bxe.c revision 281955
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/bxe/bxe.c 281955 2015-04-24 23:26:44Z hiren $");
29
30#define BXE_DRIVER_VERSION "1.78.78"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127#if 0
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_VF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "QLogic NetXtreme II BCM57712 VF 10GbE"
133    },
134#endif
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57800_MF,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57800 MF 10GbE"
146    },
147#if 0
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_VF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "QLogic NetXtreme II BCM57800 VF 10GbE"
153    },
154#endif
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57810,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "QLogic NetXtreme II BCM57810 10GbE"
160    },
161    {
162        BRCM_VENDORID,
163        CHIP_NUM_57810_MF,
164        PCI_ANY_ID, PCI_ANY_ID,
165        "QLogic NetXtreme II BCM57810 MF 10GbE"
166    },
167#if 0
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_VF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "QLogic NetXtreme II BCM57810 VF 10GbE"
173    },
174#endif
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57811,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57811 10GbE"
180    },
181    {
182        BRCM_VENDORID,
183        CHIP_NUM_57811_MF,
184        PCI_ANY_ID, PCI_ANY_ID,
185        "QLogic NetXtreme II BCM57811 MF 10GbE"
186    },
187#if 0
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_VF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "QLogic NetXtreme II BCM57811 VF 10GbE"
193    },
194#endif
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57840_4_10,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "QLogic NetXtreme II BCM57840 4x10GbE"
200    },
201#if 0
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_2_20,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "QLogic NetXtreme II BCM57840 2x20GbE"
207    },
208#endif
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_MF,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "QLogic NetXtreme II BCM57840 MF 10GbE"
214    },
215#if 0
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_VF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "QLogic NetXtreme II BCM57840 VF 10GbE"
221    },
222#endif
223    {
224        0, 0, 0, 0, NULL
225    }
226};
227
228MALLOC_DECLARE(M_BXE_ILT);
229MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230
231/*
232 * FreeBSD device entry points.
233 */
234static int bxe_probe(device_t);
235static int bxe_attach(device_t);
236static int bxe_detach(device_t);
237static int bxe_shutdown(device_t);
238
239/*
240 * FreeBSD KLD module/device interface event handler method.
241 */
242static device_method_t bxe_methods[] = {
243    /* Device interface (device_if.h) */
244    DEVMETHOD(device_probe,     bxe_probe),
245    DEVMETHOD(device_attach,    bxe_attach),
246    DEVMETHOD(device_detach,    bxe_detach),
247    DEVMETHOD(device_shutdown,  bxe_shutdown),
248#if 0
249    DEVMETHOD(device_suspend,   bxe_suspend),
250    DEVMETHOD(device_resume,    bxe_resume),
251#endif
252    /* Bus interface (bus_if.h) */
253    DEVMETHOD(bus_print_child,  bus_generic_print_child),
254    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255    KOBJMETHOD_END
256};
257
258/*
259 * FreeBSD KLD Module data declaration
260 */
261static driver_t bxe_driver = {
262    "bxe",                   /* module name */
263    bxe_methods,             /* event handler */
264    sizeof(struct bxe_softc) /* extra data */
265};
266
267/*
268 * FreeBSD dev class is needed to manage dev instances and
269 * to associate with a bus type
270 */
271static devclass_t bxe_devclass;
272
273MODULE_DEPEND(bxe, pci, 1, 1, 1);
274MODULE_DEPEND(bxe, ether, 1, 1, 1);
275DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276
277/* resources needed for unloading a previously loaded device */
278
279#define BXE_PREV_WAIT_NEEDED 1
280struct mtx bxe_prev_mtx;
281MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282struct bxe_prev_list_node {
283    LIST_ENTRY(bxe_prev_list_node) node;
284    uint8_t bus;
285    uint8_t slot;
286    uint8_t path;
287    uint8_t aer; /* XXX automatic error recovery */
288    uint8_t undi;
289};
290static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291
292static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293
294/* Tunable device values... */
295
296SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297
298/* Debug */
299unsigned long bxe_debug = 0;
300TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
301SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
302             &bxe_debug, 0, "Debug logging mode");
303
304/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
305static int bxe_interrupt_mode = INTR_MODE_MSIX;
306TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
307SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
308           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
309
310/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
311static int bxe_queue_count = 4;
312TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
313SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
314           &bxe_queue_count, 0, "Multi-Queue queue count");
315
316/* max number of buffers per queue (default RX_BD_USABLE) */
317static int bxe_max_rx_bufs = 0;
318TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
319SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
320           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
321
322/* Host interrupt coalescing RX tick timer (usecs) */
323static int bxe_hc_rx_ticks = 25;
324TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
325SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
326           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
327
328/* Host interrupt coalescing TX tick timer (usecs) */
329static int bxe_hc_tx_ticks = 50;
330TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
331SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
332           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
333
334/* Maximum number of Rx packets to process at a time */
335static int bxe_rx_budget = 0xffffffff;
336TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
337SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
338           &bxe_rx_budget, 0, "Rx processing budget");
339
340/* Maximum LRO aggregation size */
341static int bxe_max_aggregation_size = 0;
342TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
343SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
344           &bxe_max_aggregation_size, 0, "max aggregation size");
345
346/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
347static int bxe_mrrs = -1;
348TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
349SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
350           &bxe_mrrs, 0, "PCIe maximum read request size");
351
352/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
353static int bxe_autogreeen = 0;
354TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
355SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
356           &bxe_autogreeen, 0, "AutoGrEEEn support");
357
358/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
359static int bxe_udp_rss = 0;
360TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
361SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
362           &bxe_udp_rss, 0, "UDP RSS support");
363
364
365#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
366
367#define STATS_OFFSET32(stat_name)                   \
368    (offsetof(struct bxe_eth_stats, stat_name) / 4)
369
370#define Q_STATS_OFFSET32(stat_name)                   \
371    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
372
373static const struct {
374    uint32_t offset;
375    uint32_t size;
376    uint32_t flags;
377#define STATS_FLAGS_PORT  1
378#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
379#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
380    char string[STAT_NAME_LEN];
381} bxe_eth_stats_arr[] = {
382    { STATS_OFFSET32(total_bytes_received_hi),
383                8, STATS_FLAGS_BOTH, "rx_bytes" },
384    { STATS_OFFSET32(error_bytes_received_hi),
385                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
386    { STATS_OFFSET32(total_unicast_packets_received_hi),
387                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
388    { STATS_OFFSET32(total_multicast_packets_received_hi),
389                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
390    { STATS_OFFSET32(total_broadcast_packets_received_hi),
391                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
392    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
393                8, STATS_FLAGS_PORT, "rx_crc_errors" },
394    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
395                8, STATS_FLAGS_PORT, "rx_align_errors" },
396    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
397                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
398    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
399                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
400    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
401                8, STATS_FLAGS_PORT, "rx_fragments" },
402    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
403                8, STATS_FLAGS_PORT, "rx_jabbers" },
404    { STATS_OFFSET32(no_buff_discard_hi),
405                8, STATS_FLAGS_BOTH, "rx_discards" },
406    { STATS_OFFSET32(mac_filter_discard),
407                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
408    { STATS_OFFSET32(mf_tag_discard),
409                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
410    { STATS_OFFSET32(pfc_frames_received_hi),
411                8, STATS_FLAGS_PORT, "pfc_frames_received" },
412    { STATS_OFFSET32(pfc_frames_sent_hi),
413                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
414    { STATS_OFFSET32(brb_drop_hi),
415                8, STATS_FLAGS_PORT, "rx_brb_discard" },
416    { STATS_OFFSET32(brb_truncate_hi),
417                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
418    { STATS_OFFSET32(pause_frames_received_hi),
419                8, STATS_FLAGS_PORT, "rx_pause_frames" },
420    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
421                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
422    { STATS_OFFSET32(nig_timer_max),
423                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
424    { STATS_OFFSET32(total_bytes_transmitted_hi),
425                8, STATS_FLAGS_BOTH, "tx_bytes" },
426    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
427                8, STATS_FLAGS_PORT, "tx_error_bytes" },
428    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
429                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
430    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
431                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
432    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
433                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
434    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
435                8, STATS_FLAGS_PORT, "tx_mac_errors" },
436    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
437                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
438    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
439                8, STATS_FLAGS_PORT, "tx_single_collisions" },
440    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
441                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
442    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
443                8, STATS_FLAGS_PORT, "tx_deferred" },
444    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
445                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
446    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
447                8, STATS_FLAGS_PORT, "tx_late_collisions" },
448    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
449                8, STATS_FLAGS_PORT, "tx_total_collisions" },
450    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
451                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
452    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
453                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
454    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
455                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
456    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
457                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
458    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
459                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
460    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
461                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
462    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
463                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
464    { STATS_OFFSET32(pause_frames_sent_hi),
465                8, STATS_FLAGS_PORT, "tx_pause_frames" },
466    { STATS_OFFSET32(total_tpa_aggregations_hi),
467                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
468    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
469                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
470    { STATS_OFFSET32(total_tpa_bytes_hi),
471                8, STATS_FLAGS_FUNC, "tpa_bytes"},
472#if 0
473    { STATS_OFFSET32(recoverable_error),
474                4, STATS_FLAGS_FUNC, "recoverable_errors" },
475    { STATS_OFFSET32(unrecoverable_error),
476                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
477#endif
478    { STATS_OFFSET32(eee_tx_lpi),
479                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
480    { STATS_OFFSET32(rx_calls),
481                4, STATS_FLAGS_FUNC, "rx_calls"},
482    { STATS_OFFSET32(rx_pkts),
483                4, STATS_FLAGS_FUNC, "rx_pkts"},
484    { STATS_OFFSET32(rx_tpa_pkts),
485                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
486    { STATS_OFFSET32(rx_soft_errors),
487                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
488    { STATS_OFFSET32(rx_hw_csum_errors),
489                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
490    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
491                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
492    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
493                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
494    { STATS_OFFSET32(rx_budget_reached),
495                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
496    { STATS_OFFSET32(tx_pkts),
497                4, STATS_FLAGS_FUNC, "tx_pkts"},
498    { STATS_OFFSET32(tx_soft_errors),
499                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
500    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
501                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
502    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
503                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
504    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
505                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
506    { STATS_OFFSET32(tx_ofld_frames_lso),
507                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
508    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
509                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
510    { STATS_OFFSET32(tx_encap_failures),
511                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
512    { STATS_OFFSET32(tx_hw_queue_full),
513                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
514    { STATS_OFFSET32(tx_hw_max_queue_depth),
515                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
516    { STATS_OFFSET32(tx_dma_mapping_failure),
517                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
518    { STATS_OFFSET32(tx_max_drbr_queue_depth),
519                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
520    { STATS_OFFSET32(tx_window_violation_std),
521                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
522    { STATS_OFFSET32(tx_window_violation_tso),
523                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
524#if 0
525    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
526                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
527    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
528                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
529#endif
530    { STATS_OFFSET32(tx_chain_lost_mbuf),
531                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
532    { STATS_OFFSET32(tx_frames_deferred),
533                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
534    { STATS_OFFSET32(tx_queue_xoff),
535                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
536    { STATS_OFFSET32(mbuf_defrag_attempts),
537                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
538    { STATS_OFFSET32(mbuf_defrag_failures),
539                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
540    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
541                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
542    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
543                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
544    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
545                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
546    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
547                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
548    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
549                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
550    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
551                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
552    { STATS_OFFSET32(mbuf_alloc_tx),
553                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
554    { STATS_OFFSET32(mbuf_alloc_rx),
555                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
556    { STATS_OFFSET32(mbuf_alloc_sge),
557                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
558    { STATS_OFFSET32(mbuf_alloc_tpa),
559                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
560};
561
562static const struct {
563    uint32_t offset;
564    uint32_t size;
565    char string[STAT_NAME_LEN];
566} bxe_eth_q_stats_arr[] = {
567    { Q_STATS_OFFSET32(total_bytes_received_hi),
568                8, "rx_bytes" },
569    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
570                8, "rx_ucast_packets" },
571    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
572                8, "rx_mcast_packets" },
573    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
574                8, "rx_bcast_packets" },
575    { Q_STATS_OFFSET32(no_buff_discard_hi),
576                8, "rx_discards" },
577    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
578                8, "tx_bytes" },
579    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
580                8, "tx_ucast_packets" },
581    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
582                8, "tx_mcast_packets" },
583    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
584                8, "tx_bcast_packets" },
585    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
586                8, "tpa_aggregations" },
587    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
588                8, "tpa_aggregated_frames"},
589    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
590                8, "tpa_bytes"},
591    { Q_STATS_OFFSET32(rx_calls),
592                4, "rx_calls"},
593    { Q_STATS_OFFSET32(rx_pkts),
594                4, "rx_pkts"},
595    { Q_STATS_OFFSET32(rx_tpa_pkts),
596                4, "rx_tpa_pkts"},
597    { Q_STATS_OFFSET32(rx_soft_errors),
598                4, "rx_soft_errors"},
599    { Q_STATS_OFFSET32(rx_hw_csum_errors),
600                4, "rx_hw_csum_errors"},
601    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
602                4, "rx_ofld_frames_csum_ip"},
603    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
604                4, "rx_ofld_frames_csum_tcp_udp"},
605    { Q_STATS_OFFSET32(rx_budget_reached),
606                4, "rx_budget_reached"},
607    { Q_STATS_OFFSET32(tx_pkts),
608                4, "tx_pkts"},
609    { Q_STATS_OFFSET32(tx_soft_errors),
610                4, "tx_soft_errors"},
611    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
612                4, "tx_ofld_frames_csum_ip"},
613    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
614                4, "tx_ofld_frames_csum_tcp"},
615    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
616                4, "tx_ofld_frames_csum_udp"},
617    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
618                4, "tx_ofld_frames_lso"},
619    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
620                4, "tx_ofld_frames_lso_hdr_splits"},
621    { Q_STATS_OFFSET32(tx_encap_failures),
622                4, "tx_encap_failures"},
623    { Q_STATS_OFFSET32(tx_hw_queue_full),
624                4, "tx_hw_queue_full"},
625    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
626                4, "tx_hw_max_queue_depth"},
627    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
628                4, "tx_dma_mapping_failure"},
629    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
630                4, "tx_max_drbr_queue_depth"},
631    { Q_STATS_OFFSET32(tx_window_violation_std),
632                4, "tx_window_violation_std"},
633    { Q_STATS_OFFSET32(tx_window_violation_tso),
634                4, "tx_window_violation_tso"},
635#if 0
636    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
637                4, "tx_unsupported_tso_request_ipv6"},
638    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
639                4, "tx_unsupported_tso_request_not_tcp"},
640#endif
641    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
642                4, "tx_chain_lost_mbuf"},
643    { Q_STATS_OFFSET32(tx_frames_deferred),
644                4, "tx_frames_deferred"},
645    { Q_STATS_OFFSET32(tx_queue_xoff),
646                4, "tx_queue_xoff"},
647    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
648                4, "mbuf_defrag_attempts"},
649    { Q_STATS_OFFSET32(mbuf_defrag_failures),
650                4, "mbuf_defrag_failures"},
651    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
652                4, "mbuf_rx_bd_alloc_failed"},
653    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
654                4, "mbuf_rx_bd_mapping_failed"},
655    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
656                4, "mbuf_rx_tpa_alloc_failed"},
657    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
658                4, "mbuf_rx_tpa_mapping_failed"},
659    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
660                4, "mbuf_rx_sge_alloc_failed"},
661    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
662                4, "mbuf_rx_sge_mapping_failed"},
663    { Q_STATS_OFFSET32(mbuf_alloc_tx),
664                4, "mbuf_alloc_tx"},
665    { Q_STATS_OFFSET32(mbuf_alloc_rx),
666                4, "mbuf_alloc_rx"},
667    { Q_STATS_OFFSET32(mbuf_alloc_sge),
668                4, "mbuf_alloc_sge"},
669    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
670                4, "mbuf_alloc_tpa"}
671};
672
673#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
674#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
675
676
677static void    bxe_cmng_fns_init(struct bxe_softc *sc,
678                                 uint8_t          read_cfg,
679                                 uint8_t          cmng_type);
680static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
681static void    storm_memset_cmng(struct bxe_softc *sc,
682                                 struct cmng_init *cmng,
683                                 uint8_t          port);
684static void    bxe_set_reset_global(struct bxe_softc *sc);
685static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
686static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
687                                 int              engine);
688static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
689static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
690                                   uint8_t          *global,
691                                   uint8_t          print);
692static void    bxe_int_disable(struct bxe_softc *sc);
693static int     bxe_release_leader_lock(struct bxe_softc *sc);
694static void    bxe_pf_disable(struct bxe_softc *sc);
695static void    bxe_free_fp_buffers(struct bxe_softc *sc);
696static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
697                                      struct bxe_fastpath *fp,
698                                      uint16_t            rx_bd_prod,
699                                      uint16_t            rx_cq_prod,
700                                      uint16_t            rx_sge_prod);
701static void    bxe_link_report_locked(struct bxe_softc *sc);
702static void    bxe_link_report(struct bxe_softc *sc);
703static void    bxe_link_status_update(struct bxe_softc *sc);
704static void    bxe_periodic_callout_func(void *xsc);
705static void    bxe_periodic_start(struct bxe_softc *sc);
706static void    bxe_periodic_stop(struct bxe_softc *sc);
707static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
708                                    uint16_t prev_index,
709                                    uint16_t index);
710static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
711                                     int                 queue);
712static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
713                                     uint16_t            index);
714static uint8_t bxe_txeof(struct bxe_softc *sc,
715                         struct bxe_fastpath *fp);
716static void    bxe_task_fp(struct bxe_fastpath *fp);
717static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
718                                     struct mbuf      *m,
719                                     uint8_t          contents);
720static int     bxe_alloc_mem(struct bxe_softc *sc);
721static void    bxe_free_mem(struct bxe_softc *sc);
722static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
723static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
724static int     bxe_interrupt_attach(struct bxe_softc *sc);
725static void    bxe_interrupt_detach(struct bxe_softc *sc);
726static void    bxe_set_rx_mode(struct bxe_softc *sc);
727static int     bxe_init_locked(struct bxe_softc *sc);
728static int     bxe_stop_locked(struct bxe_softc *sc);
729static __noinline int bxe_nic_load(struct bxe_softc *sc,
730                                   int              load_mode);
731static __noinline int bxe_nic_unload(struct bxe_softc *sc,
732                                     uint32_t         unload_mode,
733                                     uint8_t          keep_link);
734
735static void bxe_handle_sp_tq(void *context, int pending);
736static void bxe_handle_rx_mode_tq(void *context, int pending);
737static void bxe_handle_fp_tq(void *context, int pending);
738
739
740/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
741uint32_t
742calc_crc32(uint8_t  *crc32_packet,
743           uint32_t crc32_length,
744           uint32_t crc32_seed,
745           uint8_t  complement)
746{
747   uint32_t byte         = 0;
748   uint32_t bit          = 0;
749   uint8_t  msb          = 0;
750   uint32_t temp         = 0;
751   uint32_t shft         = 0;
752   uint8_t  current_byte = 0;
753   uint32_t crc32_result = crc32_seed;
754   const uint32_t CRC32_POLY = 0x1edc6f41;
755
756   if ((crc32_packet == NULL) ||
757       (crc32_length == 0) ||
758       ((crc32_length % 8) != 0))
759    {
760        return (crc32_result);
761    }
762
763    for (byte = 0; byte < crc32_length; byte = byte + 1)
764    {
765        current_byte = crc32_packet[byte];
766        for (bit = 0; bit < 8; bit = bit + 1)
767        {
768            /* msb = crc32_result[31]; */
769            msb = (uint8_t)(crc32_result >> 31);
770
771            crc32_result = crc32_result << 1;
772
773            /* it (msb != current_byte[bit]) */
774            if (msb != (0x1 & (current_byte >> bit)))
775            {
776                crc32_result = crc32_result ^ CRC32_POLY;
777                /* crc32_result[0] = 1 */
778                crc32_result |= 1;
779            }
780        }
781    }
782
783    /* Last step is to:
784     * 1. "mirror" every bit
785     * 2. swap the 4 bytes
786     * 3. complement each bit
787     */
788
789    /* Mirror */
790    temp = crc32_result;
791    shft = sizeof(crc32_result) * 8 - 1;
792
793    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
794    {
795        temp <<= 1;
796        temp |= crc32_result & 1;
797        shft-- ;
798    }
799
800    /* temp[31-bit] = crc32_result[bit] */
801    temp <<= shft;
802
803    /* Swap */
804    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
805    {
806        uint32_t t0, t1, t2, t3;
807        t0 = (0x000000ff & (temp >> 24));
808        t1 = (0x0000ff00 & (temp >> 8));
809        t2 = (0x00ff0000 & (temp << 8));
810        t3 = (0xff000000 & (temp << 24));
811        crc32_result = t0 | t1 | t2 | t3;
812    }
813
814    /* Complement */
815    if (complement)
816    {
817        crc32_result = ~crc32_result;
818    }
819
820    return (crc32_result);
821}
822
823int
824bxe_test_bit(int                    nr,
825             volatile unsigned long *addr)
826{
827    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
828}
829
830void
831bxe_set_bit(unsigned int           nr,
832            volatile unsigned long *addr)
833{
834    atomic_set_acq_long(addr, (1 << nr));
835}
836
837void
838bxe_clear_bit(int                    nr,
839              volatile unsigned long *addr)
840{
841    atomic_clear_acq_long(addr, (1 << nr));
842}
843
844int
845bxe_test_and_set_bit(int                    nr,
846                       volatile unsigned long *addr)
847{
848    unsigned long x;
849    nr = (1 << nr);
850    do {
851        x = *addr;
852    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
853    // if (x & nr) bit_was_set; else bit_was_not_set;
854    return (x & nr);
855}
856
857int
858bxe_test_and_clear_bit(int                    nr,
859                       volatile unsigned long *addr)
860{
861    unsigned long x;
862    nr = (1 << nr);
863    do {
864        x = *addr;
865    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
866    // if (x & nr) bit_was_set; else bit_was_not_set;
867    return (x & nr);
868}
869
870int
871bxe_cmpxchg(volatile int *addr,
872            int          old,
873            int          new)
874{
875    int x;
876    do {
877        x = *addr;
878    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
879    return (x);
880}
881
882/*
883 * Get DMA memory from the OS.
884 *
885 * Validates that the OS has provided DMA buffers in response to a
886 * bus_dmamap_load call and saves the physical address of those buffers.
887 * When the callback is used the OS will return 0 for the mapping function
888 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
889 * failures back to the caller.
890 *
891 * Returns:
892 *   Nothing.
893 */
894static void
895bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
896{
897    struct bxe_dma *dma = arg;
898
899    if (error) {
900        dma->paddr = 0;
901        dma->nseg  = 0;
902        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
903    } else {
904        dma->paddr = segs->ds_addr;
905        dma->nseg  = nseg;
906#if 0
907        BLOGD(dma->sc, DBG_LOAD,
908              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
909              dma->msg, dma->vaddr, (void *)dma->paddr,
910              dma->nseg, dma->size);
911#endif
912    }
913}
914
915/*
916 * Allocate a block of memory and map it for DMA. No partial completions
917 * allowed and release any resources acquired if we can't acquire all
918 * resources.
919 *
920 * Returns:
921 *   0 = Success, !0 = Failure
922 */
923int
924bxe_dma_alloc(struct bxe_softc *sc,
925              bus_size_t       size,
926              struct bxe_dma   *dma,
927              const char       *msg)
928{
929    int rc;
930
931    if (dma->size > 0) {
932        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
933              (unsigned long)dma->size);
934        return (1);
935    }
936
937    memset(dma, 0, sizeof(*dma)); /* sanity */
938    dma->sc   = sc;
939    dma->size = size;
940    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
941
942    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
943                            BCM_PAGE_SIZE,      /* alignment */
944                            0,                  /* boundary limit */
945                            BUS_SPACE_MAXADDR,  /* restricted low */
946                            BUS_SPACE_MAXADDR,  /* restricted hi */
947                            NULL,               /* addr filter() */
948                            NULL,               /* addr filter() arg */
949                            size,               /* max map size */
950                            1,                  /* num discontinuous */
951                            size,               /* max seg size */
952                            BUS_DMA_ALLOCNOW,   /* flags */
953                            NULL,               /* lock() */
954                            NULL,               /* lock() arg */
955                            &dma->tag);         /* returned dma tag */
956    if (rc != 0) {
957        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
958        memset(dma, 0, sizeof(*dma));
959        return (1);
960    }
961
962    rc = bus_dmamem_alloc(dma->tag,
963                          (void **)&dma->vaddr,
964                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
965                          &dma->map);
966    if (rc != 0) {
967        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
968        bus_dma_tag_destroy(dma->tag);
969        memset(dma, 0, sizeof(*dma));
970        return (1);
971    }
972
973    rc = bus_dmamap_load(dma->tag,
974                         dma->map,
975                         dma->vaddr,
976                         size,
977                         bxe_dma_map_addr, /* BLOGD in here */
978                         dma,
979                         BUS_DMA_NOWAIT);
980    if (rc != 0) {
981        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
982        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
983        bus_dma_tag_destroy(dma->tag);
984        memset(dma, 0, sizeof(*dma));
985        return (1);
986    }
987
988    return (0);
989}
990
991void
992bxe_dma_free(struct bxe_softc *sc,
993             struct bxe_dma   *dma)
994{
995    if (dma->size > 0) {
996#if 0
997        BLOGD(sc, DBG_LOAD,
998              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
999              dma->msg, dma->vaddr, (void *)dma->paddr,
1000              dma->nseg, dma->size);
1001#endif
1002
1003        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1004
1005        bus_dmamap_sync(dma->tag, dma->map,
1006                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1007        bus_dmamap_unload(dma->tag, dma->map);
1008        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1009        bus_dma_tag_destroy(dma->tag);
1010    }
1011
1012    memset(dma, 0, sizeof(*dma));
1013}
1014
1015/*
1016 * These indirect read and write routines are only during init.
1017 * The locking is handled by the MCP.
1018 */
1019
1020void
1021bxe_reg_wr_ind(struct bxe_softc *sc,
1022               uint32_t         addr,
1023               uint32_t         val)
1024{
1025    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1026    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1027    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1028}
1029
1030uint32_t
1031bxe_reg_rd_ind(struct bxe_softc *sc,
1032               uint32_t         addr)
1033{
1034    uint32_t val;
1035
1036    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1037    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1038    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1039
1040    return (val);
1041}
1042
1043#if 0
1044void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1045{
1046    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1047
1048    switch (dmae->opcode & DMAE_COMMAND_DST) {
1049    case DMAE_CMD_DST_PCI:
1050        if (src_type == DMAE_CMD_SRC_PCI)
1051            DP(msglvl, "DMAE: opcode 0x%08x\n"
1052               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1053               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1055               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056               dmae->comp_addr_hi, dmae->comp_addr_lo,
1057               dmae->comp_val);
1058        else
1059            DP(msglvl, "DMAE: opcode 0x%08x\n"
1060               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1061               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1062               dmae->opcode, dmae->src_addr_lo >> 2,
1063               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1064               dmae->comp_addr_hi, dmae->comp_addr_lo,
1065               dmae->comp_val);
1066        break;
1067    case DMAE_CMD_DST_GRC:
1068        if (src_type == DMAE_CMD_SRC_PCI)
1069            DP(msglvl, "DMAE: opcode 0x%08x\n"
1070               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1071               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1073               dmae->len, dmae->dst_addr_lo >> 2,
1074               dmae->comp_addr_hi, dmae->comp_addr_lo,
1075               dmae->comp_val);
1076        else
1077            DP(msglvl, "DMAE: opcode 0x%08x\n"
1078               "src [%08x], len [%d*4], dst [%08x]\n"
1079               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1080               dmae->opcode, dmae->src_addr_lo >> 2,
1081               dmae->len, dmae->dst_addr_lo >> 2,
1082               dmae->comp_addr_hi, dmae->comp_addr_lo,
1083               dmae->comp_val);
1084        break;
1085    default:
1086        if (src_type == DMAE_CMD_SRC_PCI)
1087            DP(msglvl, "DMAE: opcode 0x%08x\n"
1088               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1089               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1090               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1091               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1092               dmae->comp_val);
1093        else
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_lo >> 2,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        break;
1101    }
1102
1103}
1104#endif
1105
1106static int
1107bxe_acquire_hw_lock(struct bxe_softc *sc,
1108                    uint32_t         resource)
1109{
1110    uint32_t lock_status;
1111    uint32_t resource_bit = (1 << resource);
1112    int func = SC_FUNC(sc);
1113    uint32_t hw_lock_control_reg;
1114    int cnt;
1115
1116    /* validate the resource is within range */
1117    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1118        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1119        return (-1);
1120    }
1121
1122    if (func <= 5) {
1123        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1124    } else {
1125        hw_lock_control_reg =
1126                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1127    }
1128
1129    /* validate the resource is not already taken */
1130    lock_status = REG_RD(sc, hw_lock_control_reg);
1131    if (lock_status & resource_bit) {
1132        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1133              lock_status, resource_bit);
1134        return (-1);
1135    }
1136
1137    /* try every 5ms for 5 seconds */
1138    for (cnt = 0; cnt < 1000; cnt++) {
1139        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1140        lock_status = REG_RD(sc, hw_lock_control_reg);
1141        if (lock_status & resource_bit) {
1142            return (0);
1143        }
1144        DELAY(5000);
1145    }
1146
1147    BLOGE(sc, "Resource lock timeout!\n");
1148    return (-1);
1149}
1150
1151static int
1152bxe_release_hw_lock(struct bxe_softc *sc,
1153                    uint32_t         resource)
1154{
1155    uint32_t lock_status;
1156    uint32_t resource_bit = (1 << resource);
1157    int func = SC_FUNC(sc);
1158    uint32_t hw_lock_control_reg;
1159
1160    /* validate the resource is within range */
1161    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1162        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1163        return (-1);
1164    }
1165
1166    if (func <= 5) {
1167        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1168    } else {
1169        hw_lock_control_reg =
1170                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1171    }
1172
1173    /* validate the resource is currently taken */
1174    lock_status = REG_RD(sc, hw_lock_control_reg);
1175    if (!(lock_status & resource_bit)) {
1176        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1177              lock_status, resource_bit);
1178        return (-1);
1179    }
1180
1181    REG_WR(sc, hw_lock_control_reg, resource_bit);
1182    return (0);
1183}
1184
1185/*
1186 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1187 * had we done things the other way around, if two pfs from the same port
1188 * would attempt to access nvram at the same time, we could run into a
1189 * scenario such as:
1190 * pf A takes the port lock.
1191 * pf B succeeds in taking the same lock since they are from the same port.
1192 * pf A takes the per pf misc lock. Performs eeprom access.
1193 * pf A finishes. Unlocks the per pf misc lock.
1194 * Pf B takes the lock and proceeds to perform it's own access.
1195 * pf A unlocks the per port lock, while pf B is still working (!).
1196 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1197 * access corrupted by pf B).*
1198 */
1199static int
1200bxe_acquire_nvram_lock(struct bxe_softc *sc)
1201{
1202    int port = SC_PORT(sc);
1203    int count, i;
1204    uint32_t val = 0;
1205
1206    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1207    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1208
1209    /* adjust timeout for emulation/FPGA */
1210    count = NVRAM_TIMEOUT_COUNT;
1211    if (CHIP_REV_IS_SLOW(sc)) {
1212        count *= 100;
1213    }
1214
1215    /* request access to nvram interface */
1216    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1217           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1218
1219    for (i = 0; i < count*10; i++) {
1220        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1221        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1222            break;
1223        }
1224
1225        DELAY(5);
1226    }
1227
1228    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1229        BLOGE(sc, "Cannot get access to nvram interface\n");
1230        return (-1);
1231    }
1232
1233    return (0);
1234}
1235
1236static int
1237bxe_release_nvram_lock(struct bxe_softc *sc)
1238{
1239    int port = SC_PORT(sc);
1240    int count, i;
1241    uint32_t val = 0;
1242
1243    /* adjust timeout for emulation/FPGA */
1244    count = NVRAM_TIMEOUT_COUNT;
1245    if (CHIP_REV_IS_SLOW(sc)) {
1246        count *= 100;
1247    }
1248
1249    /* relinquish nvram interface */
1250    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1251           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1252
1253    for (i = 0; i < count*10; i++) {
1254        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1255        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1256            break;
1257        }
1258
1259        DELAY(5);
1260    }
1261
1262    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1263        BLOGE(sc, "Cannot free access to nvram interface\n");
1264        return (-1);
1265    }
1266
1267    /* release HW lock: protect against other PFs in PF Direct Assignment */
1268    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1269
1270    return (0);
1271}
1272
1273static void
1274bxe_enable_nvram_access(struct bxe_softc *sc)
1275{
1276    uint32_t val;
1277
1278    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1279
1280    /* enable both bits, even on read */
1281    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1282           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1283}
1284
1285static void
1286bxe_disable_nvram_access(struct bxe_softc *sc)
1287{
1288    uint32_t val;
1289
1290    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1291
1292    /* disable both bits, even after read */
1293    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1294           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1295                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1296}
1297
1298static int
1299bxe_nvram_read_dword(struct bxe_softc *sc,
1300                     uint32_t         offset,
1301                     uint32_t         *ret_val,
1302                     uint32_t         cmd_flags)
1303{
1304    int count, i, rc;
1305    uint32_t val;
1306
1307    /* build the command word */
1308    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1309
1310    /* need to clear DONE bit separately */
1311    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1312
1313    /* address of the NVRAM to read from */
1314    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1315           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1316
1317    /* issue a read command */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1319
1320    /* adjust timeout for emulation/FPGA */
1321    count = NVRAM_TIMEOUT_COUNT;
1322    if (CHIP_REV_IS_SLOW(sc)) {
1323        count *= 100;
1324    }
1325
1326    /* wait for completion */
1327    *ret_val = 0;
1328    rc = -1;
1329    for (i = 0; i < count; i++) {
1330        DELAY(5);
1331        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1332
1333        if (val & MCPR_NVM_COMMAND_DONE) {
1334            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1335            /* we read nvram data in cpu order
1336             * but ethtool sees it as an array of bytes
1337             * converting to big-endian will do the work
1338             */
1339            *ret_val = htobe32(val);
1340            rc = 0;
1341            break;
1342        }
1343    }
1344
1345    if (rc == -1) {
1346        BLOGE(sc, "nvram read timeout expired\n");
1347    }
1348
1349    return (rc);
1350}
1351
1352static int
1353bxe_nvram_read(struct bxe_softc *sc,
1354               uint32_t         offset,
1355               uint8_t          *ret_buf,
1356               int              buf_size)
1357{
1358    uint32_t cmd_flags;
1359    uint32_t val;
1360    int rc;
1361
1362    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1363        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1364              offset, buf_size);
1365        return (-1);
1366    }
1367
1368    if ((offset + buf_size) > sc->devinfo.flash_size) {
1369        BLOGE(sc, "Invalid parameter, "
1370                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1371              offset, buf_size, sc->devinfo.flash_size);
1372        return (-1);
1373    }
1374
1375    /* request access to nvram interface */
1376    rc = bxe_acquire_nvram_lock(sc);
1377    if (rc) {
1378        return (rc);
1379    }
1380
1381    /* enable access to nvram interface */
1382    bxe_enable_nvram_access(sc);
1383
1384    /* read the first word(s) */
1385    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1386    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1387        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1388        memcpy(ret_buf, &val, 4);
1389
1390        /* advance to the next dword */
1391        offset += sizeof(uint32_t);
1392        ret_buf += sizeof(uint32_t);
1393        buf_size -= sizeof(uint32_t);
1394        cmd_flags = 0;
1395    }
1396
1397    if (rc == 0) {
1398        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1399        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1400        memcpy(ret_buf, &val, 4);
1401    }
1402
1403    /* disable access to nvram interface */
1404    bxe_disable_nvram_access(sc);
1405    bxe_release_nvram_lock(sc);
1406
1407    return (rc);
1408}
1409
1410static int
1411bxe_nvram_write_dword(struct bxe_softc *sc,
1412                      uint32_t         offset,
1413                      uint32_t         val,
1414                      uint32_t         cmd_flags)
1415{
1416    int count, i, rc;
1417
1418    /* build the command word */
1419    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1420
1421    /* need to clear DONE bit separately */
1422    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1423
1424    /* write the data */
1425    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1426
1427    /* address of the NVRAM to write to */
1428    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1429           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1430
1431    /* issue the write command */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1433
1434    /* adjust timeout for emulation/FPGA */
1435    count = NVRAM_TIMEOUT_COUNT;
1436    if (CHIP_REV_IS_SLOW(sc)) {
1437        count *= 100;
1438    }
1439
1440    /* wait for completion */
1441    rc = -1;
1442    for (i = 0; i < count; i++) {
1443        DELAY(5);
1444        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1445        if (val & MCPR_NVM_COMMAND_DONE) {
1446            rc = 0;
1447            break;
1448        }
1449    }
1450
1451    if (rc == -1) {
1452        BLOGE(sc, "nvram write timeout expired\n");
1453    }
1454
1455    return (rc);
1456}
1457
1458#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1459
1460static int
1461bxe_nvram_write1(struct bxe_softc *sc,
1462                 uint32_t         offset,
1463                 uint8_t          *data_buf,
1464                 int              buf_size)
1465{
1466    uint32_t cmd_flags;
1467    uint32_t align_offset;
1468    uint32_t val;
1469    int rc;
1470
1471    if ((offset + buf_size) > sc->devinfo.flash_size) {
1472        BLOGE(sc, "Invalid parameter, "
1473                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1474              offset, buf_size, sc->devinfo.flash_size);
1475        return (-1);
1476    }
1477
1478    /* request access to nvram interface */
1479    rc = bxe_acquire_nvram_lock(sc);
1480    if (rc) {
1481        return (rc);
1482    }
1483
1484    /* enable access to nvram interface */
1485    bxe_enable_nvram_access(sc);
1486
1487    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1488    align_offset = (offset & ~0x03);
1489    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1490
1491    if (rc == 0) {
1492        val &= ~(0xff << BYTE_OFFSET(offset));
1493        val |= (*data_buf << BYTE_OFFSET(offset));
1494
1495        /* nvram data is returned as an array of bytes
1496         * convert it back to cpu order
1497         */
1498        val = be32toh(val);
1499
1500        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1501    }
1502
1503    /* disable access to nvram interface */
1504    bxe_disable_nvram_access(sc);
1505    bxe_release_nvram_lock(sc);
1506
1507    return (rc);
1508}
1509
1510static int
1511bxe_nvram_write(struct bxe_softc *sc,
1512                uint32_t         offset,
1513                uint8_t          *data_buf,
1514                int              buf_size)
1515{
1516    uint32_t cmd_flags;
1517    uint32_t val;
1518    uint32_t written_so_far;
1519    int rc;
1520
1521    if (buf_size == 1) {
1522        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1523    }
1524
1525    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1526        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1527              offset, buf_size);
1528        return (-1);
1529    }
1530
1531    if (buf_size == 0) {
1532        return (0); /* nothing to do */
1533    }
1534
1535    if ((offset + buf_size) > sc->devinfo.flash_size) {
1536        BLOGE(sc, "Invalid parameter, "
1537                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1538              offset, buf_size, sc->devinfo.flash_size);
1539        return (-1);
1540    }
1541
1542    /* request access to nvram interface */
1543    rc = bxe_acquire_nvram_lock(sc);
1544    if (rc) {
1545        return (rc);
1546    }
1547
1548    /* enable access to nvram interface */
1549    bxe_enable_nvram_access(sc);
1550
1551    written_so_far = 0;
1552    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1553    while ((written_so_far < buf_size) && (rc == 0)) {
1554        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1555            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1556        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1557            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1559            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1560        }
1561
1562        memcpy(&val, data_buf, 4);
1563
1564        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1565
1566        /* advance to the next dword */
1567        offset += sizeof(uint32_t);
1568        data_buf += sizeof(uint32_t);
1569        written_so_far += sizeof(uint32_t);
1570        cmd_flags = 0;
1571    }
1572
1573    /* disable access to nvram interface */
1574    bxe_disable_nvram_access(sc);
1575    bxe_release_nvram_lock(sc);
1576
1577    return (rc);
1578}
1579
1580/* copy command into DMAE command memory and set DMAE command Go */
1581void
1582bxe_post_dmae(struct bxe_softc    *sc,
1583              struct dmae_command *dmae,
1584              int                 idx)
1585{
1586    uint32_t cmd_offset;
1587    int i;
1588
1589    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1590    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1591        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1592    }
1593
1594    REG_WR(sc, dmae_reg_go_c[idx], 1);
1595}
1596
1597uint32_t
1598bxe_dmae_opcode_add_comp(uint32_t opcode,
1599                         uint8_t  comp_type)
1600{
1601    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1602                      DMAE_COMMAND_C_TYPE_ENABLE));
1603}
1604
1605uint32_t
1606bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1607{
1608    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1609}
1610
1611uint32_t
1612bxe_dmae_opcode(struct bxe_softc *sc,
1613                uint8_t          src_type,
1614                uint8_t          dst_type,
1615                uint8_t          with_comp,
1616                uint8_t          comp_type)
1617{
1618    uint32_t opcode = 0;
1619
1620    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1621               (dst_type << DMAE_COMMAND_DST_SHIFT));
1622
1623    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1624
1625    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1626
1627    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1628               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1629
1630    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1631
1632#ifdef __BIG_ENDIAN
1633    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1634#else
1635    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1636#endif
1637
1638    if (with_comp) {
1639        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1640    }
1641
1642    return (opcode);
1643}
1644
1645static void
1646bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1647                        struct dmae_command *dmae,
1648                        uint8_t             src_type,
1649                        uint8_t             dst_type)
1650{
1651    memset(dmae, 0, sizeof(struct dmae_command));
1652
1653    /* set the opcode */
1654    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1655                                   TRUE, DMAE_COMP_PCI);
1656
1657    /* fill in the completion parameters */
1658    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1659    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1660    dmae->comp_val     = DMAE_COMP_VAL;
1661}
1662
1663/* issue a DMAE command over the init channel and wait for completion */
1664static int
1665bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1666                         struct dmae_command *dmae)
1667{
1668    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1669    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1670
1671    BXE_DMAE_LOCK(sc);
1672
1673    /* reset completion */
1674    *wb_comp = 0;
1675
1676    /* post the command on the channel used for initializations */
1677    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1678
1679    /* wait for completion */
1680    DELAY(5);
1681
1682    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1683        if (!timeout ||
1684            (sc->recovery_state != BXE_RECOVERY_DONE &&
1685             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1686            BLOGE(sc, "DMAE timeout!\n");
1687            BXE_DMAE_UNLOCK(sc);
1688            return (DMAE_TIMEOUT);
1689        }
1690
1691        timeout--;
1692        DELAY(50);
1693    }
1694
1695    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1696        BLOGE(sc, "DMAE PCI error!\n");
1697        BXE_DMAE_UNLOCK(sc);
1698        return (DMAE_PCI_ERROR);
1699    }
1700
1701    BXE_DMAE_UNLOCK(sc);
1702    return (0);
1703}
1704
1705void
1706bxe_read_dmae(struct bxe_softc *sc,
1707              uint32_t         src_addr,
1708              uint32_t         len32)
1709{
1710    struct dmae_command dmae;
1711    uint32_t *data;
1712    int i, rc;
1713
1714    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1715
1716    if (!sc->dmae_ready) {
1717        data = BXE_SP(sc, wb_data[0]);
1718
1719        for (i = 0; i < len32; i++) {
1720            data[i] = (CHIP_IS_E1(sc)) ?
1721                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1722                          REG_RD(sc, (src_addr + (i * 4)));
1723        }
1724
1725        return;
1726    }
1727
1728    /* set opcode and fixed command fields */
1729    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1730
1731    /* fill in addresses and len */
1732    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1733    dmae.src_addr_hi = 0;
1734    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1735    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1736    dmae.len         = len32;
1737
1738    /* issue the command and wait for completion */
1739    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1740        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1741    };
1742}
1743
1744void
1745bxe_write_dmae(struct bxe_softc *sc,
1746               bus_addr_t       dma_addr,
1747               uint32_t         dst_addr,
1748               uint32_t         len32)
1749{
1750    struct dmae_command dmae;
1751    int rc;
1752
1753    if (!sc->dmae_ready) {
1754        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1755
1756        if (CHIP_IS_E1(sc)) {
1757            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1758        } else {
1759            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760        }
1761
1762        return;
1763    }
1764
1765    /* set opcode and fixed command fields */
1766    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1767
1768    /* fill in addresses and len */
1769    dmae.src_addr_lo = U64_LO(dma_addr);
1770    dmae.src_addr_hi = U64_HI(dma_addr);
1771    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1772    dmae.dst_addr_hi = 0;
1773    dmae.len         = len32;
1774
1775    /* issue the command and wait for completion */
1776    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1777        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1778    }
1779}
1780
1781void
1782bxe_write_dmae_phys_len(struct bxe_softc *sc,
1783                        bus_addr_t       phys_addr,
1784                        uint32_t         addr,
1785                        uint32_t         len)
1786{
1787    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1788    int offset = 0;
1789
1790    while (len > dmae_wr_max) {
1791        bxe_write_dmae(sc,
1792                       (phys_addr + offset), /* src DMA address */
1793                       (addr + offset),      /* dst GRC address */
1794                       dmae_wr_max);
1795        offset += (dmae_wr_max * 4);
1796        len -= dmae_wr_max;
1797    }
1798
1799    bxe_write_dmae(sc,
1800                   (phys_addr + offset), /* src DMA address */
1801                   (addr + offset),      /* dst GRC address */
1802                   len);
1803}
1804
1805void
1806bxe_set_ctx_validation(struct bxe_softc   *sc,
1807                       struct eth_context *cxt,
1808                       uint32_t           cid)
1809{
1810    /* ustorm cxt validation */
1811    cxt->ustorm_ag_context.cdu_usage =
1812        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1813            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1814    /* xcontext validation */
1815    cxt->xstorm_ag_context.cdu_reserved =
1816        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1817            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1818}
1819
1820static void
1821bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1822                            uint8_t          port,
1823                            uint8_t          fw_sb_id,
1824                            uint8_t          sb_index,
1825                            uint8_t          ticks)
1826{
1827    uint32_t addr =
1828        (BAR_CSTRORM_INTMEM +
1829         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1830
1831    REG_WR8(sc, addr, ticks);
1832
1833    BLOGD(sc, DBG_LOAD,
1834          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1835          port, fw_sb_id, sb_index, ticks);
1836}
1837
1838static void
1839bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1840                            uint8_t          port,
1841                            uint16_t         fw_sb_id,
1842                            uint8_t          sb_index,
1843                            uint8_t          disable)
1844{
1845    uint32_t enable_flag =
1846        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1847    uint32_t addr =
1848        (BAR_CSTRORM_INTMEM +
1849         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1850    uint8_t flags;
1851
1852    /* clear and set */
1853    flags = REG_RD8(sc, addr);
1854    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1855    flags |= enable_flag;
1856    REG_WR8(sc, addr, flags);
1857
1858    BLOGD(sc, DBG_LOAD,
1859          "port %d fw_sb_id %d sb_index %d disable %d\n",
1860          port, fw_sb_id, sb_index, disable);
1861}
1862
1863void
1864bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1865                             uint8_t          fw_sb_id,
1866                             uint8_t          sb_index,
1867                             uint8_t          disable,
1868                             uint16_t         usec)
1869{
1870    int port = SC_PORT(sc);
1871    uint8_t ticks = (usec / 4); /* XXX ??? */
1872
1873    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1874
1875    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1876    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1877}
1878
1879void
1880elink_cb_udelay(struct bxe_softc *sc,
1881                uint32_t         usecs)
1882{
1883    DELAY(usecs);
1884}
1885
1886uint32_t
1887elink_cb_reg_read(struct bxe_softc *sc,
1888                  uint32_t         reg_addr)
1889{
1890    return (REG_RD(sc, reg_addr));
1891}
1892
1893void
1894elink_cb_reg_write(struct bxe_softc *sc,
1895                   uint32_t         reg_addr,
1896                   uint32_t         val)
1897{
1898    REG_WR(sc, reg_addr, val);
1899}
1900
1901void
1902elink_cb_reg_wb_write(struct bxe_softc *sc,
1903                      uint32_t         offset,
1904                      uint32_t         *wb_write,
1905                      uint16_t         len)
1906{
1907    REG_WR_DMAE(sc, offset, wb_write, len);
1908}
1909
1910void
1911elink_cb_reg_wb_read(struct bxe_softc *sc,
1912                     uint32_t         offset,
1913                     uint32_t         *wb_write,
1914                     uint16_t         len)
1915{
1916    REG_RD_DMAE(sc, offset, wb_write, len);
1917}
1918
1919uint8_t
1920elink_cb_path_id(struct bxe_softc *sc)
1921{
1922    return (SC_PATH(sc));
1923}
1924
1925void
1926elink_cb_event_log(struct bxe_softc     *sc,
1927                   const elink_log_id_t elink_log_id,
1928                   ...)
1929{
1930    /* XXX */
1931#if 0
1932    //va_list ap;
1933    va_start(ap, elink_log_id);
1934    _XXX_(sc, lm_log_id, ap);
1935    va_end(ap);
1936#endif
1937    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1938}
1939
1940static int
1941bxe_set_spio(struct bxe_softc *sc,
1942             int              spio,
1943             uint32_t         mode)
1944{
1945    uint32_t spio_reg;
1946
1947    /* Only 2 SPIOs are configurable */
1948    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1949        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1950        return (-1);
1951    }
1952
1953    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1954
1955    /* read SPIO and mask except the float bits */
1956    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1957
1958    switch (mode) {
1959    case MISC_SPIO_OUTPUT_LOW:
1960        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1961        /* clear FLOAT and set CLR */
1962        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1963        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1964        break;
1965
1966    case MISC_SPIO_OUTPUT_HIGH:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1968        /* clear FLOAT and set SET */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1971        break;
1972
1973    case MISC_SPIO_INPUT_HI_Z:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1975        /* set FLOAT */
1976        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1977        break;
1978
1979    default:
1980        break;
1981    }
1982
1983    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1984    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1985
1986    return (0);
1987}
1988
1989static int
1990bxe_gpio_read(struct bxe_softc *sc,
1991              int              gpio_num,
1992              uint8_t          port)
1993{
1994    /* The GPIO should be swapped if swap register is set and active */
1995    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1996                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1997    int gpio_shift = (gpio_num +
1998                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1999    uint32_t gpio_mask = (1 << gpio_shift);
2000    uint32_t gpio_reg;
2001
2002    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2003        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2004        return (-1);
2005    }
2006
2007    /* read GPIO value */
2008    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2009
2010    /* get the requested pin value */
2011    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2012}
2013
2014static int
2015bxe_gpio_write(struct bxe_softc *sc,
2016               int              gpio_num,
2017               uint32_t         mode,
2018               uint8_t          port)
2019{
2020    /* The GPIO should be swapped if swap register is set and active */
2021    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2022                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2023    int gpio_shift = (gpio_num +
2024                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2025    uint32_t gpio_mask = (1 << gpio_shift);
2026    uint32_t gpio_reg;
2027
2028    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2029        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2030        return (-1);
2031    }
2032
2033    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2034
2035    /* read GPIO and mask except the float bits */
2036    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2037
2038    switch (mode) {
2039    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2040        BLOGD(sc, DBG_PHY,
2041              "Set GPIO %d (shift %d) -> output low\n",
2042              gpio_num, gpio_shift);
2043        /* clear FLOAT and set CLR */
2044        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2045        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2046        break;
2047
2048    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2049        BLOGD(sc, DBG_PHY,
2050              "Set GPIO %d (shift %d) -> output high\n",
2051              gpio_num, gpio_shift);
2052        /* clear FLOAT and set SET */
2053        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2054        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2055        break;
2056
2057    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2058        BLOGD(sc, DBG_PHY,
2059              "Set GPIO %d (shift %d) -> input\n",
2060              gpio_num, gpio_shift);
2061        /* set FLOAT */
2062        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2063        break;
2064
2065    default:
2066        break;
2067    }
2068
2069    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2070    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2071
2072    return (0);
2073}
2074
2075static int
2076bxe_gpio_mult_write(struct bxe_softc *sc,
2077                    uint8_t          pins,
2078                    uint32_t         mode)
2079{
2080    uint32_t gpio_reg;
2081
2082    /* any port swapping should be handled by caller */
2083
2084    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2085
2086    /* read GPIO and mask except the float bits */
2087    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2088    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2089    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2090    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2091
2092    switch (mode) {
2093    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2094        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2095        /* set CLR */
2096        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2097        break;
2098
2099    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2100        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2101        /* set SET */
2102        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2103        break;
2104
2105    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2106        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2107        /* set FLOAT */
2108        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2109        break;
2110
2111    default:
2112        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2113        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2114        return (-1);
2115    }
2116
2117    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2118    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2119
2120    return (0);
2121}
2122
2123static int
2124bxe_gpio_int_write(struct bxe_softc *sc,
2125                   int              gpio_num,
2126                   uint32_t         mode,
2127                   uint8_t          port)
2128{
2129    /* The GPIO should be swapped if swap register is set and active */
2130    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2131                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2132    int gpio_shift = (gpio_num +
2133                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2134    uint32_t gpio_mask = (1 << gpio_shift);
2135    uint32_t gpio_reg;
2136
2137    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2138        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2139        return (-1);
2140    }
2141
2142    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2143
2144    /* read GPIO int */
2145    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2146
2147    switch (mode) {
2148    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2149        BLOGD(sc, DBG_PHY,
2150              "Clear GPIO INT %d (shift %d) -> output low\n",
2151              gpio_num, gpio_shift);
2152        /* clear SET and set CLR */
2153        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2154        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2155        break;
2156
2157    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2158        BLOGD(sc, DBG_PHY,
2159              "Set GPIO INT %d (shift %d) -> output high\n",
2160              gpio_num, gpio_shift);
2161        /* clear CLR and set SET */
2162        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2163        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2164        break;
2165
2166    default:
2167        break;
2168    }
2169
2170    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2171    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2172
2173    return (0);
2174}
2175
2176uint32_t
2177elink_cb_gpio_read(struct bxe_softc *sc,
2178                   uint16_t         gpio_num,
2179                   uint8_t          port)
2180{
2181    return (bxe_gpio_read(sc, gpio_num, port));
2182}
2183
2184uint8_t
2185elink_cb_gpio_write(struct bxe_softc *sc,
2186                    uint16_t         gpio_num,
2187                    uint8_t          mode, /* 0=low 1=high */
2188                    uint8_t          port)
2189{
2190    return (bxe_gpio_write(sc, gpio_num, mode, port));
2191}
2192
2193uint8_t
2194elink_cb_gpio_mult_write(struct bxe_softc *sc,
2195                         uint8_t          pins,
2196                         uint8_t          mode) /* 0=low 1=high */
2197{
2198    return (bxe_gpio_mult_write(sc, pins, mode));
2199}
2200
2201uint8_t
2202elink_cb_gpio_int_write(struct bxe_softc *sc,
2203                        uint16_t         gpio_num,
2204                        uint8_t          mode, /* 0=low 1=high */
2205                        uint8_t          port)
2206{
2207    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2208}
2209
2210void
2211elink_cb_notify_link_changed(struct bxe_softc *sc)
2212{
2213    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2214                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2215}
2216
2217/* send the MCP a request, block until there is a reply */
2218uint32_t
2219elink_cb_fw_command(struct bxe_softc *sc,
2220                    uint32_t         command,
2221                    uint32_t         param)
2222{
2223    int mb_idx = SC_FW_MB_IDX(sc);
2224    uint32_t seq;
2225    uint32_t rc = 0;
2226    uint32_t cnt = 1;
2227    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2228
2229    BXE_FWMB_LOCK(sc);
2230
2231    seq = ++sc->fw_seq;
2232    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2233    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2234
2235    BLOGD(sc, DBG_PHY,
2236          "wrote command 0x%08x to FW MB param 0x%08x\n",
2237          (command | seq), param);
2238
2239    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2240    do {
2241        DELAY(delay * 1000);
2242        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2243    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2244
2245    BLOGD(sc, DBG_PHY,
2246          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2247          cnt*delay, rc, seq);
2248
2249    /* is this a reply to our command? */
2250    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2251        rc &= FW_MSG_CODE_MASK;
2252    } else {
2253        /* Ruh-roh! */
2254        BLOGE(sc, "FW failed to respond!\n");
2255        // XXX bxe_fw_dump(sc);
2256        rc = 0;
2257    }
2258
2259    BXE_FWMB_UNLOCK(sc);
2260    return (rc);
2261}
2262
2263static uint32_t
2264bxe_fw_command(struct bxe_softc *sc,
2265               uint32_t         command,
2266               uint32_t         param)
2267{
2268    return (elink_cb_fw_command(sc, command, param));
2269}
2270
2271static void
2272__storm_memset_dma_mapping(struct bxe_softc *sc,
2273                           uint32_t         addr,
2274                           bus_addr_t       mapping)
2275{
2276    REG_WR(sc, addr, U64_LO(mapping));
2277    REG_WR(sc, (addr + 4), U64_HI(mapping));
2278}
2279
2280static void
2281storm_memset_spq_addr(struct bxe_softc *sc,
2282                      bus_addr_t       mapping,
2283                      uint16_t         abs_fid)
2284{
2285    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2286                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2287    __storm_memset_dma_mapping(sc, addr, mapping);
2288}
2289
2290static void
2291storm_memset_vf_to_pf(struct bxe_softc *sc,
2292                      uint16_t         abs_fid,
2293                      uint16_t         pf_id)
2294{
2295    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2296    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2297    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299}
2300
2301static void
2302storm_memset_func_en(struct bxe_softc *sc,
2303                     uint16_t         abs_fid,
2304                     uint8_t          enable)
2305{
2306    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2307    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2308    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310}
2311
2312static void
2313storm_memset_eq_data(struct bxe_softc       *sc,
2314                     struct event_ring_data *eq_data,
2315                     uint16_t               pfid)
2316{
2317    uint32_t addr;
2318    size_t size;
2319
2320    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2321    size = sizeof(struct event_ring_data);
2322    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2323}
2324
2325static void
2326storm_memset_eq_prod(struct bxe_softc *sc,
2327                     uint16_t         eq_prod,
2328                     uint16_t         pfid)
2329{
2330    uint32_t addr = (BAR_CSTRORM_INTMEM +
2331                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2332    REG_WR16(sc, addr, eq_prod);
2333}
2334
2335/*
2336 * Post a slowpath command.
2337 *
2338 * A slowpath command is used to propogate a configuration change through
2339 * the controller in a controlled manner, allowing each STORM processor and
2340 * other H/W blocks to phase in the change.  The commands sent on the
2341 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2342 * completion of the ramrod will occur in different ways.  Here's a
2343 * breakdown of ramrods and how they complete:
2344 *
2345 * RAMROD_CMD_ID_ETH_PORT_SETUP
2346 *   Used to setup the leading connection on a port.  Completes on the
2347 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2348 *
2349 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2350 *   Used to setup an additional connection on a port.  Completes on the
2351 *   RCQ of the multi-queue/RSS connection being initialized.
2352 *
2353 * RAMROD_CMD_ID_ETH_STAT_QUERY
2354 *   Used to force the storm processors to update the statistics database
2355 *   in host memory.  This ramrod is send on the leading connection CID and
2356 *   completes as an index increment of the CSTORM on the default status
2357 *   block.
2358 *
2359 * RAMROD_CMD_ID_ETH_UPDATE
2360 *   Used to update the state of the leading connection, usually to udpate
2361 *   the RSS indirection table.  Completes on the RCQ of the leading
2362 *   connection. (Not currently used under FreeBSD until OS support becomes
2363 *   available.)
2364 *
2365 * RAMROD_CMD_ID_ETH_HALT
2366 *   Used when tearing down a connection prior to driver unload.  Completes
2367 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2368 *   use this on the leading connection.
2369 *
2370 * RAMROD_CMD_ID_ETH_SET_MAC
2371 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2372 *   the RCQ of the leading connection.
2373 *
2374 * RAMROD_CMD_ID_ETH_CFC_DEL
2375 *   Used when tearing down a conneciton prior to driver unload.  Completes
2376 *   on the RCQ of the leading connection (since the current connection
2377 *   has been completely removed from controller memory).
2378 *
2379 * RAMROD_CMD_ID_ETH_PORT_DEL
2380 *   Used to tear down the leading connection prior to driver unload,
2381 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2382 *   default status block.
2383 *
2384 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2385 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2386 *   RSS connection that is being offloaded.  (Not currently used under
2387 *   FreeBSD.)
2388 *
2389 * There can only be one command pending per function.
2390 *
2391 * Returns:
2392 *   0 = Success, !0 = Failure.
2393 */
2394
2395/* must be called under the spq lock */
2396static inline
2397struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2398{
2399    struct eth_spe *next_spe = sc->spq_prod_bd;
2400
2401    if (sc->spq_prod_bd == sc->spq_last_bd) {
2402        /* wrap back to the first eth_spq */
2403        sc->spq_prod_bd = sc->spq;
2404        sc->spq_prod_idx = 0;
2405    } else {
2406        sc->spq_prod_bd++;
2407        sc->spq_prod_idx++;
2408    }
2409
2410    return (next_spe);
2411}
2412
2413/* must be called under the spq lock */
2414static inline
2415void bxe_sp_prod_update(struct bxe_softc *sc)
2416{
2417    int func = SC_FUNC(sc);
2418
2419    /*
2420     * Make sure that BD data is updated before writing the producer.
2421     * BD data is written to the memory, the producer is read from the
2422     * memory, thus we need a full memory barrier to ensure the ordering.
2423     */
2424    mb();
2425
2426    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2427             sc->spq_prod_idx);
2428
2429    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2430                      BUS_SPACE_BARRIER_WRITE);
2431}
2432
2433/**
2434 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2435 *
2436 * @cmd:      command to check
2437 * @cmd_type: command type
2438 */
2439static inline
2440int bxe_is_contextless_ramrod(int cmd,
2441                              int cmd_type)
2442{
2443    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2444        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2445        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2446        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2447        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2448        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2449        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2450        return (TRUE);
2451    } else {
2452        return (FALSE);
2453    }
2454}
2455
2456/**
2457 * bxe_sp_post - place a single command on an SP ring
2458 *
2459 * @sc:         driver handle
2460 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2461 * @cid:        SW CID the command is related to
2462 * @data_hi:    command private data address (high 32 bits)
2463 * @data_lo:    command private data address (low 32 bits)
2464 * @cmd_type:   command type (e.g. NONE, ETH)
2465 *
2466 * SP data is handled as if it's always an address pair, thus data fields are
2467 * not swapped to little endian in upper functions. Instead this function swaps
2468 * data as if it's two uint32 fields.
2469 */
2470int
2471bxe_sp_post(struct bxe_softc *sc,
2472            int              command,
2473            int              cid,
2474            uint32_t         data_hi,
2475            uint32_t         data_lo,
2476            int              cmd_type)
2477{
2478    struct eth_spe *spe;
2479    uint16_t type;
2480    int common;
2481
2482    common = bxe_is_contextless_ramrod(command, cmd_type);
2483
2484    BXE_SP_LOCK(sc);
2485
2486    if (common) {
2487        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2488            BLOGE(sc, "EQ ring is full!\n");
2489            BXE_SP_UNLOCK(sc);
2490            return (-1);
2491        }
2492    } else {
2493        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2494            BLOGE(sc, "SPQ ring is full!\n");
2495            BXE_SP_UNLOCK(sc);
2496            return (-1);
2497        }
2498    }
2499
2500    spe = bxe_sp_get_next(sc);
2501
2502    /* CID needs port number to be encoded int it */
2503    spe->hdr.conn_and_cmd_data =
2504        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2505
2506    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2507
2508    /* TBD: Check if it works for VFs */
2509    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2510             SPE_HDR_FUNCTION_ID);
2511
2512    spe->hdr.type = htole16(type);
2513
2514    spe->data.update_data_addr.hi = htole32(data_hi);
2515    spe->data.update_data_addr.lo = htole32(data_lo);
2516
2517    /*
2518     * It's ok if the actual decrement is issued towards the memory
2519     * somewhere between the lock and unlock. Thus no more explict
2520     * memory barrier is needed.
2521     */
2522    if (common) {
2523        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2524    } else {
2525        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2526    }
2527
2528    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2529    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2530          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2531    BLOGD(sc, DBG_SP,
2532          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2533          sc->spq_prod_idx,
2534          (uint32_t)U64_HI(sc->spq_dma.paddr),
2535          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2536          command,
2537          common,
2538          HW_CID(sc, cid),
2539          data_hi,
2540          data_lo,
2541          type,
2542          atomic_load_acq_long(&sc->cq_spq_left),
2543          atomic_load_acq_long(&sc->eq_spq_left));
2544
2545    bxe_sp_prod_update(sc);
2546
2547    BXE_SP_UNLOCK(sc);
2548    return (0);
2549}
2550
2551/**
2552 * bxe_debug_print_ind_table - prints the indirection table configuration.
2553 *
2554 * @sc: driver hanlde
2555 * @p:  pointer to rss configuration
2556 */
2557#if 0
2558static void
2559bxe_debug_print_ind_table(struct bxe_softc               *sc,
2560                          struct ecore_config_rss_params *p)
2561{
2562    int i;
2563
2564    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2565    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2566    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2567        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2568
2569        /* Print 4 bytes in a line */
2570        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2571            (((i + 1) & 0x3) == 0)) {
2572            BLOGD(sc, DBG_LOAD, "\n");
2573            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2574        }
2575    }
2576
2577    BLOGD(sc, DBG_LOAD, "\n");
2578}
2579#endif
2580
2581/*
2582 * FreeBSD Device probe function.
2583 *
2584 * Compares the device found to the driver's list of supported devices and
2585 * reports back to the bsd loader whether this is the right driver for the device.
2586 * This is the driver entry function called from the "kldload" command.
2587 *
2588 * Returns:
2589 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2590 */
2591static int
2592bxe_probe(device_t dev)
2593{
2594    struct bxe_softc *sc;
2595    struct bxe_device_type *t;
2596    char *descbuf;
2597    uint16_t did, sdid, svid, vid;
2598
2599    /* Find our device structure */
2600    sc = device_get_softc(dev);
2601    sc->dev = dev;
2602    t = bxe_devs;
2603
2604    /* Get the data for the device to be probed. */
2605    vid  = pci_get_vendor(dev);
2606    did  = pci_get_device(dev);
2607    svid = pci_get_subvendor(dev);
2608    sdid = pci_get_subdevice(dev);
2609
2610    BLOGD(sc, DBG_LOAD,
2611          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2612          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2613
2614    /* Look through the list of known devices for a match. */
2615    while (t->bxe_name != NULL) {
2616        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2617            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2618            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2619            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2620            if (descbuf == NULL)
2621                return (ENOMEM);
2622
2623            /* Print out the device identity. */
2624            snprintf(descbuf, BXE_DEVDESC_MAX,
2625                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2626                     (((pci_read_config(dev, PCIR_REVID, 4) &
2627                        0xf0) >> 4) + 'A'),
2628                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2629                     BXE_DRIVER_VERSION);
2630
2631            device_set_desc_copy(dev, descbuf);
2632            free(descbuf, M_TEMP);
2633            return (BUS_PROBE_DEFAULT);
2634        }
2635        t++;
2636    }
2637
2638    return (ENXIO);
2639}
2640
2641static void
2642bxe_init_mutexes(struct bxe_softc *sc)
2643{
2644#ifdef BXE_CORE_LOCK_SX
2645    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2646             "bxe%d_core_lock", sc->unit);
2647    sx_init(&sc->core_sx, sc->core_sx_name);
2648#else
2649    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2650             "bxe%d_core_lock", sc->unit);
2651    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2652#endif
2653
2654    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2655             "bxe%d_sp_lock", sc->unit);
2656    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2657
2658    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2659             "bxe%d_dmae_lock", sc->unit);
2660    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2661
2662    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2663             "bxe%d_phy_lock", sc->unit);
2664    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2665
2666    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2667             "bxe%d_fwmb_lock", sc->unit);
2668    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2669
2670    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2671             "bxe%d_print_lock", sc->unit);
2672    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2673
2674    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2675             "bxe%d_stats_lock", sc->unit);
2676    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2677
2678    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2679             "bxe%d_mcast_lock", sc->unit);
2680    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2681}
2682
2683static void
2684bxe_release_mutexes(struct bxe_softc *sc)
2685{
2686#ifdef BXE_CORE_LOCK_SX
2687    sx_destroy(&sc->core_sx);
2688#else
2689    if (mtx_initialized(&sc->core_mtx)) {
2690        mtx_destroy(&sc->core_mtx);
2691    }
2692#endif
2693
2694    if (mtx_initialized(&sc->sp_mtx)) {
2695        mtx_destroy(&sc->sp_mtx);
2696    }
2697
2698    if (mtx_initialized(&sc->dmae_mtx)) {
2699        mtx_destroy(&sc->dmae_mtx);
2700    }
2701
2702    if (mtx_initialized(&sc->port.phy_mtx)) {
2703        mtx_destroy(&sc->port.phy_mtx);
2704    }
2705
2706    if (mtx_initialized(&sc->fwmb_mtx)) {
2707        mtx_destroy(&sc->fwmb_mtx);
2708    }
2709
2710    if (mtx_initialized(&sc->print_mtx)) {
2711        mtx_destroy(&sc->print_mtx);
2712    }
2713
2714    if (mtx_initialized(&sc->stats_mtx)) {
2715        mtx_destroy(&sc->stats_mtx);
2716    }
2717
2718    if (mtx_initialized(&sc->mcast_mtx)) {
2719        mtx_destroy(&sc->mcast_mtx);
2720    }
2721}
2722
2723static void
2724bxe_tx_disable(struct bxe_softc* sc)
2725{
2726    struct ifnet *ifp = sc->ifnet;
2727
2728    /* tell the stack the driver is stopped and TX queue is full */
2729    if (ifp != NULL) {
2730        ifp->if_drv_flags = 0;
2731    }
2732}
2733
2734static void
2735bxe_drv_pulse(struct bxe_softc *sc)
2736{
2737    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2738             sc->fw_drv_pulse_wr_seq);
2739}
2740
2741static inline uint16_t
2742bxe_tx_avail(struct bxe_softc *sc,
2743             struct bxe_fastpath *fp)
2744{
2745    int16_t  used;
2746    uint16_t prod;
2747    uint16_t cons;
2748
2749    prod = fp->tx_bd_prod;
2750    cons = fp->tx_bd_cons;
2751
2752    used = SUB_S16(prod, cons);
2753
2754#if 0
2755    KASSERT((used < 0), ("used tx bds < 0"));
2756    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2757    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2758            ("invalid number of tx bds used"));
2759#endif
2760
2761    return (int16_t)(sc->tx_ring_size) - used;
2762}
2763
2764static inline int
2765bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2766{
2767    uint16_t hw_cons;
2768
2769    mb(); /* status block fields can change */
2770    hw_cons = le16toh(*fp->tx_cons_sb);
2771    return (hw_cons != fp->tx_pkt_cons);
2772}
2773
2774static inline uint8_t
2775bxe_has_tx_work(struct bxe_fastpath *fp)
2776{
2777    /* expand this for multi-cos if ever supported */
2778    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2779}
2780
2781static inline int
2782bxe_has_rx_work(struct bxe_fastpath *fp)
2783{
2784    uint16_t rx_cq_cons_sb;
2785
2786    mb(); /* status block fields can change */
2787    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2788    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2789        rx_cq_cons_sb++;
2790    return (fp->rx_cq_cons != rx_cq_cons_sb);
2791}
2792
2793static void
2794bxe_sp_event(struct bxe_softc    *sc,
2795             struct bxe_fastpath *fp,
2796             union eth_rx_cqe    *rr_cqe)
2797{
2798    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2799    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2800    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2801    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2802
2803    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2804          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2805
2806#if 0
2807    /*
2808     * If cid is within VF range, replace the slowpath object with the
2809     * one corresponding to this VF
2810     */
2811    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2812        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2813    }
2814#endif
2815
2816    switch (command) {
2817    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2818        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2819        drv_cmd = ECORE_Q_CMD_UPDATE;
2820        break;
2821
2822    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2823        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2824        drv_cmd = ECORE_Q_CMD_SETUP;
2825        break;
2826
2827    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2828        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2829        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2830        break;
2831
2832    case (RAMROD_CMD_ID_ETH_HALT):
2833        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2834        drv_cmd = ECORE_Q_CMD_HALT;
2835        break;
2836
2837    case (RAMROD_CMD_ID_ETH_TERMINATE):
2838        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2839        drv_cmd = ECORE_Q_CMD_TERMINATE;
2840        break;
2841
2842    case (RAMROD_CMD_ID_ETH_EMPTY):
2843        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2844        drv_cmd = ECORE_Q_CMD_EMPTY;
2845        break;
2846
2847    default:
2848        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2849              command, fp->index);
2850        return;
2851    }
2852
2853    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2854        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2855        /*
2856         * q_obj->complete_cmd() failure means that this was
2857         * an unexpected completion.
2858         *
2859         * In this case we don't want to increase the sc->spq_left
2860         * because apparently we haven't sent this command the first
2861         * place.
2862         */
2863        // bxe_panic(sc, ("Unexpected SP completion\n"));
2864        return;
2865    }
2866
2867#if 0
2868    /* SRIOV: reschedule any 'in_progress' operations */
2869    bxe_iov_sp_event(sc, cid, TRUE);
2870#endif
2871
2872    atomic_add_acq_long(&sc->cq_spq_left, 1);
2873
2874    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2875          atomic_load_acq_long(&sc->cq_spq_left));
2876
2877#if 0
2878    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2879        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2880        /*
2881         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2882         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2883         * prevent case that both bits are cleared. At the end of load/unload
2884         * driver checks that sp_state is cleared and this order prevents
2885         * races.
2886         */
2887        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2888        wmb();
2889        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2890
2891        /* schedule the sp task as MCP ack is required */
2892        bxe_schedule_sp_task(sc);
2893    }
2894#endif
2895}
2896
2897/*
2898 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2899 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2900 * the current aggregation queue as in-progress.
2901 */
2902static void
2903bxe_tpa_start(struct bxe_softc            *sc,
2904              struct bxe_fastpath         *fp,
2905              uint16_t                    queue,
2906              uint16_t                    cons,
2907              uint16_t                    prod,
2908              struct eth_fast_path_rx_cqe *cqe)
2909{
2910    struct bxe_sw_rx_bd tmp_bd;
2911    struct bxe_sw_rx_bd *rx_buf;
2912    struct eth_rx_bd *rx_bd;
2913    int max_agg_queues;
2914    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2915    uint16_t index;
2916
2917    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2918                       "cons=%d prod=%d\n",
2919          fp->index, queue, cons, prod);
2920
2921    max_agg_queues = MAX_AGG_QS(sc);
2922
2923    KASSERT((queue < max_agg_queues),
2924            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2925             fp->index, queue, max_agg_queues));
2926
2927    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2928            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2929             fp->index, queue));
2930
2931    /* copy the existing mbuf and mapping from the TPA pool */
2932    tmp_bd = tpa_info->bd;
2933
2934    if (tmp_bd.m == NULL) {
2935        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2936              fp->index, queue);
2937        /* XXX Error handling? */
2938        return;
2939    }
2940
2941    /* change the TPA queue to the start state */
2942    tpa_info->state            = BXE_TPA_STATE_START;
2943    tpa_info->placement_offset = cqe->placement_offset;
2944    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2945    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2946    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2947
2948    fp->rx_tpa_queue_used |= (1 << queue);
2949
2950    /*
2951     * If all the buffer descriptors are filled with mbufs then fill in
2952     * the current consumer index with a new BD. Else if a maximum Rx
2953     * buffer limit is imposed then fill in the next producer index.
2954     */
2955    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2956                prod : cons;
2957
2958    /* move the received mbuf and mapping to TPA pool */
2959    tpa_info->bd = fp->rx_mbuf_chain[cons];
2960
2961    /* release any existing RX BD mbuf mappings */
2962    if (cons != index) {
2963        rx_buf = &fp->rx_mbuf_chain[cons];
2964
2965        if (rx_buf->m_map != NULL) {
2966            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2967                            BUS_DMASYNC_POSTREAD);
2968            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2969        }
2970
2971        /*
2972         * We get here when the maximum number of rx buffers is less than
2973         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2974         * it out here without concern of a memory leak.
2975         */
2976        fp->rx_mbuf_chain[cons].m = NULL;
2977    }
2978
2979    /* update the Rx SW BD with the mbuf info from the TPA pool */
2980    fp->rx_mbuf_chain[index] = tmp_bd;
2981
2982    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2983    rx_bd = &fp->rx_chain[index];
2984    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2985    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2986}
2987
2988/*
2989 * When a TPA aggregation is completed, loop through the individual mbufs
2990 * of the aggregation, combining them into a single mbuf which will be sent
2991 * up the stack. Refill all freed SGEs with mbufs as we go along.
2992 */
2993static int
2994bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2995                   struct bxe_fastpath       *fp,
2996                   struct bxe_sw_tpa_info    *tpa_info,
2997                   uint16_t                  queue,
2998                   uint16_t                  pages,
2999                   struct mbuf               *m,
3000			       struct eth_end_agg_rx_cqe *cqe,
3001                   uint16_t                  cqe_idx)
3002{
3003    struct mbuf *m_frag;
3004    uint32_t frag_len, frag_size, i;
3005    uint16_t sge_idx;
3006    int rc = 0;
3007    int j;
3008
3009    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3010
3011    BLOGD(sc, DBG_LRO,
3012          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3013          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3014
3015    /* make sure the aggregated frame is not too big to handle */
3016    if (pages > 8 * PAGES_PER_SGE) {
3017        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3018                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3019              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3020              tpa_info->len_on_bd, frag_size);
3021        bxe_panic(sc, ("sge page count error\n"));
3022        return (EINVAL);
3023    }
3024
3025    /*
3026     * Scan through the scatter gather list pulling individual mbufs into a
3027     * single mbuf for the host stack.
3028     */
3029    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3030        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3031
3032        /*
3033         * Firmware gives the indices of the SGE as if the ring is an array
3034         * (meaning that the "next" element will consume 2 indices).
3035         */
3036        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3037
3038        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3039                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3040              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3041
3042        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3043
3044        /* allocate a new mbuf for the SGE */
3045        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3046        if (rc) {
3047            /* Leave all remaining SGEs in the ring! */
3048            return (rc);
3049        }
3050
3051        /* update the fragment length */
3052        m_frag->m_len = frag_len;
3053
3054        /* concatenate the fragment to the head mbuf */
3055        m_cat(m, m_frag);
3056        fp->eth_q_stats.mbuf_alloc_sge--;
3057
3058        /* update the TPA mbuf size and remaining fragment size */
3059        m->m_pkthdr.len += frag_len;
3060        frag_size -= frag_len;
3061    }
3062
3063    BLOGD(sc, DBG_LRO,
3064          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3065          fp->index, queue, frag_size);
3066
3067    return (rc);
3068}
3069
3070static inline void
3071bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3072{
3073    int i, j;
3074
3075    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3076        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3077
3078        for (j = 0; j < 2; j++) {
3079            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3080            idx--;
3081        }
3082    }
3083}
3084
3085static inline void
3086bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3087{
3088    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3089    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3090
3091    /*
3092     * Clear the two last indices in the page to 1. These are the indices that
3093     * correspond to the "next" element, hence will never be indicated and
3094     * should be removed from the calculations.
3095     */
3096    bxe_clear_sge_mask_next_elems(fp);
3097}
3098
3099static inline void
3100bxe_update_last_max_sge(struct bxe_fastpath *fp,
3101                        uint16_t            idx)
3102{
3103    uint16_t last_max = fp->last_max_sge;
3104
3105    if (SUB_S16(idx, last_max) > 0) {
3106        fp->last_max_sge = idx;
3107    }
3108}
3109
3110static inline void
3111bxe_update_sge_prod(struct bxe_softc          *sc,
3112                    struct bxe_fastpath       *fp,
3113                    uint16_t                  sge_len,
3114                    struct eth_end_agg_rx_cqe *cqe)
3115{
3116    uint16_t last_max, last_elem, first_elem;
3117    uint16_t delta = 0;
3118    uint16_t i;
3119
3120    if (!sge_len) {
3121        return;
3122    }
3123
3124    /* first mark all used pages */
3125    for (i = 0; i < sge_len; i++) {
3126        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3127                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3128    }
3129
3130    BLOGD(sc, DBG_LRO,
3131          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3132          fp->index, sge_len - 1,
3133          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3134
3135    /* assume that the last SGE index is the biggest */
3136    bxe_update_last_max_sge(fp,
3137                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3138
3139    last_max = RX_SGE(fp->last_max_sge);
3140    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3141    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3142
3143    /* if ring is not full */
3144    if (last_elem + 1 != first_elem) {
3145        last_elem++;
3146    }
3147
3148    /* now update the prod */
3149    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3150        if (__predict_true(fp->sge_mask[i])) {
3151            break;
3152        }
3153
3154        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3155        delta += BIT_VEC64_ELEM_SZ;
3156    }
3157
3158    if (delta > 0) {
3159        fp->rx_sge_prod += delta;
3160        /* clear page-end entries */
3161        bxe_clear_sge_mask_next_elems(fp);
3162    }
3163
3164    BLOGD(sc, DBG_LRO,
3165          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3166          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3167}
3168
3169/*
3170 * The aggregation on the current TPA queue has completed. Pull the individual
3171 * mbuf fragments together into a single mbuf, perform all necessary checksum
3172 * calculations, and send the resuting mbuf to the stack.
3173 */
3174static void
3175bxe_tpa_stop(struct bxe_softc          *sc,
3176             struct bxe_fastpath       *fp,
3177             struct bxe_sw_tpa_info    *tpa_info,
3178             uint16_t                  queue,
3179             uint16_t                  pages,
3180			 struct eth_end_agg_rx_cqe *cqe,
3181             uint16_t                  cqe_idx)
3182{
3183    struct ifnet *ifp = sc->ifnet;
3184    struct mbuf *m;
3185    int rc = 0;
3186
3187    BLOGD(sc, DBG_LRO,
3188          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3189          fp->index, queue, tpa_info->placement_offset,
3190          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3191
3192    m = tpa_info->bd.m;
3193
3194    /* allocate a replacement before modifying existing mbuf */
3195    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3196    if (rc) {
3197        /* drop the frame and log an error */
3198        fp->eth_q_stats.rx_soft_errors++;
3199        goto bxe_tpa_stop_exit;
3200    }
3201
3202    /* we have a replacement, fixup the current mbuf */
3203    m_adj(m, tpa_info->placement_offset);
3204    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3205
3206    /* mark the checksums valid (taken care of by the firmware) */
3207    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3208    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3209    m->m_pkthdr.csum_data = 0xffff;
3210    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3211                               CSUM_IP_VALID   |
3212                               CSUM_DATA_VALID |
3213                               CSUM_PSEUDO_HDR);
3214
3215    /* aggregate all of the SGEs into a single mbuf */
3216    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3217    if (rc) {
3218        /* drop the packet and log an error */
3219        fp->eth_q_stats.rx_soft_errors++;
3220        m_freem(m);
3221    } else {
3222        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3223            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3224            m->m_flags |= M_VLANTAG;
3225        }
3226
3227        /* assign packet to this interface interface */
3228        m->m_pkthdr.rcvif = ifp;
3229
3230#if __FreeBSD_version >= 800000
3231        /* specify what RSS queue was used for this flow */
3232        m->m_pkthdr.flowid = fp->index;
3233        M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3234#endif
3235
3236        ifp->if_ipackets++;
3237        fp->eth_q_stats.rx_tpa_pkts++;
3238
3239        /* pass the frame to the stack */
3240        (*ifp->if_input)(ifp, m);
3241    }
3242
3243    /* we passed an mbuf up the stack or dropped the frame */
3244    fp->eth_q_stats.mbuf_alloc_tpa--;
3245
3246bxe_tpa_stop_exit:
3247
3248    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3249    fp->rx_tpa_queue_used &= ~(1 << queue);
3250}
3251
3252static uint8_t
3253bxe_rxeof(struct bxe_softc    *sc,
3254          struct bxe_fastpath *fp)
3255{
3256    struct ifnet *ifp = sc->ifnet;
3257    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3258    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3259    int rx_pkts = 0;
3260    int rc = 0;
3261
3262    BXE_FP_RX_LOCK(fp);
3263
3264    /* CQ "next element" is of the size of the regular element */
3265    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3266    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3267        hw_cq_cons++;
3268    }
3269
3270    bd_cons = fp->rx_bd_cons;
3271    bd_prod = fp->rx_bd_prod;
3272    bd_prod_fw = bd_prod;
3273    sw_cq_cons = fp->rx_cq_cons;
3274    sw_cq_prod = fp->rx_cq_prod;
3275
3276    /*
3277     * Memory barrier necessary as speculative reads of the rx
3278     * buffer can be ahead of the index in the status block
3279     */
3280    rmb();
3281
3282    BLOGD(sc, DBG_RX,
3283          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3284          fp->index, hw_cq_cons, sw_cq_cons);
3285
3286    while (sw_cq_cons != hw_cq_cons) {
3287        struct bxe_sw_rx_bd *rx_buf = NULL;
3288        union eth_rx_cqe *cqe;
3289        struct eth_fast_path_rx_cqe *cqe_fp;
3290        uint8_t cqe_fp_flags;
3291        enum eth_rx_cqe_type cqe_fp_type;
3292        uint16_t len, pad;
3293        struct mbuf *m = NULL;
3294
3295        comp_ring_cons = RCQ(sw_cq_cons);
3296        bd_prod = RX_BD(bd_prod);
3297        bd_cons = RX_BD(bd_cons);
3298
3299        cqe          = &fp->rcq_chain[comp_ring_cons];
3300        cqe_fp       = &cqe->fast_path_cqe;
3301        cqe_fp_flags = cqe_fp->type_error_flags;
3302        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3303
3304        BLOGD(sc, DBG_RX,
3305              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3306              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3307              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3308              fp->index,
3309              hw_cq_cons,
3310              sw_cq_cons,
3311              bd_prod,
3312              bd_cons,
3313              CQE_TYPE(cqe_fp_flags),
3314              cqe_fp_flags,
3315              cqe_fp->status_flags,
3316              le32toh(cqe_fp->rss_hash_result),
3317              le16toh(cqe_fp->vlan_tag),
3318              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3319
3320        /* is this a slowpath msg? */
3321        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3322            bxe_sp_event(sc, fp, cqe);
3323            goto next_cqe;
3324        }
3325
3326        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3327
3328        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3329            struct bxe_sw_tpa_info *tpa_info;
3330            uint16_t frag_size, pages;
3331            uint8_t queue;
3332
3333#if 0
3334            /* sanity check */
3335            if (!fp->tpa_enable &&
3336                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3337                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3338                      CQE_TYPE(cqe_fp_type));
3339            }
3340#endif
3341
3342            if (CQE_TYPE_START(cqe_fp_type)) {
3343                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3344                              bd_cons, bd_prod, cqe_fp);
3345                m = NULL; /* packet not ready yet */
3346                goto next_rx;
3347            }
3348
3349            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3350                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3351
3352            queue = cqe->end_agg_cqe.queue_index;
3353            tpa_info = &fp->rx_tpa_info[queue];
3354
3355            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3356                  fp->index, queue);
3357
3358            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3359                         tpa_info->len_on_bd);
3360            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3361
3362            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3363                         &cqe->end_agg_cqe, comp_ring_cons);
3364
3365            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3366
3367            goto next_cqe;
3368        }
3369
3370        /* non TPA */
3371
3372        /* is this an error packet? */
3373        if (__predict_false(cqe_fp_flags &
3374                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3375            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3376            fp->eth_q_stats.rx_soft_errors++;
3377            goto next_rx;
3378        }
3379
3380        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3381        pad = cqe_fp->placement_offset;
3382
3383        m = rx_buf->m;
3384
3385        if (__predict_false(m == NULL)) {
3386            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3387                  bd_cons, fp->index);
3388            goto next_rx;
3389        }
3390
3391        /* XXX double copy if packet length under a threshold */
3392
3393        /*
3394         * If all the buffer descriptors are filled with mbufs then fill in
3395         * the current consumer index with a new BD. Else if a maximum Rx
3396         * buffer limit is imposed then fill in the next producer index.
3397         */
3398        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3399                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3400                                      bd_prod : bd_cons);
3401        if (rc != 0) {
3402
3403            /* we simply reuse the received mbuf and don't post it to the stack */
3404            m = NULL;
3405
3406            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3407                  fp->index, rc);
3408            fp->eth_q_stats.rx_soft_errors++;
3409
3410            if (sc->max_rx_bufs != RX_BD_USABLE) {
3411                /* copy this consumer index to the producer index */
3412                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3413                       sizeof(struct bxe_sw_rx_bd));
3414                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3415            }
3416
3417            goto next_rx;
3418        }
3419
3420        /* current mbuf was detached from the bd */
3421        fp->eth_q_stats.mbuf_alloc_rx--;
3422
3423        /* we allocated a replacement mbuf, fixup the current one */
3424        m_adj(m, pad);
3425        m->m_pkthdr.len = m->m_len = len;
3426
3427        /* assign packet to this interface interface */
3428        m->m_pkthdr.rcvif = ifp;
3429
3430        /* assume no hardware checksum has complated */
3431        m->m_pkthdr.csum_flags = 0;
3432
3433        /* validate checksum if offload enabled */
3434        if (ifp->if_capenable & IFCAP_RXCSUM) {
3435            /* check for a valid IP frame */
3436            if (!(cqe->fast_path_cqe.status_flags &
3437                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3438                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3439                if (__predict_false(cqe_fp_flags &
3440                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3441                    fp->eth_q_stats.rx_hw_csum_errors++;
3442                } else {
3443                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3444                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3445                }
3446            }
3447
3448            /* check for a valid TCP/UDP frame */
3449            if (!(cqe->fast_path_cqe.status_flags &
3450                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3451                if (__predict_false(cqe_fp_flags &
3452                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3453                    fp->eth_q_stats.rx_hw_csum_errors++;
3454                } else {
3455                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3456                    m->m_pkthdr.csum_data = 0xFFFF;
3457                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3458                                               CSUM_PSEUDO_HDR);
3459                }
3460            }
3461        }
3462
3463        /* if there is a VLAN tag then flag that info */
3464        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3465            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3466            m->m_flags |= M_VLANTAG;
3467        }
3468
3469#if __FreeBSD_version >= 800000
3470        /* specify what RSS queue was used for this flow */
3471        m->m_pkthdr.flowid = fp->index;
3472        M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3473#endif
3474
3475next_rx:
3476
3477        bd_cons    = RX_BD_NEXT(bd_cons);
3478        bd_prod    = RX_BD_NEXT(bd_prod);
3479        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3480
3481        /* pass the frame to the stack */
3482        if (__predict_true(m != NULL)) {
3483            ifp->if_ipackets++;
3484            rx_pkts++;
3485            (*ifp->if_input)(ifp, m);
3486        }
3487
3488next_cqe:
3489
3490        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3491        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3492
3493        /* limit spinning on the queue */
3494        if (rc != 0)
3495            break;
3496
3497        if (rx_pkts == sc->rx_budget) {
3498            fp->eth_q_stats.rx_budget_reached++;
3499            break;
3500        }
3501    } /* while work to do */
3502
3503    fp->rx_bd_cons = bd_cons;
3504    fp->rx_bd_prod = bd_prod_fw;
3505    fp->rx_cq_cons = sw_cq_cons;
3506    fp->rx_cq_prod = sw_cq_prod;
3507
3508    /* Update producers */
3509    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3510
3511    fp->eth_q_stats.rx_pkts += rx_pkts;
3512    fp->eth_q_stats.rx_calls++;
3513
3514    BXE_FP_RX_UNLOCK(fp);
3515
3516    return (sw_cq_cons != hw_cq_cons);
3517}
3518
3519static uint16_t
3520bxe_free_tx_pkt(struct bxe_softc    *sc,
3521                struct bxe_fastpath *fp,
3522                uint16_t            idx)
3523{
3524    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3525    struct eth_tx_start_bd *tx_start_bd;
3526    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3527    uint16_t new_cons;
3528    int nbd;
3529
3530    /* unmap the mbuf from non-paged memory */
3531    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3532
3533    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3534    nbd = le16toh(tx_start_bd->nbd) - 1;
3535
3536#if 0
3537    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3538        bxe_panic(sc, ("BAD nbd!\n"));
3539    }
3540#endif
3541
3542    new_cons = (tx_buf->first_bd + nbd);
3543
3544#if 0
3545    struct eth_tx_bd *tx_data_bd;
3546
3547    /*
3548     * The following code doesn't do anything but is left here
3549     * for clarity on what the new value of new_cons skipped.
3550     */
3551
3552    /* get the next bd */
3553    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3554
3555    /* skip the parse bd */
3556    --nbd;
3557    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3558
3559    /* skip the TSO split header bd since they have no mapping */
3560    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3561        --nbd;
3562        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563    }
3564
3565    /* now free frags */
3566    while (nbd > 0) {
3567        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3568        if (--nbd) {
3569            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570        }
3571    }
3572#endif
3573
3574    /* free the mbuf */
3575    if (__predict_true(tx_buf->m != NULL)) {
3576        m_freem(tx_buf->m);
3577        fp->eth_q_stats.mbuf_alloc_tx--;
3578    } else {
3579        fp->eth_q_stats.tx_chain_lost_mbuf++;
3580    }
3581
3582    tx_buf->m = NULL;
3583    tx_buf->first_bd = 0;
3584
3585    return (new_cons);
3586}
3587
3588/* transmit timeout watchdog */
3589static int
3590bxe_watchdog(struct bxe_softc    *sc,
3591             struct bxe_fastpath *fp)
3592{
3593    BXE_FP_TX_LOCK(fp);
3594
3595    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3596        BXE_FP_TX_UNLOCK(fp);
3597        return (0);
3598    }
3599
3600    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3601
3602    BXE_FP_TX_UNLOCK(fp);
3603
3604    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3605    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3606
3607    return (-1);
3608}
3609
3610/* processes transmit completions */
3611static uint8_t
3612bxe_txeof(struct bxe_softc    *sc,
3613          struct bxe_fastpath *fp)
3614{
3615    struct ifnet *ifp = sc->ifnet;
3616    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3617    uint16_t tx_bd_avail;
3618
3619    BXE_FP_TX_LOCK_ASSERT(fp);
3620
3621    bd_cons = fp->tx_bd_cons;
3622    hw_cons = le16toh(*fp->tx_cons_sb);
3623    sw_cons = fp->tx_pkt_cons;
3624
3625    while (sw_cons != hw_cons) {
3626        pkt_cons = TX_BD(sw_cons);
3627
3628        BLOGD(sc, DBG_TX,
3629              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3630              fp->index, hw_cons, sw_cons, pkt_cons);
3631
3632        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3633
3634        sw_cons++;
3635    }
3636
3637    fp->tx_pkt_cons = sw_cons;
3638    fp->tx_bd_cons  = bd_cons;
3639
3640    BLOGD(sc, DBG_TX,
3641          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3642          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3643
3644    mb();
3645
3646    tx_bd_avail = bxe_tx_avail(sc, fp);
3647
3648    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3649        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3650    } else {
3651        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3652    }
3653
3654    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3655        /* reset the watchdog timer if there are pending transmits */
3656        fp->watchdog_timer = BXE_TX_TIMEOUT;
3657        return (TRUE);
3658    } else {
3659        /* clear watchdog when there are no pending transmits */
3660        fp->watchdog_timer = 0;
3661        return (FALSE);
3662    }
3663}
3664
3665static void
3666bxe_drain_tx_queues(struct bxe_softc *sc)
3667{
3668    struct bxe_fastpath *fp;
3669    int i, count;
3670
3671    /* wait until all TX fastpath tasks have completed */
3672    for (i = 0; i < sc->num_queues; i++) {
3673        fp = &sc->fp[i];
3674
3675        count = 1000;
3676
3677        while (bxe_has_tx_work(fp)) {
3678
3679            BXE_FP_TX_LOCK(fp);
3680            bxe_txeof(sc, fp);
3681            BXE_FP_TX_UNLOCK(fp);
3682
3683            if (count == 0) {
3684                BLOGE(sc, "Timeout waiting for fp[%d] "
3685                          "transmits to complete!\n", i);
3686                bxe_panic(sc, ("tx drain failure\n"));
3687                return;
3688            }
3689
3690            count--;
3691            DELAY(1000);
3692            rmb();
3693        }
3694    }
3695
3696    return;
3697}
3698
3699static int
3700bxe_del_all_macs(struct bxe_softc          *sc,
3701                 struct ecore_vlan_mac_obj *mac_obj,
3702                 int                       mac_type,
3703                 uint8_t                   wait_for_comp)
3704{
3705    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3706    int rc;
3707
3708    /* wait for completion of requested */
3709    if (wait_for_comp) {
3710        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3711    }
3712
3713    /* Set the mac type of addresses we want to clear */
3714    bxe_set_bit(mac_type, &vlan_mac_flags);
3715
3716    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3717    if (rc < 0) {
3718        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3719    }
3720
3721    return (rc);
3722}
3723
3724static int
3725bxe_fill_accept_flags(struct bxe_softc *sc,
3726                      uint32_t         rx_mode,
3727                      unsigned long    *rx_accept_flags,
3728                      unsigned long    *tx_accept_flags)
3729{
3730    /* Clear the flags first */
3731    *rx_accept_flags = 0;
3732    *tx_accept_flags = 0;
3733
3734    switch (rx_mode) {
3735    case BXE_RX_MODE_NONE:
3736        /*
3737         * 'drop all' supersedes any accept flags that may have been
3738         * passed to the function.
3739         */
3740        break;
3741
3742    case BXE_RX_MODE_NORMAL:
3743        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3744        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3745        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3746
3747        /* internal switching mode */
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3751
3752        break;
3753
3754    case BXE_RX_MODE_ALLMULTI:
3755        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3756        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3757        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3758
3759        /* internal switching mode */
3760        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3761        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3762        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3763
3764        break;
3765
3766    case BXE_RX_MODE_PROMISC:
3767        /*
3768         * According to deffinition of SI mode, iface in promisc mode
3769         * should receive matched and unmatched (in resolution of port)
3770         * unicast packets.
3771         */
3772        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3773        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3774        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3775        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3776
3777        /* internal switching mode */
3778        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3779        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3780
3781        if (IS_MF_SI(sc)) {
3782            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3783        } else {
3784            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3785        }
3786
3787        break;
3788
3789    default:
3790        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3791        return (-1);
3792    }
3793
3794    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3795    if (rx_mode != BXE_RX_MODE_NONE) {
3796        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3797        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3798    }
3799
3800    return (0);
3801}
3802
3803static int
3804bxe_set_q_rx_mode(struct bxe_softc *sc,
3805                  uint8_t          cl_id,
3806                  unsigned long    rx_mode_flags,
3807                  unsigned long    rx_accept_flags,
3808                  unsigned long    tx_accept_flags,
3809                  unsigned long    ramrod_flags)
3810{
3811    struct ecore_rx_mode_ramrod_params ramrod_param;
3812    int rc;
3813
3814    memset(&ramrod_param, 0, sizeof(ramrod_param));
3815
3816    /* Prepare ramrod parameters */
3817    ramrod_param.cid = 0;
3818    ramrod_param.cl_id = cl_id;
3819    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3820    ramrod_param.func_id = SC_FUNC(sc);
3821
3822    ramrod_param.pstate = &sc->sp_state;
3823    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3824
3825    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3826    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3827
3828    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3829
3830    ramrod_param.ramrod_flags = ramrod_flags;
3831    ramrod_param.rx_mode_flags = rx_mode_flags;
3832
3833    ramrod_param.rx_accept_flags = rx_accept_flags;
3834    ramrod_param.tx_accept_flags = tx_accept_flags;
3835
3836    rc = ecore_config_rx_mode(sc, &ramrod_param);
3837    if (rc < 0) {
3838        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3839        return (rc);
3840    }
3841
3842    return (0);
3843}
3844
3845static int
3846bxe_set_storm_rx_mode(struct bxe_softc *sc)
3847{
3848    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3849    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3850    int rc;
3851
3852    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3853                               &tx_accept_flags);
3854    if (rc) {
3855        return (rc);
3856    }
3857
3858    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3859    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3860
3861    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3862    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3863                              rx_accept_flags, tx_accept_flags,
3864                              ramrod_flags));
3865}
3866
3867/* returns the "mcp load_code" according to global load_count array */
3868static int
3869bxe_nic_load_no_mcp(struct bxe_softc *sc)
3870{
3871    int path = SC_PATH(sc);
3872    int port = SC_PORT(sc);
3873
3874    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3875          path, load_count[path][0], load_count[path][1],
3876          load_count[path][2]);
3877    load_count[path][0]++;
3878    load_count[path][1 + port]++;
3879    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3880          path, load_count[path][0], load_count[path][1],
3881          load_count[path][2]);
3882    if (load_count[path][0] == 1) {
3883        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3884    } else if (load_count[path][1 + port] == 1) {
3885        return (FW_MSG_CODE_DRV_LOAD_PORT);
3886    } else {
3887        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3888    }
3889}
3890
3891/* returns the "mcp load_code" according to global load_count array */
3892static int
3893bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3894{
3895    int port = SC_PORT(sc);
3896    int path = SC_PATH(sc);
3897
3898    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3899          path, load_count[path][0], load_count[path][1],
3900          load_count[path][2]);
3901    load_count[path][0]--;
3902    load_count[path][1 + port]--;
3903    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3904          path, load_count[path][0], load_count[path][1],
3905          load_count[path][2]);
3906    if (load_count[path][0] == 0) {
3907        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3908    } else if (load_count[path][1 + port] == 0) {
3909        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3910    } else {
3911        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3912    }
3913}
3914
3915/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3916static uint32_t
3917bxe_send_unload_req(struct bxe_softc *sc,
3918                    int              unload_mode)
3919{
3920    uint32_t reset_code = 0;
3921#if 0
3922    int port = SC_PORT(sc);
3923    int path = SC_PATH(sc);
3924#endif
3925
3926    /* Select the UNLOAD request mode */
3927    if (unload_mode == UNLOAD_NORMAL) {
3928        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3929    }
3930#if 0
3931    else if (sc->flags & BXE_NO_WOL_FLAG) {
3932        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3933    } else if (sc->wol) {
3934        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3935        uint8_t *mac_addr = sc->dev->dev_addr;
3936        uint32_t val;
3937        uint16_t pmc;
3938
3939        /*
3940         * The mac address is written to entries 1-4 to
3941         * preserve entry 0 which is used by the PMF
3942         */
3943        uint8_t entry = (SC_VN(sc) + 1)*8;
3944
3945        val = (mac_addr[0] << 8) | mac_addr[1];
3946        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3947
3948        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3949              (mac_addr[4] << 8) | mac_addr[5];
3950        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3951
3952        /* Enable the PME and clear the status */
3953        pmc = pci_read_config(sc->dev,
3954                              (sc->devinfo.pcie_pm_cap_reg +
3955                               PCIR_POWER_STATUS),
3956                              2);
3957        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3958        pci_write_config(sc->dev,
3959                         (sc->devinfo.pcie_pm_cap_reg +
3960                          PCIR_POWER_STATUS),
3961                         pmc, 4);
3962
3963        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3964    }
3965#endif
3966    else {
3967        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3968    }
3969
3970    /* Send the request to the MCP */
3971    if (!BXE_NOMCP(sc)) {
3972        reset_code = bxe_fw_command(sc, reset_code, 0);
3973    } else {
3974        reset_code = bxe_nic_unload_no_mcp(sc);
3975    }
3976
3977    return (reset_code);
3978}
3979
3980/* send UNLOAD_DONE command to the MCP */
3981static void
3982bxe_send_unload_done(struct bxe_softc *sc,
3983                     uint8_t          keep_link)
3984{
3985    uint32_t reset_param =
3986        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3987
3988    /* Report UNLOAD_DONE to MCP */
3989    if (!BXE_NOMCP(sc)) {
3990        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3991    }
3992}
3993
3994static int
3995bxe_func_wait_started(struct bxe_softc *sc)
3996{
3997    int tout = 50;
3998
3999    if (!sc->port.pmf) {
4000        return (0);
4001    }
4002
4003    /*
4004     * (assumption: No Attention from MCP at this stage)
4005     * PMF probably in the middle of TX disable/enable transaction
4006     * 1. Sync IRS for default SB
4007     * 2. Sync SP queue - this guarantees us that attention handling started
4008     * 3. Wait, that TX disable/enable transaction completes
4009     *
4010     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4011     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4012     * received completion for the transaction the state is TX_STOPPED.
4013     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4014     * transaction.
4015     */
4016
4017    /* XXX make sure default SB ISR is done */
4018    /* need a way to synchronize an irq (intr_mtx?) */
4019
4020    /* XXX flush any work queues */
4021
4022    while (ecore_func_get_state(sc, &sc->func_obj) !=
4023           ECORE_F_STATE_STARTED && tout--) {
4024        DELAY(20000);
4025    }
4026
4027    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4028        /*
4029         * Failed to complete the transaction in a "good way"
4030         * Force both transactions with CLR bit.
4031         */
4032        struct ecore_func_state_params func_params = { NULL };
4033
4034        BLOGE(sc, "Unexpected function state! "
4035                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4036
4037        func_params.f_obj = &sc->func_obj;
4038        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4039
4040        /* STARTED-->TX_STOPPED */
4041        func_params.cmd = ECORE_F_CMD_TX_STOP;
4042        ecore_func_state_change(sc, &func_params);
4043
4044        /* TX_STOPPED-->STARTED */
4045        func_params.cmd = ECORE_F_CMD_TX_START;
4046        return (ecore_func_state_change(sc, &func_params));
4047    }
4048
4049    return (0);
4050}
4051
4052static int
4053bxe_stop_queue(struct bxe_softc *sc,
4054               int              index)
4055{
4056    struct bxe_fastpath *fp = &sc->fp[index];
4057    struct ecore_queue_state_params q_params = { NULL };
4058    int rc;
4059
4060    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4061
4062    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4063    /* We want to wait for completion in this context */
4064    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4065
4066    /* Stop the primary connection: */
4067
4068    /* ...halt the connection */
4069    q_params.cmd = ECORE_Q_CMD_HALT;
4070    rc = ecore_queue_state_change(sc, &q_params);
4071    if (rc) {
4072        return (rc);
4073    }
4074
4075    /* ...terminate the connection */
4076    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4077    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4078    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4079    rc = ecore_queue_state_change(sc, &q_params);
4080    if (rc) {
4081        return (rc);
4082    }
4083
4084    /* ...delete cfc entry */
4085    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4086    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4087    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4088    return (ecore_queue_state_change(sc, &q_params));
4089}
4090
4091/* wait for the outstanding SP commands */
4092static inline uint8_t
4093bxe_wait_sp_comp(struct bxe_softc *sc,
4094                 unsigned long    mask)
4095{
4096    unsigned long tmp;
4097    int tout = 5000; /* wait for 5 secs tops */
4098
4099    while (tout--) {
4100        mb();
4101        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4102            return (TRUE);
4103        }
4104
4105        DELAY(1000);
4106    }
4107
4108    mb();
4109
4110    tmp = atomic_load_acq_long(&sc->sp_state);
4111    if (tmp & mask) {
4112        BLOGE(sc, "Filtering completion timed out: "
4113                  "sp_state 0x%lx, mask 0x%lx\n",
4114              tmp, mask);
4115        return (FALSE);
4116    }
4117
4118    return (FALSE);
4119}
4120
4121static int
4122bxe_func_stop(struct bxe_softc *sc)
4123{
4124    struct ecore_func_state_params func_params = { NULL };
4125    int rc;
4126
4127    /* prepare parameters for function state transitions */
4128    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4129    func_params.f_obj = &sc->func_obj;
4130    func_params.cmd = ECORE_F_CMD_STOP;
4131
4132    /*
4133     * Try to stop the function the 'good way'. If it fails (in case
4134     * of a parity error during bxe_chip_cleanup()) and we are
4135     * not in a debug mode, perform a state transaction in order to
4136     * enable further HW_RESET transaction.
4137     */
4138    rc = ecore_func_state_change(sc, &func_params);
4139    if (rc) {
4140        BLOGE(sc, "FUNC_STOP ramrod failed. "
4141                  "Running a dry transaction\n");
4142        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4143        return (ecore_func_state_change(sc, &func_params));
4144    }
4145
4146    return (0);
4147}
4148
4149static int
4150bxe_reset_hw(struct bxe_softc *sc,
4151             uint32_t         load_code)
4152{
4153    struct ecore_func_state_params func_params = { NULL };
4154
4155    /* Prepare parameters for function state transitions */
4156    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4157
4158    func_params.f_obj = &sc->func_obj;
4159    func_params.cmd = ECORE_F_CMD_HW_RESET;
4160
4161    func_params.params.hw_init.load_phase = load_code;
4162
4163    return (ecore_func_state_change(sc, &func_params));
4164}
4165
4166static void
4167bxe_int_disable_sync(struct bxe_softc *sc,
4168                     int              disable_hw)
4169{
4170    if (disable_hw) {
4171        /* prevent the HW from sending interrupts */
4172        bxe_int_disable(sc);
4173    }
4174
4175    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4176    /* make sure all ISRs are done */
4177
4178    /* XXX make sure sp_task is not running */
4179    /* cancel and flush work queues */
4180}
4181
4182static void
4183bxe_chip_cleanup(struct bxe_softc *sc,
4184                 uint32_t         unload_mode,
4185                 uint8_t          keep_link)
4186{
4187    int port = SC_PORT(sc);
4188    struct ecore_mcast_ramrod_params rparam = { NULL };
4189    uint32_t reset_code;
4190    int i, rc = 0;
4191
4192    bxe_drain_tx_queues(sc);
4193
4194    /* give HW time to discard old tx messages */
4195    DELAY(1000);
4196
4197    /* Clean all ETH MACs */
4198    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4199    if (rc < 0) {
4200        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4201    }
4202
4203    /* Clean up UC list  */
4204    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4205    if (rc < 0) {
4206        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4207    }
4208
4209    /* Disable LLH */
4210    if (!CHIP_IS_E1(sc)) {
4211        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4212    }
4213
4214    /* Set "drop all" to stop Rx */
4215
4216    /*
4217     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4218     * a race between the completion code and this code.
4219     */
4220    BXE_MCAST_LOCK(sc);
4221
4222    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4223        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4224    } else {
4225        bxe_set_storm_rx_mode(sc);
4226    }
4227
4228    /* Clean up multicast configuration */
4229    rparam.mcast_obj = &sc->mcast_obj;
4230    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4231    if (rc < 0) {
4232        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4233    }
4234
4235    BXE_MCAST_UNLOCK(sc);
4236
4237    // XXX bxe_iov_chip_cleanup(sc);
4238
4239    /*
4240     * Send the UNLOAD_REQUEST to the MCP. This will return if
4241     * this function should perform FUNCTION, PORT, or COMMON HW
4242     * reset.
4243     */
4244    reset_code = bxe_send_unload_req(sc, unload_mode);
4245
4246    /*
4247     * (assumption: No Attention from MCP at this stage)
4248     * PMF probably in the middle of TX disable/enable transaction
4249     */
4250    rc = bxe_func_wait_started(sc);
4251    if (rc) {
4252        BLOGE(sc, "bxe_func_wait_started failed\n");
4253    }
4254
4255    /*
4256     * Close multi and leading connections
4257     * Completions for ramrods are collected in a synchronous way
4258     */
4259    for (i = 0; i < sc->num_queues; i++) {
4260        if (bxe_stop_queue(sc, i)) {
4261            goto unload_error;
4262        }
4263    }
4264
4265    /*
4266     * If SP settings didn't get completed so far - something
4267     * very wrong has happen.
4268     */
4269    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4270        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4271    }
4272
4273unload_error:
4274
4275    rc = bxe_func_stop(sc);
4276    if (rc) {
4277        BLOGE(sc, "Function stop failed!\n");
4278    }
4279
4280    /* disable HW interrupts */
4281    bxe_int_disable_sync(sc, TRUE);
4282
4283    /* detach interrupts */
4284    bxe_interrupt_detach(sc);
4285
4286    /* Reset the chip */
4287    rc = bxe_reset_hw(sc, reset_code);
4288    if (rc) {
4289        BLOGE(sc, "Hardware reset failed\n");
4290    }
4291
4292    /* Report UNLOAD_DONE to MCP */
4293    bxe_send_unload_done(sc, keep_link);
4294}
4295
4296static void
4297bxe_disable_close_the_gate(struct bxe_softc *sc)
4298{
4299    uint32_t val;
4300    int port = SC_PORT(sc);
4301
4302    BLOGD(sc, DBG_LOAD,
4303          "Disabling 'close the gates'\n");
4304
4305    if (CHIP_IS_E1(sc)) {
4306        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4307                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4308        val = REG_RD(sc, addr);
4309        val &= ~(0x300);
4310        REG_WR(sc, addr, val);
4311    } else {
4312        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4313        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4314                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4315        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4316    }
4317}
4318
4319/*
4320 * Cleans the object that have internal lists without sending
4321 * ramrods. Should be run when interrutps are disabled.
4322 */
4323static void
4324bxe_squeeze_objects(struct bxe_softc *sc)
4325{
4326    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4327    struct ecore_mcast_ramrod_params rparam = { NULL };
4328    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4329    int rc;
4330
4331    /* Cleanup MACs' object first... */
4332
4333    /* Wait for completion of requested */
4334    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4335    /* Perform a dry cleanup */
4336    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4337
4338    /* Clean ETH primary MAC */
4339    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4340    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4341                             &ramrod_flags);
4342    if (rc != 0) {
4343        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4344    }
4345
4346    /* Cleanup UC list */
4347    vlan_mac_flags = 0;
4348    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4349    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4350                             &ramrod_flags);
4351    if (rc != 0) {
4352        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4353    }
4354
4355    /* Now clean mcast object... */
4356
4357    rparam.mcast_obj = &sc->mcast_obj;
4358    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4359
4360    /* Add a DEL command... */
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4362    if (rc < 0) {
4363        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4364    }
4365
4366    /* now wait until all pending commands are cleared */
4367
4368    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    while (rc != 0) {
4370        if (rc < 0) {
4371            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4372            return;
4373        }
4374
4375        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376    }
4377}
4378
4379/* stop the controller */
4380static __noinline int
4381bxe_nic_unload(struct bxe_softc *sc,
4382               uint32_t         unload_mode,
4383               uint8_t          keep_link)
4384{
4385    uint8_t global = FALSE;
4386    uint32_t val;
4387
4388    BXE_CORE_LOCK_ASSERT(sc);
4389
4390    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4391
4392    /* mark driver as unloaded in shmem2 */
4393    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4394        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4395        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4396                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4397    }
4398
4399    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4400        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4401        /*
4402         * We can get here if the driver has been unloaded
4403         * during parity error recovery and is either waiting for a
4404         * leader to complete or for other functions to unload and
4405         * then ifconfig down has been issued. In this case we want to
4406         * unload and let other functions to complete a recovery
4407         * process.
4408         */
4409        sc->recovery_state = BXE_RECOVERY_DONE;
4410        sc->is_leader = 0;
4411        bxe_release_leader_lock(sc);
4412        mb();
4413
4414        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4415        BLOGE(sc, "Can't unload in closed or error state\n");
4416        return (-1);
4417    }
4418
4419    /*
4420     * Nothing to do during unload if previous bxe_nic_load()
4421     * did not completed succesfully - all resourses are released.
4422     */
4423    if ((sc->state == BXE_STATE_CLOSED) ||
4424        (sc->state == BXE_STATE_ERROR)) {
4425        return (0);
4426    }
4427
4428    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4429    mb();
4430
4431    /* stop tx */
4432    bxe_tx_disable(sc);
4433
4434    sc->rx_mode = BXE_RX_MODE_NONE;
4435    /* XXX set rx mode ??? */
4436
4437    if (IS_PF(sc)) {
4438        /* set ALWAYS_ALIVE bit in shmem */
4439        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4440
4441        bxe_drv_pulse(sc);
4442
4443        bxe_stats_handle(sc, STATS_EVENT_STOP);
4444        bxe_save_statistics(sc);
4445    }
4446
4447    /* wait till consumers catch up with producers in all queues */
4448    bxe_drain_tx_queues(sc);
4449
4450    /* if VF indicate to PF this function is going down (PF will delete sp
4451     * elements and clear initializations
4452     */
4453    if (IS_VF(sc)) {
4454        ; /* bxe_vfpf_close_vf(sc); */
4455    } else if (unload_mode != UNLOAD_RECOVERY) {
4456        /* if this is a normal/close unload need to clean up chip */
4457        bxe_chip_cleanup(sc, unload_mode, keep_link);
4458    } else {
4459        /* Send the UNLOAD_REQUEST to the MCP */
4460        bxe_send_unload_req(sc, unload_mode);
4461
4462        /*
4463         * Prevent transactions to host from the functions on the
4464         * engine that doesn't reset global blocks in case of global
4465         * attention once gloabl blocks are reset and gates are opened
4466         * (the engine which leader will perform the recovery
4467         * last).
4468         */
4469        if (!CHIP_IS_E1x(sc)) {
4470            bxe_pf_disable(sc);
4471        }
4472
4473        /* disable HW interrupts */
4474        bxe_int_disable_sync(sc, TRUE);
4475
4476        /* detach interrupts */
4477        bxe_interrupt_detach(sc);
4478
4479        /* Report UNLOAD_DONE to MCP */
4480        bxe_send_unload_done(sc, FALSE);
4481    }
4482
4483    /*
4484     * At this stage no more interrupts will arrive so we may safely clean
4485     * the queue'able objects here in case they failed to get cleaned so far.
4486     */
4487    if (IS_PF(sc)) {
4488        bxe_squeeze_objects(sc);
4489    }
4490
4491    /* There should be no more pending SP commands at this stage */
4492    sc->sp_state = 0;
4493
4494    sc->port.pmf = 0;
4495
4496    bxe_free_fp_buffers(sc);
4497
4498    if (IS_PF(sc)) {
4499        bxe_free_mem(sc);
4500    }
4501
4502    bxe_free_fw_stats_mem(sc);
4503
4504    sc->state = BXE_STATE_CLOSED;
4505
4506    /*
4507     * Check if there are pending parity attentions. If there are - set
4508     * RECOVERY_IN_PROGRESS.
4509     */
4510    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4511        bxe_set_reset_in_progress(sc);
4512
4513        /* Set RESET_IS_GLOBAL if needed */
4514        if (global) {
4515            bxe_set_reset_global(sc);
4516        }
4517    }
4518
4519    /*
4520     * The last driver must disable a "close the gate" if there is no
4521     * parity attention or "process kill" pending.
4522     */
4523    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4524        bxe_reset_is_done(sc, SC_PATH(sc))) {
4525        bxe_disable_close_the_gate(sc);
4526    }
4527
4528    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4529
4530    return (0);
4531}
4532
4533/*
4534 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4535 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4536 */
4537static int
4538bxe_ifmedia_update(struct ifnet *ifp)
4539{
4540    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4541    struct ifmedia *ifm;
4542
4543    ifm = &sc->ifmedia;
4544
4545    /* We only support Ethernet media type. */
4546    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4547        return (EINVAL);
4548    }
4549
4550    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4551    case IFM_AUTO:
4552         break;
4553    case IFM_10G_CX4:
4554    case IFM_10G_SR:
4555    case IFM_10G_T:
4556    case IFM_10G_TWINAX:
4557    default:
4558        /* We don't support changing the media type. */
4559        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4560              IFM_SUBTYPE(ifm->ifm_media));
4561        return (EINVAL);
4562    }
4563
4564    return (0);
4565}
4566
4567/*
4568 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4569 */
4570static void
4571bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4572{
4573    struct bxe_softc *sc = ifp->if_softc;
4574
4575    /* Report link down if the driver isn't running. */
4576    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4577        ifmr->ifm_active |= IFM_NONE;
4578        return;
4579    }
4580
4581    /* Setup the default interface info. */
4582    ifmr->ifm_status = IFM_AVALID;
4583    ifmr->ifm_active = IFM_ETHER;
4584
4585    if (sc->link_vars.link_up) {
4586        ifmr->ifm_status |= IFM_ACTIVE;
4587    } else {
4588        ifmr->ifm_active |= IFM_NONE;
4589        return;
4590    }
4591
4592    ifmr->ifm_active |= sc->media;
4593
4594    if (sc->link_vars.duplex == DUPLEX_FULL) {
4595        ifmr->ifm_active |= IFM_FDX;
4596    } else {
4597        ifmr->ifm_active |= IFM_HDX;
4598    }
4599}
4600
4601static int
4602bxe_ioctl_nvram(struct bxe_softc *sc,
4603                uint32_t         priv_op,
4604                struct ifreq     *ifr)
4605{
4606    struct bxe_nvram_data nvdata_base;
4607    struct bxe_nvram_data *nvdata;
4608    int len;
4609    int error = 0;
4610
4611    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4612
4613    len = (sizeof(struct bxe_nvram_data) +
4614           nvdata_base.len -
4615           sizeof(uint32_t));
4616
4617    if (len > sizeof(struct bxe_nvram_data)) {
4618        if ((nvdata = (struct bxe_nvram_data *)
4619                 malloc(len, M_DEVBUF,
4620                        (M_NOWAIT | M_ZERO))) == NULL) {
4621            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4622            return (1);
4623        }
4624        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4625    } else {
4626        nvdata = &nvdata_base;
4627    }
4628
4629    if (priv_op == BXE_IOC_RD_NVRAM) {
4630        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4631              nvdata->offset, nvdata->len);
4632        error = bxe_nvram_read(sc,
4633                               nvdata->offset,
4634                               (uint8_t *)nvdata->value,
4635                               nvdata->len);
4636        copyout(nvdata, ifr->ifr_data, len);
4637    } else { /* BXE_IOC_WR_NVRAM */
4638        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4639              nvdata->offset, nvdata->len);
4640        copyin(ifr->ifr_data, nvdata, len);
4641        error = bxe_nvram_write(sc,
4642                                nvdata->offset,
4643                                (uint8_t *)nvdata->value,
4644                                nvdata->len);
4645    }
4646
4647    if (len > sizeof(struct bxe_nvram_data)) {
4648        free(nvdata, M_DEVBUF);
4649    }
4650
4651    return (error);
4652}
4653
4654static int
4655bxe_ioctl_stats_show(struct bxe_softc *sc,
4656                     uint32_t         priv_op,
4657                     struct ifreq     *ifr)
4658{
4659    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4660    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4661    caddr_t p_tmp;
4662    uint32_t *offset;
4663    int i;
4664
4665    switch (priv_op)
4666    {
4667    case BXE_IOC_STATS_SHOW_NUM:
4668        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4669        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4670            BXE_NUM_ETH_STATS;
4671        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4672            STAT_NAME_LEN;
4673        return (0);
4674
4675    case BXE_IOC_STATS_SHOW_STR:
4676        memset(ifr->ifr_data, 0, str_size);
4677        p_tmp = ifr->ifr_data;
4678        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4679            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4680            p_tmp += STAT_NAME_LEN;
4681        }
4682        return (0);
4683
4684    case BXE_IOC_STATS_SHOW_CNT:
4685        memset(ifr->ifr_data, 0, stats_size);
4686        p_tmp = ifr->ifr_data;
4687        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4688            offset = ((uint32_t *)&sc->eth_stats +
4689                      bxe_eth_stats_arr[i].offset);
4690            switch (bxe_eth_stats_arr[i].size) {
4691            case 4:
4692                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4693                break;
4694            case 8:
4695                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4696                break;
4697            default:
4698                *((uint64_t *)p_tmp) = 0;
4699            }
4700            p_tmp += sizeof(uint64_t);
4701        }
4702        return (0);
4703
4704    default:
4705        return (-1);
4706    }
4707}
4708
4709static void
4710bxe_handle_chip_tq(void *context,
4711                   int  pending)
4712{
4713    struct bxe_softc *sc = (struct bxe_softc *)context;
4714    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4715
4716    switch (work)
4717    {
4718    case CHIP_TQ_START:
4719        if ((sc->ifnet->if_flags & IFF_UP) &&
4720            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4721            /* start the interface */
4722            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4723            BXE_CORE_LOCK(sc);
4724            bxe_init_locked(sc);
4725            BXE_CORE_UNLOCK(sc);
4726        }
4727        break;
4728
4729    case CHIP_TQ_STOP:
4730        if (!(sc->ifnet->if_flags & IFF_UP) &&
4731            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4732            /* bring down the interface */
4733            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4734            bxe_periodic_stop(sc);
4735            BXE_CORE_LOCK(sc);
4736            bxe_stop_locked(sc);
4737            BXE_CORE_UNLOCK(sc);
4738        }
4739        break;
4740
4741    case CHIP_TQ_REINIT:
4742        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4743            /* restart the interface */
4744            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4745            bxe_periodic_stop(sc);
4746            BXE_CORE_LOCK(sc);
4747            bxe_stop_locked(sc);
4748            bxe_init_locked(sc);
4749            BXE_CORE_UNLOCK(sc);
4750        }
4751        break;
4752
4753    default:
4754        break;
4755    }
4756}
4757
4758/*
4759 * Handles any IOCTL calls from the operating system.
4760 *
4761 * Returns:
4762 *   0 = Success, >0 Failure
4763 */
4764static int
4765bxe_ioctl(struct ifnet *ifp,
4766          u_long       command,
4767          caddr_t      data)
4768{
4769    struct bxe_softc *sc = ifp->if_softc;
4770    struct ifreq *ifr = (struct ifreq *)data;
4771    struct bxe_nvram_data *nvdata;
4772    uint32_t priv_op;
4773    int mask = 0;
4774    int reinit = 0;
4775    int error = 0;
4776
4777    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4778    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4779
4780    switch (command)
4781    {
4782    case SIOCSIFMTU:
4783        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4784              ifr->ifr_mtu);
4785
4786        if (sc->mtu == ifr->ifr_mtu) {
4787            /* nothing to change */
4788            break;
4789        }
4790
4791        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4792            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4793                  ifr->ifr_mtu, mtu_min, mtu_max);
4794            error = EINVAL;
4795            break;
4796        }
4797
4798        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4799                             (unsigned long)ifr->ifr_mtu);
4800        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4801                              (unsigned long)ifr->ifr_mtu);
4802
4803        reinit = 1;
4804        break;
4805
4806    case SIOCSIFFLAGS:
4807        /* toggle the interface state up or down */
4808        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4809
4810        /* check if the interface is up */
4811        if (ifp->if_flags & IFF_UP) {
4812            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4813                /* set the receive mode flags */
4814                bxe_set_rx_mode(sc);
4815            } else {
4816                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4817                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4818            }
4819        } else {
4820            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4821                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4822                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4823            }
4824        }
4825
4826        break;
4827
4828    case SIOCADDMULTI:
4829    case SIOCDELMULTI:
4830        /* add/delete multicast addresses */
4831        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4832
4833        /* check if the interface is up */
4834        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4835            /* set the receive mode flags */
4836            bxe_set_rx_mode(sc);
4837        }
4838
4839        break;
4840
4841    case SIOCSIFCAP:
4842        /* find out which capabilities have changed */
4843        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4844
4845        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4846              mask);
4847
4848        /* toggle the LRO capabilites enable flag */
4849        if (mask & IFCAP_LRO) {
4850            ifp->if_capenable ^= IFCAP_LRO;
4851            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4852                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4853            reinit = 1;
4854        }
4855
4856        /* toggle the TXCSUM checksum capabilites enable flag */
4857        if (mask & IFCAP_TXCSUM) {
4858            ifp->if_capenable ^= IFCAP_TXCSUM;
4859            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4860                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4861            if (ifp->if_capenable & IFCAP_TXCSUM) {
4862                ifp->if_hwassist = (CSUM_IP       |
4863                                    CSUM_TCP      |
4864                                    CSUM_UDP      |
4865                                    CSUM_TSO      |
4866                                    CSUM_TCP_IPV6 |
4867                                    CSUM_UDP_IPV6);
4868            } else {
4869                ifp->if_hwassist = 0;
4870            }
4871        }
4872
4873        /* toggle the RXCSUM checksum capabilities enable flag */
4874        if (mask & IFCAP_RXCSUM) {
4875            ifp->if_capenable ^= IFCAP_RXCSUM;
4876            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4877                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4878            if (ifp->if_capenable & IFCAP_RXCSUM) {
4879                ifp->if_hwassist = (CSUM_IP       |
4880                                    CSUM_TCP      |
4881                                    CSUM_UDP      |
4882                                    CSUM_TSO      |
4883                                    CSUM_TCP_IPV6 |
4884                                    CSUM_UDP_IPV6);
4885            } else {
4886                ifp->if_hwassist = 0;
4887            }
4888        }
4889
4890        /* toggle TSO4 capabilities enabled flag */
4891        if (mask & IFCAP_TSO4) {
4892            ifp->if_capenable ^= IFCAP_TSO4;
4893            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4894                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle TSO6 capabilities enabled flag */
4898        if (mask & IFCAP_TSO6) {
4899            ifp->if_capenable ^= IFCAP_TSO6;
4900            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4901                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle VLAN_HWTSO capabilities enabled flag */
4905        if (mask & IFCAP_VLAN_HWTSO) {
4906            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4907            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4908                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4909        }
4910
4911        /* toggle VLAN_HWCSUM capabilities enabled flag */
4912        if (mask & IFCAP_VLAN_HWCSUM) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_MTU capabilities enable flag */
4919        if (mask & IFCAP_VLAN_MTU) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4926        if (mask & IFCAP_VLAN_HWTAGGING) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* toggle VLAN_HWFILTER capabilities enabled flag */
4933        if (mask & IFCAP_VLAN_HWFILTER) {
4934            /* XXX investigate this... */
4935            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4936            error = EINVAL;
4937        }
4938
4939        /* XXX not yet...
4940         * IFCAP_WOL_MAGIC
4941         */
4942
4943        break;
4944
4945    case SIOCSIFMEDIA:
4946    case SIOCGIFMEDIA:
4947        /* set/get interface media */
4948        BLOGD(sc, DBG_IOCTL,
4949              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4950              (command & 0xff));
4951        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4952        break;
4953
4954    case SIOCGPRIVATE_0:
4955        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4956
4957        switch (priv_op)
4958        {
4959        case BXE_IOC_RD_NVRAM:
4960        case BXE_IOC_WR_NVRAM:
4961            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4962            BLOGD(sc, DBG_IOCTL,
4963                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4964                  nvdata->offset, nvdata->len);
4965            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4966            break;
4967
4968        case BXE_IOC_STATS_SHOW_NUM:
4969        case BXE_IOC_STATS_SHOW_STR:
4970        case BXE_IOC_STATS_SHOW_CNT:
4971            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4972                  priv_op);
4973            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4974            break;
4975
4976        default:
4977            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4978            error = EINVAL;
4979            break;
4980        }
4981
4982        break;
4983
4984    default:
4985        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4986              (command & 0xff));
4987        error = ether_ioctl(ifp, command, data);
4988        break;
4989    }
4990
4991    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4992        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4993              "Re-initializing hardware from IOCTL change\n");
4994        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4995        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4996    }
4997
4998    return (error);
4999}
5000
5001static __noinline void
5002bxe_dump_mbuf(struct bxe_softc *sc,
5003              struct mbuf      *m,
5004              uint8_t          contents)
5005{
5006    char * type;
5007    int i = 0;
5008
5009    if (!(sc->debug & DBG_MBUF)) {
5010        return;
5011    }
5012
5013    if (m == NULL) {
5014        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5015        return;
5016    }
5017
5018    while (m) {
5019        BLOGD(sc, DBG_MBUF,
5020              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5021              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5022
5023        if (m->m_flags & M_PKTHDR) {
5024             BLOGD(sc, DBG_MBUF,
5025                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5026                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5027                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5028        }
5029
5030        if (m->m_flags & M_EXT) {
5031            switch (m->m_ext.ext_type) {
5032            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5033            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5034            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5035            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5036            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5037            case EXT_PACKET:     type = "EXT_PACKET";     break;
5038            case EXT_MBUF:       type = "EXT_MBUF";       break;
5039            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5040            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5041            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5042            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5043            default:             type = "UNKNOWN";        break;
5044            }
5045
5046            BLOGD(sc, DBG_MBUF,
5047                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5048                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5049        }
5050
5051        if (contents) {
5052            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5053        }
5054
5055        m = m->m_next;
5056        i++;
5057    }
5058}
5059
5060/*
5061 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5062 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5063 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5064 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5065 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5066 */
5067static int
5068bxe_chktso_window(struct bxe_softc  *sc,
5069                  int               nsegs,
5070                  bus_dma_segment_t *segs,
5071                  struct mbuf       *m)
5072{
5073    uint32_t num_wnds, wnd_size, wnd_sum;
5074    int32_t frag_idx, wnd_idx;
5075    unsigned short lso_mss;
5076    int defrag;
5077
5078    defrag = 0;
5079    wnd_sum = 0;
5080    wnd_size = 10;
5081    num_wnds = nsegs - wnd_size;
5082    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5083
5084    /*
5085     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5086     * first window sum of data while skipping the first assuming it is the
5087     * header in FreeBSD.
5088     */
5089    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5090        wnd_sum += htole16(segs[frag_idx].ds_len);
5091    }
5092
5093    /* check the first 10 bd window size */
5094    if (wnd_sum < lso_mss) {
5095        return (1);
5096    }
5097
5098    /* run through the windows */
5099    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5100        /* subtract the first mbuf->m_len of the last wndw(-header) */
5101        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5102        /* add the next mbuf len to the len of our new window */
5103        wnd_sum += htole16(segs[frag_idx].ds_len);
5104        if (wnd_sum < lso_mss) {
5105            return (1);
5106        }
5107    }
5108
5109    return (0);
5110}
5111
5112static uint8_t
5113bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5114                    struct mbuf         *m,
5115                    uint32_t            *parsing_data)
5116{
5117    struct ether_vlan_header *eh = NULL;
5118    struct ip *ip4 = NULL;
5119    struct ip6_hdr *ip6 = NULL;
5120    caddr_t ip = NULL;
5121    struct tcphdr *th = NULL;
5122    int e_hlen, ip_hlen, l4_off;
5123    uint16_t proto;
5124
5125    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5126        /* no L4 checksum offload needed */
5127        return (0);
5128    }
5129
5130    /* get the Ethernet header */
5131    eh = mtod(m, struct ether_vlan_header *);
5132
5133    /* handle VLAN encapsulation if present */
5134    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5135        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5136        proto  = ntohs(eh->evl_proto);
5137    } else {
5138        e_hlen = ETHER_HDR_LEN;
5139        proto  = ntohs(eh->evl_encap_proto);
5140    }
5141
5142    switch (proto) {
5143    case ETHERTYPE_IP:
5144        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5145        ip4 = (m->m_len < sizeof(struct ip)) ?
5146                  (struct ip *)m->m_next->m_data :
5147                  (struct ip *)(m->m_data + e_hlen);
5148        /* ip_hl is number of 32-bit words */
5149        ip_hlen = (ip4->ip_hl << 2);
5150        ip = (caddr_t)ip4;
5151        break;
5152    case ETHERTYPE_IPV6:
5153        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5154        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5155                  (struct ip6_hdr *)m->m_next->m_data :
5156                  (struct ip6_hdr *)(m->m_data + e_hlen);
5157        /* XXX cannot support offload with IPv6 extensions */
5158        ip_hlen = sizeof(struct ip6_hdr);
5159        ip = (caddr_t)ip6;
5160        break;
5161    default:
5162        /* We can't offload in this case... */
5163        /* XXX error stat ??? */
5164        return (0);
5165    }
5166
5167    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5168    l4_off = (e_hlen + ip_hlen);
5169
5170    *parsing_data |=
5171        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5172         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5173
5174    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5175                                  CSUM_TSO |
5176                                  CSUM_TCP_IPV6)) {
5177        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5178        th = (struct tcphdr *)(ip + ip_hlen);
5179        /* th_off is number of 32-bit words */
5180        *parsing_data |= ((th->th_off <<
5181                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5182                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5183        return (l4_off + (th->th_off << 2)); /* entire header length */
5184    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5185                                         CSUM_UDP_IPV6)) {
5186        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5187        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5188    } else {
5189        /* XXX error stat ??? */
5190        return (0);
5191    }
5192}
5193
5194static uint8_t
5195bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5196                 struct mbuf                *m,
5197                 struct eth_tx_parse_bd_e1x *pbd)
5198{
5199    struct ether_vlan_header *eh = NULL;
5200    struct ip *ip4 = NULL;
5201    struct ip6_hdr *ip6 = NULL;
5202    caddr_t ip = NULL;
5203    struct tcphdr *th = NULL;
5204    struct udphdr *uh = NULL;
5205    int e_hlen, ip_hlen;
5206    uint16_t proto;
5207    uint8_t hlen;
5208    uint16_t tmp_csum;
5209    uint32_t *tmp_uh;
5210
5211    /* get the Ethernet header */
5212    eh = mtod(m, struct ether_vlan_header *);
5213
5214    /* handle VLAN encapsulation if present */
5215    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5216        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5217        proto  = ntohs(eh->evl_proto);
5218    } else {
5219        e_hlen = ETHER_HDR_LEN;
5220        proto  = ntohs(eh->evl_encap_proto);
5221    }
5222
5223    switch (proto) {
5224    case ETHERTYPE_IP:
5225        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5226        ip4 = (m->m_len < sizeof(struct ip)) ?
5227                  (struct ip *)m->m_next->m_data :
5228                  (struct ip *)(m->m_data + e_hlen);
5229        /* ip_hl is number of 32-bit words */
5230        ip_hlen = (ip4->ip_hl << 1);
5231        ip = (caddr_t)ip4;
5232        break;
5233    case ETHERTYPE_IPV6:
5234        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5235        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5236                  (struct ip6_hdr *)m->m_next->m_data :
5237                  (struct ip6_hdr *)(m->m_data + e_hlen);
5238        /* XXX cannot support offload with IPv6 extensions */
5239        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5240        ip = (caddr_t)ip6;
5241        break;
5242    default:
5243        /* We can't offload in this case... */
5244        /* XXX error stat ??? */
5245        return (0);
5246    }
5247
5248    hlen = (e_hlen >> 1);
5249
5250    /* note that rest of global_data is indirectly zeroed here */
5251    if (m->m_flags & M_VLANTAG) {
5252        pbd->global_data =
5253            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5254    } else {
5255        pbd->global_data = htole16(hlen);
5256    }
5257
5258    pbd->ip_hlen_w = ip_hlen;
5259
5260    hlen += pbd->ip_hlen_w;
5261
5262    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5263
5264    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5265                                  CSUM_TSO |
5266                                  CSUM_TCP_IPV6)) {
5267        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5268        /* th_off is number of 32-bit words */
5269        hlen += (uint16_t)(th->th_off << 1);
5270    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5271                                         CSUM_UDP_IPV6)) {
5272        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5273        hlen += (sizeof(struct udphdr) / 2);
5274    } else {
5275        /* valid case as only CSUM_IP was set */
5276        return (0);
5277    }
5278
5279    pbd->total_hlen_w = htole16(hlen);
5280
5281    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5282                                  CSUM_TSO |
5283                                  CSUM_TCP_IPV6)) {
5284        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5285        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5286    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5287                                         CSUM_UDP_IPV6)) {
5288        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5289
5290        /*
5291         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5292         * checksums and does not know anything about the UDP header and where
5293         * the checksum field is located. It only knows about TCP. Therefore
5294         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5295         * offload. Since the checksum field offset for TCP is 16 bytes and
5296         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5297         * bytes less than the start of the UDP header. This allows the
5298         * hardware to write the checksum in the correct spot. But the
5299         * hardware will compute a checksum which includes the last 10 bytes
5300         * of the IP header. To correct this we tweak the stack computed
5301         * pseudo checksum by folding in the calculation of the inverse
5302         * checksum for those final 10 bytes of the IP header. This allows
5303         * the correct checksum to be computed by the hardware.
5304         */
5305
5306        /* set pointer 10 bytes before UDP header */
5307        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5308
5309        /* calculate a pseudo header checksum over the first 10 bytes */
5310        tmp_csum = in_pseudo(*tmp_uh,
5311                             *(tmp_uh + 1),
5312                             *(uint16_t *)(tmp_uh + 2));
5313
5314        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5315    }
5316
5317    return (hlen * 2); /* entire header length, number of bytes */
5318}
5319
5320static void
5321bxe_set_pbd_lso_e2(struct mbuf *m,
5322                   uint32_t    *parsing_data)
5323{
5324    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5325                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5326                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5327
5328    /* XXX test for IPv6 with extension header... */
5329#if 0
5330    struct ip6_hdr *ip6;
5331    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5332        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5333#endif
5334}
5335
5336static void
5337bxe_set_pbd_lso(struct mbuf                *m,
5338                struct eth_tx_parse_bd_e1x *pbd)
5339{
5340    struct ether_vlan_header *eh = NULL;
5341    struct ip *ip = NULL;
5342    struct tcphdr *th = NULL;
5343    int e_hlen;
5344
5345    /* get the Ethernet header */
5346    eh = mtod(m, struct ether_vlan_header *);
5347
5348    /* handle VLAN encapsulation if present */
5349    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5350                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5351
5352    /* get the IP and TCP header, with LSO entire header in first mbuf */
5353    /* XXX assuming IPv4 */
5354    ip = (struct ip *)(m->m_data + e_hlen);
5355    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5356
5357    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5358    pbd->tcp_send_seq = ntohl(th->th_seq);
5359    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5360
5361#if 1
5362        /* XXX IPv4 */
5363        pbd->ip_id = ntohs(ip->ip_id);
5364        pbd->tcp_pseudo_csum =
5365            ntohs(in_pseudo(ip->ip_src.s_addr,
5366                            ip->ip_dst.s_addr,
5367                            htons(IPPROTO_TCP)));
5368#else
5369        /* XXX IPv6 */
5370        pbd->tcp_pseudo_csum =
5371            ntohs(in_pseudo(&ip6->ip6_src,
5372                            &ip6->ip6_dst,
5373                            htons(IPPROTO_TCP)));
5374#endif
5375
5376    pbd->global_data |=
5377        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5378}
5379
5380/*
5381 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5382 * visible to the controller.
5383 *
5384 * If an mbuf is submitted to this routine and cannot be given to the
5385 * controller (e.g. it has too many fragments) then the function may free
5386 * the mbuf and return to the caller.
5387 *
5388 * Returns:
5389 *   0 = Success, !0 = Failure
5390 *   Note the side effect that an mbuf may be freed if it causes a problem.
5391 */
5392static int
5393bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5394{
5395    bus_dma_segment_t segs[32];
5396    struct mbuf *m0;
5397    struct bxe_sw_tx_bd *tx_buf;
5398    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5399    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5400    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5401    struct eth_tx_bd *tx_data_bd;
5402    struct eth_tx_bd *tx_total_pkt_size_bd;
5403    struct eth_tx_start_bd *tx_start_bd;
5404    uint16_t bd_prod, pkt_prod, total_pkt_size;
5405    uint8_t mac_type;
5406    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5407    struct bxe_softc *sc;
5408    uint16_t tx_bd_avail;
5409    struct ether_vlan_header *eh;
5410    uint32_t pbd_e2_parsing_data = 0;
5411    uint8_t hlen = 0;
5412    int tmp_bd;
5413    int i;
5414
5415    sc = fp->sc;
5416
5417    M_ASSERTPKTHDR(*m_head);
5418
5419    m0 = *m_head;
5420    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5421    tx_start_bd = NULL;
5422    tx_data_bd = NULL;
5423    tx_total_pkt_size_bd = NULL;
5424
5425    /* get the H/W pointer for packets and BDs */
5426    pkt_prod = fp->tx_pkt_prod;
5427    bd_prod = fp->tx_bd_prod;
5428
5429    mac_type = UNICAST_ADDRESS;
5430
5431    /* map the mbuf into the next open DMAable memory */
5432    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5433    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5434                                    tx_buf->m_map, m0,
5435                                    segs, &nsegs, BUS_DMA_NOWAIT);
5436
5437    /* mapping errors */
5438    if(__predict_false(error != 0)) {
5439        fp->eth_q_stats.tx_dma_mapping_failure++;
5440        if (error == ENOMEM) {
5441            /* resource issue, try again later */
5442            rc = ENOMEM;
5443        } else if (error == EFBIG) {
5444            /* possibly recoverable with defragmentation */
5445            fp->eth_q_stats.mbuf_defrag_attempts++;
5446            m0 = m_defrag(*m_head, M_DONTWAIT);
5447            if (m0 == NULL) {
5448                fp->eth_q_stats.mbuf_defrag_failures++;
5449                rc = ENOBUFS;
5450            } else {
5451                /* defrag successful, try mapping again */
5452                *m_head = m0;
5453                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5454                                                tx_buf->m_map, m0,
5455                                                segs, &nsegs, BUS_DMA_NOWAIT);
5456                if (error) {
5457                    fp->eth_q_stats.tx_dma_mapping_failure++;
5458                    rc = error;
5459                }
5460            }
5461        } else {
5462            /* unknown, unrecoverable mapping error */
5463            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5464            bxe_dump_mbuf(sc, m0, FALSE);
5465            rc = error;
5466        }
5467
5468        goto bxe_tx_encap_continue;
5469    }
5470
5471    tx_bd_avail = bxe_tx_avail(sc, fp);
5472
5473    /* make sure there is enough room in the send queue */
5474    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5475        /* Recoverable, try again later. */
5476        fp->eth_q_stats.tx_hw_queue_full++;
5477        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5478        rc = ENOMEM;
5479        goto bxe_tx_encap_continue;
5480    }
5481
5482    /* capture the current H/W TX chain high watermark */
5483    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5484                        (TX_BD_USABLE - tx_bd_avail))) {
5485        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5486    }
5487
5488    /* make sure it fits in the packet window */
5489    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5490        /*
5491         * The mbuf may be to big for the controller to handle. If the frame
5492         * is a TSO frame we'll need to do an additional check.
5493         */
5494        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5495            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5496                goto bxe_tx_encap_continue; /* OK to send */
5497            } else {
5498                fp->eth_q_stats.tx_window_violation_tso++;
5499            }
5500        } else {
5501            fp->eth_q_stats.tx_window_violation_std++;
5502        }
5503
5504        /* lets try to defragment this mbuf and remap it */
5505        fp->eth_q_stats.mbuf_defrag_attempts++;
5506        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5507
5508        m0 = m_defrag(*m_head, M_DONTWAIT);
5509        if (m0 == NULL) {
5510            fp->eth_q_stats.mbuf_defrag_failures++;
5511            /* Ugh, just drop the frame... :( */
5512            rc = ENOBUFS;
5513        } else {
5514            /* defrag successful, try mapping again */
5515            *m_head = m0;
5516            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5517                                            tx_buf->m_map, m0,
5518                                            segs, &nsegs, BUS_DMA_NOWAIT);
5519            if (error) {
5520                fp->eth_q_stats.tx_dma_mapping_failure++;
5521                /* No sense in trying to defrag/copy chain, drop it. :( */
5522                rc = error;
5523            }
5524            else {
5525                /* if the chain is still too long then drop it */
5526                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5527                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5528                    rc = ENODEV;
5529                }
5530            }
5531        }
5532    }
5533
5534bxe_tx_encap_continue:
5535
5536    /* Check for errors */
5537    if (rc) {
5538        if (rc == ENOMEM) {
5539            /* recoverable try again later  */
5540        } else {
5541            fp->eth_q_stats.tx_soft_errors++;
5542            fp->eth_q_stats.mbuf_alloc_tx--;
5543            m_freem(*m_head);
5544            *m_head = NULL;
5545        }
5546
5547        return (rc);
5548    }
5549
5550    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5551    if (m0->m_flags & M_BCAST) {
5552        mac_type = BROADCAST_ADDRESS;
5553    } else if (m0->m_flags & M_MCAST) {
5554        mac_type = MULTICAST_ADDRESS;
5555    }
5556
5557    /* store the mbuf into the mbuf ring */
5558    tx_buf->m        = m0;
5559    tx_buf->first_bd = fp->tx_bd_prod;
5560    tx_buf->flags    = 0;
5561
5562    /* prepare the first transmit (start) BD for the mbuf */
5563    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5564
5565    BLOGD(sc, DBG_TX,
5566          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5567          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5568
5569    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5570    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5571    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5572    total_pkt_size += tx_start_bd->nbytes;
5573    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5574
5575    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5576
5577    /* all frames have at least Start BD + Parsing BD */
5578    nbds = nsegs + 1;
5579    tx_start_bd->nbd = htole16(nbds);
5580
5581    if (m0->m_flags & M_VLANTAG) {
5582        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5583        tx_start_bd->bd_flags.as_bitfield |=
5584            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5585    } else {
5586        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5587        if (IS_VF(sc)) {
5588            /* map ethernet header to find type and header length */
5589            eh = mtod(m0, struct ether_vlan_header *);
5590            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5591        } else {
5592            /* used by FW for packet accounting */
5593            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5594#if 0
5595            /*
5596             * If NPAR-SD is active then FW should do the tagging regardless
5597             * of value of priority. Otherwise, if priority indicates this is
5598             * a control packet we need to indicate to FW to avoid tagging.
5599             */
5600            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5601                SET_FLAG(tx_start_bd->general_data,
5602                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5603            }
5604#endif
5605        }
5606    }
5607
5608    /*
5609     * add a parsing BD from the chain. The parsing BD is always added
5610     * though it is only used for TSO and chksum
5611     */
5612    bd_prod = TX_BD_NEXT(bd_prod);
5613
5614    if (m0->m_pkthdr.csum_flags) {
5615        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5616            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5617            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5618        }
5619
5620        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5621            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5622                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5623        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5624            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5625                                                  ETH_TX_BD_FLAGS_IS_UDP |
5626                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5627        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5628                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5629            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5630        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5631            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5632                                                  ETH_TX_BD_FLAGS_IS_UDP);
5633        }
5634    }
5635
5636    if (!CHIP_IS_E1x(sc)) {
5637        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5638        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5639
5640        if (m0->m_pkthdr.csum_flags) {
5641            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5642        }
5643
5644#if 0
5645        /*
5646         * Add the MACs to the parsing BD if the module param was
5647         * explicitly set, if this is a vf, or in switch independent
5648         * mode.
5649         */
5650        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5651            eh = mtod(m0, struct ether_vlan_header *);
5652            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5653                                &pbd_e2->data.mac_addr.src_mid,
5654                                &pbd_e2->data.mac_addr.src_lo,
5655                                eh->evl_shost);
5656            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5657                                &pbd_e2->data.mac_addr.dst_mid,
5658                                &pbd_e2->data.mac_addr.dst_lo,
5659                                eh->evl_dhost);
5660        }
5661#endif
5662
5663        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5664                 mac_type);
5665    } else {
5666        uint16_t global_data = 0;
5667
5668        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5669        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5670
5671        if (m0->m_pkthdr.csum_flags) {
5672            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5673        }
5674
5675        SET_FLAG(global_data,
5676                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5677        pbd_e1x->global_data |= htole16(global_data);
5678    }
5679
5680    /* setup the parsing BD with TSO specific info */
5681    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5682        fp->eth_q_stats.tx_ofld_frames_lso++;
5683        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5684
5685        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5686            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5687
5688            /* split the first BD into header/data making the fw job easy */
5689            nbds++;
5690            tx_start_bd->nbd = htole16(nbds);
5691            tx_start_bd->nbytes = htole16(hlen);
5692
5693            bd_prod = TX_BD_NEXT(bd_prod);
5694
5695            /* new transmit BD after the tx_parse_bd */
5696            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5697            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5698            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5699            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5700            if (tx_total_pkt_size_bd == NULL) {
5701                tx_total_pkt_size_bd = tx_data_bd;
5702            }
5703
5704            BLOGD(sc, DBG_TX,
5705                  "TSO split header size is %d (%x:%x) nbds %d\n",
5706                  le16toh(tx_start_bd->nbytes),
5707                  le32toh(tx_start_bd->addr_hi),
5708                  le32toh(tx_start_bd->addr_lo),
5709                  nbds);
5710        }
5711
5712        if (!CHIP_IS_E1x(sc)) {
5713            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5714        } else {
5715            bxe_set_pbd_lso(m0, pbd_e1x);
5716        }
5717    }
5718
5719    if (pbd_e2_parsing_data) {
5720        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5721    }
5722
5723    /* prepare remaining BDs, start tx bd contains first seg/frag */
5724    for (i = 1; i < nsegs ; i++) {
5725        bd_prod = TX_BD_NEXT(bd_prod);
5726        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5727        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5728        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5729        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5730        if (tx_total_pkt_size_bd == NULL) {
5731            tx_total_pkt_size_bd = tx_data_bd;
5732        }
5733        total_pkt_size += tx_data_bd->nbytes;
5734    }
5735
5736    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5737
5738    if (tx_total_pkt_size_bd != NULL) {
5739        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5740    }
5741
5742    if (__predict_false(sc->debug & DBG_TX)) {
5743        tmp_bd = tx_buf->first_bd;
5744        for (i = 0; i < nbds; i++)
5745        {
5746            if (i == 0) {
5747                BLOGD(sc, DBG_TX,
5748                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5749                      "bd_flags=0x%x hdr_nbds=%d\n",
5750                      tx_start_bd,
5751                      tmp_bd,
5752                      le16toh(tx_start_bd->nbd),
5753                      le16toh(tx_start_bd->vlan_or_ethertype),
5754                      tx_start_bd->bd_flags.as_bitfield,
5755                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5756            } else if (i == 1) {
5757                if (pbd_e1x) {
5758                    BLOGD(sc, DBG_TX,
5759                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5760                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5761                          "tcp_seq=%u total_hlen_w=%u\n",
5762                          pbd_e1x,
5763                          tmp_bd,
5764                          pbd_e1x->global_data,
5765                          pbd_e1x->ip_hlen_w,
5766                          pbd_e1x->ip_id,
5767                          pbd_e1x->lso_mss,
5768                          pbd_e1x->tcp_flags,
5769                          pbd_e1x->tcp_pseudo_csum,
5770                          pbd_e1x->tcp_send_seq,
5771                          le16toh(pbd_e1x->total_hlen_w));
5772                } else { /* if (pbd_e2) */
5773                    BLOGD(sc, DBG_TX,
5774                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5775                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5776                          pbd_e2,
5777                          tmp_bd,
5778                          pbd_e2->data.mac_addr.dst_hi,
5779                          pbd_e2->data.mac_addr.dst_mid,
5780                          pbd_e2->data.mac_addr.dst_lo,
5781                          pbd_e2->data.mac_addr.src_hi,
5782                          pbd_e2->data.mac_addr.src_mid,
5783                          pbd_e2->data.mac_addr.src_lo,
5784                          pbd_e2->parsing_data);
5785                }
5786            }
5787
5788            if (i != 1) { /* skip parse db as it doesn't hold data */
5789                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5790                BLOGD(sc, DBG_TX,
5791                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5792                      tx_data_bd,
5793                      tmp_bd,
5794                      le16toh(tx_data_bd->nbytes),
5795                      le32toh(tx_data_bd->addr_hi),
5796                      le32toh(tx_data_bd->addr_lo));
5797            }
5798
5799            tmp_bd = TX_BD_NEXT(tmp_bd);
5800        }
5801    }
5802
5803    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5804
5805    /* update TX BD producer index value for next TX */
5806    bd_prod = TX_BD_NEXT(bd_prod);
5807
5808    /*
5809     * If the chain of tx_bd's describing this frame is adjacent to or spans
5810     * an eth_tx_next_bd element then we need to increment the nbds value.
5811     */
5812    if (TX_BD_IDX(bd_prod) < nbds) {
5813        nbds++;
5814    }
5815
5816    /* don't allow reordering of writes for nbd and packets */
5817    mb();
5818
5819    fp->tx_db.data.prod += nbds;
5820
5821    /* producer points to the next free tx_bd at this point */
5822    fp->tx_pkt_prod++;
5823    fp->tx_bd_prod = bd_prod;
5824
5825    DOORBELL(sc, fp->index, fp->tx_db.raw);
5826
5827    fp->eth_q_stats.tx_pkts++;
5828
5829    /* Prevent speculative reads from getting ahead of the status block. */
5830    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5831                      0, 0, BUS_SPACE_BARRIER_READ);
5832
5833    /* Prevent speculative reads from getting ahead of the doorbell. */
5834    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5835                      0, 0, BUS_SPACE_BARRIER_READ);
5836
5837    return (0);
5838}
5839
5840static void
5841bxe_tx_start_locked(struct bxe_softc    *sc,
5842                    struct ifnet        *ifp,
5843                    struct bxe_fastpath *fp)
5844{
5845    struct mbuf *m = NULL;
5846    int tx_count = 0;
5847    uint16_t tx_bd_avail;
5848
5849    BXE_FP_TX_LOCK_ASSERT(fp);
5850
5851    /* keep adding entries while there are frames to send */
5852    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5853
5854        /*
5855         * check for any frames to send
5856         * dequeue can still be NULL even if queue is not empty
5857         */
5858        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5859        if (__predict_false(m == NULL)) {
5860            break;
5861        }
5862
5863        /* the mbuf now belongs to us */
5864        fp->eth_q_stats.mbuf_alloc_tx++;
5865
5866        /*
5867         * Put the frame into the transmit ring. If we don't have room,
5868         * place the mbuf back at the head of the TX queue, set the
5869         * OACTIVE flag, and wait for the NIC to drain the chain.
5870         */
5871        if (__predict_false(bxe_tx_encap(fp, &m))) {
5872            fp->eth_q_stats.tx_encap_failures++;
5873            if (m != NULL) {
5874                /* mark the TX queue as full and return the frame */
5875                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5876                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5877                fp->eth_q_stats.mbuf_alloc_tx--;
5878                fp->eth_q_stats.tx_queue_xoff++;
5879            }
5880
5881            /* stop looking for more work */
5882            break;
5883        }
5884
5885        /* the frame was enqueued successfully */
5886        tx_count++;
5887
5888        /* send a copy of the frame to any BPF listeners. */
5889        BPF_MTAP(ifp, m);
5890
5891        tx_bd_avail = bxe_tx_avail(sc, fp);
5892
5893        /* handle any completions if we're running low */
5894        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5895            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5896            bxe_txeof(sc, fp);
5897            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5898                break;
5899            }
5900        }
5901    }
5902
5903    /* all TX packets were dequeued and/or the tx ring is full */
5904    if (tx_count > 0) {
5905        /* reset the TX watchdog timeout timer */
5906        fp->watchdog_timer = BXE_TX_TIMEOUT;
5907    }
5908}
5909
5910/* Legacy (non-RSS) dispatch routine */
5911static void
5912bxe_tx_start(struct ifnet *ifp)
5913{
5914    struct bxe_softc *sc;
5915    struct bxe_fastpath *fp;
5916
5917    sc = ifp->if_softc;
5918
5919    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5920        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5921        return;
5922    }
5923
5924    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5925        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5926        return;
5927    }
5928
5929    if (!sc->link_vars.link_up) {
5930        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5931        return;
5932    }
5933
5934    fp = &sc->fp[0];
5935
5936    BXE_FP_TX_LOCK(fp);
5937    bxe_tx_start_locked(sc, ifp, fp);
5938    BXE_FP_TX_UNLOCK(fp);
5939}
5940
5941#if __FreeBSD_version >= 800000
5942
5943static int
5944bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5945                       struct ifnet        *ifp,
5946                       struct bxe_fastpath *fp,
5947                       struct mbuf         *m)
5948{
5949    struct buf_ring *tx_br = fp->tx_br;
5950    struct mbuf *next;
5951    int depth, rc, tx_count;
5952    uint16_t tx_bd_avail;
5953
5954    rc = tx_count = 0;
5955
5956    if (!tx_br) {
5957        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5958        return (EINVAL);
5959    }
5960
5961    /* fetch the depth of the driver queue */
5962    depth = drbr_inuse(ifp, tx_br);
5963    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5964        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5965    }
5966
5967    BXE_FP_TX_LOCK_ASSERT(fp);
5968
5969    if (m == NULL) {
5970        /* no new work, check for pending frames */
5971        next = drbr_dequeue(ifp, tx_br);
5972    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5973        /* have both new and pending work, maintain packet order */
5974        rc = drbr_enqueue(ifp, tx_br, m);
5975        if (rc != 0) {
5976            fp->eth_q_stats.tx_soft_errors++;
5977            goto bxe_tx_mq_start_locked_exit;
5978        }
5979        next = drbr_dequeue(ifp, tx_br);
5980    } else {
5981        /* new work only and nothing pending */
5982        next = m;
5983    }
5984
5985    /* keep adding entries while there are frames to send */
5986    while (next != NULL) {
5987
5988        /* the mbuf now belongs to us */
5989        fp->eth_q_stats.mbuf_alloc_tx++;
5990
5991        /*
5992         * Put the frame into the transmit ring. If we don't have room,
5993         * place the mbuf back at the head of the TX queue, set the
5994         * OACTIVE flag, and wait for the NIC to drain the chain.
5995         */
5996        rc = bxe_tx_encap(fp, &next);
5997        if (__predict_false(rc != 0)) {
5998            fp->eth_q_stats.tx_encap_failures++;
5999            if (next != NULL) {
6000                /* mark the TX queue as full and save the frame */
6001                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6002                /* XXX this may reorder the frame */
6003                rc = drbr_enqueue(ifp, tx_br, next);
6004                fp->eth_q_stats.mbuf_alloc_tx--;
6005                fp->eth_q_stats.tx_frames_deferred++;
6006            }
6007
6008            /* stop looking for more work */
6009            break;
6010        }
6011
6012        /* the transmit frame was enqueued successfully */
6013        tx_count++;
6014
6015        /* send a copy of the frame to any BPF listeners */
6016        BPF_MTAP(ifp, next);
6017
6018        tx_bd_avail = bxe_tx_avail(sc, fp);
6019
6020        /* handle any completions if we're running low */
6021        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6022            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6023            bxe_txeof(sc, fp);
6024            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6025                break;
6026            }
6027        }
6028
6029        next = drbr_dequeue(ifp, tx_br);
6030    }
6031
6032    /* all TX packets were dequeued and/or the tx ring is full */
6033    if (tx_count > 0) {
6034        /* reset the TX watchdog timeout timer */
6035        fp->watchdog_timer = BXE_TX_TIMEOUT;
6036    }
6037
6038bxe_tx_mq_start_locked_exit:
6039
6040    return (rc);
6041}
6042
6043/* Multiqueue (TSS) dispatch routine. */
6044static int
6045bxe_tx_mq_start(struct ifnet *ifp,
6046                struct mbuf  *m)
6047{
6048    struct bxe_softc *sc = ifp->if_softc;
6049    struct bxe_fastpath *fp;
6050    int fp_index, rc;
6051
6052    fp_index = 0; /* default is the first queue */
6053
6054    /* check if flowid is set */
6055    if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
6056        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6057
6058    fp = &sc->fp[fp_index];
6059
6060    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6061        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6062        return (ENETDOWN);
6063    }
6064
6065    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6066        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6067        return (EBUSY);
6068    }
6069
6070    if (!sc->link_vars.link_up) {
6071        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6072        return (ENETDOWN);
6073    }
6074
6075    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6076
6077    BXE_FP_TX_LOCK(fp);
6078    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6079    BXE_FP_TX_UNLOCK(fp);
6080
6081    return (rc);
6082}
6083
6084static void
6085bxe_mq_flush(struct ifnet *ifp)
6086{
6087    struct bxe_softc *sc = ifp->if_softc;
6088    struct bxe_fastpath *fp;
6089    struct mbuf *m;
6090    int i;
6091
6092    for (i = 0; i < sc->num_queues; i++) {
6093        fp = &sc->fp[i];
6094
6095        if (fp->state != BXE_FP_STATE_OPEN) {
6096            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6097                  fp->index, fp->state);
6098            continue;
6099        }
6100
6101        if (fp->tx_br != NULL) {
6102            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6103            BXE_FP_TX_LOCK(fp);
6104            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6105                m_freem(m);
6106            }
6107            BXE_FP_TX_UNLOCK(fp);
6108        }
6109    }
6110
6111    if_qflush(ifp);
6112}
6113
6114#endif /* FreeBSD_version >= 800000 */
6115
6116static uint16_t
6117bxe_cid_ilt_lines(struct bxe_softc *sc)
6118{
6119    if (IS_SRIOV(sc)) {
6120        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6121    }
6122    return (L2_ILT_LINES(sc));
6123}
6124
6125static void
6126bxe_ilt_set_info(struct bxe_softc *sc)
6127{
6128    struct ilt_client_info *ilt_client;
6129    struct ecore_ilt *ilt = sc->ilt;
6130    uint16_t line = 0;
6131
6132    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6133    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6134
6135    /* CDU */
6136    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6137    ilt_client->client_num = ILT_CLIENT_CDU;
6138    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6139    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6140    ilt_client->start = line;
6141    line += bxe_cid_ilt_lines(sc);
6142
6143    if (CNIC_SUPPORT(sc)) {
6144        line += CNIC_ILT_LINES;
6145    }
6146
6147    ilt_client->end = (line - 1);
6148
6149    BLOGD(sc, DBG_LOAD,
6150          "ilt client[CDU]: start %d, end %d, "
6151          "psz 0x%x, flags 0x%x, hw psz %d\n",
6152          ilt_client->start, ilt_client->end,
6153          ilt_client->page_size,
6154          ilt_client->flags,
6155          ilog2(ilt_client->page_size >> 12));
6156
6157    /* QM */
6158    if (QM_INIT(sc->qm_cid_count)) {
6159        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6160        ilt_client->client_num = ILT_CLIENT_QM;
6161        ilt_client->page_size = QM_ILT_PAGE_SZ;
6162        ilt_client->flags = 0;
6163        ilt_client->start = line;
6164
6165        /* 4 bytes for each cid */
6166        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6167                             QM_ILT_PAGE_SZ);
6168
6169        ilt_client->end = (line - 1);
6170
6171        BLOGD(sc, DBG_LOAD,
6172              "ilt client[QM]: start %d, end %d, "
6173              "psz 0x%x, flags 0x%x, hw psz %d\n",
6174              ilt_client->start, ilt_client->end,
6175              ilt_client->page_size, ilt_client->flags,
6176              ilog2(ilt_client->page_size >> 12));
6177    }
6178
6179    if (CNIC_SUPPORT(sc)) {
6180        /* SRC */
6181        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6182        ilt_client->client_num = ILT_CLIENT_SRC;
6183        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6184        ilt_client->flags = 0;
6185        ilt_client->start = line;
6186        line += SRC_ILT_LINES;
6187        ilt_client->end = (line - 1);
6188
6189        BLOGD(sc, DBG_LOAD,
6190              "ilt client[SRC]: start %d, end %d, "
6191              "psz 0x%x, flags 0x%x, hw psz %d\n",
6192              ilt_client->start, ilt_client->end,
6193              ilt_client->page_size, ilt_client->flags,
6194              ilog2(ilt_client->page_size >> 12));
6195
6196        /* TM */
6197        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6198        ilt_client->client_num = ILT_CLIENT_TM;
6199        ilt_client->page_size = TM_ILT_PAGE_SZ;
6200        ilt_client->flags = 0;
6201        ilt_client->start = line;
6202        line += TM_ILT_LINES;
6203        ilt_client->end = (line - 1);
6204
6205        BLOGD(sc, DBG_LOAD,
6206              "ilt client[TM]: start %d, end %d, "
6207              "psz 0x%x, flags 0x%x, hw psz %d\n",
6208              ilt_client->start, ilt_client->end,
6209              ilt_client->page_size, ilt_client->flags,
6210              ilog2(ilt_client->page_size >> 12));
6211    }
6212
6213    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6214}
6215
6216static void
6217bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6218{
6219    int i;
6220
6221    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6222
6223    for (i = 0; i < sc->num_queues; i++) {
6224        /* get the Rx buffer size for RX frames */
6225        sc->fp[i].rx_buf_size =
6226            (IP_HEADER_ALIGNMENT_PADDING +
6227             ETH_OVERHEAD +
6228             sc->mtu);
6229
6230        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6231              i, sc->fp[i].rx_buf_size);
6232
6233        /* get the mbuf allocation size for RX frames */
6234        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6235            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6236        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6237            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6238        } else {
6239            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6240        }
6241
6242        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6243              i, sc->fp[i].mbuf_alloc_size);
6244    }
6245}
6246
6247static int
6248bxe_alloc_ilt_mem(struct bxe_softc *sc)
6249{
6250    int rc = 0;
6251
6252    if ((sc->ilt =
6253         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6254                                    M_BXE_ILT,
6255                                    (M_NOWAIT | M_ZERO))) == NULL) {
6256        rc = 1;
6257    }
6258
6259    return (rc);
6260}
6261
6262static int
6263bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6264{
6265    int rc = 0;
6266
6267    if ((sc->ilt->lines =
6268         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6269                                    M_BXE_ILT,
6270                                    (M_NOWAIT | M_ZERO))) == NULL) {
6271        rc = 1;
6272    }
6273
6274    return (rc);
6275}
6276
6277static void
6278bxe_free_ilt_mem(struct bxe_softc *sc)
6279{
6280    if (sc->ilt != NULL) {
6281        free(sc->ilt, M_BXE_ILT);
6282        sc->ilt = NULL;
6283    }
6284}
6285
6286static void
6287bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6288{
6289    if (sc->ilt->lines != NULL) {
6290        free(sc->ilt->lines, M_BXE_ILT);
6291        sc->ilt->lines = NULL;
6292    }
6293}
6294
6295static void
6296bxe_free_mem(struct bxe_softc *sc)
6297{
6298    int i;
6299
6300#if 0
6301    if (!CONFIGURE_NIC_MODE(sc)) {
6302        /* free searcher T2 table */
6303        bxe_dma_free(sc, &sc->t2);
6304    }
6305#endif
6306
6307    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6308        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6309        sc->context[i].vcxt = NULL;
6310        sc->context[i].size = 0;
6311    }
6312
6313    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6314
6315    bxe_free_ilt_lines_mem(sc);
6316
6317#if 0
6318    bxe_iov_free_mem(sc);
6319#endif
6320}
6321
6322static int
6323bxe_alloc_mem(struct bxe_softc *sc)
6324{
6325    int context_size;
6326    int allocated;
6327    int i;
6328
6329#if 0
6330    if (!CONFIGURE_NIC_MODE(sc)) {
6331        /* allocate searcher T2 table */
6332        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6333                          &sc->t2, "searcher t2 table") != 0) {
6334            return (-1);
6335        }
6336    }
6337#endif
6338
6339    /*
6340     * Allocate memory for CDU context:
6341     * This memory is allocated separately and not in the generic ILT
6342     * functions because CDU differs in few aspects:
6343     * 1. There can be multiple entities allocating memory for context -
6344     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6345     * its own ILT lines.
6346     * 2. Since CDU page-size is not a single 4KB page (which is the case
6347     * for the other ILT clients), to be efficient we want to support
6348     * allocation of sub-page-size in the last entry.
6349     * 3. Context pointers are used by the driver to pass to FW / update
6350     * the context (for the other ILT clients the pointers are used just to
6351     * free the memory during unload).
6352     */
6353    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6354    for (i = 0, allocated = 0; allocated < context_size; i++) {
6355        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6356                                  (context_size - allocated));
6357
6358        if (bxe_dma_alloc(sc, sc->context[i].size,
6359                          &sc->context[i].vcxt_dma,
6360                          "cdu context") != 0) {
6361            bxe_free_mem(sc);
6362            return (-1);
6363        }
6364
6365        sc->context[i].vcxt =
6366            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6367
6368        allocated += sc->context[i].size;
6369    }
6370
6371    bxe_alloc_ilt_lines_mem(sc);
6372
6373    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6374          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6375    {
6376        for (i = 0; i < 4; i++) {
6377            BLOGD(sc, DBG_LOAD,
6378                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6379                  i,
6380                  sc->ilt->clients[i].page_size,
6381                  sc->ilt->clients[i].start,
6382                  sc->ilt->clients[i].end,
6383                  sc->ilt->clients[i].client_num,
6384                  sc->ilt->clients[i].flags);
6385        }
6386    }
6387    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6388        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6389        bxe_free_mem(sc);
6390        return (-1);
6391    }
6392
6393#if 0
6394    if (bxe_iov_alloc_mem(sc)) {
6395        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6396        bxe_free_mem(sc);
6397        return (-1);
6398    }
6399#endif
6400
6401    return (0);
6402}
6403
6404static void
6405bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6406{
6407    struct bxe_softc *sc;
6408    int i;
6409
6410    sc = fp->sc;
6411
6412    if (fp->rx_mbuf_tag == NULL) {
6413        return;
6414    }
6415
6416    /* free all mbufs and unload all maps */
6417    for (i = 0; i < RX_BD_TOTAL; i++) {
6418        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6419            bus_dmamap_sync(fp->rx_mbuf_tag,
6420                            fp->rx_mbuf_chain[i].m_map,
6421                            BUS_DMASYNC_POSTREAD);
6422            bus_dmamap_unload(fp->rx_mbuf_tag,
6423                              fp->rx_mbuf_chain[i].m_map);
6424        }
6425
6426        if (fp->rx_mbuf_chain[i].m != NULL) {
6427            m_freem(fp->rx_mbuf_chain[i].m);
6428            fp->rx_mbuf_chain[i].m = NULL;
6429            fp->eth_q_stats.mbuf_alloc_rx--;
6430        }
6431    }
6432}
6433
6434static void
6435bxe_free_tpa_pool(struct bxe_fastpath *fp)
6436{
6437    struct bxe_softc *sc;
6438    int i, max_agg_queues;
6439
6440    sc = fp->sc;
6441
6442    if (fp->rx_mbuf_tag == NULL) {
6443        return;
6444    }
6445
6446    max_agg_queues = MAX_AGG_QS(sc);
6447
6448    /* release all mbufs and unload all DMA maps in the TPA pool */
6449    for (i = 0; i < max_agg_queues; i++) {
6450        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6451            bus_dmamap_sync(fp->rx_mbuf_tag,
6452                            fp->rx_tpa_info[i].bd.m_map,
6453                            BUS_DMASYNC_POSTREAD);
6454            bus_dmamap_unload(fp->rx_mbuf_tag,
6455                              fp->rx_tpa_info[i].bd.m_map);
6456        }
6457
6458        if (fp->rx_tpa_info[i].bd.m != NULL) {
6459            m_freem(fp->rx_tpa_info[i].bd.m);
6460            fp->rx_tpa_info[i].bd.m = NULL;
6461            fp->eth_q_stats.mbuf_alloc_tpa--;
6462        }
6463    }
6464}
6465
6466static void
6467bxe_free_sge_chain(struct bxe_fastpath *fp)
6468{
6469    struct bxe_softc *sc;
6470    int i;
6471
6472    sc = fp->sc;
6473
6474    if (fp->rx_sge_mbuf_tag == NULL) {
6475        return;
6476    }
6477
6478    /* rree all mbufs and unload all maps */
6479    for (i = 0; i < RX_SGE_TOTAL; i++) {
6480        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6481            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6482                            fp->rx_sge_mbuf_chain[i].m_map,
6483                            BUS_DMASYNC_POSTREAD);
6484            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6485                              fp->rx_sge_mbuf_chain[i].m_map);
6486        }
6487
6488        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6489            m_freem(fp->rx_sge_mbuf_chain[i].m);
6490            fp->rx_sge_mbuf_chain[i].m = NULL;
6491            fp->eth_q_stats.mbuf_alloc_sge--;
6492        }
6493    }
6494}
6495
6496static void
6497bxe_free_fp_buffers(struct bxe_softc *sc)
6498{
6499    struct bxe_fastpath *fp;
6500    int i;
6501
6502    for (i = 0; i < sc->num_queues; i++) {
6503        fp = &sc->fp[i];
6504
6505#if __FreeBSD_version >= 800000
6506        if (fp->tx_br != NULL) {
6507            struct mbuf *m;
6508            /* just in case bxe_mq_flush() wasn't called */
6509            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6510                m_freem(m);
6511            }
6512            buf_ring_free(fp->tx_br, M_DEVBUF);
6513            fp->tx_br = NULL;
6514        }
6515#endif
6516
6517        /* free all RX buffers */
6518        bxe_free_rx_bd_chain(fp);
6519        bxe_free_tpa_pool(fp);
6520        bxe_free_sge_chain(fp);
6521
6522        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6523            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6524                  fp->eth_q_stats.mbuf_alloc_rx);
6525        }
6526
6527        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6528            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6529                  fp->eth_q_stats.mbuf_alloc_sge);
6530        }
6531
6532        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6533            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6534                  fp->eth_q_stats.mbuf_alloc_tpa);
6535        }
6536
6537        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6538            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6539                  fp->eth_q_stats.mbuf_alloc_tx);
6540        }
6541
6542        /* XXX verify all mbufs were reclaimed */
6543
6544        if (mtx_initialized(&fp->tx_mtx)) {
6545            mtx_destroy(&fp->tx_mtx);
6546        }
6547
6548        if (mtx_initialized(&fp->rx_mtx)) {
6549            mtx_destroy(&fp->rx_mtx);
6550        }
6551    }
6552}
6553
6554static int
6555bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6556                     uint16_t            prev_index,
6557                     uint16_t            index)
6558{
6559    struct bxe_sw_rx_bd *rx_buf;
6560    struct eth_rx_bd *rx_bd;
6561    bus_dma_segment_t segs[1];
6562    bus_dmamap_t map;
6563    struct mbuf *m;
6564    int nsegs, rc;
6565
6566    rc = 0;
6567
6568    /* allocate the new RX BD mbuf */
6569    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6570    if (__predict_false(m == NULL)) {
6571        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6572        return (ENOBUFS);
6573    }
6574
6575    fp->eth_q_stats.mbuf_alloc_rx++;
6576
6577    /* initialize the mbuf buffer length */
6578    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6579
6580    /* map the mbuf into non-paged pool */
6581    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6582                                 fp->rx_mbuf_spare_map,
6583                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6584    if (__predict_false(rc != 0)) {
6585        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6586        m_freem(m);
6587        fp->eth_q_stats.mbuf_alloc_rx--;
6588        return (rc);
6589    }
6590
6591    /* all mbufs must map to a single segment */
6592    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6593
6594    /* release any existing RX BD mbuf mappings */
6595
6596    if (prev_index != index) {
6597        rx_buf = &fp->rx_mbuf_chain[prev_index];
6598
6599        if (rx_buf->m_map != NULL) {
6600            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6601                            BUS_DMASYNC_POSTREAD);
6602            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6603        }
6604
6605        /*
6606         * We only get here from bxe_rxeof() when the maximum number
6607         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6608         * holds the mbuf in the prev_index so it's OK to NULL it out
6609         * here without concern of a memory leak.
6610         */
6611        fp->rx_mbuf_chain[prev_index].m = NULL;
6612    }
6613
6614    rx_buf = &fp->rx_mbuf_chain[index];
6615
6616    if (rx_buf->m_map != NULL) {
6617        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6618                        BUS_DMASYNC_POSTREAD);
6619        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6620    }
6621
6622    /* save the mbuf and mapping info for a future packet */
6623    map = (prev_index != index) ?
6624              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6625    rx_buf->m_map = fp->rx_mbuf_spare_map;
6626    fp->rx_mbuf_spare_map = map;
6627    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6628                    BUS_DMASYNC_PREREAD);
6629    rx_buf->m = m;
6630
6631    rx_bd = &fp->rx_chain[index];
6632    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6633    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6634
6635    return (rc);
6636}
6637
6638static int
6639bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6640                      int                 queue)
6641{
6642    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6643    bus_dma_segment_t segs[1];
6644    bus_dmamap_t map;
6645    struct mbuf *m;
6646    int nsegs;
6647    int rc = 0;
6648
6649    /* allocate the new TPA mbuf */
6650    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6651    if (__predict_false(m == NULL)) {
6652        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6653        return (ENOBUFS);
6654    }
6655
6656    fp->eth_q_stats.mbuf_alloc_tpa++;
6657
6658    /* initialize the mbuf buffer length */
6659    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6660
6661    /* map the mbuf into non-paged pool */
6662    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6663                                 fp->rx_tpa_info_mbuf_spare_map,
6664                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6665    if (__predict_false(rc != 0)) {
6666        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6667        m_free(m);
6668        fp->eth_q_stats.mbuf_alloc_tpa--;
6669        return (rc);
6670    }
6671
6672    /* all mbufs must map to a single segment */
6673    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6674
6675    /* release any existing TPA mbuf mapping */
6676    if (tpa_info->bd.m_map != NULL) {
6677        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6678                        BUS_DMASYNC_POSTREAD);
6679        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6680    }
6681
6682    /* save the mbuf and mapping info for the TPA mbuf */
6683    map = tpa_info->bd.m_map;
6684    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6685    fp->rx_tpa_info_mbuf_spare_map = map;
6686    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6687                    BUS_DMASYNC_PREREAD);
6688    tpa_info->bd.m = m;
6689    tpa_info->seg = segs[0];
6690
6691    return (rc);
6692}
6693
6694/*
6695 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6696 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6697 * chain.
6698 */
6699static int
6700bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6701                      uint16_t            index)
6702{
6703    struct bxe_sw_rx_bd *sge_buf;
6704    struct eth_rx_sge *sge;
6705    bus_dma_segment_t segs[1];
6706    bus_dmamap_t map;
6707    struct mbuf *m;
6708    int nsegs;
6709    int rc = 0;
6710
6711    /* allocate a new SGE mbuf */
6712    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6713    if (__predict_false(m == NULL)) {
6714        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6715        return (ENOMEM);
6716    }
6717
6718    fp->eth_q_stats.mbuf_alloc_sge++;
6719
6720    /* initialize the mbuf buffer length */
6721    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6722
6723    /* map the SGE mbuf into non-paged pool */
6724    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6725                                 fp->rx_sge_mbuf_spare_map,
6726                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6727    if (__predict_false(rc != 0)) {
6728        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6729        m_freem(m);
6730        fp->eth_q_stats.mbuf_alloc_sge--;
6731        return (rc);
6732    }
6733
6734    /* all mbufs must map to a single segment */
6735    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6736
6737    sge_buf = &fp->rx_sge_mbuf_chain[index];
6738
6739    /* release any existing SGE mbuf mapping */
6740    if (sge_buf->m_map != NULL) {
6741        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6742                        BUS_DMASYNC_POSTREAD);
6743        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6744    }
6745
6746    /* save the mbuf and mapping info for a future packet */
6747    map = sge_buf->m_map;
6748    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6749    fp->rx_sge_mbuf_spare_map = map;
6750    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6751                    BUS_DMASYNC_PREREAD);
6752    sge_buf->m = m;
6753
6754    sge = &fp->rx_sge_chain[index];
6755    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6756    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6757
6758    return (rc);
6759}
6760
6761static __noinline int
6762bxe_alloc_fp_buffers(struct bxe_softc *sc)
6763{
6764    struct bxe_fastpath *fp;
6765    int i, j, rc = 0;
6766    int ring_prod, cqe_ring_prod;
6767    int max_agg_queues;
6768
6769    for (i = 0; i < sc->num_queues; i++) {
6770        fp = &sc->fp[i];
6771
6772#if __FreeBSD_version >= 800000
6773        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6774                                   M_DONTWAIT, &fp->tx_mtx);
6775        if (fp->tx_br == NULL) {
6776            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6777            goto bxe_alloc_fp_buffers_error;
6778        }
6779#endif
6780
6781        ring_prod = cqe_ring_prod = 0;
6782        fp->rx_bd_cons = 0;
6783        fp->rx_cq_cons = 0;
6784
6785        /* allocate buffers for the RX BDs in RX BD chain */
6786        for (j = 0; j < sc->max_rx_bufs; j++) {
6787            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6788            if (rc != 0) {
6789                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6790                      i, rc);
6791                goto bxe_alloc_fp_buffers_error;
6792            }
6793
6794            ring_prod     = RX_BD_NEXT(ring_prod);
6795            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6796        }
6797
6798        fp->rx_bd_prod = ring_prod;
6799        fp->rx_cq_prod = cqe_ring_prod;
6800        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6801
6802        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6803            max_agg_queues = MAX_AGG_QS(sc);
6804
6805            fp->tpa_enable = TRUE;
6806
6807            /* fill the TPA pool */
6808            for (j = 0; j < max_agg_queues; j++) {
6809                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6810                if (rc != 0) {
6811                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6812                          i, j);
6813                    fp->tpa_enable = FALSE;
6814                    goto bxe_alloc_fp_buffers_error;
6815                }
6816
6817                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6818            }
6819
6820            if (fp->tpa_enable) {
6821                /* fill the RX SGE chain */
6822                ring_prod = 0;
6823                for (j = 0; j < RX_SGE_USABLE; j++) {
6824                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6825                    if (rc != 0) {
6826                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6827                              i, ring_prod);
6828                        fp->tpa_enable = FALSE;
6829                        ring_prod = 0;
6830                        goto bxe_alloc_fp_buffers_error;
6831                    }
6832
6833                    ring_prod = RX_SGE_NEXT(ring_prod);
6834                }
6835
6836                fp->rx_sge_prod = ring_prod;
6837            }
6838        }
6839    }
6840
6841    return (0);
6842
6843bxe_alloc_fp_buffers_error:
6844
6845    /* unwind what was already allocated */
6846    bxe_free_rx_bd_chain(fp);
6847    bxe_free_tpa_pool(fp);
6848    bxe_free_sge_chain(fp);
6849
6850    return (ENOBUFS);
6851}
6852
6853static void
6854bxe_free_fw_stats_mem(struct bxe_softc *sc)
6855{
6856    bxe_dma_free(sc, &sc->fw_stats_dma);
6857
6858    sc->fw_stats_num = 0;
6859
6860    sc->fw_stats_req_size = 0;
6861    sc->fw_stats_req = NULL;
6862    sc->fw_stats_req_mapping = 0;
6863
6864    sc->fw_stats_data_size = 0;
6865    sc->fw_stats_data = NULL;
6866    sc->fw_stats_data_mapping = 0;
6867}
6868
6869static int
6870bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6871{
6872    uint8_t num_queue_stats;
6873    int num_groups;
6874
6875    /* number of queues for statistics is number of eth queues */
6876    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6877
6878    /*
6879     * Total number of FW statistics requests =
6880     *   1 for port stats + 1 for PF stats + num of queues
6881     */
6882    sc->fw_stats_num = (2 + num_queue_stats);
6883
6884    /*
6885     * Request is built from stats_query_header and an array of
6886     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6887     * rules. The real number or requests is configured in the
6888     * stats_query_header.
6889     */
6890    num_groups =
6891        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6892         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6893
6894    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6895          sc->fw_stats_num, num_groups);
6896
6897    sc->fw_stats_req_size =
6898        (sizeof(struct stats_query_header) +
6899         (num_groups * sizeof(struct stats_query_cmd_group)));
6900
6901    /*
6902     * Data for statistics requests + stats_counter.
6903     * stats_counter holds per-STORM counters that are incremented when
6904     * STORM has finished with the current request. Memory for FCoE
6905     * offloaded statistics are counted anyway, even if they will not be sent.
6906     * VF stats are not accounted for here as the data of VF stats is stored
6907     * in memory allocated by the VF, not here.
6908     */
6909    sc->fw_stats_data_size =
6910        (sizeof(struct stats_counter) +
6911         sizeof(struct per_port_stats) +
6912         sizeof(struct per_pf_stats) +
6913         /* sizeof(struct fcoe_statistics_params) + */
6914         (sizeof(struct per_queue_stats) * num_queue_stats));
6915
6916    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6917                      &sc->fw_stats_dma, "fw stats") != 0) {
6918        bxe_free_fw_stats_mem(sc);
6919        return (-1);
6920    }
6921
6922    /* set up the shortcuts */
6923
6924    sc->fw_stats_req =
6925        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6926    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6927
6928    sc->fw_stats_data =
6929        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6930                                     sc->fw_stats_req_size);
6931    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6932                                 sc->fw_stats_req_size);
6933
6934    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6935          (uintmax_t)sc->fw_stats_req_mapping);
6936
6937    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6938          (uintmax_t)sc->fw_stats_data_mapping);
6939
6940    return (0);
6941}
6942
6943/*
6944 * Bits map:
6945 * 0-7  - Engine0 load counter.
6946 * 8-15 - Engine1 load counter.
6947 * 16   - Engine0 RESET_IN_PROGRESS bit.
6948 * 17   - Engine1 RESET_IN_PROGRESS bit.
6949 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6950 *        function on the engine
6951 * 19   - Engine1 ONE_IS_LOADED.
6952 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6953 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6954 *        for just the one belonging to its engine).
6955 */
6956#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6957#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6958#define BXE_PATH0_LOAD_CNT_SHIFT  0
6959#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6960#define BXE_PATH1_LOAD_CNT_SHIFT  8
6961#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6962#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6963#define BXE_GLOBAL_RESET_BIT      0x00040000
6964
6965/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6966static void
6967bxe_set_reset_global(struct bxe_softc *sc)
6968{
6969    uint32_t val;
6970    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6971    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6972    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6973    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6974}
6975
6976/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6977static void
6978bxe_clear_reset_global(struct bxe_softc *sc)
6979{
6980    uint32_t val;
6981    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6982    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6983    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6984    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6985}
6986
6987/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6988static uint8_t
6989bxe_reset_is_global(struct bxe_softc *sc)
6990{
6991    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6992    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6993    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6994}
6995
6996/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6997static void
6998bxe_set_reset_done(struct bxe_softc *sc)
6999{
7000    uint32_t val;
7001    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7002                                 BXE_PATH0_RST_IN_PROG_BIT;
7003
7004    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7005
7006    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7007    /* Clear the bit */
7008    val &= ~bit;
7009    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7010
7011    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7012}
7013
7014/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7015static void
7016bxe_set_reset_in_progress(struct bxe_softc *sc)
7017{
7018    uint32_t val;
7019    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7020                                 BXE_PATH0_RST_IN_PROG_BIT;
7021
7022    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7023
7024    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7025    /* Set the bit */
7026    val |= bit;
7027    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7028
7029    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7030}
7031
7032/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7033static uint8_t
7034bxe_reset_is_done(struct bxe_softc *sc,
7035                  int              engine)
7036{
7037    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7038    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7039                            BXE_PATH0_RST_IN_PROG_BIT;
7040
7041    /* return false if bit is set */
7042    return (val & bit) ? FALSE : TRUE;
7043}
7044
7045/* get the load status for an engine, should be run under rtnl lock */
7046static uint8_t
7047bxe_get_load_status(struct bxe_softc *sc,
7048                    int              engine)
7049{
7050    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7051                             BXE_PATH0_LOAD_CNT_MASK;
7052    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7053                              BXE_PATH0_LOAD_CNT_SHIFT;
7054    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7055
7056    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7057
7058    val = ((val & mask) >> shift);
7059
7060    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7061
7062    return (val != 0);
7063}
7064
7065/* set pf load mark */
7066/* XXX needs to be under rtnl lock */
7067static void
7068bxe_set_pf_load(struct bxe_softc *sc)
7069{
7070    uint32_t val;
7071    uint32_t val1;
7072    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7073                                  BXE_PATH0_LOAD_CNT_MASK;
7074    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7075                                   BXE_PATH0_LOAD_CNT_SHIFT;
7076
7077    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7078
7079    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7080    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7081
7082    /* get the current counter value */
7083    val1 = ((val & mask) >> shift);
7084
7085    /* set bit of this PF */
7086    val1 |= (1 << SC_ABS_FUNC(sc));
7087
7088    /* clear the old value */
7089    val &= ~mask;
7090
7091    /* set the new one */
7092    val |= ((val1 << shift) & mask);
7093
7094    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7095
7096    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7097}
7098
7099/* clear pf load mark */
7100/* XXX needs to be under rtnl lock */
7101static uint8_t
7102bxe_clear_pf_load(struct bxe_softc *sc)
7103{
7104    uint32_t val1, val;
7105    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7106                                  BXE_PATH0_LOAD_CNT_MASK;
7107    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7108                                   BXE_PATH0_LOAD_CNT_SHIFT;
7109
7110    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7111    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7112    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7113
7114    /* get the current counter value */
7115    val1 = (val & mask) >> shift;
7116
7117    /* clear bit of that PF */
7118    val1 &= ~(1 << SC_ABS_FUNC(sc));
7119
7120    /* clear the old value */
7121    val &= ~mask;
7122
7123    /* set the new one */
7124    val |= ((val1 << shift) & mask);
7125
7126    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7127    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7128    return (val1 != 0);
7129}
7130
7131/* send load requrest to mcp and analyze response */
7132static int
7133bxe_nic_load_request(struct bxe_softc *sc,
7134                     uint32_t         *load_code)
7135{
7136    /* init fw_seq */
7137    sc->fw_seq =
7138        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7139         DRV_MSG_SEQ_NUMBER_MASK);
7140
7141    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7142
7143    /* get the current FW pulse sequence */
7144    sc->fw_drv_pulse_wr_seq =
7145        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7146         DRV_PULSE_SEQ_MASK);
7147
7148    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7149          sc->fw_drv_pulse_wr_seq);
7150
7151    /* load request */
7152    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7153                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7154
7155    /* if the MCP fails to respond we must abort */
7156    if (!(*load_code)) {
7157        BLOGE(sc, "MCP response failure!\n");
7158        return (-1);
7159    }
7160
7161    /* if MCP refused then must abort */
7162    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7163        BLOGE(sc, "MCP refused load request\n");
7164        return (-1);
7165    }
7166
7167    return (0);
7168}
7169
7170/*
7171 * Check whether another PF has already loaded FW to chip. In virtualized
7172 * environments a pf from anoth VM may have already initialized the device
7173 * including loading FW.
7174 */
7175static int
7176bxe_nic_load_analyze_req(struct bxe_softc *sc,
7177                         uint32_t         load_code)
7178{
7179    uint32_t my_fw, loaded_fw;
7180
7181    /* is another pf loaded on this engine? */
7182    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7183        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7184        /* build my FW version dword */
7185        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7186                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7187                 (BCM_5710_FW_REVISION_VERSION << 16) +
7188                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7189
7190        /* read loaded FW from chip */
7191        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7192        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7193              loaded_fw, my_fw);
7194
7195        /* abort nic load if version mismatch */
7196        if (my_fw != loaded_fw) {
7197            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7198                  loaded_fw, my_fw);
7199            return (-1);
7200        }
7201    }
7202
7203    return (0);
7204}
7205
7206/* mark PMF if applicable */
7207static void
7208bxe_nic_load_pmf(struct bxe_softc *sc,
7209                 uint32_t         load_code)
7210{
7211    uint32_t ncsi_oem_data_addr;
7212
7213    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7214        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7215        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7216        /*
7217         * Barrier here for ordering between the writing to sc->port.pmf here
7218         * and reading it from the periodic task.
7219         */
7220        sc->port.pmf = 1;
7221        mb();
7222    } else {
7223        sc->port.pmf = 0;
7224    }
7225
7226    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7227
7228    /* XXX needed? */
7229    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7230        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7231            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7232            if (ncsi_oem_data_addr) {
7233                REG_WR(sc,
7234                       (ncsi_oem_data_addr +
7235                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7236                       0);
7237            }
7238        }
7239    }
7240}
7241
7242static void
7243bxe_read_mf_cfg(struct bxe_softc *sc)
7244{
7245    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7246    int abs_func;
7247    int vn;
7248
7249    if (BXE_NOMCP(sc)) {
7250        return; /* what should be the default bvalue in this case */
7251    }
7252
7253    /*
7254     * The formula for computing the absolute function number is...
7255     * For 2 port configuration (4 functions per port):
7256     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7257     * For 4 port configuration (2 functions per port):
7258     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7259     */
7260    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7261        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7262        if (abs_func >= E1H_FUNC_MAX) {
7263            break;
7264        }
7265        sc->devinfo.mf_info.mf_config[vn] =
7266            MFCFG_RD(sc, func_mf_config[abs_func].config);
7267    }
7268
7269    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7270        FUNC_MF_CFG_FUNC_DISABLED) {
7271        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7272        sc->flags |= BXE_MF_FUNC_DIS;
7273    } else {
7274        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7275        sc->flags &= ~BXE_MF_FUNC_DIS;
7276    }
7277}
7278
7279/* acquire split MCP access lock register */
7280static int bxe_acquire_alr(struct bxe_softc *sc)
7281{
7282    uint32_t j, val;
7283
7284    for (j = 0; j < 1000; j++) {
7285        val = (1UL << 31);
7286        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7287        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7288        if (val & (1L << 31))
7289            break;
7290
7291        DELAY(5000);
7292    }
7293
7294    if (!(val & (1L << 31))) {
7295        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7296        return (-1);
7297    }
7298
7299    return (0);
7300}
7301
7302/* release split MCP access lock register */
7303static void bxe_release_alr(struct bxe_softc *sc)
7304{
7305    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7306}
7307
7308static void
7309bxe_fan_failure(struct bxe_softc *sc)
7310{
7311    int port = SC_PORT(sc);
7312    uint32_t ext_phy_config;
7313
7314    /* mark the failure */
7315    ext_phy_config =
7316        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7317
7318    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7319    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7320    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7321             ext_phy_config);
7322
7323    /* log the failure */
7324    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7325              "the card to prevent permanent damage. "
7326              "Please contact OEM Support for assistance\n");
7327
7328    /* XXX */
7329#if 1
7330    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7331#else
7332    /*
7333     * Schedule device reset (unload)
7334     * This is due to some boards consuming sufficient power when driver is
7335     * up to overheat if fan fails.
7336     */
7337    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7338    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7339#endif
7340}
7341
7342/* this function is called upon a link interrupt */
7343static void
7344bxe_link_attn(struct bxe_softc *sc)
7345{
7346    uint32_t pause_enabled = 0;
7347    struct host_port_stats *pstats;
7348    int cmng_fns;
7349
7350    /* Make sure that we are synced with the current statistics */
7351    bxe_stats_handle(sc, STATS_EVENT_STOP);
7352
7353    elink_link_update(&sc->link_params, &sc->link_vars);
7354
7355    if (sc->link_vars.link_up) {
7356
7357        /* dropless flow control */
7358        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7359            pause_enabled = 0;
7360
7361            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7362                pause_enabled = 1;
7363            }
7364
7365            REG_WR(sc,
7366                   (BAR_USTRORM_INTMEM +
7367                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7368                   pause_enabled);
7369        }
7370
7371        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7372            pstats = BXE_SP(sc, port_stats);
7373            /* reset old mac stats */
7374            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7375        }
7376
7377        if (sc->state == BXE_STATE_OPEN) {
7378            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7379        }
7380    }
7381
7382    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7383        cmng_fns = bxe_get_cmng_fns_mode(sc);
7384
7385        if (cmng_fns != CMNG_FNS_NONE) {
7386            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7387            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7388        } else {
7389            /* rate shaping and fairness are disabled */
7390            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7391        }
7392    }
7393
7394    bxe_link_report_locked(sc);
7395
7396    if (IS_MF(sc)) {
7397        ; // XXX bxe_link_sync_notify(sc);
7398    }
7399}
7400
7401static void
7402bxe_attn_int_asserted(struct bxe_softc *sc,
7403                      uint32_t         asserted)
7404{
7405    int port = SC_PORT(sc);
7406    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7407                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7408    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7409                                        NIG_REG_MASK_INTERRUPT_PORT0;
7410    uint32_t aeu_mask;
7411    uint32_t nig_mask = 0;
7412    uint32_t reg_addr;
7413    uint32_t igu_acked;
7414    uint32_t cnt;
7415
7416    if (sc->attn_state & asserted) {
7417        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7418    }
7419
7420    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7421
7422    aeu_mask = REG_RD(sc, aeu_addr);
7423
7424    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7425          aeu_mask, asserted);
7426
7427    aeu_mask &= ~(asserted & 0x3ff);
7428
7429    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7430
7431    REG_WR(sc, aeu_addr, aeu_mask);
7432
7433    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7434
7435    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7436    sc->attn_state |= asserted;
7437    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7438
7439    if (asserted & ATTN_HARD_WIRED_MASK) {
7440        if (asserted & ATTN_NIG_FOR_FUNC) {
7441
7442            BXE_PHY_LOCK(sc);
7443
7444            /* save nig interrupt mask */
7445            nig_mask = REG_RD(sc, nig_int_mask_addr);
7446
7447            /* If nig_mask is not set, no need to call the update function */
7448            if (nig_mask) {
7449                REG_WR(sc, nig_int_mask_addr, 0);
7450
7451                bxe_link_attn(sc);
7452            }
7453
7454            /* handle unicore attn? */
7455        }
7456
7457        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7458            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7459        }
7460
7461        if (asserted & GPIO_2_FUNC) {
7462            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7463        }
7464
7465        if (asserted & GPIO_3_FUNC) {
7466            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7467        }
7468
7469        if (asserted & GPIO_4_FUNC) {
7470            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7471        }
7472
7473        if (port == 0) {
7474            if (asserted & ATTN_GENERAL_ATTN_1) {
7475                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7476                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7477            }
7478            if (asserted & ATTN_GENERAL_ATTN_2) {
7479                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7480                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7481            }
7482            if (asserted & ATTN_GENERAL_ATTN_3) {
7483                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7484                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7485            }
7486        } else {
7487            if (asserted & ATTN_GENERAL_ATTN_4) {
7488                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7489                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7490            }
7491            if (asserted & ATTN_GENERAL_ATTN_5) {
7492                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7493                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7494            }
7495            if (asserted & ATTN_GENERAL_ATTN_6) {
7496                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7497                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7498            }
7499        }
7500    } /* hardwired */
7501
7502    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7503        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7504    } else {
7505        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7506    }
7507
7508    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7509          asserted,
7510          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7511    REG_WR(sc, reg_addr, asserted);
7512
7513    /* now set back the mask */
7514    if (asserted & ATTN_NIG_FOR_FUNC) {
7515        /*
7516         * Verify that IGU ack through BAR was written before restoring
7517         * NIG mask. This loop should exit after 2-3 iterations max.
7518         */
7519        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7520            cnt = 0;
7521
7522            do {
7523                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7524            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7525                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7526
7527            if (!igu_acked) {
7528                BLOGE(sc, "Failed to verify IGU ack on time\n");
7529            }
7530
7531            mb();
7532        }
7533
7534        REG_WR(sc, nig_int_mask_addr, nig_mask);
7535
7536        BXE_PHY_UNLOCK(sc);
7537    }
7538}
7539
7540static void
7541bxe_print_next_block(struct bxe_softc *sc,
7542                     int              idx,
7543                     const char       *blk)
7544{
7545    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7546}
7547
7548static int
7549bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7550                              uint32_t         sig,
7551                              int              par_num,
7552                              uint8_t          print)
7553{
7554    uint32_t cur_bit = 0;
7555    int i = 0;
7556
7557    for (i = 0; sig; i++) {
7558        cur_bit = ((uint32_t)0x1 << i);
7559        if (sig & cur_bit) {
7560            switch (cur_bit) {
7561            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7562                if (print)
7563                    bxe_print_next_block(sc, par_num++, "BRB");
7564                break;
7565            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7566                if (print)
7567                    bxe_print_next_block(sc, par_num++, "PARSER");
7568                break;
7569            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7570                if (print)
7571                    bxe_print_next_block(sc, par_num++, "TSDM");
7572                break;
7573            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7574                if (print)
7575                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7576                break;
7577            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7578                if (print)
7579                    bxe_print_next_block(sc, par_num++, "TCM");
7580                break;
7581            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7582                if (print)
7583                    bxe_print_next_block(sc, par_num++, "TSEMI");
7584                break;
7585            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7586                if (print)
7587                    bxe_print_next_block(sc, par_num++, "XPB");
7588                break;
7589            }
7590
7591            /* Clear the bit */
7592            sig &= ~cur_bit;
7593        }
7594    }
7595
7596    return (par_num);
7597}
7598
7599static int
7600bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7601                              uint32_t         sig,
7602                              int              par_num,
7603                              uint8_t          *global,
7604                              uint8_t          print)
7605{
7606    int i = 0;
7607    uint32_t cur_bit = 0;
7608    for (i = 0; sig; i++) {
7609        cur_bit = ((uint32_t)0x1 << i);
7610        if (sig & cur_bit) {
7611            switch (cur_bit) {
7612            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7613                if (print)
7614                    bxe_print_next_block(sc, par_num++, "PBF");
7615                break;
7616            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7617                if (print)
7618                    bxe_print_next_block(sc, par_num++, "QM");
7619                break;
7620            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7621                if (print)
7622                    bxe_print_next_block(sc, par_num++, "TM");
7623                break;
7624            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7625                if (print)
7626                    bxe_print_next_block(sc, par_num++, "XSDM");
7627                break;
7628            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7629                if (print)
7630                    bxe_print_next_block(sc, par_num++, "XCM");
7631                break;
7632            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7633                if (print)
7634                    bxe_print_next_block(sc, par_num++, "XSEMI");
7635                break;
7636            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7637                if (print)
7638                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7639                break;
7640            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7641                if (print)
7642                    bxe_print_next_block(sc, par_num++, "NIG");
7643                break;
7644            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7645                if (print)
7646                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7647                *global = TRUE;
7648                break;
7649            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7650                if (print)
7651                    bxe_print_next_block(sc, par_num++, "DEBUG");
7652                break;
7653            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7654                if (print)
7655                    bxe_print_next_block(sc, par_num++, "USDM");
7656                break;
7657            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7658                if (print)
7659                    bxe_print_next_block(sc, par_num++, "UCM");
7660                break;
7661            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7662                if (print)
7663                    bxe_print_next_block(sc, par_num++, "USEMI");
7664                break;
7665            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7666                if (print)
7667                    bxe_print_next_block(sc, par_num++, "UPB");
7668                break;
7669            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7670                if (print)
7671                    bxe_print_next_block(sc, par_num++, "CSDM");
7672                break;
7673            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7674                if (print)
7675                    bxe_print_next_block(sc, par_num++, "CCM");
7676                break;
7677            }
7678
7679            /* Clear the bit */
7680            sig &= ~cur_bit;
7681        }
7682    }
7683
7684    return (par_num);
7685}
7686
7687static int
7688bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7689                              uint32_t         sig,
7690                              int              par_num,
7691                              uint8_t          print)
7692{
7693    uint32_t cur_bit = 0;
7694    int i = 0;
7695
7696    for (i = 0; sig; i++) {
7697        cur_bit = ((uint32_t)0x1 << i);
7698        if (sig & cur_bit) {
7699            switch (cur_bit) {
7700            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7701                if (print)
7702                    bxe_print_next_block(sc, par_num++, "CSEMI");
7703                break;
7704            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7705                if (print)
7706                    bxe_print_next_block(sc, par_num++, "PXP");
7707                break;
7708            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7709                if (print)
7710                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7711                break;
7712            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7713                if (print)
7714                    bxe_print_next_block(sc, par_num++, "CFC");
7715                break;
7716            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7717                if (print)
7718                    bxe_print_next_block(sc, par_num++, "CDU");
7719                break;
7720            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7721                if (print)
7722                    bxe_print_next_block(sc, par_num++, "DMAE");
7723                break;
7724            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7725                if (print)
7726                    bxe_print_next_block(sc, par_num++, "IGU");
7727                break;
7728            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7729                if (print)
7730                    bxe_print_next_block(sc, par_num++, "MISC");
7731                break;
7732            }
7733
7734            /* Clear the bit */
7735            sig &= ~cur_bit;
7736        }
7737    }
7738
7739    return (par_num);
7740}
7741
7742static int
7743bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7744                              uint32_t         sig,
7745                              int              par_num,
7746                              uint8_t          *global,
7747                              uint8_t          print)
7748{
7749    uint32_t cur_bit = 0;
7750    int i = 0;
7751
7752    for (i = 0; sig; i++) {
7753        cur_bit = ((uint32_t)0x1 << i);
7754        if (sig & cur_bit) {
7755            switch (cur_bit) {
7756            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7757                if (print)
7758                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7759                *global = TRUE;
7760                break;
7761            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7762                if (print)
7763                    bxe_print_next_block(sc, par_num++,
7764                              "MCP UMP RX");
7765                *global = TRUE;
7766                break;
7767            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7768                if (print)
7769                    bxe_print_next_block(sc, par_num++,
7770                              "MCP UMP TX");
7771                *global = TRUE;
7772                break;
7773            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7774                if (print)
7775                    bxe_print_next_block(sc, par_num++,
7776                              "MCP SCPAD");
7777                *global = TRUE;
7778                break;
7779            }
7780
7781            /* Clear the bit */
7782            sig &= ~cur_bit;
7783        }
7784    }
7785
7786    return (par_num);
7787}
7788
7789static int
7790bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7791                              uint32_t         sig,
7792                              int              par_num,
7793                              uint8_t          print)
7794{
7795    uint32_t cur_bit = 0;
7796    int i = 0;
7797
7798    for (i = 0; sig; i++) {
7799        cur_bit = ((uint32_t)0x1 << i);
7800        if (sig & cur_bit) {
7801            switch (cur_bit) {
7802            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7803                if (print)
7804                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7805                break;
7806            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7807                if (print)
7808                    bxe_print_next_block(sc, par_num++, "ATC");
7809                break;
7810            }
7811
7812            /* Clear the bit */
7813            sig &= ~cur_bit;
7814        }
7815    }
7816
7817    return (par_num);
7818}
7819
7820static uint8_t
7821bxe_parity_attn(struct bxe_softc *sc,
7822                uint8_t          *global,
7823                uint8_t          print,
7824                uint32_t         *sig)
7825{
7826    int par_num = 0;
7827
7828    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7829        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7830        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7831        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7832        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7833        BLOGE(sc, "Parity error: HW block parity attention:\n"
7834                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7835              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7836              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7837              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7838              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7839              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7840
7841        if (print)
7842            BLOGI(sc, "Parity errors detected in blocks: ");
7843
7844        par_num =
7845            bxe_check_blocks_with_parity0(sc, sig[0] &
7846                                          HW_PRTY_ASSERT_SET_0,
7847                                          par_num, print);
7848        par_num =
7849            bxe_check_blocks_with_parity1(sc, sig[1] &
7850                                          HW_PRTY_ASSERT_SET_1,
7851                                          par_num, global, print);
7852        par_num =
7853            bxe_check_blocks_with_parity2(sc, sig[2] &
7854                                          HW_PRTY_ASSERT_SET_2,
7855                                          par_num, print);
7856        par_num =
7857            bxe_check_blocks_with_parity3(sc, sig[3] &
7858                                          HW_PRTY_ASSERT_SET_3,
7859                                          par_num, global, print);
7860        par_num =
7861            bxe_check_blocks_with_parity4(sc, sig[4] &
7862                                          HW_PRTY_ASSERT_SET_4,
7863                                          par_num, print);
7864
7865        if (print)
7866            BLOGI(sc, "\n");
7867
7868        return (TRUE);
7869    }
7870
7871    return (FALSE);
7872}
7873
7874static uint8_t
7875bxe_chk_parity_attn(struct bxe_softc *sc,
7876                    uint8_t          *global,
7877                    uint8_t          print)
7878{
7879    struct attn_route attn = { {0} };
7880    int port = SC_PORT(sc);
7881
7882    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7883    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7884    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7885    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7886
7887    if (!CHIP_IS_E1x(sc))
7888        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7889
7890    return (bxe_parity_attn(sc, global, print, attn.sig));
7891}
7892
7893static void
7894bxe_attn_int_deasserted4(struct bxe_softc *sc,
7895                         uint32_t         attn)
7896{
7897    uint32_t val;
7898
7899    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7900        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7901        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7902        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7903            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7904        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7905            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7906        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7907            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7908        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7909            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7910        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7911            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7912        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7913            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7914        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7915            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7916        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7917            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7918        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7919            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7920    }
7921
7922    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7923        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7924        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7925        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7926            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7927        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7928            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7929        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7930            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7931        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7932            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7933        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7934            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7935        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7936            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7937    }
7938
7939    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7940                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7941        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7942              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7943                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7944    }
7945}
7946
7947static void
7948bxe_e1h_disable(struct bxe_softc *sc)
7949{
7950    int port = SC_PORT(sc);
7951
7952    bxe_tx_disable(sc);
7953
7954    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7955}
7956
7957static void
7958bxe_e1h_enable(struct bxe_softc *sc)
7959{
7960    int port = SC_PORT(sc);
7961
7962    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7963
7964    // XXX bxe_tx_enable(sc);
7965}
7966
7967/*
7968 * called due to MCP event (on pmf):
7969 *   reread new bandwidth configuration
7970 *   configure FW
7971 *   notify others function about the change
7972 */
7973static void
7974bxe_config_mf_bw(struct bxe_softc *sc)
7975{
7976    if (sc->link_vars.link_up) {
7977        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7978        // XXX bxe_link_sync_notify(sc);
7979    }
7980
7981    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7982}
7983
7984static void
7985bxe_set_mf_bw(struct bxe_softc *sc)
7986{
7987    bxe_config_mf_bw(sc);
7988    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7989}
7990
7991static void
7992bxe_handle_eee_event(struct bxe_softc *sc)
7993{
7994    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7995    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7996}
7997
7998#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7999
8000static void
8001bxe_drv_info_ether_stat(struct bxe_softc *sc)
8002{
8003    struct eth_stats_info *ether_stat =
8004        &sc->sp->drv_info_to_mcp.ether_stat;
8005
8006    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8007            ETH_STAT_INFO_VERSION_LEN);
8008
8009    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8010    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8011                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8012                                          ether_stat->mac_local + MAC_PAD,
8013                                          MAC_PAD, ETH_ALEN);
8014
8015    ether_stat->mtu_size = sc->mtu;
8016
8017    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8018    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8019        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8020    }
8021
8022    // XXX ether_stat->feature_flags |= ???;
8023
8024    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8025
8026    ether_stat->txq_size = sc->tx_ring_size;
8027    ether_stat->rxq_size = sc->rx_ring_size;
8028}
8029
8030static void
8031bxe_handle_drv_info_req(struct bxe_softc *sc)
8032{
8033    enum drv_info_opcode op_code;
8034    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8035
8036    /* if drv_info version supported by MFW doesn't match - send NACK */
8037    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8038        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8039        return;
8040    }
8041
8042    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8043               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8044
8045    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8046
8047    switch (op_code) {
8048    case ETH_STATS_OPCODE:
8049        bxe_drv_info_ether_stat(sc);
8050        break;
8051    case FCOE_STATS_OPCODE:
8052    case ISCSI_STATS_OPCODE:
8053    default:
8054        /* if op code isn't supported - send NACK */
8055        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8056        return;
8057    }
8058
8059    /*
8060     * If we got drv_info attn from MFW then these fields are defined in
8061     * shmem2 for sure
8062     */
8063    SHMEM2_WR(sc, drv_info_host_addr_lo,
8064              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8065    SHMEM2_WR(sc, drv_info_host_addr_hi,
8066              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8067
8068    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8069}
8070
8071static void
8072bxe_dcc_event(struct bxe_softc *sc,
8073              uint32_t         dcc_event)
8074{
8075    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8076
8077    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8078        /*
8079         * This is the only place besides the function initialization
8080         * where the sc->flags can change so it is done without any
8081         * locks
8082         */
8083        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8084            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8085            sc->flags |= BXE_MF_FUNC_DIS;
8086            bxe_e1h_disable(sc);
8087        } else {
8088            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8089            sc->flags &= ~BXE_MF_FUNC_DIS;
8090            bxe_e1h_enable(sc);
8091        }
8092        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8093    }
8094
8095    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8096        bxe_config_mf_bw(sc);
8097        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8098    }
8099
8100    /* Report results to MCP */
8101    if (dcc_event)
8102        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8103    else
8104        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8105}
8106
8107static void
8108bxe_pmf_update(struct bxe_softc *sc)
8109{
8110    int port = SC_PORT(sc);
8111    uint32_t val;
8112
8113    sc->port.pmf = 1;
8114    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8115
8116    /*
8117     * We need the mb() to ensure the ordering between the writing to
8118     * sc->port.pmf here and reading it from the bxe_periodic_task().
8119     */
8120    mb();
8121
8122    /* queue a periodic task */
8123    // XXX schedule task...
8124
8125    // XXX bxe_dcbx_pmf_update(sc);
8126
8127    /* enable nig attention */
8128    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8129    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8130        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8131        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8132    } else if (!CHIP_IS_E1x(sc)) {
8133        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8134        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8135    }
8136
8137    bxe_stats_handle(sc, STATS_EVENT_PMF);
8138}
8139
8140static int
8141bxe_mc_assert(struct bxe_softc *sc)
8142{
8143    char last_idx;
8144    int i, rc = 0;
8145    uint32_t row0, row1, row2, row3;
8146
8147    /* XSTORM */
8148    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8149    if (last_idx)
8150        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8151
8152    /* print the asserts */
8153    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8154
8155        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8156        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8157        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8158        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8159
8160        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8161            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8162                  i, row3, row2, row1, row0);
8163            rc++;
8164        } else {
8165            break;
8166        }
8167    }
8168
8169    /* TSTORM */
8170    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8171    if (last_idx) {
8172        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8173    }
8174
8175    /* print the asserts */
8176    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8177
8178        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8179        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8180        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8181        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8182
8183        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8184            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8185                  i, row3, row2, row1, row0);
8186            rc++;
8187        } else {
8188            break;
8189        }
8190    }
8191
8192    /* CSTORM */
8193    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8194    if (last_idx) {
8195        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8196    }
8197
8198    /* print the asserts */
8199    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8200
8201        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8202        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8203        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8204        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8205
8206        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8207            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8208                  i, row3, row2, row1, row0);
8209            rc++;
8210        } else {
8211            break;
8212        }
8213    }
8214
8215    /* USTORM */
8216    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8217    if (last_idx) {
8218        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8219    }
8220
8221    /* print the asserts */
8222    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8223
8224        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8225        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8226        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8227        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8228
8229        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8230            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8231                  i, row3, row2, row1, row0);
8232            rc++;
8233        } else {
8234            break;
8235        }
8236    }
8237
8238    return (rc);
8239}
8240
8241static void
8242bxe_attn_int_deasserted3(struct bxe_softc *sc,
8243                         uint32_t         attn)
8244{
8245    int func = SC_FUNC(sc);
8246    uint32_t val;
8247
8248    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8249
8250        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8251
8252            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8253            bxe_read_mf_cfg(sc);
8254            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8255                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8256            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8257
8258            if (val & DRV_STATUS_DCC_EVENT_MASK)
8259                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8260
8261            if (val & DRV_STATUS_SET_MF_BW)
8262                bxe_set_mf_bw(sc);
8263
8264            if (val & DRV_STATUS_DRV_INFO_REQ)
8265                bxe_handle_drv_info_req(sc);
8266
8267#if 0
8268            if (val & DRV_STATUS_VF_DISABLED)
8269                bxe_vf_handle_flr_event(sc);
8270#endif
8271
8272            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8273                bxe_pmf_update(sc);
8274
8275#if 0
8276            if (sc->port.pmf &&
8277                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8278                (sc->dcbx_enabled > 0))
8279                /* start dcbx state machine */
8280                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8281#endif
8282
8283#if 0
8284            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8285                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8286#endif
8287
8288            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8289                bxe_handle_eee_event(sc);
8290
8291            if (sc->link_vars.periodic_flags &
8292                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8293                /* sync with link */
8294                BXE_PHY_LOCK(sc);
8295                sc->link_vars.periodic_flags &=
8296                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8297                BXE_PHY_UNLOCK(sc);
8298                if (IS_MF(sc))
8299                    ; // XXX bxe_link_sync_notify(sc);
8300                bxe_link_report(sc);
8301            }
8302
8303            /*
8304             * Always call it here: bxe_link_report() will
8305             * prevent the link indication duplication.
8306             */
8307            bxe_link_status_update(sc);
8308
8309        } else if (attn & BXE_MC_ASSERT_BITS) {
8310
8311            BLOGE(sc, "MC assert!\n");
8312            bxe_mc_assert(sc);
8313            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8314            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8315            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8316            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8317            bxe_panic(sc, ("MC assert!\n"));
8318
8319        } else if (attn & BXE_MCP_ASSERT) {
8320
8321            BLOGE(sc, "MCP assert!\n");
8322            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8323            // XXX bxe_fw_dump(sc);
8324
8325        } else {
8326            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8327        }
8328    }
8329
8330    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8331        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8332        if (attn & BXE_GRC_TIMEOUT) {
8333            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8334            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8335        }
8336        if (attn & BXE_GRC_RSV) {
8337            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8338            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8339        }
8340        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8341    }
8342}
8343
8344static void
8345bxe_attn_int_deasserted2(struct bxe_softc *sc,
8346                         uint32_t         attn)
8347{
8348    int port = SC_PORT(sc);
8349    int reg_offset;
8350    uint32_t val0, mask0, val1, mask1;
8351    uint32_t val;
8352
8353    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8354        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8355        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8356        /* CFC error attention */
8357        if (val & 0x2) {
8358            BLOGE(sc, "FATAL error from CFC\n");
8359        }
8360    }
8361
8362    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8363        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8364        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8365        /* RQ_USDMDP_FIFO_OVERFLOW */
8366        if (val & 0x18000) {
8367            BLOGE(sc, "FATAL error from PXP\n");
8368        }
8369
8370        if (!CHIP_IS_E1x(sc)) {
8371            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8372            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8373        }
8374    }
8375
8376#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8377#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8378
8379    if (attn & AEU_PXP2_HW_INT_BIT) {
8380        /*  CQ47854 workaround do not panic on
8381         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8382         */
8383        if (!CHIP_IS_E1x(sc)) {
8384            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8385            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8386            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8387            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8388            /*
8389             * If the olny PXP2_EOP_ERROR_BIT is set in
8390             * STS0 and STS1 - clear it
8391             *
8392             * probably we lose additional attentions between
8393             * STS0 and STS_CLR0, in this case user will not
8394             * be notified about them
8395             */
8396            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8397                !(val1 & mask1))
8398                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8399
8400            /* print the register, since no one can restore it */
8401            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8402
8403            /*
8404             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8405             * then notify
8406             */
8407            if (val0 & PXP2_EOP_ERROR_BIT) {
8408                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8409
8410                /*
8411                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8412                 * set then clear attention from PXP2 block without panic
8413                 */
8414                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8415                    ((val1 & mask1) == 0))
8416                    attn &= ~AEU_PXP2_HW_INT_BIT;
8417            }
8418        }
8419    }
8420
8421    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8422        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8423                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8424
8425        val = REG_RD(sc, reg_offset);
8426        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8427        REG_WR(sc, reg_offset, val);
8428
8429        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8430              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8431        bxe_panic(sc, ("HW block attention set2\n"));
8432    }
8433}
8434
8435static void
8436bxe_attn_int_deasserted1(struct bxe_softc *sc,
8437                         uint32_t         attn)
8438{
8439    int port = SC_PORT(sc);
8440    int reg_offset;
8441    uint32_t val;
8442
8443    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8444        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8445        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8446        /* DORQ discard attention */
8447        if (val & 0x2) {
8448            BLOGE(sc, "FATAL error from DORQ\n");
8449        }
8450    }
8451
8452    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8453        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8454                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8455
8456        val = REG_RD(sc, reg_offset);
8457        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8458        REG_WR(sc, reg_offset, val);
8459
8460        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8461              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8462        bxe_panic(sc, ("HW block attention set1\n"));
8463    }
8464}
8465
8466static void
8467bxe_attn_int_deasserted0(struct bxe_softc *sc,
8468                         uint32_t         attn)
8469{
8470    int port = SC_PORT(sc);
8471    int reg_offset;
8472    uint32_t val;
8473
8474    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8475                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8476
8477    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8478        val = REG_RD(sc, reg_offset);
8479        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8480        REG_WR(sc, reg_offset, val);
8481
8482        BLOGW(sc, "SPIO5 hw attention\n");
8483
8484        /* Fan failure attention */
8485        elink_hw_reset_phy(&sc->link_params);
8486        bxe_fan_failure(sc);
8487    }
8488
8489    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8490        BXE_PHY_LOCK(sc);
8491        elink_handle_module_detect_int(&sc->link_params);
8492        BXE_PHY_UNLOCK(sc);
8493    }
8494
8495    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8496        val = REG_RD(sc, reg_offset);
8497        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8498        REG_WR(sc, reg_offset, val);
8499
8500        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8501                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8502    }
8503}
8504
8505static void
8506bxe_attn_int_deasserted(struct bxe_softc *sc,
8507                        uint32_t         deasserted)
8508{
8509    struct attn_route attn;
8510    struct attn_route *group_mask;
8511    int port = SC_PORT(sc);
8512    int index;
8513    uint32_t reg_addr;
8514    uint32_t val;
8515    uint32_t aeu_mask;
8516    uint8_t global = FALSE;
8517
8518    /*
8519     * Need to take HW lock because MCP or other port might also
8520     * try to handle this event.
8521     */
8522    bxe_acquire_alr(sc);
8523
8524    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8525        /* XXX
8526         * In case of parity errors don't handle attentions so that
8527         * other function would "see" parity errors.
8528         */
8529        sc->recovery_state = BXE_RECOVERY_INIT;
8530        // XXX schedule a recovery task...
8531        /* disable HW interrupts */
8532        bxe_int_disable(sc);
8533        bxe_release_alr(sc);
8534        return;
8535    }
8536
8537    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8538    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8539    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8540    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8541    if (!CHIP_IS_E1x(sc)) {
8542        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8543    } else {
8544        attn.sig[4] = 0;
8545    }
8546
8547    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8548          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8549
8550    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8551        if (deasserted & (1 << index)) {
8552            group_mask = &sc->attn_group[index];
8553
8554            BLOGD(sc, DBG_INTR,
8555                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8556                  group_mask->sig[0], group_mask->sig[1],
8557                  group_mask->sig[2], group_mask->sig[3],
8558                  group_mask->sig[4]);
8559
8560            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8561            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8562            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8563            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8564            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8565        }
8566    }
8567
8568    bxe_release_alr(sc);
8569
8570    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8571        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8572                    COMMAND_REG_ATTN_BITS_CLR);
8573    } else {
8574        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8575    }
8576
8577    val = ~deasserted;
8578    BLOGD(sc, DBG_INTR,
8579          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8580          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8581    REG_WR(sc, reg_addr, val);
8582
8583    if (~sc->attn_state & deasserted) {
8584        BLOGE(sc, "IGU error\n");
8585    }
8586
8587    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8588                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8589
8590    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8591
8592    aeu_mask = REG_RD(sc, reg_addr);
8593
8594    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8595          aeu_mask, deasserted);
8596    aeu_mask |= (deasserted & 0x3ff);
8597    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8598
8599    REG_WR(sc, reg_addr, aeu_mask);
8600    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8601
8602    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8603    sc->attn_state &= ~deasserted;
8604    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8605}
8606
8607static void
8608bxe_attn_int(struct bxe_softc *sc)
8609{
8610    /* read local copy of bits */
8611    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8612    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8613    uint32_t attn_state = sc->attn_state;
8614
8615    /* look for changed bits */
8616    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8617    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8618
8619    BLOGD(sc, DBG_INTR,
8620          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8621          attn_bits, attn_ack, asserted, deasserted);
8622
8623    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8624        BLOGE(sc, "BAD attention state\n");
8625    }
8626
8627    /* handle bits that were raised */
8628    if (asserted) {
8629        bxe_attn_int_asserted(sc, asserted);
8630    }
8631
8632    if (deasserted) {
8633        bxe_attn_int_deasserted(sc, deasserted);
8634    }
8635}
8636
8637static uint16_t
8638bxe_update_dsb_idx(struct bxe_softc *sc)
8639{
8640    struct host_sp_status_block *def_sb = sc->def_sb;
8641    uint16_t rc = 0;
8642
8643    mb(); /* status block is written to by the chip */
8644
8645    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8646        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8647        rc |= BXE_DEF_SB_ATT_IDX;
8648    }
8649
8650    if (sc->def_idx != def_sb->sp_sb.running_index) {
8651        sc->def_idx = def_sb->sp_sb.running_index;
8652        rc |= BXE_DEF_SB_IDX;
8653    }
8654
8655    mb();
8656
8657    return (rc);
8658}
8659
8660static inline struct ecore_queue_sp_obj *
8661bxe_cid_to_q_obj(struct bxe_softc *sc,
8662                 uint32_t         cid)
8663{
8664    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8665    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8666}
8667
8668static void
8669bxe_handle_mcast_eqe(struct bxe_softc *sc)
8670{
8671    struct ecore_mcast_ramrod_params rparam;
8672    int rc;
8673
8674    memset(&rparam, 0, sizeof(rparam));
8675
8676    rparam.mcast_obj = &sc->mcast_obj;
8677
8678    BXE_MCAST_LOCK(sc);
8679
8680    /* clear pending state for the last command */
8681    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8682
8683    /* if there are pending mcast commands - send them */
8684    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8685        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8686        if (rc < 0) {
8687            BLOGD(sc, DBG_SP,
8688                  "ERROR: Failed to send pending mcast commands (%d)\n",
8689                  rc);
8690        }
8691    }
8692
8693    BXE_MCAST_UNLOCK(sc);
8694}
8695
8696static void
8697bxe_handle_classification_eqe(struct bxe_softc      *sc,
8698                              union event_ring_elem *elem)
8699{
8700    unsigned long ramrod_flags = 0;
8701    int rc = 0;
8702    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8703    struct ecore_vlan_mac_obj *vlan_mac_obj;
8704
8705    /* always push next commands out, don't wait here */
8706    bit_set(&ramrod_flags, RAMROD_CONT);
8707
8708    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8709    case ECORE_FILTER_MAC_PENDING:
8710        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8711        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8712        break;
8713
8714    case ECORE_FILTER_MCAST_PENDING:
8715        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8716        /*
8717         * This is only relevant for 57710 where multicast MACs are
8718         * configured as unicast MACs using the same ramrod.
8719         */
8720        bxe_handle_mcast_eqe(sc);
8721        return;
8722
8723    default:
8724        BLOGE(sc, "Unsupported classification command: %d\n",
8725              elem->message.data.eth_event.echo);
8726        return;
8727    }
8728
8729    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8730
8731    if (rc < 0) {
8732        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8733    } else if (rc > 0) {
8734        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8735    }
8736}
8737
8738static void
8739bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8740                       union event_ring_elem *elem)
8741{
8742    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8743
8744    /* send rx_mode command again if was requested */
8745    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8746                               &sc->sp_state)) {
8747        bxe_set_storm_rx_mode(sc);
8748    }
8749#if 0
8750    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8751                                    &sc->sp_state)) {
8752        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8753    }
8754    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8755                                    &sc->sp_state)) {
8756        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8757    }
8758#endif
8759}
8760
8761static void
8762bxe_update_eq_prod(struct bxe_softc *sc,
8763                   uint16_t         prod)
8764{
8765    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8766    wmb(); /* keep prod updates ordered */
8767}
8768
8769static void
8770bxe_eq_int(struct bxe_softc *sc)
8771{
8772    uint16_t hw_cons, sw_cons, sw_prod;
8773    union event_ring_elem *elem;
8774    uint8_t echo;
8775    uint32_t cid;
8776    uint8_t opcode;
8777    int spqe_cnt = 0;
8778    struct ecore_queue_sp_obj *q_obj;
8779    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8780    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8781
8782    hw_cons = le16toh(*sc->eq_cons_sb);
8783
8784    /*
8785     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8786     * when we get to the next-page we need to adjust so the loop
8787     * condition below will be met. The next element is the size of a
8788     * regular element and hence incrementing by 1
8789     */
8790    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8791        hw_cons++;
8792    }
8793
8794    /*
8795     * This function may never run in parallel with itself for a
8796     * specific sc and no need for a read memory barrier here.
8797     */
8798    sw_cons = sc->eq_cons;
8799    sw_prod = sc->eq_prod;
8800
8801    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8802          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8803
8804    for (;
8805         sw_cons != hw_cons;
8806         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8807
8808        elem = &sc->eq[EQ_DESC(sw_cons)];
8809
8810#if 0
8811        int rc;
8812        rc = bxe_iov_eq_sp_event(sc, elem);
8813        if (!rc) {
8814            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8815            goto next_spqe;
8816        }
8817#endif
8818
8819        /* elem CID originates from FW, actually LE */
8820        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8821        opcode = elem->message.opcode;
8822
8823        /* handle eq element */
8824        switch (opcode) {
8825#if 0
8826        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8827            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8828            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8829            continue;
8830#endif
8831
8832        case EVENT_RING_OPCODE_STAT_QUERY:
8833            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8834                  sc->stats_comp++);
8835            /* nothing to do with stats comp */
8836            goto next_spqe;
8837
8838        case EVENT_RING_OPCODE_CFC_DEL:
8839            /* handle according to cid range */
8840            /* we may want to verify here that the sc state is HALTING */
8841            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8842            q_obj = bxe_cid_to_q_obj(sc, cid);
8843            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8844                break;
8845            }
8846            goto next_spqe;
8847
8848        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8849            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8850            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8851                break;
8852            }
8853            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8854            goto next_spqe;
8855
8856        case EVENT_RING_OPCODE_START_TRAFFIC:
8857            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8858            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8859                break;
8860            }
8861            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8862            goto next_spqe;
8863
8864        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8865            echo = elem->message.data.function_update_event.echo;
8866            if (echo == SWITCH_UPDATE) {
8867                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8868                if (f_obj->complete_cmd(sc, f_obj,
8869                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8870                    break;
8871                }
8872            }
8873            else {
8874                BLOGD(sc, DBG_SP,
8875                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8876#if 0
8877                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8878                /*
8879                 * We will perform the queues update from the sp_core_task as
8880                 * all queue SP operations should run with CORE_LOCK.
8881                 */
8882                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8883                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8884#endif
8885            }
8886            goto next_spqe;
8887
8888#if 0
8889        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8890            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8891            bxe_after_afex_vif_lists(sc, elem);
8892            goto next_spqe;
8893#endif
8894
8895        case EVENT_RING_OPCODE_FORWARD_SETUP:
8896            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8897            if (q_obj->complete_cmd(sc, q_obj,
8898                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8899                break;
8900            }
8901            goto next_spqe;
8902
8903        case EVENT_RING_OPCODE_FUNCTION_START:
8904            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8905            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8906                break;
8907            }
8908            goto next_spqe;
8909
8910        case EVENT_RING_OPCODE_FUNCTION_STOP:
8911            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8912            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8913                break;
8914            }
8915            goto next_spqe;
8916        }
8917
8918        switch (opcode | sc->state) {
8919        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8920        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8921            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8922            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8923            rss_raw->clear_pending(rss_raw);
8924            break;
8925
8926        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8927        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8928        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8929        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8930        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8931        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8932            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8933            bxe_handle_classification_eqe(sc, elem);
8934            break;
8935
8936        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8937        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8938        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8939            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8940            bxe_handle_mcast_eqe(sc);
8941            break;
8942
8943        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8944        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8945        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8946            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8947            bxe_handle_rx_mode_eqe(sc, elem);
8948            break;
8949
8950        default:
8951            /* unknown event log error and continue */
8952            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8953                  elem->message.opcode, sc->state);
8954        }
8955
8956next_spqe:
8957        spqe_cnt++;
8958    } /* for */
8959
8960    mb();
8961    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8962
8963    sc->eq_cons = sw_cons;
8964    sc->eq_prod = sw_prod;
8965
8966    /* make sure that above mem writes were issued towards the memory */
8967    wmb();
8968
8969    /* update producer */
8970    bxe_update_eq_prod(sc, sc->eq_prod);
8971}
8972
8973static void
8974bxe_handle_sp_tq(void *context,
8975                 int  pending)
8976{
8977    struct bxe_softc *sc = (struct bxe_softc *)context;
8978    uint16_t status;
8979
8980    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8981
8982    /* what work needs to be performed? */
8983    status = bxe_update_dsb_idx(sc);
8984
8985    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8986
8987    /* HW attentions */
8988    if (status & BXE_DEF_SB_ATT_IDX) {
8989        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8990        bxe_attn_int(sc);
8991        status &= ~BXE_DEF_SB_ATT_IDX;
8992    }
8993
8994    /* SP events: STAT_QUERY and others */
8995    if (status & BXE_DEF_SB_IDX) {
8996        /* handle EQ completions */
8997        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8998        bxe_eq_int(sc);
8999        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9000                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
9001        status &= ~BXE_DEF_SB_IDX;
9002    }
9003
9004    /* if status is non zero then something went wrong */
9005    if (__predict_false(status)) {
9006        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9007    }
9008
9009    /* ack status block only if something was actually handled */
9010    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9011               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9012
9013    /*
9014     * Must be called after the EQ processing (since eq leads to sriov
9015     * ramrod completion flows).
9016     * This flow may have been scheduled by the arrival of a ramrod
9017     * completion, or by the sriov code rescheduling itself.
9018     */
9019    // XXX bxe_iov_sp_task(sc);
9020
9021#if 0
9022    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9023    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9024                               &sc->sp_state)) {
9025        bxe_link_report(sc);
9026        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9027    }
9028#endif
9029}
9030
9031static void
9032bxe_handle_fp_tq(void *context,
9033                 int  pending)
9034{
9035    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9036    struct bxe_softc *sc = fp->sc;
9037    uint8_t more_tx = FALSE;
9038    uint8_t more_rx = FALSE;
9039
9040    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9041
9042    /* XXX
9043     * IFF_DRV_RUNNING state can't be checked here since we process
9044     * slowpath events on a client queue during setup. Instead
9045     * we need to add a "process/continue" flag here that the driver
9046     * can use to tell the task here not to do anything.
9047     */
9048#if 0
9049    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9050        return;
9051    }
9052#endif
9053
9054    /* update the fastpath index */
9055    bxe_update_fp_sb_idx(fp);
9056
9057    /* XXX add loop here if ever support multiple tx CoS */
9058    /* fp->txdata[cos] */
9059    if (bxe_has_tx_work(fp)) {
9060        BXE_FP_TX_LOCK(fp);
9061        more_tx = bxe_txeof(sc, fp);
9062        BXE_FP_TX_UNLOCK(fp);
9063    }
9064
9065    if (bxe_has_rx_work(fp)) {
9066        more_rx = bxe_rxeof(sc, fp);
9067    }
9068
9069    if (more_rx /*|| more_tx*/) {
9070        /* still more work to do */
9071        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9072        return;
9073    }
9074
9075    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9076               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9077}
9078
9079static void
9080bxe_task_fp(struct bxe_fastpath *fp)
9081{
9082    struct bxe_softc *sc = fp->sc;
9083    uint8_t more_tx = FALSE;
9084    uint8_t more_rx = FALSE;
9085
9086    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9087
9088    /* update the fastpath index */
9089    bxe_update_fp_sb_idx(fp);
9090
9091    /* XXX add loop here if ever support multiple tx CoS */
9092    /* fp->txdata[cos] */
9093    if (bxe_has_tx_work(fp)) {
9094        BXE_FP_TX_LOCK(fp);
9095        more_tx = bxe_txeof(sc, fp);
9096        BXE_FP_TX_UNLOCK(fp);
9097    }
9098
9099    if (bxe_has_rx_work(fp)) {
9100        more_rx = bxe_rxeof(sc, fp);
9101    }
9102
9103    if (more_rx /*|| more_tx*/) {
9104        /* still more work to do, bail out if this ISR and process later */
9105        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9106        return;
9107    }
9108
9109    /*
9110     * Here we write the fastpath index taken before doing any tx or rx work.
9111     * It is very well possible other hw events occurred up to this point and
9112     * they were actually processed accordingly above. Since we're going to
9113     * write an older fastpath index, an interrupt is coming which we might
9114     * not do any work in.
9115     */
9116    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9117               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9118}
9119
9120/*
9121 * Legacy interrupt entry point.
9122 *
9123 * Verifies that the controller generated the interrupt and
9124 * then calls a separate routine to handle the various
9125 * interrupt causes: link, RX, and TX.
9126 */
9127static void
9128bxe_intr_legacy(void *xsc)
9129{
9130    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9131    struct bxe_fastpath *fp;
9132    uint16_t status, mask;
9133    int i;
9134
9135    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9136
9137#if 0
9138    /* Don't handle any interrupts if we're not ready. */
9139    if (__predict_false(sc->intr_sem != 0)) {
9140        return;
9141    }
9142#endif
9143
9144    /*
9145     * 0 for ustorm, 1 for cstorm
9146     * the bits returned from ack_int() are 0-15
9147     * bit 0 = attention status block
9148     * bit 1 = fast path status block
9149     * a mask of 0x2 or more = tx/rx event
9150     * a mask of 1 = slow path event
9151     */
9152
9153    status = bxe_ack_int(sc);
9154
9155    /* the interrupt is not for us */
9156    if (__predict_false(status == 0)) {
9157        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9158        return;
9159    }
9160
9161    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9162
9163    FOR_EACH_ETH_QUEUE(sc, i) {
9164        fp = &sc->fp[i];
9165        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9166        if (status & mask) {
9167            /* acknowledge and disable further fastpath interrupts */
9168            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9169            bxe_task_fp(fp);
9170            status &= ~mask;
9171        }
9172    }
9173
9174#if 0
9175    if (CNIC_SUPPORT(sc)) {
9176        mask = 0x2;
9177        if (status & (mask | 0x1)) {
9178            ...
9179            status &= ~mask;
9180        }
9181    }
9182#endif
9183
9184    if (__predict_false(status & 0x1)) {
9185        /* acknowledge and disable further slowpath interrupts */
9186        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9187
9188        /* schedule slowpath handler */
9189        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9190
9191        status &= ~0x1;
9192    }
9193
9194    if (__predict_false(status)) {
9195        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9196    }
9197}
9198
9199/* slowpath interrupt entry point */
9200static void
9201bxe_intr_sp(void *xsc)
9202{
9203    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9204
9205    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9206
9207    /* acknowledge and disable further slowpath interrupts */
9208    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9209
9210    /* schedule slowpath handler */
9211    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9212}
9213
9214/* fastpath interrupt entry point */
9215static void
9216bxe_intr_fp(void *xfp)
9217{
9218    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9219    struct bxe_softc *sc = fp->sc;
9220
9221    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9222
9223    BLOGD(sc, DBG_INTR,
9224          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9225          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9226
9227#if 0
9228    /* Don't handle any interrupts if we're not ready. */
9229    if (__predict_false(sc->intr_sem != 0)) {
9230        return;
9231    }
9232#endif
9233
9234    /* acknowledge and disable further fastpath interrupts */
9235    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9236
9237    bxe_task_fp(fp);
9238}
9239
9240/* Release all interrupts allocated by the driver. */
9241static void
9242bxe_interrupt_free(struct bxe_softc *sc)
9243{
9244    int i;
9245
9246    switch (sc->interrupt_mode) {
9247    case INTR_MODE_INTX:
9248        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9249        if (sc->intr[0].resource != NULL) {
9250            bus_release_resource(sc->dev,
9251                                 SYS_RES_IRQ,
9252                                 sc->intr[0].rid,
9253                                 sc->intr[0].resource);
9254        }
9255        break;
9256    case INTR_MODE_MSI:
9257        for (i = 0; i < sc->intr_count; i++) {
9258            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9259            if (sc->intr[i].resource && sc->intr[i].rid) {
9260                bus_release_resource(sc->dev,
9261                                     SYS_RES_IRQ,
9262                                     sc->intr[i].rid,
9263                                     sc->intr[i].resource);
9264            }
9265        }
9266        pci_release_msi(sc->dev);
9267        break;
9268    case INTR_MODE_MSIX:
9269        for (i = 0; i < sc->intr_count; i++) {
9270            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9271            if (sc->intr[i].resource && sc->intr[i].rid) {
9272                bus_release_resource(sc->dev,
9273                                     SYS_RES_IRQ,
9274                                     sc->intr[i].rid,
9275                                     sc->intr[i].resource);
9276            }
9277        }
9278        pci_release_msi(sc->dev);
9279        break;
9280    default:
9281        /* nothing to do as initial allocation failed */
9282        break;
9283    }
9284}
9285
9286/*
9287 * This function determines and allocates the appropriate
9288 * interrupt based on system capabilites and user request.
9289 *
9290 * The user may force a particular interrupt mode, specify
9291 * the number of receive queues, specify the method for
9292 * distribuitng received frames to receive queues, or use
9293 * the default settings which will automatically select the
9294 * best supported combination.  In addition, the OS may or
9295 * may not support certain combinations of these settings.
9296 * This routine attempts to reconcile the settings requested
9297 * by the user with the capabilites available from the system
9298 * to select the optimal combination of features.
9299 *
9300 * Returns:
9301 *   0 = Success, !0 = Failure.
9302 */
9303static int
9304bxe_interrupt_alloc(struct bxe_softc *sc)
9305{
9306    int msix_count = 0;
9307    int msi_count = 0;
9308    int num_requested = 0;
9309    int num_allocated = 0;
9310    int rid, i, j;
9311    int rc;
9312
9313    /* get the number of available MSI/MSI-X interrupts from the OS */
9314    if (sc->interrupt_mode > 0) {
9315        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9316            msix_count = pci_msix_count(sc->dev);
9317        }
9318
9319        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9320            msi_count = pci_msi_count(sc->dev);
9321        }
9322
9323        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9324              msi_count, msix_count);
9325    }
9326
9327    do { /* try allocating MSI-X interrupt resources (at least 2) */
9328        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9329            break;
9330        }
9331
9332        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9333            (msix_count < 2)) {
9334            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9335            break;
9336        }
9337
9338        /* ask for the necessary number of MSI-X vectors */
9339        num_requested = min((sc->num_queues + 1), msix_count);
9340
9341        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9342
9343        num_allocated = num_requested;
9344        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9345            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9346            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9347            break;
9348        }
9349
9350        if (num_allocated < 2) { /* possible? */
9351            BLOGE(sc, "MSI-X allocation less than 2!\n");
9352            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9353            pci_release_msi(sc->dev);
9354            break;
9355        }
9356
9357        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9358              num_requested, num_allocated);
9359
9360        /* best effort so use the number of vectors allocated to us */
9361        sc->intr_count = num_allocated;
9362        sc->num_queues = num_allocated - 1;
9363
9364        rid = 1; /* initial resource identifier */
9365
9366        /* allocate the MSI-X vectors */
9367        for (i = 0; i < num_allocated; i++) {
9368            sc->intr[i].rid = (rid + i);
9369
9370            if ((sc->intr[i].resource =
9371                 bus_alloc_resource_any(sc->dev,
9372                                        SYS_RES_IRQ,
9373                                        &sc->intr[i].rid,
9374                                        RF_ACTIVE)) == NULL) {
9375                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9376                      i, (rid + i));
9377
9378                for (j = (i - 1); j >= 0; j--) {
9379                    bus_release_resource(sc->dev,
9380                                         SYS_RES_IRQ,
9381                                         sc->intr[j].rid,
9382                                         sc->intr[j].resource);
9383                }
9384
9385                sc->intr_count = 0;
9386                sc->num_queues = 0;
9387                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9388                pci_release_msi(sc->dev);
9389                break;
9390            }
9391
9392            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9393        }
9394    } while (0);
9395
9396    do { /* try allocating MSI vector resources (at least 2) */
9397        if (sc->interrupt_mode != INTR_MODE_MSI) {
9398            break;
9399        }
9400
9401        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9402            (msi_count < 1)) {
9403            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9404            break;
9405        }
9406
9407        /* ask for a single MSI vector */
9408        num_requested = 1;
9409
9410        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9411
9412        num_allocated = num_requested;
9413        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9414            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9415            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9416            break;
9417        }
9418
9419        if (num_allocated != 1) { /* possible? */
9420            BLOGE(sc, "MSI allocation is not 1!\n");
9421            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9422            pci_release_msi(sc->dev);
9423            break;
9424        }
9425
9426        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9427              num_requested, num_allocated);
9428
9429        /* best effort so use the number of vectors allocated to us */
9430        sc->intr_count = num_allocated;
9431        sc->num_queues = num_allocated;
9432
9433        rid = 1; /* initial resource identifier */
9434
9435        sc->intr[0].rid = rid;
9436
9437        if ((sc->intr[0].resource =
9438             bus_alloc_resource_any(sc->dev,
9439                                    SYS_RES_IRQ,
9440                                    &sc->intr[0].rid,
9441                                    RF_ACTIVE)) == NULL) {
9442            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9443            sc->intr_count = 0;
9444            sc->num_queues = 0;
9445            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9446            pci_release_msi(sc->dev);
9447            break;
9448        }
9449
9450        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9451    } while (0);
9452
9453    do { /* try allocating INTx vector resources */
9454        if (sc->interrupt_mode != INTR_MODE_INTX) {
9455            break;
9456        }
9457
9458        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9459
9460        /* only one vector for INTx */
9461        sc->intr_count = 1;
9462        sc->num_queues = 1;
9463
9464        rid = 0; /* initial resource identifier */
9465
9466        sc->intr[0].rid = rid;
9467
9468        if ((sc->intr[0].resource =
9469             bus_alloc_resource_any(sc->dev,
9470                                    SYS_RES_IRQ,
9471                                    &sc->intr[0].rid,
9472                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9473            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9474            sc->intr_count = 0;
9475            sc->num_queues = 0;
9476            sc->interrupt_mode = -1; /* Failed! */
9477            break;
9478        }
9479
9480        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9481    } while (0);
9482
9483    if (sc->interrupt_mode == -1) {
9484        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9485        rc = 1;
9486    } else {
9487        BLOGD(sc, DBG_LOAD,
9488              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9489              sc->interrupt_mode, sc->num_queues);
9490        rc = 0;
9491    }
9492
9493    return (rc);
9494}
9495
9496static void
9497bxe_interrupt_detach(struct bxe_softc *sc)
9498{
9499    struct bxe_fastpath *fp;
9500    int i;
9501
9502    /* release interrupt resources */
9503    for (i = 0; i < sc->intr_count; i++) {
9504        if (sc->intr[i].resource && sc->intr[i].tag) {
9505            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9506            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9507        }
9508    }
9509
9510    for (i = 0; i < sc->num_queues; i++) {
9511        fp = &sc->fp[i];
9512        if (fp->tq) {
9513            taskqueue_drain(fp->tq, &fp->tq_task);
9514            taskqueue_free(fp->tq);
9515            fp->tq = NULL;
9516        }
9517    }
9518
9519    if (sc->rx_mode_tq) {
9520        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9521        taskqueue_free(sc->rx_mode_tq);
9522        sc->rx_mode_tq = NULL;
9523    }
9524
9525    if (sc->sp_tq) {
9526        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9527        taskqueue_free(sc->sp_tq);
9528        sc->sp_tq = NULL;
9529    }
9530}
9531
9532/*
9533 * Enables interrupts and attach to the ISR.
9534 *
9535 * When using multiple MSI/MSI-X vectors the first vector
9536 * is used for slowpath operations while all remaining
9537 * vectors are used for fastpath operations.  If only a
9538 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9539 * ISR must look for both slowpath and fastpath completions.
9540 */
9541static int
9542bxe_interrupt_attach(struct bxe_softc *sc)
9543{
9544    struct bxe_fastpath *fp;
9545    int rc = 0;
9546    int i;
9547
9548    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9549             "bxe%d_sp_tq", sc->unit);
9550    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9551    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9552                                      taskqueue_thread_enqueue,
9553                                      &sc->sp_tq);
9554    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9555                            "%s", sc->sp_tq_name);
9556
9557    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9558             "bxe%d_rx_mode_tq", sc->unit);
9559    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9560    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9561                                           taskqueue_thread_enqueue,
9562                                           &sc->rx_mode_tq);
9563    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9564                            "%s", sc->rx_mode_tq_name);
9565
9566    for (i = 0; i < sc->num_queues; i++) {
9567        fp = &sc->fp[i];
9568        snprintf(fp->tq_name, sizeof(fp->tq_name),
9569                 "bxe%d_fp%d_tq", sc->unit, i);
9570        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9571        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9572                                       taskqueue_thread_enqueue,
9573                                       &fp->tq);
9574        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9575                                "%s", fp->tq_name);
9576    }
9577
9578    /* setup interrupt handlers */
9579    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9580        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9581
9582        /*
9583         * Setup the interrupt handler. Note that we pass the driver instance
9584         * to the interrupt handler for the slowpath.
9585         */
9586        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9587                                 (INTR_TYPE_NET | INTR_MPSAFE),
9588                                 NULL, bxe_intr_sp, sc,
9589                                 &sc->intr[0].tag)) != 0) {
9590            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9591            goto bxe_interrupt_attach_exit;
9592        }
9593
9594        bus_describe_intr(sc->dev, sc->intr[0].resource,
9595                          sc->intr[0].tag, "sp");
9596
9597        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9598
9599        /* initialize the fastpath vectors (note the first was used for sp) */
9600        for (i = 0; i < sc->num_queues; i++) {
9601            fp = &sc->fp[i];
9602            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9603
9604            /*
9605             * Setup the interrupt handler. Note that we pass the
9606             * fastpath context to the interrupt handler in this
9607             * case.
9608             */
9609            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9610                                     (INTR_TYPE_NET | INTR_MPSAFE),
9611                                     NULL, bxe_intr_fp, fp,
9612                                     &sc->intr[i + 1].tag)) != 0) {
9613                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9614                      (i + 1), rc);
9615                goto bxe_interrupt_attach_exit;
9616            }
9617
9618            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9619                              sc->intr[i + 1].tag, "fp%02d", i);
9620
9621            /* bind the fastpath instance to a cpu */
9622            if (sc->num_queues > 1) {
9623                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9624            }
9625
9626            fp->state = BXE_FP_STATE_IRQ;
9627        }
9628    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9629        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9630
9631        /*
9632         * Setup the interrupt handler. Note that we pass the
9633         * driver instance to the interrupt handler which
9634         * will handle both the slowpath and fastpath.
9635         */
9636        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9637                                 (INTR_TYPE_NET | INTR_MPSAFE),
9638                                 NULL, bxe_intr_legacy, sc,
9639                                 &sc->intr[0].tag)) != 0) {
9640            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9641            goto bxe_interrupt_attach_exit;
9642        }
9643
9644    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9645        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9646
9647        /*
9648         * Setup the interrupt handler. Note that we pass the
9649         * driver instance to the interrupt handler which
9650         * will handle both the slowpath and fastpath.
9651         */
9652        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9653                                 (INTR_TYPE_NET | INTR_MPSAFE),
9654                                 NULL, bxe_intr_legacy, sc,
9655                                 &sc->intr[0].tag)) != 0) {
9656            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9657            goto bxe_interrupt_attach_exit;
9658        }
9659    }
9660
9661bxe_interrupt_attach_exit:
9662
9663    return (rc);
9664}
9665
9666static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9667static int  bxe_init_hw_common(struct bxe_softc *sc);
9668static int  bxe_init_hw_port(struct bxe_softc *sc);
9669static int  bxe_init_hw_func(struct bxe_softc *sc);
9670static void bxe_reset_common(struct bxe_softc *sc);
9671static void bxe_reset_port(struct bxe_softc *sc);
9672static void bxe_reset_func(struct bxe_softc *sc);
9673static int  bxe_gunzip_init(struct bxe_softc *sc);
9674static void bxe_gunzip_end(struct bxe_softc *sc);
9675static int  bxe_init_firmware(struct bxe_softc *sc);
9676static void bxe_release_firmware(struct bxe_softc *sc);
9677
9678static struct
9679ecore_func_sp_drv_ops bxe_func_sp_drv = {
9680    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9681    .init_hw_cmn      = bxe_init_hw_common,
9682    .init_hw_port     = bxe_init_hw_port,
9683    .init_hw_func     = bxe_init_hw_func,
9684
9685    .reset_hw_cmn     = bxe_reset_common,
9686    .reset_hw_port    = bxe_reset_port,
9687    .reset_hw_func    = bxe_reset_func,
9688
9689    .gunzip_init      = bxe_gunzip_init,
9690    .gunzip_end       = bxe_gunzip_end,
9691
9692    .init_fw          = bxe_init_firmware,
9693    .release_fw       = bxe_release_firmware,
9694};
9695
9696static void
9697bxe_init_func_obj(struct bxe_softc *sc)
9698{
9699    sc->dmae_ready = 0;
9700
9701    ecore_init_func_obj(sc,
9702                        &sc->func_obj,
9703                        BXE_SP(sc, func_rdata),
9704                        BXE_SP_MAPPING(sc, func_rdata),
9705                        BXE_SP(sc, func_afex_rdata),
9706                        BXE_SP_MAPPING(sc, func_afex_rdata),
9707                        &bxe_func_sp_drv);
9708}
9709
9710static int
9711bxe_init_hw(struct bxe_softc *sc,
9712            uint32_t         load_code)
9713{
9714    struct ecore_func_state_params func_params = { NULL };
9715    int rc;
9716
9717    /* prepare the parameters for function state transitions */
9718    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9719
9720    func_params.f_obj = &sc->func_obj;
9721    func_params.cmd = ECORE_F_CMD_HW_INIT;
9722
9723    func_params.params.hw_init.load_phase = load_code;
9724
9725    /*
9726     * Via a plethora of function pointers, we will eventually reach
9727     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9728     */
9729    rc = ecore_func_state_change(sc, &func_params);
9730
9731    return (rc);
9732}
9733
9734static void
9735bxe_fill(struct bxe_softc *sc,
9736         uint32_t         addr,
9737         int              fill,
9738         uint32_t         len)
9739{
9740    uint32_t i;
9741
9742    if (!(len % 4) && !(addr % 4)) {
9743        for (i = 0; i < len; i += 4) {
9744            REG_WR(sc, (addr + i), fill);
9745        }
9746    } else {
9747        for (i = 0; i < len; i++) {
9748            REG_WR8(sc, (addr + i), fill);
9749        }
9750    }
9751}
9752
9753/* writes FP SP data to FW - data_size in dwords */
9754static void
9755bxe_wr_fp_sb_data(struct bxe_softc *sc,
9756                  int              fw_sb_id,
9757                  uint32_t         *sb_data_p,
9758                  uint32_t         data_size)
9759{
9760    int index;
9761
9762    for (index = 0; index < data_size; index++) {
9763        REG_WR(sc,
9764               (BAR_CSTRORM_INTMEM +
9765                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9766                (sizeof(uint32_t) * index)),
9767               *(sb_data_p + index));
9768    }
9769}
9770
9771static void
9772bxe_zero_fp_sb(struct bxe_softc *sc,
9773               int              fw_sb_id)
9774{
9775    struct hc_status_block_data_e2 sb_data_e2;
9776    struct hc_status_block_data_e1x sb_data_e1x;
9777    uint32_t *sb_data_p;
9778    uint32_t data_size = 0;
9779
9780    if (!CHIP_IS_E1x(sc)) {
9781        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9782        sb_data_e2.common.state = SB_DISABLED;
9783        sb_data_e2.common.p_func.vf_valid = FALSE;
9784        sb_data_p = (uint32_t *)&sb_data_e2;
9785        data_size = (sizeof(struct hc_status_block_data_e2) /
9786                     sizeof(uint32_t));
9787    } else {
9788        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9789        sb_data_e1x.common.state = SB_DISABLED;
9790        sb_data_e1x.common.p_func.vf_valid = FALSE;
9791        sb_data_p = (uint32_t *)&sb_data_e1x;
9792        data_size = (sizeof(struct hc_status_block_data_e1x) /
9793                     sizeof(uint32_t));
9794    }
9795
9796    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9797
9798    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9799             0, CSTORM_STATUS_BLOCK_SIZE);
9800    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9801             0, CSTORM_SYNC_BLOCK_SIZE);
9802}
9803
9804static void
9805bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9806                  struct hc_sp_status_block_data *sp_sb_data)
9807{
9808    int i;
9809
9810    for (i = 0;
9811         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9812         i++) {
9813        REG_WR(sc,
9814               (BAR_CSTRORM_INTMEM +
9815                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9816                (i * sizeof(uint32_t))),
9817               *((uint32_t *)sp_sb_data + i));
9818    }
9819}
9820
9821static void
9822bxe_zero_sp_sb(struct bxe_softc *sc)
9823{
9824    struct hc_sp_status_block_data sp_sb_data;
9825
9826    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9827
9828    sp_sb_data.state           = SB_DISABLED;
9829    sp_sb_data.p_func.vf_valid = FALSE;
9830
9831    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9832
9833    bxe_fill(sc,
9834             (BAR_CSTRORM_INTMEM +
9835              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9836              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9837    bxe_fill(sc,
9838             (BAR_CSTRORM_INTMEM +
9839              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9840              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9841}
9842
9843static void
9844bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9845                             int                       igu_sb_id,
9846                             int                       igu_seg_id)
9847{
9848    hc_sm->igu_sb_id      = igu_sb_id;
9849    hc_sm->igu_seg_id     = igu_seg_id;
9850    hc_sm->timer_value    = 0xFF;
9851    hc_sm->time_to_expire = 0xFFFFFFFF;
9852}
9853
9854static void
9855bxe_map_sb_state_machines(struct hc_index_data *index_data)
9856{
9857    /* zero out state machine indices */
9858
9859    /* rx indices */
9860    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9861
9862    /* tx indices */
9863    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9864    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9865    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9866    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9867
9868    /* map indices */
9869
9870    /* rx indices */
9871    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9872        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9873
9874    /* tx indices */
9875    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9876        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9877    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9878        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9879    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9880        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9881    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9882        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9883}
9884
9885static void
9886bxe_init_sb(struct bxe_softc *sc,
9887            bus_addr_t       busaddr,
9888            int              vfid,
9889            uint8_t          vf_valid,
9890            int              fw_sb_id,
9891            int              igu_sb_id)
9892{
9893    struct hc_status_block_data_e2  sb_data_e2;
9894    struct hc_status_block_data_e1x sb_data_e1x;
9895    struct hc_status_block_sm       *hc_sm_p;
9896    uint32_t *sb_data_p;
9897    int igu_seg_id;
9898    int data_size;
9899
9900    if (CHIP_INT_MODE_IS_BC(sc)) {
9901        igu_seg_id = HC_SEG_ACCESS_NORM;
9902    } else {
9903        igu_seg_id = IGU_SEG_ACCESS_NORM;
9904    }
9905
9906    bxe_zero_fp_sb(sc, fw_sb_id);
9907
9908    if (!CHIP_IS_E1x(sc)) {
9909        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9910        sb_data_e2.common.state = SB_ENABLED;
9911        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9912        sb_data_e2.common.p_func.vf_id = vfid;
9913        sb_data_e2.common.p_func.vf_valid = vf_valid;
9914        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9915        sb_data_e2.common.same_igu_sb_1b = TRUE;
9916        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9917        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9918        hc_sm_p = sb_data_e2.common.state_machine;
9919        sb_data_p = (uint32_t *)&sb_data_e2;
9920        data_size = (sizeof(struct hc_status_block_data_e2) /
9921                     sizeof(uint32_t));
9922        bxe_map_sb_state_machines(sb_data_e2.index_data);
9923    } else {
9924        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9925        sb_data_e1x.common.state = SB_ENABLED;
9926        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9927        sb_data_e1x.common.p_func.vf_id = 0xff;
9928        sb_data_e1x.common.p_func.vf_valid = FALSE;
9929        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9930        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9931        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9932        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9933        hc_sm_p = sb_data_e1x.common.state_machine;
9934        sb_data_p = (uint32_t *)&sb_data_e1x;
9935        data_size = (sizeof(struct hc_status_block_data_e1x) /
9936                     sizeof(uint32_t));
9937        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9938    }
9939
9940    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9941    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9942
9943    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9944
9945    /* write indices to HW - PCI guarantees endianity of regpairs */
9946    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9947}
9948
9949static inline uint8_t
9950bxe_fp_qzone_id(struct bxe_fastpath *fp)
9951{
9952    if (CHIP_IS_E1x(fp->sc)) {
9953        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9954    } else {
9955        return (fp->cl_id);
9956    }
9957}
9958
9959static inline uint32_t
9960bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9961                           struct bxe_fastpath *fp)
9962{
9963    uint32_t offset = BAR_USTRORM_INTMEM;
9964
9965#if 0
9966    if (IS_VF(sc)) {
9967        return (PXP_VF_ADDR_USDM_QUEUES_START +
9968                (sc->acquire_resp.resc.hw_qid[fp->index] *
9969                 sizeof(struct ustorm_queue_zone_data)));
9970    } else
9971#endif
9972    if (!CHIP_IS_E1x(sc)) {
9973        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9974    } else {
9975        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9976    }
9977
9978    return (offset);
9979}
9980
9981static void
9982bxe_init_eth_fp(struct bxe_softc *sc,
9983                int              idx)
9984{
9985    struct bxe_fastpath *fp = &sc->fp[idx];
9986    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9987    unsigned long q_type = 0;
9988    int cos;
9989
9990    fp->sc    = sc;
9991    fp->index = idx;
9992
9993    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9994             "bxe%d_fp%d_tx_lock", sc->unit, idx);
9995    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9996
9997    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9998             "bxe%d_fp%d_rx_lock", sc->unit, idx);
9999    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10000
10001    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10002    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10003
10004    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10005                    (SC_L_ID(sc) + idx) :
10006                    /* want client ID same as IGU SB ID for non-E1 */
10007                    fp->igu_sb_id;
10008    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10009
10010    /* setup sb indices */
10011    if (!CHIP_IS_E1x(sc)) {
10012        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10013        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10014    } else {
10015        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10016        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10017    }
10018
10019    /* init shortcut */
10020    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10021
10022    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10023
10024    /*
10025     * XXX If multiple CoS is ever supported then each fastpath structure
10026     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10027     */
10028    for (cos = 0; cos < sc->max_cos; cos++) {
10029        cids[cos] = idx;
10030    }
10031    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10032
10033    /* nothing more for a VF to do */
10034    if (IS_VF(sc)) {
10035        return;
10036    }
10037
10038    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10039                fp->fw_sb_id, fp->igu_sb_id);
10040
10041    bxe_update_fp_sb_idx(fp);
10042
10043    /* Configure Queue State object */
10044    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10045    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10046
10047    ecore_init_queue_obj(sc,
10048                         &sc->sp_objs[idx].q_obj,
10049                         fp->cl_id,
10050                         cids,
10051                         sc->max_cos,
10052                         SC_FUNC(sc),
10053                         BXE_SP(sc, q_rdata),
10054                         BXE_SP_MAPPING(sc, q_rdata),
10055                         q_type);
10056
10057    /* configure classification DBs */
10058    ecore_init_mac_obj(sc,
10059                       &sc->sp_objs[idx].mac_obj,
10060                       fp->cl_id,
10061                       idx,
10062                       SC_FUNC(sc),
10063                       BXE_SP(sc, mac_rdata),
10064                       BXE_SP_MAPPING(sc, mac_rdata),
10065                       ECORE_FILTER_MAC_PENDING,
10066                       &sc->sp_state,
10067                       ECORE_OBJ_TYPE_RX_TX,
10068                       &sc->macs_pool);
10069
10070    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10071          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10072}
10073
10074static inline void
10075bxe_update_rx_prod(struct bxe_softc    *sc,
10076                   struct bxe_fastpath *fp,
10077                   uint16_t            rx_bd_prod,
10078                   uint16_t            rx_cq_prod,
10079                   uint16_t            rx_sge_prod)
10080{
10081    struct ustorm_eth_rx_producers rx_prods = { 0 };
10082    uint32_t i;
10083
10084    /* update producers */
10085    rx_prods.bd_prod  = rx_bd_prod;
10086    rx_prods.cqe_prod = rx_cq_prod;
10087    rx_prods.sge_prod = rx_sge_prod;
10088
10089    /*
10090     * Make sure that the BD and SGE data is updated before updating the
10091     * producers since FW might read the BD/SGE right after the producer
10092     * is updated.
10093     * This is only applicable for weak-ordered memory model archs such
10094     * as IA-64. The following barrier is also mandatory since FW will
10095     * assumes BDs must have buffers.
10096     */
10097    wmb();
10098
10099    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10100        REG_WR(sc,
10101               (fp->ustorm_rx_prods_offset + (i * 4)),
10102               ((uint32_t *)&rx_prods)[i]);
10103    }
10104
10105    wmb(); /* keep prod updates ordered */
10106
10107    BLOGD(sc, DBG_RX,
10108          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10109          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10110}
10111
10112static void
10113bxe_init_rx_rings(struct bxe_softc *sc)
10114{
10115    struct bxe_fastpath *fp;
10116    int i;
10117
10118    for (i = 0; i < sc->num_queues; i++) {
10119        fp = &sc->fp[i];
10120
10121        fp->rx_bd_cons = 0;
10122
10123        /*
10124         * Activate the BD ring...
10125         * Warning, this will generate an interrupt (to the TSTORM)
10126         * so this can only be done after the chip is initialized
10127         */
10128        bxe_update_rx_prod(sc, fp,
10129                           fp->rx_bd_prod,
10130                           fp->rx_cq_prod,
10131                           fp->rx_sge_prod);
10132
10133        if (i != 0) {
10134            continue;
10135        }
10136
10137        if (CHIP_IS_E1(sc)) {
10138            REG_WR(sc,
10139                   (BAR_USTRORM_INTMEM +
10140                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10141                   U64_LO(fp->rcq_dma.paddr));
10142            REG_WR(sc,
10143                   (BAR_USTRORM_INTMEM +
10144                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10145                   U64_HI(fp->rcq_dma.paddr));
10146        }
10147    }
10148}
10149
10150static void
10151bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10152{
10153    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10154    fp->tx_db.data.zero_fill1 = 0;
10155    fp->tx_db.data.prod = 0;
10156
10157    fp->tx_pkt_prod = 0;
10158    fp->tx_pkt_cons = 0;
10159    fp->tx_bd_prod = 0;
10160    fp->tx_bd_cons = 0;
10161    fp->eth_q_stats.tx_pkts = 0;
10162}
10163
10164static inline void
10165bxe_init_tx_rings(struct bxe_softc *sc)
10166{
10167    int i;
10168
10169    for (i = 0; i < sc->num_queues; i++) {
10170#if 0
10171        uint8_t cos;
10172        for (cos = 0; cos < sc->max_cos; cos++) {
10173            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10174        }
10175#else
10176        bxe_init_tx_ring_one(&sc->fp[i]);
10177#endif
10178    }
10179}
10180
10181static void
10182bxe_init_def_sb(struct bxe_softc *sc)
10183{
10184    struct host_sp_status_block *def_sb = sc->def_sb;
10185    bus_addr_t mapping = sc->def_sb_dma.paddr;
10186    int igu_sp_sb_index;
10187    int igu_seg_id;
10188    int port = SC_PORT(sc);
10189    int func = SC_FUNC(sc);
10190    int reg_offset, reg_offset_en5;
10191    uint64_t section;
10192    int index, sindex;
10193    struct hc_sp_status_block_data sp_sb_data;
10194
10195    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10196
10197    if (CHIP_INT_MODE_IS_BC(sc)) {
10198        igu_sp_sb_index = DEF_SB_IGU_ID;
10199        igu_seg_id = HC_SEG_ACCESS_DEF;
10200    } else {
10201        igu_sp_sb_index = sc->igu_dsb_id;
10202        igu_seg_id = IGU_SEG_ACCESS_DEF;
10203    }
10204
10205    /* attentions */
10206    section = ((uint64_t)mapping +
10207               offsetof(struct host_sp_status_block, atten_status_block));
10208    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10209    sc->attn_state = 0;
10210
10211    reg_offset = (port) ?
10212                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10213                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10214    reg_offset_en5 = (port) ?
10215                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10216                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10217
10218    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10219        /* take care of sig[0]..sig[4] */
10220        for (sindex = 0; sindex < 4; sindex++) {
10221            sc->attn_group[index].sig[sindex] =
10222                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10223        }
10224
10225        if (!CHIP_IS_E1x(sc)) {
10226            /*
10227             * enable5 is separate from the rest of the registers,
10228             * and the address skip is 4 and not 16 between the
10229             * different groups
10230             */
10231            sc->attn_group[index].sig[4] =
10232                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10233        } else {
10234            sc->attn_group[index].sig[4] = 0;
10235        }
10236    }
10237
10238    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10239        reg_offset = (port) ?
10240                         HC_REG_ATTN_MSG1_ADDR_L :
10241                         HC_REG_ATTN_MSG0_ADDR_L;
10242        REG_WR(sc, reg_offset, U64_LO(section));
10243        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10244    } else if (!CHIP_IS_E1x(sc)) {
10245        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10246        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10247    }
10248
10249    section = ((uint64_t)mapping +
10250               offsetof(struct host_sp_status_block, sp_sb));
10251
10252    bxe_zero_sp_sb(sc);
10253
10254    /* PCI guarantees endianity of regpair */
10255    sp_sb_data.state           = SB_ENABLED;
10256    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10257    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10258    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10259    sp_sb_data.igu_seg_id      = igu_seg_id;
10260    sp_sb_data.p_func.pf_id    = func;
10261    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10262    sp_sb_data.p_func.vf_id    = 0xff;
10263
10264    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10265
10266    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10267}
10268
10269static void
10270bxe_init_sp_ring(struct bxe_softc *sc)
10271{
10272    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10273    sc->spq_prod_idx = 0;
10274    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10275    sc->spq_prod_bd = sc->spq;
10276    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10277}
10278
10279static void
10280bxe_init_eq_ring(struct bxe_softc *sc)
10281{
10282    union event_ring_elem *elem;
10283    int i;
10284
10285    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10286        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10287
10288        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10289                                                 BCM_PAGE_SIZE *
10290                                                 (i % NUM_EQ_PAGES)));
10291        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10292                                                 BCM_PAGE_SIZE *
10293                                                 (i % NUM_EQ_PAGES)));
10294    }
10295
10296    sc->eq_cons    = 0;
10297    sc->eq_prod    = NUM_EQ_DESC;
10298    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10299
10300    atomic_store_rel_long(&sc->eq_spq_left,
10301                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10302                               NUM_EQ_DESC) - 1));
10303}
10304
10305static void
10306bxe_init_internal_common(struct bxe_softc *sc)
10307{
10308    int i;
10309
10310    if (IS_MF_SI(sc)) {
10311        /*
10312         * In switch independent mode, the TSTORM needs to accept
10313         * packets that failed classification, since approximate match
10314         * mac addresses aren't written to NIG LLH.
10315         */
10316        REG_WR8(sc,
10317                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10318                2);
10319    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10320        REG_WR8(sc,
10321                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10322                0);
10323    }
10324
10325    /*
10326     * Zero this manually as its initialization is currently missing
10327     * in the initTool.
10328     */
10329    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10330        REG_WR(sc,
10331               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10332               0);
10333    }
10334
10335    if (!CHIP_IS_E1x(sc)) {
10336        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10337                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10338    }
10339}
10340
10341static void
10342bxe_init_internal(struct bxe_softc *sc,
10343                  uint32_t         load_code)
10344{
10345    switch (load_code) {
10346    case FW_MSG_CODE_DRV_LOAD_COMMON:
10347    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10348        bxe_init_internal_common(sc);
10349        /* no break */
10350
10351    case FW_MSG_CODE_DRV_LOAD_PORT:
10352        /* nothing to do */
10353        /* no break */
10354
10355    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10356        /* internal memory per function is initialized inside bxe_pf_init */
10357        break;
10358
10359    default:
10360        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10361        break;
10362    }
10363}
10364
10365static void
10366storm_memset_func_cfg(struct bxe_softc                         *sc,
10367                      struct tstorm_eth_function_common_config *tcfg,
10368                      uint16_t                                  abs_fid)
10369{
10370    uint32_t addr;
10371    size_t size;
10372
10373    addr = (BAR_TSTRORM_INTMEM +
10374            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10375    size = sizeof(struct tstorm_eth_function_common_config);
10376    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10377}
10378
10379static void
10380bxe_func_init(struct bxe_softc            *sc,
10381              struct bxe_func_init_params *p)
10382{
10383    struct tstorm_eth_function_common_config tcfg = { 0 };
10384
10385    if (CHIP_IS_E1x(sc)) {
10386        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10387    }
10388
10389    /* Enable the function in the FW */
10390    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10391    storm_memset_func_en(sc, p->func_id, 1);
10392
10393    /* spq */
10394    if (p->func_flgs & FUNC_FLG_SPQ) {
10395        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10396        REG_WR(sc,
10397               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10398               p->spq_prod);
10399    }
10400}
10401
10402/*
10403 * Calculates the sum of vn_min_rates.
10404 * It's needed for further normalizing of the min_rates.
10405 * Returns:
10406 *   sum of vn_min_rates.
10407 *     or
10408 *   0 - if all the min_rates are 0.
10409 * In the later case fainess algorithm should be deactivated.
10410 * If all min rates are not zero then those that are zeroes will be set to 1.
10411 */
10412static void
10413bxe_calc_vn_min(struct bxe_softc       *sc,
10414                struct cmng_init_input *input)
10415{
10416    uint32_t vn_cfg;
10417    uint32_t vn_min_rate;
10418    int all_zero = 1;
10419    int vn;
10420
10421    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10422        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10423        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10424                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10425
10426        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10427            /* skip hidden VNs */
10428            vn_min_rate = 0;
10429        } else if (!vn_min_rate) {
10430            /* If min rate is zero - set it to 100 */
10431            vn_min_rate = DEF_MIN_RATE;
10432        } else {
10433            all_zero = 0;
10434        }
10435
10436        input->vnic_min_rate[vn] = vn_min_rate;
10437    }
10438
10439    /* if ETS or all min rates are zeros - disable fairness */
10440    if (BXE_IS_ETS_ENABLED(sc)) {
10441        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10442        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10443    } else if (all_zero) {
10444        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10445        BLOGD(sc, DBG_LOAD,
10446              "Fariness disabled (all MIN values are zeroes)\n");
10447    } else {
10448        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10449    }
10450}
10451
10452static inline uint16_t
10453bxe_extract_max_cfg(struct bxe_softc *sc,
10454                    uint32_t         mf_cfg)
10455{
10456    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10457                        FUNC_MF_CFG_MAX_BW_SHIFT);
10458
10459    if (!max_cfg) {
10460        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10461        max_cfg = 100;
10462    }
10463
10464    return (max_cfg);
10465}
10466
10467static void
10468bxe_calc_vn_max(struct bxe_softc       *sc,
10469                int                    vn,
10470                struct cmng_init_input *input)
10471{
10472    uint16_t vn_max_rate;
10473    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10474    uint32_t max_cfg;
10475
10476    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10477        vn_max_rate = 0;
10478    } else {
10479        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10480
10481        if (IS_MF_SI(sc)) {
10482            /* max_cfg in percents of linkspeed */
10483            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10484        } else { /* SD modes */
10485            /* max_cfg is absolute in 100Mb units */
10486            vn_max_rate = (max_cfg * 100);
10487        }
10488    }
10489
10490    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10491
10492    input->vnic_max_rate[vn] = vn_max_rate;
10493}
10494
10495static void
10496bxe_cmng_fns_init(struct bxe_softc *sc,
10497                  uint8_t          read_cfg,
10498                  uint8_t          cmng_type)
10499{
10500    struct cmng_init_input input;
10501    int vn;
10502
10503    memset(&input, 0, sizeof(struct cmng_init_input));
10504
10505    input.port_rate = sc->link_vars.line_speed;
10506
10507    if (cmng_type == CMNG_FNS_MINMAX) {
10508        /* read mf conf from shmem */
10509        if (read_cfg) {
10510            bxe_read_mf_cfg(sc);
10511        }
10512
10513        /* get VN min rate and enable fairness if not 0 */
10514        bxe_calc_vn_min(sc, &input);
10515
10516        /* get VN max rate */
10517        if (sc->port.pmf) {
10518            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10519                bxe_calc_vn_max(sc, vn, &input);
10520            }
10521        }
10522
10523        /* always enable rate shaping and fairness */
10524        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10525
10526        ecore_init_cmng(&input, &sc->cmng);
10527        return;
10528    }
10529
10530    /* rate shaping and fairness are disabled */
10531    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10532}
10533
10534static int
10535bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10536{
10537    if (CHIP_REV_IS_SLOW(sc)) {
10538        return (CMNG_FNS_NONE);
10539    }
10540
10541    if (IS_MF(sc)) {
10542        return (CMNG_FNS_MINMAX);
10543    }
10544
10545    return (CMNG_FNS_NONE);
10546}
10547
10548static void
10549storm_memset_cmng(struct bxe_softc *sc,
10550                  struct cmng_init *cmng,
10551                  uint8_t          port)
10552{
10553    int vn;
10554    int func;
10555    uint32_t addr;
10556    size_t size;
10557
10558    addr = (BAR_XSTRORM_INTMEM +
10559            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10560    size = sizeof(struct cmng_struct_per_port);
10561    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10562
10563    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10564        func = func_by_vn(sc, vn);
10565
10566        addr = (BAR_XSTRORM_INTMEM +
10567                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10568        size = sizeof(struct rate_shaping_vars_per_vn);
10569        ecore_storm_memset_struct(sc, addr, size,
10570                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10571
10572        addr = (BAR_XSTRORM_INTMEM +
10573                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10574        size = sizeof(struct fairness_vars_per_vn);
10575        ecore_storm_memset_struct(sc, addr, size,
10576                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10577    }
10578}
10579
10580static void
10581bxe_pf_init(struct bxe_softc *sc)
10582{
10583    struct bxe_func_init_params func_init = { 0 };
10584    struct event_ring_data eq_data = { { 0 } };
10585    uint16_t flags;
10586
10587    if (!CHIP_IS_E1x(sc)) {
10588        /* reset IGU PF statistics: MSIX + ATTN */
10589        /* PF */
10590        REG_WR(sc,
10591               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10592                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10593                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10594               0);
10595        /* ATTN */
10596        REG_WR(sc,
10597               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10598                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10599                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10600                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10601               0);
10602    }
10603
10604    /* function setup flags */
10605    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10606
10607    /*
10608     * This flag is relevant for E1x only.
10609     * E2 doesn't have a TPA configuration in a function level.
10610     */
10611    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10612
10613    func_init.func_flgs = flags;
10614    func_init.pf_id     = SC_FUNC(sc);
10615    func_init.func_id   = SC_FUNC(sc);
10616    func_init.spq_map   = sc->spq_dma.paddr;
10617    func_init.spq_prod  = sc->spq_prod_idx;
10618
10619    bxe_func_init(sc, &func_init);
10620
10621    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10622
10623    /*
10624     * Congestion management values depend on the link rate.
10625     * There is no active link so initial link rate is set to 10Gbps.
10626     * When the link comes up the congestion management values are
10627     * re-calculated according to the actual link rate.
10628     */
10629    sc->link_vars.line_speed = SPEED_10000;
10630    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10631
10632    /* Only the PMF sets the HW */
10633    if (sc->port.pmf) {
10634        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10635    }
10636
10637    /* init Event Queue - PCI bus guarantees correct endainity */
10638    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10639    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10640    eq_data.producer     = sc->eq_prod;
10641    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10642    eq_data.sb_id        = DEF_SB_ID;
10643    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10644}
10645
10646static void
10647bxe_hc_int_enable(struct bxe_softc *sc)
10648{
10649    int port = SC_PORT(sc);
10650    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10651    uint32_t val = REG_RD(sc, addr);
10652    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10653    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10654                           (sc->intr_count == 1)) ? TRUE : FALSE;
10655    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10656
10657    if (msix) {
10658        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10659                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10660        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10661                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10662        if (single_msix) {
10663            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10664        }
10665    } else if (msi) {
10666        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10667        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10668                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10669                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10670    } else {
10671        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10672                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10673                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10674                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10675
10676        if (!CHIP_IS_E1(sc)) {
10677            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10678                  val, port, addr);
10679
10680            REG_WR(sc, addr, val);
10681
10682            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10683        }
10684    }
10685
10686    if (CHIP_IS_E1(sc)) {
10687        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10688    }
10689
10690    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10691          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10692
10693    REG_WR(sc, addr, val);
10694
10695    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10696    mb();
10697
10698    if (!CHIP_IS_E1(sc)) {
10699        /* init leading/trailing edge */
10700        if (IS_MF(sc)) {
10701            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10702            if (sc->port.pmf) {
10703                /* enable nig and gpio3 attention */
10704                val |= 0x1100;
10705            }
10706        } else {
10707            val = 0xffff;
10708        }
10709
10710        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10711        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10712    }
10713
10714    /* make sure that interrupts are indeed enabled from here on */
10715    mb();
10716}
10717
10718static void
10719bxe_igu_int_enable(struct bxe_softc *sc)
10720{
10721    uint32_t val;
10722    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10723    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10724                           (sc->intr_count == 1)) ? TRUE : FALSE;
10725    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10726
10727    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10728
10729    if (msix) {
10730        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10731                 IGU_PF_CONF_SINGLE_ISR_EN);
10732        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10733                IGU_PF_CONF_ATTN_BIT_EN);
10734        if (single_msix) {
10735            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10736        }
10737    } else if (msi) {
10738        val &= ~IGU_PF_CONF_INT_LINE_EN;
10739        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10740                IGU_PF_CONF_ATTN_BIT_EN |
10741                IGU_PF_CONF_SINGLE_ISR_EN);
10742    } else {
10743        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10744        val |= (IGU_PF_CONF_INT_LINE_EN |
10745                IGU_PF_CONF_ATTN_BIT_EN |
10746                IGU_PF_CONF_SINGLE_ISR_EN);
10747    }
10748
10749    /* clean previous status - need to configure igu prior to ack*/
10750    if ((!msix) || single_msix) {
10751        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10752        bxe_ack_int(sc);
10753    }
10754
10755    val |= IGU_PF_CONF_FUNC_EN;
10756
10757    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10758          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10759
10760    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10761
10762    mb();
10763
10764    /* init leading/trailing edge */
10765    if (IS_MF(sc)) {
10766        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10767        if (sc->port.pmf) {
10768            /* enable nig and gpio3 attention */
10769            val |= 0x1100;
10770        }
10771    } else {
10772        val = 0xffff;
10773    }
10774
10775    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10776    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10777
10778    /* make sure that interrupts are indeed enabled from here on */
10779    mb();
10780}
10781
10782static void
10783bxe_int_enable(struct bxe_softc *sc)
10784{
10785    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10786        bxe_hc_int_enable(sc);
10787    } else {
10788        bxe_igu_int_enable(sc);
10789    }
10790}
10791
10792static void
10793bxe_hc_int_disable(struct bxe_softc *sc)
10794{
10795    int port = SC_PORT(sc);
10796    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10797    uint32_t val = REG_RD(sc, addr);
10798
10799    /*
10800     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10801     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10802     * block
10803     */
10804    if (CHIP_IS_E1(sc)) {
10805        /*
10806         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10807         * to prevent from HC sending interrupts after we exit the function
10808         */
10809        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10810
10811        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10812                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10813                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10814    } else {
10815        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10816                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10817                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10818                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10819    }
10820
10821    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10822
10823    /* flush all outstanding writes */
10824    mb();
10825
10826    REG_WR(sc, addr, val);
10827    if (REG_RD(sc, addr) != val) {
10828        BLOGE(sc, "proper val not read from HC IGU!\n");
10829    }
10830}
10831
10832static void
10833bxe_igu_int_disable(struct bxe_softc *sc)
10834{
10835    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10836
10837    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10838             IGU_PF_CONF_INT_LINE_EN |
10839             IGU_PF_CONF_ATTN_BIT_EN);
10840
10841    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10842
10843    /* flush all outstanding writes */
10844    mb();
10845
10846    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10847    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10848        BLOGE(sc, "proper val not read from IGU!\n");
10849    }
10850}
10851
10852static void
10853bxe_int_disable(struct bxe_softc *sc)
10854{
10855    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10856        bxe_hc_int_disable(sc);
10857    } else {
10858        bxe_igu_int_disable(sc);
10859    }
10860}
10861
10862static void
10863bxe_nic_init(struct bxe_softc *sc,
10864             int              load_code)
10865{
10866    int i;
10867
10868    for (i = 0; i < sc->num_queues; i++) {
10869        bxe_init_eth_fp(sc, i);
10870    }
10871
10872    rmb(); /* ensure status block indices were read */
10873
10874    bxe_init_rx_rings(sc);
10875    bxe_init_tx_rings(sc);
10876
10877    if (IS_VF(sc)) {
10878        return;
10879    }
10880
10881    /* initialize MOD_ABS interrupts */
10882    elink_init_mod_abs_int(sc, &sc->link_vars,
10883                           sc->devinfo.chip_id,
10884                           sc->devinfo.shmem_base,
10885                           sc->devinfo.shmem2_base,
10886                           SC_PORT(sc));
10887
10888    bxe_init_def_sb(sc);
10889    bxe_update_dsb_idx(sc);
10890    bxe_init_sp_ring(sc);
10891    bxe_init_eq_ring(sc);
10892    bxe_init_internal(sc, load_code);
10893    bxe_pf_init(sc);
10894    bxe_stats_init(sc);
10895
10896    /* flush all before enabling interrupts */
10897    mb();
10898
10899    bxe_int_enable(sc);
10900
10901    /* check for SPIO5 */
10902    bxe_attn_int_deasserted0(sc,
10903                             REG_RD(sc,
10904                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10905                                     SC_PORT(sc)*4)) &
10906                             AEU_INPUTS_ATTN_BITS_SPIO5);
10907}
10908
10909static inline void
10910bxe_init_objs(struct bxe_softc *sc)
10911{
10912    /* mcast rules must be added to tx if tx switching is enabled */
10913    ecore_obj_type o_type =
10914        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10915                                         ECORE_OBJ_TYPE_RX;
10916
10917    /* RX_MODE controlling object */
10918    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10919
10920    /* multicast configuration controlling object */
10921    ecore_init_mcast_obj(sc,
10922                         &sc->mcast_obj,
10923                         sc->fp[0].cl_id,
10924                         sc->fp[0].index,
10925                         SC_FUNC(sc),
10926                         SC_FUNC(sc),
10927                         BXE_SP(sc, mcast_rdata),
10928                         BXE_SP_MAPPING(sc, mcast_rdata),
10929                         ECORE_FILTER_MCAST_PENDING,
10930                         &sc->sp_state,
10931                         o_type);
10932
10933    /* Setup CAM credit pools */
10934    ecore_init_mac_credit_pool(sc,
10935                               &sc->macs_pool,
10936                               SC_FUNC(sc),
10937                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10938                                                 VNICS_PER_PATH(sc));
10939
10940    ecore_init_vlan_credit_pool(sc,
10941                                &sc->vlans_pool,
10942                                SC_ABS_FUNC(sc) >> 1,
10943                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10944                                                  VNICS_PER_PATH(sc));
10945
10946    /* RSS configuration object */
10947    ecore_init_rss_config_obj(sc,
10948                              &sc->rss_conf_obj,
10949                              sc->fp[0].cl_id,
10950                              sc->fp[0].index,
10951                              SC_FUNC(sc),
10952                              SC_FUNC(sc),
10953                              BXE_SP(sc, rss_rdata),
10954                              BXE_SP_MAPPING(sc, rss_rdata),
10955                              ECORE_FILTER_RSS_CONF_PENDING,
10956                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10957}
10958
10959/*
10960 * Initialize the function. This must be called before sending CLIENT_SETUP
10961 * for the first client.
10962 */
10963static inline int
10964bxe_func_start(struct bxe_softc *sc)
10965{
10966    struct ecore_func_state_params func_params = { NULL };
10967    struct ecore_func_start_params *start_params = &func_params.params.start;
10968
10969    /* Prepare parameters for function state transitions */
10970    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10971
10972    func_params.f_obj = &sc->func_obj;
10973    func_params.cmd = ECORE_F_CMD_START;
10974
10975    /* Function parameters */
10976    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10977    start_params->sd_vlan_tag = OVLAN(sc);
10978
10979    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10980        start_params->network_cos_mode = STATIC_COS;
10981    } else { /* CHIP_IS_E1X */
10982        start_params->network_cos_mode = FW_WRR;
10983    }
10984
10985    start_params->gre_tunnel_mode = 0;
10986    start_params->gre_tunnel_rss  = 0;
10987
10988    return (ecore_func_state_change(sc, &func_params));
10989}
10990
10991static int
10992bxe_set_power_state(struct bxe_softc *sc,
10993                    uint8_t          state)
10994{
10995    uint16_t pmcsr;
10996
10997    /* If there is no power capability, silently succeed */
10998    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10999        BLOGW(sc, "No power capability\n");
11000        return (0);
11001    }
11002
11003    pmcsr = pci_read_config(sc->dev,
11004                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11005                            2);
11006
11007    switch (state) {
11008    case PCI_PM_D0:
11009        pci_write_config(sc->dev,
11010                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11011                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11012
11013        if (pmcsr & PCIM_PSTAT_DMASK) {
11014            /* delay required during transition out of D3hot */
11015            DELAY(20000);
11016        }
11017
11018        break;
11019
11020    case PCI_PM_D3hot:
11021        /* XXX if there are other clients above don't shut down the power */
11022
11023        /* don't shut down the power for emulation and FPGA */
11024        if (CHIP_REV_IS_SLOW(sc)) {
11025            return (0);
11026        }
11027
11028        pmcsr &= ~PCIM_PSTAT_DMASK;
11029        pmcsr |= PCIM_PSTAT_D3;
11030
11031        if (sc->wol) {
11032            pmcsr |= PCIM_PSTAT_PMEENABLE;
11033        }
11034
11035        pci_write_config(sc->dev,
11036                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11037                         pmcsr, 4);
11038
11039        /*
11040         * No more memory access after this point until device is brought back
11041         * to D0 state.
11042         */
11043        break;
11044
11045    default:
11046        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11047        return (-1);
11048    }
11049
11050    return (0);
11051}
11052
11053
11054/* return true if succeeded to acquire the lock */
11055static uint8_t
11056bxe_trylock_hw_lock(struct bxe_softc *sc,
11057                    uint32_t         resource)
11058{
11059    uint32_t lock_status;
11060    uint32_t resource_bit = (1 << resource);
11061    int func = SC_FUNC(sc);
11062    uint32_t hw_lock_control_reg;
11063
11064    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11065
11066    /* Validating that the resource is within range */
11067    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11068        BLOGD(sc, DBG_LOAD,
11069              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11070              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11071        return (FALSE);
11072    }
11073
11074    if (func <= 5) {
11075        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11076    } else {
11077        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11078    }
11079
11080    /* try to acquire the lock */
11081    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11082    lock_status = REG_RD(sc, hw_lock_control_reg);
11083    if (lock_status & resource_bit) {
11084        return (TRUE);
11085    }
11086
11087    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11088
11089    return (FALSE);
11090}
11091
11092/*
11093 * Get the recovery leader resource id according to the engine this function
11094 * belongs to. Currently only only 2 engines is supported.
11095 */
11096static int
11097bxe_get_leader_lock_resource(struct bxe_softc *sc)
11098{
11099    if (SC_PATH(sc)) {
11100        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11101    } else {
11102        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11103    }
11104}
11105
11106/* try to acquire a leader lock for current engine */
11107static uint8_t
11108bxe_trylock_leader_lock(struct bxe_softc *sc)
11109{
11110    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11111}
11112
11113static int
11114bxe_release_leader_lock(struct bxe_softc *sc)
11115{
11116    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11117}
11118
11119/* close gates #2, #3 and #4 */
11120static void
11121bxe_set_234_gates(struct bxe_softc *sc,
11122                  uint8_t          close)
11123{
11124    uint32_t val;
11125
11126    /* gates #2 and #4a are closed/opened for "not E1" only */
11127    if (!CHIP_IS_E1(sc)) {
11128        /* #4 */
11129        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11130        /* #2 */
11131        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11132    }
11133
11134    /* #3 */
11135    if (CHIP_IS_E1x(sc)) {
11136        /* prevent interrupts from HC on both ports */
11137        val = REG_RD(sc, HC_REG_CONFIG_1);
11138        REG_WR(sc, HC_REG_CONFIG_1,
11139               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11140               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11141
11142        val = REG_RD(sc, HC_REG_CONFIG_0);
11143        REG_WR(sc, HC_REG_CONFIG_0,
11144               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11145               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11146    } else {
11147        /* Prevent incomming interrupts in IGU */
11148        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11149
11150        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11151               (!close) ?
11152               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11153               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11154    }
11155
11156    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11157          close ? "closing" : "opening");
11158
11159    wmb();
11160}
11161
11162/* poll for pending writes bit, it should get cleared in no more than 1s */
11163static int
11164bxe_er_poll_igu_vq(struct bxe_softc *sc)
11165{
11166    uint32_t cnt = 1000;
11167    uint32_t pend_bits = 0;
11168
11169    do {
11170        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11171
11172        if (pend_bits == 0) {
11173            break;
11174        }
11175
11176        DELAY(1000);
11177    } while (--cnt > 0);
11178
11179    if (cnt == 0) {
11180        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11181        return (-1);
11182    }
11183
11184    return (0);
11185}
11186
11187#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11188
11189static void
11190bxe_clp_reset_prep(struct bxe_softc *sc,
11191                   uint32_t         *magic_val)
11192{
11193    /* Do some magic... */
11194    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11195    *magic_val = val & SHARED_MF_CLP_MAGIC;
11196    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11197}
11198
11199/* restore the value of the 'magic' bit */
11200static void
11201bxe_clp_reset_done(struct bxe_softc *sc,
11202                   uint32_t         magic_val)
11203{
11204    /* Restore the 'magic' bit value... */
11205    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11206    MFCFG_WR(sc, shared_mf_config.clp_mb,
11207              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11208}
11209
11210/* prepare for MCP reset, takes care of CLP configurations */
11211static void
11212bxe_reset_mcp_prep(struct bxe_softc *sc,
11213                   uint32_t         *magic_val)
11214{
11215    uint32_t shmem;
11216    uint32_t validity_offset;
11217
11218    /* set `magic' bit in order to save MF config */
11219    if (!CHIP_IS_E1(sc)) {
11220        bxe_clp_reset_prep(sc, magic_val);
11221    }
11222
11223    /* get shmem offset */
11224    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11225    validity_offset =
11226        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11227
11228    /* Clear validity map flags */
11229    if (shmem > 0) {
11230        REG_WR(sc, shmem + validity_offset, 0);
11231    }
11232}
11233
11234#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11235#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11236
11237static void
11238bxe_mcp_wait_one(struct bxe_softc *sc)
11239{
11240    /* special handling for emulation and FPGA (10 times longer) */
11241    if (CHIP_REV_IS_SLOW(sc)) {
11242        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11243    } else {
11244        DELAY((MCP_ONE_TIMEOUT) * 1000);
11245    }
11246}
11247
11248/* initialize shmem_base and waits for validity signature to appear */
11249static int
11250bxe_init_shmem(struct bxe_softc *sc)
11251{
11252    int cnt = 0;
11253    uint32_t val = 0;
11254
11255    do {
11256        sc->devinfo.shmem_base     =
11257        sc->link_params.shmem_base =
11258            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11259
11260        if (sc->devinfo.shmem_base) {
11261            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11262            if (val & SHR_MEM_VALIDITY_MB)
11263                return (0);
11264        }
11265
11266        bxe_mcp_wait_one(sc);
11267
11268    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11269
11270    BLOGE(sc, "BAD MCP validity signature\n");
11271
11272    return (-1);
11273}
11274
11275static int
11276bxe_reset_mcp_comp(struct bxe_softc *sc,
11277                   uint32_t         magic_val)
11278{
11279    int rc = bxe_init_shmem(sc);
11280
11281    /* Restore the `magic' bit value */
11282    if (!CHIP_IS_E1(sc)) {
11283        bxe_clp_reset_done(sc, magic_val);
11284    }
11285
11286    return (rc);
11287}
11288
11289static void
11290bxe_pxp_prep(struct bxe_softc *sc)
11291{
11292    if (!CHIP_IS_E1(sc)) {
11293        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11294        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11295        wmb();
11296    }
11297}
11298
11299/*
11300 * Reset the whole chip except for:
11301 *      - PCIE core
11302 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11303 *      - IGU
11304 *      - MISC (including AEU)
11305 *      - GRC
11306 *      - RBCN, RBCP
11307 */
11308static void
11309bxe_process_kill_chip_reset(struct bxe_softc *sc,
11310                            uint8_t          global)
11311{
11312    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11313    uint32_t global_bits2, stay_reset2;
11314
11315    /*
11316     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11317     * (per chip) blocks.
11318     */
11319    global_bits2 =
11320        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11321        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11322
11323    /*
11324     * Don't reset the following blocks.
11325     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11326     *            reset, as in 4 port device they might still be owned
11327     *            by the MCP (there is only one leader per path).
11328     */
11329    not_reset_mask1 =
11330        MISC_REGISTERS_RESET_REG_1_RST_HC |
11331        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11332        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11333
11334    not_reset_mask2 =
11335        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11336        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11337        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11338        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11339        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11340        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11341        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11342        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11343        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11344        MISC_REGISTERS_RESET_REG_2_PGLC |
11345        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11346        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11347        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11348        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11349        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11350        MISC_REGISTERS_RESET_REG_2_UMAC1;
11351
11352    /*
11353     * Keep the following blocks in reset:
11354     *  - all xxMACs are handled by the elink code.
11355     */
11356    stay_reset2 =
11357        MISC_REGISTERS_RESET_REG_2_XMAC |
11358        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11359
11360    /* Full reset masks according to the chip */
11361    reset_mask1 = 0xffffffff;
11362
11363    if (CHIP_IS_E1(sc))
11364        reset_mask2 = 0xffff;
11365    else if (CHIP_IS_E1H(sc))
11366        reset_mask2 = 0x1ffff;
11367    else if (CHIP_IS_E2(sc))
11368        reset_mask2 = 0xfffff;
11369    else /* CHIP_IS_E3 */
11370        reset_mask2 = 0x3ffffff;
11371
11372    /* Don't reset global blocks unless we need to */
11373    if (!global)
11374        reset_mask2 &= ~global_bits2;
11375
11376    /*
11377     * In case of attention in the QM, we need to reset PXP
11378     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11379     * because otherwise QM reset would release 'close the gates' shortly
11380     * before resetting the PXP, then the PSWRQ would send a write
11381     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11382     * read the payload data from PSWWR, but PSWWR would not
11383     * respond. The write queue in PGLUE would stuck, dmae commands
11384     * would not return. Therefore it's important to reset the second
11385     * reset register (containing the
11386     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11387     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11388     * bit).
11389     */
11390    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11391           reset_mask2 & (~not_reset_mask2));
11392
11393    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11394           reset_mask1 & (~not_reset_mask1));
11395
11396    mb();
11397    wmb();
11398
11399    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11400           reset_mask2 & (~stay_reset2));
11401
11402    mb();
11403    wmb();
11404
11405    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11406    wmb();
11407}
11408
11409static int
11410bxe_process_kill(struct bxe_softc *sc,
11411                 uint8_t          global)
11412{
11413    int cnt = 1000;
11414    uint32_t val = 0;
11415    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11416    uint32_t tags_63_32 = 0;
11417
11418    /* Empty the Tetris buffer, wait for 1s */
11419    do {
11420        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11421        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11422        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11423        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11424        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11425        if (CHIP_IS_E3(sc)) {
11426            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11427        }
11428
11429        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11430            ((port_is_idle_0 & 0x1) == 0x1) &&
11431            ((port_is_idle_1 & 0x1) == 0x1) &&
11432            (pgl_exp_rom2 == 0xffffffff) &&
11433            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11434            break;
11435        DELAY(1000);
11436    } while (cnt-- > 0);
11437
11438    if (cnt <= 0) {
11439        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11440                  "are still outstanding read requests after 1s! "
11441                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11442                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11443              sr_cnt, blk_cnt, port_is_idle_0,
11444              port_is_idle_1, pgl_exp_rom2);
11445        return (-1);
11446    }
11447
11448    mb();
11449
11450    /* Close gates #2, #3 and #4 */
11451    bxe_set_234_gates(sc, TRUE);
11452
11453    /* Poll for IGU VQs for 57712 and newer chips */
11454    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11455        return (-1);
11456    }
11457
11458    /* XXX indicate that "process kill" is in progress to MCP */
11459
11460    /* clear "unprepared" bit */
11461    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11462    mb();
11463
11464    /* Make sure all is written to the chip before the reset */
11465    wmb();
11466
11467    /*
11468     * Wait for 1ms to empty GLUE and PCI-E core queues,
11469     * PSWHST, GRC and PSWRD Tetris buffer.
11470     */
11471    DELAY(1000);
11472
11473    /* Prepare to chip reset: */
11474    /* MCP */
11475    if (global) {
11476        bxe_reset_mcp_prep(sc, &val);
11477    }
11478
11479    /* PXP */
11480    bxe_pxp_prep(sc);
11481    mb();
11482
11483    /* reset the chip */
11484    bxe_process_kill_chip_reset(sc, global);
11485    mb();
11486
11487    /* clear errors in PGB */
11488    if (!CHIP_IS_E1(sc))
11489        REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11490
11491    /* Recover after reset: */
11492    /* MCP */
11493    if (global && bxe_reset_mcp_comp(sc, val)) {
11494        return (-1);
11495    }
11496
11497    /* XXX add resetting the NO_MCP mode DB here */
11498
11499    /* Open the gates #2, #3 and #4 */
11500    bxe_set_234_gates(sc, FALSE);
11501
11502    /* XXX
11503     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11504     * re-enable attentions
11505     */
11506
11507    return (0);
11508}
11509
11510static int
11511bxe_leader_reset(struct bxe_softc *sc)
11512{
11513    int rc = 0;
11514    uint8_t global = bxe_reset_is_global(sc);
11515    uint32_t load_code;
11516
11517    /*
11518     * If not going to reset MCP, load "fake" driver to reset HW while
11519     * driver is owner of the HW.
11520     */
11521    if (!global && !BXE_NOMCP(sc)) {
11522        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11523                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11524        if (!load_code) {
11525            BLOGE(sc, "MCP response failure, aborting\n");
11526            rc = -1;
11527            goto exit_leader_reset;
11528        }
11529
11530        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11531            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11532            BLOGE(sc, "MCP unexpected response, aborting\n");
11533            rc = -1;
11534            goto exit_leader_reset2;
11535        }
11536
11537        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11538        if (!load_code) {
11539            BLOGE(sc, "MCP response failure, aborting\n");
11540            rc = -1;
11541            goto exit_leader_reset2;
11542        }
11543    }
11544
11545    /* try to recover after the failure */
11546    if (bxe_process_kill(sc, global)) {
11547        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11548        rc = -1;
11549        goto exit_leader_reset2;
11550    }
11551
11552    /*
11553     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11554     * state.
11555     */
11556    bxe_set_reset_done(sc);
11557    if (global) {
11558        bxe_clear_reset_global(sc);
11559    }
11560
11561exit_leader_reset2:
11562
11563    /* unload "fake driver" if it was loaded */
11564    if (!global && !BXE_NOMCP(sc)) {
11565        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11566        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11567    }
11568
11569exit_leader_reset:
11570
11571    sc->is_leader = 0;
11572    bxe_release_leader_lock(sc);
11573
11574    mb();
11575    return (rc);
11576}
11577
11578/*
11579 * prepare INIT transition, parameters configured:
11580 *   - HC configuration
11581 *   - Queue's CDU context
11582 */
11583static void
11584bxe_pf_q_prep_init(struct bxe_softc               *sc,
11585                   struct bxe_fastpath            *fp,
11586                   struct ecore_queue_init_params *init_params)
11587{
11588    uint8_t cos;
11589    int cxt_index, cxt_offset;
11590
11591    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11592    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11593
11594    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11595    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11596
11597    /* HC rate */
11598    init_params->rx.hc_rate =
11599        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11600    init_params->tx.hc_rate =
11601        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11602
11603    /* FW SB ID */
11604    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11605
11606    /* CQ index among the SB indices */
11607    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11608    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11609
11610    /* set maximum number of COSs supported by this queue */
11611    init_params->max_cos = sc->max_cos;
11612
11613    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11614          fp->index, init_params->max_cos);
11615
11616    /* set the context pointers queue object */
11617    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11618        /* XXX change index/cid here if ever support multiple tx CoS */
11619        /* fp->txdata[cos]->cid */
11620        cxt_index = fp->index / ILT_PAGE_CIDS;
11621        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11622        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11623    }
11624}
11625
11626/* set flags that are common for the Tx-only and not normal connections */
11627static unsigned long
11628bxe_get_common_flags(struct bxe_softc    *sc,
11629                     struct bxe_fastpath *fp,
11630                     uint8_t             zero_stats)
11631{
11632    unsigned long flags = 0;
11633
11634    /* PF driver will always initialize the Queue to an ACTIVE state */
11635    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11636
11637    /*
11638     * tx only connections collect statistics (on the same index as the
11639     * parent connection). The statistics are zeroed when the parent
11640     * connection is initialized.
11641     */
11642
11643    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11644    if (zero_stats) {
11645        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11646    }
11647
11648    /*
11649     * tx only connections can support tx-switching, though their
11650     * CoS-ness doesn't survive the loopback
11651     */
11652    if (sc->flags & BXE_TX_SWITCHING) {
11653        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11654    }
11655
11656    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11657
11658    return (flags);
11659}
11660
11661static unsigned long
11662bxe_get_q_flags(struct bxe_softc    *sc,
11663                struct bxe_fastpath *fp,
11664                uint8_t             leading)
11665{
11666    unsigned long flags = 0;
11667
11668    if (IS_MF_SD(sc)) {
11669        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11670    }
11671
11672    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11673        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11674        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11675#if 0
11676        if (fp->mode == TPA_MODE_GRO)
11677            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11678#endif
11679    }
11680
11681    if (leading) {
11682        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11683        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11684    }
11685
11686    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11687
11688#if 0
11689    /* configure silent vlan removal */
11690    if (IS_MF_AFEX(sc)) {
11691        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11692    }
11693#endif
11694
11695    /* merge with common flags */
11696    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11697}
11698
11699static void
11700bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11701                      struct bxe_fastpath               *fp,
11702                      struct ecore_general_setup_params *gen_init,
11703                      uint8_t                           cos)
11704{
11705    gen_init->stat_id = bxe_stats_id(fp);
11706    gen_init->spcl_id = fp->cl_id;
11707    gen_init->mtu = sc->mtu;
11708    gen_init->cos = cos;
11709}
11710
11711static void
11712bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11713                 struct bxe_fastpath           *fp,
11714                 struct rxq_pause_params       *pause,
11715                 struct ecore_rxq_setup_params *rxq_init)
11716{
11717    uint8_t max_sge = 0;
11718    uint16_t sge_sz = 0;
11719    uint16_t tpa_agg_size = 0;
11720
11721    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11722        pause->sge_th_lo = SGE_TH_LO(sc);
11723        pause->sge_th_hi = SGE_TH_HI(sc);
11724
11725        /* validate SGE ring has enough to cross high threshold */
11726        if (sc->dropless_fc &&
11727            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11728            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11729            BLOGW(sc, "sge ring threshold limit\n");
11730        }
11731
11732        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11733        tpa_agg_size = (2 * sc->mtu);
11734        if (tpa_agg_size < sc->max_aggregation_size) {
11735            tpa_agg_size = sc->max_aggregation_size;
11736        }
11737
11738        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11739        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11740                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11741        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11742    }
11743
11744    /* pause - not for e1 */
11745    if (!CHIP_IS_E1(sc)) {
11746        pause->bd_th_lo = BD_TH_LO(sc);
11747        pause->bd_th_hi = BD_TH_HI(sc);
11748
11749        pause->rcq_th_lo = RCQ_TH_LO(sc);
11750        pause->rcq_th_hi = RCQ_TH_HI(sc);
11751
11752        /* validate rings have enough entries to cross high thresholds */
11753        if (sc->dropless_fc &&
11754            pause->bd_th_hi + FW_PREFETCH_CNT >
11755            sc->rx_ring_size) {
11756            BLOGW(sc, "rx bd ring threshold limit\n");
11757        }
11758
11759        if (sc->dropless_fc &&
11760            pause->rcq_th_hi + FW_PREFETCH_CNT >
11761            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11762            BLOGW(sc, "rcq ring threshold limit\n");
11763        }
11764
11765        pause->pri_map = 1;
11766    }
11767
11768    /* rxq setup */
11769    rxq_init->dscr_map   = fp->rx_dma.paddr;
11770    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11771    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11772    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11773
11774    /*
11775     * This should be a maximum number of data bytes that may be
11776     * placed on the BD (not including paddings).
11777     */
11778    rxq_init->buf_sz = (fp->rx_buf_size -
11779                        IP_HEADER_ALIGNMENT_PADDING);
11780
11781    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11782    rxq_init->tpa_agg_sz      = tpa_agg_size;
11783    rxq_init->sge_buf_sz      = sge_sz;
11784    rxq_init->max_sges_pkt    = max_sge;
11785    rxq_init->rss_engine_id   = SC_FUNC(sc);
11786    rxq_init->mcast_engine_id = SC_FUNC(sc);
11787
11788    /*
11789     * Maximum number or simultaneous TPA aggregation for this Queue.
11790     * For PF Clients it should be the maximum available number.
11791     * VF driver(s) may want to define it to a smaller value.
11792     */
11793    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11794
11795    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11796    rxq_init->fw_sb_id = fp->fw_sb_id;
11797
11798    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11799
11800    /*
11801     * configure silent vlan removal
11802     * if multi function mode is afex, then mask default vlan
11803     */
11804    if (IS_MF_AFEX(sc)) {
11805        rxq_init->silent_removal_value =
11806            sc->devinfo.mf_info.afex_def_vlan_tag;
11807        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11808    }
11809}
11810
11811static void
11812bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11813                 struct bxe_fastpath           *fp,
11814                 struct ecore_txq_setup_params *txq_init,
11815                 uint8_t                       cos)
11816{
11817    /*
11818     * XXX If multiple CoS is ever supported then each fastpath structure
11819     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11820     * fp->txdata[cos]->tx_dma.paddr;
11821     */
11822    txq_init->dscr_map     = fp->tx_dma.paddr;
11823    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11824    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11825    txq_init->fw_sb_id     = fp->fw_sb_id;
11826
11827    /*
11828     * set the TSS leading client id for TX classfication to the
11829     * leading RSS client id
11830     */
11831    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11832}
11833
11834/*
11835 * This function performs 2 steps in a queue state machine:
11836 *   1) RESET->INIT
11837 *   2) INIT->SETUP
11838 */
11839static int
11840bxe_setup_queue(struct bxe_softc    *sc,
11841                struct bxe_fastpath *fp,
11842                uint8_t             leading)
11843{
11844    struct ecore_queue_state_params q_params = { NULL };
11845    struct ecore_queue_setup_params *setup_params =
11846                        &q_params.params.setup;
11847#if 0
11848    struct ecore_queue_setup_tx_only_params *tx_only_params =
11849                        &q_params.params.tx_only;
11850    uint8_t tx_index;
11851#endif
11852    int rc;
11853
11854    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11855
11856    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11857
11858    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11859
11860    /* we want to wait for completion in this context */
11861    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11862
11863    /* prepare the INIT parameters */
11864    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11865
11866    /* Set the command */
11867    q_params.cmd = ECORE_Q_CMD_INIT;
11868
11869    /* Change the state to INIT */
11870    rc = ecore_queue_state_change(sc, &q_params);
11871    if (rc) {
11872        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11873        return (rc);
11874    }
11875
11876    BLOGD(sc, DBG_LOAD, "init complete\n");
11877
11878    /* now move the Queue to the SETUP state */
11879    memset(setup_params, 0, sizeof(*setup_params));
11880
11881    /* set Queue flags */
11882    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11883
11884    /* set general SETUP parameters */
11885    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11886                          FIRST_TX_COS_INDEX);
11887
11888    bxe_pf_rx_q_prep(sc, fp,
11889                     &setup_params->pause_params,
11890                     &setup_params->rxq_params);
11891
11892    bxe_pf_tx_q_prep(sc, fp,
11893                     &setup_params->txq_params,
11894                     FIRST_TX_COS_INDEX);
11895
11896    /* Set the command */
11897    q_params.cmd = ECORE_Q_CMD_SETUP;
11898
11899    /* change the state to SETUP */
11900    rc = ecore_queue_state_change(sc, &q_params);
11901    if (rc) {
11902        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11903        return (rc);
11904    }
11905
11906#if 0
11907    /* loop through the relevant tx-only indices */
11908    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11909         tx_index < sc->max_cos;
11910         tx_index++) {
11911        /* prepare and send tx-only ramrod*/
11912        rc = bxe_setup_tx_only(sc, fp, &q_params,
11913                               tx_only_params, tx_index, leading);
11914        if (rc) {
11915            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11916                  fp->index, tx_index);
11917            return (rc);
11918        }
11919    }
11920#endif
11921
11922    return (rc);
11923}
11924
11925static int
11926bxe_setup_leading(struct bxe_softc *sc)
11927{
11928    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11929}
11930
11931static int
11932bxe_config_rss_pf(struct bxe_softc            *sc,
11933                  struct ecore_rss_config_obj *rss_obj,
11934                  uint8_t                     config_hash)
11935{
11936    struct ecore_config_rss_params params = { NULL };
11937    int i;
11938
11939    /*
11940     * Although RSS is meaningless when there is a single HW queue we
11941     * still need it enabled in order to have HW Rx hash generated.
11942     */
11943
11944    params.rss_obj = rss_obj;
11945
11946    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11947
11948    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11949
11950    /* RSS configuration */
11951    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11952    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11953    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11954    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11955    if (rss_obj->udp_rss_v4) {
11956        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11957    }
11958    if (rss_obj->udp_rss_v6) {
11959        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11960    }
11961
11962    /* Hash bits */
11963    params.rss_result_mask = MULTI_MASK;
11964
11965    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11966
11967    if (config_hash) {
11968        /* RSS keys */
11969        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11970            params.rss_key[i] = arc4random();
11971        }
11972
11973        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11974    }
11975
11976    return (ecore_config_rss(sc, &params));
11977}
11978
11979static int
11980bxe_config_rss_eth(struct bxe_softc *sc,
11981                   uint8_t          config_hash)
11982{
11983    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11984}
11985
11986static int
11987bxe_init_rss_pf(struct bxe_softc *sc)
11988{
11989    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11990    int i;
11991
11992    /*
11993     * Prepare the initial contents of the indirection table if
11994     * RSS is enabled
11995     */
11996    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11997        sc->rss_conf_obj.ind_table[i] =
11998            (sc->fp->cl_id + (i % num_eth_queues));
11999    }
12000
12001    if (sc->udp_rss) {
12002        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12003    }
12004
12005    /*
12006     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12007     * per-port, so if explicit configuration is needed, do it only
12008     * for a PMF.
12009     *
12010     * For 57712 and newer it's a per-function configuration.
12011     */
12012    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12013}
12014
12015static int
12016bxe_set_mac_one(struct bxe_softc          *sc,
12017                uint8_t                   *mac,
12018                struct ecore_vlan_mac_obj *obj,
12019                uint8_t                   set,
12020                int                       mac_type,
12021                unsigned long             *ramrod_flags)
12022{
12023    struct ecore_vlan_mac_ramrod_params ramrod_param;
12024    int rc;
12025
12026    memset(&ramrod_param, 0, sizeof(ramrod_param));
12027
12028    /* fill in general parameters */
12029    ramrod_param.vlan_mac_obj = obj;
12030    ramrod_param.ramrod_flags = *ramrod_flags;
12031
12032    /* fill a user request section if needed */
12033    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12034        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12035
12036        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12037
12038        /* Set the command: ADD or DEL */
12039        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12040                                            ECORE_VLAN_MAC_DEL;
12041    }
12042
12043    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12044
12045    if (rc == ECORE_EXISTS) {
12046        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12047        /* do not treat adding same MAC as error */
12048        rc = 0;
12049    } else if (rc < 0) {
12050        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12051    }
12052
12053    return (rc);
12054}
12055
12056static int
12057bxe_set_eth_mac(struct bxe_softc *sc,
12058                uint8_t          set)
12059{
12060    unsigned long ramrod_flags = 0;
12061
12062    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12063
12064    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12065
12066    /* Eth MAC is set on RSS leading client (fp[0]) */
12067    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12068                            &sc->sp_objs->mac_obj,
12069                            set, ECORE_ETH_MAC, &ramrod_flags));
12070}
12071
12072#if 0
12073static void
12074bxe_update_max_mf_config(struct bxe_softc *sc,
12075                         uint32_t         value)
12076{
12077    /* load old values */
12078    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12079
12080    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12081        /* leave all but MAX value */
12082        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12083
12084        /* set new MAX value */
12085        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12086                   FUNC_MF_CFG_MAX_BW_MASK);
12087
12088        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12089    }
12090}
12091#endif
12092
12093static int
12094bxe_get_cur_phy_idx(struct bxe_softc *sc)
12095{
12096    uint32_t sel_phy_idx = 0;
12097
12098    if (sc->link_params.num_phys <= 1) {
12099        return (ELINK_INT_PHY);
12100    }
12101
12102    if (sc->link_vars.link_up) {
12103        sel_phy_idx = ELINK_EXT_PHY1;
12104        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12105        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12106            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12107             ELINK_SUPPORTED_FIBRE))
12108            sel_phy_idx = ELINK_EXT_PHY2;
12109    } else {
12110        switch (elink_phy_selection(&sc->link_params)) {
12111        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12112        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12113        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12114               sel_phy_idx = ELINK_EXT_PHY1;
12115               break;
12116        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12117        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12118               sel_phy_idx = ELINK_EXT_PHY2;
12119               break;
12120        }
12121    }
12122
12123    return (sel_phy_idx);
12124}
12125
12126static int
12127bxe_get_link_cfg_idx(struct bxe_softc *sc)
12128{
12129    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12130
12131    /*
12132     * The selected activated PHY is always after swapping (in case PHY
12133     * swapping is enabled). So when swapping is enabled, we need to reverse
12134     * the configuration
12135     */
12136
12137    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12138        if (sel_phy_idx == ELINK_EXT_PHY1)
12139            sel_phy_idx = ELINK_EXT_PHY2;
12140        else if (sel_phy_idx == ELINK_EXT_PHY2)
12141            sel_phy_idx = ELINK_EXT_PHY1;
12142    }
12143
12144    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12145}
12146
12147static void
12148bxe_set_requested_fc(struct bxe_softc *sc)
12149{
12150    /*
12151     * Initialize link parameters structure variables
12152     * It is recommended to turn off RX FC for jumbo frames
12153     * for better performance
12154     */
12155    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12156        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12157    } else {
12158        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12159    }
12160}
12161
12162static void
12163bxe_calc_fc_adv(struct bxe_softc *sc)
12164{
12165    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12166    switch (sc->link_vars.ieee_fc &
12167            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12168    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12169    default:
12170        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12171                                           ADVERTISED_Pause);
12172        break;
12173
12174    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12175        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12176                                          ADVERTISED_Pause);
12177        break;
12178
12179    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12180        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12181        break;
12182    }
12183}
12184
12185static uint16_t
12186bxe_get_mf_speed(struct bxe_softc *sc)
12187{
12188    uint16_t line_speed = sc->link_vars.line_speed;
12189    if (IS_MF(sc)) {
12190        uint16_t maxCfg =
12191            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12192
12193        /* calculate the current MAX line speed limit for the MF devices */
12194        if (IS_MF_SI(sc)) {
12195            line_speed = (line_speed * maxCfg) / 100;
12196        } else { /* SD mode */
12197            uint16_t vn_max_rate = maxCfg * 100;
12198
12199            if (vn_max_rate < line_speed) {
12200                line_speed = vn_max_rate;
12201            }
12202        }
12203    }
12204
12205    return (line_speed);
12206}
12207
12208static void
12209bxe_fill_report_data(struct bxe_softc            *sc,
12210                     struct bxe_link_report_data *data)
12211{
12212    uint16_t line_speed = bxe_get_mf_speed(sc);
12213
12214    memset(data, 0, sizeof(*data));
12215
12216    /* fill the report data with the effective line speed */
12217    data->line_speed = line_speed;
12218
12219    /* Link is down */
12220    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12221        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12222    }
12223
12224    /* Full DUPLEX */
12225    if (sc->link_vars.duplex == DUPLEX_FULL) {
12226        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12227    }
12228
12229    /* Rx Flow Control is ON */
12230    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12231        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12232    }
12233
12234    /* Tx Flow Control is ON */
12235    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12236        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12237    }
12238}
12239
12240/* report link status to OS, should be called under phy_lock */
12241static void
12242bxe_link_report_locked(struct bxe_softc *sc)
12243{
12244    struct bxe_link_report_data cur_data;
12245
12246    /* reread mf_cfg */
12247    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12248        bxe_read_mf_cfg(sc);
12249    }
12250
12251    /* Read the current link report info */
12252    bxe_fill_report_data(sc, &cur_data);
12253
12254    /* Don't report link down or exactly the same link status twice */
12255    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12256        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12257                      &sc->last_reported_link.link_report_flags) &&
12258         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12259                      &cur_data.link_report_flags))) {
12260        return;
12261    }
12262
12263    sc->link_cnt++;
12264
12265    /* report new link params and remember the state for the next time */
12266    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12267
12268    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12269                     &cur_data.link_report_flags)) {
12270        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12271        BLOGI(sc, "NIC Link is Down\n");
12272    } else {
12273        const char *duplex;
12274        const char *flow;
12275
12276        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12277                                   &cur_data.link_report_flags)) {
12278            duplex = "full";
12279        } else {
12280            duplex = "half";
12281        }
12282
12283        /*
12284         * Handle the FC at the end so that only these flags would be
12285         * possibly set. This way we may easily check if there is no FC
12286         * enabled.
12287         */
12288        if (cur_data.link_report_flags) {
12289            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12290                             &cur_data.link_report_flags) &&
12291                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12292                             &cur_data.link_report_flags)) {
12293                flow = "ON - receive & transmit";
12294            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12295                                    &cur_data.link_report_flags) &&
12296                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12297                                     &cur_data.link_report_flags)) {
12298                flow = "ON - receive";
12299            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12300                                     &cur_data.link_report_flags) &&
12301                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12302                                    &cur_data.link_report_flags)) {
12303                flow = "ON - transmit";
12304            } else {
12305                flow = "none"; /* possible? */
12306            }
12307        } else {
12308            flow = "none";
12309        }
12310
12311        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12312        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12313              cur_data.line_speed, duplex, flow);
12314    }
12315}
12316
12317static void
12318bxe_link_report(struct bxe_softc *sc)
12319{
12320    BXE_PHY_LOCK(sc);
12321    bxe_link_report_locked(sc);
12322    BXE_PHY_UNLOCK(sc);
12323}
12324
12325static void
12326bxe_link_status_update(struct bxe_softc *sc)
12327{
12328    if (sc->state != BXE_STATE_OPEN) {
12329        return;
12330    }
12331
12332#if 0
12333    /* read updated dcb configuration */
12334    if (IS_PF(sc))
12335        bxe_dcbx_pmf_update(sc);
12336#endif
12337
12338    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12339        elink_link_status_update(&sc->link_params, &sc->link_vars);
12340    } else {
12341        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12342                                  ELINK_SUPPORTED_10baseT_Full |
12343                                  ELINK_SUPPORTED_100baseT_Half |
12344                                  ELINK_SUPPORTED_100baseT_Full |
12345                                  ELINK_SUPPORTED_1000baseT_Full |
12346                                  ELINK_SUPPORTED_2500baseX_Full |
12347                                  ELINK_SUPPORTED_10000baseT_Full |
12348                                  ELINK_SUPPORTED_TP |
12349                                  ELINK_SUPPORTED_FIBRE |
12350                                  ELINK_SUPPORTED_Autoneg |
12351                                  ELINK_SUPPORTED_Pause |
12352                                  ELINK_SUPPORTED_Asym_Pause);
12353        sc->port.advertising[0] = sc->port.supported[0];
12354
12355        sc->link_params.sc                = sc;
12356        sc->link_params.port              = SC_PORT(sc);
12357        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12358        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12359        sc->link_params.req_line_speed[0] = SPEED_10000;
12360        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12361        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12362
12363        if (CHIP_REV_IS_FPGA(sc)) {
12364            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12365            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12366            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12367                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12368        } else {
12369            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12370            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12371            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12372                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12373        }
12374
12375        sc->link_vars.link_up = 1;
12376
12377        sc->link_vars.duplex    = DUPLEX_FULL;
12378        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12379
12380        if (IS_PF(sc)) {
12381            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12382            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12383            bxe_link_report(sc);
12384        }
12385    }
12386
12387    if (IS_PF(sc)) {
12388        if (sc->link_vars.link_up) {
12389            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12390        } else {
12391            bxe_stats_handle(sc, STATS_EVENT_STOP);
12392        }
12393        bxe_link_report(sc);
12394    } else {
12395        bxe_link_report(sc);
12396        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12397    }
12398}
12399
12400static int
12401bxe_initial_phy_init(struct bxe_softc *sc,
12402                     int              load_mode)
12403{
12404    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12405    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12406    struct elink_params *lp = &sc->link_params;
12407
12408    bxe_set_requested_fc(sc);
12409
12410    if (CHIP_REV_IS_SLOW(sc)) {
12411        uint32_t bond = CHIP_BOND_ID(sc);
12412        uint32_t feat = 0;
12413
12414        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12415            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12416        } else if (bond & 0x4) {
12417            if (CHIP_IS_E3(sc)) {
12418                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12419            } else {
12420                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12421            }
12422        } else if (bond & 0x8) {
12423            if (CHIP_IS_E3(sc)) {
12424                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12425            } else {
12426                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12427            }
12428        }
12429
12430        /* disable EMAC for E3 and above */
12431        if (bond & 0x2) {
12432            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12433        }
12434
12435        sc->link_params.feature_config_flags |= feat;
12436    }
12437
12438    BXE_PHY_LOCK(sc);
12439
12440    if (load_mode == LOAD_DIAG) {
12441        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12442        /* Prefer doing PHY loopback at 10G speed, if possible */
12443        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12444            if (lp->speed_cap_mask[cfg_idx] &
12445                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12446                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12447            } else {
12448                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12449            }
12450        }
12451    }
12452
12453    if (load_mode == LOAD_LOOPBACK_EXT) {
12454        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12455    }
12456
12457    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12458
12459    BXE_PHY_UNLOCK(sc);
12460
12461    bxe_calc_fc_adv(sc);
12462
12463    if (sc->link_vars.link_up) {
12464        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12465        bxe_link_report(sc);
12466    }
12467
12468    if (!CHIP_REV_IS_SLOW(sc)) {
12469        bxe_periodic_start(sc);
12470    }
12471
12472    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12473    return (rc);
12474}
12475
12476/* must be called under IF_ADDR_LOCK */
12477static int
12478bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12479                         struct ecore_mcast_ramrod_params *p)
12480{
12481    struct ifnet *ifp = sc->ifnet;
12482    int mc_count = 0;
12483    struct ifmultiaddr *ifma;
12484    struct ecore_mcast_list_elem *mc_mac;
12485
12486    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12487        if (ifma->ifma_addr->sa_family != AF_LINK) {
12488            continue;
12489        }
12490
12491        mc_count++;
12492    }
12493
12494    ECORE_LIST_INIT(&p->mcast_list);
12495    p->mcast_list_len = 0;
12496
12497    if (!mc_count) {
12498        return (0);
12499    }
12500
12501    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12502                    (M_NOWAIT | M_ZERO));
12503    if (!mc_mac) {
12504        BLOGE(sc, "Failed to allocate temp mcast list\n");
12505        return (-1);
12506    }
12507
12508    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12509        if (ifma->ifma_addr->sa_family != AF_LINK) {
12510            continue;
12511        }
12512
12513        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12514        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12515
12516        BLOGD(sc, DBG_LOAD,
12517              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12518              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12519              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12520
12521        mc_mac++;
12522    }
12523
12524    p->mcast_list_len = mc_count;
12525
12526    return (0);
12527}
12528
12529static void
12530bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12531{
12532    struct ecore_mcast_list_elem *mc_mac =
12533        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12534                               struct ecore_mcast_list_elem,
12535                               link);
12536
12537    if (mc_mac) {
12538        /* only a single free as all mc_macs are in the same heap array */
12539        free(mc_mac, M_DEVBUF);
12540    }
12541}
12542
12543static int
12544bxe_set_mc_list(struct bxe_softc *sc)
12545{
12546    struct ecore_mcast_ramrod_params rparam = { NULL };
12547    int rc = 0;
12548
12549    rparam.mcast_obj = &sc->mcast_obj;
12550
12551    BXE_MCAST_LOCK(sc);
12552
12553    /* first, clear all configured multicast MACs */
12554    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12555    if (rc < 0) {
12556        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12557        return (rc);
12558    }
12559
12560    /* configure a new MACs list */
12561    rc = bxe_init_mcast_macs_list(sc, &rparam);
12562    if (rc) {
12563        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12564        BXE_MCAST_UNLOCK(sc);
12565        return (rc);
12566    }
12567
12568    /* Now add the new MACs */
12569    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12570    if (rc < 0) {
12571        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12572    }
12573
12574    bxe_free_mcast_macs_list(&rparam);
12575
12576    BXE_MCAST_UNLOCK(sc);
12577
12578    return (rc);
12579}
12580
12581static int
12582bxe_set_uc_list(struct bxe_softc *sc)
12583{
12584    struct ifnet *ifp = sc->ifnet;
12585    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12586    struct ifaddr *ifa;
12587    unsigned long ramrod_flags = 0;
12588    int rc;
12589
12590#if __FreeBSD_version < 800000
12591    IF_ADDR_LOCK(ifp);
12592#else
12593    if_addr_rlock(ifp);
12594#endif
12595
12596    /* first schedule a cleanup up of old configuration */
12597    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12598    if (rc < 0) {
12599        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12600#if __FreeBSD_version < 800000
12601        IF_ADDR_UNLOCK(ifp);
12602#else
12603        if_addr_runlock(ifp);
12604#endif
12605        return (rc);
12606    }
12607
12608    ifa = ifp->if_addr;
12609    while (ifa) {
12610        if (ifa->ifa_addr->sa_family != AF_LINK) {
12611            ifa = TAILQ_NEXT(ifa, ifa_link);
12612            continue;
12613        }
12614
12615        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12616                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12617        if (rc == -EEXIST) {
12618            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12619            /* do not treat adding same MAC as an error */
12620            rc = 0;
12621        } else if (rc < 0) {
12622            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12623#if __FreeBSD_version < 800000
12624            IF_ADDR_UNLOCK(ifp);
12625#else
12626            if_addr_runlock(ifp);
12627#endif
12628            return (rc);
12629        }
12630
12631        ifa = TAILQ_NEXT(ifa, ifa_link);
12632    }
12633
12634#if __FreeBSD_version < 800000
12635    IF_ADDR_UNLOCK(ifp);
12636#else
12637    if_addr_runlock(ifp);
12638#endif
12639
12640    /* Execute the pending commands */
12641    bit_set(&ramrod_flags, RAMROD_CONT);
12642    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12643                            ECORE_UC_LIST_MAC, &ramrod_flags));
12644}
12645
12646static void
12647bxe_handle_rx_mode_tq(void *context,
12648                      int  pending)
12649{
12650    struct bxe_softc *sc = (struct bxe_softc *)context;
12651    struct ifnet *ifp = sc->ifnet;
12652    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12653
12654    BXE_CORE_LOCK(sc);
12655
12656    if (sc->state != BXE_STATE_OPEN) {
12657        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12658        BXE_CORE_UNLOCK(sc);
12659        return;
12660    }
12661
12662    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12663
12664    if (ifp->if_flags & IFF_PROMISC) {
12665        rx_mode = BXE_RX_MODE_PROMISC;
12666    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12667               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12668                CHIP_IS_E1(sc))) {
12669        rx_mode = BXE_RX_MODE_ALLMULTI;
12670    } else {
12671        if (IS_PF(sc)) {
12672            /* some multicasts */
12673            if (bxe_set_mc_list(sc) < 0) {
12674                rx_mode = BXE_RX_MODE_ALLMULTI;
12675            }
12676            if (bxe_set_uc_list(sc) < 0) {
12677                rx_mode = BXE_RX_MODE_PROMISC;
12678            }
12679        }
12680#if 0
12681        else {
12682            /*
12683             * Configuring mcast to a VF involves sleeping (when we
12684             * wait for the PF's response). Since this function is
12685             * called from a non sleepable context we must schedule
12686             * a work item for this purpose
12687             */
12688            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12689            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12690        }
12691#endif
12692    }
12693
12694    sc->rx_mode = rx_mode;
12695
12696    /* schedule the rx_mode command */
12697    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12698        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12699        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12700        BXE_CORE_UNLOCK(sc);
12701        return;
12702    }
12703
12704    if (IS_PF(sc)) {
12705        bxe_set_storm_rx_mode(sc);
12706    }
12707#if 0
12708    else {
12709        /*
12710         * Configuring mcast to a VF involves sleeping (when we
12711         * wait for the PF's response). Since this function is
12712         * called from a non sleepable context we must schedule
12713         * a work item for this purpose
12714         */
12715        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12716        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12717    }
12718#endif
12719
12720    BXE_CORE_UNLOCK(sc);
12721}
12722
12723static void
12724bxe_set_rx_mode(struct bxe_softc *sc)
12725{
12726    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12727}
12728
12729/* update flags in shmem */
12730static void
12731bxe_update_drv_flags(struct bxe_softc *sc,
12732                     uint32_t         flags,
12733                     uint32_t         set)
12734{
12735    uint32_t drv_flags;
12736
12737    if (SHMEM2_HAS(sc, drv_flags)) {
12738        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12739        drv_flags = SHMEM2_RD(sc, drv_flags);
12740
12741        if (set) {
12742            SET_FLAGS(drv_flags, flags);
12743        } else {
12744            RESET_FLAGS(drv_flags, flags);
12745        }
12746
12747        SHMEM2_WR(sc, drv_flags, drv_flags);
12748        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12749
12750        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12751    }
12752}
12753
12754/* periodic timer callout routine, only runs when the interface is up */
12755
12756static void
12757bxe_periodic_callout_func(void *xsc)
12758{
12759    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12760    int i;
12761
12762    if (!BXE_CORE_TRYLOCK(sc)) {
12763        /* just bail and try again next time */
12764
12765        if ((sc->state == BXE_STATE_OPEN) &&
12766            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12767            /* schedule the next periodic callout */
12768            callout_reset(&sc->periodic_callout, hz,
12769                          bxe_periodic_callout_func, sc);
12770        }
12771
12772        return;
12773    }
12774
12775    if ((sc->state != BXE_STATE_OPEN) ||
12776        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12777        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12778        BXE_CORE_UNLOCK(sc);
12779        return;
12780    }
12781
12782    /* Check for TX timeouts on any fastpath. */
12783    FOR_EACH_QUEUE(sc, i) {
12784        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12785            /* Ruh-Roh, chip was reset! */
12786            break;
12787        }
12788    }
12789
12790    if (!CHIP_REV_IS_SLOW(sc)) {
12791        /*
12792         * This barrier is needed to ensure the ordering between the writing
12793         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12794         * the reading here.
12795         */
12796        mb();
12797        if (sc->port.pmf) {
12798            BXE_PHY_LOCK(sc);
12799            elink_period_func(&sc->link_params, &sc->link_vars);
12800            BXE_PHY_UNLOCK(sc);
12801        }
12802    }
12803
12804    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12805        int mb_idx = SC_FW_MB_IDX(sc);
12806        uint32_t drv_pulse;
12807        uint32_t mcp_pulse;
12808
12809        ++sc->fw_drv_pulse_wr_seq;
12810        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12811
12812        drv_pulse = sc->fw_drv_pulse_wr_seq;
12813        bxe_drv_pulse(sc);
12814
12815        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12816                     MCP_PULSE_SEQ_MASK);
12817
12818        /*
12819         * The delta between driver pulse and mcp response should
12820         * be 1 (before mcp response) or 0 (after mcp response).
12821         */
12822        if ((drv_pulse != mcp_pulse) &&
12823            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12824            /* someone lost a heartbeat... */
12825            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12826                  drv_pulse, mcp_pulse);
12827        }
12828    }
12829
12830    /* state is BXE_STATE_OPEN */
12831    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12832
12833#if 0
12834    /* sample VF bulletin board for new posts from PF */
12835    if (IS_VF(sc)) {
12836        bxe_sample_bulletin(sc);
12837    }
12838#endif
12839
12840    BXE_CORE_UNLOCK(sc);
12841
12842    if ((sc->state == BXE_STATE_OPEN) &&
12843        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12844        /* schedule the next periodic callout */
12845        callout_reset(&sc->periodic_callout, hz,
12846                      bxe_periodic_callout_func, sc);
12847    }
12848}
12849
12850static void
12851bxe_periodic_start(struct bxe_softc *sc)
12852{
12853    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12854    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12855}
12856
12857static void
12858bxe_periodic_stop(struct bxe_softc *sc)
12859{
12860    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12861    callout_drain(&sc->periodic_callout);
12862}
12863
12864/* start the controller */
12865static __noinline int
12866bxe_nic_load(struct bxe_softc *sc,
12867             int              load_mode)
12868{
12869    uint32_t val;
12870    int load_code = 0;
12871    int i, rc = 0;
12872
12873    BXE_CORE_LOCK_ASSERT(sc);
12874
12875    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12876
12877    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12878
12879    if (IS_PF(sc)) {
12880        /* must be called before memory allocation and HW init */
12881        bxe_ilt_set_info(sc);
12882    }
12883
12884    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12885
12886    bxe_set_fp_rx_buf_size(sc);
12887
12888    if (bxe_alloc_fp_buffers(sc) != 0) {
12889        BLOGE(sc, "Failed to allocate fastpath memory\n");
12890        sc->state = BXE_STATE_CLOSED;
12891        rc = ENOMEM;
12892        goto bxe_nic_load_error0;
12893    }
12894
12895    if (bxe_alloc_mem(sc) != 0) {
12896        sc->state = BXE_STATE_CLOSED;
12897        rc = ENOMEM;
12898        goto bxe_nic_load_error0;
12899    }
12900
12901    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12902        sc->state = BXE_STATE_CLOSED;
12903        rc = ENOMEM;
12904        goto bxe_nic_load_error0;
12905    }
12906
12907    if (IS_PF(sc)) {
12908        /* set pf load just before approaching the MCP */
12909        bxe_set_pf_load(sc);
12910
12911        /* if MCP exists send load request and analyze response */
12912        if (!BXE_NOMCP(sc)) {
12913            /* attempt to load pf */
12914            if (bxe_nic_load_request(sc, &load_code) != 0) {
12915                sc->state = BXE_STATE_CLOSED;
12916                rc = ENXIO;
12917                goto bxe_nic_load_error1;
12918            }
12919
12920            /* what did the MCP say? */
12921            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12922                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12923                sc->state = BXE_STATE_CLOSED;
12924                rc = ENXIO;
12925                goto bxe_nic_load_error2;
12926            }
12927        } else {
12928            BLOGI(sc, "Device has no MCP!\n");
12929            load_code = bxe_nic_load_no_mcp(sc);
12930        }
12931
12932        /* mark PMF if applicable */
12933        bxe_nic_load_pmf(sc, load_code);
12934
12935        /* Init Function state controlling object */
12936        bxe_init_func_obj(sc);
12937
12938        /* Initialize HW */
12939        if (bxe_init_hw(sc, load_code) != 0) {
12940            BLOGE(sc, "HW init failed\n");
12941            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12942            sc->state = BXE_STATE_CLOSED;
12943            rc = ENXIO;
12944            goto bxe_nic_load_error2;
12945        }
12946    }
12947
12948    /* attach interrupts */
12949    if (bxe_interrupt_attach(sc) != 0) {
12950        sc->state = BXE_STATE_CLOSED;
12951        rc = ENXIO;
12952        goto bxe_nic_load_error2;
12953    }
12954
12955    bxe_nic_init(sc, load_code);
12956
12957    /* Init per-function objects */
12958    if (IS_PF(sc)) {
12959        bxe_init_objs(sc);
12960        // XXX bxe_iov_nic_init(sc);
12961
12962        /* set AFEX default VLAN tag to an invalid value */
12963        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12964        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12965
12966        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12967        rc = bxe_func_start(sc);
12968        if (rc) {
12969            BLOGE(sc, "Function start failed!\n");
12970            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12971            sc->state = BXE_STATE_ERROR;
12972            goto bxe_nic_load_error3;
12973        }
12974
12975        /* send LOAD_DONE command to MCP */
12976        if (!BXE_NOMCP(sc)) {
12977            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12978            if (!load_code) {
12979                BLOGE(sc, "MCP response failure, aborting\n");
12980                sc->state = BXE_STATE_ERROR;
12981                rc = ENXIO;
12982                goto bxe_nic_load_error3;
12983            }
12984        }
12985
12986        rc = bxe_setup_leading(sc);
12987        if (rc) {
12988            BLOGE(sc, "Setup leading failed!\n");
12989            sc->state = BXE_STATE_ERROR;
12990            goto bxe_nic_load_error3;
12991        }
12992
12993        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12994            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12995            if (rc) {
12996                BLOGE(sc, "Queue(%d) setup failed\n", i);
12997                sc->state = BXE_STATE_ERROR;
12998                goto bxe_nic_load_error3;
12999            }
13000        }
13001
13002        rc = bxe_init_rss_pf(sc);
13003        if (rc) {
13004            BLOGE(sc, "PF RSS init failed\n");
13005            sc->state = BXE_STATE_ERROR;
13006            goto bxe_nic_load_error3;
13007        }
13008    }
13009    /* XXX VF */
13010#if 0
13011    else { /* VF */
13012        FOR_EACH_ETH_QUEUE(sc, i) {
13013            rc = bxe_vfpf_setup_q(sc, i);
13014            if (rc) {
13015                BLOGE(sc, "Queue(%d) setup failed\n", i);
13016                sc->state = BXE_STATE_ERROR;
13017                goto bxe_nic_load_error3;
13018            }
13019        }
13020    }
13021#endif
13022
13023    /* now when Clients are configured we are ready to work */
13024    sc->state = BXE_STATE_OPEN;
13025
13026    /* Configure a ucast MAC */
13027    if (IS_PF(sc)) {
13028        rc = bxe_set_eth_mac(sc, TRUE);
13029    }
13030#if 0
13031    else { /* IS_VF(sc) */
13032        rc = bxe_vfpf_set_mac(sc);
13033    }
13034#endif
13035    if (rc) {
13036        BLOGE(sc, "Setting Ethernet MAC failed\n");
13037        sc->state = BXE_STATE_ERROR;
13038        goto bxe_nic_load_error3;
13039    }
13040
13041#if 0
13042    if (IS_PF(sc) && sc->pending_max) {
13043        /* for AFEX */
13044        bxe_update_max_mf_config(sc, sc->pending_max);
13045        sc->pending_max = 0;
13046    }
13047#endif
13048
13049    if (sc->port.pmf) {
13050        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13051        if (rc) {
13052            sc->state = BXE_STATE_ERROR;
13053            goto bxe_nic_load_error3;
13054        }
13055    }
13056
13057    sc->link_params.feature_config_flags &=
13058        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13059
13060    /* start fast path */
13061
13062    /* Initialize Rx filter */
13063    bxe_set_rx_mode(sc);
13064
13065    /* start the Tx */
13066    switch (/* XXX load_mode */LOAD_OPEN) {
13067    case LOAD_NORMAL:
13068    case LOAD_OPEN:
13069        break;
13070
13071    case LOAD_DIAG:
13072    case LOAD_LOOPBACK_EXT:
13073        sc->state = BXE_STATE_DIAG;
13074        break;
13075
13076    default:
13077        break;
13078    }
13079
13080    if (sc->port.pmf) {
13081        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13082    } else {
13083        bxe_link_status_update(sc);
13084    }
13085
13086    /* start the periodic timer callout */
13087    bxe_periodic_start(sc);
13088
13089    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13090        /* mark driver is loaded in shmem2 */
13091        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13092        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13093                  (val |
13094                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13095                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13096    }
13097
13098    /* wait for all pending SP commands to complete */
13099    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13100        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13101        bxe_periodic_stop(sc);
13102        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13103        return (ENXIO);
13104    }
13105
13106#if 0
13107    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13108    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13109        bxe_dcbx_init(sc, FALSE);
13110    }
13111#endif
13112
13113    /* Tell the stack the driver is running! */
13114    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13115
13116    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13117
13118    return (0);
13119
13120bxe_nic_load_error3:
13121
13122    if (IS_PF(sc)) {
13123        bxe_int_disable_sync(sc, 1);
13124
13125        /* clean out queued objects */
13126        bxe_squeeze_objects(sc);
13127    }
13128
13129    bxe_interrupt_detach(sc);
13130
13131bxe_nic_load_error2:
13132
13133    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13134        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13135        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13136    }
13137
13138    sc->port.pmf = 0;
13139
13140bxe_nic_load_error1:
13141
13142    /* clear pf_load status, as it was already set */
13143    if (IS_PF(sc)) {
13144        bxe_clear_pf_load(sc);
13145    }
13146
13147bxe_nic_load_error0:
13148
13149    bxe_free_fw_stats_mem(sc);
13150    bxe_free_fp_buffers(sc);
13151    bxe_free_mem(sc);
13152
13153    return (rc);
13154}
13155
13156static int
13157bxe_init_locked(struct bxe_softc *sc)
13158{
13159    int other_engine = SC_PATH(sc) ? 0 : 1;
13160    uint8_t other_load_status, load_status;
13161    uint8_t global = FALSE;
13162    int rc;
13163
13164    BXE_CORE_LOCK_ASSERT(sc);
13165
13166    /* check if the driver is already running */
13167    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13168        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13169        return (0);
13170    }
13171
13172    bxe_set_power_state(sc, PCI_PM_D0);
13173
13174    /*
13175     * If parity occurred during the unload, then attentions and/or
13176     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13177     * loaded on the current engine to complete the recovery. Parity recovery
13178     * is only relevant for PF driver.
13179     */
13180    if (IS_PF(sc)) {
13181        other_load_status = bxe_get_load_status(sc, other_engine);
13182        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13183
13184        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13185            bxe_chk_parity_attn(sc, &global, TRUE)) {
13186            do {
13187                /*
13188                 * If there are attentions and they are in global blocks, set
13189                 * the GLOBAL_RESET bit regardless whether it will be this
13190                 * function that will complete the recovery or not.
13191                 */
13192                if (global) {
13193                    bxe_set_reset_global(sc);
13194                }
13195
13196                /*
13197                 * Only the first function on the current engine should try
13198                 * to recover in open. In case of attentions in global blocks
13199                 * only the first in the chip should try to recover.
13200                 */
13201                if ((!load_status && (!global || !other_load_status)) &&
13202                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13203                    BLOGI(sc, "Recovered during init\n");
13204                    break;
13205                }
13206
13207                /* recovery has failed... */
13208                bxe_set_power_state(sc, PCI_PM_D3hot);
13209                sc->recovery_state = BXE_RECOVERY_FAILED;
13210
13211                BLOGE(sc, "Recovery flow hasn't properly "
13212                          "completed yet, try again later. "
13213                          "If you still see this message after a "
13214                          "few retries then power cycle is required.\n");
13215
13216                rc = ENXIO;
13217                goto bxe_init_locked_done;
13218            } while (0);
13219        }
13220    }
13221
13222    sc->recovery_state = BXE_RECOVERY_DONE;
13223
13224    rc = bxe_nic_load(sc, LOAD_OPEN);
13225
13226bxe_init_locked_done:
13227
13228    if (rc) {
13229        /* Tell the stack the driver is NOT running! */
13230        BLOGE(sc, "Initialization failed, "
13231                  "stack notified driver is NOT running!\n");
13232        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13233    }
13234
13235    return (rc);
13236}
13237
13238static int
13239bxe_stop_locked(struct bxe_softc *sc)
13240{
13241    BXE_CORE_LOCK_ASSERT(sc);
13242    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13243}
13244
13245/*
13246 * Handles controller initialization when called from an unlocked routine.
13247 * ifconfig calls this function.
13248 *
13249 * Returns:
13250 *   void
13251 */
13252static void
13253bxe_init(void *xsc)
13254{
13255    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13256
13257    BXE_CORE_LOCK(sc);
13258    bxe_init_locked(sc);
13259    BXE_CORE_UNLOCK(sc);
13260}
13261
13262static int
13263bxe_init_ifnet(struct bxe_softc *sc)
13264{
13265    struct ifnet *ifp;
13266
13267    /* ifconfig entrypoint for media type/status reporting */
13268    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13269                 bxe_ifmedia_update,
13270                 bxe_ifmedia_status);
13271
13272    /* set the default interface values */
13273    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13274    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13275    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13276
13277    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13278
13279    /* allocate the ifnet structure */
13280    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13281        BLOGE(sc, "Interface allocation failed!\n");
13282        return (ENXIO);
13283    }
13284
13285    ifp->if_softc = sc;
13286    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13287    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13288    ifp->if_ioctl = bxe_ioctl;
13289    ifp->if_start = bxe_tx_start;
13290#if __FreeBSD_version >= 800000
13291    ifp->if_transmit = bxe_tx_mq_start;
13292    ifp->if_qflush = bxe_mq_flush;
13293#endif
13294#ifdef FreeBSD8_0
13295    ifp->if_timer = 0;
13296#endif
13297    ifp->if_init = bxe_init;
13298    ifp->if_mtu = sc->mtu;
13299    ifp->if_hwassist = (CSUM_IP       |
13300                        CSUM_TCP      |
13301                        CSUM_UDP      |
13302                        CSUM_TSO      |
13303                        CSUM_TCP_IPV6 |
13304                        CSUM_UDP_IPV6);
13305    ifp->if_capabilities =
13306#if __FreeBSD_version < 700000
13307        (IFCAP_VLAN_MTU       |
13308         IFCAP_VLAN_HWTAGGING |
13309         IFCAP_HWCSUM         |
13310         IFCAP_JUMBO_MTU      |
13311         IFCAP_LRO);
13312#else
13313        (IFCAP_VLAN_MTU       |
13314         IFCAP_VLAN_HWTAGGING |
13315         IFCAP_VLAN_HWTSO     |
13316         IFCAP_VLAN_HWFILTER  |
13317         IFCAP_VLAN_HWCSUM    |
13318         IFCAP_HWCSUM         |
13319         IFCAP_JUMBO_MTU      |
13320         IFCAP_LRO            |
13321         IFCAP_TSO4           |
13322         IFCAP_TSO6           |
13323         IFCAP_WOL_MAGIC);
13324#endif
13325    ifp->if_capenable = ifp->if_capabilities;
13326    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13327#if __FreeBSD_version < 1000025
13328    ifp->if_baudrate = 1000000000;
13329#else
13330    if_initbaudrate(ifp, IF_Gbps(10));
13331#endif
13332    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13333
13334    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13335    IFQ_SET_READY(&ifp->if_snd);
13336
13337    sc->ifnet = ifp;
13338
13339    /* attach to the Ethernet interface list */
13340    ether_ifattach(ifp, sc->link_params.mac_addr);
13341
13342    return (0);
13343}
13344
13345static void
13346bxe_deallocate_bars(struct bxe_softc *sc)
13347{
13348    int i;
13349
13350    for (i = 0; i < MAX_BARS; i++) {
13351        if (sc->bar[i].resource != NULL) {
13352            bus_release_resource(sc->dev,
13353                                 SYS_RES_MEMORY,
13354                                 sc->bar[i].rid,
13355                                 sc->bar[i].resource);
13356            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13357                  i, PCIR_BAR(i));
13358        }
13359    }
13360}
13361
13362static int
13363bxe_allocate_bars(struct bxe_softc *sc)
13364{
13365    u_int flags;
13366    int i;
13367
13368    memset(sc->bar, 0, sizeof(sc->bar));
13369
13370    for (i = 0; i < MAX_BARS; i++) {
13371
13372        /* memory resources reside at BARs 0, 2, 4 */
13373        /* Run `pciconf -lb` to see mappings */
13374        if ((i != 0) && (i != 2) && (i != 4)) {
13375            continue;
13376        }
13377
13378        sc->bar[i].rid = PCIR_BAR(i);
13379
13380        flags = RF_ACTIVE;
13381        if (i == 0) {
13382            flags |= RF_SHAREABLE;
13383        }
13384
13385        if ((sc->bar[i].resource =
13386             bus_alloc_resource_any(sc->dev,
13387                                    SYS_RES_MEMORY,
13388                                    &sc->bar[i].rid,
13389                                    flags)) == NULL) {
13390#if 0
13391            /* BAR4 doesn't exist for E1 */
13392            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13393                  i, PCIR_BAR(i));
13394#endif
13395            return (0);
13396        }
13397
13398        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13399        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13400        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13401
13402        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13403              i, PCIR_BAR(i),
13404              (void *)rman_get_start(sc->bar[i].resource),
13405              (void *)rman_get_end(sc->bar[i].resource),
13406              rman_get_size(sc->bar[i].resource),
13407              (void *)sc->bar[i].kva);
13408    }
13409
13410    return (0);
13411}
13412
13413static void
13414bxe_get_function_num(struct bxe_softc *sc)
13415{
13416    uint32_t val = 0;
13417
13418    /*
13419     * Read the ME register to get the function number. The ME register
13420     * holds the relative-function number and absolute-function number. The
13421     * absolute-function number appears only in E2 and above. Before that
13422     * these bits always contained zero, therefore we cannot blindly use them.
13423     */
13424
13425    val = REG_RD(sc, BAR_ME_REGISTER);
13426
13427    sc->pfunc_rel =
13428        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13429    sc->path_id =
13430        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13431
13432    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13433        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13434    } else {
13435        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13436    }
13437
13438    BLOGD(sc, DBG_LOAD,
13439          "Relative function %d, Absolute function %d, Path %d\n",
13440          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13441}
13442
13443static uint32_t
13444bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13445{
13446    uint32_t shmem2_size;
13447    uint32_t offset;
13448    uint32_t mf_cfg_offset_value;
13449
13450    /* Non 57712 */
13451    offset = (SHMEM_RD(sc, func_mb) +
13452              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13453
13454    /* 57712 plus */
13455    if (sc->devinfo.shmem2_base != 0) {
13456        shmem2_size = SHMEM2_RD(sc, size);
13457        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13458            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13459            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13460                offset = mf_cfg_offset_value;
13461            }
13462        }
13463    }
13464
13465    return (offset);
13466}
13467
13468static uint32_t
13469bxe_pcie_capability_read(struct bxe_softc *sc,
13470                         int    reg,
13471                         int    width)
13472{
13473    int pcie_reg;
13474
13475    /* ensure PCIe capability is enabled */
13476    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13477        if (pcie_reg != 0) {
13478            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13479            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13480        }
13481    }
13482
13483    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13484
13485    return (0);
13486}
13487
13488static uint8_t
13489bxe_is_pcie_pending(struct bxe_softc *sc)
13490{
13491    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13492            PCIM_EXP_STA_TRANSACTION_PND);
13493}
13494
13495/*
13496 * Walk the PCI capabiites list for the device to find what features are
13497 * supported. These capabilites may be enabled/disabled by firmware so it's
13498 * best to walk the list rather than make assumptions.
13499 */
13500static void
13501bxe_probe_pci_caps(struct bxe_softc *sc)
13502{
13503    uint16_t link_status;
13504    int reg;
13505
13506    /* check if PCI Power Management is enabled */
13507    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13508        if (reg != 0) {
13509            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13510
13511            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13512            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13513        }
13514    }
13515
13516    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13517
13518    /* handle PCIe 2.0 workarounds for 57710 */
13519    if (CHIP_IS_E1(sc)) {
13520        /* workaround for 57710 errata E4_57710_27462 */
13521        sc->devinfo.pcie_link_speed =
13522            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13523
13524        /* workaround for 57710 errata E4_57710_27488 */
13525        sc->devinfo.pcie_link_width =
13526            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13527        if (sc->devinfo.pcie_link_speed > 1) {
13528            sc->devinfo.pcie_link_width =
13529                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13530        }
13531    } else {
13532        sc->devinfo.pcie_link_speed =
13533            (link_status & PCIM_LINK_STA_SPEED);
13534        sc->devinfo.pcie_link_width =
13535            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13536    }
13537
13538    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13539          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13540
13541    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13542    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13543
13544    /* check if MSI capability is enabled */
13545    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13546        if (reg != 0) {
13547            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13548
13549            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13550            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13551        }
13552    }
13553
13554    /* check if MSI-X capability is enabled */
13555    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13556        if (reg != 0) {
13557            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13558
13559            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13560            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13561        }
13562    }
13563}
13564
13565static int
13566bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13567{
13568    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13569    uint32_t val;
13570
13571    /* get the outer vlan if we're in switch-dependent mode */
13572
13573    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13574    mf_info->ext_id = (uint16_t)val;
13575
13576    mf_info->multi_vnics_mode = 1;
13577
13578    if (!VALID_OVLAN(mf_info->ext_id)) {
13579        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13580        return (1);
13581    }
13582
13583    /* get the capabilities */
13584    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13585        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13586        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13587    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13588               FUNC_MF_CFG_PROTOCOL_FCOE) {
13589        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13590    } else {
13591        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13592    }
13593
13594    mf_info->vnics_per_port =
13595        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13596
13597    return (0);
13598}
13599
13600static uint32_t
13601bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13602{
13603    uint32_t retval = 0;
13604    uint32_t val;
13605
13606    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13607
13608    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13609        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13610            retval |= MF_PROTO_SUPPORT_ETHERNET;
13611        }
13612        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13613            retval |= MF_PROTO_SUPPORT_ISCSI;
13614        }
13615        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13616            retval |= MF_PROTO_SUPPORT_FCOE;
13617        }
13618    }
13619
13620    return (retval);
13621}
13622
13623static int
13624bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13625{
13626    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13627    uint32_t val;
13628
13629    /*
13630     * There is no outer vlan if we're in switch-independent mode.
13631     * If the mac is valid then assume multi-function.
13632     */
13633
13634    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13635
13636    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13637
13638    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13639
13640    mf_info->vnics_per_port =
13641        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13642
13643    return (0);
13644}
13645
13646static int
13647bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13648{
13649    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13650    uint32_t e1hov_tag;
13651    uint32_t func_config;
13652    uint32_t niv_config;
13653
13654    mf_info->multi_vnics_mode = 1;
13655
13656    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13657    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13658    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13659
13660    mf_info->ext_id =
13661        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13662                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13663
13664    mf_info->default_vlan =
13665        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13666                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13667
13668    mf_info->niv_allowed_priorities =
13669        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13670                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13671
13672    mf_info->niv_default_cos =
13673        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13674                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13675
13676    mf_info->afex_vlan_mode =
13677        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13678         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13679
13680    mf_info->niv_mba_enabled =
13681        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13682         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13683
13684    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13685
13686    mf_info->vnics_per_port =
13687        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13688
13689    return (0);
13690}
13691
13692static int
13693bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13694{
13695    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13696    uint32_t mf_cfg1;
13697    uint32_t mf_cfg2;
13698    uint32_t ovlan1;
13699    uint32_t ovlan2;
13700    uint8_t i, j;
13701
13702    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13703          SC_PORT(sc));
13704    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13705          mf_info->mf_config[SC_VN(sc)]);
13706    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13707          mf_info->multi_vnics_mode);
13708    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13709          mf_info->vnics_per_port);
13710    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13711          mf_info->ext_id);
13712    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13713          mf_info->min_bw[0], mf_info->min_bw[1],
13714          mf_info->min_bw[2], mf_info->min_bw[3]);
13715    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13716          mf_info->max_bw[0], mf_info->max_bw[1],
13717          mf_info->max_bw[2], mf_info->max_bw[3]);
13718    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13719          sc->mac_addr_str);
13720
13721    /* various MF mode sanity checks... */
13722
13723    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13724        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13725              SC_PORT(sc));
13726        return (1);
13727    }
13728
13729    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13730        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13731              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13732        return (1);
13733    }
13734
13735    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13736        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13737        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13738            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13739                  SC_VN(sc), OVLAN(sc));
13740            return (1);
13741        }
13742
13743        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13744            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13745                  mf_info->multi_vnics_mode, OVLAN(sc));
13746            return (1);
13747        }
13748
13749        /*
13750         * Verify all functions are either MF or SF mode. If MF, make sure
13751         * sure that all non-hidden functions have a valid ovlan. If SF,
13752         * make sure that all non-hidden functions have an invalid ovlan.
13753         */
13754        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13755            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13756            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13757            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13758                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13759                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13760                BLOGE(sc, "mf_mode=SD function %d MF config "
13761                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13762                      i, mf_info->multi_vnics_mode, ovlan1);
13763                return (1);
13764            }
13765        }
13766
13767        /* Verify all funcs on the same port each have a different ovlan. */
13768        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13769            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13770            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13771            /* iterate from the next function on the port to the max func */
13772            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13773                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13774                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13775                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13776                    VALID_OVLAN(ovlan1) &&
13777                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13778                    VALID_OVLAN(ovlan2) &&
13779                    (ovlan1 == ovlan2)) {
13780                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13781                              "have the same ovlan (%d)\n",
13782                          i, j, ovlan1);
13783                    return (1);
13784                }
13785            }
13786        }
13787    } /* MULTI_FUNCTION_SD */
13788
13789    return (0);
13790}
13791
13792static int
13793bxe_get_mf_cfg_info(struct bxe_softc *sc)
13794{
13795    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13796    uint32_t val, mac_upper;
13797    uint8_t i, vnic;
13798
13799    /* initialize mf_info defaults */
13800    mf_info->vnics_per_port   = 1;
13801    mf_info->multi_vnics_mode = FALSE;
13802    mf_info->path_has_ovlan   = FALSE;
13803    mf_info->mf_mode          = SINGLE_FUNCTION;
13804
13805    if (!CHIP_IS_MF_CAP(sc)) {
13806        return (0);
13807    }
13808
13809    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13810        BLOGE(sc, "Invalid mf_cfg_base!\n");
13811        return (1);
13812    }
13813
13814    /* get the MF mode (switch dependent / independent / single-function) */
13815
13816    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13817
13818    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13819    {
13820    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13821
13822        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13823
13824        /* check for legal upper mac bytes */
13825        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13826            mf_info->mf_mode = MULTI_FUNCTION_SI;
13827        } else {
13828            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13829        }
13830
13831        break;
13832
13833    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13834    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13835
13836        /* get outer vlan configuration */
13837        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13838
13839        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13840            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13841            mf_info->mf_mode = MULTI_FUNCTION_SD;
13842        } else {
13843            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13844        }
13845
13846        break;
13847
13848    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13849
13850        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13851        return (0);
13852
13853    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13854
13855        /*
13856         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13857         * and the MAC address is valid.
13858         */
13859        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13860
13861        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13862            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13863            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13864        } else {
13865            BLOGE(sc, "Invalid config for AFEX mode\n");
13866        }
13867
13868        break;
13869
13870    default:
13871
13872        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13873              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13874
13875        return (1);
13876    }
13877
13878    /* set path mf_mode (which could be different than function mf_mode) */
13879    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13880        mf_info->path_has_ovlan = TRUE;
13881    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13882        /*
13883         * Decide on path multi vnics mode. If we're not in MF mode and in
13884         * 4-port mode, this is good enough to check vnic-0 of the other port
13885         * on the same path
13886         */
13887        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13888            uint8_t other_port = !(PORT_ID(sc) & 1);
13889            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13890
13891            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13892
13893            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13894        }
13895    }
13896
13897    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13898        /* invalid MF config */
13899        if (SC_VN(sc) >= 1) {
13900            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13901            return (1);
13902        }
13903
13904        return (0);
13905    }
13906
13907    /* get the MF configuration */
13908    mf_info->mf_config[SC_VN(sc)] =
13909        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13910
13911    switch(mf_info->mf_mode)
13912    {
13913    case MULTI_FUNCTION_SD:
13914
13915        bxe_get_shmem_mf_cfg_info_sd(sc);
13916        break;
13917
13918    case MULTI_FUNCTION_SI:
13919
13920        bxe_get_shmem_mf_cfg_info_si(sc);
13921        break;
13922
13923    case MULTI_FUNCTION_AFEX:
13924
13925        bxe_get_shmem_mf_cfg_info_niv(sc);
13926        break;
13927
13928    default:
13929
13930        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13931              mf_info->mf_mode);
13932        return (1);
13933    }
13934
13935    /* get the congestion management parameters */
13936
13937    vnic = 0;
13938    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13939        /* get min/max bw */
13940        val = MFCFG_RD(sc, func_mf_config[i].config);
13941        mf_info->min_bw[vnic] =
13942            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13943        mf_info->max_bw[vnic] =
13944            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13945        vnic++;
13946    }
13947
13948    return (bxe_check_valid_mf_cfg(sc));
13949}
13950
13951static int
13952bxe_get_shmem_info(struct bxe_softc *sc)
13953{
13954    int port;
13955    uint32_t mac_hi, mac_lo, val;
13956
13957    port = SC_PORT(sc);
13958    mac_hi = mac_lo = 0;
13959
13960    sc->link_params.sc   = sc;
13961    sc->link_params.port = port;
13962
13963    /* get the hardware config info */
13964    sc->devinfo.hw_config =
13965        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13966    sc->devinfo.hw_config2 =
13967        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13968
13969    sc->link_params.hw_led_mode =
13970        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13971         SHARED_HW_CFG_LED_MODE_SHIFT);
13972
13973    /* get the port feature config */
13974    sc->port.config =
13975        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13976
13977    /* get the link params */
13978    sc->link_params.speed_cap_mask[0] =
13979        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13980    sc->link_params.speed_cap_mask[1] =
13981        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13982
13983    /* get the lane config */
13984    sc->link_params.lane_config =
13985        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13986
13987    /* get the link config */
13988    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13989    sc->port.link_config[ELINK_INT_PHY] = val;
13990    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13991    sc->port.link_config[ELINK_EXT_PHY1] =
13992        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13993
13994    /* get the override preemphasis flag and enable it or turn it off */
13995    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13996    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13997        sc->link_params.feature_config_flags |=
13998            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13999    } else {
14000        sc->link_params.feature_config_flags &=
14001            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14002    }
14003
14004    /* get the initial value of the link params */
14005    sc->link_params.multi_phy_config =
14006        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14007
14008    /* get external phy info */
14009    sc->port.ext_phy_config =
14010        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14011
14012    /* get the multifunction configuration */
14013    bxe_get_mf_cfg_info(sc);
14014
14015    /* get the mac address */
14016    if (IS_MF(sc)) {
14017        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14018        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14019    } else {
14020        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14021        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14022    }
14023
14024    if ((mac_lo == 0) && (mac_hi == 0)) {
14025        *sc->mac_addr_str = 0;
14026        BLOGE(sc, "No Ethernet address programmed!\n");
14027    } else {
14028        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14029        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14030        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14031        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14032        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14033        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14034        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14035                 "%02x:%02x:%02x:%02x:%02x:%02x",
14036                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14037                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14038                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14039        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14040    }
14041
14042#if 0
14043    if (!IS_MF(sc) &&
14044        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14045         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14046        sc->flags |= BXE_NO_ISCSI;
14047    }
14048    if (!IS_MF(sc) &&
14049        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14050         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14051        sc->flags |= BXE_NO_FCOE_FLAG;
14052    }
14053#endif
14054
14055    return (0);
14056}
14057
14058static void
14059bxe_get_tunable_params(struct bxe_softc *sc)
14060{
14061    /* sanity checks */
14062
14063    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14064        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14065        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14066        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14067        bxe_interrupt_mode = INTR_MODE_MSIX;
14068    }
14069
14070    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14071        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14072        bxe_queue_count = 0;
14073    }
14074
14075    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14076        if (bxe_max_rx_bufs == 0) {
14077            bxe_max_rx_bufs = RX_BD_USABLE;
14078        } else {
14079            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14080            bxe_max_rx_bufs = 2048;
14081        }
14082    }
14083
14084    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14085        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14086        bxe_hc_rx_ticks = 25;
14087    }
14088
14089    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14090        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14091        bxe_hc_tx_ticks = 50;
14092    }
14093
14094    if (bxe_max_aggregation_size == 0) {
14095        bxe_max_aggregation_size = TPA_AGG_SIZE;
14096    }
14097
14098    if (bxe_max_aggregation_size > 0xffff) {
14099        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14100              bxe_max_aggregation_size);
14101        bxe_max_aggregation_size = TPA_AGG_SIZE;
14102    }
14103
14104    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14105        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14106        bxe_mrrs = -1;
14107    }
14108
14109    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14110        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14111        bxe_autogreeen = 0;
14112    }
14113
14114    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14115        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14116        bxe_udp_rss = 0;
14117    }
14118
14119    /* pull in user settings */
14120
14121    sc->interrupt_mode       = bxe_interrupt_mode;
14122    sc->max_rx_bufs          = bxe_max_rx_bufs;
14123    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14124    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14125    sc->max_aggregation_size = bxe_max_aggregation_size;
14126    sc->mrrs                 = bxe_mrrs;
14127    sc->autogreeen           = bxe_autogreeen;
14128    sc->udp_rss              = bxe_udp_rss;
14129
14130    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14131        sc->num_queues = 1;
14132    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14133        sc->num_queues =
14134            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14135                MAX_RSS_CHAINS);
14136        if (sc->num_queues > mp_ncpus) {
14137            sc->num_queues = mp_ncpus;
14138        }
14139    }
14140
14141    BLOGD(sc, DBG_LOAD,
14142          "User Config: "
14143          "debug=0x%lx "
14144          "interrupt_mode=%d "
14145          "queue_count=%d "
14146          "hc_rx_ticks=%d "
14147          "hc_tx_ticks=%d "
14148          "rx_budget=%d "
14149          "max_aggregation_size=%d "
14150          "mrrs=%d "
14151          "autogreeen=%d "
14152          "udp_rss=%d\n",
14153          bxe_debug,
14154          sc->interrupt_mode,
14155          sc->num_queues,
14156          sc->hc_rx_ticks,
14157          sc->hc_tx_ticks,
14158          bxe_rx_budget,
14159          sc->max_aggregation_size,
14160          sc->mrrs,
14161          sc->autogreeen,
14162          sc->udp_rss);
14163}
14164
14165static void
14166bxe_media_detect(struct bxe_softc *sc)
14167{
14168    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14169    switch (sc->link_params.phy[phy_idx].media_type) {
14170    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14171    case ELINK_ETH_PHY_XFP_FIBER:
14172        BLOGI(sc, "Found 10Gb Fiber media.\n");
14173        sc->media = IFM_10G_SR;
14174        break;
14175    case ELINK_ETH_PHY_SFP_1G_FIBER:
14176        BLOGI(sc, "Found 1Gb Fiber media.\n");
14177        sc->media = IFM_1000_SX;
14178        break;
14179    case ELINK_ETH_PHY_KR:
14180    case ELINK_ETH_PHY_CX4:
14181        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14182        sc->media = IFM_10G_CX4;
14183        break;
14184    case ELINK_ETH_PHY_DA_TWINAX:
14185        BLOGI(sc, "Found 10Gb Twinax media.\n");
14186        sc->media = IFM_10G_TWINAX;
14187        break;
14188    case ELINK_ETH_PHY_BASE_T:
14189        if (sc->link_params.speed_cap_mask[0] &
14190            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14191            BLOGI(sc, "Found 10GBase-T media.\n");
14192            sc->media = IFM_10G_T;
14193        } else {
14194            BLOGI(sc, "Found 1000Base-T media.\n");
14195            sc->media = IFM_1000_T;
14196        }
14197        break;
14198    case ELINK_ETH_PHY_NOT_PRESENT:
14199        BLOGI(sc, "Media not present.\n");
14200        sc->media = 0;
14201        break;
14202    case ELINK_ETH_PHY_UNSPECIFIED:
14203    default:
14204        BLOGI(sc, "Unknown media!\n");
14205        sc->media = 0;
14206        break;
14207    }
14208}
14209
14210#define GET_FIELD(value, fname)                     \
14211    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14212#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14213#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14214
14215static int
14216bxe_get_igu_cam_info(struct bxe_softc *sc)
14217{
14218    int pfid = SC_FUNC(sc);
14219    int igu_sb_id;
14220    uint32_t val;
14221    uint8_t fid, igu_sb_cnt = 0;
14222
14223    sc->igu_base_sb = 0xff;
14224
14225    if (CHIP_INT_MODE_IS_BC(sc)) {
14226        int vn = SC_VN(sc);
14227        igu_sb_cnt = sc->igu_sb_cnt;
14228        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14229                           FP_SB_MAX_E1x);
14230        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14231                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14232        return (0);
14233    }
14234
14235    /* IGU in normal mode - read CAM */
14236    for (igu_sb_id = 0;
14237         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14238         igu_sb_id++) {
14239        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14240        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14241            continue;
14242        }
14243        fid = IGU_FID(val);
14244        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14245            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14246                continue;
14247            }
14248            if (IGU_VEC(val) == 0) {
14249                /* default status block */
14250                sc->igu_dsb_id = igu_sb_id;
14251            } else {
14252                if (sc->igu_base_sb == 0xff) {
14253                    sc->igu_base_sb = igu_sb_id;
14254                }
14255                igu_sb_cnt++;
14256            }
14257        }
14258    }
14259
14260    /*
14261     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14262     * that number of CAM entries will not be equal to the value advertised in
14263     * PCI. Driver should use the minimal value of both as the actual status
14264     * block count
14265     */
14266    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14267
14268    if (igu_sb_cnt == 0) {
14269        BLOGE(sc, "CAM configuration error\n");
14270        return (-1);
14271    }
14272
14273    return (0);
14274}
14275
14276/*
14277 * Gather various information from the device config space, the device itself,
14278 * shmem, and the user input.
14279 */
14280static int
14281bxe_get_device_info(struct bxe_softc *sc)
14282{
14283    uint32_t val;
14284    int rc;
14285
14286    /* Get the data for the device */
14287    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14288    sc->devinfo.device_id    = pci_get_device(sc->dev);
14289    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14290    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14291
14292    /* get the chip revision (chip metal comes from pci config space) */
14293    sc->devinfo.chip_id     =
14294    sc->link_params.chip_id =
14295        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14296         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14297         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14298         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14299
14300    /* force 57811 according to MISC register */
14301    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14302        if (CHIP_IS_57810(sc)) {
14303            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14304                                   (sc->devinfo.chip_id & 0x0000ffff));
14305        } else if (CHIP_IS_57810_MF(sc)) {
14306            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14307                                   (sc->devinfo.chip_id & 0x0000ffff));
14308        }
14309        sc->devinfo.chip_id |= 0x1;
14310    }
14311
14312    BLOGD(sc, DBG_LOAD,
14313          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14314          sc->devinfo.chip_id,
14315          ((sc->devinfo.chip_id >> 16) & 0xffff),
14316          ((sc->devinfo.chip_id >> 12) & 0xf),
14317          ((sc->devinfo.chip_id >>  4) & 0xff),
14318          ((sc->devinfo.chip_id >>  0) & 0xf));
14319
14320    val = (REG_RD(sc, 0x2874) & 0x55);
14321    if ((sc->devinfo.chip_id & 0x1) ||
14322        (CHIP_IS_E1(sc) && val) ||
14323        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14324        sc->flags |= BXE_ONE_PORT_FLAG;
14325        BLOGD(sc, DBG_LOAD, "single port device\n");
14326    }
14327
14328    /* set the doorbell size */
14329    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14330
14331    /* determine whether the device is in 2 port or 4 port mode */
14332    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14333    if (CHIP_IS_E2E3(sc)) {
14334        /*
14335         * Read port4mode_en_ovwr[0]:
14336         *   If 1, four port mode is in port4mode_en_ovwr[1].
14337         *   If 0, four port mode is in port4mode_en[0].
14338         */
14339        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14340        if (val & 1) {
14341            val = ((val >> 1) & 1);
14342        } else {
14343            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14344        }
14345
14346        sc->devinfo.chip_port_mode =
14347            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14348
14349        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14350    }
14351
14352    /* get the function and path info for the device */
14353    bxe_get_function_num(sc);
14354
14355    /* get the shared memory base address */
14356    sc->devinfo.shmem_base     =
14357    sc->link_params.shmem_base =
14358        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14359    sc->devinfo.shmem2_base =
14360        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14361                                  MISC_REG_GENERIC_CR_0));
14362
14363    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14364          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14365
14366    if (!sc->devinfo.shmem_base) {
14367        /* this should ONLY prevent upcoming shmem reads */
14368        BLOGI(sc, "MCP not active\n");
14369        sc->flags |= BXE_NO_MCP_FLAG;
14370        return (0);
14371    }
14372
14373    /* make sure the shared memory contents are valid */
14374    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14375    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14376        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14377        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14378        return (0);
14379    }
14380    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14381
14382    /* get the bootcode version */
14383    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14384    snprintf(sc->devinfo.bc_ver_str,
14385             sizeof(sc->devinfo.bc_ver_str),
14386             "%d.%d.%d",
14387             ((sc->devinfo.bc_ver >> 24) & 0xff),
14388             ((sc->devinfo.bc_ver >> 16) & 0xff),
14389             ((sc->devinfo.bc_ver >>  8) & 0xff));
14390    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14391
14392    /* get the bootcode shmem address */
14393    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14394    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14395
14396    /* clean indirect addresses as they're not used */
14397    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14398    if (IS_PF(sc)) {
14399        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14400        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14401        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14402        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14403        if (CHIP_IS_E1x(sc)) {
14404            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14405            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14406            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14407            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14408        }
14409
14410        /*
14411         * Enable internal target-read (in case we are probed after PF
14412         * FLR). Must be done prior to any BAR read access. Only for
14413         * 57712 and up
14414         */
14415        if (!CHIP_IS_E1x(sc)) {
14416            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14417        }
14418    }
14419
14420    /* get the nvram size */
14421    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14422    sc->devinfo.flash_size =
14423        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14424    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14425
14426    /* get PCI capabilites */
14427    bxe_probe_pci_caps(sc);
14428
14429    bxe_set_power_state(sc, PCI_PM_D0);
14430
14431    /* get various configuration parameters from shmem */
14432    bxe_get_shmem_info(sc);
14433
14434    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14435        val = pci_read_config(sc->dev,
14436                              (sc->devinfo.pcie_msix_cap_reg +
14437                               PCIR_MSIX_CTRL),
14438                              2);
14439        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14440    } else {
14441        sc->igu_sb_cnt = 1;
14442    }
14443
14444    sc->igu_base_addr = BAR_IGU_INTMEM;
14445
14446    /* initialize IGU parameters */
14447    if (CHIP_IS_E1x(sc)) {
14448        sc->devinfo.int_block = INT_BLOCK_HC;
14449        sc->igu_dsb_id = DEF_SB_IGU_ID;
14450        sc->igu_base_sb = 0;
14451    } else {
14452        sc->devinfo.int_block = INT_BLOCK_IGU;
14453
14454        /* do not allow device reset during IGU info preocessing */
14455        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14456
14457        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14458
14459        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14460            int tout = 5000;
14461
14462            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14463
14464            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14465            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14466            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14467
14468            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14469                tout--;
14470                DELAY(1000);
14471            }
14472
14473            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14474                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14475                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14476                return (-1);
14477            }
14478        }
14479
14480        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14481            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14482            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14483        } else {
14484            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14485        }
14486
14487        rc = bxe_get_igu_cam_info(sc);
14488
14489        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14490
14491        if (rc) {
14492            return (rc);
14493        }
14494    }
14495
14496    /*
14497     * Get base FW non-default (fast path) status block ID. This value is
14498     * used to initialize the fw_sb_id saved on the fp/queue structure to
14499     * determine the id used by the FW.
14500     */
14501    if (CHIP_IS_E1x(sc)) {
14502        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14503    } else {
14504        /*
14505         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14506         * the same queue are indicated on the same IGU SB). So we prefer
14507         * FW and IGU SBs to be the same value.
14508         */
14509        sc->base_fw_ndsb = sc->igu_base_sb;
14510    }
14511
14512    BLOGD(sc, DBG_LOAD,
14513          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14514          sc->igu_dsb_id, sc->igu_base_sb,
14515          sc->igu_sb_cnt, sc->base_fw_ndsb);
14516
14517    elink_phy_probe(&sc->link_params);
14518
14519    return (0);
14520}
14521
14522static void
14523bxe_link_settings_supported(struct bxe_softc *sc,
14524                            uint32_t         switch_cfg)
14525{
14526    uint32_t cfg_size = 0;
14527    uint32_t idx;
14528    uint8_t port = SC_PORT(sc);
14529
14530    /* aggregation of supported attributes of all external phys */
14531    sc->port.supported[0] = 0;
14532    sc->port.supported[1] = 0;
14533
14534    switch (sc->link_params.num_phys) {
14535    case 1:
14536        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14537        cfg_size = 1;
14538        break;
14539    case 2:
14540        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14541        cfg_size = 1;
14542        break;
14543    case 3:
14544        if (sc->link_params.multi_phy_config &
14545            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14546            sc->port.supported[1] =
14547                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14548            sc->port.supported[0] =
14549                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14550        } else {
14551            sc->port.supported[0] =
14552                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14553            sc->port.supported[1] =
14554                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14555        }
14556        cfg_size = 2;
14557        break;
14558    }
14559
14560    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14561        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14562              SHMEM_RD(sc,
14563                       dev_info.port_hw_config[port].external_phy_config),
14564              SHMEM_RD(sc,
14565                       dev_info.port_hw_config[port].external_phy_config2));
14566        return;
14567    }
14568
14569    if (CHIP_IS_E3(sc))
14570        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14571    else {
14572        switch (switch_cfg) {
14573        case ELINK_SWITCH_CFG_1G:
14574            sc->port.phy_addr =
14575                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14576            break;
14577        case ELINK_SWITCH_CFG_10G:
14578            sc->port.phy_addr =
14579                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14580            break;
14581        default:
14582            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14583                  sc->port.link_config[0]);
14584            return;
14585        }
14586    }
14587
14588    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14589
14590    /* mask what we support according to speed_cap_mask per configuration */
14591    for (idx = 0; idx < cfg_size; idx++) {
14592        if (!(sc->link_params.speed_cap_mask[idx] &
14593              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14594            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14595        }
14596
14597        if (!(sc->link_params.speed_cap_mask[idx] &
14598              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14599            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14600        }
14601
14602        if (!(sc->link_params.speed_cap_mask[idx] &
14603              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14604            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14605        }
14606
14607        if (!(sc->link_params.speed_cap_mask[idx] &
14608              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14609            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14610        }
14611
14612        if (!(sc->link_params.speed_cap_mask[idx] &
14613              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14614            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14615        }
14616
14617        if (!(sc->link_params.speed_cap_mask[idx] &
14618              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14619            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14620        }
14621
14622        if (!(sc->link_params.speed_cap_mask[idx] &
14623              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14624            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14625        }
14626
14627        if (!(sc->link_params.speed_cap_mask[idx] &
14628              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14629            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14630        }
14631    }
14632
14633    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14634          sc->port.supported[0], sc->port.supported[1]);
14635}
14636
14637static void
14638bxe_link_settings_requested(struct bxe_softc *sc)
14639{
14640    uint32_t link_config;
14641    uint32_t idx;
14642    uint32_t cfg_size = 0;
14643
14644    sc->port.advertising[0] = 0;
14645    sc->port.advertising[1] = 0;
14646
14647    switch (sc->link_params.num_phys) {
14648    case 1:
14649    case 2:
14650        cfg_size = 1;
14651        break;
14652    case 3:
14653        cfg_size = 2;
14654        break;
14655    }
14656
14657    for (idx = 0; idx < cfg_size; idx++) {
14658        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14659        link_config = sc->port.link_config[idx];
14660
14661        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14662        case PORT_FEATURE_LINK_SPEED_AUTO:
14663            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14664                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14665                sc->port.advertising[idx] |= sc->port.supported[idx];
14666                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14667                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14668                    sc->port.advertising[idx] |=
14669                        (ELINK_SUPPORTED_100baseT_Half |
14670                         ELINK_SUPPORTED_100baseT_Full);
14671            } else {
14672                /* force 10G, no AN */
14673                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14674                sc->port.advertising[idx] |=
14675                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14676                continue;
14677            }
14678            break;
14679
14680        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14681            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14682                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14683                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14684                                              ADVERTISED_TP);
14685            } else {
14686                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14687                          "speed_cap_mask=0x%08x\n",
14688                      link_config, sc->link_params.speed_cap_mask[idx]);
14689                return;
14690            }
14691            break;
14692
14693        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14694            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14695                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14696                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14697                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14698                                              ADVERTISED_TP);
14699            } else {
14700                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14701                          "speed_cap_mask=0x%08x\n",
14702                      link_config, sc->link_params.speed_cap_mask[idx]);
14703                return;
14704            }
14705            break;
14706
14707        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14708            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14709                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14710                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14711                                              ADVERTISED_TP);
14712            } else {
14713                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14714                          "speed_cap_mask=0x%08x\n",
14715                      link_config, sc->link_params.speed_cap_mask[idx]);
14716                return;
14717            }
14718            break;
14719
14720        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14721            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14722                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14723                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14724                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14725                                              ADVERTISED_TP);
14726            } else {
14727                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14728                          "speed_cap_mask=0x%08x\n",
14729                      link_config, sc->link_params.speed_cap_mask[idx]);
14730                return;
14731            }
14732            break;
14733
14734        case PORT_FEATURE_LINK_SPEED_1G:
14735            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14736                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14737                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14738                                              ADVERTISED_TP);
14739            } else {
14740                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14741                          "speed_cap_mask=0x%08x\n",
14742                      link_config, sc->link_params.speed_cap_mask[idx]);
14743                return;
14744            }
14745            break;
14746
14747        case PORT_FEATURE_LINK_SPEED_2_5G:
14748            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14749                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14750                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14751                                              ADVERTISED_TP);
14752            } else {
14753                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14754                          "speed_cap_mask=0x%08x\n",
14755                      link_config, sc->link_params.speed_cap_mask[idx]);
14756                return;
14757            }
14758            break;
14759
14760        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14761            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14762                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14763                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14764                                              ADVERTISED_FIBRE);
14765            } else {
14766                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14767                          "speed_cap_mask=0x%08x\n",
14768                      link_config, sc->link_params.speed_cap_mask[idx]);
14769                return;
14770            }
14771            break;
14772
14773        case PORT_FEATURE_LINK_SPEED_20G:
14774            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14775            break;
14776
14777        default:
14778            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14779                      "speed_cap_mask=0x%08x\n",
14780                  link_config, sc->link_params.speed_cap_mask[idx]);
14781            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14782            sc->port.advertising[idx] = sc->port.supported[idx];
14783            break;
14784        }
14785
14786        sc->link_params.req_flow_ctrl[idx] =
14787            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14788
14789        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14790            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14791                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14792            } else {
14793                bxe_set_requested_fc(sc);
14794            }
14795        }
14796
14797        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14798                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14799              sc->link_params.req_line_speed[idx],
14800              sc->link_params.req_duplex[idx],
14801              sc->link_params.req_flow_ctrl[idx],
14802              sc->port.advertising[idx]);
14803    }
14804}
14805
14806static void
14807bxe_get_phy_info(struct bxe_softc *sc)
14808{
14809    uint8_t port = SC_PORT(sc);
14810    uint32_t config = sc->port.config;
14811    uint32_t eee_mode;
14812
14813    /* shmem data already read in bxe_get_shmem_info() */
14814
14815    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14816                        "link_config0=0x%08x\n",
14817               sc->link_params.lane_config,
14818               sc->link_params.speed_cap_mask[0],
14819               sc->port.link_config[0]);
14820
14821    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14822    bxe_link_settings_requested(sc);
14823
14824    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14825        sc->link_params.feature_config_flags |=
14826            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14827    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14828        sc->link_params.feature_config_flags &=
14829            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14830    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14831        sc->link_params.feature_config_flags |=
14832            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14833    }
14834
14835    /* configure link feature according to nvram value */
14836    eee_mode =
14837        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14838          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14839         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14840    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14841        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14842                                    ELINK_EEE_MODE_ENABLE_LPI |
14843                                    ELINK_EEE_MODE_OUTPUT_TIME);
14844    } else {
14845        sc->link_params.eee_mode = 0;
14846    }
14847
14848    /* get the media type */
14849    bxe_media_detect(sc);
14850}
14851
14852static void
14853bxe_get_params(struct bxe_softc *sc)
14854{
14855    /* get user tunable params */
14856    bxe_get_tunable_params(sc);
14857
14858    /* select the RX and TX ring sizes */
14859    sc->tx_ring_size = TX_BD_USABLE;
14860    sc->rx_ring_size = RX_BD_USABLE;
14861
14862    /* XXX disable WoL */
14863    sc->wol = 0;
14864}
14865
14866static void
14867bxe_set_modes_bitmap(struct bxe_softc *sc)
14868{
14869    uint32_t flags = 0;
14870
14871    if (CHIP_REV_IS_FPGA(sc)) {
14872        SET_FLAGS(flags, MODE_FPGA);
14873    } else if (CHIP_REV_IS_EMUL(sc)) {
14874        SET_FLAGS(flags, MODE_EMUL);
14875    } else {
14876        SET_FLAGS(flags, MODE_ASIC);
14877    }
14878
14879    if (CHIP_IS_MODE_4_PORT(sc)) {
14880        SET_FLAGS(flags, MODE_PORT4);
14881    } else {
14882        SET_FLAGS(flags, MODE_PORT2);
14883    }
14884
14885    if (CHIP_IS_E2(sc)) {
14886        SET_FLAGS(flags, MODE_E2);
14887    } else if (CHIP_IS_E3(sc)) {
14888        SET_FLAGS(flags, MODE_E3);
14889        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14890            SET_FLAGS(flags, MODE_E3_A0);
14891        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14892            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14893        }
14894    }
14895
14896    if (IS_MF(sc)) {
14897        SET_FLAGS(flags, MODE_MF);
14898        switch (sc->devinfo.mf_info.mf_mode) {
14899        case MULTI_FUNCTION_SD:
14900            SET_FLAGS(flags, MODE_MF_SD);
14901            break;
14902        case MULTI_FUNCTION_SI:
14903            SET_FLAGS(flags, MODE_MF_SI);
14904            break;
14905        case MULTI_FUNCTION_AFEX:
14906            SET_FLAGS(flags, MODE_MF_AFEX);
14907            break;
14908        }
14909    } else {
14910        SET_FLAGS(flags, MODE_SF);
14911    }
14912
14913#if defined(__LITTLE_ENDIAN)
14914    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14915#else /* __BIG_ENDIAN */
14916    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14917#endif
14918
14919    INIT_MODE_FLAGS(sc) = flags;
14920}
14921
14922static int
14923bxe_alloc_hsi_mem(struct bxe_softc *sc)
14924{
14925    struct bxe_fastpath *fp;
14926    bus_addr_t busaddr;
14927    int max_agg_queues;
14928    int max_segments;
14929    bus_size_t max_size;
14930    bus_size_t max_seg_size;
14931    char buf[32];
14932    int rc;
14933    int i, j;
14934
14935    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14936
14937    /* allocate the parent bus DMA tag */
14938    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14939                            1,                        /* alignment */
14940                            0,                        /* boundary limit */
14941                            BUS_SPACE_MAXADDR,        /* restricted low */
14942                            BUS_SPACE_MAXADDR,        /* restricted hi */
14943                            NULL,                     /* addr filter() */
14944                            NULL,                     /* addr filter() arg */
14945                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14946                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14947                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14948                            0,                        /* flags */
14949                            NULL,                     /* lock() */
14950                            NULL,                     /* lock() arg */
14951                            &sc->parent_dma_tag);     /* returned dma tag */
14952    if (rc != 0) {
14953        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14954        return (1);
14955    }
14956
14957    /************************/
14958    /* DEFAULT STATUS BLOCK */
14959    /************************/
14960
14961    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14962                      &sc->def_sb_dma, "default status block") != 0) {
14963        /* XXX */
14964        bus_dma_tag_destroy(sc->parent_dma_tag);
14965        return (1);
14966    }
14967
14968    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14969
14970    /***************/
14971    /* EVENT QUEUE */
14972    /***************/
14973
14974    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14975                      &sc->eq_dma, "event queue") != 0) {
14976        /* XXX */
14977        bxe_dma_free(sc, &sc->def_sb_dma);
14978        sc->def_sb = NULL;
14979        bus_dma_tag_destroy(sc->parent_dma_tag);
14980        return (1);
14981    }
14982
14983    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14984
14985    /*************/
14986    /* SLOW PATH */
14987    /*************/
14988
14989    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14990                      &sc->sp_dma, "slow path") != 0) {
14991        /* XXX */
14992        bxe_dma_free(sc, &sc->eq_dma);
14993        sc->eq = NULL;
14994        bxe_dma_free(sc, &sc->def_sb_dma);
14995        sc->def_sb = NULL;
14996        bus_dma_tag_destroy(sc->parent_dma_tag);
14997        return (1);
14998    }
14999
15000    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15001
15002    /*******************/
15003    /* SLOW PATH QUEUE */
15004    /*******************/
15005
15006    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15007                      &sc->spq_dma, "slow path queue") != 0) {
15008        /* XXX */
15009        bxe_dma_free(sc, &sc->sp_dma);
15010        sc->sp = NULL;
15011        bxe_dma_free(sc, &sc->eq_dma);
15012        sc->eq = NULL;
15013        bxe_dma_free(sc, &sc->def_sb_dma);
15014        sc->def_sb = NULL;
15015        bus_dma_tag_destroy(sc->parent_dma_tag);
15016        return (1);
15017    }
15018
15019    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15020
15021    /***************************/
15022    /* FW DECOMPRESSION BUFFER */
15023    /***************************/
15024
15025    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15026                      "fw decompression buffer") != 0) {
15027        /* XXX */
15028        bxe_dma_free(sc, &sc->spq_dma);
15029        sc->spq = NULL;
15030        bxe_dma_free(sc, &sc->sp_dma);
15031        sc->sp = NULL;
15032        bxe_dma_free(sc, &sc->eq_dma);
15033        sc->eq = NULL;
15034        bxe_dma_free(sc, &sc->def_sb_dma);
15035        sc->def_sb = NULL;
15036        bus_dma_tag_destroy(sc->parent_dma_tag);
15037        return (1);
15038    }
15039
15040    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15041
15042    if ((sc->gz_strm =
15043         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15044        /* XXX */
15045        bxe_dma_free(sc, &sc->gz_buf_dma);
15046        sc->gz_buf = NULL;
15047        bxe_dma_free(sc, &sc->spq_dma);
15048        sc->spq = NULL;
15049        bxe_dma_free(sc, &sc->sp_dma);
15050        sc->sp = NULL;
15051        bxe_dma_free(sc, &sc->eq_dma);
15052        sc->eq = NULL;
15053        bxe_dma_free(sc, &sc->def_sb_dma);
15054        sc->def_sb = NULL;
15055        bus_dma_tag_destroy(sc->parent_dma_tag);
15056        return (1);
15057    }
15058
15059    /*************/
15060    /* FASTPATHS */
15061    /*************/
15062
15063    /* allocate DMA memory for each fastpath structure */
15064    for (i = 0; i < sc->num_queues; i++) {
15065        fp = &sc->fp[i];
15066        fp->sc    = sc;
15067        fp->index = i;
15068
15069        /*******************/
15070        /* FP STATUS BLOCK */
15071        /*******************/
15072
15073        snprintf(buf, sizeof(buf), "fp %d status block", i);
15074        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15075                          &fp->sb_dma, buf) != 0) {
15076            /* XXX unwind and free previous fastpath allocations */
15077            BLOGE(sc, "Failed to alloc %s\n", buf);
15078            return (1);
15079        } else {
15080            if (CHIP_IS_E2E3(sc)) {
15081                fp->status_block.e2_sb =
15082                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15083            } else {
15084                fp->status_block.e1x_sb =
15085                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15086            }
15087        }
15088
15089        /******************/
15090        /* FP TX BD CHAIN */
15091        /******************/
15092
15093        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15094        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15095                          &fp->tx_dma, buf) != 0) {
15096            /* XXX unwind and free previous fastpath allocations */
15097            BLOGE(sc, "Failed to alloc %s\n", buf);
15098            return (1);
15099        } else {
15100            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15101        }
15102
15103        /* link together the tx bd chain pages */
15104        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15105            /* index into the tx bd chain array to last entry per page */
15106            struct eth_tx_next_bd *tx_next_bd =
15107                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15108            /* point to the next page and wrap from last page */
15109            busaddr = (fp->tx_dma.paddr +
15110                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15111            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15112            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15113        }
15114
15115        /******************/
15116        /* FP RX BD CHAIN */
15117        /******************/
15118
15119        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15120        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15121                          &fp->rx_dma, buf) != 0) {
15122            /* XXX unwind and free previous fastpath allocations */
15123            BLOGE(sc, "Failed to alloc %s\n", buf);
15124            return (1);
15125        } else {
15126            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15127        }
15128
15129        /* link together the rx bd chain pages */
15130        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15131            /* index into the rx bd chain array to last entry per page */
15132            struct eth_rx_bd *rx_bd =
15133                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15134            /* point to the next page and wrap from last page */
15135            busaddr = (fp->rx_dma.paddr +
15136                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15137            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15138            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15139        }
15140
15141        /*******************/
15142        /* FP RX RCQ CHAIN */
15143        /*******************/
15144
15145        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15146        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15147                          &fp->rcq_dma, buf) != 0) {
15148            /* XXX unwind and free previous fastpath allocations */
15149            BLOGE(sc, "Failed to alloc %s\n", buf);
15150            return (1);
15151        } else {
15152            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15153        }
15154
15155        /* link together the rcq chain pages */
15156        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15157            /* index into the rcq chain array to last entry per page */
15158            struct eth_rx_cqe_next_page *rx_cqe_next =
15159                (struct eth_rx_cqe_next_page *)
15160                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15161            /* point to the next page and wrap from last page */
15162            busaddr = (fp->rcq_dma.paddr +
15163                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15164            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15165            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15166        }
15167
15168        /*******************/
15169        /* FP RX SGE CHAIN */
15170        /*******************/
15171
15172        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15173        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15174                          &fp->rx_sge_dma, buf) != 0) {
15175            /* XXX unwind and free previous fastpath allocations */
15176            BLOGE(sc, "Failed to alloc %s\n", buf);
15177            return (1);
15178        } else {
15179            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15180        }
15181
15182        /* link together the sge chain pages */
15183        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15184            /* index into the rcq chain array to last entry per page */
15185            struct eth_rx_sge *rx_sge =
15186                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15187            /* point to the next page and wrap from last page */
15188            busaddr = (fp->rx_sge_dma.paddr +
15189                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15190            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15191            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15192        }
15193
15194        /***********************/
15195        /* FP TX MBUF DMA MAPS */
15196        /***********************/
15197
15198        /* set required sizes before mapping to conserve resources */
15199        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15200            max_size     = BXE_TSO_MAX_SIZE;
15201            max_segments = BXE_TSO_MAX_SEGMENTS;
15202            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15203        } else {
15204            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15205            max_segments = BXE_MAX_SEGMENTS;
15206            max_seg_size = MCLBYTES;
15207        }
15208
15209        /* create a dma tag for the tx mbufs */
15210        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15211                                1,                  /* alignment */
15212                                0,                  /* boundary limit */
15213                                BUS_SPACE_MAXADDR,  /* restricted low */
15214                                BUS_SPACE_MAXADDR,  /* restricted hi */
15215                                NULL,               /* addr filter() */
15216                                NULL,               /* addr filter() arg */
15217                                max_size,           /* max map size */
15218                                max_segments,       /* num discontinuous */
15219                                max_seg_size,       /* max seg size */
15220                                0,                  /* flags */
15221                                NULL,               /* lock() */
15222                                NULL,               /* lock() arg */
15223                                &fp->tx_mbuf_tag);  /* returned dma tag */
15224        if (rc != 0) {
15225            /* XXX unwind and free previous fastpath allocations */
15226            BLOGE(sc, "Failed to create dma tag for "
15227                      "'fp %d tx mbufs' (%d)\n",
15228                  i, rc);
15229            return (1);
15230        }
15231
15232        /* create dma maps for each of the tx mbuf clusters */
15233        for (j = 0; j < TX_BD_TOTAL; j++) {
15234            if (bus_dmamap_create(fp->tx_mbuf_tag,
15235                                  BUS_DMA_NOWAIT,
15236                                  &fp->tx_mbuf_chain[j].m_map)) {
15237                /* XXX unwind and free previous fastpath allocations */
15238                BLOGE(sc, "Failed to create dma map for "
15239                          "'fp %d tx mbuf %d' (%d)\n",
15240                      i, j, rc);
15241                return (1);
15242            }
15243        }
15244
15245        /***********************/
15246        /* FP RX MBUF DMA MAPS */
15247        /***********************/
15248
15249        /* create a dma tag for the rx mbufs */
15250        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15251                                1,                  /* alignment */
15252                                0,                  /* boundary limit */
15253                                BUS_SPACE_MAXADDR,  /* restricted low */
15254                                BUS_SPACE_MAXADDR,  /* restricted hi */
15255                                NULL,               /* addr filter() */
15256                                NULL,               /* addr filter() arg */
15257                                MJUM9BYTES,         /* max map size */
15258                                1,                  /* num discontinuous */
15259                                MJUM9BYTES,         /* max seg size */
15260                                0,                  /* flags */
15261                                NULL,               /* lock() */
15262                                NULL,               /* lock() arg */
15263                                &fp->rx_mbuf_tag);  /* returned dma tag */
15264        if (rc != 0) {
15265            /* XXX unwind and free previous fastpath allocations */
15266            BLOGE(sc, "Failed to create dma tag for "
15267                      "'fp %d rx mbufs' (%d)\n",
15268                  i, rc);
15269            return (1);
15270        }
15271
15272        /* create dma maps for each of the rx mbuf clusters */
15273        for (j = 0; j < RX_BD_TOTAL; j++) {
15274            if (bus_dmamap_create(fp->rx_mbuf_tag,
15275                                  BUS_DMA_NOWAIT,
15276                                  &fp->rx_mbuf_chain[j].m_map)) {
15277                /* XXX unwind and free previous fastpath allocations */
15278                BLOGE(sc, "Failed to create dma map for "
15279                          "'fp %d rx mbuf %d' (%d)\n",
15280                      i, j, rc);
15281                return (1);
15282            }
15283        }
15284
15285        /* create dma map for the spare rx mbuf cluster */
15286        if (bus_dmamap_create(fp->rx_mbuf_tag,
15287                              BUS_DMA_NOWAIT,
15288                              &fp->rx_mbuf_spare_map)) {
15289            /* XXX unwind and free previous fastpath allocations */
15290            BLOGE(sc, "Failed to create dma map for "
15291                      "'fp %d spare rx mbuf' (%d)\n",
15292                  i, rc);
15293            return (1);
15294        }
15295
15296        /***************************/
15297        /* FP RX SGE MBUF DMA MAPS */
15298        /***************************/
15299
15300        /* create a dma tag for the rx sge mbufs */
15301        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15302                                1,                  /* alignment */
15303                                0,                  /* boundary limit */
15304                                BUS_SPACE_MAXADDR,  /* restricted low */
15305                                BUS_SPACE_MAXADDR,  /* restricted hi */
15306                                NULL,               /* addr filter() */
15307                                NULL,               /* addr filter() arg */
15308                                BCM_PAGE_SIZE,      /* max map size */
15309                                1,                  /* num discontinuous */
15310                                BCM_PAGE_SIZE,      /* max seg size */
15311                                0,                  /* flags */
15312                                NULL,               /* lock() */
15313                                NULL,               /* lock() arg */
15314                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15315        if (rc != 0) {
15316            /* XXX unwind and free previous fastpath allocations */
15317            BLOGE(sc, "Failed to create dma tag for "
15318                      "'fp %d rx sge mbufs' (%d)\n",
15319                  i, rc);
15320            return (1);
15321        }
15322
15323        /* create dma maps for the rx sge mbuf clusters */
15324        for (j = 0; j < RX_SGE_TOTAL; j++) {
15325            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15326                                  BUS_DMA_NOWAIT,
15327                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15328                /* XXX unwind and free previous fastpath allocations */
15329                BLOGE(sc, "Failed to create dma map for "
15330                          "'fp %d rx sge mbuf %d' (%d)\n",
15331                      i, j, rc);
15332                return (1);
15333            }
15334        }
15335
15336        /* create dma map for the spare rx sge mbuf cluster */
15337        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15338                              BUS_DMA_NOWAIT,
15339                              &fp->rx_sge_mbuf_spare_map)) {
15340            /* XXX unwind and free previous fastpath allocations */
15341            BLOGE(sc, "Failed to create dma map for "
15342                      "'fp %d spare rx sge mbuf' (%d)\n",
15343                  i, rc);
15344            return (1);
15345        }
15346
15347        /***************************/
15348        /* FP RX TPA MBUF DMA MAPS */
15349        /***************************/
15350
15351        /* create dma maps for the rx tpa mbuf clusters */
15352        max_agg_queues = MAX_AGG_QS(sc);
15353
15354        for (j = 0; j < max_agg_queues; j++) {
15355            if (bus_dmamap_create(fp->rx_mbuf_tag,
15356                                  BUS_DMA_NOWAIT,
15357                                  &fp->rx_tpa_info[j].bd.m_map)) {
15358                /* XXX unwind and free previous fastpath allocations */
15359                BLOGE(sc, "Failed to create dma map for "
15360                          "'fp %d rx tpa mbuf %d' (%d)\n",
15361                      i, j, rc);
15362                return (1);
15363            }
15364        }
15365
15366        /* create dma map for the spare rx tpa mbuf cluster */
15367        if (bus_dmamap_create(fp->rx_mbuf_tag,
15368                              BUS_DMA_NOWAIT,
15369                              &fp->rx_tpa_info_mbuf_spare_map)) {
15370            /* XXX unwind and free previous fastpath allocations */
15371            BLOGE(sc, "Failed to create dma map for "
15372                      "'fp %d spare rx tpa mbuf' (%d)\n",
15373                  i, rc);
15374            return (1);
15375        }
15376
15377        bxe_init_sge_ring_bit_mask(fp);
15378    }
15379
15380    return (0);
15381}
15382
15383static void
15384bxe_free_hsi_mem(struct bxe_softc *sc)
15385{
15386    struct bxe_fastpath *fp;
15387    int max_agg_queues;
15388    int i, j;
15389
15390    if (sc->parent_dma_tag == NULL) {
15391        return; /* assume nothing was allocated */
15392    }
15393
15394    for (i = 0; i < sc->num_queues; i++) {
15395        fp = &sc->fp[i];
15396
15397        /*******************/
15398        /* FP STATUS BLOCK */
15399        /*******************/
15400
15401        bxe_dma_free(sc, &fp->sb_dma);
15402        memset(&fp->status_block, 0, sizeof(fp->status_block));
15403
15404        /******************/
15405        /* FP TX BD CHAIN */
15406        /******************/
15407
15408        bxe_dma_free(sc, &fp->tx_dma);
15409        fp->tx_chain = NULL;
15410
15411        /******************/
15412        /* FP RX BD CHAIN */
15413        /******************/
15414
15415        bxe_dma_free(sc, &fp->rx_dma);
15416        fp->rx_chain = NULL;
15417
15418        /*******************/
15419        /* FP RX RCQ CHAIN */
15420        /*******************/
15421
15422        bxe_dma_free(sc, &fp->rcq_dma);
15423        fp->rcq_chain = NULL;
15424
15425        /*******************/
15426        /* FP RX SGE CHAIN */
15427        /*******************/
15428
15429        bxe_dma_free(sc, &fp->rx_sge_dma);
15430        fp->rx_sge_chain = NULL;
15431
15432        /***********************/
15433        /* FP TX MBUF DMA MAPS */
15434        /***********************/
15435
15436        if (fp->tx_mbuf_tag != NULL) {
15437            for (j = 0; j < TX_BD_TOTAL; j++) {
15438                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15439                    bus_dmamap_unload(fp->tx_mbuf_tag,
15440                                      fp->tx_mbuf_chain[j].m_map);
15441                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15442                                       fp->tx_mbuf_chain[j].m_map);
15443                }
15444            }
15445
15446            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15447            fp->tx_mbuf_tag = NULL;
15448        }
15449
15450        /***********************/
15451        /* FP RX MBUF DMA MAPS */
15452        /***********************/
15453
15454        if (fp->rx_mbuf_tag != NULL) {
15455            for (j = 0; j < RX_BD_TOTAL; j++) {
15456                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15457                    bus_dmamap_unload(fp->rx_mbuf_tag,
15458                                      fp->rx_mbuf_chain[j].m_map);
15459                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15460                                       fp->rx_mbuf_chain[j].m_map);
15461                }
15462            }
15463
15464            if (fp->rx_mbuf_spare_map != NULL) {
15465                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15466                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15467            }
15468
15469            /***************************/
15470            /* FP RX TPA MBUF DMA MAPS */
15471            /***************************/
15472
15473            max_agg_queues = MAX_AGG_QS(sc);
15474
15475            for (j = 0; j < max_agg_queues; j++) {
15476                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15477                    bus_dmamap_unload(fp->rx_mbuf_tag,
15478                                      fp->rx_tpa_info[j].bd.m_map);
15479                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15480                                       fp->rx_tpa_info[j].bd.m_map);
15481                }
15482            }
15483
15484            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15485                bus_dmamap_unload(fp->rx_mbuf_tag,
15486                                  fp->rx_tpa_info_mbuf_spare_map);
15487                bus_dmamap_destroy(fp->rx_mbuf_tag,
15488                                   fp->rx_tpa_info_mbuf_spare_map);
15489            }
15490
15491            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15492            fp->rx_mbuf_tag = NULL;
15493        }
15494
15495        /***************************/
15496        /* FP RX SGE MBUF DMA MAPS */
15497        /***************************/
15498
15499        if (fp->rx_sge_mbuf_tag != NULL) {
15500            for (j = 0; j < RX_SGE_TOTAL; j++) {
15501                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15502                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15503                                      fp->rx_sge_mbuf_chain[j].m_map);
15504                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15505                                       fp->rx_sge_mbuf_chain[j].m_map);
15506                }
15507            }
15508
15509            if (fp->rx_sge_mbuf_spare_map != NULL) {
15510                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15511                                  fp->rx_sge_mbuf_spare_map);
15512                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15513                                   fp->rx_sge_mbuf_spare_map);
15514            }
15515
15516            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15517            fp->rx_sge_mbuf_tag = NULL;
15518        }
15519    }
15520
15521    /***************************/
15522    /* FW DECOMPRESSION BUFFER */
15523    /***************************/
15524
15525    bxe_dma_free(sc, &sc->gz_buf_dma);
15526    sc->gz_buf = NULL;
15527    free(sc->gz_strm, M_DEVBUF);
15528    sc->gz_strm = NULL;
15529
15530    /*******************/
15531    /* SLOW PATH QUEUE */
15532    /*******************/
15533
15534    bxe_dma_free(sc, &sc->spq_dma);
15535    sc->spq = NULL;
15536
15537    /*************/
15538    /* SLOW PATH */
15539    /*************/
15540
15541    bxe_dma_free(sc, &sc->sp_dma);
15542    sc->sp = NULL;
15543
15544    /***************/
15545    /* EVENT QUEUE */
15546    /***************/
15547
15548    bxe_dma_free(sc, &sc->eq_dma);
15549    sc->eq = NULL;
15550
15551    /************************/
15552    /* DEFAULT STATUS BLOCK */
15553    /************************/
15554
15555    bxe_dma_free(sc, &sc->def_sb_dma);
15556    sc->def_sb = NULL;
15557
15558    bus_dma_tag_destroy(sc->parent_dma_tag);
15559    sc->parent_dma_tag = NULL;
15560}
15561
15562/*
15563 * Previous driver DMAE transaction may have occurred when pre-boot stage
15564 * ended and boot began. This would invalidate the addresses of the
15565 * transaction, resulting in was-error bit set in the PCI causing all
15566 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15567 * the interrupt which detected this from the pglueb and the was-done bit
15568 */
15569static void
15570bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15571{
15572    uint32_t val;
15573
15574    if (!CHIP_IS_E1x(sc)) {
15575        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15576        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15577            BLOGD(sc, DBG_LOAD,
15578                  "Clearing 'was-error' bit that was set in pglueb");
15579            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15580        }
15581    }
15582}
15583
15584static int
15585bxe_prev_mcp_done(struct bxe_softc *sc)
15586{
15587    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15588                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15589    if (!rc) {
15590        BLOGE(sc, "MCP response failure, aborting\n");
15591        return (-1);
15592    }
15593
15594    return (0);
15595}
15596
15597static struct bxe_prev_list_node *
15598bxe_prev_path_get_entry(struct bxe_softc *sc)
15599{
15600    struct bxe_prev_list_node *tmp;
15601
15602    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15603        if ((sc->pcie_bus == tmp->bus) &&
15604            (sc->pcie_device == tmp->slot) &&
15605            (SC_PATH(sc) == tmp->path)) {
15606            return (tmp);
15607        }
15608    }
15609
15610    return (NULL);
15611}
15612
15613static uint8_t
15614bxe_prev_is_path_marked(struct bxe_softc *sc)
15615{
15616    struct bxe_prev_list_node *tmp;
15617    int rc = FALSE;
15618
15619    mtx_lock(&bxe_prev_mtx);
15620
15621    tmp = bxe_prev_path_get_entry(sc);
15622    if (tmp) {
15623        if (tmp->aer) {
15624            BLOGD(sc, DBG_LOAD,
15625                  "Path %d/%d/%d was marked by AER\n",
15626                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15627        } else {
15628            rc = TRUE;
15629            BLOGD(sc, DBG_LOAD,
15630                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15631                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15632        }
15633    }
15634
15635    mtx_unlock(&bxe_prev_mtx);
15636
15637    return (rc);
15638}
15639
15640static int
15641bxe_prev_mark_path(struct bxe_softc *sc,
15642                   uint8_t          after_undi)
15643{
15644    struct bxe_prev_list_node *tmp;
15645
15646    mtx_lock(&bxe_prev_mtx);
15647
15648    /* Check whether the entry for this path already exists */
15649    tmp = bxe_prev_path_get_entry(sc);
15650    if (tmp) {
15651        if (!tmp->aer) {
15652            BLOGD(sc, DBG_LOAD,
15653                  "Re-marking AER in path %d/%d/%d\n",
15654                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15655        } else {
15656            BLOGD(sc, DBG_LOAD,
15657                  "Removing AER indication from path %d/%d/%d\n",
15658                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15659            tmp->aer = 0;
15660        }
15661
15662        mtx_unlock(&bxe_prev_mtx);
15663        return (0);
15664    }
15665
15666    mtx_unlock(&bxe_prev_mtx);
15667
15668    /* Create an entry for this path and add it */
15669    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15670                 (M_NOWAIT | M_ZERO));
15671    if (!tmp) {
15672        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15673        return (-1);
15674    }
15675
15676    tmp->bus  = sc->pcie_bus;
15677    tmp->slot = sc->pcie_device;
15678    tmp->path = SC_PATH(sc);
15679    tmp->aer  = 0;
15680    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15681
15682    mtx_lock(&bxe_prev_mtx);
15683
15684    BLOGD(sc, DBG_LOAD,
15685          "Marked path %d/%d/%d - finished previous unload\n",
15686          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15687    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15688
15689    mtx_unlock(&bxe_prev_mtx);
15690
15691    return (0);
15692}
15693
15694static int
15695bxe_do_flr(struct bxe_softc *sc)
15696{
15697    int i;
15698
15699    /* only E2 and onwards support FLR */
15700    if (CHIP_IS_E1x(sc)) {
15701        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15702        return (-1);
15703    }
15704
15705    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15706    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15707        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15708              sc->devinfo.bc_ver);
15709        return (-1);
15710    }
15711
15712    /* Wait for Transaction Pending bit clean */
15713    for (i = 0; i < 4; i++) {
15714        if (i) {
15715            DELAY(((1 << (i - 1)) * 100) * 1000);
15716        }
15717
15718        if (!bxe_is_pcie_pending(sc)) {
15719            goto clear;
15720        }
15721    }
15722
15723    BLOGE(sc, "PCIE transaction is not cleared, "
15724              "proceeding with reset anyway\n");
15725
15726clear:
15727
15728    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15729    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15730
15731    return (0);
15732}
15733
15734struct bxe_mac_vals {
15735    uint32_t xmac_addr;
15736    uint32_t xmac_val;
15737    uint32_t emac_addr;
15738    uint32_t emac_val;
15739    uint32_t umac_addr;
15740    uint32_t umac_val;
15741    uint32_t bmac_addr;
15742    uint32_t bmac_val[2];
15743};
15744
15745static void
15746bxe_prev_unload_close_mac(struct bxe_softc *sc,
15747                          struct bxe_mac_vals *vals)
15748{
15749    uint32_t val, base_addr, offset, mask, reset_reg;
15750    uint8_t mac_stopped = FALSE;
15751    uint8_t port = SC_PORT(sc);
15752    uint32_t wb_data[2];
15753
15754    /* reset addresses as they also mark which values were changed */
15755    vals->bmac_addr = 0;
15756    vals->umac_addr = 0;
15757    vals->xmac_addr = 0;
15758    vals->emac_addr = 0;
15759
15760    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15761
15762    if (!CHIP_IS_E3(sc)) {
15763        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15764        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15765        if ((mask & reset_reg) && val) {
15766            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15767            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15768                                    : NIG_REG_INGRESS_BMAC0_MEM;
15769            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15770                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15771
15772            /*
15773             * use rd/wr since we cannot use dmae. This is safe
15774             * since MCP won't access the bus due to the request
15775             * to unload, and no function on the path can be
15776             * loaded at this time.
15777             */
15778            wb_data[0] = REG_RD(sc, base_addr + offset);
15779            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15780            vals->bmac_addr = base_addr + offset;
15781            vals->bmac_val[0] = wb_data[0];
15782            vals->bmac_val[1] = wb_data[1];
15783            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15784            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15785            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15786        }
15787
15788        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15789        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15790        vals->emac_val = REG_RD(sc, vals->emac_addr);
15791        REG_WR(sc, vals->emac_addr, 0);
15792        mac_stopped = TRUE;
15793    } else {
15794        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15795            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15796            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15797            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15798            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15799            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15800            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15801            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15802            REG_WR(sc, vals->xmac_addr, 0);
15803            mac_stopped = TRUE;
15804        }
15805
15806        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15807        if (mask & reset_reg) {
15808            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15809            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15810            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15811            vals->umac_val = REG_RD(sc, vals->umac_addr);
15812            REG_WR(sc, vals->umac_addr, 0);
15813            mac_stopped = TRUE;
15814        }
15815    }
15816
15817    if (mac_stopped) {
15818        DELAY(20000);
15819    }
15820}
15821
15822#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15823#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15824#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15825#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15826
15827static void
15828bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15829                         uint8_t          port,
15830                         uint8_t          inc)
15831{
15832    uint16_t rcq, bd;
15833    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15834
15835    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15836    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15837
15838    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15839    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15840
15841    BLOGD(sc, DBG_LOAD,
15842          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15843          port, bd, rcq);
15844}
15845
15846static int
15847bxe_prev_unload_common(struct bxe_softc *sc)
15848{
15849    uint32_t reset_reg, tmp_reg = 0, rc;
15850    uint8_t prev_undi = FALSE;
15851    struct bxe_mac_vals mac_vals;
15852    uint32_t timer_count = 1000;
15853    uint32_t prev_brb;
15854
15855    /*
15856     * It is possible a previous function received 'common' answer,
15857     * but hasn't loaded yet, therefore creating a scenario of
15858     * multiple functions receiving 'common' on the same path.
15859     */
15860    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15861
15862    memset(&mac_vals, 0, sizeof(mac_vals));
15863
15864    if (bxe_prev_is_path_marked(sc)) {
15865        return (bxe_prev_mcp_done(sc));
15866    }
15867
15868    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15869
15870    /* Reset should be performed after BRB is emptied */
15871    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15872        /* Close the MAC Rx to prevent BRB from filling up */
15873        bxe_prev_unload_close_mac(sc, &mac_vals);
15874
15875        /* close LLH filters towards the BRB */
15876        elink_set_rx_filter(&sc->link_params, 0);
15877
15878        /*
15879         * Check if the UNDI driver was previously loaded.
15880         * UNDI driver initializes CID offset for normal bell to 0x7
15881         */
15882        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15883            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15884            if (tmp_reg == 0x7) {
15885                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15886                prev_undi = TRUE;
15887                /* clear the UNDI indication */
15888                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15889                /* clear possible idle check errors */
15890                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15891            }
15892        }
15893
15894        /* wait until BRB is empty */
15895        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15896        while (timer_count) {
15897            prev_brb = tmp_reg;
15898
15899            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15900            if (!tmp_reg) {
15901                break;
15902            }
15903
15904            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15905
15906            /* reset timer as long as BRB actually gets emptied */
15907            if (prev_brb > tmp_reg) {
15908                timer_count = 1000;
15909            } else {
15910                timer_count--;
15911            }
15912
15913            /* If UNDI resides in memory, manually increment it */
15914            if (prev_undi) {
15915                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15916            }
15917
15918            DELAY(10);
15919        }
15920
15921        if (!timer_count) {
15922            BLOGE(sc, "Failed to empty BRB\n");
15923        }
15924    }
15925
15926    /* No packets are in the pipeline, path is ready for reset */
15927    bxe_reset_common(sc);
15928
15929    if (mac_vals.xmac_addr) {
15930        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15931    }
15932    if (mac_vals.umac_addr) {
15933        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15934    }
15935    if (mac_vals.emac_addr) {
15936        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15937    }
15938    if (mac_vals.bmac_addr) {
15939        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15940        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15941    }
15942
15943    rc = bxe_prev_mark_path(sc, prev_undi);
15944    if (rc) {
15945        bxe_prev_mcp_done(sc);
15946        return (rc);
15947    }
15948
15949    return (bxe_prev_mcp_done(sc));
15950}
15951
15952static int
15953bxe_prev_unload_uncommon(struct bxe_softc *sc)
15954{
15955    int rc;
15956
15957    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15958
15959    /* Test if previous unload process was already finished for this path */
15960    if (bxe_prev_is_path_marked(sc)) {
15961        return (bxe_prev_mcp_done(sc));
15962    }
15963
15964    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15965
15966    /*
15967     * If function has FLR capabilities, and existing FW version matches
15968     * the one required, then FLR will be sufficient to clean any residue
15969     * left by previous driver
15970     */
15971    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15972    if (!rc) {
15973        /* fw version is good */
15974        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15975        rc = bxe_do_flr(sc);
15976    }
15977
15978    if (!rc) {
15979        /* FLR was performed */
15980        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15981        return (0);
15982    }
15983
15984    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15985
15986    /* Close the MCP request, return failure*/
15987    rc = bxe_prev_mcp_done(sc);
15988    if (!rc) {
15989        rc = BXE_PREV_WAIT_NEEDED;
15990    }
15991
15992    return (rc);
15993}
15994
15995static int
15996bxe_prev_unload(struct bxe_softc *sc)
15997{
15998    int time_counter = 10;
15999    uint32_t fw, hw_lock_reg, hw_lock_val;
16000    uint32_t rc = 0;
16001
16002    /*
16003     * Clear HW from errors which may have resulted from an interrupted
16004     * DMAE transaction.
16005     */
16006    bxe_prev_interrupted_dmae(sc);
16007
16008    /* Release previously held locks */
16009    hw_lock_reg =
16010        (SC_FUNC(sc) <= 5) ?
16011            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16012            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16013
16014    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16015    if (hw_lock_val) {
16016        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16017            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16018            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16019                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16020        }
16021        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16022        REG_WR(sc, hw_lock_reg, 0xffffffff);
16023    } else {
16024        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16025    }
16026
16027    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16028        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16029        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16030    }
16031
16032    do {
16033        /* Lock MCP using an unload request */
16034        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16035        if (!fw) {
16036            BLOGE(sc, "MCP response failure, aborting\n");
16037            rc = -1;
16038            break;
16039        }
16040
16041        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16042            rc = bxe_prev_unload_common(sc);
16043            break;
16044        }
16045
16046        /* non-common reply from MCP night require looping */
16047        rc = bxe_prev_unload_uncommon(sc);
16048        if (rc != BXE_PREV_WAIT_NEEDED) {
16049            break;
16050        }
16051
16052        DELAY(20000);
16053    } while (--time_counter);
16054
16055    if (!time_counter || rc) {
16056        BLOGE(sc, "Failed to unload previous driver!\n");
16057        rc = -1;
16058    }
16059
16060    return (rc);
16061}
16062
16063void
16064bxe_dcbx_set_state(struct bxe_softc *sc,
16065                   uint8_t          dcb_on,
16066                   uint32_t         dcbx_enabled)
16067{
16068    if (!CHIP_IS_E1x(sc)) {
16069        sc->dcb_state = dcb_on;
16070        sc->dcbx_enabled = dcbx_enabled;
16071    } else {
16072        sc->dcb_state = FALSE;
16073        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16074    }
16075    BLOGD(sc, DBG_LOAD,
16076          "DCB state [%s:%s]\n",
16077          dcb_on ? "ON" : "OFF",
16078          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16079          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16080          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16081          "on-chip with negotiation" : "invalid");
16082}
16083
16084/* must be called after sriov-enable */
16085static int
16086bxe_set_qm_cid_count(struct bxe_softc *sc)
16087{
16088    int cid_count = BXE_L2_MAX_CID(sc);
16089
16090    if (IS_SRIOV(sc)) {
16091        cid_count += BXE_VF_CIDS;
16092    }
16093
16094    if (CNIC_SUPPORT(sc)) {
16095        cid_count += CNIC_CID_MAX;
16096    }
16097
16098    return (roundup(cid_count, QM_CID_ROUND));
16099}
16100
16101static void
16102bxe_init_multi_cos(struct bxe_softc *sc)
16103{
16104    int pri, cos;
16105
16106    uint32_t pri_map = 0; /* XXX change to user config */
16107
16108    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16109        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16110        if (cos < sc->max_cos) {
16111            sc->prio_to_cos[pri] = cos;
16112        } else {
16113            BLOGW(sc, "Invalid COS %d for priority %d "
16114                      "(max COS is %d), setting to 0\n",
16115                  cos, pri, (sc->max_cos - 1));
16116            sc->prio_to_cos[pri] = 0;
16117        }
16118    }
16119}
16120
16121static int
16122bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16123{
16124    struct bxe_softc *sc;
16125    int error, result;
16126
16127    result = 0;
16128    error = sysctl_handle_int(oidp, &result, 0, req);
16129
16130    if (error || !req->newptr) {
16131        return (error);
16132    }
16133
16134    if (result == 1) {
16135        sc = (struct bxe_softc *)arg1;
16136        BLOGI(sc, "... dumping driver state ...\n");
16137        /* XXX */
16138    }
16139
16140    return (error);
16141}
16142
16143static int
16144bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16145{
16146    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16147    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16148    uint32_t *offset;
16149    uint64_t value = 0;
16150    int index = (int)arg2;
16151
16152    if (index >= BXE_NUM_ETH_STATS) {
16153        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16154        return (-1);
16155    }
16156
16157    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16158
16159    switch (bxe_eth_stats_arr[index].size) {
16160    case 4:
16161        value = (uint64_t)*offset;
16162        break;
16163    case 8:
16164        value = HILO_U64(*offset, *(offset + 1));
16165        break;
16166    default:
16167        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16168              index, bxe_eth_stats_arr[index].size);
16169        return (-1);
16170    }
16171
16172    return (sysctl_handle_64(oidp, &value, 0, req));
16173}
16174
16175static int
16176bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16177{
16178    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16179    uint32_t *eth_stats;
16180    uint32_t *offset;
16181    uint64_t value = 0;
16182    uint32_t q_stat = (uint32_t)arg2;
16183    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16184    uint32_t index = (q_stat & 0xffff);
16185
16186    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16187
16188    if (index >= BXE_NUM_ETH_Q_STATS) {
16189        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16190        return (-1);
16191    }
16192
16193    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16194
16195    switch (bxe_eth_q_stats_arr[index].size) {
16196    case 4:
16197        value = (uint64_t)*offset;
16198        break;
16199    case 8:
16200        value = HILO_U64(*offset, *(offset + 1));
16201        break;
16202    default:
16203        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16204              index, bxe_eth_q_stats_arr[index].size);
16205        return (-1);
16206    }
16207
16208    return (sysctl_handle_64(oidp, &value, 0, req));
16209}
16210
16211static void
16212bxe_add_sysctls(struct bxe_softc *sc)
16213{
16214    struct sysctl_ctx_list *ctx;
16215    struct sysctl_oid_list *children;
16216    struct sysctl_oid *queue_top, *queue;
16217    struct sysctl_oid_list *queue_top_children, *queue_children;
16218    char queue_num_buf[32];
16219    uint32_t q_stat;
16220    int i, j;
16221
16222    ctx = device_get_sysctl_ctx(sc->dev);
16223    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16224
16225    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16226                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16227                      "version");
16228
16229    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16230                      CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16231                      "bootcode version");
16232
16233    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16234             BCM_5710_FW_MAJOR_VERSION,
16235             BCM_5710_FW_MINOR_VERSION,
16236             BCM_5710_FW_REVISION_VERSION,
16237             BCM_5710_FW_ENGINEERING_VERSION);
16238    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16239                      CTLFLAG_RD, sc->fw_ver_str, 0,
16240                      "firmware version");
16241
16242    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16243        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16244         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16245         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16246         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16247                                                                "Unknown"));
16248    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16249                      CTLFLAG_RD, sc->mf_mode_str, 0,
16250                      "multifunction mode");
16251
16252    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16253                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16254                    "multifunction vnics per port");
16255
16256    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16257                      CTLFLAG_RD, sc->mac_addr_str, 0,
16258                      "mac address");
16259
16260    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16261        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16262         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16263         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16264                                              "???GT/s"),
16265        sc->devinfo.pcie_link_width);
16266    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16267                      CTLFLAG_RD, sc->pci_link_str, 0,
16268                      "pci link status");
16269
16270    sc->debug = bxe_debug;
16271    SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16272                    CTLFLAG_RW, &sc->debug,
16273                    "debug logging mode");
16274
16275    sc->rx_budget = bxe_rx_budget;
16276    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16277                    CTLFLAG_RW, &sc->rx_budget, 0,
16278                    "rx processing budget");
16279
16280    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16281                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16282                    bxe_sysctl_state, "IU", "dump driver state");
16283
16284    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16285        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16286                        bxe_eth_stats_arr[i].string,
16287                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16288                        bxe_sysctl_eth_stat, "LU",
16289                        bxe_eth_stats_arr[i].string);
16290    }
16291
16292    /* add a new parent node for all queues "dev.bxe.#.queue" */
16293    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16294                                CTLFLAG_RD, NULL, "queue");
16295    queue_top_children = SYSCTL_CHILDREN(queue_top);
16296
16297    for (i = 0; i < sc->num_queues; i++) {
16298        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16299        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16300        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16301                                queue_num_buf, CTLFLAG_RD, NULL,
16302                                "single queue");
16303        queue_children = SYSCTL_CHILDREN(queue);
16304
16305        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16306            q_stat = ((i << 16) | j);
16307            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16308                            bxe_eth_q_stats_arr[j].string,
16309                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16310                            bxe_sysctl_eth_q_stat, "LU",
16311                            bxe_eth_q_stats_arr[j].string);
16312        }
16313    }
16314}
16315
16316/*
16317 * Device attach function.
16318 *
16319 * Allocates device resources, performs secondary chip identification, and
16320 * initializes driver instance variables. This function is called from driver
16321 * load after a successful probe.
16322 *
16323 * Returns:
16324 *   0 = Success, >0 = Failure
16325 */
16326static int
16327bxe_attach(device_t dev)
16328{
16329    struct bxe_softc *sc;
16330
16331    sc = device_get_softc(dev);
16332
16333    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16334
16335    sc->state = BXE_STATE_CLOSED;
16336
16337    sc->dev  = dev;
16338    sc->unit = device_get_unit(dev);
16339
16340    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16341
16342    sc->pcie_bus    = pci_get_bus(dev);
16343    sc->pcie_device = pci_get_slot(dev);
16344    sc->pcie_func   = pci_get_function(dev);
16345
16346    /* enable bus master capability */
16347    pci_enable_busmaster(dev);
16348
16349    /* get the BARs */
16350    if (bxe_allocate_bars(sc) != 0) {
16351        return (ENXIO);
16352    }
16353
16354    /* initialize the mutexes */
16355    bxe_init_mutexes(sc);
16356
16357    /* prepare the periodic callout */
16358    callout_init(&sc->periodic_callout, 0);
16359
16360    /* prepare the chip taskqueue */
16361    sc->chip_tq_flags = CHIP_TQ_NONE;
16362    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16363             "bxe%d_chip_tq", sc->unit);
16364    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16365    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16366                                   taskqueue_thread_enqueue,
16367                                   &sc->chip_tq);
16368    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16369                            "%s", sc->chip_tq_name);
16370
16371    /* get device info and set params */
16372    if (bxe_get_device_info(sc) != 0) {
16373        BLOGE(sc, "getting device info\n");
16374        bxe_deallocate_bars(sc);
16375        pci_disable_busmaster(dev);
16376        return (ENXIO);
16377    }
16378
16379    /* get final misc params */
16380    bxe_get_params(sc);
16381
16382    /* set the default MTU (changed via ifconfig) */
16383    sc->mtu = ETHERMTU;
16384
16385    bxe_set_modes_bitmap(sc);
16386
16387    /* XXX
16388     * If in AFEX mode and the function is configured for FCoE
16389     * then bail... no L2 allowed.
16390     */
16391
16392    /* get phy settings from shmem and 'and' against admin settings */
16393    bxe_get_phy_info(sc);
16394
16395    /* initialize the FreeBSD ifnet interface */
16396    if (bxe_init_ifnet(sc) != 0) {
16397        bxe_release_mutexes(sc);
16398        bxe_deallocate_bars(sc);
16399        pci_disable_busmaster(dev);
16400        return (ENXIO);
16401    }
16402
16403    /* allocate device interrupts */
16404    if (bxe_interrupt_alloc(sc) != 0) {
16405        if (sc->ifnet != NULL) {
16406            ether_ifdetach(sc->ifnet);
16407        }
16408        ifmedia_removeall(&sc->ifmedia);
16409        bxe_release_mutexes(sc);
16410        bxe_deallocate_bars(sc);
16411        pci_disable_busmaster(dev);
16412        return (ENXIO);
16413    }
16414
16415    /* allocate ilt */
16416    if (bxe_alloc_ilt_mem(sc) != 0) {
16417        bxe_interrupt_free(sc);
16418        if (sc->ifnet != NULL) {
16419            ether_ifdetach(sc->ifnet);
16420        }
16421        ifmedia_removeall(&sc->ifmedia);
16422        bxe_release_mutexes(sc);
16423        bxe_deallocate_bars(sc);
16424        pci_disable_busmaster(dev);
16425        return (ENXIO);
16426    }
16427
16428    /* allocate the host hardware/software hsi structures */
16429    if (bxe_alloc_hsi_mem(sc) != 0) {
16430        bxe_free_ilt_mem(sc);
16431        bxe_interrupt_free(sc);
16432        if (sc->ifnet != NULL) {
16433            ether_ifdetach(sc->ifnet);
16434        }
16435        ifmedia_removeall(&sc->ifmedia);
16436        bxe_release_mutexes(sc);
16437        bxe_deallocate_bars(sc);
16438        pci_disable_busmaster(dev);
16439        return (ENXIO);
16440    }
16441
16442    /* need to reset chip if UNDI was active */
16443    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16444        /* init fw_seq */
16445        sc->fw_seq =
16446            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16447             DRV_MSG_SEQ_NUMBER_MASK);
16448        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16449        bxe_prev_unload(sc);
16450    }
16451
16452#if 1
16453    /* XXX */
16454    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16455#else
16456    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16457        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16458        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16459        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16460        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16461        bxe_dcbx_init_params(sc);
16462    } else {
16463        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16464    }
16465#endif
16466
16467    /* calculate qm_cid_count */
16468    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16469    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16470
16471    sc->max_cos = 1;
16472    bxe_init_multi_cos(sc);
16473
16474    bxe_add_sysctls(sc);
16475
16476    return (0);
16477}
16478
16479/*
16480 * Device detach function.
16481 *
16482 * Stops the controller, resets the controller, and releases resources.
16483 *
16484 * Returns:
16485 *   0 = Success, >0 = Failure
16486 */
16487static int
16488bxe_detach(device_t dev)
16489{
16490    struct bxe_softc *sc;
16491    struct ifnet *ifp;
16492
16493    sc = device_get_softc(dev);
16494
16495    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16496
16497    ifp = sc->ifnet;
16498    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16499        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16500        return(EBUSY);
16501    }
16502
16503    /* stop the periodic callout */
16504    bxe_periodic_stop(sc);
16505
16506    /* stop the chip taskqueue */
16507    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16508    if (sc->chip_tq) {
16509        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16510        taskqueue_free(sc->chip_tq);
16511        sc->chip_tq = NULL;
16512    }
16513
16514    /* stop and reset the controller if it was open */
16515    if (sc->state != BXE_STATE_CLOSED) {
16516        BXE_CORE_LOCK(sc);
16517        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16518        BXE_CORE_UNLOCK(sc);
16519    }
16520
16521    /* release the network interface */
16522    if (ifp != NULL) {
16523        ether_ifdetach(ifp);
16524    }
16525    ifmedia_removeall(&sc->ifmedia);
16526
16527    /* XXX do the following based on driver state... */
16528
16529    /* free the host hardware/software hsi structures */
16530    bxe_free_hsi_mem(sc);
16531
16532    /* free ilt */
16533    bxe_free_ilt_mem(sc);
16534
16535    /* release the interrupts */
16536    bxe_interrupt_free(sc);
16537
16538    /* Release the mutexes*/
16539    bxe_release_mutexes(sc);
16540
16541    /* Release the PCIe BAR mapped memory */
16542    bxe_deallocate_bars(sc);
16543
16544    /* Release the FreeBSD interface. */
16545    if (sc->ifnet != NULL) {
16546        if_free(sc->ifnet);
16547    }
16548
16549    pci_disable_busmaster(dev);
16550
16551    return (0);
16552}
16553
16554/*
16555 * Device shutdown function.
16556 *
16557 * Stops and resets the controller.
16558 *
16559 * Returns:
16560 *   Nothing
16561 */
16562static int
16563bxe_shutdown(device_t dev)
16564{
16565    struct bxe_softc *sc;
16566
16567    sc = device_get_softc(dev);
16568
16569    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16570
16571    /* stop the periodic callout */
16572    bxe_periodic_stop(sc);
16573
16574    BXE_CORE_LOCK(sc);
16575    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16576    BXE_CORE_UNLOCK(sc);
16577
16578    return (0);
16579}
16580
16581void
16582bxe_igu_ack_sb(struct bxe_softc *sc,
16583               uint8_t          igu_sb_id,
16584               uint8_t          segment,
16585               uint16_t         index,
16586               uint8_t          op,
16587               uint8_t          update)
16588{
16589    uint32_t igu_addr = sc->igu_base_addr;
16590    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16591    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16592}
16593
16594static void
16595bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16596                     uint8_t          func,
16597                     uint8_t          idu_sb_id,
16598                     uint8_t          is_pf)
16599{
16600    uint32_t data, ctl, cnt = 100;
16601    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16602    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16603    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16604    uint32_t sb_bit =  1 << (idu_sb_id%32);
16605    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16606    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16607
16608    /* Not supported in BC mode */
16609    if (CHIP_INT_MODE_IS_BC(sc)) {
16610        return;
16611    }
16612
16613    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16614             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16615            IGU_REGULAR_CLEANUP_SET |
16616            IGU_REGULAR_BCLEANUP);
16617
16618    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16619           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16620           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16621
16622    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16623            data, igu_addr_data);
16624    REG_WR(sc, igu_addr_data, data);
16625
16626    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16627                      BUS_SPACE_BARRIER_WRITE);
16628    mb();
16629
16630    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16631            ctl, igu_addr_ctl);
16632    REG_WR(sc, igu_addr_ctl, ctl);
16633
16634    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16635                      BUS_SPACE_BARRIER_WRITE);
16636    mb();
16637
16638    /* wait for clean up to finish */
16639    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16640        DELAY(20000);
16641    }
16642
16643    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16644        BLOGD(sc, DBG_LOAD,
16645              "Unable to finish IGU cleanup: "
16646              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16647              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16648    }
16649}
16650
16651static void
16652bxe_igu_clear_sb(struct bxe_softc *sc,
16653                 uint8_t          idu_sb_id)
16654{
16655    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16656}
16657
16658
16659
16660
16661
16662
16663
16664/*******************/
16665/* ECORE CALLBACKS */
16666/*******************/
16667
16668static void
16669bxe_reset_common(struct bxe_softc *sc)
16670{
16671    uint32_t val = 0x1400;
16672
16673    /* reset_common */
16674    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16675
16676    if (CHIP_IS_E3(sc)) {
16677        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16678        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16679    }
16680
16681    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16682}
16683
16684static void
16685bxe_common_init_phy(struct bxe_softc *sc)
16686{
16687    uint32_t shmem_base[2];
16688    uint32_t shmem2_base[2];
16689
16690    /* Avoid common init in case MFW supports LFA */
16691    if (SHMEM2_RD(sc, size) >
16692        (uint32_t)offsetof(struct shmem2_region,
16693                           lfa_host_addr[SC_PORT(sc)])) {
16694        return;
16695    }
16696
16697    shmem_base[0]  = sc->devinfo.shmem_base;
16698    shmem2_base[0] = sc->devinfo.shmem2_base;
16699
16700    if (!CHIP_IS_E1x(sc)) {
16701        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16702        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16703    }
16704
16705    BXE_PHY_LOCK(sc);
16706    elink_common_init_phy(sc, shmem_base, shmem2_base,
16707                          sc->devinfo.chip_id, 0);
16708    BXE_PHY_UNLOCK(sc);
16709}
16710
16711static void
16712bxe_pf_disable(struct bxe_softc *sc)
16713{
16714    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16715
16716    val &= ~IGU_PF_CONF_FUNC_EN;
16717
16718    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16719    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16720    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16721}
16722
16723static void
16724bxe_init_pxp(struct bxe_softc *sc)
16725{
16726    uint16_t devctl;
16727    int r_order, w_order;
16728
16729    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16730
16731    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16732
16733    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16734
16735    if (sc->mrrs == -1) {
16736        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16737    } else {
16738        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16739        r_order = sc->mrrs;
16740    }
16741
16742    ecore_init_pxp_arb(sc, r_order, w_order);
16743}
16744
16745static uint32_t
16746bxe_get_pretend_reg(struct bxe_softc *sc)
16747{
16748    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16749    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16750    return (base + (SC_ABS_FUNC(sc)) * stride);
16751}
16752
16753/*
16754 * Called only on E1H or E2.
16755 * When pretending to be PF, the pretend value is the function number 0..7.
16756 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16757 * combination.
16758 */
16759static int
16760bxe_pretend_func(struct bxe_softc *sc,
16761                 uint16_t         pretend_func_val)
16762{
16763    uint32_t pretend_reg;
16764
16765    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16766        return (-1);
16767    }
16768
16769    /* get my own pretend register */
16770    pretend_reg = bxe_get_pretend_reg(sc);
16771    REG_WR(sc, pretend_reg, pretend_func_val);
16772    REG_RD(sc, pretend_reg);
16773    return (0);
16774}
16775
16776static void
16777bxe_iov_init_dmae(struct bxe_softc *sc)
16778{
16779    return;
16780#if 0
16781    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16782
16783    if (!IS_SRIOV(sc)) {
16784        return;
16785    }
16786
16787    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16788#endif
16789}
16790
16791#if 0
16792static int
16793bxe_iov_init_ilt(struct bxe_softc *sc,
16794                 uint16_t         line)
16795{
16796    return (line);
16797#if 0
16798    int i;
16799    struct ecore_ilt* ilt = sc->ilt;
16800
16801    if (!IS_SRIOV(sc)) {
16802        return (line);
16803    }
16804
16805    /* set vfs ilt lines */
16806    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16807        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16808        ilt->lines[line+i].page = hw_cxt->addr;
16809        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16810        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16811    }
16812    return (line+i);
16813#endif
16814}
16815#endif
16816
16817static void
16818bxe_iov_init_dq(struct bxe_softc *sc)
16819{
16820    return;
16821#if 0
16822    if (!IS_SRIOV(sc)) {
16823        return;
16824    }
16825
16826    /* Set the DQ such that the CID reflect the abs_vfid */
16827    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16828    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16829
16830    /*
16831     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16832     * the PF L2 queues
16833     */
16834    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16835
16836    /* The VF window size is the log2 of the max number of CIDs per VF */
16837    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16838
16839    /*
16840     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16841     * the Pf doorbell size although the 2 are independent.
16842     */
16843    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16844           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16845
16846    /*
16847     * No security checks for now -
16848     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16849     * CID range 0 - 0x1ffff
16850     */
16851    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16852    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16853    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16854    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16855
16856    /* set the number of VF alllowed doorbells to the full DQ range */
16857    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16858
16859    /* set the VF doorbell threshold */
16860    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16861#endif
16862}
16863
16864/* send a NIG loopback debug packet */
16865static void
16866bxe_lb_pckt(struct bxe_softc *sc)
16867{
16868    uint32_t wb_write[3];
16869
16870    /* Ethernet source and destination addresses */
16871    wb_write[0] = 0x55555555;
16872    wb_write[1] = 0x55555555;
16873    wb_write[2] = 0x20;     /* SOP */
16874    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16875
16876    /* NON-IP protocol */
16877    wb_write[0] = 0x09000000;
16878    wb_write[1] = 0x55555555;
16879    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16880    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16881}
16882
16883/*
16884 * Some of the internal memories are not directly readable from the driver.
16885 * To test them we send debug packets.
16886 */
16887static int
16888bxe_int_mem_test(struct bxe_softc *sc)
16889{
16890    int factor;
16891    int count, i;
16892    uint32_t val = 0;
16893
16894    if (CHIP_REV_IS_FPGA(sc)) {
16895        factor = 120;
16896    } else if (CHIP_REV_IS_EMUL(sc)) {
16897        factor = 200;
16898    } else {
16899        factor = 1;
16900    }
16901
16902    /* disable inputs of parser neighbor blocks */
16903    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16904    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16905    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16906    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16907
16908    /*  write 0 to parser credits for CFC search request */
16909    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16910
16911    /* send Ethernet packet */
16912    bxe_lb_pckt(sc);
16913
16914    /* TODO do i reset NIG statistic? */
16915    /* Wait until NIG register shows 1 packet of size 0x10 */
16916    count = 1000 * factor;
16917    while (count) {
16918        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16919        val = *BXE_SP(sc, wb_data[0]);
16920        if (val == 0x10) {
16921            break;
16922        }
16923
16924        DELAY(10000);
16925        count--;
16926    }
16927
16928    if (val != 0x10) {
16929        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16930        return (-1);
16931    }
16932
16933    /* wait until PRS register shows 1 packet */
16934    count = (1000 * factor);
16935    while (count) {
16936        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16937        if (val == 1) {
16938            break;
16939        }
16940
16941        DELAY(10000);
16942        count--;
16943    }
16944
16945    if (val != 0x1) {
16946        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16947        return (-2);
16948    }
16949
16950    /* Reset and init BRB, PRS */
16951    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16952    DELAY(50000);
16953    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16954    DELAY(50000);
16955    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16956    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16957
16958    /* Disable inputs of parser neighbor blocks */
16959    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16960    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16961    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16962    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16963
16964    /* Write 0 to parser credits for CFC search request */
16965    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16966
16967    /* send 10 Ethernet packets */
16968    for (i = 0; i < 10; i++) {
16969        bxe_lb_pckt(sc);
16970    }
16971
16972    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16973    count = (1000 * factor);
16974    while (count) {
16975        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16976        val = *BXE_SP(sc, wb_data[0]);
16977        if (val == 0xb0) {
16978            break;
16979        }
16980
16981        DELAY(10000);
16982        count--;
16983    }
16984
16985    if (val != 0xb0) {
16986        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16987        return (-3);
16988    }
16989
16990    /* Wait until PRS register shows 2 packets */
16991    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16992    if (val != 2) {
16993        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16994    }
16995
16996    /* Write 1 to parser credits for CFC search request */
16997    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16998
16999    /* Wait until PRS register shows 3 packets */
17000    DELAY(10000 * factor);
17001
17002    /* Wait until NIG register shows 1 packet of size 0x10 */
17003    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17004    if (val != 3) {
17005        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17006    }
17007
17008    /* clear NIG EOP FIFO */
17009    for (i = 0; i < 11; i++) {
17010        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17011    }
17012
17013    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17014    if (val != 1) {
17015        BLOGE(sc, "clear of NIG failed\n");
17016        return (-4);
17017    }
17018
17019    /* Reset and init BRB, PRS, NIG */
17020    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17021    DELAY(50000);
17022    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17023    DELAY(50000);
17024    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17025    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17026    if (!CNIC_SUPPORT(sc)) {
17027        /* set NIC mode */
17028        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17029    }
17030
17031    /* Enable inputs of parser neighbor blocks */
17032    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17033    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17034    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17035    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17036
17037    return (0);
17038}
17039
17040static void
17041bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17042{
17043    int is_required;
17044    uint32_t val;
17045    int port;
17046
17047    is_required = 0;
17048    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17049           SHARED_HW_CFG_FAN_FAILURE_MASK);
17050
17051    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17052        is_required = 1;
17053    }
17054    /*
17055     * The fan failure mechanism is usually related to the PHY type since
17056     * the power consumption of the board is affected by the PHY. Currently,
17057     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17058     */
17059    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17060        for (port = PORT_0; port < PORT_MAX; port++) {
17061            is_required |= elink_fan_failure_det_req(sc,
17062                                                     sc->devinfo.shmem_base,
17063                                                     sc->devinfo.shmem2_base,
17064                                                     port);
17065        }
17066    }
17067
17068    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17069
17070    if (is_required == 0) {
17071        return;
17072    }
17073
17074    /* Fan failure is indicated by SPIO 5 */
17075    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17076
17077    /* set to active low mode */
17078    val = REG_RD(sc, MISC_REG_SPIO_INT);
17079    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17080    REG_WR(sc, MISC_REG_SPIO_INT, val);
17081
17082    /* enable interrupt to signal the IGU */
17083    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17084    val |= MISC_SPIO_SPIO5;
17085    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17086}
17087
17088static void
17089bxe_enable_blocks_attention(struct bxe_softc *sc)
17090{
17091    uint32_t val;
17092
17093    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17094    if (!CHIP_IS_E1x(sc)) {
17095        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17096    } else {
17097        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17098    }
17099    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17100    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17101    /*
17102     * mask read length error interrupts in brb for parser
17103     * (parsing unit and 'checksum and crc' unit)
17104     * these errors are legal (PU reads fixed length and CAC can cause
17105     * read length error on truncated packets)
17106     */
17107    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17108    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17109    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17110    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17111    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17112    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17113/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17114/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17115    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17116    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17117    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17118/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17119/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17120    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17121    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17122    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17123    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17124/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17125/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17126
17127    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17128           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17129           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17130    if (!CHIP_IS_E1x(sc)) {
17131        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17132                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17133    }
17134    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17135
17136    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17137    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17138    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17139/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17140
17141    if (!CHIP_IS_E1x(sc)) {
17142        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17143        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17144    }
17145
17146    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17147    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17148/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17149    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17150}
17151
17152/**
17153 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17154 *
17155 * @sc:     driver handle
17156 */
17157static int
17158bxe_init_hw_common(struct bxe_softc *sc)
17159{
17160    uint8_t abs_func_id;
17161    uint32_t val;
17162
17163    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17164          SC_ABS_FUNC(sc));
17165
17166    /*
17167     * take the RESET lock to protect undi_unload flow from accessing
17168     * registers while we are resetting the chip
17169     */
17170    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17171
17172    bxe_reset_common(sc);
17173
17174    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17175
17176    val = 0xfffc;
17177    if (CHIP_IS_E3(sc)) {
17178        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17179        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17180    }
17181
17182    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17183
17184    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17185
17186    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17187    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17188
17189    if (!CHIP_IS_E1x(sc)) {
17190        /*
17191         * 4-port mode or 2-port mode we need to turn off master-enable for
17192         * everyone. After that we turn it back on for self. So, we disregard
17193         * multi-function, and always disable all functions on the given path,
17194         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17195         */
17196        for (abs_func_id = SC_PATH(sc);
17197             abs_func_id < (E2_FUNC_MAX * 2);
17198             abs_func_id += 2) {
17199            if (abs_func_id == SC_ABS_FUNC(sc)) {
17200                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17201                continue;
17202            }
17203
17204            bxe_pretend_func(sc, abs_func_id);
17205
17206            /* clear pf enable */
17207            bxe_pf_disable(sc);
17208
17209            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17210        }
17211    }
17212
17213    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17214
17215    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17216
17217    if (CHIP_IS_E1(sc)) {
17218        /*
17219         * enable HW interrupt from PXP on USDM overflow
17220         * bit 16 on INT_MASK_0
17221         */
17222        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17223    }
17224
17225    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17226    bxe_init_pxp(sc);
17227
17228#ifdef __BIG_ENDIAN
17229    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17230    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17231    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17232    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17233    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17234    /* make sure this value is 0 */
17235    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17236
17237    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17238    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17239    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17240    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17241    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17242#endif
17243
17244    ecore_ilt_init_page_size(sc, INITOP_SET);
17245
17246    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17247        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17248    }
17249
17250    /* let the HW do it's magic... */
17251    DELAY(100000);
17252
17253    /* finish PXP init */
17254    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17255    if (val != 1) {
17256        BLOGE(sc, "PXP2 CFG failed\n");
17257        return (-1);
17258    }
17259    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17260    if (val != 1) {
17261        BLOGE(sc, "PXP2 RD_INIT failed\n");
17262        return (-1);
17263    }
17264
17265    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17266
17267    /*
17268     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17269     * entries with value "0" and valid bit on. This needs to be done by the
17270     * first PF that is loaded in a path (i.e. common phase)
17271     */
17272    if (!CHIP_IS_E1x(sc)) {
17273/*
17274 * In E2 there is a bug in the timers block that can cause function 6 / 7
17275 * (i.e. vnic3) to start even if it is marked as "scan-off".
17276 * This occurs when a different function (func2,3) is being marked
17277 * as "scan-off". Real-life scenario for example: if a driver is being
17278 * load-unloaded while func6,7 are down. This will cause the timer to access
17279 * the ilt, translate to a logical address and send a request to read/write.
17280 * Since the ilt for the function that is down is not valid, this will cause
17281 * a translation error which is unrecoverable.
17282 * The Workaround is intended to make sure that when this happens nothing
17283 * fatal will occur. The workaround:
17284 *  1.  First PF driver which loads on a path will:
17285 *      a.  After taking the chip out of reset, by using pretend,
17286 *          it will write "0" to the following registers of
17287 *          the other vnics.
17288 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17289 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17290 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17291 *          And for itself it will write '1' to
17292 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17293 *          dmae-operations (writing to pram for example.)
17294 *          note: can be done for only function 6,7 but cleaner this
17295 *            way.
17296 *      b.  Write zero+valid to the entire ILT.
17297 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17298 *          VNIC3 (of that port). The range allocated will be the
17299 *          entire ILT. This is needed to prevent  ILT range error.
17300 *  2.  Any PF driver load flow:
17301 *      a.  ILT update with the physical addresses of the allocated
17302 *          logical pages.
17303 *      b.  Wait 20msec. - note that this timeout is needed to make
17304 *          sure there are no requests in one of the PXP internal
17305 *          queues with "old" ILT addresses.
17306 *      c.  PF enable in the PGLC.
17307 *      d.  Clear the was_error of the PF in the PGLC. (could have
17308 *          occurred while driver was down)
17309 *      e.  PF enable in the CFC (WEAK + STRONG)
17310 *      f.  Timers scan enable
17311 *  3.  PF driver unload flow:
17312 *      a.  Clear the Timers scan_en.
17313 *      b.  Polling for scan_on=0 for that PF.
17314 *      c.  Clear the PF enable bit in the PXP.
17315 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17316 *      e.  Write zero+valid to all ILT entries (The valid bit must
17317 *          stay set)
17318 *      f.  If this is VNIC 3 of a port then also init
17319 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17320 *          to the last enrty in the ILT.
17321 *
17322 *      Notes:
17323 *      Currently the PF error in the PGLC is non recoverable.
17324 *      In the future the there will be a recovery routine for this error.
17325 *      Currently attention is masked.
17326 *      Having an MCP lock on the load/unload process does not guarantee that
17327 *      there is no Timer disable during Func6/7 enable. This is because the
17328 *      Timers scan is currently being cleared by the MCP on FLR.
17329 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17330 *      there is error before clearing it. But the flow above is simpler and
17331 *      more general.
17332 *      All ILT entries are written by zero+valid and not just PF6/7
17333 *      ILT entries since in the future the ILT entries allocation for
17334 *      PF-s might be dynamic.
17335 */
17336        struct ilt_client_info ilt_cli;
17337        struct ecore_ilt ilt;
17338
17339        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17340        memset(&ilt, 0, sizeof(struct ecore_ilt));
17341
17342        /* initialize dummy TM client */
17343        ilt_cli.start      = 0;
17344        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17345        ilt_cli.client_num = ILT_CLIENT_TM;
17346
17347        /*
17348         * Step 1: set zeroes to all ilt page entries with valid bit on
17349         * Step 2: set the timers first/last ilt entry to point
17350         * to the entire range to prevent ILT range error for 3rd/4th
17351         * vnic (this code assumes existence of the vnic)
17352         *
17353         * both steps performed by call to ecore_ilt_client_init_op()
17354         * with dummy TM client
17355         *
17356         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17357         * and his brother are split registers
17358         */
17359
17360        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17361        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17362        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17363
17364        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17365        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17366        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17367    }
17368
17369    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17370    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17371
17372    if (!CHIP_IS_E1x(sc)) {
17373        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17374                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17375
17376        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17377        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17378
17379        /* let the HW do it's magic... */
17380        do {
17381            DELAY(200000);
17382            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17383        } while (factor-- && (val != 1));
17384
17385        if (val != 1) {
17386            BLOGE(sc, "ATC_INIT failed\n");
17387            return (-1);
17388        }
17389    }
17390
17391    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17392
17393    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17394
17395    bxe_iov_init_dmae(sc);
17396
17397    /* clean the DMAE memory */
17398    sc->dmae_ready = 1;
17399    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17400
17401    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17402
17403    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17404
17405    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17406
17407    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17408
17409    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17410    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17411    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17412    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17413
17414    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17415
17416    /* QM queues pointers table */
17417    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17418
17419    /* soft reset pulse */
17420    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17421    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17422
17423    if (CNIC_SUPPORT(sc))
17424        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17425
17426    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17427    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17428    if (!CHIP_REV_IS_SLOW(sc)) {
17429        /* enable hw interrupt from doorbell Q */
17430        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17431    }
17432
17433    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17434
17435    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17436    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17437
17438    if (!CHIP_IS_E1(sc)) {
17439        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17440    }
17441
17442    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17443        if (IS_MF_AFEX(sc)) {
17444            /*
17445             * configure that AFEX and VLAN headers must be
17446             * received in AFEX mode
17447             */
17448            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17449            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17450            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17451            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17452            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17453        } else {
17454            /*
17455             * Bit-map indicating which L2 hdrs may appear
17456             * after the basic Ethernet header
17457             */
17458            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17459                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17460        }
17461    }
17462
17463    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17464    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17465    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17466    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17467
17468    if (!CHIP_IS_E1x(sc)) {
17469        /* reset VFC memories */
17470        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17471               VFC_MEMORIES_RST_REG_CAM_RST |
17472               VFC_MEMORIES_RST_REG_RAM_RST);
17473        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17474               VFC_MEMORIES_RST_REG_CAM_RST |
17475               VFC_MEMORIES_RST_REG_RAM_RST);
17476
17477        DELAY(20000);
17478    }
17479
17480    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17481    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17482    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17483    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17484
17485    /* sync semi rtc */
17486    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17487           0x80000000);
17488    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17489           0x80000000);
17490
17491    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17492    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17493    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17494
17495    if (!CHIP_IS_E1x(sc)) {
17496        if (IS_MF_AFEX(sc)) {
17497            /*
17498             * configure that AFEX and VLAN headers must be
17499             * sent in AFEX mode
17500             */
17501            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17502            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17503            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17504            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17505            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17506        } else {
17507            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17508                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17509        }
17510    }
17511
17512    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17513
17514    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17515
17516    if (CNIC_SUPPORT(sc)) {
17517        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17518        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17519        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17520        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17521        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17522        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17523        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17524        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17525        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17526        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17527    }
17528    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17529
17530    if (sizeof(union cdu_context) != 1024) {
17531        /* we currently assume that a context is 1024 bytes */
17532        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17533              (long)sizeof(union cdu_context));
17534    }
17535
17536    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17537    val = (4 << 24) + (0 << 12) + 1024;
17538    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17539
17540    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17541
17542    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17543    /* enable context validation interrupt from CFC */
17544    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17545
17546    /* set the thresholds to prevent CFC/CDU race */
17547    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17548    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17549
17550    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17551        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17552    }
17553
17554    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17555    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17556
17557    /* Reset PCIE errors for debug */
17558    REG_WR(sc, 0x2814, 0xffffffff);
17559    REG_WR(sc, 0x3820, 0xffffffff);
17560
17561    if (!CHIP_IS_E1x(sc)) {
17562        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17563               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17564                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17565        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17566               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17567                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17568                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17569        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17570               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17571                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17572                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17573    }
17574
17575    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17576
17577    if (!CHIP_IS_E1(sc)) {
17578        /* in E3 this done in per-port section */
17579        if (!CHIP_IS_E3(sc))
17580            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17581    }
17582
17583    if (CHIP_IS_E1H(sc)) {
17584        /* not applicable for E2 (and above ...) */
17585        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17586    }
17587
17588    if (CHIP_REV_IS_SLOW(sc)) {
17589        DELAY(200000);
17590    }
17591
17592    /* finish CFC init */
17593    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17594    if (val != 1) {
17595        BLOGE(sc, "CFC LL_INIT failed\n");
17596        return (-1);
17597    }
17598    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17599    if (val != 1) {
17600        BLOGE(sc, "CFC AC_INIT failed\n");
17601        return (-1);
17602    }
17603    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17604    if (val != 1) {
17605        BLOGE(sc, "CFC CAM_INIT failed\n");
17606        return (-1);
17607    }
17608    REG_WR(sc, CFC_REG_DEBUG0, 0);
17609
17610    if (CHIP_IS_E1(sc)) {
17611        /* read NIG statistic to see if this is our first up since powerup */
17612        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17613        val = *BXE_SP(sc, wb_data[0]);
17614
17615        /* do internal memory self test */
17616        if ((val == 0) && bxe_int_mem_test(sc)) {
17617            BLOGE(sc, "internal mem self test failed\n");
17618            return (-1);
17619        }
17620    }
17621
17622    bxe_setup_fan_failure_detection(sc);
17623
17624    /* clear PXP2 attentions */
17625    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17626
17627    bxe_enable_blocks_attention(sc);
17628
17629    if (!CHIP_REV_IS_SLOW(sc)) {
17630        ecore_enable_blocks_parity(sc);
17631    }
17632
17633    if (!BXE_NOMCP(sc)) {
17634        if (CHIP_IS_E1x(sc)) {
17635            bxe_common_init_phy(sc);
17636        }
17637    }
17638
17639    return (0);
17640}
17641
17642/**
17643 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17644 *
17645 * @sc:     driver handle
17646 */
17647static int
17648bxe_init_hw_common_chip(struct bxe_softc *sc)
17649{
17650    int rc = bxe_init_hw_common(sc);
17651
17652    if (rc) {
17653        return (rc);
17654    }
17655
17656    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17657    if (!BXE_NOMCP(sc)) {
17658        bxe_common_init_phy(sc);
17659    }
17660
17661    return (0);
17662}
17663
17664static int
17665bxe_init_hw_port(struct bxe_softc *sc)
17666{
17667    int port = SC_PORT(sc);
17668    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17669    uint32_t low, high;
17670    uint32_t val;
17671
17672    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17673
17674    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17675
17676    ecore_init_block(sc, BLOCK_MISC, init_phase);
17677    ecore_init_block(sc, BLOCK_PXP, init_phase);
17678    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17679
17680    /*
17681     * Timers bug workaround: disables the pf_master bit in pglue at
17682     * common phase, we need to enable it here before any dmae access are
17683     * attempted. Therefore we manually added the enable-master to the
17684     * port phase (it also happens in the function phase)
17685     */
17686    if (!CHIP_IS_E1x(sc)) {
17687        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17688    }
17689
17690    ecore_init_block(sc, BLOCK_ATC, init_phase);
17691    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17692    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17693    ecore_init_block(sc, BLOCK_QM, init_phase);
17694
17695    ecore_init_block(sc, BLOCK_TCM, init_phase);
17696    ecore_init_block(sc, BLOCK_UCM, init_phase);
17697    ecore_init_block(sc, BLOCK_CCM, init_phase);
17698    ecore_init_block(sc, BLOCK_XCM, init_phase);
17699
17700    /* QM cid (connection) count */
17701    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17702
17703    if (CNIC_SUPPORT(sc)) {
17704        ecore_init_block(sc, BLOCK_TM, init_phase);
17705        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17706        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17707    }
17708
17709    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17710
17711    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17712
17713    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17714        if (IS_MF(sc)) {
17715            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17716        } else if (sc->mtu > 4096) {
17717            if (BXE_ONE_PORT(sc)) {
17718                low = 160;
17719            } else {
17720                val = sc->mtu;
17721                /* (24*1024 + val*4)/256 */
17722                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17723            }
17724        } else {
17725            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17726        }
17727        high = (low + 56); /* 14*1024/256 */
17728        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17729        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17730    }
17731
17732    if (CHIP_IS_MODE_4_PORT(sc)) {
17733        REG_WR(sc, SC_PORT(sc) ?
17734               BRB1_REG_MAC_GUARANTIED_1 :
17735               BRB1_REG_MAC_GUARANTIED_0, 40);
17736    }
17737
17738    ecore_init_block(sc, BLOCK_PRS, init_phase);
17739    if (CHIP_IS_E3B0(sc)) {
17740        if (IS_MF_AFEX(sc)) {
17741            /* configure headers for AFEX mode */
17742            REG_WR(sc, SC_PORT(sc) ?
17743                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17744                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17745            REG_WR(sc, SC_PORT(sc) ?
17746                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17747                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17748            REG_WR(sc, SC_PORT(sc) ?
17749                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17750                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17751        } else {
17752            /* Ovlan exists only if we are in multi-function +
17753             * switch-dependent mode, in switch-independent there
17754             * is no ovlan headers
17755             */
17756            REG_WR(sc, SC_PORT(sc) ?
17757                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17758                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17759                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17760        }
17761    }
17762
17763    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17764    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17765    ecore_init_block(sc, BLOCK_USDM, init_phase);
17766    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17767
17768    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17769    ecore_init_block(sc, BLOCK_USEM, init_phase);
17770    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17771    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17772
17773    ecore_init_block(sc, BLOCK_UPB, init_phase);
17774    ecore_init_block(sc, BLOCK_XPB, init_phase);
17775
17776    ecore_init_block(sc, BLOCK_PBF, init_phase);
17777
17778    if (CHIP_IS_E1x(sc)) {
17779        /* configure PBF to work without PAUSE mtu 9000 */
17780        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17781
17782        /* update threshold */
17783        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17784        /* update init credit */
17785        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17786
17787        /* probe changes */
17788        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17789        DELAY(50);
17790        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17791    }
17792
17793    if (CNIC_SUPPORT(sc)) {
17794        ecore_init_block(sc, BLOCK_SRC, init_phase);
17795    }
17796
17797    ecore_init_block(sc, BLOCK_CDU, init_phase);
17798    ecore_init_block(sc, BLOCK_CFC, init_phase);
17799
17800    if (CHIP_IS_E1(sc)) {
17801        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17802        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17803    }
17804    ecore_init_block(sc, BLOCK_HC, init_phase);
17805
17806    ecore_init_block(sc, BLOCK_IGU, init_phase);
17807
17808    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17809    /* init aeu_mask_attn_func_0/1:
17810     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17811     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17812     *             bits 4-7 are used for "per vn group attention" */
17813    val = IS_MF(sc) ? 0xF7 : 0x7;
17814    /* Enable DCBX attention for all but E1 */
17815    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17816    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17817
17818    ecore_init_block(sc, BLOCK_NIG, init_phase);
17819
17820    if (!CHIP_IS_E1x(sc)) {
17821        /* Bit-map indicating which L2 hdrs may appear after the
17822         * basic Ethernet header
17823         */
17824        if (IS_MF_AFEX(sc)) {
17825            REG_WR(sc, SC_PORT(sc) ?
17826                   NIG_REG_P1_HDRS_AFTER_BASIC :
17827                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17828        } else {
17829            REG_WR(sc, SC_PORT(sc) ?
17830                   NIG_REG_P1_HDRS_AFTER_BASIC :
17831                   NIG_REG_P0_HDRS_AFTER_BASIC,
17832                   IS_MF_SD(sc) ? 7 : 6);
17833        }
17834
17835        if (CHIP_IS_E3(sc)) {
17836            REG_WR(sc, SC_PORT(sc) ?
17837                   NIG_REG_LLH1_MF_MODE :
17838                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17839        }
17840    }
17841    if (!CHIP_IS_E3(sc)) {
17842        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17843    }
17844
17845    if (!CHIP_IS_E1(sc)) {
17846        /* 0x2 disable mf_ov, 0x1 enable */
17847        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17848               (IS_MF_SD(sc) ? 0x1 : 0x2));
17849
17850        if (!CHIP_IS_E1x(sc)) {
17851            val = 0;
17852            switch (sc->devinfo.mf_info.mf_mode) {
17853            case MULTI_FUNCTION_SD:
17854                val = 1;
17855                break;
17856            case MULTI_FUNCTION_SI:
17857            case MULTI_FUNCTION_AFEX:
17858                val = 2;
17859                break;
17860            }
17861
17862            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17863                        NIG_REG_LLH0_CLS_TYPE), val);
17864        }
17865        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17866        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17867        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17868    }
17869
17870    /* If SPIO5 is set to generate interrupts, enable it for this port */
17871    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17872    if (val & MISC_SPIO_SPIO5) {
17873        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17874                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17875        val = REG_RD(sc, reg_addr);
17876        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17877        REG_WR(sc, reg_addr, val);
17878    }
17879
17880    return (0);
17881}
17882
17883static uint32_t
17884bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17885                       uint32_t         reg,
17886                       uint32_t         expected,
17887                       uint32_t         poll_count)
17888{
17889    uint32_t cur_cnt = poll_count;
17890    uint32_t val;
17891
17892    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17893        DELAY(FLR_WAIT_INTERVAL);
17894    }
17895
17896    return (val);
17897}
17898
17899static int
17900bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17901                              uint32_t         reg,
17902                              char             *msg,
17903                              uint32_t         poll_cnt)
17904{
17905    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17906
17907    if (val != 0) {
17908        BLOGE(sc, "%s usage count=%d\n", msg, val);
17909        return (1);
17910    }
17911
17912    return (0);
17913}
17914
17915/* Common routines with VF FLR cleanup */
17916static uint32_t
17917bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17918{
17919    /* adjust polling timeout */
17920    if (CHIP_REV_IS_EMUL(sc)) {
17921        return (FLR_POLL_CNT * 2000);
17922    }
17923
17924    if (CHIP_REV_IS_FPGA(sc)) {
17925        return (FLR_POLL_CNT * 120);
17926    }
17927
17928    return (FLR_POLL_CNT);
17929}
17930
17931static int
17932bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17933                           uint32_t         poll_cnt)
17934{
17935    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17936    if (bxe_flr_clnup_poll_hw_counter(sc,
17937                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17938                                      "CFC PF usage counter timed out",
17939                                      poll_cnt)) {
17940        return (1);
17941    }
17942
17943    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17944    if (bxe_flr_clnup_poll_hw_counter(sc,
17945                                      DORQ_REG_PF_USAGE_CNT,
17946                                      "DQ PF usage counter timed out",
17947                                      poll_cnt)) {
17948        return (1);
17949    }
17950
17951    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17952    if (bxe_flr_clnup_poll_hw_counter(sc,
17953                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17954                                      "QM PF usage counter timed out",
17955                                      poll_cnt)) {
17956        return (1);
17957    }
17958
17959    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17960    if (bxe_flr_clnup_poll_hw_counter(sc,
17961                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17962                                      "Timers VNIC usage counter timed out",
17963                                      poll_cnt)) {
17964        return (1);
17965    }
17966
17967    if (bxe_flr_clnup_poll_hw_counter(sc,
17968                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17969                                      "Timers NUM_SCANS usage counter timed out",
17970                                      poll_cnt)) {
17971        return (1);
17972    }
17973
17974    /* Wait DMAE PF usage counter to zero */
17975    if (bxe_flr_clnup_poll_hw_counter(sc,
17976                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17977                                      "DMAE dommand register timed out",
17978                                      poll_cnt)) {
17979        return (1);
17980    }
17981
17982    return (0);
17983}
17984
17985#define OP_GEN_PARAM(param)                                            \
17986    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17987#define OP_GEN_TYPE(type)                                           \
17988    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17989#define OP_GEN_AGG_VECT(index)                                             \
17990    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17991
17992static int
17993bxe_send_final_clnup(struct bxe_softc *sc,
17994                     uint8_t          clnup_func,
17995                     uint32_t         poll_cnt)
17996{
17997    uint32_t op_gen_command = 0;
17998    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17999                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18000    int ret = 0;
18001
18002    if (REG_RD(sc, comp_addr)) {
18003        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18004        return (1);
18005    }
18006
18007    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18008    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18009    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18010    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18011
18012    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18013    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18014
18015    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18016        BLOGE(sc, "FW final cleanup did not succeed\n");
18017        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18018              (REG_RD(sc, comp_addr)));
18019        bxe_panic(sc, ("FLR cleanup failed\n"));
18020        return (1);
18021    }
18022
18023    /* Zero completion for nxt FLR */
18024    REG_WR(sc, comp_addr, 0);
18025
18026    return (ret);
18027}
18028
18029static void
18030bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18031                       struct pbf_pN_buf_regs *regs,
18032                       uint32_t               poll_count)
18033{
18034    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18035    uint32_t cur_cnt = poll_count;
18036
18037    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18038    crd = crd_start = REG_RD(sc, regs->crd);
18039    init_crd = REG_RD(sc, regs->init_crd);
18040
18041    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18042    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18043    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18044
18045    while ((crd != init_crd) &&
18046           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18047            (init_crd - crd_start))) {
18048        if (cur_cnt--) {
18049            DELAY(FLR_WAIT_INTERVAL);
18050            crd = REG_RD(sc, regs->crd);
18051            crd_freed = REG_RD(sc, regs->crd_freed);
18052        } else {
18053            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18054            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18055            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18056            break;
18057        }
18058    }
18059
18060    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18061          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18062}
18063
18064static void
18065bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18066                       struct pbf_pN_cmd_regs *regs,
18067                       uint32_t               poll_count)
18068{
18069    uint32_t occup, to_free, freed, freed_start;
18070    uint32_t cur_cnt = poll_count;
18071
18072    occup = to_free = REG_RD(sc, regs->lines_occup);
18073    freed = freed_start = REG_RD(sc, regs->lines_freed);
18074
18075    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18076    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18077
18078    while (occup &&
18079           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18080        if (cur_cnt--) {
18081            DELAY(FLR_WAIT_INTERVAL);
18082            occup = REG_RD(sc, regs->lines_occup);
18083            freed = REG_RD(sc, regs->lines_freed);
18084        } else {
18085            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18086            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18087            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18088            break;
18089        }
18090    }
18091
18092    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18093          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18094}
18095
18096static void
18097bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18098{
18099    struct pbf_pN_cmd_regs cmd_regs[] = {
18100        {0, (CHIP_IS_E3B0(sc)) ?
18101            PBF_REG_TQ_OCCUPANCY_Q0 :
18102            PBF_REG_P0_TQ_OCCUPANCY,
18103            (CHIP_IS_E3B0(sc)) ?
18104            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18105            PBF_REG_P0_TQ_LINES_FREED_CNT},
18106        {1, (CHIP_IS_E3B0(sc)) ?
18107            PBF_REG_TQ_OCCUPANCY_Q1 :
18108            PBF_REG_P1_TQ_OCCUPANCY,
18109            (CHIP_IS_E3B0(sc)) ?
18110            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18111            PBF_REG_P1_TQ_LINES_FREED_CNT},
18112        {4, (CHIP_IS_E3B0(sc)) ?
18113            PBF_REG_TQ_OCCUPANCY_LB_Q :
18114            PBF_REG_P4_TQ_OCCUPANCY,
18115            (CHIP_IS_E3B0(sc)) ?
18116            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18117            PBF_REG_P4_TQ_LINES_FREED_CNT}
18118    };
18119
18120    struct pbf_pN_buf_regs buf_regs[] = {
18121        {0, (CHIP_IS_E3B0(sc)) ?
18122            PBF_REG_INIT_CRD_Q0 :
18123            PBF_REG_P0_INIT_CRD ,
18124            (CHIP_IS_E3B0(sc)) ?
18125            PBF_REG_CREDIT_Q0 :
18126            PBF_REG_P0_CREDIT,
18127            (CHIP_IS_E3B0(sc)) ?
18128            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18129            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18130        {1, (CHIP_IS_E3B0(sc)) ?
18131            PBF_REG_INIT_CRD_Q1 :
18132            PBF_REG_P1_INIT_CRD,
18133            (CHIP_IS_E3B0(sc)) ?
18134            PBF_REG_CREDIT_Q1 :
18135            PBF_REG_P1_CREDIT,
18136            (CHIP_IS_E3B0(sc)) ?
18137            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18138            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18139        {4, (CHIP_IS_E3B0(sc)) ?
18140            PBF_REG_INIT_CRD_LB_Q :
18141            PBF_REG_P4_INIT_CRD,
18142            (CHIP_IS_E3B0(sc)) ?
18143            PBF_REG_CREDIT_LB_Q :
18144            PBF_REG_P4_CREDIT,
18145            (CHIP_IS_E3B0(sc)) ?
18146            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18147            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18148    };
18149
18150    int i;
18151
18152    /* Verify the command queues are flushed P0, P1, P4 */
18153    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18154        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18155    }
18156
18157    /* Verify the transmission buffers are flushed P0, P1, P4 */
18158    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18159        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18160    }
18161}
18162
18163static void
18164bxe_hw_enable_status(struct bxe_softc *sc)
18165{
18166    uint32_t val;
18167
18168    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18169    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18170
18171    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18172    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18173
18174    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18175    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18176
18177    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18178    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18179
18180    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18181    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18182
18183    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18184    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18185
18186    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18187    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18188
18189    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18190    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18191}
18192
18193static int
18194bxe_pf_flr_clnup(struct bxe_softc *sc)
18195{
18196    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18197
18198    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18199
18200    /* Re-enable PF target read access */
18201    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18202
18203    /* Poll HW usage counters */
18204    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18205    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18206        return (-1);
18207    }
18208
18209    /* Zero the igu 'trailing edge' and 'leading edge' */
18210
18211    /* Send the FW cleanup command */
18212    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18213        return (-1);
18214    }
18215
18216    /* ATC cleanup */
18217
18218    /* Verify TX hw is flushed */
18219    bxe_tx_hw_flushed(sc, poll_cnt);
18220
18221    /* Wait 100ms (not adjusted according to platform) */
18222    DELAY(100000);
18223
18224    /* Verify no pending pci transactions */
18225    if (bxe_is_pcie_pending(sc)) {
18226        BLOGE(sc, "PCIE Transactions still pending\n");
18227    }
18228
18229    /* Debug */
18230    bxe_hw_enable_status(sc);
18231
18232    /*
18233     * Master enable - Due to WB DMAE writes performed before this
18234     * register is re-initialized as part of the regular function init
18235     */
18236    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18237
18238    return (0);
18239}
18240
18241#if 0
18242static void
18243bxe_init_searcher(struct bxe_softc *sc)
18244{
18245    int port = SC_PORT(sc);
18246    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18247    /* T1 hash bits value determines the T1 number of entries */
18248    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18249}
18250#endif
18251
18252static int
18253bxe_init_hw_func(struct bxe_softc *sc)
18254{
18255    int port = SC_PORT(sc);
18256    int func = SC_FUNC(sc);
18257    int init_phase = PHASE_PF0 + func;
18258    struct ecore_ilt *ilt = sc->ilt;
18259    uint16_t cdu_ilt_start;
18260    uint32_t addr, val;
18261    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18262    int i, main_mem_width, rc;
18263
18264    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18265
18266    /* FLR cleanup */
18267    if (!CHIP_IS_E1x(sc)) {
18268        rc = bxe_pf_flr_clnup(sc);
18269        if (rc) {
18270            BLOGE(sc, "FLR cleanup failed!\n");
18271            // XXX bxe_fw_dump(sc);
18272            // XXX bxe_idle_chk(sc);
18273            return (rc);
18274        }
18275    }
18276
18277    /* set MSI reconfigure capability */
18278    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18279        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18280        val = REG_RD(sc, addr);
18281        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18282        REG_WR(sc, addr, val);
18283    }
18284
18285    ecore_init_block(sc, BLOCK_PXP, init_phase);
18286    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18287
18288    ilt = sc->ilt;
18289    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18290
18291#if 0
18292    if (IS_SRIOV(sc)) {
18293        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18294    }
18295    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18296
18297#if (BXE_FIRST_VF_CID > 0)
18298    /*
18299     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18300     * those of the VFs, so start line should be reset
18301     */
18302    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18303#endif
18304#endif
18305
18306    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18307        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18308        ilt->lines[cdu_ilt_start + i].page_mapping =
18309            sc->context[i].vcxt_dma.paddr;
18310        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18311    }
18312    ecore_ilt_init_op(sc, INITOP_SET);
18313
18314#if 0
18315    if (!CONFIGURE_NIC_MODE(sc)) {
18316        bxe_init_searcher(sc);
18317        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18318        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18319    } else
18320#endif
18321    {
18322        /* Set NIC mode */
18323        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18324        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18325    }
18326
18327    if (!CHIP_IS_E1x(sc)) {
18328        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18329
18330        /* Turn on a single ISR mode in IGU if driver is going to use
18331         * INT#x or MSI
18332         */
18333        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18334            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18335        }
18336
18337        /*
18338         * Timers workaround bug: function init part.
18339         * Need to wait 20msec after initializing ILT,
18340         * needed to make sure there are no requests in
18341         * one of the PXP internal queues with "old" ILT addresses
18342         */
18343        DELAY(20000);
18344
18345        /*
18346         * Master enable - Due to WB DMAE writes performed before this
18347         * register is re-initialized as part of the regular function
18348         * init
18349         */
18350        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18351        /* Enable the function in IGU */
18352        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18353    }
18354
18355    sc->dmae_ready = 1;
18356
18357    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18358
18359    if (!CHIP_IS_E1x(sc))
18360        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18361
18362    ecore_init_block(sc, BLOCK_ATC, init_phase);
18363    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18364    ecore_init_block(sc, BLOCK_NIG, init_phase);
18365    ecore_init_block(sc, BLOCK_SRC, init_phase);
18366    ecore_init_block(sc, BLOCK_MISC, init_phase);
18367    ecore_init_block(sc, BLOCK_TCM, init_phase);
18368    ecore_init_block(sc, BLOCK_UCM, init_phase);
18369    ecore_init_block(sc, BLOCK_CCM, init_phase);
18370    ecore_init_block(sc, BLOCK_XCM, init_phase);
18371    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18372    ecore_init_block(sc, BLOCK_USEM, init_phase);
18373    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18374    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18375
18376    if (!CHIP_IS_E1x(sc))
18377        REG_WR(sc, QM_REG_PF_EN, 1);
18378
18379    if (!CHIP_IS_E1x(sc)) {
18380        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18381        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18382        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18383        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18384    }
18385    ecore_init_block(sc, BLOCK_QM, init_phase);
18386
18387    ecore_init_block(sc, BLOCK_TM, init_phase);
18388    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18389
18390    bxe_iov_init_dq(sc);
18391
18392    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18393    ecore_init_block(sc, BLOCK_PRS, init_phase);
18394    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18395    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18396    ecore_init_block(sc, BLOCK_USDM, init_phase);
18397    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18398    ecore_init_block(sc, BLOCK_UPB, init_phase);
18399    ecore_init_block(sc, BLOCK_XPB, init_phase);
18400    ecore_init_block(sc, BLOCK_PBF, init_phase);
18401    if (!CHIP_IS_E1x(sc))
18402        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18403
18404    ecore_init_block(sc, BLOCK_CDU, init_phase);
18405
18406    ecore_init_block(sc, BLOCK_CFC, init_phase);
18407
18408    if (!CHIP_IS_E1x(sc))
18409        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18410
18411    if (IS_MF(sc)) {
18412        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18413        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18414    }
18415
18416    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18417
18418    /* HC init per function */
18419    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18420        if (CHIP_IS_E1H(sc)) {
18421            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18422
18423            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18424            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18425        }
18426        ecore_init_block(sc, BLOCK_HC, init_phase);
18427
18428    } else {
18429        int num_segs, sb_idx, prod_offset;
18430
18431        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18432
18433        if (!CHIP_IS_E1x(sc)) {
18434            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18435            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18436        }
18437
18438        ecore_init_block(sc, BLOCK_IGU, init_phase);
18439
18440        if (!CHIP_IS_E1x(sc)) {
18441            int dsb_idx = 0;
18442            /**
18443             * Producer memory:
18444             * E2 mode: address 0-135 match to the mapping memory;
18445             * 136 - PF0 default prod; 137 - PF1 default prod;
18446             * 138 - PF2 default prod; 139 - PF3 default prod;
18447             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18448             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18449             * 144-147 reserved.
18450             *
18451             * E1.5 mode - In backward compatible mode;
18452             * for non default SB; each even line in the memory
18453             * holds the U producer and each odd line hold
18454             * the C producer. The first 128 producers are for
18455             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18456             * producers are for the DSB for each PF.
18457             * Each PF has five segments: (the order inside each
18458             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18459             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18460             * 144-147 attn prods;
18461             */
18462            /* non-default-status-blocks */
18463            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18464                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18465            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18466                prod_offset = (sc->igu_base_sb + sb_idx) *
18467                    num_segs;
18468
18469                for (i = 0; i < num_segs; i++) {
18470                    addr = IGU_REG_PROD_CONS_MEMORY +
18471                            (prod_offset + i) * 4;
18472                    REG_WR(sc, addr, 0);
18473                }
18474                /* send consumer update with value 0 */
18475                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18476                           USTORM_ID, 0, IGU_INT_NOP, 1);
18477                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18478            }
18479
18480            /* default-status-blocks */
18481            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18482                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18483
18484            if (CHIP_IS_MODE_4_PORT(sc))
18485                dsb_idx = SC_FUNC(sc);
18486            else
18487                dsb_idx = SC_VN(sc);
18488
18489            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18490                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18491                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18492
18493            /*
18494             * igu prods come in chunks of E1HVN_MAX (4) -
18495             * does not matters what is the current chip mode
18496             */
18497            for (i = 0; i < (num_segs * E1HVN_MAX);
18498                 i += E1HVN_MAX) {
18499                addr = IGU_REG_PROD_CONS_MEMORY +
18500                            (prod_offset + i)*4;
18501                REG_WR(sc, addr, 0);
18502            }
18503            /* send consumer update with 0 */
18504            if (CHIP_INT_MODE_IS_BC(sc)) {
18505                bxe_ack_sb(sc, sc->igu_dsb_id,
18506                           USTORM_ID, 0, IGU_INT_NOP, 1);
18507                bxe_ack_sb(sc, sc->igu_dsb_id,
18508                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18509                bxe_ack_sb(sc, sc->igu_dsb_id,
18510                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18511                bxe_ack_sb(sc, sc->igu_dsb_id,
18512                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18513                bxe_ack_sb(sc, sc->igu_dsb_id,
18514                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18515            } else {
18516                bxe_ack_sb(sc, sc->igu_dsb_id,
18517                           USTORM_ID, 0, IGU_INT_NOP, 1);
18518                bxe_ack_sb(sc, sc->igu_dsb_id,
18519                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18520            }
18521            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18522
18523            /* !!! these should become driver const once
18524               rf-tool supports split-68 const */
18525            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18526            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18527            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18528            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18529            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18530            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18531        }
18532    }
18533
18534    /* Reset PCIE errors for debug */
18535    REG_WR(sc, 0x2114, 0xffffffff);
18536    REG_WR(sc, 0x2120, 0xffffffff);
18537
18538    if (CHIP_IS_E1x(sc)) {
18539        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18540        main_mem_base = HC_REG_MAIN_MEMORY +
18541                SC_PORT(sc) * (main_mem_size * 4);
18542        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18543        main_mem_width = 8;
18544
18545        val = REG_RD(sc, main_mem_prty_clr);
18546        if (val) {
18547            BLOGD(sc, DBG_LOAD,
18548                  "Parity errors in HC block during function init (0x%x)!\n",
18549                  val);
18550        }
18551
18552        /* Clear "false" parity errors in MSI-X table */
18553        for (i = main_mem_base;
18554             i < main_mem_base + main_mem_size * 4;
18555             i += main_mem_width) {
18556            bxe_read_dmae(sc, i, main_mem_width / 4);
18557            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18558                           i, main_mem_width / 4);
18559        }
18560        /* Clear HC parity attention */
18561        REG_RD(sc, main_mem_prty_clr);
18562    }
18563
18564#if 1
18565    /* Enable STORMs SP logging */
18566    REG_WR8(sc, BAR_USTRORM_INTMEM +
18567           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18568    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18569           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18570    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18571           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18572    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18573           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18574#endif
18575
18576    elink_phy_probe(&sc->link_params);
18577
18578    return (0);
18579}
18580
18581static void
18582bxe_link_reset(struct bxe_softc *sc)
18583{
18584    if (!BXE_NOMCP(sc)) {
18585        BXE_PHY_LOCK(sc);
18586        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18587        BXE_PHY_UNLOCK(sc);
18588    } else {
18589        if (!CHIP_REV_IS_SLOW(sc)) {
18590            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18591        }
18592    }
18593}
18594
18595static void
18596bxe_reset_port(struct bxe_softc *sc)
18597{
18598    int port = SC_PORT(sc);
18599    uint32_t val;
18600
18601    /* reset physical Link */
18602    bxe_link_reset(sc);
18603
18604    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18605
18606    /* Do not rcv packets to BRB */
18607    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18608    /* Do not direct rcv packets that are not for MCP to the BRB */
18609    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18610               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18611
18612    /* Configure AEU */
18613    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18614
18615    DELAY(100000);
18616
18617    /* Check for BRB port occupancy */
18618    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18619    if (val) {
18620        BLOGD(sc, DBG_LOAD,
18621              "BRB1 is not empty, %d blocks are occupied\n", val);
18622    }
18623
18624    /* TODO: Close Doorbell port? */
18625}
18626
18627static void
18628bxe_ilt_wr(struct bxe_softc *sc,
18629           uint32_t         index,
18630           bus_addr_t       addr)
18631{
18632    int reg;
18633    uint32_t wb_write[2];
18634
18635    if (CHIP_IS_E1(sc)) {
18636        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18637    } else {
18638        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18639    }
18640
18641    wb_write[0] = ONCHIP_ADDR1(addr);
18642    wb_write[1] = ONCHIP_ADDR2(addr);
18643    REG_WR_DMAE(sc, reg, wb_write, 2);
18644}
18645
18646static void
18647bxe_clear_func_ilt(struct bxe_softc *sc,
18648                   uint32_t         func)
18649{
18650    uint32_t i, base = FUNC_ILT_BASE(func);
18651    for (i = base; i < base + ILT_PER_FUNC; i++) {
18652        bxe_ilt_wr(sc, i, 0);
18653    }
18654}
18655
18656static void
18657bxe_reset_func(struct bxe_softc *sc)
18658{
18659    struct bxe_fastpath *fp;
18660    int port = SC_PORT(sc);
18661    int func = SC_FUNC(sc);
18662    int i;
18663
18664    /* Disable the function in the FW */
18665    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18666    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18667    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18668    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18669
18670    /* FP SBs */
18671    FOR_EACH_ETH_QUEUE(sc, i) {
18672        fp = &sc->fp[i];
18673        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18674                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18675                SB_DISABLED);
18676    }
18677
18678#if 0
18679    if (CNIC_LOADED(sc)) {
18680        /* CNIC SB */
18681        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18682                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18683                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18684    }
18685#endif
18686
18687    /* SP SB */
18688    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18689            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18690            SB_DISABLED);
18691
18692    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18693        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18694    }
18695
18696    /* Configure IGU */
18697    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18698        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18699        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18700    } else {
18701        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18702        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18703    }
18704
18705    if (CNIC_LOADED(sc)) {
18706        /* Disable Timer scan */
18707        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18708        /*
18709         * Wait for at least 10ms and up to 2 second for the timers
18710         * scan to complete
18711         */
18712        for (i = 0; i < 200; i++) {
18713            DELAY(10000);
18714            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18715                break;
18716        }
18717    }
18718
18719    /* Clear ILT */
18720    bxe_clear_func_ilt(sc, func);
18721
18722    /*
18723     * Timers workaround bug for E2: if this is vnic-3,
18724     * we need to set the entire ilt range for this timers.
18725     */
18726    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18727        struct ilt_client_info ilt_cli;
18728        /* use dummy TM client */
18729        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18730        ilt_cli.start = 0;
18731        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18732        ilt_cli.client_num = ILT_CLIENT_TM;
18733
18734        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18735    }
18736
18737    /* this assumes that reset_port() called before reset_func()*/
18738    if (!CHIP_IS_E1x(sc)) {
18739        bxe_pf_disable(sc);
18740    }
18741
18742    sc->dmae_ready = 0;
18743}
18744
18745static int
18746bxe_gunzip_init(struct bxe_softc *sc)
18747{
18748    return (0);
18749}
18750
18751static void
18752bxe_gunzip_end(struct bxe_softc *sc)
18753{
18754    return;
18755}
18756
18757static int
18758bxe_init_firmware(struct bxe_softc *sc)
18759{
18760    if (CHIP_IS_E1(sc)) {
18761        ecore_init_e1_firmware(sc);
18762        sc->iro_array = e1_iro_arr;
18763    } else if (CHIP_IS_E1H(sc)) {
18764        ecore_init_e1h_firmware(sc);
18765        sc->iro_array = e1h_iro_arr;
18766    } else if (!CHIP_IS_E1x(sc)) {
18767        ecore_init_e2_firmware(sc);
18768        sc->iro_array = e2_iro_arr;
18769    } else {
18770        BLOGE(sc, "Unsupported chip revision\n");
18771        return (-1);
18772    }
18773
18774    return (0);
18775}
18776
18777static void
18778bxe_release_firmware(struct bxe_softc *sc)
18779{
18780    /* Do nothing */
18781    return;
18782}
18783
18784static int
18785ecore_gunzip(struct bxe_softc *sc,
18786             const uint8_t    *zbuf,
18787             int              len)
18788{
18789    /* XXX : Implement... */
18790    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18791    return (FALSE);
18792}
18793
18794static void
18795ecore_reg_wr_ind(struct bxe_softc *sc,
18796                 uint32_t         addr,
18797                 uint32_t         val)
18798{
18799    bxe_reg_wr_ind(sc, addr, val);
18800}
18801
18802static void
18803ecore_write_dmae_phys_len(struct bxe_softc *sc,
18804                          bus_addr_t       phys_addr,
18805                          uint32_t         addr,
18806                          uint32_t         len)
18807{
18808    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18809}
18810
18811void
18812ecore_storm_memset_struct(struct bxe_softc *sc,
18813                          uint32_t         addr,
18814                          size_t           size,
18815                          uint32_t         *data)
18816{
18817    uint8_t i;
18818    for (i = 0; i < size/4; i++) {
18819        REG_WR(sc, addr + (i * 4), data[i]);
18820    }
18821}
18822
18823