120,
901		0x1a128, 0x1a130,
902		0x1a138, 0x1a138,
903		0x1a190, 0x1a1c4,
904		0x1a1fc, 0x1a1fc,
905		0x1e040, 0x1e04c,
906		0x1e284, 0x1e28c,
907		0x1e2c0, 0x1e2c0,
908		0x1e2e0, 0x1e2e0,
909		0x1e300, 0x1e384,
910		0x1e3c0, 0x1e3c8,
911		0x1e440, 0x1e44c,
912		0x1e684, 0x1e68c,
913		0x1e6c0, 0x1e6c0,
914		0x1e6e0, 0x1e6e0,
915		0x1e700, 0x1e784,
916		0x1e7c0, 0x1e7c8,
917		0x1e840, 0x1e84c,
918		0x1ea84, 0x1ea8c,
919		0x1eac0, 0x1eac0,
920		0x1eae0, 0x1eae0,
921		0x1eb00, 0x1eb84,
922		0x1ebc0, 0x1ebc8,
923		0x1ec40, 0x1ec4c,
924		0x1ee84, 0x1ee8c,
925		0x1eec0, 0x1eec0,
926		0x1eee0, 0x1eee0,
927		0x1ef00, 0x1ef84,
928		0x1efc0, 0x1efc8,
929		0x1f040, 0x1f04c,
930		0x1f284, 0x1f28c,
931		0x1f2c0, 0x1f2c0,
932		0x1f2e0, 0x1f2e0,
933		0x1f300, 0x1f384,
934		0x1f3c0, 0x1f3c8,
935		0x1f440, 0x1f44c,
936		0x1f684, 0x1f68c,
937		0x1f6c0, 0x1f6c0,
938		0x1f6e0, 0x1f6e0,
939		0x1f700, 0x1f784,
940		0x1f7c0, 0x1f7c8,
941		0x1f840, 0x1f84c,
942		0x1fa84, 0x1fa8c,
943		0x1fac0, 0x1fac0,
944		0x1fae0, 0x1fae0,
945		0x1fb00, 0x1fb84,
946		0x1fbc0, 0x1fbc8,
947		0x1fc40, 0x1fc4c,
948		0x1fe84, 0x1fe8c,
949		0x1fec0, 0x1fec0,
950		0x1fee0, 0x1fee0,
951		0x1ff00, 0x1ff84,
952		0x1ffc0, 0x1ffc8,
953		0x20000, 0x2002c,
954		0x20100, 0x2013c,
955		0x20190, 0x201a0,
956		0x201a8, 0x201b8,
957		0x201c4, 0x201c8,
958		0x20200, 0x20318,
959		0x20400, 0x204b4,
960		0x204c0, 0x20528,
961		0x20540, 0x20614,
962		0x21000, 0x21040,
963		0x2104c, 0x21060,
964		0x210c0, 0x210ec,
965		0x21200, 0x21268,
966		0x21270, 0x21284,
967		0x212fc, 0x21388,
968		0x21400, 0x21404,
969		0x21500, 0x21500,
970		0x21510, 0x21518,
971		0x2152c, 0x21530,
972		0x2153c, 0x2153c,
973		0x21550, 0x21554,
974		0x21600, 0x21600,
975		0x21608, 0x2161c,
976		0x21624, 0x21628,
977		0x21630, 0x21634,
978		0x2163c, 0x2163c,
979		0x21700, 0x2171c,
980		0x21780, 0x2178c,
981		0x21800, 0x21818,
982		0x21820, 0x21828,
983		0x21830, 0x21848,
984		0x21850, 0x21854,
985		0x21860, 0x21868,
986		0x21870, 0x21870,
987		0x21878, 0x21898,
988		0x218a0, 0x218a8,
989		0x218b0, 0x218c8,
990		0x218d0, 0x218d4,
991		0x218e0, 0x218e8,
992		0x218f0, 0x218f0,
993		0x218f8, 0x21a18,
994		0x21a20, 0x21a28,
995		0x21a30, 0x21a48,
996		0x21a50, 0x21a54,
997		0x21a60, 0x21a68,
998		0x21a70, 0x21a70,
999		0x21a78, 0x21a98,
1000		0x21aa0, 0x21aa8,
1001		0x21ab0, 0x21ac8,
1002		0x21ad0, 0x21ad4,
1003		0x21ae0, 0x21ae8,
1004		0x21af0, 0x21af0,
1005		0x21af8, 0x21c18,
1006		0x21c20, 0x21c20,
1007		0x21c28, 0x21c30,
1008		0x21c38, 0x21c38,
1009		0x21c80, 0x21c98,
1010		0x21ca0, 0x21ca8,
1011		0x21cb0, 0x21cc8,
1012		0x21cd0, 0x21cd4,
1013		0x21ce0, 0x21ce8,
1014		0x21cf0, 0x21cf0,
1015		0x21cf8, 0x21d7c,
1016		0x21e00, 0x21e04,
1017		0x22000, 0x2202c,
1018		0x22100, 0x2213c,
1019		0x22190, 0x221a0,
1020		0x221a8, 0x221b8,
1021		0x221c4, 0x221c8,
1022		0x22200, 0x22318,
1023		0x22400, 0x224b4,
1024		0x224c0, 0x22528,
1025		0x22540, 0x22614,
1026		0x23000, 0x23040,
1027		0x2304c, 0x23060,
1028		0x230c0, 0x230ec,
1029		0x23200, 0x23268,
1030		0x23270, 0x23284,
1031		0x232fc, 0x23388,
1032		0x23400, 0x23404,
1033		0x23500, 0x23500,
1034		0x23510, 0x23518,
1035		0x2352c, 0x23530,
1036		0x2353c, 0x2353c,
1037		0x23550, 0x23554,
1038		0x23600, 0x23600,
1039		0x23608, 0x2361c,
1040		0x23624, 0x23628,
1041		0x23630, 0x23634,
1042		0x2363c, 0x2363c,
1043		0x23700, 0x2371c,
1044		0x23780, 0x2378c,
1045		0x23800, 0x23818,
1046		0x23820, 0x23828,
1047		0x23830, 0x23848,
1048		0x23850, 0x23854,
1049		0x23860, 0x23868,
1050		0x23870, 0x23870,
1051		0x23878, 0x23898,
1052		0x238a0, 0x238a8,
1053		0x238b0, 0x238c8,
1054		0x238d0, 0x238d4,
1055		0x238e0, 0x238e8,
1056		0x238f0, 0x238f0,
1057		0x238f8, 0x23a18,
1058		0x23a20, 0x23a28,
1059		0x23a30, 0x23a48,
1060		0x23a50, 0x23a54,
1061		0x23a60, 0x23a68,
1062		0x23a70, 0x23a70,
1063		0x23a78, 0x23a98,
1064		0x23aa0, 0x23aa8,
1065		0x23ab0, 0x23ac8,
1066		0x23ad0, 0x23ad4,
1067		0x23ae0, 0x23ae8,
1068		0x23af0, 0x23af0,
1069		0x23af8, 0x23c18,
1070		0x23c20, 0x23c20,
1071		0x23c28, 0x23c30,
1072		0x23c38, 0x23c38,
1073		0x23c80, 0x23c98,
1074		0x23ca0, 0x23ca8,
1075		0x23cb0, 0x23cc8,
1076		0x23cd0, 0x23cd4,
1077		0x23ce0, 0x23ce8,
1078		0x23cf0, 0x23cf0,
1079		0x23cf8, 0x23d7c,
1080		0x23e00, 0x23e04,
1081		0x24000, 0x2402c,
1082		0x24100, 0x2413c,
1083		0x24190, 0x241a0,
1084		0x241a8, 0x241b8,
1085		0x241c4, 0x241c8,
1086		0x24200, 0x24318,
1087		0x24400, 0x244b4,
1088		0x244c0, 0x24528,
1089		0x24540, 0x24614,
1090		0x25000, 0x25040,
1091		0x2504c, 0x25060,
1092		0x250c0, 0x250ec,
1093		0x25200, 0x25268,
1094		0x25270, 0x25284,
1095		0x252fc, 0x25388,
1096		0x25400, 0x25404,
1097		0x25500, 0x25500,
1098		0x25510, 0x25518,
1099		0x2552c, 0x25530,
1100		0x2553c, 0x2553c,
1101		0x25550, 0x25554,
1102		0x25600, 0x25600,
1103		0x25608, 0x2561c,
1104		0x25624, 0x25628,
1105		0x25630, 0x25634,
1106		0x2563c, 0x2563c,
1107		0x25700, 0x2571c,
1108		0x25780, 0x2578c,
1109		0x25800, 0x25818,
1110		0x25820, 0x25828,
1111		0x25830, 0x25848,
1112		0x25850, 0x25854,
1113		0x25860, 0x25868,
1114		0x25870, 0x25870,
1115		0x25878, 0x25898,
1116		0x258a0, 0x258a8,
1117		0x258b0, 0x258c8,
1118		0x258d0, 0x258d4,
1119		0x258e0, 0x258e8,
1120		0x258f0, 0x258f0,
1121		0x258f8, 0x25a18,
1122		0x25a20, 0x25a28,
1123		0x25a30, 0x25a48,
1124		0x25a50, 0x25a54,
1125		0x25a60, 0x25a68,
1126		0x25a70, 0x25a70,
1127		0x25a78, 0x25a98,
1128		0x25aa0, 0x25aa8,
1129		0x25ab0, 0x25ac8,
1130		0x25ad0, 0x25ad4,
1131		0x25ae0, 0x25ae8,
1132		0x25af0, 0x25af0,
1133		0x25af8, 0x25c18,
1134		0x25c20, 0x25c20,
1135		0x25c28, 0x25c30,
1136		0x25c38, 0x25c38,
1137		0x25c80, 0x25c98,
1138		0x25ca0, 0x25ca8,
1139		0x25cb0, 0x25cc8,
1140		0x25cd0, 0x25cd4,
1141		0x25ce0, 0x25ce8,
1142		0x25cf0, 0x25cf0,
1143		0x25cf8, 0x25d7c,
1144		0x25e00, 0x25e04,
1145		0x26000, 0x2602c,
1146		0x26100, 0x2613c,
1147		0x26190, 0x261a0,
1148		0x261a8, 0x261b8,
1149		0x261c4, 0x261c8,
1150		0x26200, 0x26318,
1151		0x26400, 0x264b4,
1152		0x264c0, 0x26528,
1153		0x26540, 0x26614,
1154		0x27000, 0x27040,
1155		0x2704c, 0x27060,
1156		0x270c0, 0x270ec,
1157		0x27200, 0x27268,
1158		0x27270, 0x27284,
1159		0x272fc, 0x27388,
1160		0x27400, 0x27404,
1161		0x27500, 0x27500,
1162		0x27510, 0x27518,
1163		0x2752c, 0x27530,
1164		0x2753c, 0x2753c,
1165		0x27550, 0x27554,
1166		0x27600, 0x27600,
1167		0x27608, 0x2761c,
1168		0x27624, 0x27628,
1169		0x27630, 0x27634,
1170		0x2763c, 0x2763c,
1171		0x27700, 0x2771c,
1172		0x27780, 0x2778c,
1173		0x27800, 0x27818,
1174		0x27820, 0x27828,
1175		0x27830, 0x27848,
1176		0x27850, 0x27854,
1177		0x27860, 0x27868,
1178		0x27870, 0x27870,
1179		0x27878, 0x27898,
1180		0x278a0, 0x278a8,
1181		0x278b0, 0x278c8,
1182		0x278d0, 0x278d4,
1183		0x278e0, 0x278e8,
1184		0x278f0, 0x278f0,
1185		0x278f8, 0x27a18,
1186		0x27a20, 0x27a28,
1187		0x27a30, 0x27a48,
1188		0x27a50, 0x27a54,
1189		0x27a60, 0x27a68,
1190		0x27a70, 0x27a70,
1191		0x27a78, 0x27a98,
1192		0x27aa0, 0x27aa8,
1193		0x27ab0, 0x27ac8,
1194		0x27ad0, 0x27ad4,
1195		0x27ae0, 0x27ae8,
1196		0x27af0, 0x27af0,
1197		0x27af8, 0x27c18,
1198		0x27c20, 0x27c20,
1199		0x27c28, 0x27c30,
1200		0x27c38, 0x27c38,
1201		0x27c80, 0x27c98,
1202		0x27ca0, 0x27ca8,
1203		0x27cb0, 0x27cc8,
1204		0x27cd0, 0x27cd4,
1205		0x27ce0, 0x27ce8,
1206		0x27cf0, 0x27cf0,
1207		0x27cf8, 0x27d7c,
1208		0x27e00, 0x27e04,
1209	};
1210
1211	static const unsigned int t4vf_reg_ranges[] = {
1212		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1213		VF_MPS_REG(A_MPS_VF_CTL),
1214		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1215		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1216		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1217		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1218		FW_T4VF_MBDATA_BASE_ADDR,
1219		FW_T4VF_MBDATA_BASE_ADDR +
1220		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1221	};
1222
1223	static const unsigned int t5_reg_ranges[] = {
1224		0x1008, 0x10c0,
1225		0x10cc, 0x10f8,
1226		0x1100, 0x1100,
1227		0x110c, 0x1148,
1228		0x1180, 0x1184,
1229		0x1190, 0x1194,
1230		0x11a0, 0x11a4,
1231		0x11b0, 0x11b4,
1232		0x11fc, 0x123c,
1233		0x1280, 0x173c,
1234		0x1800, 0x18fc,
1235		0x3000, 0x3028,
1236		0x3060, 0x30b0,
1237		0x30b8, 0x30d8,
1238		0x30e0, 0x30fc,
1239		0x3140, 0x357c,
1240		0x35a8, 0x35cc,
1241		0x35ec, 0x35ec,
1242		0x3600, 0x5624,
1243		0x56cc, 0x56ec,
1244		0x56f4, 0x5720,
1245		0x5728, 0x575c,
1246		0x580c, 0x5814,
1247		0x5890, 0x589c,
1248		0x58a4, 0x58ac,
1249		0x58b8, 0x58bc,
1250		0x5940, 0x59c8,
1251		0x59d0, 0x59dc,
1252		0x59fc, 0x5a18,
1253		0x5a60, 0x5a70,
1254		0x5a80, 0x5a9c,
1255		0x5b94, 0x5bfc,
1256		0x6000, 0x6020,
1257		0x6028, 0x6040,
1258		0x6058, 0x609c,
1259		0x60a8, 0x614c,
1260		0x7700, 0x7798,
1261		0x77c0, 0x78fc,
1262		0x7b00, 0x7b58,
1263		0x7b60, 0x7b84,
1264		0x7b8c, 0x7c54,
1265		0x7d00, 0x7d38,
1266		0x7d40, 0x7d80,
1267		0x7d8c, 0x7ddc,
1268		0x7de4, 0x7e04,
1269		0x7e10, 0x7e1c,
1270		0x7e24, 0x7e38,
1271		0x7e40, 0x7e44,
1272		0x7e4c, 0x7e78,
1273		0x7e80, 0x7edc,
1274		0x7ee8, 0x7efc,
1275		0x8dc0, 0x8de0,
1276		0x8df8, 0x8e04,
1277		0x8e10, 0x8e84,
1278		0x8ea0, 0x8f84,
1279		0x8fc0, 0x9058,
1280		0x9060, 0x9060,
1281		0x9068, 0x90f8,
1282		0x9400, 0x9408,
1283		0x9410, 0x9470,
1284		0x9600, 0x9600,
1285		0x9608, 0x9638,
1286		0x9640, 0x96f4,
1287		0x9800, 0x9808,
1288		0x9820, 0x983c,
1289		0x9850, 0x9864,
1290		0x9c00, 0x9c6c,
1291		0x9c80, 0x9cec,
1292		0x9d00, 0x9d6c,
1293		0x9d80, 0x9dec,
1294		0x9e00, 0x9e6c,
1295		0x9e80, 0x9eec,
1296		0x9f00, 0x9f6c,
1297		0x9f80, 0xa020,
1298		0xd004, 0xd004,
1299		0xd010, 0xd03c,
1300		0xdfc0, 0xdfe0,
1301		0xe000, 0x1106c,
1302		0x11074, 0x11088,
1303		0x1109c, 0x1117c,
1304		0x11190, 0x11204,
1305		0x19040, 0x1906c,
1306		0x19078, 0x19080,
1307		0x1908c, 0x190e8,
1308		0x190f0, 0x190f8,
1309		0x19100, 0x19110,
1310		0x19120, 0x19124,
1311		0x19150, 0x19194,
1312		0x1919c, 0x191b0,
1313		0x191d0, 0x191e8,
1314		0x19238, 0x19290,
1315		0x193f8, 0x19428,
1316		0x19430, 0x19444,
1317		0x1944c, 0x1946c,
1318		0x19474, 0x19474,
1319		0x19490, 0x194cc,
1320		0x194f0, 0x194f8,
1321		0x19c00, 0x19c08,
1322		0x19c10, 0x19c60,
1323		0x19c94, 0x19ce4,
1324		0x19cf0, 0x19d40,
1325		0x19d50, 0x19d94,
1326		0x19da0, 0x19de8,
1327		0x19df0, 0x19e10,
1328		0x19e50, 0x19e90,
1329		0x19ea0, 0x19f24,
1330		0x19f34, 0x19f34,
1331		0x19f40, 0x19f50,
1332		0x19f90, 0x19fb4,
1333		0x19fc4, 0x19fe4,
1334		0x1a000, 0x1a004,
1335		0x1a010, 0x1a06c,
1336		0x1a0b0, 0x1a0e4,
1337		0x1a0ec, 0x1a0f8,
1338		0x1a100, 0x1a108,
1339		0x1a114, 0x1a120,
1340		0x1a128, 0x1a130,
1341		0x1a138, 0x1a138,
1342		0x1a190, 0x1a1c4,
1343		0x1a1fc, 0x1a1fc,
1344		0x1e008, 0x1e00c,
1345		0x1e040, 0x1e044,
1346		0x1e04c, 0x1e04c,
1347		0x1e284, 0x1e290,
1348		0x1e2c0, 0x1e2c0,
1349		0x1e2e0, 0x1e2e0,
1350		0x1e300, 0x1e384,
1351		0x1e3c0, 0x1e3c8,
1352		0x1e408, 0x1e40c,
1353		0x1e440, 0x1e444,
1354		0x1e44c, 0x1e44c,
1355		0x1e684, 0x1e690,
1356		0x1e6c0, 0x1e6c0,
1357		0x1e6e0, 0x1e6e0,
1358		0x1e700, 0x1e784,
1359		0x1e7c0, 0x1e7c8,
1360		0x1e808, 0x1e80c,
1361		0x1e840, 0x1e844,
1362		0x1e84c, 0x1e84c,
1363		0x1ea84, 0x1ea90,
1364		0x1eac0, 0x1eac0,
1365		0x1eae0, 0x1eae0,
1366		0x1eb00, 0x1eb84,
1367		0x1ebc0, 0x1ebc8,
1368		0x1ec08, 0x1ec0c,
1369		0x1ec40, 0x1ec44,
1370		0x1ec4c, 0x1ec4c,
1371		0x1ee84, 0x1ee90,
1372		0x1eec0, 0x1eec0,
1373		0x1eee0, 0x1eee0,
1374		0x1ef00, 0x1ef84,
1375		0x1efc0, 0x1efc8,
1376		0x1f008, 0x1f00c,
1377		0x1f040, 0x1f044,
1378		0x1f04c, 0x1f04c,
1379		0x1f284, 0x1f290,
1380		0x1f2c0, 0x1f2c0,
1381		0x1f2e0, 0x1f2e0,
1382		0x1f300, 0x1f384,
1383		0x1f3c0, 0x1f3c8,
1384		0x1f408, 0x1f40c,
1385		0x1f440, 0x1f444,
1386		0x1f44c, 0x1f44c,
1387		0x1f684, 0x1f690,
1388		0x1f6c0, 0x1f6c0,
1389		0x1f6e0, 0x1f6e0,
1390		0x1f700, 0x1f784,
1391		0x1f7c0, 0x1f7c8,
1392		0x1f808, 0x1f80c,
1393		0x1f840, 0x1f844,
1394		0x1f84c, 0x1f84c,
1395		0x1fa84, 0x1fa90,
1396		0x1fac0, 0x1fac0,
1397		0x1fae0, 0x1fae0,
1398		0x1fb00, 0x1fb84,
1399		0x1fbc0, 0x1fbc8,
1400		0x1fc08, 0x1fc0c,
1401		0x1fc40, 0x1fc44,
1402		0x1fc4c, 0x1fc4c,
1403		0x1fe84, 0x1fe90,
1404		0x1fec0, 0x1fec0,
1405		0x1fee0, 0x1fee0,
1406		0x1ff00, 0x1ff84,
1407		0x1ffc0, 0x1ffc8,
1408		0x30000, 0x30030,
1409		0x30038, 0x30038,
1410		0x30040, 0x30040,
1411		0x30100, 0x30144,
1412		0x30190, 0x301a0,
1413		0x301a8, 0x301b8,
1414		0x301c4, 0x301c8,
1415		0x301d0, 0x301d0,
1416		0x30200, 0x30318,
1417		0x30400, 0x304b4,
1418		0x304c0, 0x3052c,
1419		0x30540, 0x3061c,
1420		0x30800, 0x30828,
1421		0x30834, 0x30834,
1422		0x308c0, 0x30908,
1423		0x30910, 0x309ac,
1424		0x30a00, 0x30a14,
1425		0x30a1c, 0x30a2c,
1426		0x30a44, 0x30a50,
1427		0x30a74, 0x30a74,
1428		0x30a7c, 0x30afc,
1429		0x30b08, 0x30c24,
1430		0x30d00, 0x30d00,
1431		0x30d08, 0x30d14,
1432		0x30d1c, 0x30d20,
1433		0x30d3c, 0x30d3c,
1434		0x30d48, 0x30d50,
1435		0x31200, 0x3120c,
1436		0x31220, 0x31220,
1437		0x31240, 0x31240,
1438		0x31600, 0x3160c,
1439		0x31a00, 0x31a1c,
1440		0x31e00, 0x31e20,
1441		0x31e38, 0x31e3c,
1442		0x31e80, 0x31e80,
1443		0x31e88, 0x31ea8,
1444		0x31eb0, 0x31eb4,
1445		0x31ec8, 0x31ed4,
1446		0x31fb8, 0x32004,
1447		0x32200, 0x32200,
1448		0x32208, 0x32240,
1449		0x32248, 0x32280,
1450		0x32288, 0x322c0,
1451		0x322c8, 0x322fc,
1452		0x32600, 0x32630,
1453		0x32a00, 0x32abc,
1454		0x32b00, 0x32b10,
1455		0x32b20, 0x32b30,
1456		0x32b40, 0x32b50,
1457		0x32b60, 0x32b70,
1458		0x33000, 0x33028,
1459		0x33030, 0x33048,
1460		0x33060, 0x33068,
1461		0x33070, 0x3309c,
1462		0x330f0, 0x33128,
1463		0x33130, 0x33148,
1464		0x33160, 0x33168,
1465		0x33170, 0x3319c,
1466		0x331f0, 0x33238,
1467		0x33240, 0x33240,
1468		0x33248, 0x33250,
1469		0x3325c, 0x33264,
1470		0x33270, 0x332b8,
1471		0x332c0, 0x332e4,
1472		0x332f8, 0x33338,
1473		0x33340, 0x33340,
1474		0x33348, 0x33350,
1475		0x3335c, 0x33364,
1476		0x33370, 0x333b8,
1477		0x333c0, 0x333e4,
1478		0x333f8, 0x33428,
1479		0x33430, 0x33448,
1480		0x33460, 0x33468,
1481		0x33470, 0x3349c,
1482		0x334f0, 0x33528,
1483		0x33530, 0x33548,
1484		0x33560, 0x33568,
1485		0x33570, 0x3359c,
1486		0x335f0, 0x33638,
1487		0x33640, 0x33640,
1488		0x33648, 0x33650,
1489		0x3365c, 0x33664,
1490		0x33670, 0x336b8,
1491		0x336c0, 0x336e4,
1492		0x336f8, 0x33738,
1493		0x33740, 0x33740,
1494		0x33748, 0x33750,
1495		0x3375c, 0x33764,
1496		0x33770, 0x337b8,
1497		0x337c0, 0x337e4,
1498		0x337f8, 0x337fc,
1499		0x33814, 0x33814,
1500		0x3382c, 0x3382c,
1501		0x33880, 0x3388c,
1502		0x338e8, 0x338ec,
1503		0x33900, 0x33928,
1504		0x33930, 0x33948,
1505		0x33960, 0x33968,
1506		0x33970, 0x3399c,
1507		0x339f0, 0x33a38,
1508		0x33a40, 0x33a40,
1509		0x33a48, 0x33a50,
1510		0x33a5c, 0x33a64,
1511		0x33a70, 0x33ab8,
1512		0x33ac0, 0x33ae4,
1513		0x33af8, 0x33b10,
1514		0x33b28, 0x33b28,
1515		0x33b3c, 0x33b50,
1516		0x33bf0, 0x33c10,
1517		0x33c28, 0x33c28,
1518		0x33c3c, 0x33c50,
1519		0x33cf0, 0x33cfc,
1520		0x34000, 0x34030,
1521		0x34038, 0x34038,
1522		0x34040, 0x34040,
1523		0x34100, 0x34144,
1524		0x34190, 0x341a0,
1525		0x341a8, 0x341b8,
1526		0x341c4, 0x341c8,
1527		0x341d0, 0x341d0,
1528		0x34200, 0x34318,
1529		0x34400, 0x344b4,
1530		0x344c0, 0x3452c,
1531		0x34540, 0x3461c,
1532		0x34800, 0x34828,
1533		0x34834, 0x34834,
1534		0x348c0, 0x34908,
1535		0x34910, 0x349ac,
1536		0x34a00, 0x34a14,
1537		0x34a1c, 0x34a2c,
1538		0x34a44, 0x34a50,
1539		0x34a74, 0x34a74,
1540		0x34a7c, 0x34afc,
1541		0x34b08, 0x34c24,
1542		0x34d00, 0x34d00,
1543		0x34d08, 0x34d14,
1544		0x34d1c, 0x34d20,
1545		0x34d3c, 0x34d3c,
1546		0x34d48, 0x34d50,
1547		0x35200, 0x3520c,
1548		0x35220, 0x35220,
1549		0x35240, 0x35240,
1550		0x35600, 0x3560c,
1551		0x35a00, 0x35a1c,
1552		0x35e00, 0x35e20,
1553		0x35e38, 0x35e3c,
1554		0x35e80, 0x35e80,
1555		0x35e88, 0x35ea8,
1556		0x35eb0, 0x35eb4,
1557		0x35ec8, 0x35ed4,
1558		0x35fb8, 0x36004,
1559		0x36200, 0x36200,
1560		0x36208, 0x36240,
1561		0x36248, 0x36280,
1562		0x36288, 0x362c0,
1563		0x362c8, 0x362fc,
1564		0x36600, 0x36630,
1565		0x36a00, 0x36abc,
1566		0x36b00, 0x36b10,
1567		0x36b20, 0x36b30,
1568		0x36b40, 0x36b50,
1569		0x36b60, 0x36b70,
1570		0x37000, 0x37028,
1571		0x37030, 0x37048,
1572		0x37060, 0x37068,
1573		0x37070, 0x3709c,
1574		0x370f0, 0x37128,
1575		0x37130, 0x37148,
1576		0x37160, 0x37168,
1577		0x37170, 0x3719c,
1578		0x371f0, 0x37238,
1579		0x37240, 0x37240,
1580		0x37248, 0x37250,
1581		0x3725c, 0x37264,
1582		0x37270, 0x372b8,
1583		0x372c0, 0x372e4,
1584		0x372f8, 0x37338,
1585		0x37340, 0x37340,
1586		0x37348, 0x37350,
1587		0x3735c, 0x37364,
1588		0x37370, 0x373b8,
1589		0x373c0, 0x373e4,
1590		0x373f8, 0x37428,
1591		0x37430, 0x37448,
1592		0x37460, 0x37468,
1593		0x37470, 0x3749c,
1594		0x374f0, 0x37528,
1595		0x37530, 0x37548,
1596		0x37560, 0x37568,
1597		0x37570, 0x3759c,
1598		0x375f0, 0x37638,
1599		0x37640, 0x37640,
1600		0x37648, 0x37650,
1601		0x3765c, 0x37664,
1602		0x37670, 0x376b8,
1603		0x376c0, 0x376e4,
1604		0x376f8, 0x37738,
1605		0x37740, 0x37740,
1606		0x37748, 0x37750,
1607		0x3775c, 0x37764,
1608		0x37770, 0x377b8,
1609		0x377c0, 0x377e4,
1610		0x377f8, 0x377fc,
1611		0x37814, 0x37814,
1612		0x3782c, 0x3782c,
1613		0x37880, 0x3788c,
1614		0x378e8, 0x378ec,
1615		0x37900, 0x37928,
1616		0x37930, 0x37948,
1617		0x37960, 0x37968,
1618		0x37970, 0x3799c,
1619		0x379f0, 0x37a38,
1620		0x37a40, 0x37a40,
1621		0x37a48, 0x37a50,
1622		0x37a5c, 0x37a64,
1623		0x37a70, 0x37ab8,
1624		0x37ac0, 0x37ae4,
1625		0x37af8, 0x37b10,
1626		0x37b28, 0x37b28,
1627		0x37b3c, 0x37b50,
1628		0x37bf0, 0x37c10,
1629		0x37c28, 0x37c28,
1630		0x37c3c, 0x37c50,
1631		0x37cf0, 0x37cfc,
1632		0x38000, 0x38030,
1633		0x38038, 0x38038,
1634		0x38040, 0x38040,
1635		0x38100, 0x38144,
1636		0x38190, 0x381a0,
1637		0x381a8, 0x381b8,
1638		0x381c4, 0x381c8,
1639		0x381d0, 0x381d0,
1640		0x38200, 0x38318,
1641		0x38400, 0x384b4,
1642		0x384c0, 0x3852c,
1643		0x38540, 0x3861c,
1644		0x38800, 0x38828,
1645		0x38834, 0x38834,
1646		0x388c0, 0x38908,
1647		0x38910, 0x389ac,
1648		0x38a00, 0x38a14,
1649		0x38a1c, 0x38a2c,
1650		0x38a44, 0x38a50,
1651		0x38a74, 0x38a74,
1652		0x38a7c, 0x38afc,
1653		0x38b08, 0x38c24,
1654		0x38d00, 0x38d00,
1655		0x38d08, 0x38d14,
1656		0x38d1c, 0x38d20,
1657		0x38d3c, 0x38d3c,
1658		0x38d48, 0x38d50,
1659		0x39200, 0x3920c,
1660		0x39220, 0x39220,
1661		0x39240, 0x39240,
1662		0x39600, 0x3960c,
1663		0x39a00, 0x39a1c,
1664		0x39e00, 0x39e20,
1665		0x39e38, 0x39e3c,
1666		0x39e80, 0x39e80,
1667		0x39e88, 0x39ea8,
1668		0x39eb0, 0x39eb4,
1669		0x39ec8, 0x39ed4,
1670		0x39fb8, 0x3a004,
1671		0x3a200, 0x3a200,
1672		0x3a208, 0x3a240,
1673		0x3a248, 0x3a280,
1674		0x3a288, 0x3a2c0,
1675		0x3a2c8, 0x3a2fc,
1676		0x3a600, 0x3a630,
1677		0x3aa00, 0x3aabc,
1678		0x3ab00, 0x3ab10,
1679		0x3ab20, 0x3ab30,
1680		0x3ab40, 0x3ab50,
1681		0x3ab60, 0x3ab70,
1682		0x3b000, 0x3b028,
1683		0x3b030, 0x3b048,
1684		0x3b060, 0x3b068,
1685		0x3b070, 0x3b09c,
1686		0x3b0f0, 0x3b128,
1687		0x3b130, 0x3b148,
1688		0x3b160, 0x3b168,
1689		0x3b170, 0x3b19c,
1690		0x3b1f0, 0x3b238,
1691		0x3b240, 0x3b240,
1692		0x3b248, 0x3b250,
1693		0x3b25c, 0x3b264,
1694		0x3b270, 0x3b2b8,
1695		0x3b2c0, 0x3b2e4,
1696		0x3b2f8, 0x3b338,
1697		0x3b340, 0x3b340,
1698		0x3b348, 0x3b350,
1699		0x3b35c, 0x3b364,
1700		0x3b370, 0x3b3b8,
1701		0x3b3c0, 0x3b3e4,
1702		0x3b3f8, 0x3b428,
1703		0x3b430, 0x3b448,
1704		0x3b460, 0x3b468,
1705		0x3b470, 0x3b49c,
1706		0x3b4f0, 0x3b528,
1707		0x3b530, 0x3b548,
1708		0x3b560, 0x3b568,
1709		0x3b570, 0x3b59c,
1710		0x3b5f0, 0x3b638,
1711		0x3b640, 0x3b640,
1712		0x3b648, 0x3b650,
1713		0x3b65c, 0x3b664,
1714		0x3b670, 0x3b6b8,
1715		0x3b6c0, 0x3b6e4,
1716		0x3b6f8, 0x3b738,
1717		0x3b740, 0x3b740,
1718		0x3b748, 0x3b750,
1719		0x3b75c, 0x3b764,
1720		0x3b770, 0x3b7b8,
1721		0x3b7c0, 0x3b7e4,
1722		0x3b7f8, 0x3b7fc,
1723		0x3b814, 0x3b814,
1724		0x3b82c, 0x3b82c,
1725		0x3b880, 0x3b88c,
1726		0x3b8e8, 0x3b8ec,
1727		0x3b900, 0x3b928,
1728		0x3b930, 0x3b948,
1729		0x3b960, 0x3b968,
1730		0x3b970, 0x3b99c,
1731		0x3b9f0, 0x3ba38,
1732		0x3ba40, 0x3ba40,
1733		0x3ba48, 0x3ba50,
1734		0x3ba5c, 0x3ba64,
1735		0x3ba70, 0x3bab8,
1736		0x3bac0, 0x3bae4,
1737		0x3baf8, 0x3bb10,
1738		0x3bb28, 0x3bb28,
1739		0x3bb3c, 0x3bb50,
1740		0x3bbf0, 0x3bc10,
1741		0x3bc28, 0x3bc28,
1742		0x3bc3c, 0x3bc50,
1743		0x3bcf0, 0x3bcfc,
1744		0x3c000, 0x3c030,
1745		0x3c038, 0x3c038,
1746		0x3c040, 0x3c040,
1747		0x3c100, 0x3c144,
1748		0x3c190, 0x3c1a0,
1749		0x3c1a8, 0x3c1b8,
1750		0x3c1c4, 0x3c1c8,
1751		0x3c1d0, 0x3c1d0,
1752		0x3c200, 0x3c318,
1753		0x3c400, 0x3c4b4,
1754		0x3c4c0, 0x3c52c,
1755		0x3c540, 0x3c61c,
1756		0x3c800, 0x3c828,
1757		0x3c834, 0x3c834,
1758		0x3c8c0, 0x3c908,
1759		0x3c910, 0x3c9ac,
1760		0x3ca00, 0x3ca14,
1761		0x3ca1c, 0x3ca2c,
1762		0x3ca44, 0x3ca50,
1763		0x3ca74, 0x3ca74,
1764		0x3ca7c, 0x3cafc,
1765		0x3cb08, 0x3cc24,
1766		0x3cd00, 0x3cd00,
1767		0x3cd08, 0x3cd14,
1768		0x3cd1c, 0x3cd20,
1769		0x3cd3c, 0x3cd3c,
1770		0x3cd48, 0x3cd50,
1771		0x3d200, 0x3d20c,
1772		0x3d220, 0x3d220,
1773		0x3d240, 0x3d240,
1774		0x3d600, 0x3d60c,
1775		0x3da00, 0x3da1c,
1776		0x3de00, 0x3de20,
1777		0x3de38, 0x3de3c,
1778		0x3de80, 0x3de80,
1779		0x3de88, 0x3dea8,
1780		0x3deb0, 0x3deb4,
1781		0x3dec8, 0x3ded4,
1782		0x3dfb8, 0x3e004,
1783		0x3e200, 0x3e200,
1784		0x3e208, 0x3e240,
1785		0x3e248, 0x3e280,
1786		0x3e288, 0x3e2c0,
1787		0x3e2c8, 0x3e2fc,
1788		0x3e600, 0x3e630,
1789		0x3ea00, 0x3eabc,
1790		0x3eb00, 0x3eb10,
1791		0x3eb20, 0x3eb30,
1792		0x3eb40, 0x3eb50,
1793		0x3eb60, 0x3eb70,
1794		0x3f000, 0x3f028,
1795		0x3f030, 0x3f048,
1796		0x3f060, 0x3f068,
1797		0x3f070, 0x3f09c,
1798		0x3f0f0, 0x3f128,
1799		0x3f130, 0x3f148,
1800		0x3f160, 0x3f168,
1801		0x3f170, 0x3f19c,
1802		0x3f1f0, 0x3f238,
1803		0x3f240, 0x3f240,
1804		0x3f248, 0x3f250,
1805		0x3f25c, 0x3f264,
1806		0x3f270, 0x3f2b8,
1807		0x3f2c0, 0x3f2e4,
1808		0x3f2f8, 0x3f338,
1809		0x3f340, 0x3f340,
1810		0x3f348, 0x3f350,
1811		0x3f35c, 0x3f364,
1812		0x3f370, 0x3f3b8,
1813		0x3f3c0, 0x3f3e4,
1814		0x3f3f8, 0x3f428,
1815		0x3f430, 0x3f448,
1816		0x3f460, 0x3f468,
1817		0x3f470, 0x3f49c,
1818		0x3f4f0, 0x3f528,
1819		0x3f530, 0x3f548,
1820		0x3f560, 0x3f568,
1821		0x3f570, 0x3f59c,
1822		0x3f5f0, 0x3f638,
1823		0x3f640, 0x3f640,
1824		0x3f648, 0x3f650,
1825		0x3f65c, 0x3f664,
1826		0x3f670, 0x3f6b8,
1827		0x3f6c0, 0x3f6e4,
1828		0x3f6f8, 0x3f738,
1829		0x3f740, 0x3f740,
1830		0x3f748, 0x3f750,
1831		0x3f75c, 0x3f764,
1832		0x3f770, 0x3f7b8,
1833		0x3f7c0, 0x3f7e4,
1834		0x3f7f8, 0x3f7fc,
1835		0x3f814, 0x3f814,
1836		0x3f82c, 0x3f82c,
1837		0x3f880, 0x3f88c,
1838		0x3f8e8, 0x3f8ec,
1839		0x3f900, 0x3f928,
1840		0x3f930, 0x3f948,
1841		0x3f960, 0x3f968,
1842		0x3f970, 0x3f99c,
1843		0x3f9f0, 0x3fa38,
1844		0x3fa40, 0x3fa40,
1845		0x3fa48, 0x3fa50,
1846		0x3fa5c, 0x3fa64,
1847		0x3fa70, 0x3fab8,
1848		0x3fac0, 0x3fae4,
1849		0x3faf8, 0x3fb10,
1850		0x3fb28, 0x3fb28,
1851		0x3fb3c, 0x3fb50,
1852		0x3fbf0, 0x3fc10,
1853		0x3fc28, 0x3fc28,
1854		0x3fc3c, 0x3fc50,
1855		0x3fcf0, 0x3fcfc,
1856		0x40000, 0x4000c,
1857		0x40040, 0x40050,
1858		0x40060, 0x40068,
1859		0x4007c, 0x4008c,
1860		0x40094, 0x400b0,
1861		0x400c0, 0x40144,
1862		0x40180, 0x4018c,
1863		0x40200, 0x40254,
1864		0x40260, 0x40264,
1865		0x40270, 0x40288,
1866		0x40290, 0x40298,
1867		0x402ac, 0x402c8,
1868		0x402d0, 0x402e0,
1869		0x402f0, 0x402f0,
1870		0x40300, 0x4033c,
1871		0x403f8, 0x403fc,
1872		0x41304, 0x413c4,
1873		0x41400, 0x4140c,
1874		0x41414, 0x4141c,
1875		0x41480, 0x414d0,
1876		0x44000, 0x44054,
1877		0x4405c, 0x44078,
1878		0x440c0, 0x44174,
1879		0x44180, 0x441ac,
1880		0x441b4, 0x441b8,
1881		0x441c0, 0x44254,
1882		0x4425c, 0x44278,
1883		0x442c0, 0x44374,
1884		0x44380, 0x443ac,
1885		0x443b4, 0x443b8,
1886		0x443c0, 0x44454,
1887		0x4445c, 0x44478,
1888		0x444c0, 0x44574,
1889		0x44580, 0x445ac,
1890		0x445b4, 0x445b8,
1891		0x445c0, 0x44654,
1892		0x4465c, 0x44678,
1893		0x446c0, 0x44774,
1894		0x44780, 0x447ac,
1895		0x447b4, 0x447b8,
1896		0x447c0, 0x44854,
1897		0x4485c, 0x44878,
1898		0x448c0, 0x44974,
1899		0x44980, 0x449ac,
1900		0x449b4, 0x449b8,
1901		0x449c0, 0x449fc,
1902		0x45000, 0x45004,
1903		0x45010, 0x45030,
1904		0x45040, 0x45060,
1905		0x45068, 0x45068,
1906		0x45080, 0x45084,
1907		0x450a0, 0x450b0,
1908		0x45200, 0x45204,
1909		0x45210, 0x45230,
1910		0x45240, 0x45260,
1911		0x45268, 0x45268,
1912		0x45280, 0x45284,
1913		0x452a0, 0x452b0,
1914		0x460c0, 0x460e4,
1915		0x47000, 0x4703c,
1916		0x47044, 0x4708c,
1917		0x47200, 0x47250,
1918		0x47400, 0x47408,
1919		0x47414, 0x47420,
1920		0x47600, 0x47618,
1921		0x47800, 0x47814,
1922		0x48000, 0x4800c,
1923		0x48040, 0x48050,
1924		0x48060, 0x48068,
1925		0x4807c, 0x4808c,
1926		0x48094, 0x480b0,
1927		0x480c0, 0x48144,
1928		0x48180, 0x4818c,
1929		0x48200, 0x48254,
1930		0x48260, 0x48264,
1931		0x48270, 0x48288,
1932		0x48290, 0x48298,
1933		0x482ac, 0x482c8,
1934		0x482d0, 0x482e0,
1935		0x482f0, 0x482f0,
1936		0x48300, 0x4833c,
1937		0x483f8, 0x483fc,
1938		0x49304, 0x493c4,
1939		0x49400, 0x4940c,
1940		0x49414, 0x4941c,
1941		0x49480, 0x494d0,
1942		0x4c000, 0x4c054,
1943		0x4c05c, 0x4c078,
1944		0x4c0c0, 0x4c174,
1945		0x4c180, 0x4c1ac,
1946		0x4c1b4, 0x4c1b8,
1947		0x4c1c0, 0x4c254,
1948		0x4c25c, 0x4c278,
1949		0x4c2c0, 0x4c374,
1950		0x4c380, 0x4c3ac,
1951		0x4c3b4, 0x4c3b8,
1952		0x4c3c0, 0x4c454,
1953		0x4c45c, 0x4c478,
1954		0x4c4c0, 0x4c574,
1955		0x4c580, 0x4c5ac,
1956		0x4c5b4, 0x4c5b8,
1957		0x4c5c0, 0x4c654,
1958		0x4c65c, 0x4c678,
1959		0x4c6c0, 0x4c774,
1960		0x4c780, 0x4c7ac,
1961		0x4c7b4, 0x4c7b8,
1962		0x4c7c0, 0x4c854,
1963		0x4c85c, 0x4c878,
1964		0x4c8c0, 0x4c974,
1965		0x4c980, 0x4c9ac,
1966		0x4c9b4, 0x4c9b8,
1967		0x4c9c0, 0x4c9fc,
1968		0x4d000, 0x4d004,
1969		0x4d010, 0x4d030,
1970		0x4d040, 0x4d060,
1971		0x4d068, 0x4d068,
1972		0x4d080, 0x4d084,
1973		0x4d0a0, 0x4d0b0,
1974		0x4d200, 0x4d204,
1975		0x4d210, 0x4d230,
1976		0x4d240, 0x4d260,
1977		0x4d268, 0x4d268,
1978		0x4d280, 0x4d284,
1979		0x4d2a0, 0x4d2b0,
1980		0x4e0c0, 0x4e0e4,
1981		0x4f000, 0x4f03c,
1982		0x4f044, 0x4f08c,
1983		0x4f200, 0x4f250,
1984		0x4f400, 0x4f408,
1985		0x4f414, 0x4f420,
1986		0x4f600, 0x4f618,
1987		0x4f800, 0x4f814,
1988		0x50000, 0x50084,
1989		0x50090, 0x500cc,
1990		0x50400, 0x50400,
1991		0x50800, 0x50884,
1992		0x50890, 0x508cc,
1993		0x50c00, 0x50c00,
1994		0x51000, 0x5101c,
1995		0x51300, 0x51308,
1996	};
1997
1998	static const unsigned int t5vf_reg_ranges[] = {
1999		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2000		VF_MPS_REG(A_MPS_VF_CTL),
2001		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2002		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2003		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2004		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2005		FW_T4VF_MBDATA_BASE_ADDR,
2006		FW_T4VF_MBDATA_BASE_ADDR +
2007		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2008	};
2009
2010	static const unsigned int t6_reg_ranges[] = {
2011		0x1008, 0x101c,
2012		0x1024, 0x10a8,
2013		0x10b4, 0x10f8,
2014		0x1100, 0x1114,
2015		0x111c, 0x112c,
2016		0x1138, 0x113c,
2017		0x1144, 0x114c,
2018		0x1180, 0x1184,
2019		0x1190, 0x1194,
2020		0x11a0, 0x11a4,
2021		0x11b0, 0x11b4,
2022		0x11fc, 0x1274,
2023		0x1280, 0x133c,
2024		0x1800, 0x18fc,
2025		0x3000, 0x302c,
2026		0x3060, 0x30b0,
2027		0x30b8, 0x30d8,
2028		0x30e0, 0x30fc,
2029		0x3140, 0x357c,
2030		0x35a8, 0x35cc,
2031		0x35ec, 0x35ec,
2032		0x3600, 0x5624,
2033		0x56cc, 0x56ec,
2034		0x56f4, 0x5720,
2035		0x5728, 0x575c,
2036		0x580c, 0x5814,
2037		0x5890, 0x589c,
2038		0x58a4, 0x58ac,
2039		0x58b8, 0x58bc,
2040		0x5940, 0x595c,
2041		0x5980, 0x598c,
2042		0x59b0, 0x59c8,
2043		0x59d0, 0x59dc,
2044		0x59fc, 0x5a18,
2045		0x5a60, 0x5a6c,
2046		0x5a80, 0x5a8c,
2047		0x5a94, 0x5a9c,
2048		0x5b94, 0x5bfc,
2049		0x5c10, 0x5e48,
2050		0x5e50, 0x5e94,
2051		0x5ea0, 0x5eb0,
2052		0x5ec0, 0x5ec0,
2053		0x5ec8, 0x5ed0,
2054		0x5ee0, 0x5ee0,
2055		0x5ef0, 0x5ef0,
2056		0x5f00, 0x5f00,
2057		0x6000, 0x6020,
2058		0x6028, 0x6040,
2059		0x6058, 0x609c,
2060		0x60a8, 0x619c,
2061		0x7700, 0x7798,
2062		0x77c0, 0x7880,
2063		0x78cc, 0x78fc,
2064		0x7b00, 0x7b58,
2065		0x7b60, 0x7b84,
2066		0x7b8c, 0x7c54,
2067		0x7d00, 0x7d38,
2068		0x7d40, 0x7d84,
2069		0x7d8c, 0x7ddc,
2070		0x7de4, 0x7e04,
2071		0x7e10, 0x7e1c,
2072		0x7e24, 0x7e38,
2073		0x7e40, 0x7e44,
2074		0x7e4c, 0x7e78,
2075		0x7e80, 0x7edc,
2076		0x7ee8, 0x7efc,
2077		0x8dc0, 0x8de4,
2078		0x8df8, 0x8e04,
2079		0x8e10, 0x8e84,
2080		0x8ea0, 0x8f88,
2081		0x8fb8, 0x9058,
2082		0x9060, 0x9060,
2083		0x9068, 0x90f8,
2084		0x9100, 0x9124,
2085		0x9400, 0x9470,
2086		0x9600, 0x9600,
2087		0x9608, 0x9638,
2088		0x9640, 0x9704,
2089		0x9710, 0x971c,
2090		0x9800, 0x9808,
2091		0x9820, 0x983c,
2092		0x9850, 0x9864,
2093		0x9c00, 0x9c6c,
2094		0x9c80, 0x9cec,
2095		0x9d00, 0x9d6c,
2096		0x9d80, 0x9dec,
2097		0x9e00, 0x9e6c,
2098		0x9e80, 0x9eec,
2099		0x9f00, 0x9f6c,
2100		0x9f80, 0xa020,
2101		0xd004, 0xd03c,
2102		0xd100, 0xd118,
2103		0xd200, 0xd214,
2104		0xd220, 0xd234,
2105		0xd240, 0xd254,
2106		0xd260, 0xd274,
2107		0xd280, 0xd294,
2108		0xd2a0, 0xd2b4,
2109		0xd2c0, 0xd2d4,
2110		0xd2e0, 0xd2f4,
2111		0xd300, 0xd31c,
2112		0xdfc0, 0xdfe0,
2113		0xe000, 0xf008,
2114		0xf010, 0xf018,
2115		0xf020, 0xf028,
2116		0x11000, 0x11014,
2117		0x11048, 0x1106c,
2118		0x11074, 0x11088,
2119		0x11098, 0x11120,
2120		0x1112c, 0x1117c,
2121		0x11190, 0x112e0,
2122		0x11300, 0x1130c,
2123		0x12000, 0x1206c,
2124		0x19040, 0x1906c,
2125		0x19078, 0x19080,
2126		0x1908c, 0x190e8,
2127		0x190f0, 0x190f8,
2128		0x19100, 0x19110,
2129		0x19120, 0x19124,
2130		0x19150, 0x19194,
2131		0x1919c, 0x191b0,
2132		0x191d0, 0x191e8,
2133		0x19238, 0x19290,
2134		0x192a4, 0x192b0,
2135		0x192bc, 0x192bc,
2136		0x19348, 0x1934c,
2137		0x193f8, 0x19418,
2138		0x19420, 0x19428,
2139		0x19430, 0x19444,
2140		0x1944c, 0x1946c,
2141		0x19474, 0x19474,
2142		0x19490, 0x194cc,
2143		0x194f0, 0x194f8,
2144		0x19c00, 0x19c48,
2145		0x19c50, 0x19c80,
2146		0x19c94, 0x19c98,
2147		0x19ca0, 0x19cbc,
2148		0x19ce4, 0x19ce4,
2149		0x19cf0, 0x19cf8,
2150		0x19d00, 0x19d28,
2151		0x19d50, 0x19d78,
2152		0x19d94, 0x19d98,
2153		0x19da0, 0x19dc8,
2154		0x19df0, 0x19e10,
2155		0x19e50, 0x19e6c,
2156		0x19ea0, 0x19ebc,
2157		0x19ec4, 0x19ef4,
2158		0x19f04, 0x19f2c,
2159		0x19f34, 0x19f34,
2160		0x19f40, 0x19f50,
2161		0x19f90, 0x19fac,
2162		0x19fc4, 0x19fc8,
2163		0x19fd0, 0x19fe4,
2164		0x1a000, 0x1a004,
2165		0x1a010, 0x1a06c,
2166		0x1a0b0, 0x1a0e4,
2167		0x1a0ec, 0x1a0f8,
2168		0x1a100, 0x1a108,
2169		0x1a114, 0x1a120,
2170		0x1a128, 0x1a130,
2171		0x1a138, 0x1a138,
2172		0x1a190, 0x1a1c4,
2173		0x1a1fc, 0x1a1fc,
2174		0x1e008, 0x1e00c,
2175		0x1e040, 0x1e044,
2176		0x1e04c, 0x1e04c,
2177		0x1e284, 0x1e290,
2178		0x1e2c0, 0x1e2c0,
2179		0x1e2e0, 0x1e2e0,
2180		0x1e300, 0x1e384,
2181		0x1e3c0, 0x1e3c8,
2182		0x1e408, 0x1e40c,
2183		0x1e440, 0x1e444,
2184		0x1e44c, 0x1e44c,
2185		0x1e684, 0x1e690,
2186		0x1e6c0, 0x1e6c0,
2187		0x1e6e0, 0x1e6e0,
2188		0x1e700, 0x1e784,
2189		0x1e7c0, 0x1e7c8,
2190		0x1e808, 0x1e80c,
2191		0x1e840, 0x1e844,
2192		0x1e84c, 0x1e84c,
2193		0x1ea84, 0x1ea90,
2194		0x1eac0, 0x1eac0,
2195		0x1eae0, 0x1eae0,
2196		0x1eb00, 0x1eb84,
2197		0x1ebc0, 0x1ebc8,
2198		0x1ec08, 0x1ec0c,
2199		0x1ec40, 0x1ec44,
2200		0x1ec4c, 0x1ec4c,
2201		0x1ee84, 0x1ee90,
2202		0x1eec0, 0x1eec0,
2203		0x1eee0, 0x1eee0,
2204		0x1ef00, 0x1ef84,
2205		0x1efc0, 0x1efc8,
2206		0x1f008, 0x1f00c,
2207		0x1f040, 0x1f044,
2208		0x1f04c, 0x1f04c,
2209		0x1f284, 0x1f290,
2210		0x1f2c0, 0x1f2c0,
2211		0x1f2e0, 0x1f2e0,
2212		0x1f300, 0x1f384,
2213		0x1f3c0, 0x1f3c8,
2214		0x1f408, 0x1f40c,
2215		0x1f440, 0x1f444,
2216		0x1f44c, 0x1f44c,
2217		0x1f684, 0x1f690,
2218		0x1f6c0, 0x1f6c0,
2219		0x1f6e0, 0x1f6e0,
2220		0x1f700, 0x1f784,
2221		0x1f7c0, 0x1f7c8,
2222		0x1f808, 0x1f80c,
2223		0x1f840, 0x1f844,
2224		0x1f84c, 0x1f84c,
2225		0x1fa84, 0x1fa90,
2226		0x1fac0, 0x1fac0,
2227		0x1fae0, 0x1fae0,
2228		0x1fb00, 0x1fb84,
2229		0x1fbc0, 0x1fbc8,
2230		0x1fc08, 0x1fc0c,
2231		0x1fc40, 0x1fc44,
2232		0x1fc4c, 0x1fc4c,
2233		0x1fe84, 0x1fe90,
2234		0x1fec0, 0x1fec0,
2235		0x1fee0, 0x1fee0,
2236		0x1ff00, 0x1ff84,
2237		0x1ffc0, 0x1ffc8,
2238		0x30000, 0x30030,
2239		0x30038, 0x30038,
2240		0x30040, 0x30040,
2241		0x30048, 0x30048,
2242		0x30050, 0x30050,
2243		0x3005c, 0x30060,
2244		0x30068, 0x30068,
2245		0x30070, 0x30070,
2246		0x30100, 0x30168,
2247		0x30190, 0x301a0,
2248		0x301a8, 0x301b8,
2249		0x301c4, 0x301c8,
2250		0x301d0, 0x301d0,
2251		0x30200, 0x30320,
2252		0x30400, 0x304b4,
2253		0x304c0, 0x3052c,
2254		0x30540, 0x3061c,
2255		0x30800, 0x308a0,
2256		0x308c0, 0x30908,
2257		0x30910, 0x309b8,
2258		0x30a00, 0x30a04,
2259		0x30a0c, 0x30a14,
2260		0x30a1c, 0x30a2c,
2261		0x30a44, 0x30a50,
2262		0x30a74, 0x30a74,
2263		0x30a7c, 0x30afc,
2264		0x30b08, 0x30c24,
2265		0x30d00, 0x30d14,
2266		0x30d1c, 0x30d3c,
2267		0x30d44, 0x30d4c,
2268		0x30d54, 0x30d74,
2269		0x30d7c, 0x30d7c,
2270		0x30de0, 0x30de0,
2271		0x30e00, 0x30ed4,
2272		0x30f00, 0x30fa4,
2273		0x30fc0, 0x30fc4,
2274		0x31000, 0x31004,
2275		0x31080, 0x310fc,
2276		0x31208, 0x31220,
2277		0x3123c, 0x31254,
2278		0x31300, 0x31300,
2279		0x31308, 0x3131c,
2280		0x31338, 0x3133c,
2281		0x31380, 0x31380,
2282		0x31388, 0x313a8,
2283		0x313b4, 0x313b4,
2284		0x31400, 0x31420,
2285		0x31438, 0x3143c,
2286		0x31480, 0x31480,
2287		0x314a8, 0x314a8,
2288		0x314b0, 0x314b4,
2289		0x314c8, 0x314d4,
2290		0x31a40, 0x31a4c,
2291		0x31af0, 0x31b20,
2292		0x31b38, 0x31b3c,
2293		0x31b80, 0x31b80,
2294		0x31ba8, 0x31ba8,
2295		0x31bb0, 0x31bb4,
2296		0x31bc8, 0x31bd4,
2297		0x32140, 0x3218c,
2298		0x321f0, 0x321f4,
2299		0x32200, 0x32200,
2300		0x32218, 0x32218,
2301		0x32400, 0x32400,
2302		0x32408, 0x3241c,
2303		0x32618, 0x32620,
2304		0x32664, 0x32664,
2305		0x326a8, 0x326a8,
2306		0x326ec, 0x326ec,
2307		0x32a00, 0x32abc,
2308		0x32b00, 0x32b38,
2309		0x32b40, 0x32b58,
2310		0x32b60, 0x32b78,
2311		0x32c00, 0x32c00,
2312		0x32c08, 0x32c3c,
2313		0x32e00, 0x32e2c,
2314		0x32f00, 0x32f2c,
2315		0x33000, 0x3302c,
2316		0x33034, 0x33050,
2317		0x33058, 0x33058,
2318		0x33060, 0x3308c,
2319		0x3309c, 0x330ac,
2320		0x330c0, 0x330c0,
2321		0x330c8, 0x330d0,
2322		0x330d8, 0x330e0,
2323		0x330ec, 0x3312c,
2324		0x33134, 0x33150,
2325		0x33158, 0x33158,
2326		0x33160, 0x3318c,
2327		0x3319c, 0x331ac,
2328		0x331c0, 0x331c0,
2329		0x331c8, 0x331d0,
2330		0x331d8, 0x331e0,
2331		0x331ec, 0x33290,
2332		0x33298, 0x332c4,
2333		0x332e4, 0x33390,
2334		0x33398, 0x333c4,
2335		0x333e4, 0x3342c,
2336		0x33434, 0x33450,
2337		0x33458, 0x33458,
2338		0x33460, 0x3348c,
2339		0x3349c, 0x334ac,
2340		0x334c0, 0x334c0,
2341		0x334c8, 0x334d0,
2342		0x334d8, 0x334e0,
2343		0x334ec, 0x3352c,
2344		0x33534, 0x33550,
2345		0x33558, 0x33558,
2346		0x33560, 0x3358c,
2347		0x3359c, 0x335ac,
2348		0x335c0, 0x335c0,
2349		0x335c8, 0x335d0,
2350		0x335d8, 0x335e0,
2351		0x335ec, 0x33690,
2352		0x33698, 0x336c4,
2353		0x336e4, 0x33790,
2354		0x33798, 0x337c4,
2355		0x337e4, 0x337fc,
2356		0x33814, 0x33814,
2357		0x33854, 0x33868,
2358		0x33880, 0x3388c,
2359		0x338c0, 0x338d0,
2360		0x338e8, 0x338ec,
2361		0x33900, 0x3392c,
2362		0x33934, 0x33950,
2363		0x33958, 0x33958,
2364		0x33960, 0x3398c,
2365		0x3399c, 0x339ac,
2366		0x339c0, 0x339c0,
2367		0x339c8, 0x339d0,
2368		0x339d8, 0x339e0,
2369		0x339ec, 0x33a90,
2370		0x33a98, 0x33ac4,
2371		0x33ae4, 0x33b10,
2372		0x33b24, 0x33b28,
2373		0x33b38, 0x33b50,
2374		0x33bf0, 0x33c10,
2375		0x33c24, 0x33c28,
2376		0x33c38, 0x33c50,
2377		0x33cf0, 0x33cfc,
2378		0x34000, 0x34030,
2379		0x34038, 0x34038,
2380		0x34040, 0x34040,
2381		0x34048, 0x34048,
2382		0x34050, 0x34050,
2383		0x3405c, 0x34060,
2384		0x34068, 0x34068,
2385		0x34070, 0x34070,
2386		0x34100, 0x34168,
2387		0x34190, 0x341a0,
2388		0x341a8, 0x341b8,
2389		0x341c4, 0x341c8,
2390		0x341d0, 0x341d0,
2391		0x34200, 0x34320,
2392		0x34400, 0x344b4,
2393		0x344c0, 0x3452c,
2394		0x34540, 0x3461c,
2395		0x34800, 0x348a0,
2396		0x348c0, 0x34908,
2397		0x34910, 0x349b8,
2398		0x34a00, 0x34a04,
2399		0x34a0c, 0x34a14,
2400		0x34a1c, 0x34a2c,
2401		0x34a44, 0x34a50,
2402		0x34a74, 0x34a74,
2403		0x34a7c, 0x34afc,
2404		0x34b08, 0x34c24,
2405		0x34d00, 0x34d14,
2406		0x34d1c, 0x34d3c,
2407		0x34d44, 0x34d4c,
2408		0x34d54, 0x34d74,
2409		0x34d7c, 0x34d7c,
2410		0x34de0, 0x34de0,
2411		0x34e00, 0x34ed4,
2412		0x34f00, 0x34fa4,
2413		0x34fc0, 0x34fc4,
2414		0x35000, 0x35004,
2415		0x35080, 0x350fc,
2416		0x35208, 0x35220,
2417		0x3523c, 0x35254,
2418		0x35300, 0x35300,
2419		0x35308, 0x3531c,
2420		0x35338, 0x3533c,
2421		0x35380, 0x35380,
2422		0x35388, 0x353a8,
2423		0x353b4, 0x353b4,
2424		0x35400, 0x35420,
2425		0x35438, 0x3543c,
2426		0x35480, 0x35480,
2427		0x354a8, 0x354a8,
2428		0x354b0, 0x354b4,
2429		0x354c8, 0x354d4,
2430		0x35a40, 0x35a4c,
2431		0x35af0, 0x35b20,
2432		0x35b38, 0x35b3c,
2433		0x35b80, 0x35b80,
2434		0x35ba8, 0x35ba8,
2435		0x35bb0, 0x35bb4,
2436		0x35bc8, 0x35bd4,
2437		0x36140, 0x3618c,
2438		0x361f0, 0x361f4,
2439		0x36200, 0x36200,
2440		0x36218, 0x36218,
2441		0x36400, 0x36400,
2442		0x36408, 0x3641c,
2443		0x36618, 0x36620,
2444		0x36664, 0x36664,
2445		0x366a8, 0x366a8,
2446		0x366ec, 0x366ec,
2447		0x36a00, 0x36abc,
2448		0x36b00, 0x36b38,
2449		0x36b40, 0x36b58,
2450		0x36b60, 0x36b78,
2451		0x36c00, 0x36c00,
2452		0x36c08, 0x36c3c,
2453		0x36e00, 0x36e2c,
2454		0x36f00, 0x36f2c,
2455		0x37000, 0x3702c,
2456		0x37034, 0x37050,
2457		0x37058, 0x37058,
2458		0x37060, 0x3708c,
2459		0x3709c, 0x370ac,
2460		0x370c0, 0x370c0,
2461		0x370c8, 0x370d0,
2462		0x370d8, 0x370e0,
2463		0x370ec, 0x3712c,
2464		0x37134, 0x37150,
2465		0x37158, 0x37158,
2466		0x37160, 0x3718c,
2467		0x3719c, 0x371ac,
2468		0x371c0, 0x371c0,
2469		0x371c8, 0x371d0,
2470		0x371d8, 0x371e0,
2471		0x371ec, 0x37290,
2472		0x37298, 0x372c4,
2473		0x372e4, 0x37390,
2474		0x37398, 0x373c4,
2475		0x373e4, 0x3742c,
2476		0x37434, 0x37450,
2477		0x37458, 0x37458,
2478		0x37460, 0x3748c,
2479		0x3749c, 0x374ac,
2480		0x374c0, 0x374c0,
2481		0x374c8, 0x374d0,
2482		0x374d8, 0x374e0,
2483		0x374ec, 0x3752c,
2484		0x37534, 0x37550,
2485		0x37558, 0x37558,
2486		0x37560, 0x3758c,
2487		0x3759c, 0x375ac,
2488		0x375c0, 0x375c0,
2489		0x375c8, 0x375d0,
2490		0x375d8, 0x375e0,
2491		0x375ec, 0x37690,
2492		0x37698, 0x376c4,
2493		0x376e4, 0x37790,
2494		0x37798, 0x377c4,
2495		0x377e4, 0x377fc,
2496		0x37814, 0x37814,
2497		0x37854, 0x37868,
2498		0x37880, 0x3788c,
2499		0x378c0, 0x378d0,
2500		0x378e8, 0x378ec,
2501		0x37900, 0x3792c,
2502		0x37934, 0x37950,
2503		0x37958, 0x37958,
2504		0x37960, 0x3798c,
2505		0x3799c, 0x379ac,
2506		0x379c0, 0x379c0,
2507		0x379c8, 0x379d0,
2508		0x379d8, 0x379e0,
2509		0x379ec, 0x37a90,
2510		0x37a98, 0x37ac4,
2511		0x37ae4, 0x37b10,
2512		0x37b24, 0x37b28,
2513		0x37b38, 0x37b50,
2514		0x37bf0, 0x37c10,
2515		0x37c24, 0x37c28,
2516		0x37c38, 0x37c50,
2517		0x37cf0, 0x37cfc,
2518		0x40040, 0x40040,
2519		0x40080, 0x40084,
2520		0x40100, 0x40100,
2521		0x40140, 0x401bc,
2522		0x40200, 0x40214,
2523		0x40228, 0x40228,
2524		0x40240, 0x40258,
2525		0x40280, 0x40280,
2526		0x40304, 0x40304,
2527		0x40330, 0x4033c,
2528		0x41304, 0x413c8,
2529		0x413d0, 0x413dc,
2530		0x413f0, 0x413f0,
2531		0x41400, 0x4140c,
2532		0x41414, 0x4141c,
2533		0x41480, 0x414d0,
2534		0x44000, 0x4407c,
2535		0x440c0, 0x441ac,
2536		0x441b4, 0x4427c,
2537		0x442c0, 0x443ac,
2538		0x443b4, 0x4447c,
2539		0x444c0, 0x445ac,
2540		0x445b4, 0x4467c,
2541		0x446c0, 0x447ac,
2542		0x447b4, 0x4487c,
2543		0x448c0, 0x449ac,
2544		0x449b4, 0x44a7c,
2545		0x44ac0, 0x44bac,
2546		0x44bb4, 0x44c7c,
2547		0x44cc0, 0x44dac,
2548		0x44db4, 0x44e7c,
2549		0x44ec0, 0x44fac,
2550		0x44fb4, 0x4507c,
2551		0x450c0, 0x451ac,
2552		0x451b4, 0x451fc,
2553		0x45800, 0x45804,
2554		0x45810, 0x45830,
2555		0x45840, 0x45860,
2556		0x45868, 0x45868,
2557		0x45880, 0x45884,
2558		0x458a0, 0x458b0,
2559		0x45a00, 0x45a04,
2560		0x45a10, 0x45a30,
2561		0x45a40, 0x45a60,
2562		0x45a68, 0x45a68,
2563		0x45a80, 0x45a84,
2564		0x45aa0, 0x45ab0,
2565		0x460c0, 0x460e4,
2566		0x47000, 0x4703c,
2567		0x47044, 0x4708c,
2568		0x47200, 0x47250,
2569		0x47400, 0x47408,
2570		0x47414, 0x47420,
2571		0x47600, 0x47618,
2572		0x47800, 0x47814,
2573		0x47820, 0x4782c,
2574		0x50000, 0x50084,
2575		0x50090, 0x500cc,
2576		0x50300, 0x50384,
2577		0x50400, 0x50400,
2578		0x50800, 0x50884,
2579		0x50890, 0x508cc,
2580		0x50b00, 0x50b84,
2581		0x50c00, 0x50c00,
2582		0x51000, 0x51020,
2583		0x51028, 0x510b0,
2584		0x51300, 0x51324,
2585	};
2586
2587	static const unsigned int t6vf_reg_ranges[] = {
2588		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589		VF_MPS_REG(A_MPS_VF_CTL),
2590		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594		FW_T6VF_MBDATA_BASE_ADDR,
2595		FW_T6VF_MBDATA_BASE_ADDR +
2596		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597	};
2598
2599	u32 *buf_end = (u32 *)(buf + buf_size);
2600	const unsigned int *reg_ranges;
2601	int reg_ranges_size, range;
2602	unsigned int chip_version = chip_id(adap);
2603
2604	/*
2605	 * Select the right set of register ranges to dump depending on the
2606	 * adapter chip type.
2607	 */
2608	switch (chip_version) {
2609	case CHELSIO_T4:
2610		if (adap->flags & IS_VF) {
2611			reg_ranges = t4vf_reg_ranges;
2612			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613		} else {
2614			reg_ranges = t4_reg_ranges;
2615			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616		}
2617		break;
2618
2619	case CHELSIO_T5:
2620		if (adap->flags & IS_VF) {
2621			reg_ranges = t5vf_reg_ranges;
2622			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623		} else {
2624			reg_ranges = t5_reg_ranges;
2625			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626		}
2627		break;
2628
2629	case CHELSIO_T6:
2630		if (adap->flags & IS_VF) {
2631			reg_ranges = t6vf_reg_ranges;
2632			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633		} else {
2634			reg_ranges = t6_reg_ranges;
2635			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636		}
2637		break;
2638
2639	default:
2640		CH_ERR(adap,
2641			"Unsupported chip version %d\n", chip_version);
2642		return;
2643	}
2644
2645	/*
2646	 * Clear the register buffer and insert the appropriate register
2647	 * values selected by the above register ranges.
2648	 */
2649	memset(buf, 0, buf_size);
2650	for (range = 0; range < reg_ranges_size; range += 2) {
2651		unsigned int reg = reg_ranges[range];
2652		unsigned int last_reg = reg_ranges[range + 1];
2653		u32 *bufp = (u32 *)(buf + reg);
2654
2655		/*
2656		 * Iterate across the register range filling in the register
2657		 * buffer but don't write past the end of the register buffer.
2658		 */
2659		while (reg <= last_reg && bufp < buf_end) {
2660			*bufp++ = t4_read_reg(adap, reg);
2661			reg += sizeof(u32);
2662		}
2663	}
2664}
2665
2666/*
2667 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2668 * VPD-R sections.
2669 */
2670struct t4_vpd_hdr {
2671	u8  id_tag;
2672	u8  id_len[2];
2673	u8  id_data[ID_LEN];
2674	u8  vpdr_tag;
2675	u8  vpdr_len[2];
2676};
2677
2678/*
2679 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2680 */
2681#define EEPROM_DELAY		10		/* 10us per poll spin */
2682#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2683
2684#define EEPROM_STAT_ADDR	0x7bfc
2685#define VPD_BASE		0x400
2686#define VPD_BASE_OLD		0
2687#define VPD_LEN			1024
2688#define VPD_INFO_FLD_HDR_SIZE	3
2689#define CHELSIO_VPD_UNIQUE_ID	0x82
2690
2691/*
2692 * Small utility function to wait till any outstanding VPD Access is complete.
2693 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2694 * VPD Access in flight.  This allows us to handle the problem of having a
2695 * previous VPD Access time out and prevent an attempt to inject a new VPD
2696 * Request before any in-flight VPD reguest has completed.
2697 */
2698static int t4_seeprom_wait(struct adapter *adapter)
2699{
2700	unsigned int base = adapter->params.pci.vpd_cap_addr;
2701	int max_poll;
2702
2703	/*
2704	 * If no VPD Access is in flight, we can just return success right
2705	 * away.
2706	 */
2707	if (!adapter->vpd_busy)
2708		return 0;
2709
2710	/*
2711	 * Poll the VPD Capability Address/Flag register waiting for it
2712	 * to indicate that the operation is complete.
2713	 */
2714	max_poll = EEPROM_MAX_POLL;
2715	do {
2716		u16 val;
2717
2718		udelay(EEPROM_DELAY);
2719		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2720
2721		/*
2722		 * If the operation is complete, mark the VPD as no longer
2723		 * busy and return success.
2724		 */
2725		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2726			adapter->vpd_busy = 0;
2727			return 0;
2728		}
2729	} while (--max_poll);
2730
2731	/*
2732	 * Failure!  Note that we leave the VPD Busy status set in order to
2733	 * avoid pushing a new VPD Access request into the VPD Capability till
2734	 * the current operation eventually succeeds.  It's a bug to issue a
2735	 * new request when an existing request is in flight and will result
2736	 * in corrupt hardware state.
2737	 */
2738	return -ETIMEDOUT;
2739}
2740
2741/**
2742 *	t4_seeprom_read - read a serial EEPROM location
2743 *	@adapter: adapter to read
2744 *	@addr: EEPROM virtual address
2745 *	@data: where to store the read data
2746 *
2747 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2748 *	VPD capability.  Note that this function must be called with a virtual
2749 *	address.
2750 */
2751int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2752{
2753	unsigned int base = adapter->params.pci.vpd_cap_addr;
2754	int ret;
2755
2756	/*
2757	 * VPD Accesses must alway be 4-byte aligned!
2758	 */
2759	if (addr >= EEPROMVSIZE || (addr & 3))
2760		return -EINVAL;
2761
2762	/*
2763	 * Wait for any previous operation which may still be in flight to
2764	 * complete.
2765	 */
2766	ret = t4_seeprom_wait(adapter);
2767	if (ret) {
2768		CH_ERR(adapter, "VPD still busy from previous operation\n");
2769		return ret;
2770	}
2771
2772	/*
2773	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2774	 * for our request to complete.  If it doesn't complete, note the
2775	 * error and return it to our caller.  Note that we do not reset the
2776	 * VPD Busy status!
2777	 */
2778	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2779	adapter->vpd_busy = 1;
2780	adapter->vpd_flag = PCI_VPD_ADDR_F;
2781	ret = t4_seeprom_wait(adapter);
2782	if (ret) {
2783		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2784		return ret;
2785	}
2786
2787	/*
2788	 * Grab the returned data, swizzle it into our endianess and
2789	 * return success.
2790	 */
2791	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2792	*data = le32_to_cpu(*data);
2793	return 0;
2794}
2795
2796/**
2797 *	t4_seeprom_write - write a serial EEPROM location
2798 *	@adapter: adapter to write
2799 *	@addr: virtual EEPROM address
2800 *	@data: value to write
2801 *
2802 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2803 *	VPD capability.  Note that this function must be called with a virtual
2804 *	address.
2805 */
2806int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2807{
2808	unsigned int base = adapter->params.pci.vpd_cap_addr;
2809	int ret;
2810	u32 stats_reg;
2811	int max_poll;
2812
2813	/*
2814	 * VPD Accesses must alway be 4-byte aligned!
2815	 */
2816	if (addr >= EEPROMVSIZE || (addr & 3))
2817		return -EINVAL;
2818
2819	/*
2820	 * Wait for any previous operation which may still be in flight to
2821	 * complete.
2822	 */
2823	ret = t4_seeprom_wait(adapter);
2824	if (ret) {
2825		CH_ERR(adapter, "VPD still busy from previous operation\n");
2826		return ret;
2827	}
2828
2829	/*
2830	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2831	 * for our request to complete.  If it doesn't complete, note the
2832	 * error and return it to our caller.  Note that we do not reset the
2833	 * VPD Busy status!
2834	 */
2835	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2836				 cpu_to_le32(data));
2837	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2838				 (u16)addr | PCI_VPD_ADDR_F);
2839	adapter->vpd_busy = 1;
2840	adapter->vpd_flag = 0;
2841	ret = t4_seeprom_wait(adapter);
2842	if (ret) {
2843		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2844		return ret;
2845	}
2846
2847	/*
2848	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2849	 * request to complete. If it doesn't complete, return error.
2850	 */
2851	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2852	max_poll = EEPROM_MAX_POLL;
2853	do {
2854		udelay(EEPROM_DELAY);
2855		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2856	} while ((stats_reg & 0x1) && --max_poll);
2857	if (!max_poll)
2858		return -ETIMEDOUT;
2859
2860	/* Return success! */
2861	return 0;
2862}
2863
2864/**
2865 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2866 *	@phys_addr: the physical EEPROM address
2867 *	@fn: the PCI function number
2868 *	@sz: size of function-specific area
2869 *
2870 *	Translate a physical EEPROM address to virtual.  The first 1K is
2871 *	accessed through virtual addresses starting at 31K, the rest is
2872 *	accessed through virtual addresses starting at 0.
2873 *
2874 *	The mapping is as follows:
2875 *	[0..1K) -> [31K..32K)
2876 *	[1K..1K+A) -> [ES-A..ES)
2877 *	[1K+A..ES) -> [0..ES-A-1K)
2878 *
2879 *	where A = @fn * @sz, and ES = EEPROM size.
2880 */
2881int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2882{
2883	fn *= sz;
2884	if (phys_addr < 1024)
2885		return phys_addr + (31 << 10);
2886	if (phys_addr < 1024 + fn)
2887		return EEPROMSIZE - fn + phys_addr - 1024;
2888	if (phys_addr < EEPROMSIZE)
2889		return phys_addr - 1024 - fn;
2890	return -EINVAL;
2891}
2892
2893/**
2894 *	t4_seeprom_wp - enable/disable EEPROM write protection
2895 *	@adapter: the adapter
2896 *	@enable: whether to enable or disable write protection
2897 *
2898 *	Enables or disables write protection on the serial EEPROM.
2899 */
2900int t4_seeprom_wp(struct adapter *adapter, int enable)
2901{
2902	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2903}
2904
2905/**
2906 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2907 *	@v: Pointer to buffered vpd data structure
2908 *	@kw: The keyword to search for
2909 *
2910 *	Returns the value of the information field keyword or
2911 *	-ENOENT otherwise.
2912 */
2913static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2914{
2915	int i;
2916	unsigned int offset , len;
2917	const u8 *buf = (const u8 *)v;
2918	const u8 *vpdr_len = &v->vpdr_len[0];
2919	offset = sizeof(struct t4_vpd_hdr);
2920	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2921
2922	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2923		return -ENOENT;
2924	}
2925
2926	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2927		if(memcmp(buf + i , kw , 2) == 0){
2928			i += VPD_INFO_FLD_HDR_SIZE;
2929			return i;
2930		}
2931
2932		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2933	}
2934
2935	return -ENOENT;
2936}
2937
2938
2939/**
2940 *	get_vpd_params - read VPD parameters from VPD EEPROM
2941 *	@adapter: adapter to read
2942 *	@p: where to store the parameters
2943 *	@vpd: caller provided temporary space to read the VPD into
2944 *
2945 *	Reads card parameters stored in VPD EEPROM.
2946 */
2947static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2948    u8 *vpd)
2949{
2950	int i, ret, addr;
2951	int ec, sn, pn, na;
2952	u8 csum;
2953	const struct t4_vpd_hdr *v;
2954
2955	/*
2956	 * Card information normally starts at VPD_BASE but early cards had
2957	 * it at 0.
2958	 */
2959	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2960	if (ret)
2961		return (ret);
2962
2963	/*
2964	 * The VPD shall have a unique identifier specified by the PCI SIG.
2965	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2966	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2967	 * is expected to automatically put this entry at the
2968	 * beginning of the VPD.
2969	 */
2970	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2971
2972	for (i = 0; i < VPD_LEN; i += 4) {
2973		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2974		if (ret)
2975			return ret;
2976	}
2977 	v = (const struct t4_vpd_hdr *)vpd;
2978
2979#define FIND_VPD_KW(var,name) do { \
2980	var = get_vpd_keyword_val(v , name); \
2981	if (var < 0) { \
2982		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2983		return -EINVAL; \
2984	} \
2985} while (0)
2986
2987	FIND_VPD_KW(i, "RV");
2988	for (csum = 0; i >= 0; i--)
2989		csum += vpd[i];
2990
2991	if (csum) {
2992		CH_ERR(adapter,
2993			"corrupted VPD EEPROM, actual csum %u\n", csum);
2994		return -EINVAL;
2995	}
2996
2997	FIND_VPD_KW(ec, "EC");
2998	FIND_VPD_KW(sn, "SN");
2999	FIND_VPD_KW(pn, "PN");
3000	FIND_VPD_KW(na, "NA");
3001#undef FIND_VPD_KW
3002
3003	memcpy(p->id, v->id_data, ID_LEN);
3004	strstrip(p->id);
3005	memcpy(p->ec, vpd + ec, EC_LEN);
3006	strstrip(p->ec);
3007	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3008	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3009	strstrip(p->sn);
3010	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3011	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3012	strstrip((char *)p->pn);
3013	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3014	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3015	strstrip((char *)p->na);
3016
3017	return 0;
3018}
3019
3020/* serial flash and firmware constants and flash config file constants */
3021enum {
3022	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3023
3024	/* flash command opcodes */
3025	SF_PROG_PAGE    = 2,	/* program page */
3026	SF_WR_DISABLE   = 4,	/* disable writes */
3027	SF_RD_STATUS    = 5,	/* read status register */
3028	SF_WR_ENABLE    = 6,	/* enable writes */
3029	SF_RD_DATA_FAST = 0xb,	/* read flash */
3030	SF_RD_ID	= 0x9f,	/* read ID */
3031	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3032};
3033
3034/**
3035 *	sf1_read - read data from the serial flash
3036 *	@adapter: the adapter
3037 *	@byte_cnt: number of bytes to read
3038 *	@cont: whether another operation will be chained
3039 *	@lock: whether to lock SF for PL access only
3040 *	@valp: where to store the read data
3041 *
3042 *	Reads up to 4 bytes of data from the serial flash.  The location of
3043 *	the read needs to be specified prior to calling this by issuing the
3044 *	appropriate commands to the serial flash.
3045 */
3046static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3047		    int lock, u32 *valp)
3048{
3049	int ret;
3050
3051	if (!byte_cnt || byte_cnt > 4)
3052		return -EINVAL;
3053	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3054		return -EBUSY;
3055	t4_write_reg(adapter, A_SF_OP,
3056		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3057	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3058	if (!ret)
3059		*valp = t4_read_reg(adapter, A_SF_DATA);
3060	return ret;
3061}
3062
3063/**
3064 *	sf1_write - write data to the serial flash
3065 *	@adapter: the adapter
3066 *	@byte_cnt: number of bytes to write
3067 *	@cont: whether another operation will be chained
3068 *	@lock: whether to lock SF for PL access only
3069 *	@val: value to write
3070 *
3071 *	Writes up to 4 bytes of data to the serial flash.  The location of
3072 *	the write needs to be specified prior to calling this by issuing the
3073 *	appropriate commands to the serial flash.
3074 */
3075static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3076		     int lock, u32 val)
3077{
3078	if (!byte_cnt || byte_cnt > 4)
3079		return -EINVAL;
3080	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3081		return -EBUSY;
3082	t4_write_reg(adapter, A_SF_DATA, val);
3083	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3084		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3085	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3086}
3087
3088/**
3089 *	flash_wait_op - wait for a flash operation to complete
3090 *	@adapter: the adapter
3091 *	@attempts: max number of polls of the status register
3092 *	@delay: delay between polls in ms
3093 *
3094 *	Wait for a flash operation to complete by polling the status register.
3095 */
3096static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3097{
3098	int ret;
3099	u32 status;
3100
3101	while (1) {
3102		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3103		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3104			return ret;
3105		if (!(status & 1))
3106			return 0;
3107		if (--attempts == 0)
3108			return -EAGAIN;
3109		if (delay)
3110			msleep(delay);
3111	}
3112}
3113
3114/**
3115 *	t4_read_flash - read words from serial flash
3116 *	@adapter: the adapter
3117 *	@addr: the start address for the read
3118 *	@nwords: how many 32-bit words to read
3119 *	@data: where to store the read data
3120 *	@byte_oriented: whether to store data as bytes or as words
3121 *
3122 *	Read the specified number of 32-bit words from the serial flash.
3123 *	If @byte_oriented is set the read data is stored as a byte array
3124 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3125 *	natural endianness.
3126 */
3127int t4_read_flash(struct adapter *adapter, unsigned int addr,
3128		  unsigned int nwords, u32 *data, int byte_oriented)
3129{
3130	int ret;
3131
3132	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3133		return -EINVAL;
3134
3135	addr = swab32(addr) | SF_RD_DATA_FAST;
3136
3137	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3138	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3139		return ret;
3140
3141	for ( ; nwords; nwords--, data++) {
3142		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3143		if (nwords == 1)
3144			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3145		if (ret)
3146			return ret;
3147		if (byte_oriented)
3148			*data = (__force __u32)(cpu_to_be32(*data));
3149	}
3150	return 0;
3151}
3152
3153/**
3154 *	t4_write_flash - write up to a page of data to the serial flash
3155 *	@adapter: the adapter
3156 *	@addr: the start address to write
3157 *	@n: length of data to write in bytes
3158 *	@data: the data to write
3159 *	@byte_oriented: whether to store data as bytes or as words
3160 *
3161 *	Writes up to a page of data (256 bytes) to the serial flash starting
3162 *	at the given address.  All the data must be written to the same page.
3163 *	If @byte_oriented is set the write data is stored as byte stream
3164 *	(i.e. matches what on disk), otherwise in big-endian.
3165 */
3166int t4_write_flash(struct adapter *adapter, unsigned int addr,
3167			  unsigned int n, const u8 *data, int byte_oriented)
3168{
3169	int ret;
3170	u32 buf[SF_PAGE_SIZE / 4];
3171	unsigned int i, c, left, val, offset = addr & 0xff;
3172
3173	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3174		return -EINVAL;
3175
3176	val = swab32(addr) | SF_PROG_PAGE;
3177
3178	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3179	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3180		goto unlock;
3181
3182	for (left = n; left; left -= c) {
3183		c = min(left, 4U);
3184		for (val = 0, i = 0; i < c; ++i)
3185			val = (val << 8) + *data++;
3186
3187		if (!byte_oriented)
3188			val = cpu_to_be32(val);
3189
3190		ret = sf1_write(adapter, c, c != left, 1, val);
3191		if (ret)
3192			goto unlock;
3193	}
3194	ret = flash_wait_op(adapter, 8, 1);
3195	if (ret)
3196		goto unlock;
3197
3198	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3199
3200	/* Read the page to verify the write succeeded */
3201	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3202			    byte_oriented);
3203	if (ret)
3204		return ret;
3205
3206	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3207		CH_ERR(adapter,
3208			"failed to correctly write the flash page at %#x\n",
3209			addr);
3210		return -EIO;
3211	}
3212	return 0;
3213
3214unlock:
3215	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216	return ret;
3217}
3218
3219/**
3220 *	t4_get_fw_version - read the firmware version
3221 *	@adapter: the adapter
3222 *	@vers: where to place the version
3223 *
3224 *	Reads the FW version from flash.
3225 */
3226int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3227{
3228	return t4_read_flash(adapter, FLASH_FW_START +
3229			     offsetof(struct fw_hdr, fw_ver), 1,
3230			     vers, 0);
3231}
3232
3233/**
3234 *	t4_get_tp_version - read the TP microcode version
3235 *	@adapter: the adapter
3236 *	@vers: where to place the version
3237 *
3238 *	Reads the TP microcode version from flash.
3239 */
3240int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3241{
3242	return t4_read_flash(adapter, FLASH_FW_START +
3243			     offsetof(struct fw_hdr, tp_microcode_ver),
3244			     1, vers, 0);
3245}
3246
3247/**
3248 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3249 *	@adapter: the adapter
3250 *	@vers: where to place the version
3251 *
3252 *	Reads the Expansion ROM header from FLASH and returns the version
3253 *	number (if present) through the @vers return value pointer.  We return
3254 *	this in the Firmware Version Format since it's convenient.  Return
3255 *	0 on success, -ENOENT if no Expansion ROM is present.
3256 */
3257int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3258{
3259	struct exprom_header {
3260		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3261		unsigned char hdr_ver[4];	/* Expansion ROM version */
3262	} *hdr;
3263	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3264					   sizeof(u32))];
3265	int ret;
3266
3267	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3268			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3269			    0);
3270	if (ret)
3271		return ret;
3272
3273	hdr = (struct exprom_header *)exprom_header_buf;
3274	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3275		return -ENOENT;
3276
3277	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3278		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3279		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3280		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3281	return 0;
3282}
3283
3284/**
3285 *	t4_flash_erase_sectors - erase a range of flash sectors
3286 *	@adapter: the adapter
3287 *	@start: the first sector to erase
3288 *	@end: the last sector to erase
3289 *
3290 *	Erases the sectors in the given inclusive range.
3291 */
3292int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3293{
3294	int ret = 0;
3295
3296	if (end >= adapter->params.sf_nsec)
3297		return -EINVAL;
3298
3299	while (start <= end) {
3300		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3301		    (ret = sf1_write(adapter, 4, 0, 1,
3302				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3303		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3304			CH_ERR(adapter,
3305				"erase of flash sector %d failed, error %d\n",
3306				start, ret);
3307			break;
3308		}
3309		start++;
3310	}
3311	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3312	return ret;
3313}
3314
3315/**
3316 *	t4_flash_cfg_addr - return the address of the flash configuration file
3317 *	@adapter: the adapter
3318 *
3319 *	Return the address within the flash where the Firmware Configuration
3320 *	File is stored, or an error if the device FLASH is too small to contain
3321 *	a Firmware Configuration File.
3322 */
3323int t4_flash_cfg_addr(struct adapter *adapter)
3324{
3325	/*
3326	 * If the device FLASH isn't large enough to hold a Firmware
3327	 * Configuration File, return an error.
3328	 */
3329	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3330		return -ENOSPC;
3331
3332	return FLASH_CFG_START;
3333}
3334
3335/*
3336 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3337 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3338 * and emit an error message for mismatched firmware to save our caller the
3339 * effort ...
3340 */
3341static int t4_fw_matches_chip(struct adapter *adap,
3342			      const struct fw_hdr *hdr)
3343{
3344	/*
3345	 * The expression below will return FALSE for any unsupported adapter
3346	 * which will keep us "honest" in the future ...
3347	 */
3348	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3349	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3350	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3351		return 1;
3352
3353	CH_ERR(adap,
3354		"FW image (%d) is not suitable for this adapter (%d)\n",
3355		hdr->chip, chip_id(adap));
3356	return 0;
3357}
3358
3359/**
3360 *	t4_load_fw - download firmware
3361 *	@adap: the adapter
3362 *	@fw_data: the firmware image to write
3363 *	@size: image size
3364 *
3365 *	Write the supplied firmware image to the card's serial flash.
3366 */
3367int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3368{
3369	u32 csum;
3370	int ret, addr;
3371	unsigned int i;
3372	u8 first_page[SF_PAGE_SIZE];
3373	const u32 *p = (const u32 *)fw_data;
3374	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3375	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3376	unsigned int fw_start_sec;
3377	unsigned int fw_start;
3378	unsigned int fw_size;
3379
3380	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3381		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3382		fw_start = FLASH_FWBOOTSTRAP_START;
3383		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3384	} else {
3385		fw_start_sec = FLASH_FW_START_SEC;
3386 		fw_start = FLASH_FW_START;
3387		fw_size = FLASH_FW_MAX_SIZE;
3388	}
3389
3390	if (!size) {
3391		CH_ERR(adap, "FW image has no data\n");
3392		return -EINVAL;
3393	}
3394	if (size & 511) {
3395		CH_ERR(adap,
3396			"FW image size not multiple of 512 bytes\n");
3397		return -EINVAL;
3398	}
3399	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3400		CH_ERR(adap,
3401			"FW image size differs from size in FW header\n");
3402		return -EINVAL;
3403	}
3404	if (size > fw_size) {
3405		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3406			fw_size);
3407		return -EFBIG;
3408	}
3409	if (!t4_fw_matches_chip(adap, hdr))
3410		return -EINVAL;
3411
3412	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3413		csum += be32_to_cpu(p[i]);
3414
3415	if (csum != 0xffffffff) {
3416		CH_ERR(adap,
3417			"corrupted firmware image, checksum %#x\n", csum);
3418		return -EINVAL;
3419	}
3420
3421	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3422	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3423	if (ret)
3424		goto out;
3425
3426	/*
3427	 * We write the correct version at the end so the driver can see a bad
3428	 * version if the FW write fails.  Start by writing a copy of the
3429	 * first page with a bad version.
3430	 */
3431	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3432	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3433	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3434	if (ret)
3435		goto out;
3436
3437	addr = fw_start;
3438	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3439		addr += SF_PAGE_SIZE;
3440		fw_data += SF_PAGE_SIZE;
3441		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3442		if (ret)
3443			goto out;
3444	}
3445
3446	ret = t4_write_flash(adap,
3447			     fw_start + offsetof(struct fw_hdr, fw_ver),
3448			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3449out:
3450	if (ret)
3451		CH_ERR(adap, "firmware download failed, error %d\n",
3452			ret);
3453	return ret;
3454}
3455
3456/**
3457 *	t4_fwcache - firmware cache operation
3458 *	@adap: the adapter
3459 *	@op  : the operation (flush or flush and invalidate)
3460 */
3461int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3462{
3463	struct fw_params_cmd c;
3464
3465	memset(&c, 0, sizeof(c));
3466	c.op_to_vfn =
3467	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3468			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3469				V_FW_PARAMS_CMD_PFN(adap->pf) |
3470				V_FW_PARAMS_CMD_VFN(0));
3471	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3472	c.param[0].mnem =
3473	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3474			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3475	c.param[0].val = (__force __be32)op;
3476
3477	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3478}
3479
3480void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3481			unsigned int *pif_req_wrptr,
3482			unsigned int *pif_rsp_wrptr)
3483{
3484	int i, j;
3485	u32 cfg, val, req, rsp;
3486
3487	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3488	if (cfg & F_LADBGEN)
3489		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3490
3491	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3492	req = G_POLADBGWRPTR(val);
3493	rsp = G_PILADBGWRPTR(val);
3494	if (pif_req_wrptr)
3495		*pif_req_wrptr = req;
3496	if (pif_rsp_wrptr)
3497		*pif_rsp_wrptr = rsp;
3498
3499	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3500		for (j = 0; j < 6; j++) {
3501			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3502				     V_PILADBGRDPTR(rsp));
3503			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3504			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3505			req++;
3506			rsp++;
3507		}
3508		req = (req + 2) & M_POLADBGRDPTR;
3509		rsp = (rsp + 2) & M_PILADBGRDPTR;
3510	}
3511	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3512}
3513
3514void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3515{
3516	u32 cfg;
3517	int i, j, idx;
3518
3519	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3520	if (cfg & F_LADBGEN)
3521		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3522
3523	for (i = 0; i < CIM_MALA_SIZE; i++) {
3524		for (j = 0; j < 5; j++) {
3525			idx = 8 * i + j;
3526			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3527				     V_PILADBGRDPTR(idx));
3528			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3529			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3530		}
3531	}
3532	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3533}
3534
3535void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3536{
3537	unsigned int i, j;
3538
3539	for (i = 0; i < 8; i++) {
3540		u32 *p = la_buf + i;
3541
3542		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3543		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3544		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3545		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3546			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3547	}
3548}
3549
3550#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3551		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3552		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
3553
3554/**
3555 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3556 *	@phy: the PHY to setup
3557 *	@mac: the MAC to setup
3558 *	@lc: the requested link configuration
3559 *
3560 *	Set up a port's MAC and PHY according to a desired link configuration.
3561 *	- If the PHY can auto-negotiate first decide what to advertise, then
3562 *	  enable/disable auto-negotiation as desired, and reset.
3563 *	- If the PHY does not auto-negotiate just reset it.
3564 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3565 *	  otherwise do it later based on the outcome of auto-negotiation.
3566 */
3567int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3568		  struct link_config *lc)
3569{
3570	struct fw_port_cmd c;
3571	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3572
3573	lc->link_ok = 0;
3574	if (lc->requested_fc & PAUSE_RX)
3575		fc |= FW_PORT_CAP_FC_RX;
3576	if (lc->requested_fc & PAUSE_TX)
3577		fc |= FW_PORT_CAP_FC_TX;
3578
3579	memset(&c, 0, sizeof(c));
3580	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3581				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3582				     V_FW_PORT_CMD_PORTID(port));
3583	c.action_to_len16 =
3584		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3585			    FW_LEN16(c));
3586
3587	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3588		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3589					     fc);
3590		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3591	} else if (lc->autoneg == AUTONEG_DISABLE) {
3592		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3593		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3594	} else
3595		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3596
3597	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3598}
3599
3600/**
3601 *	t4_restart_aneg - restart autonegotiation
3602 *	@adap: the adapter
3603 *	@mbox: mbox to use for the FW command
3604 *	@port: the port id
3605 *
3606 *	Restarts autonegotiation for the selected port.
3607 */
3608int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3609{
3610	struct fw_port_cmd c;
3611
3612	memset(&c, 0, sizeof(c));
3613	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3614				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3615				     V_FW_PORT_CMD_PORTID(port));
3616	c.action_to_len16 =
3617		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3618			    FW_LEN16(c));
3619	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3620	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3621}
3622
3623typedef void (*int_handler_t)(struct adapter *adap);
3624
3625struct intr_info {
3626	unsigned int mask;	/* bits to check in interrupt status */
3627	const char *msg;	/* message to print or NULL */
3628	short stat_idx;		/* stat counter to increment or -1 */
3629	unsigned short fatal;	/* whether the condition reported is fatal */
3630	int_handler_t int_handler;	/* platform-specific int handler */
3631};
3632
3633/**
3634 *	t4_handle_intr_status - table driven interrupt handler
3635 *	@adapter: the adapter that generated the interrupt
3636 *	@reg: the interrupt status register to process
3637 *	@acts: table of interrupt actions
3638 *
3639 *	A table driven interrupt handler that applies a set of masks to an
3640 *	interrupt status word and performs the corresponding actions if the
3641 *	interrupts described by the mask have occurred.  The actions include
3642 *	optionally emitting a warning or alert message.  The table is terminated
3643 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3644 *	conditions.
3645 */
3646static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3647				 const struct intr_info *acts)
3648{
3649	int fatal = 0;
3650	unsigned int mask = 0;
3651	unsigned int status = t4_read_reg(adapter, reg);
3652
3653	for ( ; acts->mask; ++acts) {
3654		if (!(status & acts->mask))
3655			continue;
3656		if (acts->fatal) {
3657			fatal++;
3658			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3659				  status & acts->mask);
3660		} else if (acts->msg)
3661			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3662				 status & acts->mask);
3663		if (acts->int_handler)
3664			acts->int_handler(adapter);
3665		mask |= acts->mask;
3666	}
3667	status &= mask;
3668	if (status)	/* clear processed interrupts */
3669		t4_write_reg(adapter, reg, status);
3670	return fatal;
3671}
3672
3673/*
3674 * Interrupt handler for the PCIE module.
3675 */
3676static void pcie_intr_handler(struct adapter *adapter)
3677{
3678	static const struct intr_info sysbus_intr_info[] = {
3679		{ F_RNPP, "RXNP array parity error", -1, 1 },
3680		{ F_RPCP, "RXPC array parity error", -1, 1 },
3681		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3682		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3683		{ F_RFTP, "RXFT array parity error", -1, 1 },
3684		{ 0 }
3685	};
3686	static const struct intr_info pcie_port_intr_info[] = {
3687		{ F_TPCP, "TXPC array parity error", -1, 1 },
3688		{ F_TNPP, "TXNP array parity error", -1, 1 },
3689		{ F_TFTP, "TXFT array parity error", -1, 1 },
3690		{ F_TCAP, "TXCA array parity error", -1, 1 },
3691		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3692		{ F_RCAP, "RXCA array parity error", -1, 1 },
3693		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3694		{ F_RDPE, "Rx data parity error", -1, 1 },
3695		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3696		{ 0 }
3697	};
3698	static const struct intr_info pcie_intr_info[] = {
3699		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3700		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3701		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3702		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3703		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3704		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3705		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3706		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3707		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3708		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3709		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3710		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3711		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3712		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3713		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3714		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3715		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3716		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3717		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3718		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3719		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3720		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3721		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3722		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3723		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3724		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3725		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3726		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3727		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3728		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3729		  0 },
3730		{ 0 }
3731	};
3732
3733	static const struct intr_info t5_pcie_intr_info[] = {
3734		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3735		  -1, 1 },
3736		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3737		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3738		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3739		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3740		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3741		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3742		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3743		  -1, 1 },
3744		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3745		  -1, 1 },
3746		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3747		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3748		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3749		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3750		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3751		  -1, 1 },
3752		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3753		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3754		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3755		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3756		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3757		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3758		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3759		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3760		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3761		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3762		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3763		  -1, 1 },
3764		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3765		  -1, 1 },
3766		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3767		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3768		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3769		{ F_READRSPERR, "Outbound read error", -1,
3770		  0 },
3771		{ 0 }
3772	};
3773
3774	int fat;
3775
3776	if (is_t4(adapter))
3777		fat = t4_handle_intr_status(adapter,
3778				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3779				sysbus_intr_info) +
3780			t4_handle_intr_status(adapter,
3781					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3782					pcie_port_intr_info) +
3783			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3784					      pcie_intr_info);
3785	else
3786		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3787					    t5_pcie_intr_info);
3788	if (fat)
3789		t4_fatal_err(adapter);
3790}
3791
3792/*
3793 * TP interrupt handler.
3794 */
3795static void tp_intr_handler(struct adapter *adapter)
3796{
3797	static const struct intr_info tp_intr_info[] = {
3798		{ 0x3fffffff, "TP parity error", -1, 1 },
3799		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3800		{ 0 }
3801	};
3802
3803	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3804		t4_fatal_err(adapter);
3805}
3806
3807/*
3808 * SGE interrupt handler.
3809 */
3810static void sge_intr_handler(struct adapter *adapter)
3811{
3812	u64 v;
3813	u32 err;
3814
3815	static const struct intr_info sge_intr_info[] = {
3816		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3817		  "SGE received CPL exceeding IQE size", -1, 1 },
3818		{ F_ERR_INVALID_CIDX_INC,
3819		  "SGE GTS CIDX increment too large", -1, 0 },
3820		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3821		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3822		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3823		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3824		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3825		  0 },
3826		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3827		  0 },
3828		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3829		  0 },
3830		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3831		  0 },
3832		{ F_ERR_ING_CTXT_PRIO,
3833		  "SGE too many priority ingress contexts", -1, 0 },
3834		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3835		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3836		{ 0 }
3837	};
3838
3839	static const struct intr_info t4t5_sge_intr_info[] = {
3840		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3841		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3842		{ F_ERR_EGR_CTXT_PRIO,
3843		  "SGE too many priority egress contexts", -1, 0 },
3844		{ 0 }
3845	};
3846
3847	/*
3848 	* For now, treat below interrupts as fatal so that we disable SGE and
3849 	* get better debug */
3850	static const struct intr_info t6_sge_intr_info[] = {
3851		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3852		  "SGE PCIe error for a DBP thread", -1, 1 },
3853		{ F_FATAL_WRE_LEN,
3854		  "SGE Actual WRE packet is less than advertized length",
3855		  -1, 1 },
3856		{ 0 }
3857	};
3858
3859	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3860		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3861	if (v) {
3862		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3863				(unsigned long long)v);
3864		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3865		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3866	}
3867
3868	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3869	if (chip_id(adapter) <= CHELSIO_T5)
3870		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3871					   t4t5_sge_intr_info);
3872	else
3873		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3874					   t6_sge_intr_info);
3875
3876	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3877	if (err & F_ERROR_QID_VALID) {
3878		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
3879		if (err & F_UNCAPTURED_ERROR)
3880			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
3881		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
3882			     F_UNCAPTURED_ERROR);
3883	}
3884
3885	if (v != 0)
3886		t4_fatal_err(adapter);
3887}
3888
3889#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
3890		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
3891#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
3892		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
3893
3894/*
3895 * CIM interrupt handler.
3896 */
3897static void cim_intr_handler(struct adapter *adapter)
3898{
3899	static const struct intr_info cim_intr_info[] = {
3900		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
3901		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3902		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3903		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
3904		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
3905		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
3906		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
3907		{ 0 }
3908	};
3909	static const struct intr_info cim_upintr_info[] = {
3910		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
3911		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
3912		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
3913		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
3914		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
3915		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
3916		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
3917		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
3918		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
3919		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
3920		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
3921		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
3922		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
3923		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
3924		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
3925		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
3926		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
3927		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
3928		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
3929		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
3930		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
3931		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
3932		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
3933		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
3934		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
3935		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
3936		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
3937		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
3938		{ 0 }
3939	};
3940	int fat;
3941
3942	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
3943		t4_report_fw_error(adapter);
3944
3945	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
3946				    cim_intr_info) +
3947	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
3948				    cim_upintr_info);
3949	if (fat)
3950		t4_fatal_err(adapter);
3951}
3952
3953/*
3954 * ULP RX interrupt handler.
3955 */
3956static void ulprx_intr_handler(struct adapter *adapter)
3957{
3958	static const struct intr_info ulprx_intr_info[] = {
3959		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
3960		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
3961		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3962		{ 0 }
3963	};
3964
3965	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
3966		t4_fatal_err(adapter);
3967}
3968
3969/*
3970 * ULP TX interrupt handler.
3971 */
3972static void ulptx_intr_handler(struct adapter *adapter)
3973{
3974	static const struct intr_info ulptx_intr_info[] = {
3975		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
3976		  0 },
3977		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
3978		  0 },
3979		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
3980		  0 },
3981		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
3982		  0 },
3983		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3984		{ 0 }
3985	};
3986
3987	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
3988		t4_fatal_err(adapter);
3989}
3990
3991/*
3992 * PM TX interrupt handler.
3993 */
3994static void pmtx_intr_handler(struct adapter *adapter)
3995{
3996	static const struct intr_info pmtx_intr_info[] = {
3997		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
3998		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
3999		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4000		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4001		{ 0xffffff0, "PMTX framing error", -1, 1 },
4002		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4003		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4004		  1 },
4005		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4006		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4007		{ 0 }
4008	};
4009
4010	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4011		t4_fatal_err(adapter);
4012}
4013
4014/*
4015 * PM RX interrupt handler.
4016 */
4017static void pmrx_intr_handler(struct adapter *adapter)
4018{
4019	static const struct intr_info pmrx_intr_info[] = {
4020		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4021		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4022		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4023		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4024		  1 },
4025		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4026		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4027		{ 0 }
4028	};
4029
4030	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4031		t4_fatal_err(adapter);
4032}
4033
4034/*
4035 * CPL switch interrupt handler.
4036 */
4037static void cplsw_intr_handler(struct adapter *adapter)
4038{
4039	static const struct intr_info cplsw_intr_info[] = {
4040		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4041		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4042		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4043		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4044		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4045		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4046		{ 0 }
4047	};
4048
4049	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4050		t4_fatal_err(adapter);
4051}
4052
4053/*
4054 * LE interrupt handler.
4055 */
4056static void le_intr_handler(struct adapter *adap)
4057{
4058	unsigned int chip_ver = chip_id(adap);
4059	static const struct intr_info le_intr_info[] = {
4060		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4061		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4062		{ F_PARITYERR, "LE parity error", -1, 1 },
4063		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4064		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4065		{ 0 }
4066	};
4067
4068	static const struct intr_info t6_le_intr_info[] = {
4069		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4070		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4071		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4072		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4073		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4074		{ 0 }
4075	};
4076
4077	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4078				  (chip_ver <= CHELSIO_T5) ?
4079				  le_intr_info : t6_le_intr_info))
4080		t4_fatal_err(adap);
4081}
4082
4083/*
4084 * MPS interrupt handler.
4085 */
4086static void mps_intr_handler(struct adapter *adapter)
4087{
4088	static const struct intr_info mps_rx_intr_info[] = {
4089		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4090		{ 0 }
4091	};
4092	static const struct intr_info mps_tx_intr_info[] = {
4093		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4094		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4095		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4096		  -1, 1 },
4097		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4098		  -1, 1 },
4099		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4100		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4101		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4102		{ 0 }
4103	};
4104	static const struct intr_info mps_trc_intr_info[] = {
4105		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4106		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4107		  1 },
4108		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4109		{ 0 }
4110	};
4111	static const struct intr_info mps_stat_sram_intr_info[] = {
4112		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4113		{ 0 }
4114	};
4115	static const struct intr_info mps_stat_tx_intr_info[] = {
4116		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4117		{ 0 }
4118	};
4119	static const struct intr_info mps_stat_rx_intr_info[] = {
4120		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4121		{ 0 }
4122	};
4123	static const struct intr_info mps_cls_intr_info[] = {
4124		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4125		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4126		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4127		{ 0 }
4128	};
4129
4130	int fat;
4131
4132	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4133				    mps_rx_intr_info) +
4134	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4135				    mps_tx_intr_info) +
4136	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4137				    mps_trc_intr_info) +
4138	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4139				    mps_stat_sram_intr_info) +
4140	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4141				    mps_stat_tx_intr_info) +
4142	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4143				    mps_stat_rx_intr_info) +
4144	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4145				    mps_cls_intr_info);
4146
4147	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4148	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4149	if (fat)
4150		t4_fatal_err(adapter);
4151}
4152
4153#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4154		      F_ECC_UE_INT_CAUSE)
4155
4156/*
4157 * EDC/MC interrupt handler.
4158 */
4159static void mem_intr_handler(struct adapter *adapter, int idx)
4160{
4161	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4162
4163	unsigned int addr, cnt_addr, v;
4164
4165	if (idx <= MEM_EDC1) {
4166		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4167		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4168	} else if (idx == MEM_MC) {
4169		if (is_t4(adapter)) {
4170			addr = A_MC_INT_CAUSE;
4171			cnt_addr = A_MC_ECC_STATUS;
4172		} else {
4173			addr = A_MC_P_INT_CAUSE;
4174			cnt_addr = A_MC_P_ECC_STATUS;
4175		}
4176	} else {
4177		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4178		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4179	}
4180
4181	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4182	if (v & F_PERR_INT_CAUSE)
4183		CH_ALERT(adapter, "%s FIFO parity error\n",
4184			  name[idx]);
4185	if (v & F_ECC_CE_INT_CAUSE) {
4186		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4187
4188		t4_edc_err_read(adapter, idx);
4189
4190		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4191		CH_WARN_RATELIMIT(adapter,
4192				  "%u %s correctable ECC data error%s\n",
4193				  cnt, name[idx], cnt > 1 ? "s" : "");
4194	}
4195	if (v & F_ECC_UE_INT_CAUSE)
4196		CH_ALERT(adapter,
4197			 "%s uncorrectable ECC data error\n", name[idx]);
4198
4199	t4_write_reg(adapter, addr, v);
4200	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4201		t4_fatal_err(adapter);
4202}
4203
4204/*
4205 * MA interrupt handler.
4206 */
4207static void ma_intr_handler(struct adapter *adapter)
4208{
4209	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4210
4211	if (status & F_MEM_PERR_INT_CAUSE) {
4212		CH_ALERT(adapter,
4213			  "MA parity error, parity status %#x\n",
4214			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4215		if (is_t5(adapter))
4216			CH_ALERT(adapter,
4217				  "MA parity error, parity status %#x\n",
4218				  t4_read_reg(adapter,
4219					      A_MA_PARITY_ERROR_STATUS2));
4220	}
4221	if (status & F_MEM_WRAP_INT_CAUSE) {
4222		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4223		CH_ALERT(adapter, "MA address wrap-around error by "
4224			  "client %u to address %#x\n",
4225			  G_MEM_WRAP_CLIENT_NUM(v),
4226			  G_MEM_WRAP_ADDRESS(v) << 4);
4227	}
4228	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4229	t4_fatal_err(adapter);
4230}
4231
4232/*
4233 * SMB interrupt handler.
4234 */
4235static void smb_intr_handler(struct adapter *adap)
4236{
4237	static const struct intr_info smb_intr_info[] = {
4238		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4239		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4240		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4241		{ 0 }
4242	};
4243
4244	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4245		t4_fatal_err(adap);
4246}
4247
4248/*
4249 * NC-SI interrupt handler.
4250 */
4251static void ncsi_intr_handler(struct adapter *adap)
4252{
4253	static const struct intr_info ncsi_intr_info[] = {
4254		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4255		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4256		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4257		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4258		{ 0 }
4259	};
4260
4261	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4262		t4_fatal_err(adap);
4263}
4264
4265/*
4266 * XGMAC interrupt handler.
4267 */
4268static void xgmac_intr_handler(struct adapter *adap, int port)
4269{
4270	u32 v, int_cause_reg;
4271
4272	if (is_t4(adap))
4273		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4274	else
4275		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4276
4277	v = t4_read_reg(adap, int_cause_reg);
4278
4279	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4280	if (!v)
4281		return;
4282
4283	if (v & F_TXFIFO_PRTY_ERR)
4284		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4285			  port);
4286	if (v & F_RXFIFO_PRTY_ERR)
4287		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4288			  port);
4289	t4_write_reg(adap, int_cause_reg, v);
4290	t4_fatal_err(adap);
4291}
4292
4293/*
4294 * PL interrupt handler.
4295 */
4296static void pl_intr_handler(struct adapter *adap)
4297{
4298	static const struct intr_info pl_intr_info[] = {
4299		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4300		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4301		{ 0 }
4302	};
4303
4304	static const struct intr_info t5_pl_intr_info[] = {
4305		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4306		{ 0 }
4307	};
4308
4309	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4310				  is_t4(adap) ?
4311				  pl_intr_info : t5_pl_intr_info))
4312		t4_fatal_err(adap);
4313}
4314
4315#define PF_INTR_MASK (F_PFSW | F_PFCIM)
4316
4317/**
4318 *	t4_slow_intr_handler - control path interrupt handler
4319 *	@adapter: the adapter
4320 *
4321 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4322 *	The designation 'slow' is because it involves register reads, while
4323 *	data interrupts typically don't involve any MMIOs.
4324 */
4325int t4_slow_intr_handler(struct adapter *adapter)
4326{
4327	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4328
4329	if (!(cause & GLBL_INTR_MASK))
4330		return 0;
4331	if (cause & F_CIM)
4332		cim_intr_handler(adapter);
4333	if (cause & F_MPS)
4334		mps_intr_handler(adapter);
4335	if (cause & F_NCSI)
4336		ncsi_intr_handler(adapter);
4337	if (cause & F_PL)
4338		pl_intr_handler(adapter);
4339	if (cause & F_SMB)
4340		smb_intr_handler(adapter);
4341	if (cause & F_MAC0)
4342		xgmac_intr_handler(adapter, 0);
4343	if (cause & F_MAC1)
4344		xgmac_intr_handler(adapter, 1);
4345	if (cause & F_MAC2)
4346		xgmac_intr_handler(adapter, 2);
4347	if (cause & F_MAC3)
4348		xgmac_intr_handler(adapter, 3);
4349	if (cause & F_PCIE)
4350		pcie_intr_handler(adapter);
4351	if (cause & F_MC0)
4352		mem_intr_handler(adapter, MEM_MC);
4353	if (is_t5(adapter) && (cause & F_MC1))
4354		mem_intr_handler(adapter, MEM_MC1);
4355	if (cause & F_EDC0)
4356		mem_intr_handler(adapter, MEM_EDC0);
4357	if (cause & F_EDC1)
4358		mem_intr_handler(adapter, MEM_EDC1);
4359	if (cause & F_LE)
4360		le_intr_handler(adapter);
4361	if (cause & F_TP)
4362		tp_intr_handler(adapter);
4363	if (cause & F_MA)
4364		ma_intr_handler(adapter);
4365	if (cause & F_PM_TX)
4366		pmtx_intr_handler(adapter);
4367	if (cause & F_PM_RX)
4368		pmrx_intr_handler(adapter);
4369	if (cause & F_ULP_RX)
4370		ulprx_intr_handler(adapter);
4371	if (cause & F_CPL_SWITCH)
4372		cplsw_intr_handler(adapter);
4373	if (cause & F_SGE)
4374		sge_intr_handler(adapter);
4375	if (cause & F_ULP_TX)
4376		ulptx_intr_handler(adapter);
4377
4378	/* Clear the interrupts just processed for which we are the master. */
4379	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4380	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4381	return 1;
4382}
4383
4384/**
4385 *	t4_intr_enable - enable interrupts
4386 *	@adapter: the adapter whose interrupts should be enabled
4387 *
4388 *	Enable PF-specific interrupts for the calling function and the top-level
4389 *	interrupt concentrator for global interrupts.  Interrupts are already
4390 *	enabled at each module,	here we just enable the roots of the interrupt
4391 *	hierarchies.
4392 *
4393 *	Note: this function should be called only when the driver manages
4394 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4395 *	function at a time should be doing this.
4396 */
4397void t4_intr_enable(struct adapter *adapter)
4398{
4399	u32 val = 0;
4400	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4401	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4402		  ? G_SOURCEPF(whoami)
4403		  : G_T6_SOURCEPF(whoami));
4404
4405	if (chip_id(adapter) <= CHELSIO_T5)
4406		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4407	else
4408		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4409	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4410		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4411		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4412		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4413		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4414		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4415		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4416	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4417	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4418}
4419
4420/**
4421 *	t4_intr_disable - disable interrupts
4422 *	@adapter: the adapter whose interrupts should be disabled
4423 *
4424 *	Disable interrupts.  We only disable the top-level interrupt
4425 *	concentrators.  The caller must be a PCI function managing global
4426 *	interrupts.
4427 */
4428void t4_intr_disable(struct adapter *adapter)
4429{
4430	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4431	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4432		  ? G_SOURCEPF(whoami)
4433		  : G_T6_SOURCEPF(whoami));
4434
4435	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4436	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4437}
4438
4439/**
4440 *	t4_intr_clear - clear all interrupts
4441 *	@adapter: the adapter whose interrupts should be cleared
4442 *
4443 *	Clears all interrupts.  The caller must be a PCI function managing
4444 *	global interrupts.
4445 */
4446void t4_intr_clear(struct adapter *adapter)
4447{
4448	static const unsigned int cause_reg[] = {
4449		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4450		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4451		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4452		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4453		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4454		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4455		A_TP_INT_CAUSE,
4456		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4457		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4458		A_MPS_RX_PERR_INT_CAUSE,
4459		A_CPL_INTR_CAUSE,
4460		MYPF_REG(A_PL_PF_INT_CAUSE),
4461		A_PL_PL_INT_CAUSE,
4462		A_LE_DB_INT_CAUSE,
4463	};
4464
4465	unsigned int i;
4466
4467	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4468		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4469
4470	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4471				A_MC_P_INT_CAUSE, 0xffffffff);
4472
4473	if (is_t4(adapter)) {
4474		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4475				0xffffffff);
4476		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4477				0xffffffff);
4478	} else
4479		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4480
4481	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4482	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4483}
4484
4485/**
4486 *	hash_mac_addr - return the hash value of a MAC address
4487 *	@addr: the 48-bit Ethernet MAC address
4488 *
4489 *	Hashes a MAC address according to the hash function used by HW inexact
4490 *	(hash) address matching.
4491 */
4492static int hash_mac_addr(const u8 *addr)
4493{
4494	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4495	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4496	a ^= b;
4497	a ^= (a >> 12);
4498	a ^= (a >> 6);
4499	return a & 0x3f;
4500}
4501
4502/**
4503 *	t4_config_rss_range - configure a portion of the RSS mapping table
4504 *	@adapter: the adapter
4505 *	@mbox: mbox to use for the FW command
4506 *	@viid: virtual interface whose RSS subtable is to be written
4507 *	@start: start entry in the table to write
4508 *	@n: how many table entries to write
4509 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4510 *	@nrspq: number of values in @rspq
4511 *
4512 *	Programs the selected part of the VI's RSS mapping table with the
4513 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4514 *	until the full table range is populated.
4515 *
4516 *	The caller must ensure the values in @rspq are in the range allowed for
4517 *	@viid.
4518 */
4519int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4520			int start, int n, const u16 *rspq, unsigned int nrspq)
4521{
4522	int ret;
4523	const u16 *rsp = rspq;
4524	const u16 *rsp_end = rspq + nrspq;
4525	struct fw_rss_ind_tbl_cmd cmd;
4526
4527	memset(&cmd, 0, sizeof(cmd));
4528	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4529				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4530				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4531	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4532
4533	/*
4534	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4535	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4536	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4537	 * reserved.
4538	 */
4539	while (n > 0) {
4540		int nq = min(n, 32);
4541		int nq_packed = 0;
4542		__be32 *qp = &cmd.iq0_to_iq2;
4543
4544		/*
4545		 * Set up the firmware RSS command header to send the next
4546		 * "nq" Ingress Queue IDs to the firmware.
4547		 */
4548		cmd.niqid = cpu_to_be16(nq);
4549		cmd.startidx = cpu_to_be16(start);
4550
4551		/*
4552		 * "nq" more done for the start of the next loop.
4553		 */
4554		start += nq;
4555		n -= nq;
4556
4557		/*
4558		 * While there are still Ingress Queue IDs to stuff into the
4559		 * current firmware RSS command, retrieve them from the
4560		 * Ingress Queue ID array and insert them into the command.
4561		 */
4562		while (nq > 0) {
4563			/*
4564			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4565			 * around the Ingress Queue ID array if necessary) and
4566			 * insert them into the firmware RSS command at the
4567			 * current 3-tuple position within the commad.
4568			 */
4569			u16 qbuf[3];
4570			u16 *qbp = qbuf;
4571			int nqbuf = min(3, nq);
4572
4573			nq -= nqbuf;
4574			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4575			while (nqbuf && nq_packed < 32) {
4576				nqbuf--;
4577				nq_packed++;
4578				*qbp++ = *rsp++;
4579				if (rsp >= rsp_end)
4580					rsp = rspq;
4581			}
4582			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4583					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4584					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4585		}
4586
4587		/*
4588		 * Send this portion of the RRS table update to the firmware;
4589		 * bail out on any errors.
4590		 */
4591		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4592		if (ret)
4593			return ret;
4594	}
4595	return 0;
4596}
4597
4598/**
4599 *	t4_config_glbl_rss - configure the global RSS mode
4600 *	@adapter: the adapter
4601 *	@mbox: mbox to use for the FW command
4602 *	@mode: global RSS mode
4603 *	@flags: mode-specific flags
4604 *
4605 *	Sets the global RSS mode.
4606 */
4607int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4608		       unsigned int flags)
4609{
4610	struct fw_rss_glb_config_cmd c;
4611
4612	memset(&c, 0, sizeof(c));
4613	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4614				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4615	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4616	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4617		c.u.manual.mode_pkd =
4618			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4619	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4620		c.u.basicvirtual.mode_pkd =
4621			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4622		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4623	} else
4624		return -EINVAL;
4625	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4626}
4627
4628/**
4629 *	t4_config_vi_rss - configure per VI RSS settings
4630 *	@adapter: the adapter
4631 *	@mbox: mbox to use for the FW command
4632 *	@viid: the VI id
4633 *	@flags: RSS flags
4634 *	@defq: id of the default RSS queue for the VI.
4635 *
4636 *	Configures VI-specific RSS properties.
4637 */
4638int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4639		     unsigned int flags, unsigned int defq)
4640{
4641	struct fw_rss_vi_config_cmd c;
4642
4643	memset(&c, 0, sizeof(c));
4644	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4645				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4646				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4647	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4648	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4649					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4650	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4651}
4652
4653/* Read an RSS table row */
4654static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4655{
4656	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4657	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4658				   5, 0, val);
4659}
4660
4661/**
4662 *	t4_read_rss - read the contents of the RSS mapping table
4663 *	@adapter: the adapter
4664 *	@map: holds the contents of the RSS mapping table
4665 *
4666 *	Reads the contents of the RSS hash->queue mapping table.
4667 */
4668int t4_read_rss(struct adapter *adapter, u16 *map)
4669{
4670	u32 val;
4671	int i, ret;
4672
4673	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4674		ret = rd_rss_row(adapter, i, &val);
4675		if (ret)
4676			return ret;
4677		*map++ = G_LKPTBLQUEUE0(val);
4678		*map++ = G_LKPTBLQUEUE1(val);
4679	}
4680	return 0;
4681}
4682
4683/**
4684 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4685 *	@adap: the adapter
4686 *	@vals: where the indirect register values are stored/written
4687 *	@nregs: how many indirect registers to read/write
4688 *	@start_idx: index of first indirect register to read/write
4689 *	@rw: Read (1) or Write (0)
4690 *
4691 *	Access TP PIO registers through LDST
4692 */
4693void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4694		     unsigned int start_index, unsigned int rw)
4695{
4696	int ret, i;
4697	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4698	struct fw_ldst_cmd c;
4699
4700	for (i = 0 ; i < nregs; i++) {
4701		memset(&c, 0, sizeof(c));
4702		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4703						F_FW_CMD_REQUEST |
4704						(rw ? F_FW_CMD_READ :
4705						     F_FW_CMD_WRITE) |
4706						V_FW_LDST_CMD_ADDRSPACE(cmd));
4707		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4708
4709		c.u.addrval.addr = cpu_to_be32(start_index + i);
4710		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4711		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4712		if (ret == 0) {
4713			if (rw)
4714				vals[i] = be32_to_cpu(c.u.addrval.val);
4715		}
4716	}
4717}
4718
4719/**
4720 *	t4_read_rss_key - read the global RSS key
4721 *	@adap: the adapter
4722 *	@key: 10-entry array holding the 320-bit RSS key
4723 *
4724 *	Reads the global 320-bit RSS key.
4725 */
4726void t4_read_rss_key(struct adapter *adap, u32 *key)
4727{
4728	if (t4_use_ldst(adap))
4729		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4730	else
4731		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4732				 A_TP_RSS_SECRET_KEY0);
4733}
4734
4735/**
4736 *	t4_write_rss_key - program one of the RSS keys
4737 *	@adap: the adapter
4738 *	@key: 10-entry array holding the 320-bit RSS key
4739 *	@idx: which RSS key to write
4740 *
4741 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4742 *	0..15 the corresponding entry in the RSS key table is written,
4743 *	otherwise the global RSS key is written.
4744 */
4745void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4746{
4747	u8 rss_key_addr_cnt = 16;
4748	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4749
4750	/*
4751	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4752	 * allows access to key addresses 16-63 by using KeyWrAddrX
4753	 * as index[5:4](upper 2) into key table
4754	 */
4755	if ((chip_id(adap) > CHELSIO_T5) &&
4756	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4757		rss_key_addr_cnt = 32;
4758
4759	if (t4_use_ldst(adap))
4760		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4761	else
4762		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4763				  A_TP_RSS_SECRET_KEY0);
4764
4765	if (idx >= 0 && idx < rss_key_addr_cnt) {
4766		if (rss_key_addr_cnt > 16)
4767			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4768				     V_KEYWRADDRX(idx >> 4) |
4769				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4770		else
4771			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4772				     V_KEYWRADDR(idx) | F_KEYWREN);
4773	}
4774}
4775
4776/**
4777 *	t4_read_rss_pf_config - read PF RSS Configuration Table
4778 *	@adapter: the adapter
4779 *	@index: the entry in the PF RSS table to read
4780 *	@valp: where to store the returned value
4781 *
4782 *	Reads the PF RSS Configuration Table at the specified index and returns
4783 *	the value found there.
4784 */
4785void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4786			   u32 *valp)
4787{
4788	if (t4_use_ldst(adapter))
4789		t4_fw_tp_pio_rw(adapter, valp, 1,
4790				A_TP_RSS_PF0_CONFIG + index, 1);
4791	else
4792		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4793				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4794}
4795
4796/**
4797 *	t4_write_rss_pf_config - write PF RSS Configuration Table
4798 *	@adapter: the adapter
4799 *	@index: the entry in the VF RSS table to read
4800 *	@val: the value to store
4801 *
4802 *	Writes the PF RSS Configuration Table at the specified index with the
4803 *	specified value.
4804 */
4805void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4806			    u32 val)
4807{
4808	if (t4_use_ldst(adapter))
4809		t4_fw_tp_pio_rw(adapter, &val, 1,
4810				A_TP_RSS_PF0_CONFIG + index, 0);
4811	else
4812		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4813				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4814}
4815
4816/**
4817 *	t4_read_rss_vf_config - read VF RSS Configuration Table
4818 *	@adapter: the adapter
4819 *	@index: the entry in the VF RSS table to read
4820 *	@vfl: where to store the returned VFL
4821 *	@vfh: where to store the returned VFH
4822 *
4823 *	Reads the VF RSS Configuration Table at the specified index and returns
4824 *	the (VFL, VFH) values found there.
4825 */
4826void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4827			   u32 *vfl, u32 *vfh)
4828{
4829	u32 vrt, mask, data;
4830
4831	if (chip_id(adapter) <= CHELSIO_T5) {
4832		mask = V_VFWRADDR(M_VFWRADDR);
4833		data = V_VFWRADDR(index);
4834	} else {
4835		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4836		 data = V_T6_VFWRADDR(index);
4837	}
4838	/*
4839	 * Request that the index'th VF Table values be read into VFL/VFH.
4840	 */
4841	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4842	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4843	vrt |= data | F_VFRDEN;
4844	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4845
4846	/*
4847	 * Grab the VFL/VFH values ...
4848	 */
4849	if (t4_use_ldst(adapter)) {
4850		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4851		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4852	} else {
4853		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4854				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4855		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4856				 vfh, 1, A_TP_RSS_VFH_CONFIG);
4857	}
4858}
4859
4860/**
4861 *	t4_write_rss_vf_config - write VF RSS Configuration Table
4862 *
4863 *	@adapter: the adapter
4864 *	@index: the entry in the VF RSS table to write
4865 *	@vfl: the VFL to store
4866 *	@vfh: the VFH to store
4867 *
4868 *	Writes the VF RSS Configuration Table at the specified index with the
4869 *	specified (VFL, VFH) values.
4870 */
4871void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
4872			    u32 vfl, u32 vfh)
4873{
4874	u32 vrt, mask, data;
4875
4876	if (chip_id(adapter) <= CHELSIO_T5) {
4877		mask = V_VFWRADDR(M_VFWRADDR);
4878		data = V_VFWRADDR(index);
4879	} else {
4880		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4881		data = V_T6_VFWRADDR(index);
4882	}
4883
4884	/*
4885	 * Load up VFL/VFH with the values to be written ...
4886	 */
4887	if (t4_use_ldst(adapter)) {
4888		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
4889		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
4890	} else {
4891		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4892				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
4893		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4894				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
4895	}
4896
4897	/*
4898	 * Write the VFL/VFH into the VF Table at index'th location.
4899	 */
4900	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4901	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4902	vrt |= data | F_VFRDEN;
4903	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4904}
4905
4906/**
4907 *	t4_read_rss_pf_map - read PF RSS Map
4908 *	@adapter: the adapter
4909 *
4910 *	Reads the PF RSS Map register and returns its value.
4911 */
4912u32 t4_read_rss_pf_map(struct adapter *adapter)
4913{
4914	u32 pfmap;
4915
4916	if (t4_use_ldst(adapter))
4917		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
4918	else
4919		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4920				 &pfmap, 1, A_TP_RSS_PF_MAP);
4921	return pfmap;
4922}
4923
4924/**
4925 *	t4_write_rss_pf_map - write PF RSS Map
4926 *	@adapter: the adapter
4927 *	@pfmap: PF RSS Map value
4928 *
4929 *	Writes the specified value to the PF RSS Map register.
4930 */
4931void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
4932{
4933	if (t4_use_ldst(adapter))
4934		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
4935	else
4936		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4937				  &pfmap, 1, A_TP_RSS_PF_MAP);
4938}
4939
4940/**
4941 *	t4_read_rss_pf_mask - read PF RSS Mask
4942 *	@adapter: the adapter
4943 *
4944 *	Reads the PF RSS Mask register and returns its value.
4945 */
4946u32 t4_read_rss_pf_mask(struct adapter *adapter)
4947{
4948	u32 pfmask;
4949
4950	if (t4_use_ldst(adapter))
4951		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
4952	else
4953		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4954				 &pfmask, 1, A_TP_RSS_PF_MSK);
4955	return pfmask;
4956}
4957
4958/**
4959 *	t4_write_rss_pf_mask - write PF RSS Mask
4960 *	@adapter: the adapter
4961 *	@pfmask: PF RSS Mask value
4962 *
4963 *	Writes the specified value to the PF RSS Mask register.
4964 */
4965void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
4966{
4967	if (t4_use_ldst(adapter))
4968		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
4969	else
4970		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4971				  &pfmask, 1, A_TP_RSS_PF_MSK);
4972}
4973
4974/**
4975 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4976 *	@adap: the adapter
4977 *	@v4: holds the TCP/IP counter values
4978 *	@v6: holds the TCP/IPv6 counter values
4979 *
4980 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4981 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4982 */
4983void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4984			 struct tp_tcp_stats *v6)
4985{
4986	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
4987
4988#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
4989#define STAT(x)     val[STAT_IDX(x)]
4990#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4991
4992	if (v4) {
4993		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
4994				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
4995		v4->tcp_out_rsts = STAT(OUT_RST);
4996		v4->tcp_in_segs  = STAT64(IN_SEG);
4997		v4->tcp_out_segs = STAT64(OUT_SEG);
4998		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4999	}
5000	if (v6) {
5001		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5002				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5003		v6->tcp_out_rsts = STAT(OUT_RST);
5004		v6->tcp_in_segs  = STAT64(IN_SEG);
5005		v6->tcp_out_segs = STAT64(OUT_SEG);
5006		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5007	}
5008#undef STAT64
5009#undef STAT
5010#undef STAT_IDX
5011}
5012
5013/**
5014 *	t4_tp_get_err_stats - read TP's error MIB counters
5015 *	@adap: the adapter
5016 *	@st: holds the counter values
5017 *
5018 *	Returns the values of TP's error counters.
5019 */
5020void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5021{
5022	int nchan = adap->chip_params->nchan;
5023
5024	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5025			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5026	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5027			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5028	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5029			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5030	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5031			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5032	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5033			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5034	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5035			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5036	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5037			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5038	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5039			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5040
5041	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5042			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5043}
5044
5045/**
5046 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5047 *	@adap: the adapter
5048 *	@st: holds the counter values
5049 *
5050 *	Returns the values of TP's proxy counters.
5051 */
5052void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5053{
5054	int nchan = adap->chip_params->nchan;
5055
5056	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5057			 nchan, A_TP_MIB_TNL_LPBK_0);
5058}
5059
5060/**
5061 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5062 *	@adap: the adapter
5063 *	@st: holds the counter values
5064 *
5065 *	Returns the values of TP's CPL counters.
5066 */
5067void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5068{
5069	int nchan = adap->chip_params->nchan;
5070
5071	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5072			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5073	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5074			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5075}
5076
5077/**
5078 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5079 *	@adap: the adapter
5080 *	@st: holds the counter values
5081 *
5082 *	Returns the values of TP's RDMA counters.
5083 */
5084void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5085{
5086	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5087			 2, A_TP_MIB_RQE_DFR_PKT);
5088}
5089
5090/**
5091 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5092 *	@adap: the adapter
5093 *	@idx: the port index
5094 *	@st: holds the counter values
5095 *
5096 *	Returns the values of TP's FCoE counters for the selected port.
5097 */
5098void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5099		       struct tp_fcoe_stats *st)
5100{
5101	u32 val[2];
5102
5103	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5104			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5105	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5106			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5107	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5108			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5109	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5110}
5111
5112/**
5113 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5114 *	@adap: the adapter
5115 *	@st: holds the counter values
5116 *
5117 *	Returns the values of TP's counters for non-TCP directly-placed packets.
5118 */
5119void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5120{
5121	u32 val[4];
5122
5123	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5124			 A_TP_MIB_USM_PKTS);
5125	st->frames = val[0];
5126	st->drops = val[1];
5127	st->octets = ((u64)val[2] << 32) | val[3];
5128}
5129
5130/**
5131 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5132 *	@adap: the adapter
5133 *	@mtus: where to store the MTU values
5134 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5135 *
5136 *	Reads the HW path MTU table.
5137 */
5138void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5139{
5140	u32 v;
5141	int i;
5142
5143	for (i = 0; i < NMTUS; ++i) {
5144		t4_write_reg(adap, A_TP_MTU_TABLE,
5145			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5146		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5147		mtus[i] = G_MTUVALUE(v);
5148		if (mtu_log)
5149			mtu_log[i] = G_MTUWIDTH(v);
5150	}
5151}
5152
5153/**
5154 *	t4_read_cong_tbl - reads the congestion control table
5155 *	@adap: the adapter
5156 *	@incr: where to store the alpha values
5157 *
5158 *	Reads the additive increments programmed into the HW congestion
5159 *	control table.
5160 */
5161void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5162{
5163	unsigned int mtu, w;
5164
5165	for (mtu = 0; mtu < NMTUS; ++mtu)
5166		for (w = 0; w < NCCTRL_WIN; ++w) {
5167			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5168				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5169			incr[mtu][w] = (u16)t4_read_reg(adap,
5170						A_TP_CCTRL_TABLE) & 0x1fff;
5171		}
5172}
5173
5174/**
5175 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5176 *	@adap: the adapter
5177 *	@addr: the indirect TP register address
5178 *	@mask: specifies the field within the register to modify
5179 *	@val: new value for the field
5180 *
5181 *	Sets a field of an indirect TP register to the given value.
5182 */
5183void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5184			    unsigned int mask, unsigned int val)
5185{
5186	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5187	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5188	t4_write_reg(adap, A_TP_PIO_DATA, val);
5189}
5190
5191/**
5192 *	init_cong_ctrl - initialize congestion control parameters
5193 *	@a: the alpha values for congestion control
5194 *	@b: the beta values for congestion control
5195 *
5196 *	Initialize the congestion control parameters.
5197 */
5198static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5199{
5200	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5201	a[9] = 2;
5202	a[10] = 3;
5203	a[11] = 4;
5204	a[12] = 5;
5205	a[13] = 6;
5206	a[14] = 7;
5207	a[15] = 8;
5208	a[16] = 9;
5209	a[17] = 10;
5210	a[18] = 14;
5211	a[19] = 17;
5212	a[20] = 21;
5213	a[21] = 25;
5214	a[22] = 30;
5215	a[23] = 35;
5216	a[24] = 45;
5217	a[25] = 60;
5218	a[26] = 80;
5219	a[27] = 100;
5220	a[28] = 200;
5221	a[29] = 300;
5222	a[30] = 400;
5223	a[31] = 500;
5224
5225	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5226	b[9] = b[10] = 1;
5227	b[11] = b[12] = 2;
5228	b[13] = b[14] = b[15] = b[16] = 3;
5229	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5230	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5231	b[28] = b[29] = 6;
5232	b[30] = b[31] = 7;
5233}
5234
5235/* The minimum additive increment value for the congestion control table */
5236#define CC_MIN_INCR 2U
5237
5238/**
5239 *	t4_load_mtus - write the MTU and congestion control HW tables
5240 *	@adap: the adapter
5241 *	@mtus: the values for the MTU table
5242 *	@alpha: the values for the congestion control alpha parameter
5243 *	@beta: the values for the congestion control beta parameter
5244 *
5245 *	Write the HW MTU table with the supplied MTUs and the high-speed
5246 *	congestion control table with the supplied alpha, beta, and MTUs.
5247 *	We write the two tables together because the additive increments
5248 *	depend on the MTUs.
5249 */
5250void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5251		  const unsigned short *alpha, const unsigned short *beta)
5252{
5253	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5254		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5255		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5256		28672, 40960, 57344, 81920, 114688, 163840, 229376
5257	};
5258
5259	unsigned int i, w;
5260
5261	for (i = 0; i < NMTUS; ++i) {
5262		unsigned int mtu = mtus[i];
5263		unsigned int log2 = fls(mtu);
5264
5265		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5266			log2--;
5267		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5268			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5269
5270		for (w = 0; w < NCCTRL_WIN; ++w) {
5271			unsigned int inc;
5272
5273			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5274				  CC_MIN_INCR);
5275
5276			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5277				     (w << 16) | (beta[w] << 13) | inc);
5278		}
5279	}
5280}
5281
5282/**
5283 *	t4_set_pace_tbl - set the pace table
5284 *	@adap: the adapter
5285 *	@pace_vals: the pace values in microseconds
5286 *	@start: index of the first entry in the HW pace table to set
5287 *	@n: how many entries to set
5288 *
5289 *	Sets (a subset of the) HW pace table.
5290 */
5291int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5292		     unsigned int start, unsigned int n)
5293{
5294	unsigned int vals[NTX_SCHED], i;
5295	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5296
5297	if (n > NTX_SCHED)
5298	    return -ERANGE;
5299
5300	/* convert values from us to dack ticks, rounding to closest value */
5301	for (i = 0; i < n; i++, pace_vals++) {
5302		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5303		if (vals[i] > 0x7ff)
5304			return -ERANGE;
5305		if (*pace_vals && vals[i] == 0)
5306			return -ERANGE;
5307	}
5308	for (i = 0; i < n; i++, start++)
5309		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5310	return 0;
5311}
5312
5313/**
5314 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5315 *	@adap: the adapter
5316 *	@kbps: target rate in Kbps
5317 *	@sched: the scheduler index
5318 *
5319 *	Configure a Tx HW scheduler for the target rate.
5320 */
5321int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5322{
5323	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5324	unsigned int clk = adap->params.vpd.cclk * 1000;
5325	unsigned int selected_cpt = 0, selected_bpt = 0;
5326
5327	if (kbps > 0) {
5328		kbps *= 125;     /* -> bytes */
5329		for (cpt = 1; cpt <= 255; cpt++) {
5330			tps = clk / cpt;
5331			bpt = (kbps + tps / 2) / tps;
5332			if (bpt > 0 && bpt <= 255) {
5333				v = bpt * tps;
5334				delta = v >= kbps ? v - kbps : kbps - v;
5335				if (delta < mindelta) {
5336					mindelta = delta;
5337					selected_cpt = cpt;
5338					selected_bpt = bpt;
5339				}
5340			} else if (selected_cpt)
5341				break;
5342		}
5343		if (!selected_cpt)
5344			return -EINVAL;
5345	}
5346	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5347		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5348	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5349	if (sched & 1)
5350		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5351	else
5352		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5353	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5354	return 0;
5355}
5356
5357/**
5358 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5359 *	@adap: the adapter
5360 *	@sched: the scheduler index
5361 *	@ipg: the interpacket delay in tenths of nanoseconds
5362 *
5363 *	Set the interpacket delay for a HW packet rate scheduler.
5364 */
5365int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5366{
5367	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5368
5369	/* convert ipg to nearest number of core clocks */
5370	ipg *= core_ticks_per_usec(adap);
5371	ipg = (ipg + 5000) / 10000;
5372	if (ipg > M_TXTIMERSEPQ0)
5373		return -EINVAL;
5374
5375	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5376	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5377	if (sched & 1)
5378		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5379	else
5380		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5381	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5382	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5383	return 0;
5384}
5385
5386/*
5387 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5388 * clocks.  The formula is
5389 *
5390 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5391 *
5392 * which is equivalent to
5393 *
5394 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5395 */
5396static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5397{
5398	u64 v = bytes256 * adap->params.vpd.cclk;
5399
5400	return v * 62 + v / 2;
5401}
5402
5403/**
5404 *	t4_get_chan_txrate - get the current per channel Tx rates
5405 *	@adap: the adapter
5406 *	@nic_rate: rates for NIC traffic
5407 *	@ofld_rate: rates for offloaded traffic
5408 *
5409 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5410 *	for each channel.
5411 */
5412void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5413{
5414	u32 v;
5415
5416	v = t4_read_reg(adap, A_TP_TX_TRATE);
5417	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5418	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5419	if (adap->chip_params->nchan > 2) {
5420		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5421		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5422	}
5423
5424	v = t4_read_reg(adap, A_TP_TX_ORATE);
5425	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5426	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5427	if (adap->chip_params->nchan > 2) {
5428		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5429		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5430	}
5431}
5432
5433/**
5434 *	t4_set_trace_filter - configure one of the tracing filters
5435 *	@adap: the adapter
5436 *	@tp: the desired trace filter parameters
5437 *	@idx: which filter to configure
5438 *	@enable: whether to enable or disable the filter
5439 *
5440 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5441 *	it indicates that the filter is already written in the register and it
5442 *	just needs to be enabled or disabled.
5443 */
5444int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5445    int idx, int enable)
5446{
5447	int i, ofst = idx * 4;
5448	u32 data_reg, mask_reg, cfg;
5449	u32 multitrc = F_TRCMULTIFILTER;
5450	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5451
5452	if (idx < 0 || idx >= NTRACE)
5453		return -EINVAL;
5454
5455	if (tp == NULL || !enable) {
5456		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5457		    enable ? en : 0);
5458		return 0;
5459	}
5460
5461	/*
5462	 * TODO - After T4 data book is updated, specify the exact
5463	 * section below.
5464	 *
5465	 * See T4 data book - MPS section for a complete description
5466	 * of the below if..else handling of A_MPS_TRC_CFG register
5467	 * value.
5468	 */
5469	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5470	if (cfg & F_TRCMULTIFILTER) {
5471		/*
5472		 * If multiple tracers are enabled, then maximum
5473		 * capture size is 2.5KB (FIFO size of a single channel)
5474		 * minus 2 flits for CPL_TRACE_PKT header.
5475		 */
5476		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5477			return -EINVAL;
5478	} else {
5479		/*
5480		 * If multiple tracers are disabled, to avoid deadlocks
5481		 * maximum packet capture size of 9600 bytes is recommended.
5482		 * Also in this mode, only trace0 can be enabled and running.
5483		 */
5484		multitrc = 0;
5485		if (tp->snap_len > 9600 || idx)
5486			return -EINVAL;
5487	}
5488
5489	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5490	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5491	    tp->min_len > M_TFMINPKTSIZE)
5492		return -EINVAL;
5493
5494	/* stop the tracer we'll be changing */
5495	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5496
5497	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5498	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5499	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5500
5501	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5502		t4_write_reg(adap, data_reg, tp->data[i]);
5503		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5504	}
5505	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5506		     V_TFCAPTUREMAX(tp->snap_len) |
5507		     V_TFMINPKTSIZE(tp->min_len));
5508	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5509		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5510		     (is_t4(adap) ?
5511		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5512		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5513
5514	return 0;
5515}
5516
5517/**
5518 *	t4_get_trace_filter - query one of the tracing filters
5519 *	@adap: the adapter
5520 *	@tp: the current trace filter parameters
5521 *	@idx: which trace filter to query
5522 *	@enabled: non-zero if the filter is enabled
5523 *
5524 *	Returns the current settings of one of the HW tracing filters.
5525 */
5526void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5527			 int *enabled)
5528{
5529	u32 ctla, ctlb;
5530	int i, ofst = idx * 4;
5531	u32 data_reg, mask_reg;
5532
5533	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5534	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5535
5536	if (is_t4(adap)) {
5537		*enabled = !!(ctla & F_TFEN);
5538		tp->port =  G_TFPORT(ctla);
5539		tp->invert = !!(ctla & F_TFINVERTMATCH);
5540	} else {
5541		*enabled = !!(ctla & F_T5_TFEN);
5542		tp->port = G_T5_TFPORT(ctla);
5543		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5544	}
5545	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5546	tp->min_len = G_TFMINPKTSIZE(ctlb);
5547	tp->skip_ofst = G_TFOFFSET(ctla);
5548	tp->skip_len = G_TFLENGTH(ctla);
5549
5550	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5551	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5552	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5553
5554	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5555		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5556		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5557	}
5558}
5559
5560/**
5561 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5562 *	@adap: the adapter
5563 *	@cnt: where to store the count statistics
5564 *	@cycles: where to store the cycle statistics
5565 *
5566 *	Returns performance statistics from PMTX.
5567 */
5568void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5569{
5570	int i;
5571	u32 data[2];
5572
5573	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5574		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5575		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5576		if (is_t4(adap))
5577			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5578		else {
5579			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5580					 A_PM_TX_DBG_DATA, data, 2,
5581					 A_PM_TX_DBG_STAT_MSB);
5582			cycles[i] = (((u64)data[0] << 32) | data[1]);
5583		}
5584	}
5585}
5586
5587/**
5588 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5589 *	@adap: the adapter
5590 *	@cnt: where to store the count statistics
5591 *	@cycles: where to store the cycle statistics
5592 *
5593 *	Returns performance statistics from PMRX.
5594 */
5595void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5596{
5597	int i;
5598	u32 data[2];
5599
5600	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5601		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5602		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5603		if (is_t4(adap)) {
5604			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5605		} else {
5606			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5607					 A_PM_RX_DBG_DATA, data, 2,
5608					 A_PM_RX_DBG_STAT_MSB);
5609			cycles[i] = (((u64)data[0] << 32) | data[1]);
5610		}
5611	}
5612}
5613
5614/**
5615 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5616 *	@adap: the adapter
5617 *	@idx: the port index
5618 *
5619 *	Returns a bitmap indicating which MPS buffer groups are associated
5620 *	with the given port.  Bit i is set if buffer group i is used by the
5621 *	port.
5622 */
5623static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5624{
5625	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5626
5627	if (n == 0)
5628		return idx == 0 ? 0xf : 0;
5629	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5630		return idx < 2 ? (3 << (2 * idx)) : 0;
5631	return 1 << idx;
5632}
5633
5634/**
5635 *      t4_get_port_type_description - return Port Type string description
5636 *      @port_type: firmware Port Type enumeration
5637 */
5638const char *t4_get_port_type_description(enum fw_port_type port_type)
5639{
5640	static const char *const port_type_description[] = {
5641		"Fiber_XFI",
5642		"Fiber_XAUI",
5643		"BT_SGMII",
5644		"BT_XFI",
5645		"BT_XAUI",
5646		"KX4",
5647		"CX4",
5648		"KX",
5649		"KR",
5650		"SFP",
5651		"BP_AP",
5652		"BP4_AP",
5653		"QSFP_10G",
5654		"QSA",
5655		"QSFP",
5656		"BP40_BA",
5657	};
5658
5659	if (port_type < ARRAY_SIZE(port_type_description))
5660		return port_type_description[port_type];
5661	return "UNKNOWN";
5662}
5663
5664/**
5665 *      t4_get_port_stats_offset - collect port stats relative to a previous
5666 *				   snapshot
5667 *      @adap: The adapter
5668 *      @idx: The port
5669 *      @stats: Current stats to fill
5670 *      @offset: Previous stats snapshot
5671 */
5672void t4_get_port_stats_offset(struct adapter *adap, int idx,
5673		struct port_stats *stats,
5674		struct port_stats *offset)
5675{
5676	u64 *s, *o;
5677	int i;
5678
5679	t4_get_port_stats(adap, idx, stats);
5680	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5681			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5682			i++, s++, o++)
5683		*s -= *o;
5684}
5685
5686/**
5687 *	t4_get_port_stats - collect port statistics
5688 *	@adap: the adapter
5689 *	@idx: the port index
5690 *	@p: the stats structure to fill
5691 *
5692 *	Collect statistics related to the given port from HW.
5693 */
5694void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5695{
5696	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5697	u32 stat_ctl;
5698
5699#define GET_STAT(name) \
5700	t4_read_reg64(adap, \
5701	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5702	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5703#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5704
5705	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5706
5707	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5708	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5709	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5710	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5711	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5712	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5713	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5714	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5715	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5716	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5717	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5718	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5719	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5720	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5721	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5722	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5723	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5724	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5725	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5726	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5727	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5728	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5729	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5730
5731	if (stat_ctl & F_COUNTPAUSESTATTX) {
5732		p->tx_frames -= p->tx_pause;
5733		p->tx_octets -= p->tx_pause * 64;
5734		p->tx_mcast_frames -= p->tx_pause;
5735	}
5736
5737	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5738	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5739	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5740	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5741	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5742	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5743	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5744	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5745	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5746	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5747	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5748	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5749	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5750	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5751	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5752	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5753	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5754	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5755	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5756	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5757	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5758	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5759	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5760	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5761	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5762	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5763	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5764
5765	if (stat_ctl & F_COUNTPAUSESTATRX) {
5766		p->rx_frames -= p->rx_pause;
5767		p->rx_octets -= p->rx_pause * 64;
5768		p->rx_mcast_frames -= p->rx_pause;
5769	}
5770
5771	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5772	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5773	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5774	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5775	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5776	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5777	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5778	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5779
5780#undef GET_STAT
5781#undef GET_STAT_COM
5782}
5783
5784/**
5785 *	t4_get_lb_stats - collect loopback port statistics
5786 *	@adap: the adapter
5787 *	@idx: the loopback port index
5788 *	@p: the stats structure to fill
5789 *
5790 *	Return HW statistics for the given loopback port.
5791 */
5792void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5793{
5794	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5795
5796#define GET_STAT(name) \
5797	t4_read_reg64(adap, \
5798	(is_t4(adap) ? \
5799	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5800	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5801#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5802
5803	p->octets	= GET_STAT(BYTES);
5804	p->frames	= GET_STAT(FRAMES);
5805	p->bcast_frames	= GET_STAT(BCAST);
5806	p->mcast_frames	= GET_STAT(MCAST);
5807	p->ucast_frames	= GET_STAT(UCAST);
5808	p->error_frames	= GET_STAT(ERROR);
5809
5810	p->frames_64		= GET_STAT(64B);
5811	p->frames_65_127	= GET_STAT(65B_127B);
5812	p->frames_128_255	= GET_STAT(128B_255B);
5813	p->frames_256_511	= GET_STAT(256B_511B);
5814	p->frames_512_1023	= GET_STAT(512B_1023B);
5815	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5816	p->frames_1519_max	= GET_STAT(1519B_MAX);
5817	p->drop			= GET_STAT(DROP_FRAMES);
5818
5819	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5820	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5821	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5822	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5823	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5824	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5825	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5826	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5827
5828#undef GET_STAT
5829#undef GET_STAT_COM
5830}
5831
5832/**
5833 *	t4_wol_magic_enable - enable/disable magic packet WoL
5834 *	@adap: the adapter
5835 *	@port: the physical port index
5836 *	@addr: MAC address expected in magic packets, %NULL to disable
5837 *
5838 *	Enables/disables magic packet wake-on-LAN for the selected port.
5839 */
5840void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5841			 const u8 *addr)
5842{
5843	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5844
5845	if (is_t4(adap)) {
5846		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5847		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5848		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5849	} else {
5850		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5851		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5852		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5853	}
5854
5855	if (addr) {
5856		t4_write_reg(adap, mag_id_reg_l,
5857			     (addr[2] << 24) | (addr[3] << 16) |
5858			     (addr[4] << 8) | addr[5]);
5859		t4_write_reg(adap, mag_id_reg_h,
5860			     (addr[0] << 8) | addr[1]);
5861	}
5862	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5863			 V_MAGICEN(addr != NULL));
5864}
5865
5866/**
5867 *	t4_wol_pat_enable - enable/disable pattern-based WoL
5868 *	@adap: the adapter
5869 *	@port: the physical port index
5870 *	@map: bitmap of which HW pattern filters to set
5871 *	@mask0: byte mask for bytes 0-63 of a packet
5872 *	@mask1: byte mask for bytes 64-127 of a packet
5873 *	@crc: Ethernet CRC for selected bytes
5874 *	@enable: enable/disable switch
5875 *
5876 *	Sets the pattern filters indicated in @map to mask out the bytes
5877 *	specified in @mask0/@mask1 in received packets and compare the CRC of
5878 *	the resulting packet against @crc.  If @enable is %true pattern-based
5879 *	WoL is enabled, otherwise disabled.
5880 */
5881int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
5882		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
5883{
5884	int i;
5885	u32 port_cfg_reg;
5886
5887	if (is_t4(adap))
5888		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5889	else
5890		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5891
5892	if (!enable) {
5893		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
5894		return 0;
5895	}
5896	if (map > 0xff)
5897		return -EINVAL;
5898
5899#define EPIO_REG(name) \
5900	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
5901	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
5902
5903	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
5904	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
5905	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
5906
5907	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
5908		if (!(map & 1))
5909			continue;
5910
5911		/* write byte masks */
5912		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
5913		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
5914		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5915		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5916			return -ETIMEDOUT;
5917
5918		/* write CRC */
5919		t4_write_reg(adap, EPIO_REG(DATA0), crc);
5920		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
5921		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5922		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5923			return -ETIMEDOUT;
5924	}
5925#undef EPIO_REG
5926
5927	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
5928	return 0;
5929}
5930
5931/*     t4_mk_filtdelwr - create a delete filter WR
5932 *     @ftid: the filter ID
5933 *     @wr: the filter work request to populate
5934 *     @qid: ingress queue to receive the delete notification
5935 *
5936 *     Creates a filter work request to delete the supplied filter.  If @qid is
5937 *     negative the delete notification is suppressed.
5938 */
5939void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5940{
5941	memset(wr, 0, sizeof(*wr));
5942	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
5943	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
5944	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
5945				    V_FW_FILTER_WR_NOREPLY(qid < 0));
5946	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
5947	if (qid >= 0)
5948		wr->rx_chan_rx_rpl_iq =
5949				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
5950}
5951
5952#define INIT_CMD(var, cmd, rd_wr) do { \
5953	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
5954					F_FW_CMD_REQUEST | \
5955					F_FW_CMD_##rd_wr); \
5956	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5957} while (0)
5958
5959int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5960			  u32 addr, u32 val)
5961{
5962	u32 ldst_addrspace;
5963	struct fw_ldst_cmd c;
5964
5965	memset(&c, 0, sizeof(c));
5966	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
5967	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5968					F_FW_CMD_REQUEST |
5969					F_FW_CMD_WRITE |
5970					ldst_addrspace);
5971	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5972	c.u.addrval.addr = cpu_to_be32(addr);
5973	c.u.addrval.val = cpu_to_be32(val);
5974
5975	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5976}
5977
5978/**
5979 *	t4_mdio_rd - read a PHY register through MDIO
5980 *	@adap: the adapter
5981 *	@mbox: mailbox to use for the FW command
5982 *	@phy_addr: the PHY address
5983 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5984 *	@reg: the register to read
5985 *	@valp: where to store the value
5986 *
5987 *	Issues a FW command through the given mailbox to read a PHY register.
5988 */
5989int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5990	       unsigned int mmd, unsigned int reg, unsigned int *valp)
5991{
5992	int ret;
5993	u32 ldst_addrspace;
5994	struct fw_ldst_cmd c;
5995
5996	memset(&c, 0, sizeof(c));
5997	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
5998	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5999					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6000					ldst_addrspace);
6001	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6002	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6003					 V_FW_LDST_CMD_MMD(mmd));
6004	c.u.mdio.raddr = cpu_to_be16(reg);
6005
6006	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6007	if (ret == 0)
6008		*valp = be16_to_cpu(c.u.mdio.rval);
6009	return ret;
6010}
6011
6012/**
6013 *	t4_mdio_wr - write a PHY register through MDIO
6014 *	@adap: the adapter
6015 *	@mbox: mailbox to use for the FW command
6016 *	@phy_addr: the PHY address
6017 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6018 *	@reg: the register to write
6019 *	@valp: value to write
6020 *
6021 *	Issues a FW command through the given mailbox to write a PHY register.
6022 */
6023int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6024	       unsigned int mmd, unsigned int reg, unsigned int val)
6025{
6026	u32 ldst_addrspace;
6027	struct fw_ldst_cmd c;
6028
6029	memset(&c, 0, sizeof(c));
6030	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6031	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6032					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6033					ldst_addrspace);
6034	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6035	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6036					 V_FW_LDST_CMD_MMD(mmd));
6037	c.u.mdio.raddr = cpu_to_be16(reg);
6038	c.u.mdio.rval = cpu_to_be16(val);
6039
6040	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6041}
6042
6043/**
6044 *
6045 *	t4_sge_decode_idma_state - decode the idma state
6046 *	@adap: the adapter
6047 *	@state: the state idma is stuck in
6048 */
6049void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6050{
6051	static const char * const t4_decode[] = {
6052		"IDMA_IDLE",
6053		"IDMA_PUSH_MORE_CPL_FIFO",
6054		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6055		"Not used",
6056		"IDMA_PHYSADDR_SEND_PCIEHDR",
6057		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6058		"IDMA_PHYSADDR_SEND_PAYLOAD",
6059		"IDMA_SEND_FIFO_TO_IMSG",
6060		"IDMA_FL_REQ_DATA_FL_PREP",
6061		"IDMA_FL_REQ_DATA_FL",
6062		"IDMA_FL_DROP",
6063		"IDMA_FL_H_REQ_HEADER_FL",
6064		"IDMA_FL_H_SEND_PCIEHDR",
6065		"IDMA_FL_H_PUSH_CPL_FIFO",
6066		"IDMA_FL_H_SEND_CPL",
6067		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6068		"IDMA_FL_H_SEND_IP_HDR",
6069		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6070		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6071		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6072		"IDMA_FL_D_SEND_PCIEHDR",
6073		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6074		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6075		"IDMA_FL_SEND_PCIEHDR",
6076		"IDMA_FL_PUSH_CPL_FIFO",
6077		"IDMA_FL_SEND_CPL",
6078		"IDMA_FL_SEND_PAYLOAD_FIRST",
6079		"IDMA_FL_SEND_PAYLOAD",
6080		"IDMA_FL_REQ_NEXT_DATA_FL",
6081		"IDMA_FL_SEND_NEXT_PCIEHDR",
6082		"IDMA_FL_SEND_PADDING",
6083		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6084		"IDMA_FL_SEND_FIFO_TO_IMSG",
6085		"IDMA_FL_REQ_DATAFL_DONE",
6086		"IDMA_FL_REQ_HEADERFL_DONE",
6087	};
6088	static const char * const t5_decode[] = {
6089		"IDMA_IDLE",
6090		"IDMA_ALMOST_IDLE",
6091		"IDMA_PUSH_MORE_CPL_FIFO",
6092		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6093		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6094		"IDMA_PHYSADDR_SEND_PCIEHDR",
6095		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6096		"IDMA_PHYSADDR_SEND_PAYLOAD",
6097		"IDMA_SEND_FIFO_TO_IMSG",
6098		"IDMA_FL_REQ_DATA_FL",
6099		"IDMA_FL_DROP",
6100		"IDMA_FL_DROP_SEND_INC",
6101		"IDMA_FL_H_REQ_HEADER_FL",
6102		"IDMA_FL_H_SEND_PCIEHDR",
6103		"IDMA_FL_H_PUSH_CPL_FIFO",
6104		"IDMA_FL_H_SEND_CPL",
6105		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6106		"IDMA_FL_H_SEND_IP_HDR",
6107		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6108		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6109		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6110		"IDMA_FL_D_SEND_PCIEHDR",
6111		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6112		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6113		"IDMA_FL_SEND_PCIEHDR",
6114		"IDMA_FL_PUSH_CPL_FIFO",
6115		"IDMA_FL_SEND_CPL",
6116		"IDMA_FL_SEND_PAYLOAD_FIRST",
6117		"IDMA_FL_SEND_PAYLOAD",
6118		"IDMA_FL_REQ_NEXT_DATA_FL",
6119		"IDMA_FL_SEND_NEXT_PCIEHDR",
6120		"IDMA_FL_SEND_PADDING",
6121		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6122	};
6123	static const char * const t6_decode[] = {
6124		"IDMA_IDLE",
6125		"IDMA_PUSH_MORE_CPL_FIFO",
6126		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6127		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6128		"IDMA_PHYSADDR_SEND_PCIEHDR",
6129		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6130		"IDMA_PHYSADDR_SEND_PAYLOAD",
6131		"IDMA_FL_REQ_DATA_FL",
6132		"IDMA_FL_DROP",
6133		"IDMA_FL_DROP_SEND_INC",
6134		"IDMA_FL_H_REQ_HEADER_FL",
6135		"IDMA_FL_H_SEND_PCIEHDR",
6136		"IDMA_FL_H_PUSH_CPL_FIFO",
6137		"IDMA_FL_H_SEND_CPL",
6138		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6139		"IDMA_FL_H_SEND_IP_HDR",
6140		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6141		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6142		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6143		"IDMA_FL_D_SEND_PCIEHDR",
6144		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6145		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6146		"IDMA_FL_SEND_PCIEHDR",
6147		"IDMA_FL_PUSH_CPL_FIFO",
6148		"IDMA_FL_SEND_CPL",
6149		"IDMA_FL_SEND_PAYLOAD_FIRST",
6150		"IDMA_FL_SEND_PAYLOAD",
6151		"IDMA_FL_REQ_NEXT_DATA_FL",
6152		"IDMA_FL_SEND_NEXT_PCIEHDR",
6153		"IDMA_FL_SEND_PADDING",
6154		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6155	};
6156	static const u32 sge_regs[] = {
6157		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6158		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6159		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6160	};
6161	const char * const *sge_idma_decode;
6162	int sge_idma_decode_nstates;
6163	int i;
6164	unsigned int chip_version = chip_id(adapter);
6165
6166	/* Select the right set of decode strings to dump depending on the
6167	 * adapter chip type.
6168	 */
6169	switch (chip_version) {
6170	case CHELSIO_T4:
6171		sge_idma_decode = (const char * const *)t4_decode;
6172		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6173		break;
6174
6175	case CHELSIO_T5:
6176		sge_idma_decode = (const char * const *)t5_decode;
6177		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6178		break;
6179
6180	case CHELSIO_T6:
6181		sge_idma_decode = (const char * const *)t6_decode;
6182		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6183		break;
6184
6185	default:
6186		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6187		return;
6188	}
6189
6190	if (state < sge_idma_decode_nstates)
6191		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6192	else
6193		CH_WARN(adapter, "idma state %d unknown\n", state);
6194
6195	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6196		CH_WARN(adapter, "SGE register %#x value %#x\n",
6197			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6198}
6199
6200/**
6201 *      t4_sge_ctxt_flush - flush the SGE context cache
6202 *      @adap: the adapter
6203 *      @mbox: mailbox to use for the FW command
6204 *
6205 *      Issues a FW command through the given mailbox to flush the
6206 *      SGE context cache.
6207 */
6208int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6209{
6210	int ret;
6211	u32 ldst_addrspace;
6212	struct fw_ldst_cmd c;
6213
6214	memset(&c, 0, sizeof(c));
6215	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6216	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6217					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6218					ldst_addrspace);
6219	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6220	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6221
6222	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6223	return ret;
6224}
6225
6226/**
6227 *      t4_fw_hello - establish communication with FW
6228 *      @adap: the adapter
6229 *      @mbox: mailbox to use for the FW command
6230 *      @evt_mbox: mailbox to receive async FW events
6231 *      @master: specifies the caller's willingness to be the device master
6232 *	@state: returns the current device state (if non-NULL)
6233 *
6234 *	Issues a command to establish communication with FW.  Returns either
6235 *	an error (negative integer) or the mailbox of the Master PF.
6236 */
6237int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6238		enum dev_master master, enum dev_state *state)
6239{
6240	int ret;
6241	struct fw_hello_cmd c;
6242	u32 v;
6243	unsigned int master_mbox;
6244	int retries = FW_CMD_HELLO_RETRIES;
6245
6246retry:
6247	memset(&c, 0, sizeof(c));
6248	INIT_CMD(c, HELLO, WRITE);
6249	c.err_to_clearinit = cpu_to_be32(
6250		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6251		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6252		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6253					mbox : M_FW_HELLO_CMD_MBMASTER) |
6254		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6255		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6256		F_FW_HELLO_CMD_CLEARINIT);
6257
6258	/*
6259	 * Issue the HELLO command to the firmware.  If it's not successful
6260	 * but indicates that we got a "busy" or "timeout" condition, retry
6261	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6262	 * retry limit, check to see if the firmware left us any error
6263	 * information and report that if so ...
6264	 */
6265	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6266	if (ret != FW_SUCCESS) {
6267		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6268			goto retry;
6269		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6270			t4_report_fw_error(adap);
6271		return ret;
6272	}
6273
6274	v = be32_to_cpu(c.err_to_clearinit);
6275	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6276	if (state) {
6277		if (v & F_FW_HELLO_CMD_ERR)
6278			*state = DEV_STATE_ERR;
6279		else if (v & F_FW_HELLO_CMD_INIT)
6280			*state = DEV_STATE_INIT;
6281		else
6282			*state = DEV_STATE_UNINIT;
6283	}
6284
6285	/*
6286	 * If we're not the Master PF then we need to wait around for the
6287	 * Master PF Driver to finish setting up the adapter.
6288	 *
6289	 * Note that we also do this wait if we're a non-Master-capable PF and
6290	 * there is no current Master PF; a Master PF may show up momentarily
6291	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6292	 * OS loads lots of different drivers rapidly at the same time).  In
6293	 * this case, the Master PF returned by the firmware will be
6294	 * M_PCIE_FW_MASTER so the test below will work ...
6295	 */
6296	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6297	    master_mbox != mbox) {
6298		int waiting = FW_CMD_HELLO_TIMEOUT;
6299
6300		/*
6301		 * Wait for the firmware to either indicate an error or
6302		 * initialized state.  If we see either of these we bail out
6303		 * and report the issue to the caller.  If we exhaust the
6304		 * "hello timeout" and we haven't exhausted our retries, try
6305		 * again.  Otherwise bail with a timeout error.
6306		 */
6307		for (;;) {
6308			u32 pcie_fw;
6309
6310			msleep(50);
6311			waiting -= 50;
6312
6313			/*
6314			 * If neither Error nor Initialialized are indicated
6315			 * by the firmware keep waiting till we exhaust our
6316			 * timeout ... and then retry if we haven't exhausted
6317			 * our retries ...
6318			 */
6319			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6320			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6321				if (waiting <= 0) {
6322					if (retries-- > 0)
6323						goto retry;
6324
6325					return -ETIMEDOUT;
6326				}
6327				continue;
6328			}
6329
6330			/*
6331			 * We either have an Error or Initialized condition
6332			 * report errors preferentially.
6333			 */
6334			if (state) {
6335				if (pcie_fw & F_PCIE_FW_ERR)
6336					*state = DEV_STATE_ERR;
6337				else if (pcie_fw & F_PCIE_FW_INIT)
6338					*state = DEV_STATE_INIT;
6339			}
6340
6341			/*
6342			 * If we arrived before a Master PF was selected and
6343			 * there's not a valid Master PF, grab its identity
6344			 * for our caller.
6345			 */
6346			if (master_mbox == M_PCIE_FW_MASTER &&
6347			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6348				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6349			break;
6350		}
6351	}
6352
6353	return master_mbox;
6354}
6355
6356/**
6357 *	t4_fw_bye - end communication with FW
6358 *	@adap: the adapter
6359 *	@mbox: mailbox to use for the FW command
6360 *
6361 *	Issues a command to terminate communication with FW.
6362 */
6363int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6364{
6365	struct fw_bye_cmd c;
6366
6367	memset(&c, 0, sizeof(c));
6368	INIT_CMD(c, BYE, WRITE);
6369	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6370}
6371
6372/**
6373 *	t4_fw_reset - issue a reset to FW
6374 *	@adap: the adapter
6375 *	@mbox: mailbox to use for the FW command
6376 *	@reset: specifies the type of reset to perform
6377 *
6378 *	Issues a reset command of the specified type to FW.
6379 */
6380int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6381{
6382	struct fw_reset_cmd c;
6383
6384	memset(&c, 0, sizeof(c));
6385	INIT_CMD(c, RESET, WRITE);
6386	c.val = cpu_to_be32(reset);
6387	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6388}
6389
6390/**
6391 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6392 *	@adap: the adapter
6393 *	@mbox: mailbox to use for the FW RESET command (if desired)
6394 *	@force: force uP into RESET even if FW RESET command fails
6395 *
6396 *	Issues a RESET command to firmware (if desired) with a HALT indication
6397 *	and then puts the microprocessor into RESET state.  The RESET command
6398 *	will only be issued if a legitimate mailbox is provided (mbox <=
6399 *	M_PCIE_FW_MASTER).
6400 *
6401 *	This is generally used in order for the host to safely manipulate the
6402 *	adapter without fear of conflicting with whatever the firmware might
6403 *	be doing.  The only way out of this state is to RESTART the firmware
6404 *	...
6405 */
6406int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6407{
6408	int ret = 0;
6409
6410	/*
6411	 * If a legitimate mailbox is provided, issue a RESET command
6412	 * with a HALT indication.
6413	 */
6414	if (mbox <= M_PCIE_FW_MASTER) {
6415		struct fw_reset_cmd c;
6416
6417		memset(&c, 0, sizeof(c));
6418		INIT_CMD(c, RESET, WRITE);
6419		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6420		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6421		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6422	}
6423
6424	/*
6425	 * Normally we won't complete the operation if the firmware RESET
6426	 * command fails but if our caller insists we'll go ahead and put the
6427	 * uP into RESET.  This can be useful if the firmware is hung or even
6428	 * missing ...  We'll have to take the risk of putting the uP into
6429	 * RESET without the cooperation of firmware in that case.
6430	 *
6431	 * We also force the firmware's HALT flag to be on in case we bypassed
6432	 * the firmware RESET command above or we're dealing with old firmware
6433	 * which doesn't have the HALT capability.  This will serve as a flag
6434	 * for the incoming firmware to know that it's coming out of a HALT
6435	 * rather than a RESET ... if it's new enough to understand that ...
6436	 */
6437	if (ret == 0 || force) {
6438		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6439		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6440				 F_PCIE_FW_HALT);
6441	}
6442
6443	/*
6444	 * And we always return the result of the firmware RESET command
6445	 * even when we force the uP into RESET ...
6446	 */
6447	return ret;
6448}
6449
6450/**
6451 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6452 *	@adap: the adapter
6453 *	@reset: if we want to do a RESET to restart things
6454 *
6455 *	Restart firmware previously halted by t4_fw_halt().  On successful
6456 *	return the previous PF Master remains as the new PF Master and there
6457 *	is no need to issue a new HELLO command, etc.
6458 *
6459 *	We do this in two ways:
6460 *
6461 *	 1. If we're dealing with newer firmware we'll simply want to take
6462 *	    the chip's microprocessor out of RESET.  This will cause the
6463 *	    firmware to start up from its start vector.  And then we'll loop
6464 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6465 *	    reset to 0) or we timeout.
6466 *
6467 *	 2. If we're dealing with older firmware then we'll need to RESET
6468 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6469 *	    flag and automatically RESET itself on startup.
6470 */
6471int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6472{
6473	if (reset) {
6474		/*
6475		 * Since we're directing the RESET instead of the firmware
6476		 * doing it automatically, we need to clear the PCIE_FW.HALT
6477		 * bit.
6478		 */
6479		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6480
6481		/*
6482		 * If we've been given a valid mailbox, first try to get the
6483		 * firmware to do the RESET.  If that works, great and we can
6484		 * return success.  Otherwise, if we haven't been given a
6485		 * valid mailbox or the RESET command failed, fall back to
6486		 * hitting the chip with a hammer.
6487		 */
6488		if (mbox <= M_PCIE_FW_MASTER) {
6489			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6490			msleep(100);
6491			if (t4_fw_reset(adap, mbox,
6492					F_PIORST | F_PIORSTMODE) == 0)
6493				return 0;
6494		}
6495
6496		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6497		msleep(2000);
6498	} else {
6499		int ms;
6500
6501		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6502		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6503			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6504				return FW_SUCCESS;
6505			msleep(100);
6506			ms += 100;
6507		}
6508		return -ETIMEDOUT;
6509	}
6510	return 0;
6511}
6512
6513/**
6514 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6515 *	@adap: the adapter
6516 *	@mbox: mailbox to use for the FW RESET command (if desired)
6517 *	@fw_data: the firmware image to write
6518 *	@size: image size
6519 *	@force: force upgrade even if firmware doesn't cooperate
6520 *
6521 *	Perform all of the steps necessary for upgrading an adapter's
6522 *	firmware image.  Normally this requires the cooperation of the
6523 *	existing firmware in order to halt all existing activities
6524 *	but if an invalid mailbox token is passed in we skip that step
6525 *	(though we'll still put the adapter microprocessor into RESET in
6526 *	that case).
6527 *
6528 *	On successful return the new firmware will have been loaded and
6529 *	the adapter will have been fully RESET losing all previous setup
6530 *	state.  On unsuccessful return the adapter may be completely hosed ...
6531 *	positive errno indicates that the adapter is ~probably~ intact, a
6532 *	negative errno indicates that things are looking bad ...
6533 */
6534int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6535		  const u8 *fw_data, unsigned int size, int force)
6536{
6537	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6538	unsigned int bootstrap =
6539	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6540	int reset, ret;
6541
6542	if (!t4_fw_matches_chip(adap, fw_hdr))
6543		return -EINVAL;
6544
6545	if (!bootstrap) {
6546		ret = t4_fw_halt(adap, mbox, force);
6547		if (ret < 0 && !force)
6548			return ret;
6549	}
6550
6551	ret = t4_load_fw(adap, fw_data, size);
6552	if (ret < 0 || bootstrap)
6553		return ret;
6554
6555	/*
6556	 * Older versions of the firmware don't understand the new
6557	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6558	 * restart.  So for newly loaded older firmware we'll have to do the
6559	 * RESET for it so it starts up on a clean slate.  We can tell if
6560	 * the newly loaded firmware will handle this right by checking
6561	 * its header flags to see if it advertises the capability.
6562	 */
6563	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6564	return t4_fw_restart(adap, mbox, reset);
6565}
6566
6567/**
6568 *	t4_fw_initialize - ask FW to initialize the device
6569 *	@adap: the adapter
6570 *	@mbox: mailbox to use for the FW command
6571 *
6572 *	Issues a command to FW to partially initialize the device.  This
6573 *	performs initialization that generally doesn't depend on user input.
6574 */
6575int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6576{
6577	struct fw_initialize_cmd c;
6578
6579	memset(&c, 0, sizeof(c));
6580	INIT_CMD(c, INITIALIZE, WRITE);
6581	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6582}
6583
6584/**
6585 *	t4_query_params_rw - query FW or device parameters
6586 *	@adap: the adapter
6587 *	@mbox: mailbox to use for the FW command
6588 *	@pf: the PF
6589 *	@vf: the VF
6590 *	@nparams: the number of parameters
6591 *	@params: the parameter names
6592 *	@val: the parameter values
6593 *	@rw: Write and read flag
6594 *
6595 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6596 *	queried at once.
6597 */
6598int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6599		       unsigned int vf, unsigned int nparams, const u32 *params,
6600		       u32 *val, int rw)
6601{
6602	int i, ret;
6603	struct fw_params_cmd c;
6604	__be32 *p = &c.param[0].mnem;
6605
6606	if (nparams > 7)
6607		return -EINVAL;
6608
6609	memset(&c, 0, sizeof(c));
6610	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6611				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6612				  V_FW_PARAMS_CMD_PFN(pf) |
6613				  V_FW_PARAMS_CMD_VFN(vf));
6614	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6615
6616	for (i = 0; i < nparams; i++) {
6617		*p++ = cpu_to_be32(*params++);
6618		if (rw)
6619			*p = cpu_to_be32(*(val + i));
6620		p++;
6621	}
6622
6623	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6624	if (ret == 0)
6625		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6626			*val++ = be32_to_cpu(*p);
6627	return ret;
6628}
6629
6630int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6631		    unsigned int vf, unsigned int nparams, const u32 *params,
6632		    u32 *val)
6633{
6634	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6635}
6636
6637/**
6638 *      t4_set_params_timeout - sets FW or device parameters
6639 *      @adap: the adapter
6640 *      @mbox: mailbox to use for the FW command
6641 *      @pf: the PF
6642 *      @vf: the VF
6643 *      @nparams: the number of parameters
6644 *      @params: the parameter names
6645 *      @val: the parameter values
6646 *      @timeout: the timeout time
6647 *
6648 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6649 *      specified at once.
6650 */
6651int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6652			  unsigned int pf, unsigned int vf,
6653			  unsigned int nparams, const u32 *params,
6654			  const u32 *val, int timeout)
6655{
6656	struct fw_params_cmd c;
6657	__be32 *p = &c.param[0].mnem;
6658
6659	if (nparams > 7)
6660		return -EINVAL;
6661
6662	memset(&c, 0, sizeof(c));
6663	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6664				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6665				  V_FW_PARAMS_CMD_PFN(pf) |
6666				  V_FW_PARAMS_CMD_VFN(vf));
6667	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6668
6669	while (nparams--) {
6670		*p++ = cpu_to_be32(*params++);
6671		*p++ = cpu_to_be32(*val++);
6672	}
6673
6674	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6675}
6676
6677/**
6678 *	t4_set_params - sets FW or device parameters
6679 *	@adap: the adapter
6680 *	@mbox: mailbox to use for the FW command
6681 *	@pf: the PF
6682 *	@vf: the VF
6683 *	@nparams: the number of parameters
6684 *	@params: the parameter names
6685 *	@val: the parameter values
6686 *
6687 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6688 *	specified at once.
6689 */
6690int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6691		  unsigned int vf, unsigned int nparams, const u32 *params,
6692		  const u32 *val)
6693{
6694	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6695				     FW_CMD_MAX_TIMEOUT);
6696}
6697
6698/**
6699 *	t4_cfg_pfvf - configure PF/VF resource limits
6700 *	@adap: the adapter
6701 *	@mbox: mailbox to use for the FW command
6702 *	@pf: the PF being configured
6703 *	@vf: the VF being configured
6704 *	@txq: the max number of egress queues
6705 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6706 *	@rxqi: the max number of interrupt-capable ingress queues
6707 *	@rxq: the max number of interruptless ingress queues
6708 *	@tc: the PCI traffic class
6709 *	@vi: the max number of virtual interfaces
6710 *	@cmask: the channel access rights mask for the PF/VF
6711 *	@pmask: the port access rights mask for the PF/VF
6712 *	@nexact: the maximum number of exact MPS filters
6713 *	@rcaps: read capabilities
6714 *	@wxcaps: write/execute capabilities
6715 *
6716 *	Configures resource limits and capabilities for a physical or virtual
6717 *	function.
6718 */
6719int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6720		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6721		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6722		unsigned int vi, unsigned int cmask, unsigned int pmask,
6723		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6724{
6725	struct fw_pfvf_cmd c;
6726
6727	memset(&c, 0, sizeof(c));
6728	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6729				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6730				  V_FW_PFVF_CMD_VFN(vf));
6731	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6732	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6733				     V_FW_PFVF_CMD_NIQ(rxq));
6734	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6735				    V_FW_PFVF_CMD_PMASK(pmask) |
6736				    V_FW_PFVF_CMD_NEQ(txq));
6737	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6738				      V_FW_PFVF_CMD_NVI(vi) |
6739				      V_FW_PFVF_CMD_NEXACTF(nexact));
6740	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6741				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6742				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6743	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6744}
6745
6746/**
6747 *	t4_alloc_vi_func - allocate a virtual interface
6748 *	@adap: the adapter
6749 *	@mbox: mailbox to use for the FW command
6750 *	@port: physical port associated with the VI
6751 *	@pf: the PF owning the VI
6752 *	@vf: the VF owning the VI
6753 *	@nmac: number of MAC addresses needed (1 to 5)
6754 *	@mac: the MAC addresses of the VI
6755 *	@rss_size: size of RSS table slice associated with this VI
6756 *	@portfunc: which Port Application Function MAC Address is desired
6757 *	@idstype: Intrusion Detection Type
6758 *
6759 *	Allocates a virtual interface for the given physical port.  If @mac is
6760 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6761 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6762 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6763 *	stored consecutively so the space needed is @nmac * 6 bytes.
6764 *	Returns a negative error number or the non-negative VI id.
6765 */
6766int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6767		     unsigned int port, unsigned int pf, unsigned int vf,
6768		     unsigned int nmac, u8 *mac, u16 *rss_size,
6769		     unsigned int portfunc, unsigned int idstype)
6770{
6771	int ret;
6772	struct fw_vi_cmd c;
6773
6774	memset(&c, 0, sizeof(c));
6775	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6776				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6777				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6778	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6779	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6780				     V_FW_VI_CMD_FUNC(portfunc));
6781	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6782	c.nmac = nmac - 1;
6783	if(!rss_size)
6784		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6785
6786	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6787	if (ret)
6788		return ret;
6789
6790	if (mac) {
6791		memcpy(mac, c.mac, sizeof(c.mac));
6792		switch (nmac) {
6793		case 5:
6794			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6795		case 4:
6796			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6797		case 3:
6798			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6799		case 2:
6800			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6801		}
6802	}
6803	if (rss_size)
6804		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6805	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6806}
6807
6808/**
6809 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6810 *      @adap: the adapter
6811 *      @mbox: mailbox to use for the FW command
6812 *      @port: physical port associated with the VI
6813 *      @pf: the PF owning the VI
6814 *      @vf: the VF owning the VI
6815 *      @nmac: number of MAC addresses needed (1 to 5)
6816 *      @mac: the MAC addresses of the VI
6817 *      @rss_size: size of RSS table slice associated with this VI
6818 *
6819 *	backwards compatible and convieniance routine to allocate a Virtual
6820 *	Interface with a Ethernet Port Application Function and Intrustion
6821 *	Detection System disabled.
6822 */
6823int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6824		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6825		u16 *rss_size)
6826{
6827	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6828				FW_VI_FUNC_ETH, 0);
6829}
6830
6831/**
6832 * 	t4_free_vi - free a virtual interface
6833 * 	@adap: the adapter
6834 * 	@mbox: mailbox to use for the FW command
6835 * 	@pf: the PF owning the VI
6836 * 	@vf: the VF owning the VI
6837 * 	@viid: virtual interface identifiler
6838 *
6839 * 	Free a previously allocated virtual interface.
6840 */
6841int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6842	       unsigned int vf, unsigned int viid)
6843{
6844	struct fw_vi_cmd c;
6845
6846	memset(&c, 0, sizeof(c));
6847	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6848				  F_FW_CMD_REQUEST |
6849				  F_FW_CMD_EXEC |
6850				  V_FW_VI_CMD_PFN(pf) |
6851				  V_FW_VI_CMD_VFN(vf));
6852	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6853	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6854
6855	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6856}
6857
6858/**
6859 *	t4_set_rxmode - set Rx properties of a virtual interface
6860 *	@adap: the adapter
6861 *	@mbox: mailbox to use for the FW command
6862 *	@viid: the VI id
6863 *	@mtu: the new MTU or -1
6864 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6865 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6866 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6867 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6868 *	@sleep_ok: if true we may sleep while awaiting command completion
6869 *
6870 *	Sets Rx properties of a virtual interface.
6871 */
6872int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6873		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6874		  bool sleep_ok)
6875{
6876	struct fw_vi_rxmode_cmd c;
6877
6878	/* convert to FW values */
6879	if (mtu < 0)
6880		mtu = M_FW_VI_RXMODE_CMD_MTU;
6881	if (promisc < 0)
6882		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
6883	if (all_multi < 0)
6884		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
6885	if (bcast < 0)
6886		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
6887	if (vlanex < 0)
6888		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
6889
6890	memset(&c, 0, sizeof(c));
6891	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
6892				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6893				   V_FW_VI_RXMODE_CMD_VIID(viid));
6894	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6895	c.mtu_to_vlanexen =
6896		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
6897			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
6898			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
6899			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
6900			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
6901	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6902}
6903
6904/**
6905 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6906 *	@adap: the adapter
6907 *	@mbox: mailbox to use for the FW command
6908 *	@viid: the VI id
6909 *	@free: if true any existing filters for this VI id are first removed
6910 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6911 *	@addr: the MAC address(es)
6912 *	@idx: where to store the index of each allocated filter
6913 *	@hash: pointer to hash address filter bitmap
6914 *	@sleep_ok: call is allowed to sleep
6915 *
6916 *	Allocates an exact-match filter for each of the supplied addresses and
6917 *	sets it to the corresponding address.  If @idx is not %NULL it should
6918 *	have at least @naddr entries, each of which will be set to the index of
6919 *	the filter allocated for the corresponding MAC address.  If a filter
6920 *	could not be allocated for an address its index is set to 0xffff.
6921 *	If @hash is not %NULL addresses that fail to allocate an exact filter
6922 *	are hashed and update the hash filter bitmap pointed at by @hash.
6923 *
6924 *	Returns a negative error number or the number of filters allocated.
6925 */
6926int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6927		      unsigned int viid, bool free, unsigned int naddr,
6928		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6929{
6930	int offset, ret = 0;
6931	struct fw_vi_mac_cmd c;
6932	unsigned int nfilters = 0;
6933	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
6934	unsigned int rem = naddr;
6935
6936	if (naddr > max_naddr)
6937		return -EINVAL;
6938
6939	for (offset = 0; offset < naddr ; /**/) {
6940		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6941					 ? rem
6942					 : ARRAY_SIZE(c.u.exact));
6943		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6944						     u.exact[fw_naddr]), 16);
6945		struct fw_vi_mac_exact *p;
6946		int i;
6947
6948		memset(&c, 0, sizeof(c));
6949		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6950					   F_FW_CMD_REQUEST |
6951					   F_FW_CMD_WRITE |
6952					   V_FW_CMD_EXEC(free) |
6953					   V_FW_VI_MAC_CMD_VIID(viid));
6954		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
6955						  V_FW_CMD_LEN16(len16));
6956
6957		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6958			p->valid_to_idx =
6959				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
6960					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
6961			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6962		}
6963
6964		/*
6965		 * It's okay if we run out of space in our MAC address arena.
6966		 * Some of the addresses we submit may get stored so we need
6967		 * to run through the reply to see what the results were ...
6968		 */
6969		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6970		if (ret && ret != -FW_ENOMEM)
6971			break;
6972
6973		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6974			u16 index = G_FW_VI_MAC_CMD_IDX(
6975						be16_to_cpu(p->valid_to_idx));
6976
6977			if (idx)
6978				idx[offset+i] = (index >=  max_naddr
6979						 ? 0xffff
6980						 : index);
6981			if (index < max_naddr)
6982				nfilters++;
6983			else if (hash)
6984				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
6985		}
6986
6987		free = false;
6988		offset += fw_naddr;
6989		rem -= fw_naddr;
6990	}
6991
6992	if (ret == 0 || ret == -FW_ENOMEM)
6993		ret = nfilters;
6994	return ret;
6995}
6996
6997/**
6998 *	t4_change_mac - modifies the exact-match filter for a MAC address
6999 *	@adap: the adapter
7000 *	@mbox: mailbox to use for the FW command
7001 *	@viid: the VI id
7002 *	@idx: index of existing filter for old value of MAC address, or -1
7003 *	@addr: the new MAC address value
7004 *	@persist: whether a new MAC allocation should be persistent
7005 *	@add_smt: if true also add the address to the HW SMT
7006 *
7007 *	Modifies an exact-match filter and sets it to the new MAC address if
7008 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7009 *	latter case the address is added persistently if @persist is %true.
7010 *
7011 *	Note that in general it is not possible to modify the value of a given
7012 *	filter so the generic way to modify an address filter is to free the one
7013 *	being used by the old address value and allocate a new filter for the
7014 *	new address value.
7015 *
7016 *	Returns a negative error number or the index of the filter with the new
7017 *	MAC value.  Note that this index may differ from @idx.
7018 */
7019int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7020		  int idx, const u8 *addr, bool persist, bool add_smt)
7021{
7022	int ret, mode;
7023	struct fw_vi_mac_cmd c;
7024	struct fw_vi_mac_exact *p = c.u.exact;
7025	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7026
7027	if (idx < 0)		/* new allocation */
7028		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7029	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7030
7031	memset(&c, 0, sizeof(c));
7032	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7033				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7034				   V_FW_VI_MAC_CMD_VIID(viid));
7035	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7036	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7037				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7038				      V_FW_VI_MAC_CMD_IDX(idx));
7039	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7040
7041	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7042	if (ret == 0) {
7043		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7044		if (ret >= max_mac_addr)
7045			ret = -ENOMEM;
7046	}
7047	return ret;
7048}
7049
7050/**
7051 *	t4_set_addr_hash - program the MAC inexact-match hash filter
7052 *	@adap: the adapter
7053 *	@mbox: mailbox to use for the FW command
7054 *	@viid: the VI id
7055 *	@ucast: whether the hash filter should also match unicast addresses
7056 *	@vec: the value to be written to the hash filter
7057 *	@sleep_ok: call is allowed to sleep
7058 *
7059 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7060 */
7061int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7062		     bool ucast, u64 vec, bool sleep_ok)
7063{
7064	struct fw_vi_mac_cmd c;
7065	u32 val;
7066
7067	memset(&c, 0, sizeof(c));
7068	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7069				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7070				   V_FW_VI_ENABLE_CMD_VIID(viid));
7071	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7072	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7073	c.freemacs_to_len16 = cpu_to_be32(val);
7074	c.u.hash.hashvec = cpu_to_be64(vec);
7075	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7076}
7077
7078/**
7079 *      t4_enable_vi_params - enable/disable a virtual interface
7080 *      @adap: the adapter
7081 *      @mbox: mailbox to use for the FW command
7082 *      @viid: the VI id
7083 *      @rx_en: 1=enable Rx, 0=disable Rx
7084 *      @tx_en: 1=enable Tx, 0=disable Tx
7085 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7086 *
7087 *      Enables/disables a virtual interface.  Note that setting DCB Enable
7088 *      only makes sense when enabling a Virtual Interface ...
7089 */
7090int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7091			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7092{
7093	struct fw_vi_enable_cmd c;
7094
7095	memset(&c, 0, sizeof(c));
7096	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7097				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7098				   V_FW_VI_ENABLE_CMD_VIID(viid));
7099	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7100				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7101				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7102				     FW_LEN16(c));
7103	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7104}
7105
7106/**
7107 *	t4_enable_vi - enable/disable a virtual interface
7108 *	@adap: the adapter
7109 *	@mbox: mailbox to use for the FW command
7110 *	@viid: the VI id
7111 *	@rx_en: 1=enable Rx, 0=disable Rx
7112 *	@tx_en: 1=enable Tx, 0=disable Tx
7113 *
7114 *	Enables/disables a virtual interface.  Note that setting DCB Enable
7115 *	only makes sense when enabling a Virtual Interface ...
7116 */
7117int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7118		 bool rx_en, bool tx_en)
7119{
7120	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7121}
7122
7123/**
7124 *	t4_identify_port - identify a VI's port by blinking its LED
7125 *	@adap: the adapter
7126 *	@mbox: mailbox to use for the FW command
7127 *	@viid: the VI id
7128 *	@nblinks: how many times to blink LED at 2.5 Hz
7129 *
7130 *	Identifies a VI's port by blinking its LED.
7131 */
7132int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7133		     unsigned int nblinks)
7134{
7135	struct fw_vi_enable_cmd c;
7136
7137	memset(&c, 0, sizeof(c));
7138	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7139				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7140				   V_FW_VI_ENABLE_CMD_VIID(viid));
7141	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7142	c.blinkdur = cpu_to_be16(nblinks);
7143	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7144}
7145
7146/**
7147 *	t4_iq_stop - stop an ingress queue and its FLs
7148 *	@adap: the adapter
7149 *	@mbox: mailbox to use for the FW command
7150 *	@pf: the PF owning the queues
7151 *	@vf: the VF owning the queues
7152 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7153 *	@iqid: ingress queue id
7154 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7155 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7156 *
7157 *	Stops an ingress queue and its associated FLs, if any.  This causes
7158 *	any current or future data/messages destined for these queues to be
7159 *	tossed.
7160 */
7161int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7162	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7163	       unsigned int fl0id, unsigned int fl1id)
7164{
7165	struct fw_iq_cmd c;
7166
7167	memset(&c, 0, sizeof(c));
7168	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7169				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7170				  V_FW_IQ_CMD_VFN(vf));
7171	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7172	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7173	c.iqid = cpu_to_be16(iqid);
7174	c.fl0id = cpu_to_be16(fl0id);
7175	c.fl1id = cpu_to_be16(fl1id);
7176	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7177}
7178
7179/**
7180 *	t4_iq_free - free an ingress queue and its FLs
7181 *	@adap: the adapter
7182 *	@mbox: mailbox to use for the FW command
7183 *	@pf: the PF owning the queues
7184 *	@vf: the VF owning the queues
7185 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7186 *	@iqid: ingress queue id
7187 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7188 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7189 *
7190 *	Frees an ingress queue and its associated FLs, if any.
7191 */
7192int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7193	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7194	       unsigned int fl0id, unsigned int fl1id)
7195{
7196	struct fw_iq_cmd c;
7197
7198	memset(&c, 0, sizeof(c));
7199	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7200				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7201				  V_FW_IQ_CMD_VFN(vf));
7202	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7203	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7204	c.iqid = cpu_to_be16(iqid);
7205	c.fl0id = cpu_to_be16(fl0id);
7206	c.fl1id = cpu_to_be16(fl1id);
7207	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7208}
7209
7210/**
7211 *	t4_eth_eq_free - free an Ethernet egress queue
7212 *	@adap: the adapter
7213 *	@mbox: mailbox to use for the FW command
7214 *	@pf: the PF owning the queue
7215 *	@vf: the VF owning the queue
7216 *	@eqid: egress queue id
7217 *
7218 *	Frees an Ethernet egress queue.
7219 */
7220int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7221		   unsigned int vf, unsigned int eqid)
7222{
7223	struct fw_eq_eth_cmd c;
7224
7225	memset(&c, 0, sizeof(c));
7226	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7227				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7228				  V_FW_EQ_ETH_CMD_PFN(pf) |
7229				  V_FW_EQ_ETH_CMD_VFN(vf));
7230	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7231	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7232	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7233}
7234
7235/**
7236 *	t4_ctrl_eq_free - free a control egress queue
7237 *	@adap: the adapter
7238 *	@mbox: mailbox to use for the FW command
7239 *	@pf: the PF owning the queue
7240 *	@vf: the VF owning the queue
7241 *	@eqid: egress queue id
7242 *
7243 *	Frees a control egress queue.
7244 */
7245int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7246		    unsigned int vf, unsigned int eqid)
7247{
7248	struct fw_eq_ctrl_cmd c;
7249
7250	memset(&c, 0, sizeof(c));
7251	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7252				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7253				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7254				  V_FW_EQ_CTRL_CMD_VFN(vf));
7255	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7256	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7257	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7258}
7259
7260/**
7261 *	t4_ofld_eq_free - free an offload egress queue
7262 *	@adap: the adapter
7263 *	@mbox: mailbox to use for the FW command
7264 *	@pf: the PF owning the queue
7265 *	@vf: the VF owning the queue
7266 *	@eqid: egress queue id
7267 *
7268 *	Frees a control egress queue.
7269 */
7270int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7271		    unsigned int vf, unsigned int eqid)
7272{
7273	struct fw_eq_ofld_cmd c;
7274
7275	memset(&c, 0, sizeof(c));
7276	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7277				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7278				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7279				  V_FW_EQ_OFLD_CMD_VFN(vf));
7280	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7281	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7282	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7283}
7284
7285/**
7286 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7287 *	@link_down_rc: Link Down Reason Code
7288 *
7289 *	Returns a string representation of the Link Down Reason Code.
7290 */
7291const char *t4_link_down_rc_str(unsigned char link_down_rc)
7292{
7293	static const char *reason[] = {
7294		"Link Down",
7295		"Remote Fault",
7296		"Auto-negotiation Failure",
7297		"Reserved3",
7298		"Insufficient Airflow",
7299		"Unable To Determine Reason",
7300		"No RX Signal Detected",
7301		"Reserved7",
7302	};
7303
7304	if (link_down_rc >= ARRAY_SIZE(reason))
7305		return "Bad Reason Code";
7306
7307	return reason[link_down_rc];
7308}
7309
7310/**
7311 *	t4_handle_fw_rpl - process a FW reply message
7312 *	@adap: the adapter
7313 *	@rpl: start of the FW message
7314 *
7315 *	Processes a FW message, such as link state change messages.
7316 */
7317int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7318{
7319	u8 opcode = *(const u8 *)rpl;
7320	const struct fw_port_cmd *p = (const void *)rpl;
7321	unsigned int action =
7322			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7323
7324	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7325		/* link/module state change message */
7326		int speed = 0, fc = 0, i;
7327		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7328		struct port_info *pi = NULL;
7329		struct link_config *lc;
7330		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7331		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7332		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7333
7334		if (stat & F_FW_PORT_CMD_RXPAUSE)
7335			fc |= PAUSE_RX;
7336		if (stat & F_FW_PORT_CMD_TXPAUSE)
7337			fc |= PAUSE_TX;
7338		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7339			speed = 100;
7340		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7341			speed = 1000;
7342		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7343			speed = 10000;
7344		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7345			speed = 40000;
7346
7347		for_each_port(adap, i) {
7348			pi = adap2pinfo(adap, i);
7349			if (pi->tx_chan == chan)
7350				break;
7351		}
7352		lc = &pi->link_cfg;
7353
7354		if (mod != pi->mod_type) {
7355			pi->mod_type = mod;
7356			t4_os_portmod_changed(adap, i);
7357		}
7358		if (link_ok != lc->link_ok || speed != lc->speed ||
7359		    fc != lc->fc) {                    /* something changed */
7360			int reason;
7361
7362			if (!link_ok && lc->link_ok)
7363				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7364			else
7365				reason = -1;
7366
7367			lc->link_ok = link_ok;
7368			lc->speed = speed;
7369			lc->fc = fc;
7370			lc->supported = be16_to_cpu(p->u.info.pcap);
7371			t4_os_link_changed(adap, i, link_ok, reason);
7372		}
7373	} else {
7374		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7375		return -EINVAL;
7376	}
7377	return 0;
7378}
7379
7380/**
7381 *	get_pci_mode - determine a card's PCI mode
7382 *	@adapter: the adapter
7383 *	@p: where to store the PCI settings
7384 *
7385 *	Determines a card's PCI mode and associated parameters, such as speed
7386 *	and width.
7387 */
7388static void get_pci_mode(struct adapter *adapter,
7389				   struct pci_params *p)
7390{
7391	u16 val;
7392	u32 pcie_cap;
7393
7394	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7395	if (pcie_cap) {
7396		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7397		p->speed = val & PCI_EXP_LNKSTA_CLS;
7398		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7399	}
7400}
7401
7402/**
7403 *	init_link_config - initialize a link's SW state
7404 *	@lc: structure holding the link state
7405 *	@caps: link capabilities
7406 *
7407 *	Initializes the SW state maintained for each link, including the link's
7408 *	capabilities and default speed/flow-control/autonegotiation settings.
7409 */
7410static void init_link_config(struct link_config *lc, unsigned int caps)
7411{
7412	lc->supported = caps;
7413	lc->requested_speed = 0;
7414	lc->speed = 0;
7415	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7416	if (lc->supported & FW_PORT_CAP_ANEG) {
7417		lc->advertising = lc->supported & ADVERT_MASK;
7418		lc->autoneg = AUTONEG_ENABLE;
7419		lc->requested_fc |= PAUSE_AUTONEG;
7420	} else {
7421		lc->advertising = 0;
7422		lc->autoneg = AUTONEG_DISABLE;
7423	}
7424}
7425
7426struct flash_desc {
7427	u32 vendor_and_model_id;
7428	u32 size_mb;
7429};
7430
7431int t4_get_flash_params(struct adapter *adapter)
7432{
7433	/*
7434	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7435	 * to the preexisting well-tested code.  All flash parts have 64KB
7436	 * sectors.
7437	 */
7438	static struct flash_desc supported_flash[] = {
7439		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7440	};
7441
7442	int ret;
7443	u32 info = 0;
7444
7445	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7446	if (!ret)
7447		ret = sf1_read(adapter, 3, 0, 1, &info);
7448	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7449	if (ret < 0)
7450		return ret;
7451
7452	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7453		if (supported_flash[ret].vendor_and_model_id == info) {
7454			adapter->params.sf_size = supported_flash[ret].size_mb;
7455			adapter->params.sf_nsec =
7456				adapter->params.sf_size / SF_SEC_SIZE;
7457			return 0;
7458		}
7459
7460	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7461		return -EINVAL;
7462	info >>= 16;				/* log2 of size */
7463	if (info >= 0x14 && info < 0x18)
7464		adapter->params.sf_nsec = 1 << (info - 16);
7465	else if (info == 0x18)
7466		adapter->params.sf_nsec = 64;
7467	else
7468		return -EINVAL;
7469	adapter->params.sf_size = 1 << info;
7470
7471	/*
7472	 * We should ~probably~ reject adapters with FLASHes which are too
7473	 * small but we have some legacy FPGAs with small FLASHes that we'd
7474	 * still like to use.  So instead we emit a scary message ...
7475	 */
7476	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7477		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7478			adapter->params.sf_size, FLASH_MIN_SIZE);
7479
7480	return 0;
7481}
7482
7483static void set_pcie_completion_timeout(struct adapter *adapter,
7484						  u8 range)
7485{
7486	u16 val;
7487	u32 pcie_cap;
7488
7489	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7490	if (pcie_cap) {
7491		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7492		val &= 0xfff0;
7493		val |= range ;
7494		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7495	}
7496}
7497
7498const struct chip_params *t4_get_chip_params(int chipid)
7499{
7500	static const struct chip_params chip_params[] = {
7501		{
7502			/* T4 */
7503			.nchan = NCHAN,
7504			.pm_stats_cnt = PM_NSTATS,
7505			.cng_ch_bits_log = 2,
7506			.nsched_cls = 15,
7507			.cim_num_obq = CIM_NUM_OBQ,
7508			.mps_rplc_size = 128,
7509			.vfcount = 128,
7510			.sge_fl_db = F_DBPRIO,
7511			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7512		},
7513		{
7514			/* T5 */
7515			.nchan = NCHAN,
7516			.pm_stats_cnt = PM_NSTATS,
7517			.cng_ch_bits_log = 2,
7518			.nsched_cls = 16,
7519			.cim_num_obq = CIM_NUM_OBQ_T5,
7520			.mps_rplc_size = 128,
7521			.vfcount = 128,
7522			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7523			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7524		},
7525		{
7526			/* T6 */
7527			.nchan = T6_NCHAN,
7528			.pm_stats_cnt = T6_PM_NSTATS,
7529			.cng_ch_bits_log = 3,
7530			.nsched_cls = 16,
7531			.cim_num_obq = CIM_NUM_OBQ_T5,
7532			.mps_rplc_size = 256,
7533			.vfcount = 256,
7534			.sge_fl_db = 0,
7535			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7536		},
7537	};
7538
7539	chipid -= CHELSIO_T4;
7540	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7541		return NULL;
7542
7543	return &chip_params[chipid];
7544}
7545
7546/**
7547 *	t4_prep_adapter - prepare SW and HW for operation
7548 *	@adapter: the adapter
7549 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7550 *
7551 *	Initialize adapter SW state for the various HW modules, set initial
7552 *	values for some adapter tunables, take PHYs out of reset, and
7553 *	initialize the MDIO interface.
7554 */
7555int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7556{
7557	int ret;
7558	uint16_t device_id;
7559	uint32_t pl_rev;
7560
7561	get_pci_mode(adapter, &adapter->params.pci);
7562
7563	pl_rev = t4_read_reg(adapter, A_PL_REV);
7564	adapter->params.chipid = G_CHIPID(pl_rev);
7565	adapter->params.rev = G_REV(pl_rev);
7566	if (adapter->params.chipid == 0) {
7567		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7568		adapter->params.chipid = CHELSIO_T4;
7569
7570		/* T4A1 chip is not supported */
7571		if (adapter->params.rev == 1) {
7572			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7573			return -EINVAL;
7574		}
7575	}
7576
7577	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7578	if (adapter->chip_params == NULL)
7579		return -EINVAL;
7580
7581	adapter->params.pci.vpd_cap_addr =
7582	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7583
7584	ret = t4_get_flash_params(adapter);
7585	if (ret < 0)
7586		return ret;
7587
7588	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7589	if (ret < 0)
7590		return ret;
7591
7592	/* Cards with real ASICs have the chipid in the PCIe device id */
7593	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7594	if (device_id >> 12 == chip_id(adapter))
7595		adapter->params.cim_la_size = CIMLA_SIZE;
7596	else {
7597		/* FPGA */
7598		adapter->params.fpga = 1;
7599		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7600	}
7601
7602	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7603
7604	/*
7605	 * Default port and clock for debugging in case we can't reach FW.
7606	 */
7607	adapter->params.nports = 1;
7608	adapter->params.portvec = 1;
7609	adapter->params.vpd.cclk = 50000;
7610
7611	/* Set pci completion timeout value to 4 seconds. */
7612	set_pcie_completion_timeout(adapter, 0xd);
7613	return 0;
7614}
7615
7616/**
7617 *	t4_shutdown_adapter - shut down adapter, host & wire
7618 *	@adapter: the adapter
7619 *
7620 *	Perform an emergency shutdown of the adapter and stop it from
7621 *	continuing any further communication on the ports or DMA to the
7622 *	host.  This is typically used when the adapter and/or firmware
7623 *	have crashed and we want to prevent any further accidental
7624 *	communication with the rest of the world.  This will also force
7625 *	the port Link Status to go down -- if register writes work --
7626 *	which should help our peers figure out that we're down.
7627 */
7628int t4_shutdown_adapter(struct adapter *adapter)
7629{
7630	int port;
7631
7632	t4_intr_disable(adapter);
7633	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7634	for_each_port(adapter, port) {
7635		u32 a_port_cfg = PORT_REG(port,
7636					  is_t4(adapter)
7637					  ? A_XGMAC_PORT_CFG
7638					  : A_MAC_PORT_CFG);
7639
7640		t4_write_reg(adapter, a_port_cfg,
7641			     t4_read_reg(adapter, a_port_cfg)
7642			     & ~V_SIGNAL_DET(1));
7643	}
7644	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7645
7646	return 0;
7647}
7648
7649/**
7650 *	t4_init_devlog_params - initialize adapter->params.devlog
7651 *	@adap: the adapter
7652 *	@fw_attach: whether we can talk to the firmware
7653 *
7654 *	Initialize various fields of the adapter's Firmware Device Log
7655 *	Parameters structure.
7656 */
7657int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7658{
7659	struct devlog_params *dparams = &adap->params.devlog;
7660	u32 pf_dparams;
7661	unsigned int devlog_meminfo;
7662	struct fw_devlog_cmd devlog_cmd;
7663	int ret;
7664
7665	/* If we're dealing with newer firmware, the Device Log Paramerters
7666	 * are stored in a designated register which allows us to access the
7667	 * Device Log even if we can't talk to the firmware.
7668	 */
7669	pf_dparams =
7670		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7671	if (pf_dparams) {
7672		unsigned int nentries, nentries128;
7673
7674		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7675		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7676
7677		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7678		nentries = (nentries128 + 1) * 128;
7679		dparams->size = nentries * sizeof(struct fw_devlog_e);
7680
7681		return 0;
7682	}
7683
7684	/*
7685	 * For any failing returns ...
7686	 */
7687	memset(dparams, 0, sizeof *dparams);
7688
7689	/*
7690	 * If we can't talk to the firmware, there's really nothing we can do
7691	 * at this point.
7692	 */
7693	if (!fw_attach)
7694		return -ENXIO;
7695
7696	/* Otherwise, ask the firmware for it's Device Log Parameters.
7697	 */
7698	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7699	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7700					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7701	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7702	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7703			 &devlog_cmd);
7704	if (ret)
7705		return ret;
7706
7707	devlog_meminfo =
7708		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7709	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7710	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7711	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7712
7713	return 0;
7714}
7715
7716/**
7717 *	t4_init_sge_params - initialize adap->params.sge
7718 *	@adapter: the adapter
7719 *
7720 *	Initialize various fields of the adapter's SGE Parameters structure.
7721 */
7722int t4_init_sge_params(struct adapter *adapter)
7723{
7724	u32 r;
7725	struct sge_params *sp = &adapter->params.sge;
7726	unsigned i;
7727
7728	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7729	sp->counter_val[0] = G_THRESHOLD_0(r);
7730	sp->counter_val[1] = G_THRESHOLD_1(r);
7731	sp->counter_val[2] = G_THRESHOLD_2(r);
7732	sp->counter_val[3] = G_THRESHOLD_3(r);
7733
7734	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7735	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7736	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7737	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7738	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7739	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7740	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7741	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7742	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7743
7744	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7745	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7746	if (is_t4(adapter))
7747		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7748	else
7749		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7750
7751	/* egress queues: log2 of # of doorbells per BAR2 page */
7752	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7753	r >>= S_QUEUESPERPAGEPF0 +
7754	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7755	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7756
7757	/* ingress queues: log2 of # of doorbells per BAR2 page */
7758	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7759	r >>= S_QUEUESPERPAGEPF0 +
7760	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7761	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7762
7763	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7764	r >>= S_HOSTPAGESIZEPF0 +
7765	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7766	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7767
7768	r = t4_read_reg(adapter, A_SGE_CONTROL);
7769	sp->sge_control = r;
7770	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7771	sp->fl_pktshift = G_PKTSHIFT(r);
7772	sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
7773	if (is_t4(adapter))
7774		sp->pack_boundary = sp->pad_boundary;
7775	else {
7776		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7777		if (G_INGPACKBOUNDARY(r) == 0)
7778			sp->pack_boundary = 16;
7779		else
7780			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7781	}
7782	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7783		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7784		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7785
7786	return 0;
7787}
7788
7789/*
7790 * Read and cache the adapter's compressed filter mode and ingress config.
7791 */
7792static void read_filter_mode_and_ingress_config(struct adapter *adap)
7793{
7794	struct tp_params *tpp = &adap->params.tp;
7795
7796	if (t4_use_ldst(adap)) {
7797		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7798				A_TP_VLAN_PRI_MAP, 1);
7799		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7800				A_TP_INGRESS_CONFIG, 1);
7801	} else {
7802		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7803				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7804		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7805				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7806	}
7807
7808	/*
7809	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7810	 * shift positions of several elements of the Compressed Filter Tuple
7811	 * for this adapter which we need frequently ...
7812	 */
7813	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7814	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7815	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7816	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7817	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7818	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7819	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7820	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7821	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7822	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7823
7824	/*
7825	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7826	 * represents the presense of an Outer VLAN instead of a VNIC ID.
7827	 */
7828	if ((tpp->ingress_config & F_VNIC) == 0)
7829		tpp->vnic_shift = -1;
7830}
7831
7832/**
7833 *      t4_init_tp_params - initialize adap->params.tp
7834 *      @adap: the adapter
7835 *
7836 *      Initialize various fields of the adapter's TP Parameters structure.
7837 */
7838int t4_init_tp_params(struct adapter *adap)
7839{
7840	int chan;
7841	u32 v;
7842	struct tp_params *tpp = &adap->params.tp;
7843
7844	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7845	tpp->tre = G_TIMERRESOLUTION(v);
7846	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7847
7848	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7849	for (chan = 0; chan < MAX_NCHAN; chan++)
7850		tpp->tx_modq[chan] = chan;
7851
7852	read_filter_mode_and_ingress_config(adap);
7853
7854	/*
7855	 * For T6, cache the adapter's compressed error vector
7856	 * and passing outer header info for encapsulated packets.
7857	 */
7858	if (chip_id(adap) > CHELSIO_T5) {
7859		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
7860		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
7861	}
7862
7863	return 0;
7864}
7865
7866/**
7867 *      t4_filter_field_shift - calculate filter field shift
7868 *      @adap: the adapter
7869 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7870 *
7871 *      Return the shift position of a filter field within the Compressed
7872 *      Filter Tuple.  The filter field is specified via its selection bit
7873 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7874 */
7875int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7876{
7877	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7878	unsigned int sel;
7879	int field_shift;
7880
7881	if ((filter_mode & filter_sel) == 0)
7882		return -1;
7883
7884	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7885		switch (filter_mode & sel) {
7886		case F_FCOE:
7887			field_shift += W_FT_FCOE;
7888			break;
7889		case F_PORT:
7890			field_shift += W_FT_PORT;
7891			break;
7892		case F_VNIC_ID:
7893			field_shift += W_FT_VNIC_ID;
7894			break;
7895		case F_VLAN:
7896			field_shift += W_FT_VLAN;
7897			break;
7898		case F_TOS:
7899			field_shift += W_FT_TOS;
7900			break;
7901		case F_PROTOCOL:
7902			field_shift += W_FT_PROTOCOL;
7903			break;
7904		case F_ETHERTYPE:
7905			field_shift += W_FT_ETHERTYPE;
7906			break;
7907		case F_MACMATCH:
7908			field_shift += W_FT_MACMATCH;
7909			break;
7910		case F_MPSHITTYPE:
7911			field_shift += W_FT_MPSHITTYPE;
7912			break;
7913		case F_FRAGMENTATION:
7914			field_shift += W_FT_FRAGMENTATION;
7915			break;
7916		}
7917	}
7918	return field_shift;
7919}
7920
7921int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
7922{
7923	u8 addr[6];
7924	int ret, i, j;
7925	struct fw_port_cmd c;
7926	u16 rss_size;
7927	struct port_info *p = adap2pinfo(adap, port_id);
7928	u32 param, val;
7929
7930	memset(&c, 0, sizeof(c));
7931
7932	for (i = 0, j = -1; i <= p->port_id; i++) {
7933		do {
7934			j++;
7935		} while ((adap->params.portvec & (1 << j)) == 0);
7936	}
7937
7938	if (!(adap->flags & IS_VF) ||
7939	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
7940		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
7941				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
7942				       V_FW_PORT_CMD_PORTID(j));
7943		c.action_to_len16 = htonl(
7944			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7945			FW_LEN16(c));
7946		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7947		if (ret)
7948			return ret;
7949
7950		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7951		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
7952			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
7953		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
7954		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
7955
7956		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7957	}
7958
7959	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7960	if (ret < 0)
7961		return ret;
7962
7963	p->vi[0].viid = ret;
7964	p->tx_chan = j;
7965	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
7966	p->lport = j;
7967	p->vi[0].rss_size = rss_size;
7968	t4_os_set_hw_addr(adap, p->port_id, addr);
7969
7970	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7971	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
7972	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
7973	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
7974	if (ret)
7975		p->vi[0].rss_base = 0xffff;
7976	else {
7977		/* MPASS((val >> 16) == rss_size); */
7978		p->vi[0].rss_base = val & 0xffff;
7979	}
7980
7981	return 0;
7982}
7983
7984/**
7985 *	t4_read_cimq_cfg - read CIM queue configuration
7986 *	@adap: the adapter
7987 *	@base: holds the queue base addresses in bytes
7988 *	@size: holds the queue sizes in bytes
7989 *	@thres: holds the queue full thresholds in bytes
7990 *
7991 *	Returns the current configuration of the CIM queues, starting with
7992 *	the IBQs, then the OBQs.
7993 */
7994void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7995{
7996	unsigned int i, v;
7997	int cim_num_obq = adap->chip_params->cim_num_obq;
7998
7999	for (i = 0; i < CIM_NUM_IBQ; i++) {
8000		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8001			     V_QUENUMSELECT(i));
8002		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8003		/* value is in 256-byte units */
8004		*base++ = G_CIMQBASE(v) * 256;
8005		*size++ = G_CIMQSIZE(v) * 256;
8006		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8007	}
8008	for (i = 0; i < cim_num_obq; i++) {
8009		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8010			     V_QUENUMSELECT(i));
8011		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8012		/* value is in 256-byte units */
8013		*base++ = G_CIMQBASE(v) * 256;
8014		*size++ = G_CIMQSIZE(v) * 256;
8015	}
8016}
8017
8018/**
8019 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8020 *	@adap: the adapter
8021 *	@qid: the queue index
8022 *	@data: where to store the queue contents
8023 *	@n: capacity of @data in 32-bit words
8024 *
8025 *	Reads the contents of the selected CIM queue starting at address 0 up
8026 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8027 *	error and the number of 32-bit words actually read on success.
8028 */
8029int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8030{
8031	int i, err, attempts;
8032	unsigned int addr;
8033	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8034
8035	if (qid > 5 || (n & 3))
8036		return -EINVAL;
8037
8038	addr = qid * nwords;
8039	if (n > nwords)
8040		n = nwords;
8041
8042	/* It might take 3-10ms before the IBQ debug read access is allowed.
8043	 * Wait for 1 Sec with a delay of 1 usec.
8044	 */
8045	attempts = 1000000;
8046
8047	for (i = 0; i < n; i++, addr++) {
8048		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8049			     F_IBQDBGEN);
8050		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8051				      attempts, 1);
8052		if (err)
8053			return err;
8054		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8055	}
8056	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8057	return i;
8058}
8059
8060/**
8061 *	t4_read_cim_obq - read the contents of a CIM outbound queue
8062 *	@adap: the adapter
8063 *	@qid: the queue index
8064 *	@data: where to store the queue contents
8065 *	@n: capacity of @data in 32-bit words
8066 *
8067 *	Reads the contents of the selected CIM queue starting at address 0 up
8068 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8069 *	error and the number of 32-bit words actually read on success.
8070 */
8071int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8072{
8073	int i, err;
8074	unsigned int addr, v, nwords;
8075	int cim_num_obq = adap->chip_params->cim_num_obq;
8076
8077	if ((qid > (cim_num_obq - 1)) || (n & 3))
8078		return -EINVAL;
8079
8080	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8081		     V_QUENUMSELECT(qid));
8082	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8083
8084	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8085	nwords = G_CIMQSIZE(v) * 64;  /* same */
8086	if (n > nwords)
8087		n = nwords;
8088
8089	for (i = 0; i < n; i++, addr++) {
8090		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8091			     F_OBQDBGEN);
8092		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8093				      2, 1);
8094		if (err)
8095			return err;
8096		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8097	}
8098	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8099	return i;
8100}
8101
8102enum {
8103	CIM_QCTL_BASE     = 0,
8104	CIM_CTL_BASE      = 0x2000,
8105	CIM_PBT_ADDR_BASE = 0x2800,
8106	CIM_PBT_LRF_BASE  = 0x3000,
8107	CIM_PBT_DATA_BASE = 0x3800
8108};
8109
8110/**
8111 *	t4_cim_read - read a block from CIM internal address space
8112 *	@adap: the adapter
8113 *	@addr: the start address within the CIM address space
8114 *	@n: number of words to read
8115 *	@valp: where to store the result
8116 *
8117 *	Reads a block of 4-byte words from the CIM intenal address space.
8118 */
8119int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8120		unsigned int *valp)
8121{
8122	int ret = 0;
8123
8124	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8125		return -EBUSY;
8126
8127	for ( ; !ret && n--; addr += 4) {
8128		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8129		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8130				      0, 5, 2);
8131		if (!ret)
8132			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8133	}
8134	return ret;
8135}
8136
8137/**
8138 *	t4_cim_write - write a block into CIM internal address space
8139 *	@adap: the adapter
8140 *	@addr: the start address within the CIM address space
8141 *	@n: number of words to write
8142 *	@valp: set of values to write
8143 *
8144 *	Writes a block of 4-byte words into the CIM intenal address space.
8145 */
8146int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8147		 const unsigned int *valp)
8148{
8149	int ret = 0;
8150
8151	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8152		return -EBUSY;
8153
8154	for ( ; !ret && n--; addr += 4) {
8155		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8156		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8157		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8158				      0, 5, 2);
8159	}
8160	return ret;
8161}
8162
8163static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8164			 unsigned int val)
8165{
8166	return t4_cim_write(adap, addr, 1, &val);
8167}
8168
8169/**
8170 *	t4_cim_ctl_read - read a block from CIM control region
8171 *	@adap: the adapter
8172 *	@addr: the start address within the CIM control region
8173 *	@n: number of words to read
8174 *	@valp: where to store the result
8175 *
8176 *	Reads a block of 4-byte words from the CIM control region.
8177 */
8178int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8179		    unsigned int *valp)
8180{
8181	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8182}
8183
8184/**
8185 *	t4_cim_read_la - read CIM LA capture buffer
8186 *	@adap: the adapter
8187 *	@la_buf: where to store the LA data
8188 *	@wrptr: the HW write pointer within the capture buffer
8189 *
8190 *	Reads the contents of the CIM LA buffer with the most recent entry at
8191 *	the end	of the returned data and with the entry at @wrptr first.
8192 *	We try to leave the LA in the running state we find it in.
8193 */
8194int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8195{
8196	int i, ret;
8197	unsigned int cfg, val, idx;
8198
8199	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8200	if (ret)
8201		return ret;
8202
8203	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8204		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8205		if (ret)
8206			return ret;
8207	}
8208
8209	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8210	if (ret)
8211		goto restart;
8212
8213	idx = G_UPDBGLAWRPTR(val);
8214	if (wrptr)
8215		*wrptr = idx;
8216
8217	for (i = 0; i < adap->params.cim_la_size; i++) {
8218		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8219				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8220		if (ret)
8221			break;
8222		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8223		if (ret)
8224			break;
8225		if (val & F_UPDBGLARDEN) {
8226			ret = -ETIMEDOUT;
8227			break;
8228		}
8229		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8230		if (ret)
8231			break;
8232
8233		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8234		idx = (idx + 1) & M_UPDBGLARDPTR;
8235		/*
8236		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8237		 * identify the 32-bit portion of the full 312-bit data
8238		 */
8239		if (is_t6(adap))
8240			while ((idx & 0xf) > 9)
8241				idx = (idx + 1) % M_UPDBGLARDPTR;
8242	}
8243restart:
8244	if (cfg & F_UPDBGLAEN) {
8245		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8246				      cfg & ~F_UPDBGLARDEN);
8247		if (!ret)
8248			ret = r;
8249	}
8250	return ret;
8251}
8252
8253/**
8254 *	t4_tp_read_la - read TP LA capture buffer
8255 *	@adap: the adapter
8256 *	@la_buf: where to store the LA data
8257 *	@wrptr: the HW write pointer within the capture buffer
8258 *
8259 *	Reads the contents of the TP LA buffer with the most recent entry at
8260 *	the end	of the returned data and with the entry at @wrptr first.
8261 *	We leave the LA in the running state we find it in.
8262 */
8263void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8264{
8265	bool last_incomplete;
8266	unsigned int i, cfg, val, idx;
8267
8268	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8269	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8270		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8271			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8272
8273	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8274	idx = G_DBGLAWPTR(val);
8275	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8276	if (last_incomplete)
8277		idx = (idx + 1) & M_DBGLARPTR;
8278	if (wrptr)
8279		*wrptr = idx;
8280
8281	val &= 0xffff;
8282	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8283	val |= adap->params.tp.la_mask;
8284
8285	for (i = 0; i < TPLA_SIZE; i++) {
8286		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8287		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8288		idx = (idx + 1) & M_DBGLARPTR;
8289	}
8290
8291	/* Wipe out last entry if it isn't valid */
8292	if (last_incomplete)
8293		la_buf[TPLA_SIZE - 1] = ~0ULL;
8294
8295	if (cfg & F_DBGLAENABLE)		/* restore running state */
8296		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8297			     cfg | adap->params.tp.la_mask);
8298}
8299
8300/*
8301 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8302 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8303 * state for more than the Warning Threshold then we'll issue a warning about
8304 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8305 * appears to be hung every Warning Repeat second till the situation clears.
8306 * If the situation clears, we'll note that as well.
8307 */
8308#define SGE_IDMA_WARN_THRESH 1
8309#define SGE_IDMA_WARN_REPEAT 300
8310
8311/**
8312 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8313 *	@adapter: the adapter
8314 *	@idma: the adapter IDMA Monitor state
8315 *
8316 *	Initialize the state of an SGE Ingress DMA Monitor.
8317 */
8318void t4_idma_monitor_init(struct adapter *adapter,
8319			  struct sge_idma_monitor_state *idma)
8320{
8321	/* Initialize the state variables for detecting an SGE Ingress DMA
8322	 * hang.  The SGE has internal counters which count up on each clock
8323	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8324	 * same state they were on the previous clock tick.  The clock used is
8325	 * the Core Clock so we have a limit on the maximum "time" they can
8326	 * record; typically a very small number of seconds.  For instance,
8327	 * with a 600MHz Core Clock, we can only count up to a bit more than
8328	 * 7s.  So we'll synthesize a larger counter in order to not run the
8329	 * risk of having the "timers" overflow and give us the flexibility to
8330	 * maintain a Hung SGE State Machine of our own which operates across
8331	 * a longer time frame.
8332	 */
8333	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8334	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8335}
8336
8337/**
8338 *	t4_idma_monitor - monitor SGE Ingress DMA state
8339 *	@adapter: the adapter
8340 *	@idma: the adapter IDMA Monitor state
8341 *	@hz: number of ticks/second
8342 *	@ticks: number of ticks since the last IDMA Monitor call
8343 */
8344void t4_idma_monitor(struct adapter *adapter,
8345		     struct sge_idma_monitor_state *idma,
8346		     int hz, int ticks)
8347{
8348	int i, idma_same_state_cnt[2];
8349
8350	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8351	  * are counters inside the SGE which count up on each clock when the
8352	  * SGE finds its Ingress DMA State Engines in the same states they
8353	  * were in the previous clock.  The counters will peg out at
8354	  * 0xffffffff without wrapping around so once they pass the 1s
8355	  * threshold they'll stay above that till the IDMA state changes.
8356	  */
8357	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8358	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8359	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8360
8361	for (i = 0; i < 2; i++) {
8362		u32 debug0, debug11;
8363
8364		/* If the Ingress DMA Same State Counter ("timer") is less
8365		 * than 1s, then we can reset our synthesized Stall Timer and
8366		 * continue.  If we have previously emitted warnings about a
8367		 * potential stalled Ingress Queue, issue a note indicating
8368		 * that the Ingress Queue has resumed forward progress.
8369		 */
8370		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8371			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8372				CH_WARN(adapter, "SGE idma%d, queue %u, "
8373					"resumed after %d seconds\n",
8374					i, idma->idma_qid[i],
8375					idma->idma_stalled[i]/hz);
8376			idma->idma_stalled[i] = 0;
8377			continue;
8378		}
8379
8380		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8381		 * domain.  The first time we get here it'll be because we
8382		 * passed the 1s Threshold; each additional time it'll be
8383		 * because the RX Timer Callback is being fired on its regular
8384		 * schedule.
8385		 *
8386		 * If the stall is below our Potential Hung Ingress Queue
8387		 * Warning Threshold, continue.
8388		 */
8389		if (idma->idma_stalled[i] == 0) {
8390			idma->idma_stalled[i] = hz;
8391			idma->idma_warn[i] = 0;
8392		} else {
8393			idma->idma_stalled[i] += ticks;
8394			idma->idma_warn[i] -= ticks;
8395		}
8396
8397		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8398			continue;
8399
8400		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8401		 */
8402		if (idma->idma_warn[i] > 0)
8403			continue;
8404		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8405
8406		/* Read and save the SGE IDMA State and Queue ID information.
8407		 * We do this every time in case it changes across time ...
8408		 * can't be too careful ...
8409		 */
8410		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8411		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8412		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8413
8414		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8415		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8416		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8417
8418		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8419			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8420			i, idma->idma_qid[i], idma->idma_state[i],
8421			idma->idma_stalled[i]/hz,
8422			debug0, debug11);
8423		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8424	}
8425}
8426
8427/**
8428 *	t4_read_pace_tbl - read the pace table
8429 *	@adap: the adapter
8430 *	@pace_vals: holds the returned values
8431 *
8432 *	Returns the values of TP's pace table in microseconds.
8433 */
8434void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8435{
8436	unsigned int i, v;
8437
8438	for (i = 0; i < NTX_SCHED; i++) {
8439		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8440		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8441		pace_vals[i] = dack_ticks_to_usec(adap, v);
8442	}
8443}
8444
8445/**
8446 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8447 *	@adap: the adapter
8448 *	@sched: the scheduler index
8449 *	@kbps: the byte rate in Kbps
8450 *	@ipg: the interpacket delay in tenths of nanoseconds
8451 *
8452 *	Return the current configuration of a HW Tx scheduler.
8453 */
8454void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8455		     unsigned int *ipg)
8456{
8457	unsigned int v, addr, bpt, cpt;
8458
8459	if (kbps) {
8460		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8461		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8462		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8463		if (sched & 1)
8464			v >>= 16;
8465		bpt = (v >> 8) & 0xff;
8466		cpt = v & 0xff;
8467		if (!cpt)
8468			*kbps = 0;	/* scheduler disabled */
8469		else {
8470			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8471			*kbps = (v * bpt) / 125;
8472		}
8473	}
8474	if (ipg) {
8475		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8476		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8477		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8478		if (sched & 1)
8479			v >>= 16;
8480		v &= 0xffff;
8481		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8482	}
8483}
8484
8485/**
8486 *	t4_load_cfg - download config file
8487 *	@adap: the adapter
8488 *	@cfg_data: the cfg text file to write
8489 *	@size: text file size
8490 *
8491 *	Write the supplied config text file to the card's serial flash.
8492 */
8493int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8494{
8495	int ret, i, n, cfg_addr;
8496	unsigned int addr;
8497	unsigned int flash_cfg_start_sec;
8498	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8499
8500	cfg_addr = t4_flash_cfg_addr(adap);
8501	if (cfg_addr < 0)
8502		return cfg_addr;
8503
8504	addr = cfg_addr;
8505	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8506
8507	if (size > FLASH_CFG_MAX_SIZE) {
8508		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8509		       FLASH_CFG_MAX_SIZE);
8510		return -EFBIG;
8511	}
8512
8513	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8514			 sf_sec_size);
8515	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8516				     flash_cfg_start_sec + i - 1);
8517	/*
8518	 * If size == 0 then we're simply erasing the FLASH sectors associated
8519	 * with the on-adapter Firmware Configuration File.
8520	 */
8521	if (ret || size == 0)
8522		goto out;
8523
8524	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8525	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8526		if ( (size - i) <  SF_PAGE_SIZE)
8527			n = size - i;
8528		else
8529			n = SF_PAGE_SIZE;
8530		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8531		if (ret)
8532			goto out;
8533
8534		addr += SF_PAGE_SIZE;
8535		cfg_data += SF_PAGE_SIZE;
8536	}
8537
8538out:
8539	if (ret)
8540		CH_ERR(adap, "config file %s failed %d\n",
8541		       (size == 0 ? "clear" : "download"), ret);
8542	return ret;
8543}
8544
8545/**
8546 *	t5_fw_init_extern_mem - initialize the external memory
8547 *	@adap: the adapter
8548 *
8549 *	Initializes the external memory on T5.
8550 */
8551int t5_fw_init_extern_mem(struct adapter *adap)
8552{
8553	u32 params[1], val[1];
8554	int ret;
8555
8556	if (!is_t5(adap))
8557		return 0;
8558
8559	val[0] = 0xff; /* Initialize all MCs */
8560	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8561			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8562	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8563			FW_CMD_MAX_TIMEOUT);
8564
8565	return ret;
8566}
8567
8568/* BIOS boot headers */
8569typedef struct pci_expansion_rom_header {
8570	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8571	u8	reserved[22]; /* Reserved per processor Architecture data */
8572	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8573} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8574
8575/* Legacy PCI Expansion ROM Header */
8576typedef struct legacy_pci_expansion_rom_header {
8577	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8578	u8	size512; /* Current Image Size in units of 512 bytes */
8579	u8	initentry_point[4];
8580	u8	cksum; /* Checksum computed on the entire Image */
8581	u8	reserved[16]; /* Reserved */
8582	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8583} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8584
8585/* EFI PCI Expansion ROM Header */
8586typedef struct efi_pci_expansion_rom_header {
8587	u8	signature[2]; // ROM signature. The value 0xaa55
8588	u8	initialization_size[2]; /* Units 512. Includes this header */
8589	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8590	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8591	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8592	u8	compression_type[2]; /* Compression type. */
8593		/*
8594		 * Compression type definition
8595		 * 0x0: uncompressed
8596		 * 0x1: Compressed
8597		 * 0x2-0xFFFF: Reserved
8598		 */
8599	u8	reserved[8]; /* Reserved */
8600	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8601	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8602} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8603
8604/* PCI Data Structure Format */
8605typedef struct pcir_data_structure { /* PCI Data Structure */
8606	u8	signature[4]; /* Signature. The string "PCIR" */
8607	u8	vendor_id[2]; /* Vendor Identification */
8608	u8	device_id[2]; /* Device Identification */
8609	u8	vital_product[2]; /* Pointer to Vital Product Data */
8610	u8	length[2]; /* PCIR Data Structure Length */
8611	u8	revision; /* PCIR Data Structure Revision */
8612	u8	class_code[3]; /* Class Code */
8613	u8	image_length[2]; /* Image Length. Multiple of 512B */
8614	u8	code_revision[2]; /* Revision Level of Code/Data */
8615	u8	code_type; /* Code Type. */
8616		/*
8617		 * PCI Expansion ROM Code Types
8618		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8619		 * 0x01: Open Firmware standard for PCI. FCODE
8620		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8621		 * 0x03: EFI Image. EFI
8622		 * 0x04-0xFF: Reserved.
8623		 */
8624	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8625	u8	reserved[2]; /* Reserved */
8626} pcir_data_t; /* PCI__DATA_STRUCTURE */
8627
8628/* BOOT constants */
8629enum {
8630	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8631	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8632	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8633	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8634	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8635	VENDOR_ID = 0x1425, /* Vendor ID */
8636	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8637};
8638
8639/*
8640 *	modify_device_id - Modifies the device ID of the Boot BIOS image
8641 *	@adatper: the device ID to write.
8642 *	@boot_data: the boot image to modify.
8643 *
8644 *	Write the supplied device ID to the boot BIOS image.
8645 */
8646static void modify_device_id(int device_id, u8 *boot_data)
8647{
8648	legacy_pci_exp_rom_header_t *header;
8649	pcir_data_t *pcir_header;
8650	u32 cur_header = 0;
8651
8652	/*
8653	 * Loop through all chained images and change the device ID's
8654	 */
8655	while (1) {
8656		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8657		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8658			      le16_to_cpu(*(u16*)header->pcir_offset)];
8659
8660		/*
8661		 * Only modify the Device ID if code type is Legacy or HP.
8662		 * 0x00: Okay to modify
8663		 * 0x01: FCODE. Do not be modify
8664		 * 0x03: Okay to modify
8665		 * 0x04-0xFF: Do not modify
8666		 */
8667		if (pcir_header->code_type == 0x00) {
8668			u8 csum = 0;
8669			int i;
8670
8671			/*
8672			 * Modify Device ID to match current adatper
8673			 */
8674			*(u16*) pcir_header->device_id = device_id;
8675
8676			/*
8677			 * Set checksum temporarily to 0.
8678			 * We will recalculate it later.
8679			 */
8680			header->cksum = 0x0;
8681
8682			/*
8683			 * Calculate and update checksum
8684			 */
8685			for (i = 0; i < (header->size512 * 512); i++)
8686				csum += (u8)boot_data[cur_header + i];
8687
8688			/*
8689			 * Invert summed value to create the checksum
8690			 * Writing new checksum value directly to the boot data
8691			 */
8692			boot_data[cur_header + 7] = -csum;
8693
8694		} else if (pcir_header->code_type == 0x03) {
8695
8696			/*
8697			 * Modify Device ID to match current adatper
8698			 */
8699			*(u16*) pcir_header->device_id = device_id;
8700
8701		}
8702
8703
8704		/*
8705		 * Check indicator element to identify if this is the last
8706		 * image in the ROM.
8707		 */
8708		if (pcir_header->indicator & 0x80)
8709			break;
8710
8711		/*
8712		 * Move header pointer up to the next image in the ROM.
8713		 */
8714		cur_header += header->size512 * 512;
8715	}
8716}
8717
8718/*
8719 *	t4_load_boot - download boot flash
8720 *	@adapter: the adapter
8721 *	@boot_data: the boot image to write
8722 *	@boot_addr: offset in flash to write boot_data
8723 *	@size: image size
8724 *
8725 *	Write the supplied boot image to the card's serial flash.
8726 *	The boot image has the following sections: a 28-byte header and the
8727 *	boot image.
8728 */
8729int t4_load_boot(struct adapter *adap, u8 *boot_data,
8730		 unsigned int boot_addr, unsigned int size)
8731{
8732	pci_exp_rom_header_t *header;
8733	int pcir_offset ;
8734	pcir_data_t *pcir_header;
8735	int ret, addr;
8736	uint16_t device_id;
8737	unsigned int i;
8738	unsigned int boot_sector = (boot_addr * 1024 );
8739	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8740
8741	/*
8742	 * Make sure the boot image does not encroach on the firmware region
8743	 */
8744	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8745		CH_ERR(adap, "boot image encroaching on firmware region\n");
8746		return -EFBIG;
8747	}
8748
8749	/*
8750	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8751	 * and Boot configuration data sections. These 3 boot sections span
8752	 * sectors 0 to 7 in flash and live right before the FW image location.
8753	 */
8754	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8755			sf_sec_size);
8756	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8757				     (boot_sector >> 16) + i - 1);
8758
8759	/*
8760	 * If size == 0 then we're simply erasing the FLASH sectors associated
8761	 * with the on-adapter option ROM file
8762	 */
8763	if (ret || (size == 0))
8764		goto out;
8765
8766	/* Get boot header */
8767	header = (pci_exp_rom_header_t *)boot_data;
8768	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8769	/* PCIR Data Structure */
8770	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8771
8772	/*
8773	 * Perform some primitive sanity testing to avoid accidentally
8774	 * writing garbage over the boot sectors.  We ought to check for
8775	 * more but it's not worth it for now ...
8776	 */
8777	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8778		CH_ERR(adap, "boot image too small/large\n");
8779		return -EFBIG;
8780	}
8781
8782#ifndef CHELSIO_T4_DIAGS
8783	/*
8784	 * Check BOOT ROM header signature
8785	 */
8786	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8787		CH_ERR(adap, "Boot image missing signature\n");
8788		return -EINVAL;
8789	}
8790
8791	/*
8792	 * Check PCI header signature
8793	 */
8794	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8795		CH_ERR(adap, "PCI header missing signature\n");
8796		return -EINVAL;
8797	}
8798
8799	/*
8800	 * Check Vendor ID matches Chelsio ID
8801	 */
8802	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8803		CH_ERR(adap, "Vendor ID missing signature\n");
8804		return -EINVAL;
8805	}
8806#endif
8807
8808	/*
8809	 * Retrieve adapter's device ID
8810	 */
8811	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8812	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8813	device_id = device_id & 0xf0ff;
8814
8815	/*
8816	 * Check PCIE Device ID
8817	 */
8818	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8819		/*
8820		 * Change the device ID in the Boot BIOS image to match
8821		 * the Device ID of the current adapter.
8822		 */
8823		modify_device_id(device_id, boot_data);
8824	}
8825
8826	/*
8827	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8828	 * we finish copying the rest of the boot image. This will ensure
8829	 * that the BIOS boot header will only be written if the boot image
8830	 * was written in full.
8831	 */
8832	addr = boot_sector;
8833	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8834		addr += SF_PAGE_SIZE;
8835		boot_data += SF_PAGE_SIZE;
8836		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8837		if (ret)
8838			goto out;
8839	}
8840
8841	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8842			     (const u8 *)header, 0);
8843
8844out:
8845	if (ret)
8846		CH_ERR(adap, "boot image download failed, error %d\n", ret);
8847	return ret;
8848}
8849
8850/*
8851 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
8852 *	@adapter: the adapter
8853 *
8854 *	Return the address within the flash where the OptionROM Configuration
8855 *	is stored, or an error if the device FLASH is too small to contain
8856 *	a OptionROM Configuration.
8857 */
8858static int t4_flash_bootcfg_addr(struct adapter *adapter)
8859{
8860	/*
8861	 * If the device FLASH isn't large enough to hold a Firmware
8862	 * Configuration File, return an error.
8863	 */
8864	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
8865		return -ENOSPC;
8866
8867	return FLASH_BOOTCFG_START;
8868}
8869
8870int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
8871{
8872	int ret, i, n, cfg_addr;
8873	unsigned int addr;
8874	unsigned int flash_cfg_start_sec;
8875	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8876
8877	cfg_addr = t4_flash_bootcfg_addr(adap);
8878	if (cfg_addr < 0)
8879		return cfg_addr;
8880
8881	addr = cfg_addr;
8882	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8883
8884	if (size > FLASH_BOOTCFG_MAX_SIZE) {
8885		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
8886			FLASH_BOOTCFG_MAX_SIZE);
8887		return -EFBIG;
8888	}
8889
8890	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
8891			 sf_sec_size);
8892	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8893					flash_cfg_start_sec + i - 1);
8894
8895	/*
8896	 * If size == 0 then we're simply erasing the FLASH sectors associated
8897	 * with the on-adapter OptionROM Configuration File.
8898	 */
8899	if (ret || size == 0)
8900		goto out;
8901
8902	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8903	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8904		if ( (size - i) <  SF_PAGE_SIZE)
8905			n = size - i;
8906		else
8907			n = SF_PAGE_SIZE;
8908		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
8909		if (ret)
8910			goto out;
8911
8912		addr += SF_PAGE_SIZE;
8913		cfg_data += SF_PAGE_SIZE;
8914	}
8915
8916out:
8917	if (ret)
8918		CH_ERR(adap, "boot config data %s failed %d\n",
8919				(size == 0 ? "clear" : "download"), ret);
8920	return ret;
8921}
8922
8923/**
8924 *	t4_set_filter_mode - configure the optional components of filter tuples
8925 *	@adap: the adapter
8926 *	@mode_map: a bitmap selcting which optional filter components to enable
8927 *
8928 *	Sets the filter mode by selecting the optional components to enable
8929 *	in filter tuples.  Returns 0 on success and a negative error if the
8930 *	requested mode needs more bits than are available for optional
8931 *	components.
8932 */
8933int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
8934{
8935	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
8936
8937	int i, nbits = 0;
8938
8939	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
8940		if (mode_map & (1 << i))
8941			nbits += width[i];
8942	if (nbits > FILTER_OPT_LEN)
8943		return -EINVAL;
8944	if (t4_use_ldst(adap))
8945		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
8946	else
8947		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
8948				  1, A_TP_VLAN_PRI_MAP);
8949	read_filter_mode_and_ingress_config(adap);
8950
8951	return 0;
8952}
8953
8954/**
8955 *	t4_clr_port_stats - clear port statistics
8956 *	@adap: the adapter
8957 *	@idx: the port index
8958 *
8959 *	Clear HW statistics for the given port.
8960 */
8961void t4_clr_port_stats(struct adapter *adap, int idx)
8962{
8963	unsigned int i;
8964	u32 bgmap = t4_get_mps_bg_map(adap, idx);
8965	u32 port_base_addr;
8966
8967	if (is_t4(adap))
8968		port_base_addr = PORT_BASE(idx);
8969	else
8970		port_base_addr = T5_PORT_BASE(idx);
8971
8972	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
8973			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
8974		t4_write_reg(adap, port_base_addr + i, 0);
8975	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
8976			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
8977		t4_write_reg(adap, port_base_addr + i, 0);
8978	for (i = 0; i < 4; i++)
8979		if (bgmap & (1 << i)) {
8980			t4_write_reg(adap,
8981			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
8982			t4_write_reg(adap,
8983			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
8984		}
8985}
8986
8987/**
8988 *	t4_i2c_rd - read I2C data from adapter
8989 *	@adap: the adapter
8990 *	@port: Port number if per-port device; <0 if not
8991 *	@devid: per-port device ID or absolute device ID
8992 *	@offset: byte offset into device I2C space
8993 *	@len: byte length of I2C space data
8994 *	@buf: buffer in which to return I2C data
8995 *
8996 *	Reads the I2C data from the indicated device and location.
8997 */
8998int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
8999	      int port, unsigned int devid,
9000	      unsigned int offset, unsigned int len,
9001	      u8 *buf)
9002{
9003	u32 ldst_addrspace;
9004	struct fw_ldst_cmd ldst;
9005	int ret;
9006
9007	if (port >= 4 ||
9008	    devid >= 256 ||
9009	    offset >= 256 ||
9010	    len > sizeof ldst.u.i2c.data)
9011		return -EINVAL;
9012
9013	memset(&ldst, 0, sizeof ldst);
9014	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9015	ldst.op_to_addrspace =
9016		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9017			    F_FW_CMD_REQUEST |
9018			    F_FW_CMD_READ |
9019			    ldst_addrspace);
9020	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9021	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9022	ldst.u.i2c.did = devid;
9023	ldst.u.i2c.boffset = offset;
9024	ldst.u.i2c.blen = len;
9025	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9026	if (!ret)
9027		memcpy(buf, ldst.u.i2c.data, len);
9028	return ret;
9029}
9030
9031/**
9032 *	t4_i2c_wr - write I2C data to adapter
9033 *	@adap: the adapter
9034 *	@port: Port number if per-port device; <0 if not
9035 *	@devid: per-port device ID or absolute device ID
9036 *	@offset: byte offset into device I2C space
9037 *	@len: byte length of I2C space data
9038 *	@buf: buffer containing new I2C data
9039 *
9040 *	Write the I2C data to the indicated device and location.
9041 */
9042int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9043	      int port, unsigned int devid,
9044	      unsigned int offset, unsigned int len,
9045	      u8 *buf)
9046{
9047	u32 ldst_addrspace;
9048	struct fw_ldst_cmd ldst;
9049
9050	if (port >= 4 ||
9051	    devid >= 256 ||
9052	    offset >= 256 ||
9053	    len > sizeof ldst.u.i2c.data)
9054		return -EINVAL;
9055
9056	memset(&ldst, 0, sizeof ldst);
9057	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9058	ldst.op_to_addrspace =
9059		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9060			    F_FW_CMD_REQUEST |
9061			    F_FW_CMD_WRITE |
9062			    ldst_addrspace);
9063	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9064	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9065	ldst.u.i2c.did = devid;
9066	ldst.u.i2c.boffset = offset;
9067	ldst.u.i2c.blen = len;
9068	memcpy(ldst.u.i2c.data, buf, len);
9069	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9070}
9071
9072/**
9073 * 	t4_sge_ctxt_rd - read an SGE context through FW
9074 * 	@adap: the adapter
9075 * 	@mbox: mailbox to use for the FW command
9076 * 	@cid: the context id
9077 * 	@ctype: the context type
9078 * 	@data: where to store the context data
9079 *
9080 * 	Issues a FW command through the given mailbox to read an SGE context.
9081 */
9082int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9083		   enum ctxt_type ctype, u32 *data)
9084{
9085	int ret;
9086	struct fw_ldst_cmd c;
9087
9088	if (ctype == CTXT_EGRESS)
9089		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9090	else if (ctype == CTXT_INGRESS)
9091		ret = FW_LDST_ADDRSPC_SGE_INGC;
9092	else if (ctype == CTXT_FLM)
9093		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9094	else
9095		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9096
9097	memset(&c, 0, sizeof(c));
9098	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9099					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9100					V_FW_LDST_CMD_ADDRSPACE(ret));
9101	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9102	c.u.idctxt.physid = cpu_to_be32(cid);
9103
9104	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9105	if (ret == 0) {
9106		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9107		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9108		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9109		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9110		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9111		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9112	}
9113	return ret;
9114}
9115
9116/**
9117 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9118 * 	@adap: the adapter
9119 * 	@cid: the context id
9120 * 	@ctype: the context type
9121 * 	@data: where to store the context data
9122 *
9123 * 	Reads an SGE context directly, bypassing FW.  This is only for
9124 * 	debugging when FW is unavailable.
9125 */
9126int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9127		      u32 *data)
9128{
9129	int i, ret;
9130
9131	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9132	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9133	if (!ret)
9134		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9135			*data++ = t4_read_reg(adap, i);
9136	return ret;
9137}
9138
9139int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9140    		    int sleep_ok)
9141{
9142	struct fw_sched_cmd cmd;
9143
9144	memset(&cmd, 0, sizeof(cmd));
9145	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9146				      F_FW_CMD_REQUEST |
9147				      F_FW_CMD_WRITE);
9148	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9149
9150	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9151	cmd.u.config.type = type;
9152	cmd.u.config.minmaxen = minmaxen;
9153
9154	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9155			       NULL, sleep_ok);
9156}
9157
9158int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9159		    int rateunit, int ratemode, int channel, int cl,
9160		    int minrate, int maxrate, int weight, int pktsize,
9161		    int sleep_ok)
9162{
9163	struct fw_sched_cmd cmd;
9164
9165	memset(&cmd, 0, sizeof(cmd));
9166	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9167				      F_FW_CMD_REQUEST |
9168				      F_FW_CMD_WRITE);
9169	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9170
9171	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9172	cmd.u.params.type = type;
9173	cmd.u.params.level = level;
9174	cmd.u.params.mode = mode;
9175	cmd.u.params.ch = channel;
9176	cmd.u.params.cl = cl;
9177	cmd.u.params.unit = rateunit;
9178	cmd.u.params.rate = ratemode;
9179	cmd.u.params.min = cpu_to_be32(minrate);
9180	cmd.u.params.max = cpu_to_be32(maxrate);
9181	cmd.u.params.weight = cpu_to_be16(weight);
9182	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9183
9184	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9185			       NULL, sleep_ok);
9186}
9187
9188/*
9189 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9190 *	@adapter: the adapter
9191 * 	@mbox: mailbox to use for the FW command
9192 * 	@pf: the PF owning the queue
9193 * 	@vf: the VF owning the queue
9194 *	@timeout: watchdog timeout in ms
9195 *	@action: watchdog timer / action
9196 *
9197 *	There are separate watchdog timers for each possible watchdog
9198 *	action.  Configure one of the watchdog timers by setting a non-zero
9199 *	timeout.  Disable a watchdog timer by using a timeout of zero.
9200 */
9201int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9202		       unsigned int pf, unsigned int vf,
9203		       unsigned int timeout, unsigned int action)
9204{
9205	struct fw_watchdog_cmd wdog;
9206	unsigned int ticks;
9207
9208	/*
9209	 * The watchdog command expects a timeout in units of 10ms so we need
9210	 * to convert it here (via rounding) and force a minimum of one 10ms
9211	 * "tick" if the timeout is non-zero but the convertion results in 0
9212	 * ticks.
9213	 */
9214	ticks = (timeout + 5)/10;
9215	if (timeout && !ticks)
9216		ticks = 1;
9217
9218	memset(&wdog, 0, sizeof wdog);
9219	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9220				     F_FW_CMD_REQUEST |
9221				     F_FW_CMD_WRITE |
9222				     V_FW_PARAMS_CMD_PFN(pf) |
9223				     V_FW_PARAMS_CMD_VFN(vf));
9224	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9225	wdog.timeout = cpu_to_be32(ticks);
9226	wdog.action = cpu_to_be32(action);
9227
9228	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9229}
9230
9231int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9232{
9233	struct fw_devlog_cmd devlog_cmd;
9234	int ret;
9235
9236	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9237	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9238					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9239	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9240	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9241			 sizeof(devlog_cmd), &devlog_cmd);
9242	if (ret)
9243		return ret;
9244
9245	*level = devlog_cmd.level;
9246	return 0;
9247}
9248
9249int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9250{
9251	struct fw_devlog_cmd devlog_cmd;
9252
9253	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9254	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9255					     F_FW_CMD_REQUEST |
9256					     F_FW_CMD_WRITE);
9257	devlog_cmd.level = level;
9258	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9259	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9260			  sizeof(devlog_cmd), &devlog_cmd);
9261}
9262