bxe.c revision 273736
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/bxe/bxe.c 273736 2014-10-27 14:38:00Z hselasky $");
29
30#define BXE_DRIVER_VERSION "1.78.78"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127#if 0
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_VF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "QLogic NetXtreme II BCM57712 VF 10GbE"
133    },
134#endif
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57800_MF,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57800 MF 10GbE"
146    },
147#if 0
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_VF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "QLogic NetXtreme II BCM57800 VF 10GbE"
153    },
154#endif
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57810,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "QLogic NetXtreme II BCM57810 10GbE"
160    },
161    {
162        BRCM_VENDORID,
163        CHIP_NUM_57810_MF,
164        PCI_ANY_ID, PCI_ANY_ID,
165        "QLogic NetXtreme II BCM57810 MF 10GbE"
166    },
167#if 0
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_VF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "QLogic NetXtreme II BCM57810 VF 10GbE"
173    },
174#endif
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57811,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57811 10GbE"
180    },
181    {
182        BRCM_VENDORID,
183        CHIP_NUM_57811_MF,
184        PCI_ANY_ID, PCI_ANY_ID,
185        "QLogic NetXtreme II BCM57811 MF 10GbE"
186    },
187#if 0
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_VF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "QLogic NetXtreme II BCM57811 VF 10GbE"
193    },
194#endif
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57840_4_10,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "QLogic NetXtreme II BCM57840 4x10GbE"
200    },
201#if 0
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_2_20,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "QLogic NetXtreme II BCM57840 2x20GbE"
207    },
208#endif
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_MF,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "QLogic NetXtreme II BCM57840 MF 10GbE"
214    },
215#if 0
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_VF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "QLogic NetXtreme II BCM57840 VF 10GbE"
221    },
222#endif
223    {
224        0, 0, 0, 0, NULL
225    }
226};
227
228MALLOC_DECLARE(M_BXE_ILT);
229MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230
231/*
232 * FreeBSD device entry points.
233 */
234static int bxe_probe(device_t);
235static int bxe_attach(device_t);
236static int bxe_detach(device_t);
237static int bxe_shutdown(device_t);
238
239/*
240 * FreeBSD KLD module/device interface event handler method.
241 */
242static device_method_t bxe_methods[] = {
243    /* Device interface (device_if.h) */
244    DEVMETHOD(device_probe,     bxe_probe),
245    DEVMETHOD(device_attach,    bxe_attach),
246    DEVMETHOD(device_detach,    bxe_detach),
247    DEVMETHOD(device_shutdown,  bxe_shutdown),
248#if 0
249    DEVMETHOD(device_suspend,   bxe_suspend),
250    DEVMETHOD(device_resume,    bxe_resume),
251#endif
252    /* Bus interface (bus_if.h) */
253    DEVMETHOD(bus_print_child,  bus_generic_print_child),
254    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255    KOBJMETHOD_END
256};
257
258/*
259 * FreeBSD KLD Module data declaration
260 */
261static driver_t bxe_driver = {
262    "bxe",                   /* module name */
263    bxe_methods,             /* event handler */
264    sizeof(struct bxe_softc) /* extra data */
265};
266
267/*
268 * FreeBSD dev class is needed to manage dev instances and
269 * to associate with a bus type
270 */
271static devclass_t bxe_devclass;
272
273MODULE_DEPEND(bxe, pci, 1, 1, 1);
274MODULE_DEPEND(bxe, ether, 1, 1, 1);
275DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276
277/* resources needed for unloading a previously loaded device */
278
279#define BXE_PREV_WAIT_NEEDED 1
280struct mtx bxe_prev_mtx;
281MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282struct bxe_prev_list_node {
283    LIST_ENTRY(bxe_prev_list_node) node;
284    uint8_t bus;
285    uint8_t slot;
286    uint8_t path;
287    uint8_t aer; /* XXX automatic error recovery */
288    uint8_t undi;
289};
290static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291
292static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293
294/* Tunable device values... */
295
296SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297
298/* Debug */
299unsigned long bxe_debug = 0;
300TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
301SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
302             &bxe_debug, 0, "Debug logging mode");
303
304/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
305static int bxe_interrupt_mode = INTR_MODE_MSIX;
306TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
307SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
308           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
309
310/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
311static int bxe_queue_count = 4;
312TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
313SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
314           &bxe_queue_count, 0, "Multi-Queue queue count");
315
316/* max number of buffers per queue (default RX_BD_USABLE) */
317static int bxe_max_rx_bufs = 0;
318TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
319SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
320           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
321
322/* Host interrupt coalescing RX tick timer (usecs) */
323static int bxe_hc_rx_ticks = 25;
324TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
325SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
326           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
327
328/* Host interrupt coalescing TX tick timer (usecs) */
329static int bxe_hc_tx_ticks = 50;
330TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
331SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
332           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
333
334/* Maximum number of Rx packets to process at a time */
335static int bxe_rx_budget = 0xffffffff;
336TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
337SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
338           &bxe_rx_budget, 0, "Rx processing budget");
339
340/* Maximum LRO aggregation size */
341static int bxe_max_aggregation_size = 0;
342TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
343SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
344           &bxe_max_aggregation_size, 0, "max aggregation size");
345
346/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
347static int bxe_mrrs = -1;
348TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
349SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
350           &bxe_mrrs, 0, "PCIe maximum read request size");
351
352/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
353static int bxe_autogreeen = 0;
354TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
355SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
356           &bxe_autogreeen, 0, "AutoGrEEEn support");
357
358/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
359static int bxe_udp_rss = 0;
360TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
361SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
362           &bxe_udp_rss, 0, "UDP RSS support");
363
364
365#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
366
367#define STATS_OFFSET32(stat_name)                   \
368    (offsetof(struct bxe_eth_stats, stat_name) / 4)
369
370#define Q_STATS_OFFSET32(stat_name)                   \
371    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
372
373static const struct {
374    uint32_t offset;
375    uint32_t size;
376    uint32_t flags;
377#define STATS_FLAGS_PORT  1
378#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
379#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
380    char string[STAT_NAME_LEN];
381} bxe_eth_stats_arr[] = {
382    { STATS_OFFSET32(total_bytes_received_hi),
383                8, STATS_FLAGS_BOTH, "rx_bytes" },
384    { STATS_OFFSET32(error_bytes_received_hi),
385                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
386    { STATS_OFFSET32(total_unicast_packets_received_hi),
387                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
388    { STATS_OFFSET32(total_multicast_packets_received_hi),
389                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
390    { STATS_OFFSET32(total_broadcast_packets_received_hi),
391                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
392    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
393                8, STATS_FLAGS_PORT, "rx_crc_errors" },
394    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
395                8, STATS_FLAGS_PORT, "rx_align_errors" },
396    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
397                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
398    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
399                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
400    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
401                8, STATS_FLAGS_PORT, "rx_fragments" },
402    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
403                8, STATS_FLAGS_PORT, "rx_jabbers" },
404    { STATS_OFFSET32(no_buff_discard_hi),
405                8, STATS_FLAGS_BOTH, "rx_discards" },
406    { STATS_OFFSET32(mac_filter_discard),
407                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
408    { STATS_OFFSET32(mf_tag_discard),
409                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
410    { STATS_OFFSET32(pfc_frames_received_hi),
411                8, STATS_FLAGS_PORT, "pfc_frames_received" },
412    { STATS_OFFSET32(pfc_frames_sent_hi),
413                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
414    { STATS_OFFSET32(brb_drop_hi),
415                8, STATS_FLAGS_PORT, "rx_brb_discard" },
416    { STATS_OFFSET32(brb_truncate_hi),
417                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
418    { STATS_OFFSET32(pause_frames_received_hi),
419                8, STATS_FLAGS_PORT, "rx_pause_frames" },
420    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
421                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
422    { STATS_OFFSET32(nig_timer_max),
423                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
424    { STATS_OFFSET32(total_bytes_transmitted_hi),
425                8, STATS_FLAGS_BOTH, "tx_bytes" },
426    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
427                8, STATS_FLAGS_PORT, "tx_error_bytes" },
428    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
429                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
430    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
431                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
432    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
433                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
434    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
435                8, STATS_FLAGS_PORT, "tx_mac_errors" },
436    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
437                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
438    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
439                8, STATS_FLAGS_PORT, "tx_single_collisions" },
440    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
441                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
442    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
443                8, STATS_FLAGS_PORT, "tx_deferred" },
444    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
445                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
446    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
447                8, STATS_FLAGS_PORT, "tx_late_collisions" },
448    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
449                8, STATS_FLAGS_PORT, "tx_total_collisions" },
450    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
451                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
452    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
453                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
454    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
455                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
456    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
457                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
458    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
459                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
460    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
461                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
462    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
463                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
464    { STATS_OFFSET32(pause_frames_sent_hi),
465                8, STATS_FLAGS_PORT, "tx_pause_frames" },
466    { STATS_OFFSET32(total_tpa_aggregations_hi),
467                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
468    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
469                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
470    { STATS_OFFSET32(total_tpa_bytes_hi),
471                8, STATS_FLAGS_FUNC, "tpa_bytes"},
472#if 0
473    { STATS_OFFSET32(recoverable_error),
474                4, STATS_FLAGS_FUNC, "recoverable_errors" },
475    { STATS_OFFSET32(unrecoverable_error),
476                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
477#endif
478    { STATS_OFFSET32(eee_tx_lpi),
479                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
480    { STATS_OFFSET32(rx_calls),
481                4, STATS_FLAGS_FUNC, "rx_calls"},
482    { STATS_OFFSET32(rx_pkts),
483                4, STATS_FLAGS_FUNC, "rx_pkts"},
484    { STATS_OFFSET32(rx_tpa_pkts),
485                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
486    { STATS_OFFSET32(rx_soft_errors),
487                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
488    { STATS_OFFSET32(rx_hw_csum_errors),
489                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
490    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
491                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
492    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
493                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
494    { STATS_OFFSET32(rx_budget_reached),
495                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
496    { STATS_OFFSET32(tx_pkts),
497                4, STATS_FLAGS_FUNC, "tx_pkts"},
498    { STATS_OFFSET32(tx_soft_errors),
499                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
500    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
501                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
502    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
503                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
504    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
505                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
506    { STATS_OFFSET32(tx_ofld_frames_lso),
507                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
508    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
509                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
510    { STATS_OFFSET32(tx_encap_failures),
511                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
512    { STATS_OFFSET32(tx_hw_queue_full),
513                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
514    { STATS_OFFSET32(tx_hw_max_queue_depth),
515                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
516    { STATS_OFFSET32(tx_dma_mapping_failure),
517                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
518    { STATS_OFFSET32(tx_max_drbr_queue_depth),
519                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
520    { STATS_OFFSET32(tx_window_violation_std),
521                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
522    { STATS_OFFSET32(tx_window_violation_tso),
523                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
524#if 0
525    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
526                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
527    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
528                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
529#endif
530    { STATS_OFFSET32(tx_chain_lost_mbuf),
531                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
532    { STATS_OFFSET32(tx_frames_deferred),
533                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
534    { STATS_OFFSET32(tx_queue_xoff),
535                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
536    { STATS_OFFSET32(mbuf_defrag_attempts),
537                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
538    { STATS_OFFSET32(mbuf_defrag_failures),
539                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
540    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
541                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
542    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
543                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
544    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
545                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
546    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
547                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
548    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
549                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
550    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
551                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
552    { STATS_OFFSET32(mbuf_alloc_tx),
553                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
554    { STATS_OFFSET32(mbuf_alloc_rx),
555                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
556    { STATS_OFFSET32(mbuf_alloc_sge),
557                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
558    { STATS_OFFSET32(mbuf_alloc_tpa),
559                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
560};
561
562static const struct {
563    uint32_t offset;
564    uint32_t size;
565    char string[STAT_NAME_LEN];
566} bxe_eth_q_stats_arr[] = {
567    { Q_STATS_OFFSET32(total_bytes_received_hi),
568                8, "rx_bytes" },
569    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
570                8, "rx_ucast_packets" },
571    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
572                8, "rx_mcast_packets" },
573    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
574                8, "rx_bcast_packets" },
575    { Q_STATS_OFFSET32(no_buff_discard_hi),
576                8, "rx_discards" },
577    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
578                8, "tx_bytes" },
579    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
580                8, "tx_ucast_packets" },
581    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
582                8, "tx_mcast_packets" },
583    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
584                8, "tx_bcast_packets" },
585    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
586                8, "tpa_aggregations" },
587    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
588                8, "tpa_aggregated_frames"},
589    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
590                8, "tpa_bytes"},
591    { Q_STATS_OFFSET32(rx_calls),
592                4, "rx_calls"},
593    { Q_STATS_OFFSET32(rx_pkts),
594                4, "rx_pkts"},
595    { Q_STATS_OFFSET32(rx_tpa_pkts),
596                4, "rx_tpa_pkts"},
597    { Q_STATS_OFFSET32(rx_soft_errors),
598                4, "rx_soft_errors"},
599    { Q_STATS_OFFSET32(rx_hw_csum_errors),
600                4, "rx_hw_csum_errors"},
601    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
602                4, "rx_ofld_frames_csum_ip"},
603    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
604                4, "rx_ofld_frames_csum_tcp_udp"},
605    { Q_STATS_OFFSET32(rx_budget_reached),
606                4, "rx_budget_reached"},
607    { Q_STATS_OFFSET32(tx_pkts),
608                4, "tx_pkts"},
609    { Q_STATS_OFFSET32(tx_soft_errors),
610                4, "tx_soft_errors"},
611    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
612                4, "tx_ofld_frames_csum_ip"},
613    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
614                4, "tx_ofld_frames_csum_tcp"},
615    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
616                4, "tx_ofld_frames_csum_udp"},
617    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
618                4, "tx_ofld_frames_lso"},
619    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
620                4, "tx_ofld_frames_lso_hdr_splits"},
621    { Q_STATS_OFFSET32(tx_encap_failures),
622                4, "tx_encap_failures"},
623    { Q_STATS_OFFSET32(tx_hw_queue_full),
624                4, "tx_hw_queue_full"},
625    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
626                4, "tx_hw_max_queue_depth"},
627    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
628                4, "tx_dma_mapping_failure"},
629    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
630                4, "tx_max_drbr_queue_depth"},
631    { Q_STATS_OFFSET32(tx_window_violation_std),
632                4, "tx_window_violation_std"},
633    { Q_STATS_OFFSET32(tx_window_violation_tso),
634                4, "tx_window_violation_tso"},
635#if 0
636    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
637                4, "tx_unsupported_tso_request_ipv6"},
638    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
639                4, "tx_unsupported_tso_request_not_tcp"},
640#endif
641    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
642                4, "tx_chain_lost_mbuf"},
643    { Q_STATS_OFFSET32(tx_frames_deferred),
644                4, "tx_frames_deferred"},
645    { Q_STATS_OFFSET32(tx_queue_xoff),
646                4, "tx_queue_xoff"},
647    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
648                4, "mbuf_defrag_attempts"},
649    { Q_STATS_OFFSET32(mbuf_defrag_failures),
650                4, "mbuf_defrag_failures"},
651    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
652                4, "mbuf_rx_bd_alloc_failed"},
653    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
654                4, "mbuf_rx_bd_mapping_failed"},
655    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
656                4, "mbuf_rx_tpa_alloc_failed"},
657    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
658                4, "mbuf_rx_tpa_mapping_failed"},
659    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
660                4, "mbuf_rx_sge_alloc_failed"},
661    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
662                4, "mbuf_rx_sge_mapping_failed"},
663    { Q_STATS_OFFSET32(mbuf_alloc_tx),
664                4, "mbuf_alloc_tx"},
665    { Q_STATS_OFFSET32(mbuf_alloc_rx),
666                4, "mbuf_alloc_rx"},
667    { Q_STATS_OFFSET32(mbuf_alloc_sge),
668                4, "mbuf_alloc_sge"},
669    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
670                4, "mbuf_alloc_tpa"}
671};
672
673#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
674#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
675
676
677static void    bxe_cmng_fns_init(struct bxe_softc *sc,
678                                 uint8_t          read_cfg,
679                                 uint8_t          cmng_type);
680static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
681static void    storm_memset_cmng(struct bxe_softc *sc,
682                                 struct cmng_init *cmng,
683                                 uint8_t          port);
684static void    bxe_set_reset_global(struct bxe_softc *sc);
685static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
686static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
687                                 int              engine);
688static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
689static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
690                                   uint8_t          *global,
691                                   uint8_t          print);
692static void    bxe_int_disable(struct bxe_softc *sc);
693static int     bxe_release_leader_lock(struct bxe_softc *sc);
694static void    bxe_pf_disable(struct bxe_softc *sc);
695static void    bxe_free_fp_buffers(struct bxe_softc *sc);
696static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
697                                      struct bxe_fastpath *fp,
698                                      uint16_t            rx_bd_prod,
699                                      uint16_t            rx_cq_prod,
700                                      uint16_t            rx_sge_prod);
701static void    bxe_link_report_locked(struct bxe_softc *sc);
702static void    bxe_link_report(struct bxe_softc *sc);
703static void    bxe_link_status_update(struct bxe_softc *sc);
704static void    bxe_periodic_callout_func(void *xsc);
705static void    bxe_periodic_start(struct bxe_softc *sc);
706static void    bxe_periodic_stop(struct bxe_softc *sc);
707static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
708                                    uint16_t prev_index,
709                                    uint16_t index);
710static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
711                                     int                 queue);
712static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
713                                     uint16_t            index);
714static uint8_t bxe_txeof(struct bxe_softc *sc,
715                         struct bxe_fastpath *fp);
716static void    bxe_task_fp(struct bxe_fastpath *fp);
717static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
718                                     struct mbuf      *m,
719                                     uint8_t          contents);
720static int     bxe_alloc_mem(struct bxe_softc *sc);
721static void    bxe_free_mem(struct bxe_softc *sc);
722static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
723static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
724static int     bxe_interrupt_attach(struct bxe_softc *sc);
725static void    bxe_interrupt_detach(struct bxe_softc *sc);
726static void    bxe_set_rx_mode(struct bxe_softc *sc);
727static int     bxe_init_locked(struct bxe_softc *sc);
728static int     bxe_stop_locked(struct bxe_softc *sc);
729static __noinline int bxe_nic_load(struct bxe_softc *sc,
730                                   int              load_mode);
731static __noinline int bxe_nic_unload(struct bxe_softc *sc,
732                                     uint32_t         unload_mode,
733                                     uint8_t          keep_link);
734
735static void bxe_handle_sp_tq(void *context, int pending);
736static void bxe_handle_rx_mode_tq(void *context, int pending);
737static void bxe_handle_fp_tq(void *context, int pending);
738
739
740/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
741uint32_t
742calc_crc32(uint8_t  *crc32_packet,
743           uint32_t crc32_length,
744           uint32_t crc32_seed,
745           uint8_t  complement)
746{
747   uint32_t byte         = 0;
748   uint32_t bit          = 0;
749   uint8_t  msb          = 0;
750   uint32_t temp         = 0;
751   uint32_t shft         = 0;
752   uint8_t  current_byte = 0;
753   uint32_t crc32_result = crc32_seed;
754   const uint32_t CRC32_POLY = 0x1edc6f41;
755
756   if ((crc32_packet == NULL) ||
757       (crc32_length == 0) ||
758       ((crc32_length % 8) != 0))
759    {
760        return (crc32_result);
761    }
762
763    for (byte = 0; byte < crc32_length; byte = byte + 1)
764    {
765        current_byte = crc32_packet[byte];
766        for (bit = 0; bit < 8; bit = bit + 1)
767        {
768            /* msb = crc32_result[31]; */
769            msb = (uint8_t)(crc32_result >> 31);
770
771            crc32_result = crc32_result << 1;
772
773            /* it (msb != current_byte[bit]) */
774            if (msb != (0x1 & (current_byte >> bit)))
775            {
776                crc32_result = crc32_result ^ CRC32_POLY;
777                /* crc32_result[0] = 1 */
778                crc32_result |= 1;
779            }
780        }
781    }
782
783    /* Last step is to:
784     * 1. "mirror" every bit
785     * 2. swap the 4 bytes
786     * 3. complement each bit
787     */
788
789    /* Mirror */
790    temp = crc32_result;
791    shft = sizeof(crc32_result) * 8 - 1;
792
793    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
794    {
795        temp <<= 1;
796        temp |= crc32_result & 1;
797        shft-- ;
798    }
799
800    /* temp[31-bit] = crc32_result[bit] */
801    temp <<= shft;
802
803    /* Swap */
804    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
805    {
806        uint32_t t0, t1, t2, t3;
807        t0 = (0x000000ff & (temp >> 24));
808        t1 = (0x0000ff00 & (temp >> 8));
809        t2 = (0x00ff0000 & (temp << 8));
810        t3 = (0xff000000 & (temp << 24));
811        crc32_result = t0 | t1 | t2 | t3;
812    }
813
814    /* Complement */
815    if (complement)
816    {
817        crc32_result = ~crc32_result;
818    }
819
820    return (crc32_result);
821}
822
823int
824bxe_test_bit(int                    nr,
825             volatile unsigned long *addr)
826{
827    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
828}
829
830void
831bxe_set_bit(unsigned int           nr,
832            volatile unsigned long *addr)
833{
834    atomic_set_acq_long(addr, (1 << nr));
835}
836
837void
838bxe_clear_bit(int                    nr,
839              volatile unsigned long *addr)
840{
841    atomic_clear_acq_long(addr, (1 << nr));
842}
843
844int
845bxe_test_and_set_bit(int                    nr,
846                       volatile unsigned long *addr)
847{
848    unsigned long x;
849    nr = (1 << nr);
850    do {
851        x = *addr;
852    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
853    // if (x & nr) bit_was_set; else bit_was_not_set;
854    return (x & nr);
855}
856
857int
858bxe_test_and_clear_bit(int                    nr,
859                       volatile unsigned long *addr)
860{
861    unsigned long x;
862    nr = (1 << nr);
863    do {
864        x = *addr;
865    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
866    // if (x & nr) bit_was_set; else bit_was_not_set;
867    return (x & nr);
868}
869
870int
871bxe_cmpxchg(volatile int *addr,
872            int          old,
873            int          new)
874{
875    int x;
876    do {
877        x = *addr;
878    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
879    return (x);
880}
881
882/*
883 * Get DMA memory from the OS.
884 *
885 * Validates that the OS has provided DMA buffers in response to a
886 * bus_dmamap_load call and saves the physical address of those buffers.
887 * When the callback is used the OS will return 0 for the mapping function
888 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
889 * failures back to the caller.
890 *
891 * Returns:
892 *   Nothing.
893 */
894static void
895bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
896{
897    struct bxe_dma *dma = arg;
898
899    if (error) {
900        dma->paddr = 0;
901        dma->nseg  = 0;
902        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
903    } else {
904        dma->paddr = segs->ds_addr;
905        dma->nseg  = nseg;
906#if 0
907        BLOGD(dma->sc, DBG_LOAD,
908              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
909              dma->msg, dma->vaddr, (void *)dma->paddr,
910              dma->nseg, dma->size);
911#endif
912    }
913}
914
915/*
916 * Allocate a block of memory and map it for DMA. No partial completions
917 * allowed and release any resources acquired if we can't acquire all
918 * resources.
919 *
920 * Returns:
921 *   0 = Success, !0 = Failure
922 */
923int
924bxe_dma_alloc(struct bxe_softc *sc,
925              bus_size_t       size,
926              struct bxe_dma   *dma,
927              const char       *msg)
928{
929    int rc;
930
931    if (dma->size > 0) {
932        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
933              (unsigned long)dma->size);
934        return (1);
935    }
936
937    memset(dma, 0, sizeof(*dma)); /* sanity */
938    dma->sc   = sc;
939    dma->size = size;
940    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
941
942    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
943                            BCM_PAGE_SIZE,      /* alignment */
944                            0,                  /* boundary limit */
945                            BUS_SPACE_MAXADDR,  /* restricted low */
946                            BUS_SPACE_MAXADDR,  /* restricted hi */
947                            NULL,               /* addr filter() */
948                            NULL,               /* addr filter() arg */
949                            size,               /* max map size */
950                            1,                  /* num discontinuous */
951                            size,               /* max seg size */
952                            BUS_DMA_ALLOCNOW,   /* flags */
953                            NULL,               /* lock() */
954                            NULL,               /* lock() arg */
955                            &dma->tag);         /* returned dma tag */
956    if (rc != 0) {
957        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
958        memset(dma, 0, sizeof(*dma));
959        return (1);
960    }
961
962    rc = bus_dmamem_alloc(dma->tag,
963                          (void **)&dma->vaddr,
964                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
965                          &dma->map);
966    if (rc != 0) {
967        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
968        bus_dma_tag_destroy(dma->tag);
969        memset(dma, 0, sizeof(*dma));
970        return (1);
971    }
972
973    rc = bus_dmamap_load(dma->tag,
974                         dma->map,
975                         dma->vaddr,
976                         size,
977                         bxe_dma_map_addr, /* BLOGD in here */
978                         dma,
979                         BUS_DMA_NOWAIT);
980    if (rc != 0) {
981        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
982        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
983        bus_dma_tag_destroy(dma->tag);
984        memset(dma, 0, sizeof(*dma));
985        return (1);
986    }
987
988    return (0);
989}
990
991void
992bxe_dma_free(struct bxe_softc *sc,
993             struct bxe_dma   *dma)
994{
995    if (dma->size > 0) {
996#if 0
997        BLOGD(sc, DBG_LOAD,
998              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
999              dma->msg, dma->vaddr, (void *)dma->paddr,
1000              dma->nseg, dma->size);
1001#endif
1002
1003        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1004
1005        bus_dmamap_sync(dma->tag, dma->map,
1006                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1007        bus_dmamap_unload(dma->tag, dma->map);
1008        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1009        bus_dma_tag_destroy(dma->tag);
1010    }
1011
1012    memset(dma, 0, sizeof(*dma));
1013}
1014
1015/*
1016 * These indirect read and write routines are only during init.
1017 * The locking is handled by the MCP.
1018 */
1019
1020void
1021bxe_reg_wr_ind(struct bxe_softc *sc,
1022               uint32_t         addr,
1023               uint32_t         val)
1024{
1025    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1026    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1027    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1028}
1029
1030uint32_t
1031bxe_reg_rd_ind(struct bxe_softc *sc,
1032               uint32_t         addr)
1033{
1034    uint32_t val;
1035
1036    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1037    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1038    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1039
1040    return (val);
1041}
1042
1043#if 0
1044void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1045{
1046    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1047
1048    switch (dmae->opcode & DMAE_COMMAND_DST) {
1049    case DMAE_CMD_DST_PCI:
1050        if (src_type == DMAE_CMD_SRC_PCI)
1051            DP(msglvl, "DMAE: opcode 0x%08x\n"
1052               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1053               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1055               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056               dmae->comp_addr_hi, dmae->comp_addr_lo,
1057               dmae->comp_val);
1058        else
1059            DP(msglvl, "DMAE: opcode 0x%08x\n"
1060               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1061               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1062               dmae->opcode, dmae->src_addr_lo >> 2,
1063               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1064               dmae->comp_addr_hi, dmae->comp_addr_lo,
1065               dmae->comp_val);
1066        break;
1067    case DMAE_CMD_DST_GRC:
1068        if (src_type == DMAE_CMD_SRC_PCI)
1069            DP(msglvl, "DMAE: opcode 0x%08x\n"
1070               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1071               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1073               dmae->len, dmae->dst_addr_lo >> 2,
1074               dmae->comp_addr_hi, dmae->comp_addr_lo,
1075               dmae->comp_val);
1076        else
1077            DP(msglvl, "DMAE: opcode 0x%08x\n"
1078               "src [%08x], len [%d*4], dst [%08x]\n"
1079               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1080               dmae->opcode, dmae->src_addr_lo >> 2,
1081               dmae->len, dmae->dst_addr_lo >> 2,
1082               dmae->comp_addr_hi, dmae->comp_addr_lo,
1083               dmae->comp_val);
1084        break;
1085    default:
1086        if (src_type == DMAE_CMD_SRC_PCI)
1087            DP(msglvl, "DMAE: opcode 0x%08x\n"
1088               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1089               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1090               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1091               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1092               dmae->comp_val);
1093        else
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_lo >> 2,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        break;
1101    }
1102
1103}
1104#endif
1105
1106static int
1107bxe_acquire_hw_lock(struct bxe_softc *sc,
1108                    uint32_t         resource)
1109{
1110    uint32_t lock_status;
1111    uint32_t resource_bit = (1 << resource);
1112    int func = SC_FUNC(sc);
1113    uint32_t hw_lock_control_reg;
1114    int cnt;
1115
1116    /* validate the resource is within range */
1117    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1118        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1119        return (-1);
1120    }
1121
1122    if (func <= 5) {
1123        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1124    } else {
1125        hw_lock_control_reg =
1126                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1127    }
1128
1129    /* validate the resource is not already taken */
1130    lock_status = REG_RD(sc, hw_lock_control_reg);
1131    if (lock_status & resource_bit) {
1132        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1133              lock_status, resource_bit);
1134        return (-1);
1135    }
1136
1137    /* try every 5ms for 5 seconds */
1138    for (cnt = 0; cnt < 1000; cnt++) {
1139        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1140        lock_status = REG_RD(sc, hw_lock_control_reg);
1141        if (lock_status & resource_bit) {
1142            return (0);
1143        }
1144        DELAY(5000);
1145    }
1146
1147    BLOGE(sc, "Resource lock timeout!\n");
1148    return (-1);
1149}
1150
1151static int
1152bxe_release_hw_lock(struct bxe_softc *sc,
1153                    uint32_t         resource)
1154{
1155    uint32_t lock_status;
1156    uint32_t resource_bit = (1 << resource);
1157    int func = SC_FUNC(sc);
1158    uint32_t hw_lock_control_reg;
1159
1160    /* validate the resource is within range */
1161    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1162        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1163        return (-1);
1164    }
1165
1166    if (func <= 5) {
1167        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1168    } else {
1169        hw_lock_control_reg =
1170                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1171    }
1172
1173    /* validate the resource is currently taken */
1174    lock_status = REG_RD(sc, hw_lock_control_reg);
1175    if (!(lock_status & resource_bit)) {
1176        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1177              lock_status, resource_bit);
1178        return (-1);
1179    }
1180
1181    REG_WR(sc, hw_lock_control_reg, resource_bit);
1182    return (0);
1183}
1184
1185/*
1186 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1187 * had we done things the other way around, if two pfs from the same port
1188 * would attempt to access nvram at the same time, we could run into a
1189 * scenario such as:
1190 * pf A takes the port lock.
1191 * pf B succeeds in taking the same lock since they are from the same port.
1192 * pf A takes the per pf misc lock. Performs eeprom access.
1193 * pf A finishes. Unlocks the per pf misc lock.
1194 * Pf B takes the lock and proceeds to perform it's own access.
1195 * pf A unlocks the per port lock, while pf B is still working (!).
1196 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1197 * access corrupted by pf B).*
1198 */
1199static int
1200bxe_acquire_nvram_lock(struct bxe_softc *sc)
1201{
1202    int port = SC_PORT(sc);
1203    int count, i;
1204    uint32_t val = 0;
1205
1206    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1207    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1208
1209    /* adjust timeout for emulation/FPGA */
1210    count = NVRAM_TIMEOUT_COUNT;
1211    if (CHIP_REV_IS_SLOW(sc)) {
1212        count *= 100;
1213    }
1214
1215    /* request access to nvram interface */
1216    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1217           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1218
1219    for (i = 0; i < count*10; i++) {
1220        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1221        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1222            break;
1223        }
1224
1225        DELAY(5);
1226    }
1227
1228    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1229        BLOGE(sc, "Cannot get access to nvram interface\n");
1230        return (-1);
1231    }
1232
1233    return (0);
1234}
1235
1236static int
1237bxe_release_nvram_lock(struct bxe_softc *sc)
1238{
1239    int port = SC_PORT(sc);
1240    int count, i;
1241    uint32_t val = 0;
1242
1243    /* adjust timeout for emulation/FPGA */
1244    count = NVRAM_TIMEOUT_COUNT;
1245    if (CHIP_REV_IS_SLOW(sc)) {
1246        count *= 100;
1247    }
1248
1249    /* relinquish nvram interface */
1250    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1251           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1252
1253    for (i = 0; i < count*10; i++) {
1254        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1255        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1256            break;
1257        }
1258
1259        DELAY(5);
1260    }
1261
1262    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1263        BLOGE(sc, "Cannot free access to nvram interface\n");
1264        return (-1);
1265    }
1266
1267    /* release HW lock: protect against other PFs in PF Direct Assignment */
1268    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1269
1270    return (0);
1271}
1272
1273static void
1274bxe_enable_nvram_access(struct bxe_softc *sc)
1275{
1276    uint32_t val;
1277
1278    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1279
1280    /* enable both bits, even on read */
1281    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1282           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1283}
1284
1285static void
1286bxe_disable_nvram_access(struct bxe_softc *sc)
1287{
1288    uint32_t val;
1289
1290    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1291
1292    /* disable both bits, even after read */
1293    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1294           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1295                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1296}
1297
1298static int
1299bxe_nvram_read_dword(struct bxe_softc *sc,
1300                     uint32_t         offset,
1301                     uint32_t         *ret_val,
1302                     uint32_t         cmd_flags)
1303{
1304    int count, i, rc;
1305    uint32_t val;
1306
1307    /* build the command word */
1308    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1309
1310    /* need to clear DONE bit separately */
1311    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1312
1313    /* address of the NVRAM to read from */
1314    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1315           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1316
1317    /* issue a read command */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1319
1320    /* adjust timeout for emulation/FPGA */
1321    count = NVRAM_TIMEOUT_COUNT;
1322    if (CHIP_REV_IS_SLOW(sc)) {
1323        count *= 100;
1324    }
1325
1326    /* wait for completion */
1327    *ret_val = 0;
1328    rc = -1;
1329    for (i = 0; i < count; i++) {
1330        DELAY(5);
1331        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1332
1333        if (val & MCPR_NVM_COMMAND_DONE) {
1334            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1335            /* we read nvram data in cpu order
1336             * but ethtool sees it as an array of bytes
1337             * converting to big-endian will do the work
1338             */
1339            *ret_val = htobe32(val);
1340            rc = 0;
1341            break;
1342        }
1343    }
1344
1345    if (rc == -1) {
1346        BLOGE(sc, "nvram read timeout expired\n");
1347    }
1348
1349    return (rc);
1350}
1351
1352static int
1353bxe_nvram_read(struct bxe_softc *sc,
1354               uint32_t         offset,
1355               uint8_t          *ret_buf,
1356               int              buf_size)
1357{
1358    uint32_t cmd_flags;
1359    uint32_t val;
1360    int rc;
1361
1362    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1363        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1364              offset, buf_size);
1365        return (-1);
1366    }
1367
1368    if ((offset + buf_size) > sc->devinfo.flash_size) {
1369        BLOGE(sc, "Invalid parameter, "
1370                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1371              offset, buf_size, sc->devinfo.flash_size);
1372        return (-1);
1373    }
1374
1375    /* request access to nvram interface */
1376    rc = bxe_acquire_nvram_lock(sc);
1377    if (rc) {
1378        return (rc);
1379    }
1380
1381    /* enable access to nvram interface */
1382    bxe_enable_nvram_access(sc);
1383
1384    /* read the first word(s) */
1385    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1386    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1387        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1388        memcpy(ret_buf, &val, 4);
1389
1390        /* advance to the next dword */
1391        offset += sizeof(uint32_t);
1392        ret_buf += sizeof(uint32_t);
1393        buf_size -= sizeof(uint32_t);
1394        cmd_flags = 0;
1395    }
1396
1397    if (rc == 0) {
1398        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1399        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1400        memcpy(ret_buf, &val, 4);
1401    }
1402
1403    /* disable access to nvram interface */
1404    bxe_disable_nvram_access(sc);
1405    bxe_release_nvram_lock(sc);
1406
1407    return (rc);
1408}
1409
1410static int
1411bxe_nvram_write_dword(struct bxe_softc *sc,
1412                      uint32_t         offset,
1413                      uint32_t         val,
1414                      uint32_t         cmd_flags)
1415{
1416    int count, i, rc;
1417
1418    /* build the command word */
1419    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1420
1421    /* need to clear DONE bit separately */
1422    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1423
1424    /* write the data */
1425    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1426
1427    /* address of the NVRAM to write to */
1428    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1429           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1430
1431    /* issue the write command */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1433
1434    /* adjust timeout for emulation/FPGA */
1435    count = NVRAM_TIMEOUT_COUNT;
1436    if (CHIP_REV_IS_SLOW(sc)) {
1437        count *= 100;
1438    }
1439
1440    /* wait for completion */
1441    rc = -1;
1442    for (i = 0; i < count; i++) {
1443        DELAY(5);
1444        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1445        if (val & MCPR_NVM_COMMAND_DONE) {
1446            rc = 0;
1447            break;
1448        }
1449    }
1450
1451    if (rc == -1) {
1452        BLOGE(sc, "nvram write timeout expired\n");
1453    }
1454
1455    return (rc);
1456}
1457
1458#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1459
1460static int
1461bxe_nvram_write1(struct bxe_softc *sc,
1462                 uint32_t         offset,
1463                 uint8_t          *data_buf,
1464                 int              buf_size)
1465{
1466    uint32_t cmd_flags;
1467    uint32_t align_offset;
1468    uint32_t val;
1469    int rc;
1470
1471    if ((offset + buf_size) > sc->devinfo.flash_size) {
1472        BLOGE(sc, "Invalid parameter, "
1473                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1474              offset, buf_size, sc->devinfo.flash_size);
1475        return (-1);
1476    }
1477
1478    /* request access to nvram interface */
1479    rc = bxe_acquire_nvram_lock(sc);
1480    if (rc) {
1481        return (rc);
1482    }
1483
1484    /* enable access to nvram interface */
1485    bxe_enable_nvram_access(sc);
1486
1487    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1488    align_offset = (offset & ~0x03);
1489    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1490
1491    if (rc == 0) {
1492        val &= ~(0xff << BYTE_OFFSET(offset));
1493        val |= (*data_buf << BYTE_OFFSET(offset));
1494
1495        /* nvram data is returned as an array of bytes
1496         * convert it back to cpu order
1497         */
1498        val = be32toh(val);
1499
1500        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1501    }
1502
1503    /* disable access to nvram interface */
1504    bxe_disable_nvram_access(sc);
1505    bxe_release_nvram_lock(sc);
1506
1507    return (rc);
1508}
1509
1510static int
1511bxe_nvram_write(struct bxe_softc *sc,
1512                uint32_t         offset,
1513                uint8_t          *data_buf,
1514                int              buf_size)
1515{
1516    uint32_t cmd_flags;
1517    uint32_t val;
1518    uint32_t written_so_far;
1519    int rc;
1520
1521    if (buf_size == 1) {
1522        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1523    }
1524
1525    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1526        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1527              offset, buf_size);
1528        return (-1);
1529    }
1530
1531    if (buf_size == 0) {
1532        return (0); /* nothing to do */
1533    }
1534
1535    if ((offset + buf_size) > sc->devinfo.flash_size) {
1536        BLOGE(sc, "Invalid parameter, "
1537                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1538              offset, buf_size, sc->devinfo.flash_size);
1539        return (-1);
1540    }
1541
1542    /* request access to nvram interface */
1543    rc = bxe_acquire_nvram_lock(sc);
1544    if (rc) {
1545        return (rc);
1546    }
1547
1548    /* enable access to nvram interface */
1549    bxe_enable_nvram_access(sc);
1550
1551    written_so_far = 0;
1552    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1553    while ((written_so_far < buf_size) && (rc == 0)) {
1554        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1555            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1556        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1557            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1559            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1560        }
1561
1562        memcpy(&val, data_buf, 4);
1563
1564        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1565
1566        /* advance to the next dword */
1567        offset += sizeof(uint32_t);
1568        data_buf += sizeof(uint32_t);
1569        written_so_far += sizeof(uint32_t);
1570        cmd_flags = 0;
1571    }
1572
1573    /* disable access to nvram interface */
1574    bxe_disable_nvram_access(sc);
1575    bxe_release_nvram_lock(sc);
1576
1577    return (rc);
1578}
1579
1580/* copy command into DMAE command memory and set DMAE command Go */
1581void
1582bxe_post_dmae(struct bxe_softc    *sc,
1583              struct dmae_command *dmae,
1584              int                 idx)
1585{
1586    uint32_t cmd_offset;
1587    int i;
1588
1589    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1590    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1591        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1592    }
1593
1594    REG_WR(sc, dmae_reg_go_c[idx], 1);
1595}
1596
1597uint32_t
1598bxe_dmae_opcode_add_comp(uint32_t opcode,
1599                         uint8_t  comp_type)
1600{
1601    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1602                      DMAE_COMMAND_C_TYPE_ENABLE));
1603}
1604
1605uint32_t
1606bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1607{
1608    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1609}
1610
1611uint32_t
1612bxe_dmae_opcode(struct bxe_softc *sc,
1613                uint8_t          src_type,
1614                uint8_t          dst_type,
1615                uint8_t          with_comp,
1616                uint8_t          comp_type)
1617{
1618    uint32_t opcode = 0;
1619
1620    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1621               (dst_type << DMAE_COMMAND_DST_SHIFT));
1622
1623    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1624
1625    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1626
1627    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1628               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1629
1630    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1631
1632#ifdef __BIG_ENDIAN
1633    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1634#else
1635    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1636#endif
1637
1638    if (with_comp) {
1639        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1640    }
1641
1642    return (opcode);
1643}
1644
1645static void
1646bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1647                        struct dmae_command *dmae,
1648                        uint8_t             src_type,
1649                        uint8_t             dst_type)
1650{
1651    memset(dmae, 0, sizeof(struct dmae_command));
1652
1653    /* set the opcode */
1654    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1655                                   TRUE, DMAE_COMP_PCI);
1656
1657    /* fill in the completion parameters */
1658    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1659    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1660    dmae->comp_val     = DMAE_COMP_VAL;
1661}
1662
1663/* issue a DMAE command over the init channel and wait for completion */
1664static int
1665bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1666                         struct dmae_command *dmae)
1667{
1668    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1669    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1670
1671    BXE_DMAE_LOCK(sc);
1672
1673    /* reset completion */
1674    *wb_comp = 0;
1675
1676    /* post the command on the channel used for initializations */
1677    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1678
1679    /* wait for completion */
1680    DELAY(5);
1681
1682    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1683        if (!timeout ||
1684            (sc->recovery_state != BXE_RECOVERY_DONE &&
1685             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1686            BLOGE(sc, "DMAE timeout!\n");
1687            BXE_DMAE_UNLOCK(sc);
1688            return (DMAE_TIMEOUT);
1689        }
1690
1691        timeout--;
1692        DELAY(50);
1693    }
1694
1695    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1696        BLOGE(sc, "DMAE PCI error!\n");
1697        BXE_DMAE_UNLOCK(sc);
1698        return (DMAE_PCI_ERROR);
1699    }
1700
1701    BXE_DMAE_UNLOCK(sc);
1702    return (0);
1703}
1704
1705void
1706bxe_read_dmae(struct bxe_softc *sc,
1707              uint32_t         src_addr,
1708              uint32_t         len32)
1709{
1710    struct dmae_command dmae;
1711    uint32_t *data;
1712    int i, rc;
1713
1714    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1715
1716    if (!sc->dmae_ready) {
1717        data = BXE_SP(sc, wb_data[0]);
1718
1719        for (i = 0; i < len32; i++) {
1720            data[i] = (CHIP_IS_E1(sc)) ?
1721                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1722                          REG_RD(sc, (src_addr + (i * 4)));
1723        }
1724
1725        return;
1726    }
1727
1728    /* set opcode and fixed command fields */
1729    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1730
1731    /* fill in addresses and len */
1732    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1733    dmae.src_addr_hi = 0;
1734    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1735    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1736    dmae.len         = len32;
1737
1738    /* issue the command and wait for completion */
1739    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1740        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1741    };
1742}
1743
1744void
1745bxe_write_dmae(struct bxe_softc *sc,
1746               bus_addr_t       dma_addr,
1747               uint32_t         dst_addr,
1748               uint32_t         len32)
1749{
1750    struct dmae_command dmae;
1751    int rc;
1752
1753    if (!sc->dmae_ready) {
1754        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1755
1756        if (CHIP_IS_E1(sc)) {
1757            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1758        } else {
1759            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760        }
1761
1762        return;
1763    }
1764
1765    /* set opcode and fixed command fields */
1766    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1767
1768    /* fill in addresses and len */
1769    dmae.src_addr_lo = U64_LO(dma_addr);
1770    dmae.src_addr_hi = U64_HI(dma_addr);
1771    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1772    dmae.dst_addr_hi = 0;
1773    dmae.len         = len32;
1774
1775    /* issue the command and wait for completion */
1776    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1777        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1778    }
1779}
1780
1781void
1782bxe_write_dmae_phys_len(struct bxe_softc *sc,
1783                        bus_addr_t       phys_addr,
1784                        uint32_t         addr,
1785                        uint32_t         len)
1786{
1787    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1788    int offset = 0;
1789
1790    while (len > dmae_wr_max) {
1791        bxe_write_dmae(sc,
1792                       (phys_addr + offset), /* src DMA address */
1793                       (addr + offset),      /* dst GRC address */
1794                       dmae_wr_max);
1795        offset += (dmae_wr_max * 4);
1796        len -= dmae_wr_max;
1797    }
1798
1799    bxe_write_dmae(sc,
1800                   (phys_addr + offset), /* src DMA address */
1801                   (addr + offset),      /* dst GRC address */
1802                   len);
1803}
1804
1805void
1806bxe_set_ctx_validation(struct bxe_softc   *sc,
1807                       struct eth_context *cxt,
1808                       uint32_t           cid)
1809{
1810    /* ustorm cxt validation */
1811    cxt->ustorm_ag_context.cdu_usage =
1812        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1813            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1814    /* xcontext validation */
1815    cxt->xstorm_ag_context.cdu_reserved =
1816        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1817            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1818}
1819
1820static void
1821bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1822                            uint8_t          port,
1823                            uint8_t          fw_sb_id,
1824                            uint8_t          sb_index,
1825                            uint8_t          ticks)
1826{
1827    uint32_t addr =
1828        (BAR_CSTRORM_INTMEM +
1829         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1830
1831    REG_WR8(sc, addr, ticks);
1832
1833    BLOGD(sc, DBG_LOAD,
1834          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1835          port, fw_sb_id, sb_index, ticks);
1836}
1837
1838static void
1839bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1840                            uint8_t          port,
1841                            uint16_t         fw_sb_id,
1842                            uint8_t          sb_index,
1843                            uint8_t          disable)
1844{
1845    uint32_t enable_flag =
1846        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1847    uint32_t addr =
1848        (BAR_CSTRORM_INTMEM +
1849         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1850    uint8_t flags;
1851
1852    /* clear and set */
1853    flags = REG_RD8(sc, addr);
1854    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1855    flags |= enable_flag;
1856    REG_WR8(sc, addr, flags);
1857
1858    BLOGD(sc, DBG_LOAD,
1859          "port %d fw_sb_id %d sb_index %d disable %d\n",
1860          port, fw_sb_id, sb_index, disable);
1861}
1862
1863void
1864bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1865                             uint8_t          fw_sb_id,
1866                             uint8_t          sb_index,
1867                             uint8_t          disable,
1868                             uint16_t         usec)
1869{
1870    int port = SC_PORT(sc);
1871    uint8_t ticks = (usec / 4); /* XXX ??? */
1872
1873    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1874
1875    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1876    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1877}
1878
1879void
1880elink_cb_udelay(struct bxe_softc *sc,
1881                uint32_t         usecs)
1882{
1883    DELAY(usecs);
1884}
1885
1886uint32_t
1887elink_cb_reg_read(struct bxe_softc *sc,
1888                  uint32_t         reg_addr)
1889{
1890    return (REG_RD(sc, reg_addr));
1891}
1892
1893void
1894elink_cb_reg_write(struct bxe_softc *sc,
1895                   uint32_t         reg_addr,
1896                   uint32_t         val)
1897{
1898    REG_WR(sc, reg_addr, val);
1899}
1900
1901void
1902elink_cb_reg_wb_write(struct bxe_softc *sc,
1903                      uint32_t         offset,
1904                      uint32_t         *wb_write,
1905                      uint16_t         len)
1906{
1907    REG_WR_DMAE(sc, offset, wb_write, len);
1908}
1909
1910void
1911elink_cb_reg_wb_read(struct bxe_softc *sc,
1912                     uint32_t         offset,
1913                     uint32_t         *wb_write,
1914                     uint16_t         len)
1915{
1916    REG_RD_DMAE(sc, offset, wb_write, len);
1917}
1918
1919uint8_t
1920elink_cb_path_id(struct bxe_softc *sc)
1921{
1922    return (SC_PATH(sc));
1923}
1924
1925void
1926elink_cb_event_log(struct bxe_softc     *sc,
1927                   const elink_log_id_t elink_log_id,
1928                   ...)
1929{
1930    /* XXX */
1931#if 0
1932    //va_list ap;
1933    va_start(ap, elink_log_id);
1934    _XXX_(sc, lm_log_id, ap);
1935    va_end(ap);
1936#endif
1937    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1938}
1939
1940static int
1941bxe_set_spio(struct bxe_softc *sc,
1942             int              spio,
1943             uint32_t         mode)
1944{
1945    uint32_t spio_reg;
1946
1947    /* Only 2 SPIOs are configurable */
1948    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1949        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1950        return (-1);
1951    }
1952
1953    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1954
1955    /* read SPIO and mask except the float bits */
1956    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1957
1958    switch (mode) {
1959    case MISC_SPIO_OUTPUT_LOW:
1960        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1961        /* clear FLOAT and set CLR */
1962        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1963        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1964        break;
1965
1966    case MISC_SPIO_OUTPUT_HIGH:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1968        /* clear FLOAT and set SET */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1971        break;
1972
1973    case MISC_SPIO_INPUT_HI_Z:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1975        /* set FLOAT */
1976        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1977        break;
1978
1979    default:
1980        break;
1981    }
1982
1983    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1984    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1985
1986    return (0);
1987}
1988
1989static int
1990bxe_gpio_read(struct bxe_softc *sc,
1991              int              gpio_num,
1992              uint8_t          port)
1993{
1994    /* The GPIO should be swapped if swap register is set and active */
1995    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1996                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1997    int gpio_shift = (gpio_num +
1998                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1999    uint32_t gpio_mask = (1 << gpio_shift);
2000    uint32_t gpio_reg;
2001
2002    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2003        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2004        return (-1);
2005    }
2006
2007    /* read GPIO value */
2008    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2009
2010    /* get the requested pin value */
2011    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2012}
2013
2014static int
2015bxe_gpio_write(struct bxe_softc *sc,
2016               int              gpio_num,
2017               uint32_t         mode,
2018               uint8_t          port)
2019{
2020    /* The GPIO should be swapped if swap register is set and active */
2021    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2022                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2023    int gpio_shift = (gpio_num +
2024                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2025    uint32_t gpio_mask = (1 << gpio_shift);
2026    uint32_t gpio_reg;
2027
2028    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2029        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2030        return (-1);
2031    }
2032
2033    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2034
2035    /* read GPIO and mask except the float bits */
2036    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2037
2038    switch (mode) {
2039    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2040        BLOGD(sc, DBG_PHY,
2041              "Set GPIO %d (shift %d) -> output low\n",
2042              gpio_num, gpio_shift);
2043        /* clear FLOAT and set CLR */
2044        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2045        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2046        break;
2047
2048    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2049        BLOGD(sc, DBG_PHY,
2050              "Set GPIO %d (shift %d) -> output high\n",
2051              gpio_num, gpio_shift);
2052        /* clear FLOAT and set SET */
2053        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2054        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2055        break;
2056
2057    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2058        BLOGD(sc, DBG_PHY,
2059              "Set GPIO %d (shift %d) -> input\n",
2060              gpio_num, gpio_shift);
2061        /* set FLOAT */
2062        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2063        break;
2064
2065    default:
2066        break;
2067    }
2068
2069    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2070    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2071
2072    return (0);
2073}
2074
2075static int
2076bxe_gpio_mult_write(struct bxe_softc *sc,
2077                    uint8_t          pins,
2078                    uint32_t         mode)
2079{
2080    uint32_t gpio_reg;
2081
2082    /* any port swapping should be handled by caller */
2083
2084    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2085
2086    /* read GPIO and mask except the float bits */
2087    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2088    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2089    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2090    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2091
2092    switch (mode) {
2093    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2094        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2095        /* set CLR */
2096        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2097        break;
2098
2099    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2100        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2101        /* set SET */
2102        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2103        break;
2104
2105    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2106        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2107        /* set FLOAT */
2108        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2109        break;
2110
2111    default:
2112        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2113        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2114        return (-1);
2115    }
2116
2117    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2118    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2119
2120    return (0);
2121}
2122
2123static int
2124bxe_gpio_int_write(struct bxe_softc *sc,
2125                   int              gpio_num,
2126                   uint32_t         mode,
2127                   uint8_t          port)
2128{
2129    /* The GPIO should be swapped if swap register is set and active */
2130    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2131                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2132    int gpio_shift = (gpio_num +
2133                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2134    uint32_t gpio_mask = (1 << gpio_shift);
2135    uint32_t gpio_reg;
2136
2137    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2138        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2139        return (-1);
2140    }
2141
2142    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2143
2144    /* read GPIO int */
2145    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2146
2147    switch (mode) {
2148    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2149        BLOGD(sc, DBG_PHY,
2150              "Clear GPIO INT %d (shift %d) -> output low\n",
2151              gpio_num, gpio_shift);
2152        /* clear SET and set CLR */
2153        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2154        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2155        break;
2156
2157    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2158        BLOGD(sc, DBG_PHY,
2159              "Set GPIO INT %d (shift %d) -> output high\n",
2160              gpio_num, gpio_shift);
2161        /* clear CLR and set SET */
2162        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2163        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2164        break;
2165
2166    default:
2167        break;
2168    }
2169
2170    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2171    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2172
2173    return (0);
2174}
2175
2176uint32_t
2177elink_cb_gpio_read(struct bxe_softc *sc,
2178                   uint16_t         gpio_num,
2179                   uint8_t          port)
2180{
2181    return (bxe_gpio_read(sc, gpio_num, port));
2182}
2183
2184uint8_t
2185elink_cb_gpio_write(struct bxe_softc *sc,
2186                    uint16_t         gpio_num,
2187                    uint8_t          mode, /* 0=low 1=high */
2188                    uint8_t          port)
2189{
2190    return (bxe_gpio_write(sc, gpio_num, mode, port));
2191}
2192
2193uint8_t
2194elink_cb_gpio_mult_write(struct bxe_softc *sc,
2195                         uint8_t          pins,
2196                         uint8_t          mode) /* 0=low 1=high */
2197{
2198    return (bxe_gpio_mult_write(sc, pins, mode));
2199}
2200
2201uint8_t
2202elink_cb_gpio_int_write(struct bxe_softc *sc,
2203                        uint16_t         gpio_num,
2204                        uint8_t          mode, /* 0=low 1=high */
2205                        uint8_t          port)
2206{
2207    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2208}
2209
2210void
2211elink_cb_notify_link_changed(struct bxe_softc *sc)
2212{
2213    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2214                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2215}
2216
2217/* send the MCP a request, block until there is a reply */
2218uint32_t
2219elink_cb_fw_command(struct bxe_softc *sc,
2220                    uint32_t         command,
2221                    uint32_t         param)
2222{
2223    int mb_idx = SC_FW_MB_IDX(sc);
2224    uint32_t seq;
2225    uint32_t rc = 0;
2226    uint32_t cnt = 1;
2227    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2228
2229    BXE_FWMB_LOCK(sc);
2230
2231    seq = ++sc->fw_seq;
2232    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2233    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2234
2235    BLOGD(sc, DBG_PHY,
2236          "wrote command 0x%08x to FW MB param 0x%08x\n",
2237          (command | seq), param);
2238
2239    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2240    do {
2241        DELAY(delay * 1000);
2242        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2243    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2244
2245    BLOGD(sc, DBG_PHY,
2246          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2247          cnt*delay, rc, seq);
2248
2249    /* is this a reply to our command? */
2250    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2251        rc &= FW_MSG_CODE_MASK;
2252    } else {
2253        /* Ruh-roh! */
2254        BLOGE(sc, "FW failed to respond!\n");
2255        // XXX bxe_fw_dump(sc);
2256        rc = 0;
2257    }
2258
2259    BXE_FWMB_UNLOCK(sc);
2260    return (rc);
2261}
2262
2263static uint32_t
2264bxe_fw_command(struct bxe_softc *sc,
2265               uint32_t         command,
2266               uint32_t         param)
2267{
2268    return (elink_cb_fw_command(sc, command, param));
2269}
2270
2271static void
2272__storm_memset_dma_mapping(struct bxe_softc *sc,
2273                           uint32_t         addr,
2274                           bus_addr_t       mapping)
2275{
2276    REG_WR(sc, addr, U64_LO(mapping));
2277    REG_WR(sc, (addr + 4), U64_HI(mapping));
2278}
2279
2280static void
2281storm_memset_spq_addr(struct bxe_softc *sc,
2282                      bus_addr_t       mapping,
2283                      uint16_t         abs_fid)
2284{
2285    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2286                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2287    __storm_memset_dma_mapping(sc, addr, mapping);
2288}
2289
2290static void
2291storm_memset_vf_to_pf(struct bxe_softc *sc,
2292                      uint16_t         abs_fid,
2293                      uint16_t         pf_id)
2294{
2295    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2296    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2297    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299}
2300
2301static void
2302storm_memset_func_en(struct bxe_softc *sc,
2303                     uint16_t         abs_fid,
2304                     uint8_t          enable)
2305{
2306    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2307    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2308    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310}
2311
2312static void
2313storm_memset_eq_data(struct bxe_softc       *sc,
2314                     struct event_ring_data *eq_data,
2315                     uint16_t               pfid)
2316{
2317    uint32_t addr;
2318    size_t size;
2319
2320    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2321    size = sizeof(struct event_ring_data);
2322    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2323}
2324
2325static void
2326storm_memset_eq_prod(struct bxe_softc *sc,
2327                     uint16_t         eq_prod,
2328                     uint16_t         pfid)
2329{
2330    uint32_t addr = (BAR_CSTRORM_INTMEM +
2331                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2332    REG_WR16(sc, addr, eq_prod);
2333}
2334
2335/*
2336 * Post a slowpath command.
2337 *
2338 * A slowpath command is used to propogate a configuration change through
2339 * the controller in a controlled manner, allowing each STORM processor and
2340 * other H/W blocks to phase in the change.  The commands sent on the
2341 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2342 * completion of the ramrod will occur in different ways.  Here's a
2343 * breakdown of ramrods and how they complete:
2344 *
2345 * RAMROD_CMD_ID_ETH_PORT_SETUP
2346 *   Used to setup the leading connection on a port.  Completes on the
2347 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2348 *
2349 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2350 *   Used to setup an additional connection on a port.  Completes on the
2351 *   RCQ of the multi-queue/RSS connection being initialized.
2352 *
2353 * RAMROD_CMD_ID_ETH_STAT_QUERY
2354 *   Used to force the storm processors to update the statistics database
2355 *   in host memory.  This ramrod is send on the leading connection CID and
2356 *   completes as an index increment of the CSTORM on the default status
2357 *   block.
2358 *
2359 * RAMROD_CMD_ID_ETH_UPDATE
2360 *   Used to update the state of the leading connection, usually to udpate
2361 *   the RSS indirection table.  Completes on the RCQ of the leading
2362 *   connection. (Not currently used under FreeBSD until OS support becomes
2363 *   available.)
2364 *
2365 * RAMROD_CMD_ID_ETH_HALT
2366 *   Used when tearing down a connection prior to driver unload.  Completes
2367 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2368 *   use this on the leading connection.
2369 *
2370 * RAMROD_CMD_ID_ETH_SET_MAC
2371 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2372 *   the RCQ of the leading connection.
2373 *
2374 * RAMROD_CMD_ID_ETH_CFC_DEL
2375 *   Used when tearing down a conneciton prior to driver unload.  Completes
2376 *   on the RCQ of the leading connection (since the current connection
2377 *   has been completely removed from controller memory).
2378 *
2379 * RAMROD_CMD_ID_ETH_PORT_DEL
2380 *   Used to tear down the leading connection prior to driver unload,
2381 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2382 *   default status block.
2383 *
2384 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2385 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2386 *   RSS connection that is being offloaded.  (Not currently used under
2387 *   FreeBSD.)
2388 *
2389 * There can only be one command pending per function.
2390 *
2391 * Returns:
2392 *   0 = Success, !0 = Failure.
2393 */
2394
2395/* must be called under the spq lock */
2396static inline
2397struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2398{
2399    struct eth_spe *next_spe = sc->spq_prod_bd;
2400
2401    if (sc->spq_prod_bd == sc->spq_last_bd) {
2402        /* wrap back to the first eth_spq */
2403        sc->spq_prod_bd = sc->spq;
2404        sc->spq_prod_idx = 0;
2405    } else {
2406        sc->spq_prod_bd++;
2407        sc->spq_prod_idx++;
2408    }
2409
2410    return (next_spe);
2411}
2412
2413/* must be called under the spq lock */
2414static inline
2415void bxe_sp_prod_update(struct bxe_softc *sc)
2416{
2417    int func = SC_FUNC(sc);
2418
2419    /*
2420     * Make sure that BD data is updated before writing the producer.
2421     * BD data is written to the memory, the producer is read from the
2422     * memory, thus we need a full memory barrier to ensure the ordering.
2423     */
2424    mb();
2425
2426    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2427             sc->spq_prod_idx);
2428
2429    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2430                      BUS_SPACE_BARRIER_WRITE);
2431}
2432
2433/**
2434 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2435 *
2436 * @cmd:      command to check
2437 * @cmd_type: command type
2438 */
2439static inline
2440int bxe_is_contextless_ramrod(int cmd,
2441                              int cmd_type)
2442{
2443    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2444        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2445        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2446        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2447        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2448        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2449        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2450        return (TRUE);
2451    } else {
2452        return (FALSE);
2453    }
2454}
2455
2456/**
2457 * bxe_sp_post - place a single command on an SP ring
2458 *
2459 * @sc:         driver handle
2460 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2461 * @cid:        SW CID the command is related to
2462 * @data_hi:    command private data address (high 32 bits)
2463 * @data_lo:    command private data address (low 32 bits)
2464 * @cmd_type:   command type (e.g. NONE, ETH)
2465 *
2466 * SP data is handled as if it's always an address pair, thus data fields are
2467 * not swapped to little endian in upper functions. Instead this function swaps
2468 * data as if it's two uint32 fields.
2469 */
2470int
2471bxe_sp_post(struct bxe_softc *sc,
2472            int              command,
2473            int              cid,
2474            uint32_t         data_hi,
2475            uint32_t         data_lo,
2476            int              cmd_type)
2477{
2478    struct eth_spe *spe;
2479    uint16_t type;
2480    int common;
2481
2482    common = bxe_is_contextless_ramrod(command, cmd_type);
2483
2484    BXE_SP_LOCK(sc);
2485
2486    if (common) {
2487        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2488            BLOGE(sc, "EQ ring is full!\n");
2489            BXE_SP_UNLOCK(sc);
2490            return (-1);
2491        }
2492    } else {
2493        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2494            BLOGE(sc, "SPQ ring is full!\n");
2495            BXE_SP_UNLOCK(sc);
2496            return (-1);
2497        }
2498    }
2499
2500    spe = bxe_sp_get_next(sc);
2501
2502    /* CID needs port number to be encoded int it */
2503    spe->hdr.conn_and_cmd_data =
2504        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2505
2506    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2507
2508    /* TBD: Check if it works for VFs */
2509    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2510             SPE_HDR_FUNCTION_ID);
2511
2512    spe->hdr.type = htole16(type);
2513
2514    spe->data.update_data_addr.hi = htole32(data_hi);
2515    spe->data.update_data_addr.lo = htole32(data_lo);
2516
2517    /*
2518     * It's ok if the actual decrement is issued towards the memory
2519     * somewhere between the lock and unlock. Thus no more explict
2520     * memory barrier is needed.
2521     */
2522    if (common) {
2523        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2524    } else {
2525        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2526    }
2527
2528    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2529    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2530          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2531    BLOGD(sc, DBG_SP,
2532          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2533          sc->spq_prod_idx,
2534          (uint32_t)U64_HI(sc->spq_dma.paddr),
2535          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2536          command,
2537          common,
2538          HW_CID(sc, cid),
2539          data_hi,
2540          data_lo,
2541          type,
2542          atomic_load_acq_long(&sc->cq_spq_left),
2543          atomic_load_acq_long(&sc->eq_spq_left));
2544
2545    bxe_sp_prod_update(sc);
2546
2547    BXE_SP_UNLOCK(sc);
2548    return (0);
2549}
2550
2551/**
2552 * bxe_debug_print_ind_table - prints the indirection table configuration.
2553 *
2554 * @sc: driver hanlde
2555 * @p:  pointer to rss configuration
2556 */
2557#if 0
2558static void
2559bxe_debug_print_ind_table(struct bxe_softc               *sc,
2560                          struct ecore_config_rss_params *p)
2561{
2562    int i;
2563
2564    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2565    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2566    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2567        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2568
2569        /* Print 4 bytes in a line */
2570        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2571            (((i + 1) & 0x3) == 0)) {
2572            BLOGD(sc, DBG_LOAD, "\n");
2573            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2574        }
2575    }
2576
2577    BLOGD(sc, DBG_LOAD, "\n");
2578}
2579#endif
2580
2581/*
2582 * FreeBSD Device probe function.
2583 *
2584 * Compares the device found to the driver's list of supported devices and
2585 * reports back to the bsd loader whether this is the right driver for the device.
2586 * This is the driver entry function called from the "kldload" command.
2587 *
2588 * Returns:
2589 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2590 */
2591static int
2592bxe_probe(device_t dev)
2593{
2594    struct bxe_softc *sc;
2595    struct bxe_device_type *t;
2596    char *descbuf;
2597    uint16_t did, sdid, svid, vid;
2598
2599    /* Find our device structure */
2600    sc = device_get_softc(dev);
2601    sc->dev = dev;
2602    t = bxe_devs;
2603
2604    /* Get the data for the device to be probed. */
2605    vid  = pci_get_vendor(dev);
2606    did  = pci_get_device(dev);
2607    svid = pci_get_subvendor(dev);
2608    sdid = pci_get_subdevice(dev);
2609
2610    BLOGD(sc, DBG_LOAD,
2611          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2612          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2613
2614    /* Look through the list of known devices for a match. */
2615    while (t->bxe_name != NULL) {
2616        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2617            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2618            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2619            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2620            if (descbuf == NULL)
2621                return (ENOMEM);
2622
2623            /* Print out the device identity. */
2624            snprintf(descbuf, BXE_DEVDESC_MAX,
2625                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2626                     (((pci_read_config(dev, PCIR_REVID, 4) &
2627                        0xf0) >> 4) + 'A'),
2628                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2629                     BXE_DRIVER_VERSION);
2630
2631            device_set_desc_copy(dev, descbuf);
2632            free(descbuf, M_TEMP);
2633            return (BUS_PROBE_DEFAULT);
2634        }
2635        t++;
2636    }
2637
2638    return (ENXIO);
2639}
2640
2641static void
2642bxe_init_mutexes(struct bxe_softc *sc)
2643{
2644#ifdef BXE_CORE_LOCK_SX
2645    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2646             "bxe%d_core_lock", sc->unit);
2647    sx_init(&sc->core_sx, sc->core_sx_name);
2648#else
2649    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2650             "bxe%d_core_lock", sc->unit);
2651    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2652#endif
2653
2654    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2655             "bxe%d_sp_lock", sc->unit);
2656    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2657
2658    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2659             "bxe%d_dmae_lock", sc->unit);
2660    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2661
2662    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2663             "bxe%d_phy_lock", sc->unit);
2664    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2665
2666    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2667             "bxe%d_fwmb_lock", sc->unit);
2668    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2669
2670    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2671             "bxe%d_print_lock", sc->unit);
2672    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2673
2674    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2675             "bxe%d_stats_lock", sc->unit);
2676    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2677
2678    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2679             "bxe%d_mcast_lock", sc->unit);
2680    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2681}
2682
2683static void
2684bxe_release_mutexes(struct bxe_softc *sc)
2685{
2686#ifdef BXE_CORE_LOCK_SX
2687    sx_destroy(&sc->core_sx);
2688#else
2689    if (mtx_initialized(&sc->core_mtx)) {
2690        mtx_destroy(&sc->core_mtx);
2691    }
2692#endif
2693
2694    if (mtx_initialized(&sc->sp_mtx)) {
2695        mtx_destroy(&sc->sp_mtx);
2696    }
2697
2698    if (mtx_initialized(&sc->dmae_mtx)) {
2699        mtx_destroy(&sc->dmae_mtx);
2700    }
2701
2702    if (mtx_initialized(&sc->port.phy_mtx)) {
2703        mtx_destroy(&sc->port.phy_mtx);
2704    }
2705
2706    if (mtx_initialized(&sc->fwmb_mtx)) {
2707        mtx_destroy(&sc->fwmb_mtx);
2708    }
2709
2710    if (mtx_initialized(&sc->print_mtx)) {
2711        mtx_destroy(&sc->print_mtx);
2712    }
2713
2714    if (mtx_initialized(&sc->stats_mtx)) {
2715        mtx_destroy(&sc->stats_mtx);
2716    }
2717
2718    if (mtx_initialized(&sc->mcast_mtx)) {
2719        mtx_destroy(&sc->mcast_mtx);
2720    }
2721}
2722
2723static void
2724bxe_tx_disable(struct bxe_softc* sc)
2725{
2726    struct ifnet *ifp = sc->ifnet;
2727
2728    /* tell the stack the driver is stopped and TX queue is full */
2729    if (ifp != NULL) {
2730        ifp->if_drv_flags = 0;
2731    }
2732}
2733
2734static void
2735bxe_drv_pulse(struct bxe_softc *sc)
2736{
2737    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2738             sc->fw_drv_pulse_wr_seq);
2739}
2740
2741static inline uint16_t
2742bxe_tx_avail(struct bxe_softc *sc,
2743             struct bxe_fastpath *fp)
2744{
2745    int16_t  used;
2746    uint16_t prod;
2747    uint16_t cons;
2748
2749    prod = fp->tx_bd_prod;
2750    cons = fp->tx_bd_cons;
2751
2752    used = SUB_S16(prod, cons);
2753
2754#if 0
2755    KASSERT((used < 0), ("used tx bds < 0"));
2756    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2757    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2758            ("invalid number of tx bds used"));
2759#endif
2760
2761    return (int16_t)(sc->tx_ring_size) - used;
2762}
2763
2764static inline int
2765bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2766{
2767    uint16_t hw_cons;
2768
2769    mb(); /* status block fields can change */
2770    hw_cons = le16toh(*fp->tx_cons_sb);
2771    return (hw_cons != fp->tx_pkt_cons);
2772}
2773
2774static inline uint8_t
2775bxe_has_tx_work(struct bxe_fastpath *fp)
2776{
2777    /* expand this for multi-cos if ever supported */
2778    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2779}
2780
2781static inline int
2782bxe_has_rx_work(struct bxe_fastpath *fp)
2783{
2784    uint16_t rx_cq_cons_sb;
2785
2786    mb(); /* status block fields can change */
2787    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2788    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2789        rx_cq_cons_sb++;
2790    return (fp->rx_cq_cons != rx_cq_cons_sb);
2791}
2792
2793static void
2794bxe_sp_event(struct bxe_softc    *sc,
2795             struct bxe_fastpath *fp,
2796             union eth_rx_cqe    *rr_cqe)
2797{
2798    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2799    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2800    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2801    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2802
2803    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2804          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2805
2806#if 0
2807    /*
2808     * If cid is within VF range, replace the slowpath object with the
2809     * one corresponding to this VF
2810     */
2811    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2812        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2813    }
2814#endif
2815
2816    switch (command) {
2817    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2818        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2819        drv_cmd = ECORE_Q_CMD_UPDATE;
2820        break;
2821
2822    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2823        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2824        drv_cmd = ECORE_Q_CMD_SETUP;
2825        break;
2826
2827    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2828        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2829        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2830        break;
2831
2832    case (RAMROD_CMD_ID_ETH_HALT):
2833        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2834        drv_cmd = ECORE_Q_CMD_HALT;
2835        break;
2836
2837    case (RAMROD_CMD_ID_ETH_TERMINATE):
2838        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2839        drv_cmd = ECORE_Q_CMD_TERMINATE;
2840        break;
2841
2842    case (RAMROD_CMD_ID_ETH_EMPTY):
2843        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2844        drv_cmd = ECORE_Q_CMD_EMPTY;
2845        break;
2846
2847    default:
2848        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2849              command, fp->index);
2850        return;
2851    }
2852
2853    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2854        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2855        /*
2856         * q_obj->complete_cmd() failure means that this was
2857         * an unexpected completion.
2858         *
2859         * In this case we don't want to increase the sc->spq_left
2860         * because apparently we haven't sent this command the first
2861         * place.
2862         */
2863        // bxe_panic(sc, ("Unexpected SP completion\n"));
2864        return;
2865    }
2866
2867#if 0
2868    /* SRIOV: reschedule any 'in_progress' operations */
2869    bxe_iov_sp_event(sc, cid, TRUE);
2870#endif
2871
2872    atomic_add_acq_long(&sc->cq_spq_left, 1);
2873
2874    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2875          atomic_load_acq_long(&sc->cq_spq_left));
2876
2877#if 0
2878    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2879        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2880        /*
2881         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2882         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2883         * prevent case that both bits are cleared. At the end of load/unload
2884         * driver checks that sp_state is cleared and this order prevents
2885         * races.
2886         */
2887        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2888        wmb();
2889        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2890
2891        /* schedule the sp task as MCP ack is required */
2892        bxe_schedule_sp_task(sc);
2893    }
2894#endif
2895}
2896
2897/*
2898 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2899 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2900 * the current aggregation queue as in-progress.
2901 */
2902static void
2903bxe_tpa_start(struct bxe_softc            *sc,
2904              struct bxe_fastpath         *fp,
2905              uint16_t                    queue,
2906              uint16_t                    cons,
2907              uint16_t                    prod,
2908              struct eth_fast_path_rx_cqe *cqe)
2909{
2910    struct bxe_sw_rx_bd tmp_bd;
2911    struct bxe_sw_rx_bd *rx_buf;
2912    struct eth_rx_bd *rx_bd;
2913    int max_agg_queues;
2914    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2915    uint16_t index;
2916
2917    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2918                       "cons=%d prod=%d\n",
2919          fp->index, queue, cons, prod);
2920
2921    max_agg_queues = MAX_AGG_QS(sc);
2922
2923    KASSERT((queue < max_agg_queues),
2924            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2925             fp->index, queue, max_agg_queues));
2926
2927    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2928            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2929             fp->index, queue));
2930
2931    /* copy the existing mbuf and mapping from the TPA pool */
2932    tmp_bd = tpa_info->bd;
2933
2934    if (tmp_bd.m == NULL) {
2935        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2936              fp->index, queue);
2937        /* XXX Error handling? */
2938        return;
2939    }
2940
2941    /* change the TPA queue to the start state */
2942    tpa_info->state            = BXE_TPA_STATE_START;
2943    tpa_info->placement_offset = cqe->placement_offset;
2944    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2945    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2946    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2947
2948    fp->rx_tpa_queue_used |= (1 << queue);
2949
2950    /*
2951     * If all the buffer descriptors are filled with mbufs then fill in
2952     * the current consumer index with a new BD. Else if a maximum Rx
2953     * buffer limit is imposed then fill in the next producer index.
2954     */
2955    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2956                prod : cons;
2957
2958    /* move the received mbuf and mapping to TPA pool */
2959    tpa_info->bd = fp->rx_mbuf_chain[cons];
2960
2961    /* release any existing RX BD mbuf mappings */
2962    if (cons != index) {
2963        rx_buf = &fp->rx_mbuf_chain[cons];
2964
2965        if (rx_buf->m_map != NULL) {
2966            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2967                            BUS_DMASYNC_POSTREAD);
2968            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2969        }
2970
2971        /*
2972         * We get here when the maximum number of rx buffers is less than
2973         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2974         * it out here without concern of a memory leak.
2975         */
2976        fp->rx_mbuf_chain[cons].m = NULL;
2977    }
2978
2979    /* update the Rx SW BD with the mbuf info from the TPA pool */
2980    fp->rx_mbuf_chain[index] = tmp_bd;
2981
2982    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2983    rx_bd = &fp->rx_chain[index];
2984    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2985    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2986}
2987
2988/*
2989 * When a TPA aggregation is completed, loop through the individual mbufs
2990 * of the aggregation, combining them into a single mbuf which will be sent
2991 * up the stack. Refill all freed SGEs with mbufs as we go along.
2992 */
2993static int
2994bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2995                   struct bxe_fastpath       *fp,
2996                   struct bxe_sw_tpa_info    *tpa_info,
2997                   uint16_t                  queue,
2998                   uint16_t                  pages,
2999                   struct mbuf               *m,
3000			       struct eth_end_agg_rx_cqe *cqe,
3001                   uint16_t                  cqe_idx)
3002{
3003    struct mbuf *m_frag;
3004    uint32_t frag_len, frag_size, i;
3005    uint16_t sge_idx;
3006    int rc = 0;
3007    int j;
3008
3009    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3010
3011    BLOGD(sc, DBG_LRO,
3012          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3013          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3014
3015    /* make sure the aggregated frame is not too big to handle */
3016    if (pages > 8 * PAGES_PER_SGE) {
3017        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3018                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3019              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3020              tpa_info->len_on_bd, frag_size);
3021        bxe_panic(sc, ("sge page count error\n"));
3022        return (EINVAL);
3023    }
3024
3025    /*
3026     * Scan through the scatter gather list pulling individual mbufs into a
3027     * single mbuf for the host stack.
3028     */
3029    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3030        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3031
3032        /*
3033         * Firmware gives the indices of the SGE as if the ring is an array
3034         * (meaning that the "next" element will consume 2 indices).
3035         */
3036        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3037
3038        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3039                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3040              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3041
3042        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3043
3044        /* allocate a new mbuf for the SGE */
3045        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3046        if (rc) {
3047            /* Leave all remaining SGEs in the ring! */
3048            return (rc);
3049        }
3050
3051        /* update the fragment length */
3052        m_frag->m_len = frag_len;
3053
3054        /* concatenate the fragment to the head mbuf */
3055        m_cat(m, m_frag);
3056        fp->eth_q_stats.mbuf_alloc_sge--;
3057
3058        /* update the TPA mbuf size and remaining fragment size */
3059        m->m_pkthdr.len += frag_len;
3060        frag_size -= frag_len;
3061    }
3062
3063    BLOGD(sc, DBG_LRO,
3064          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3065          fp->index, queue, frag_size);
3066
3067    return (rc);
3068}
3069
3070static inline void
3071bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3072{
3073    int i, j;
3074
3075    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3076        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3077
3078        for (j = 0; j < 2; j++) {
3079            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3080            idx--;
3081        }
3082    }
3083}
3084
3085static inline void
3086bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3087{
3088    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3089    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3090
3091    /*
3092     * Clear the two last indices in the page to 1. These are the indices that
3093     * correspond to the "next" element, hence will never be indicated and
3094     * should be removed from the calculations.
3095     */
3096    bxe_clear_sge_mask_next_elems(fp);
3097}
3098
3099static inline void
3100bxe_update_last_max_sge(struct bxe_fastpath *fp,
3101                        uint16_t            idx)
3102{
3103    uint16_t last_max = fp->last_max_sge;
3104
3105    if (SUB_S16(idx, last_max) > 0) {
3106        fp->last_max_sge = idx;
3107    }
3108}
3109
3110static inline void
3111bxe_update_sge_prod(struct bxe_softc          *sc,
3112                    struct bxe_fastpath       *fp,
3113                    uint16_t                  sge_len,
3114                    struct eth_end_agg_rx_cqe *cqe)
3115{
3116    uint16_t last_max, last_elem, first_elem;
3117    uint16_t delta = 0;
3118    uint16_t i;
3119
3120    if (!sge_len) {
3121        return;
3122    }
3123
3124    /* first mark all used pages */
3125    for (i = 0; i < sge_len; i++) {
3126        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3127                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3128    }
3129
3130    BLOGD(sc, DBG_LRO,
3131          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3132          fp->index, sge_len - 1,
3133          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3134
3135    /* assume that the last SGE index is the biggest */
3136    bxe_update_last_max_sge(fp,
3137                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3138
3139    last_max = RX_SGE(fp->last_max_sge);
3140    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3141    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3142
3143    /* if ring is not full */
3144    if (last_elem + 1 != first_elem) {
3145        last_elem++;
3146    }
3147
3148    /* now update the prod */
3149    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3150        if (__predict_true(fp->sge_mask[i])) {
3151            break;
3152        }
3153
3154        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3155        delta += BIT_VEC64_ELEM_SZ;
3156    }
3157
3158    if (delta > 0) {
3159        fp->rx_sge_prod += delta;
3160        /* clear page-end entries */
3161        bxe_clear_sge_mask_next_elems(fp);
3162    }
3163
3164    BLOGD(sc, DBG_LRO,
3165          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3166          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3167}
3168
3169/*
3170 * The aggregation on the current TPA queue has completed. Pull the individual
3171 * mbuf fragments together into a single mbuf, perform all necessary checksum
3172 * calculations, and send the resuting mbuf to the stack.
3173 */
3174static void
3175bxe_tpa_stop(struct bxe_softc          *sc,
3176             struct bxe_fastpath       *fp,
3177             struct bxe_sw_tpa_info    *tpa_info,
3178             uint16_t                  queue,
3179             uint16_t                  pages,
3180			 struct eth_end_agg_rx_cqe *cqe,
3181             uint16_t                  cqe_idx)
3182{
3183    struct ifnet *ifp = sc->ifnet;
3184    struct mbuf *m;
3185    int rc = 0;
3186
3187    BLOGD(sc, DBG_LRO,
3188          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3189          fp->index, queue, tpa_info->placement_offset,
3190          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3191
3192    m = tpa_info->bd.m;
3193
3194    /* allocate a replacement before modifying existing mbuf */
3195    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3196    if (rc) {
3197        /* drop the frame and log an error */
3198        fp->eth_q_stats.rx_soft_errors++;
3199        goto bxe_tpa_stop_exit;
3200    }
3201
3202    /* we have a replacement, fixup the current mbuf */
3203    m_adj(m, tpa_info->placement_offset);
3204    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3205
3206    /* mark the checksums valid (taken care of by the firmware) */
3207    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3208    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3209    m->m_pkthdr.csum_data = 0xffff;
3210    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3211                               CSUM_IP_VALID   |
3212                               CSUM_DATA_VALID |
3213                               CSUM_PSEUDO_HDR);
3214
3215    /* aggregate all of the SGEs into a single mbuf */
3216    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3217    if (rc) {
3218        /* drop the packet and log an error */
3219        fp->eth_q_stats.rx_soft_errors++;
3220        m_freem(m);
3221    } else {
3222        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3223            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3224            m->m_flags |= M_VLANTAG;
3225        }
3226
3227        /* assign packet to this interface interface */
3228        m->m_pkthdr.rcvif = ifp;
3229
3230#if __FreeBSD_version >= 800000
3231        /* specify what RSS queue was used for this flow */
3232        m->m_pkthdr.flowid = fp->index;
3233        m->m_flags |= M_FLOWID;
3234#endif
3235
3236        ifp->if_ipackets++;
3237        fp->eth_q_stats.rx_tpa_pkts++;
3238
3239        /* pass the frame to the stack */
3240        (*ifp->if_input)(ifp, m);
3241    }
3242
3243    /* we passed an mbuf up the stack or dropped the frame */
3244    fp->eth_q_stats.mbuf_alloc_tpa--;
3245
3246bxe_tpa_stop_exit:
3247
3248    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3249    fp->rx_tpa_queue_used &= ~(1 << queue);
3250}
3251
3252static uint8_t
3253bxe_rxeof(struct bxe_softc    *sc,
3254          struct bxe_fastpath *fp)
3255{
3256    struct ifnet *ifp = sc->ifnet;
3257    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3258    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3259    int rx_pkts = 0;
3260    int rc;
3261
3262    BXE_FP_RX_LOCK(fp);
3263
3264    /* CQ "next element" is of the size of the regular element */
3265    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3266    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3267        hw_cq_cons++;
3268    }
3269
3270    bd_cons = fp->rx_bd_cons;
3271    bd_prod = fp->rx_bd_prod;
3272    bd_prod_fw = bd_prod;
3273    sw_cq_cons = fp->rx_cq_cons;
3274    sw_cq_prod = fp->rx_cq_prod;
3275
3276    /*
3277     * Memory barrier necessary as speculative reads of the rx
3278     * buffer can be ahead of the index in the status block
3279     */
3280    rmb();
3281
3282    BLOGD(sc, DBG_RX,
3283          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3284          fp->index, hw_cq_cons, sw_cq_cons);
3285
3286    while (sw_cq_cons != hw_cq_cons) {
3287        struct bxe_sw_rx_bd *rx_buf = NULL;
3288        union eth_rx_cqe *cqe;
3289        struct eth_fast_path_rx_cqe *cqe_fp;
3290        uint8_t cqe_fp_flags;
3291        enum eth_rx_cqe_type cqe_fp_type;
3292        uint16_t len, pad;
3293        struct mbuf *m = NULL;
3294
3295        comp_ring_cons = RCQ(sw_cq_cons);
3296        bd_prod = RX_BD(bd_prod);
3297        bd_cons = RX_BD(bd_cons);
3298
3299        cqe          = &fp->rcq_chain[comp_ring_cons];
3300        cqe_fp       = &cqe->fast_path_cqe;
3301        cqe_fp_flags = cqe_fp->type_error_flags;
3302        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3303
3304        BLOGD(sc, DBG_RX,
3305              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3306              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3307              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3308              fp->index,
3309              hw_cq_cons,
3310              sw_cq_cons,
3311              bd_prod,
3312              bd_cons,
3313              CQE_TYPE(cqe_fp_flags),
3314              cqe_fp_flags,
3315              cqe_fp->status_flags,
3316              le32toh(cqe_fp->rss_hash_result),
3317              le16toh(cqe_fp->vlan_tag),
3318              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3319
3320        /* is this a slowpath msg? */
3321        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3322            bxe_sp_event(sc, fp, cqe);
3323            goto next_cqe;
3324        }
3325
3326        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3327
3328        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3329            struct bxe_sw_tpa_info *tpa_info;
3330            uint16_t frag_size, pages;
3331            uint8_t queue;
3332
3333#if 0
3334            /* sanity check */
3335            if (!fp->tpa_enable &&
3336                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3337                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3338                      CQE_TYPE(cqe_fp_type));
3339            }
3340#endif
3341
3342            if (CQE_TYPE_START(cqe_fp_type)) {
3343                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3344                              bd_cons, bd_prod, cqe_fp);
3345                m = NULL; /* packet not ready yet */
3346                goto next_rx;
3347            }
3348
3349            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3350                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3351
3352            queue = cqe->end_agg_cqe.queue_index;
3353            tpa_info = &fp->rx_tpa_info[queue];
3354
3355            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3356                  fp->index, queue);
3357
3358            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3359                         tpa_info->len_on_bd);
3360            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3361
3362            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3363                         &cqe->end_agg_cqe, comp_ring_cons);
3364
3365            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3366
3367            goto next_cqe;
3368        }
3369
3370        /* non TPA */
3371
3372        /* is this an error packet? */
3373        if (__predict_false(cqe_fp_flags &
3374                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3375            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3376            fp->eth_q_stats.rx_soft_errors++;
3377            goto next_rx;
3378        }
3379
3380        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3381        pad = cqe_fp->placement_offset;
3382
3383        m = rx_buf->m;
3384
3385        if (__predict_false(m == NULL)) {
3386            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3387                  bd_cons, fp->index);
3388            goto next_rx;
3389        }
3390
3391        /* XXX double copy if packet length under a threshold */
3392
3393        /*
3394         * If all the buffer descriptors are filled with mbufs then fill in
3395         * the current consumer index with a new BD. Else if a maximum Rx
3396         * buffer limit is imposed then fill in the next producer index.
3397         */
3398        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3399                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3400                                      bd_prod : bd_cons);
3401        if (rc != 0) {
3402            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3403                  fp->index, rc);
3404            fp->eth_q_stats.rx_soft_errors++;
3405
3406            if (sc->max_rx_bufs != RX_BD_USABLE) {
3407                /* copy this consumer index to the producer index */
3408                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3409                       sizeof(struct bxe_sw_rx_bd));
3410                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3411            }
3412
3413            goto next_rx;
3414        }
3415
3416        /* current mbuf was detached from the bd */
3417        fp->eth_q_stats.mbuf_alloc_rx--;
3418
3419        /* we allocated a replacement mbuf, fixup the current one */
3420        m_adj(m, pad);
3421        m->m_pkthdr.len = m->m_len = len;
3422
3423        /* assign packet to this interface interface */
3424        m->m_pkthdr.rcvif = ifp;
3425
3426        /* assume no hardware checksum has complated */
3427        m->m_pkthdr.csum_flags = 0;
3428
3429        /* validate checksum if offload enabled */
3430        if (ifp->if_capenable & IFCAP_RXCSUM) {
3431            /* check for a valid IP frame */
3432            if (!(cqe->fast_path_cqe.status_flags &
3433                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3434                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3435                if (__predict_false(cqe_fp_flags &
3436                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3437                    fp->eth_q_stats.rx_hw_csum_errors++;
3438                } else {
3439                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3440                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3441                }
3442            }
3443
3444            /* check for a valid TCP/UDP frame */
3445            if (!(cqe->fast_path_cqe.status_flags &
3446                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3447                if (__predict_false(cqe_fp_flags &
3448                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3449                    fp->eth_q_stats.rx_hw_csum_errors++;
3450                } else {
3451                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3452                    m->m_pkthdr.csum_data = 0xFFFF;
3453                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3454                                               CSUM_PSEUDO_HDR);
3455                }
3456            }
3457        }
3458
3459        /* if there is a VLAN tag then flag that info */
3460        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3461            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3462            m->m_flags |= M_VLANTAG;
3463        }
3464
3465#if __FreeBSD_version >= 800000
3466        /* specify what RSS queue was used for this flow */
3467        m->m_pkthdr.flowid = fp->index;
3468        m->m_flags |= M_FLOWID;
3469#endif
3470
3471next_rx:
3472
3473        bd_cons    = RX_BD_NEXT(bd_cons);
3474        bd_prod    = RX_BD_NEXT(bd_prod);
3475        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3476
3477        /* pass the frame to the stack */
3478        if (__predict_true(m != NULL)) {
3479            ifp->if_ipackets++;
3480            rx_pkts++;
3481            (*ifp->if_input)(ifp, m);
3482        }
3483
3484next_cqe:
3485
3486        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3487        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3488
3489        /* limit spinning on the queue */
3490        if (rx_pkts == sc->rx_budget) {
3491            fp->eth_q_stats.rx_budget_reached++;
3492            break;
3493        }
3494    } /* while work to do */
3495
3496    fp->rx_bd_cons = bd_cons;
3497    fp->rx_bd_prod = bd_prod_fw;
3498    fp->rx_cq_cons = sw_cq_cons;
3499    fp->rx_cq_prod = sw_cq_prod;
3500
3501    /* Update producers */
3502    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3503
3504    fp->eth_q_stats.rx_pkts += rx_pkts;
3505    fp->eth_q_stats.rx_calls++;
3506
3507    BXE_FP_RX_UNLOCK(fp);
3508
3509    return (sw_cq_cons != hw_cq_cons);
3510}
3511
3512static uint16_t
3513bxe_free_tx_pkt(struct bxe_softc    *sc,
3514                struct bxe_fastpath *fp,
3515                uint16_t            idx)
3516{
3517    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3518    struct eth_tx_start_bd *tx_start_bd;
3519    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3520    uint16_t new_cons;
3521    int nbd;
3522
3523    /* unmap the mbuf from non-paged memory */
3524    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3525
3526    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3527    nbd = le16toh(tx_start_bd->nbd) - 1;
3528
3529#if 0
3530    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3531        bxe_panic(sc, ("BAD nbd!\n"));
3532    }
3533#endif
3534
3535    new_cons = (tx_buf->first_bd + nbd);
3536
3537#if 0
3538    struct eth_tx_bd *tx_data_bd;
3539
3540    /*
3541     * The following code doesn't do anything but is left here
3542     * for clarity on what the new value of new_cons skipped.
3543     */
3544
3545    /* get the next bd */
3546    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3547
3548    /* skip the parse bd */
3549    --nbd;
3550    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3551
3552    /* skip the TSO split header bd since they have no mapping */
3553    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3554        --nbd;
3555        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3556    }
3557
3558    /* now free frags */
3559    while (nbd > 0) {
3560        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3561        if (--nbd) {
3562            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563        }
3564    }
3565#endif
3566
3567    /* free the mbuf */
3568    if (__predict_true(tx_buf->m != NULL)) {
3569        m_freem(tx_buf->m);
3570        fp->eth_q_stats.mbuf_alloc_tx--;
3571    } else {
3572        fp->eth_q_stats.tx_chain_lost_mbuf++;
3573    }
3574
3575    tx_buf->m = NULL;
3576    tx_buf->first_bd = 0;
3577
3578    return (new_cons);
3579}
3580
3581/* transmit timeout watchdog */
3582static int
3583bxe_watchdog(struct bxe_softc    *sc,
3584             struct bxe_fastpath *fp)
3585{
3586    BXE_FP_TX_LOCK(fp);
3587
3588    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3589        BXE_FP_TX_UNLOCK(fp);
3590        return (0);
3591    }
3592
3593    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3594
3595    BXE_FP_TX_UNLOCK(fp);
3596
3597    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3598    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3599
3600    return (-1);
3601}
3602
3603/* processes transmit completions */
3604static uint8_t
3605bxe_txeof(struct bxe_softc    *sc,
3606          struct bxe_fastpath *fp)
3607{
3608    struct ifnet *ifp = sc->ifnet;
3609    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3610    uint16_t tx_bd_avail;
3611
3612    BXE_FP_TX_LOCK_ASSERT(fp);
3613
3614    bd_cons = fp->tx_bd_cons;
3615    hw_cons = le16toh(*fp->tx_cons_sb);
3616    sw_cons = fp->tx_pkt_cons;
3617
3618    while (sw_cons != hw_cons) {
3619        pkt_cons = TX_BD(sw_cons);
3620
3621        BLOGD(sc, DBG_TX,
3622              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3623              fp->index, hw_cons, sw_cons, pkt_cons);
3624
3625        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3626
3627        sw_cons++;
3628    }
3629
3630    fp->tx_pkt_cons = sw_cons;
3631    fp->tx_bd_cons  = bd_cons;
3632
3633    BLOGD(sc, DBG_TX,
3634          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3635          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3636
3637    mb();
3638
3639    tx_bd_avail = bxe_tx_avail(sc, fp);
3640
3641    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3642        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3643    } else {
3644        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3645    }
3646
3647    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3648        /* reset the watchdog timer if there are pending transmits */
3649        fp->watchdog_timer = BXE_TX_TIMEOUT;
3650        return (TRUE);
3651    } else {
3652        /* clear watchdog when there are no pending transmits */
3653        fp->watchdog_timer = 0;
3654        return (FALSE);
3655    }
3656}
3657
3658static void
3659bxe_drain_tx_queues(struct bxe_softc *sc)
3660{
3661    struct bxe_fastpath *fp;
3662    int i, count;
3663
3664    /* wait until all TX fastpath tasks have completed */
3665    for (i = 0; i < sc->num_queues; i++) {
3666        fp = &sc->fp[i];
3667
3668        count = 1000;
3669
3670        while (bxe_has_tx_work(fp)) {
3671
3672            BXE_FP_TX_LOCK(fp);
3673            bxe_txeof(sc, fp);
3674            BXE_FP_TX_UNLOCK(fp);
3675
3676            if (count == 0) {
3677                BLOGE(sc, "Timeout waiting for fp[%d] "
3678                          "transmits to complete!\n", i);
3679                bxe_panic(sc, ("tx drain failure\n"));
3680                return;
3681            }
3682
3683            count--;
3684            DELAY(1000);
3685            rmb();
3686        }
3687    }
3688
3689    return;
3690}
3691
3692static int
3693bxe_del_all_macs(struct bxe_softc          *sc,
3694                 struct ecore_vlan_mac_obj *mac_obj,
3695                 int                       mac_type,
3696                 uint8_t                   wait_for_comp)
3697{
3698    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3699    int rc;
3700
3701    /* wait for completion of requested */
3702    if (wait_for_comp) {
3703        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3704    }
3705
3706    /* Set the mac type of addresses we want to clear */
3707    bxe_set_bit(mac_type, &vlan_mac_flags);
3708
3709    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3710    if (rc < 0) {
3711        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3712    }
3713
3714    return (rc);
3715}
3716
3717static int
3718bxe_fill_accept_flags(struct bxe_softc *sc,
3719                      uint32_t         rx_mode,
3720                      unsigned long    *rx_accept_flags,
3721                      unsigned long    *tx_accept_flags)
3722{
3723    /* Clear the flags first */
3724    *rx_accept_flags = 0;
3725    *tx_accept_flags = 0;
3726
3727    switch (rx_mode) {
3728    case BXE_RX_MODE_NONE:
3729        /*
3730         * 'drop all' supersedes any accept flags that may have been
3731         * passed to the function.
3732         */
3733        break;
3734
3735    case BXE_RX_MODE_NORMAL:
3736        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3737        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3738        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3739
3740        /* internal switching mode */
3741        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3742        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3743        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3744
3745        break;
3746
3747    case BXE_RX_MODE_ALLMULTI:
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3751
3752        /* internal switching mode */
3753        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3754        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3755        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3756
3757        break;
3758
3759    case BXE_RX_MODE_PROMISC:
3760        /*
3761         * According to deffinition of SI mode, iface in promisc mode
3762         * should receive matched and unmatched (in resolution of port)
3763         * unicast packets.
3764         */
3765        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3766        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3767        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3768        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3769
3770        /* internal switching mode */
3771        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3772        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3773
3774        if (IS_MF_SI(sc)) {
3775            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3776        } else {
3777            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3778        }
3779
3780        break;
3781
3782    default:
3783        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3784        return (-1);
3785    }
3786
3787    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3788    if (rx_mode != BXE_RX_MODE_NONE) {
3789        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3790        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3791    }
3792
3793    return (0);
3794}
3795
3796static int
3797bxe_set_q_rx_mode(struct bxe_softc *sc,
3798                  uint8_t          cl_id,
3799                  unsigned long    rx_mode_flags,
3800                  unsigned long    rx_accept_flags,
3801                  unsigned long    tx_accept_flags,
3802                  unsigned long    ramrod_flags)
3803{
3804    struct ecore_rx_mode_ramrod_params ramrod_param;
3805    int rc;
3806
3807    memset(&ramrod_param, 0, sizeof(ramrod_param));
3808
3809    /* Prepare ramrod parameters */
3810    ramrod_param.cid = 0;
3811    ramrod_param.cl_id = cl_id;
3812    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3813    ramrod_param.func_id = SC_FUNC(sc);
3814
3815    ramrod_param.pstate = &sc->sp_state;
3816    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3817
3818    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3819    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3820
3821    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3822
3823    ramrod_param.ramrod_flags = ramrod_flags;
3824    ramrod_param.rx_mode_flags = rx_mode_flags;
3825
3826    ramrod_param.rx_accept_flags = rx_accept_flags;
3827    ramrod_param.tx_accept_flags = tx_accept_flags;
3828
3829    rc = ecore_config_rx_mode(sc, &ramrod_param);
3830    if (rc < 0) {
3831        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3832        return (rc);
3833    }
3834
3835    return (0);
3836}
3837
3838static int
3839bxe_set_storm_rx_mode(struct bxe_softc *sc)
3840{
3841    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3842    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3843    int rc;
3844
3845    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3846                               &tx_accept_flags);
3847    if (rc) {
3848        return (rc);
3849    }
3850
3851    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3852    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3853
3854    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3855    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3856                              rx_accept_flags, tx_accept_flags,
3857                              ramrod_flags));
3858}
3859
3860/* returns the "mcp load_code" according to global load_count array */
3861static int
3862bxe_nic_load_no_mcp(struct bxe_softc *sc)
3863{
3864    int path = SC_PATH(sc);
3865    int port = SC_PORT(sc);
3866
3867    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3868          path, load_count[path][0], load_count[path][1],
3869          load_count[path][2]);
3870    load_count[path][0]++;
3871    load_count[path][1 + port]++;
3872    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3873          path, load_count[path][0], load_count[path][1],
3874          load_count[path][2]);
3875    if (load_count[path][0] == 1) {
3876        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3877    } else if (load_count[path][1 + port] == 1) {
3878        return (FW_MSG_CODE_DRV_LOAD_PORT);
3879    } else {
3880        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3881    }
3882}
3883
3884/* returns the "mcp load_code" according to global load_count array */
3885static int
3886bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3887{
3888    int port = SC_PORT(sc);
3889    int path = SC_PATH(sc);
3890
3891    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3892          path, load_count[path][0], load_count[path][1],
3893          load_count[path][2]);
3894    load_count[path][0]--;
3895    load_count[path][1 + port]--;
3896    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3897          path, load_count[path][0], load_count[path][1],
3898          load_count[path][2]);
3899    if (load_count[path][0] == 0) {
3900        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3901    } else if (load_count[path][1 + port] == 0) {
3902        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3903    } else {
3904        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3905    }
3906}
3907
3908/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3909static uint32_t
3910bxe_send_unload_req(struct bxe_softc *sc,
3911                    int              unload_mode)
3912{
3913    uint32_t reset_code = 0;
3914#if 0
3915    int port = SC_PORT(sc);
3916    int path = SC_PATH(sc);
3917#endif
3918
3919    /* Select the UNLOAD request mode */
3920    if (unload_mode == UNLOAD_NORMAL) {
3921        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3922    }
3923#if 0
3924    else if (sc->flags & BXE_NO_WOL_FLAG) {
3925        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3926    } else if (sc->wol) {
3927        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3928        uint8_t *mac_addr = sc->dev->dev_addr;
3929        uint32_t val;
3930        uint16_t pmc;
3931
3932        /*
3933         * The mac address is written to entries 1-4 to
3934         * preserve entry 0 which is used by the PMF
3935         */
3936        uint8_t entry = (SC_VN(sc) + 1)*8;
3937
3938        val = (mac_addr[0] << 8) | mac_addr[1];
3939        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3940
3941        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3942              (mac_addr[4] << 8) | mac_addr[5];
3943        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3944
3945        /* Enable the PME and clear the status */
3946        pmc = pci_read_config(sc->dev,
3947                              (sc->devinfo.pcie_pm_cap_reg +
3948                               PCIR_POWER_STATUS),
3949                              2);
3950        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3951        pci_write_config(sc->dev,
3952                         (sc->devinfo.pcie_pm_cap_reg +
3953                          PCIR_POWER_STATUS),
3954                         pmc, 4);
3955
3956        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3957    }
3958#endif
3959    else {
3960        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3961    }
3962
3963    /* Send the request to the MCP */
3964    if (!BXE_NOMCP(sc)) {
3965        reset_code = bxe_fw_command(sc, reset_code, 0);
3966    } else {
3967        reset_code = bxe_nic_unload_no_mcp(sc);
3968    }
3969
3970    return (reset_code);
3971}
3972
3973/* send UNLOAD_DONE command to the MCP */
3974static void
3975bxe_send_unload_done(struct bxe_softc *sc,
3976                     uint8_t          keep_link)
3977{
3978    uint32_t reset_param =
3979        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3980
3981    /* Report UNLOAD_DONE to MCP */
3982    if (!BXE_NOMCP(sc)) {
3983        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3984    }
3985}
3986
3987static int
3988bxe_func_wait_started(struct bxe_softc *sc)
3989{
3990    int tout = 50;
3991
3992    if (!sc->port.pmf) {
3993        return (0);
3994    }
3995
3996    /*
3997     * (assumption: No Attention from MCP at this stage)
3998     * PMF probably in the middle of TX disable/enable transaction
3999     * 1. Sync IRS for default SB
4000     * 2. Sync SP queue - this guarantees us that attention handling started
4001     * 3. Wait, that TX disable/enable transaction completes
4002     *
4003     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4004     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4005     * received completion for the transaction the state is TX_STOPPED.
4006     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4007     * transaction.
4008     */
4009
4010    /* XXX make sure default SB ISR is done */
4011    /* need a way to synchronize an irq (intr_mtx?) */
4012
4013    /* XXX flush any work queues */
4014
4015    while (ecore_func_get_state(sc, &sc->func_obj) !=
4016           ECORE_F_STATE_STARTED && tout--) {
4017        DELAY(20000);
4018    }
4019
4020    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4021        /*
4022         * Failed to complete the transaction in a "good way"
4023         * Force both transactions with CLR bit.
4024         */
4025        struct ecore_func_state_params func_params = { NULL };
4026
4027        BLOGE(sc, "Unexpected function state! "
4028                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4029
4030        func_params.f_obj = &sc->func_obj;
4031        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4032
4033        /* STARTED-->TX_STOPPED */
4034        func_params.cmd = ECORE_F_CMD_TX_STOP;
4035        ecore_func_state_change(sc, &func_params);
4036
4037        /* TX_STOPPED-->STARTED */
4038        func_params.cmd = ECORE_F_CMD_TX_START;
4039        return (ecore_func_state_change(sc, &func_params));
4040    }
4041
4042    return (0);
4043}
4044
4045static int
4046bxe_stop_queue(struct bxe_softc *sc,
4047               int              index)
4048{
4049    struct bxe_fastpath *fp = &sc->fp[index];
4050    struct ecore_queue_state_params q_params = { NULL };
4051    int rc;
4052
4053    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4054
4055    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4056    /* We want to wait for completion in this context */
4057    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4058
4059    /* Stop the primary connection: */
4060
4061    /* ...halt the connection */
4062    q_params.cmd = ECORE_Q_CMD_HALT;
4063    rc = ecore_queue_state_change(sc, &q_params);
4064    if (rc) {
4065        return (rc);
4066    }
4067
4068    /* ...terminate the connection */
4069    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4070    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4071    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4072    rc = ecore_queue_state_change(sc, &q_params);
4073    if (rc) {
4074        return (rc);
4075    }
4076
4077    /* ...delete cfc entry */
4078    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4079    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4080    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4081    return (ecore_queue_state_change(sc, &q_params));
4082}
4083
4084/* wait for the outstanding SP commands */
4085static inline uint8_t
4086bxe_wait_sp_comp(struct bxe_softc *sc,
4087                 unsigned long    mask)
4088{
4089    unsigned long tmp;
4090    int tout = 5000; /* wait for 5 secs tops */
4091
4092    while (tout--) {
4093        mb();
4094        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4095            return (TRUE);
4096        }
4097
4098        DELAY(1000);
4099    }
4100
4101    mb();
4102
4103    tmp = atomic_load_acq_long(&sc->sp_state);
4104    if (tmp & mask) {
4105        BLOGE(sc, "Filtering completion timed out: "
4106                  "sp_state 0x%lx, mask 0x%lx\n",
4107              tmp, mask);
4108        return (FALSE);
4109    }
4110
4111    return (FALSE);
4112}
4113
4114static int
4115bxe_func_stop(struct bxe_softc *sc)
4116{
4117    struct ecore_func_state_params func_params = { NULL };
4118    int rc;
4119
4120    /* prepare parameters for function state transitions */
4121    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4122    func_params.f_obj = &sc->func_obj;
4123    func_params.cmd = ECORE_F_CMD_STOP;
4124
4125    /*
4126     * Try to stop the function the 'good way'. If it fails (in case
4127     * of a parity error during bxe_chip_cleanup()) and we are
4128     * not in a debug mode, perform a state transaction in order to
4129     * enable further HW_RESET transaction.
4130     */
4131    rc = ecore_func_state_change(sc, &func_params);
4132    if (rc) {
4133        BLOGE(sc, "FUNC_STOP ramrod failed. "
4134                  "Running a dry transaction\n");
4135        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4136        return (ecore_func_state_change(sc, &func_params));
4137    }
4138
4139    return (0);
4140}
4141
4142static int
4143bxe_reset_hw(struct bxe_softc *sc,
4144             uint32_t         load_code)
4145{
4146    struct ecore_func_state_params func_params = { NULL };
4147
4148    /* Prepare parameters for function state transitions */
4149    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4150
4151    func_params.f_obj = &sc->func_obj;
4152    func_params.cmd = ECORE_F_CMD_HW_RESET;
4153
4154    func_params.params.hw_init.load_phase = load_code;
4155
4156    return (ecore_func_state_change(sc, &func_params));
4157}
4158
4159static void
4160bxe_int_disable_sync(struct bxe_softc *sc,
4161                     int              disable_hw)
4162{
4163    if (disable_hw) {
4164        /* prevent the HW from sending interrupts */
4165        bxe_int_disable(sc);
4166    }
4167
4168    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4169    /* make sure all ISRs are done */
4170
4171    /* XXX make sure sp_task is not running */
4172    /* cancel and flush work queues */
4173}
4174
4175static void
4176bxe_chip_cleanup(struct bxe_softc *sc,
4177                 uint32_t         unload_mode,
4178                 uint8_t          keep_link)
4179{
4180    int port = SC_PORT(sc);
4181    struct ecore_mcast_ramrod_params rparam = { NULL };
4182    uint32_t reset_code;
4183    int i, rc = 0;
4184
4185    bxe_drain_tx_queues(sc);
4186
4187    /* give HW time to discard old tx messages */
4188    DELAY(1000);
4189
4190    /* Clean all ETH MACs */
4191    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4192    if (rc < 0) {
4193        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4194    }
4195
4196    /* Clean up UC list  */
4197    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4198    if (rc < 0) {
4199        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4200    }
4201
4202    /* Disable LLH */
4203    if (!CHIP_IS_E1(sc)) {
4204        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4205    }
4206
4207    /* Set "drop all" to stop Rx */
4208
4209    /*
4210     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4211     * a race between the completion code and this code.
4212     */
4213    BXE_MCAST_LOCK(sc);
4214
4215    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4216        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4217    } else {
4218        bxe_set_storm_rx_mode(sc);
4219    }
4220
4221    /* Clean up multicast configuration */
4222    rparam.mcast_obj = &sc->mcast_obj;
4223    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4224    if (rc < 0) {
4225        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4226    }
4227
4228    BXE_MCAST_UNLOCK(sc);
4229
4230    // XXX bxe_iov_chip_cleanup(sc);
4231
4232    /*
4233     * Send the UNLOAD_REQUEST to the MCP. This will return if
4234     * this function should perform FUNCTION, PORT, or COMMON HW
4235     * reset.
4236     */
4237    reset_code = bxe_send_unload_req(sc, unload_mode);
4238
4239    /*
4240     * (assumption: No Attention from MCP at this stage)
4241     * PMF probably in the middle of TX disable/enable transaction
4242     */
4243    rc = bxe_func_wait_started(sc);
4244    if (rc) {
4245        BLOGE(sc, "bxe_func_wait_started failed\n");
4246    }
4247
4248    /*
4249     * Close multi and leading connections
4250     * Completions for ramrods are collected in a synchronous way
4251     */
4252    for (i = 0; i < sc->num_queues; i++) {
4253        if (bxe_stop_queue(sc, i)) {
4254            goto unload_error;
4255        }
4256    }
4257
4258    /*
4259     * If SP settings didn't get completed so far - something
4260     * very wrong has happen.
4261     */
4262    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4263        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4264    }
4265
4266unload_error:
4267
4268    rc = bxe_func_stop(sc);
4269    if (rc) {
4270        BLOGE(sc, "Function stop failed!\n");
4271    }
4272
4273    /* disable HW interrupts */
4274    bxe_int_disable_sync(sc, TRUE);
4275
4276    /* detach interrupts */
4277    bxe_interrupt_detach(sc);
4278
4279    /* Reset the chip */
4280    rc = bxe_reset_hw(sc, reset_code);
4281    if (rc) {
4282        BLOGE(sc, "Hardware reset failed\n");
4283    }
4284
4285    /* Report UNLOAD_DONE to MCP */
4286    bxe_send_unload_done(sc, keep_link);
4287}
4288
4289static void
4290bxe_disable_close_the_gate(struct bxe_softc *sc)
4291{
4292    uint32_t val;
4293    int port = SC_PORT(sc);
4294
4295    BLOGD(sc, DBG_LOAD,
4296          "Disabling 'close the gates'\n");
4297
4298    if (CHIP_IS_E1(sc)) {
4299        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4300                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4301        val = REG_RD(sc, addr);
4302        val &= ~(0x300);
4303        REG_WR(sc, addr, val);
4304    } else {
4305        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4306        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4307                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4308        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4309    }
4310}
4311
4312/*
4313 * Cleans the object that have internal lists without sending
4314 * ramrods. Should be run when interrutps are disabled.
4315 */
4316static void
4317bxe_squeeze_objects(struct bxe_softc *sc)
4318{
4319    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4320    struct ecore_mcast_ramrod_params rparam = { NULL };
4321    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4322    int rc;
4323
4324    /* Cleanup MACs' object first... */
4325
4326    /* Wait for completion of requested */
4327    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4328    /* Perform a dry cleanup */
4329    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4330
4331    /* Clean ETH primary MAC */
4332    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4333    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4334                             &ramrod_flags);
4335    if (rc != 0) {
4336        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4337    }
4338
4339    /* Cleanup UC list */
4340    vlan_mac_flags = 0;
4341    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4342    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4343                             &ramrod_flags);
4344    if (rc != 0) {
4345        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4346    }
4347
4348    /* Now clean mcast object... */
4349
4350    rparam.mcast_obj = &sc->mcast_obj;
4351    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4352
4353    /* Add a DEL command... */
4354    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4355    if (rc < 0) {
4356        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4357    }
4358
4359    /* now wait until all pending commands are cleared */
4360
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4362    while (rc != 0) {
4363        if (rc < 0) {
4364            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4365            return;
4366        }
4367
4368        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    }
4370}
4371
4372/* stop the controller */
4373static __noinline int
4374bxe_nic_unload(struct bxe_softc *sc,
4375               uint32_t         unload_mode,
4376               uint8_t          keep_link)
4377{
4378    uint8_t global = FALSE;
4379    uint32_t val;
4380
4381    BXE_CORE_LOCK_ASSERT(sc);
4382
4383    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4384
4385    /* mark driver as unloaded in shmem2 */
4386    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4387        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4388        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4389                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4390    }
4391
4392    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4393        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4394        /*
4395         * We can get here if the driver has been unloaded
4396         * during parity error recovery and is either waiting for a
4397         * leader to complete or for other functions to unload and
4398         * then ifconfig down has been issued. In this case we want to
4399         * unload and let other functions to complete a recovery
4400         * process.
4401         */
4402        sc->recovery_state = BXE_RECOVERY_DONE;
4403        sc->is_leader = 0;
4404        bxe_release_leader_lock(sc);
4405        mb();
4406
4407        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4408        BLOGE(sc, "Can't unload in closed or error state\n");
4409        return (-1);
4410    }
4411
4412    /*
4413     * Nothing to do during unload if previous bxe_nic_load()
4414     * did not completed succesfully - all resourses are released.
4415     */
4416    if ((sc->state == BXE_STATE_CLOSED) ||
4417        (sc->state == BXE_STATE_ERROR)) {
4418        return (0);
4419    }
4420
4421    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4422    mb();
4423
4424    /* stop tx */
4425    bxe_tx_disable(sc);
4426
4427    sc->rx_mode = BXE_RX_MODE_NONE;
4428    /* XXX set rx mode ??? */
4429
4430    if (IS_PF(sc)) {
4431        /* set ALWAYS_ALIVE bit in shmem */
4432        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4433
4434        bxe_drv_pulse(sc);
4435
4436        bxe_stats_handle(sc, STATS_EVENT_STOP);
4437        bxe_save_statistics(sc);
4438    }
4439
4440    /* wait till consumers catch up with producers in all queues */
4441    bxe_drain_tx_queues(sc);
4442
4443    /* if VF indicate to PF this function is going down (PF will delete sp
4444     * elements and clear initializations
4445     */
4446    if (IS_VF(sc)) {
4447        ; /* bxe_vfpf_close_vf(sc); */
4448    } else if (unload_mode != UNLOAD_RECOVERY) {
4449        /* if this is a normal/close unload need to clean up chip */
4450        bxe_chip_cleanup(sc, unload_mode, keep_link);
4451    } else {
4452        /* Send the UNLOAD_REQUEST to the MCP */
4453        bxe_send_unload_req(sc, unload_mode);
4454
4455        /*
4456         * Prevent transactions to host from the functions on the
4457         * engine that doesn't reset global blocks in case of global
4458         * attention once gloabl blocks are reset and gates are opened
4459         * (the engine which leader will perform the recovery
4460         * last).
4461         */
4462        if (!CHIP_IS_E1x(sc)) {
4463            bxe_pf_disable(sc);
4464        }
4465
4466        /* disable HW interrupts */
4467        bxe_int_disable_sync(sc, TRUE);
4468
4469        /* detach interrupts */
4470        bxe_interrupt_detach(sc);
4471
4472        /* Report UNLOAD_DONE to MCP */
4473        bxe_send_unload_done(sc, FALSE);
4474    }
4475
4476    /*
4477     * At this stage no more interrupts will arrive so we may safely clean
4478     * the queue'able objects here in case they failed to get cleaned so far.
4479     */
4480    if (IS_PF(sc)) {
4481        bxe_squeeze_objects(sc);
4482    }
4483
4484    /* There should be no more pending SP commands at this stage */
4485    sc->sp_state = 0;
4486
4487    sc->port.pmf = 0;
4488
4489    bxe_free_fp_buffers(sc);
4490
4491    if (IS_PF(sc)) {
4492        bxe_free_mem(sc);
4493    }
4494
4495    bxe_free_fw_stats_mem(sc);
4496
4497    sc->state = BXE_STATE_CLOSED;
4498
4499    /*
4500     * Check if there are pending parity attentions. If there are - set
4501     * RECOVERY_IN_PROGRESS.
4502     */
4503    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4504        bxe_set_reset_in_progress(sc);
4505
4506        /* Set RESET_IS_GLOBAL if needed */
4507        if (global) {
4508            bxe_set_reset_global(sc);
4509        }
4510    }
4511
4512    /*
4513     * The last driver must disable a "close the gate" if there is no
4514     * parity attention or "process kill" pending.
4515     */
4516    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4517        bxe_reset_is_done(sc, SC_PATH(sc))) {
4518        bxe_disable_close_the_gate(sc);
4519    }
4520
4521    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4522
4523    return (0);
4524}
4525
4526/*
4527 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4528 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4529 */
4530static int
4531bxe_ifmedia_update(struct ifnet *ifp)
4532{
4533    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4534    struct ifmedia *ifm;
4535
4536    ifm = &sc->ifmedia;
4537
4538    /* We only support Ethernet media type. */
4539    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4540        return (EINVAL);
4541    }
4542
4543    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4544    case IFM_AUTO:
4545         break;
4546    case IFM_10G_CX4:
4547    case IFM_10G_SR:
4548    case IFM_10G_T:
4549    case IFM_10G_TWINAX:
4550    default:
4551        /* We don't support changing the media type. */
4552        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4553              IFM_SUBTYPE(ifm->ifm_media));
4554        return (EINVAL);
4555    }
4556
4557    return (0);
4558}
4559
4560/*
4561 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4562 */
4563static void
4564bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4565{
4566    struct bxe_softc *sc = ifp->if_softc;
4567
4568    /* Report link down if the driver isn't running. */
4569    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4570        ifmr->ifm_active |= IFM_NONE;
4571        return;
4572    }
4573
4574    /* Setup the default interface info. */
4575    ifmr->ifm_status = IFM_AVALID;
4576    ifmr->ifm_active = IFM_ETHER;
4577
4578    if (sc->link_vars.link_up) {
4579        ifmr->ifm_status |= IFM_ACTIVE;
4580    } else {
4581        ifmr->ifm_active |= IFM_NONE;
4582        return;
4583    }
4584
4585    ifmr->ifm_active |= sc->media;
4586
4587    if (sc->link_vars.duplex == DUPLEX_FULL) {
4588        ifmr->ifm_active |= IFM_FDX;
4589    } else {
4590        ifmr->ifm_active |= IFM_HDX;
4591    }
4592}
4593
4594static int
4595bxe_ioctl_nvram(struct bxe_softc *sc,
4596                uint32_t         priv_op,
4597                struct ifreq     *ifr)
4598{
4599    struct bxe_nvram_data nvdata_base;
4600    struct bxe_nvram_data *nvdata;
4601    int len;
4602    int error = 0;
4603
4604    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4605
4606    len = (sizeof(struct bxe_nvram_data) +
4607           nvdata_base.len -
4608           sizeof(uint32_t));
4609
4610    if (len > sizeof(struct bxe_nvram_data)) {
4611        if ((nvdata = (struct bxe_nvram_data *)
4612                 malloc(len, M_DEVBUF,
4613                        (M_NOWAIT | M_ZERO))) == NULL) {
4614            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4615            return (1);
4616        }
4617        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4618    } else {
4619        nvdata = &nvdata_base;
4620    }
4621
4622    if (priv_op == BXE_IOC_RD_NVRAM) {
4623        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4624              nvdata->offset, nvdata->len);
4625        error = bxe_nvram_read(sc,
4626                               nvdata->offset,
4627                               (uint8_t *)nvdata->value,
4628                               nvdata->len);
4629        copyout(nvdata, ifr->ifr_data, len);
4630    } else { /* BXE_IOC_WR_NVRAM */
4631        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4632              nvdata->offset, nvdata->len);
4633        copyin(ifr->ifr_data, nvdata, len);
4634        error = bxe_nvram_write(sc,
4635                                nvdata->offset,
4636                                (uint8_t *)nvdata->value,
4637                                nvdata->len);
4638    }
4639
4640    if (len > sizeof(struct bxe_nvram_data)) {
4641        free(nvdata, M_DEVBUF);
4642    }
4643
4644    return (error);
4645}
4646
4647static int
4648bxe_ioctl_stats_show(struct bxe_softc *sc,
4649                     uint32_t         priv_op,
4650                     struct ifreq     *ifr)
4651{
4652    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4653    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4654    caddr_t p_tmp;
4655    uint32_t *offset;
4656    int i;
4657
4658    switch (priv_op)
4659    {
4660    case BXE_IOC_STATS_SHOW_NUM:
4661        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4662        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4663            BXE_NUM_ETH_STATS;
4664        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4665            STAT_NAME_LEN;
4666        return (0);
4667
4668    case BXE_IOC_STATS_SHOW_STR:
4669        memset(ifr->ifr_data, 0, str_size);
4670        p_tmp = ifr->ifr_data;
4671        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4672            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4673            p_tmp += STAT_NAME_LEN;
4674        }
4675        return (0);
4676
4677    case BXE_IOC_STATS_SHOW_CNT:
4678        memset(ifr->ifr_data, 0, stats_size);
4679        p_tmp = ifr->ifr_data;
4680        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4681            offset = ((uint32_t *)&sc->eth_stats +
4682                      bxe_eth_stats_arr[i].offset);
4683            switch (bxe_eth_stats_arr[i].size) {
4684            case 4:
4685                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4686                break;
4687            case 8:
4688                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4689                break;
4690            default:
4691                *((uint64_t *)p_tmp) = 0;
4692            }
4693            p_tmp += sizeof(uint64_t);
4694        }
4695        return (0);
4696
4697    default:
4698        return (-1);
4699    }
4700}
4701
4702static void
4703bxe_handle_chip_tq(void *context,
4704                   int  pending)
4705{
4706    struct bxe_softc *sc = (struct bxe_softc *)context;
4707    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4708
4709    switch (work)
4710    {
4711    case CHIP_TQ_START:
4712        if ((sc->ifnet->if_flags & IFF_UP) &&
4713            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4714            /* start the interface */
4715            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4716            BXE_CORE_LOCK(sc);
4717            bxe_init_locked(sc);
4718            BXE_CORE_UNLOCK(sc);
4719        }
4720        break;
4721
4722    case CHIP_TQ_STOP:
4723        if (!(sc->ifnet->if_flags & IFF_UP) &&
4724            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4725            /* bring down the interface */
4726            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4727            bxe_periodic_stop(sc);
4728            BXE_CORE_LOCK(sc);
4729            bxe_stop_locked(sc);
4730            BXE_CORE_UNLOCK(sc);
4731        }
4732        break;
4733
4734    case CHIP_TQ_REINIT:
4735        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4736            /* restart the interface */
4737            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4738            bxe_periodic_stop(sc);
4739            BXE_CORE_LOCK(sc);
4740            bxe_stop_locked(sc);
4741            bxe_init_locked(sc);
4742            BXE_CORE_UNLOCK(sc);
4743        }
4744        break;
4745
4746    default:
4747        break;
4748    }
4749}
4750
4751/*
4752 * Handles any IOCTL calls from the operating system.
4753 *
4754 * Returns:
4755 *   0 = Success, >0 Failure
4756 */
4757static int
4758bxe_ioctl(struct ifnet *ifp,
4759          u_long       command,
4760          caddr_t      data)
4761{
4762    struct bxe_softc *sc = ifp->if_softc;
4763    struct ifreq *ifr = (struct ifreq *)data;
4764    struct bxe_nvram_data *nvdata;
4765    uint32_t priv_op;
4766    int mask = 0;
4767    int reinit = 0;
4768    int error = 0;
4769
4770    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4771    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4772
4773    switch (command)
4774    {
4775    case SIOCSIFMTU:
4776        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4777              ifr->ifr_mtu);
4778
4779        if (sc->mtu == ifr->ifr_mtu) {
4780            /* nothing to change */
4781            break;
4782        }
4783
4784        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4785            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4786                  ifr->ifr_mtu, mtu_min, mtu_max);
4787            error = EINVAL;
4788            break;
4789        }
4790
4791        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4792                             (unsigned long)ifr->ifr_mtu);
4793        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4794                              (unsigned long)ifr->ifr_mtu);
4795
4796        reinit = 1;
4797        break;
4798
4799    case SIOCSIFFLAGS:
4800        /* toggle the interface state up or down */
4801        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4802
4803        /* check if the interface is up */
4804        if (ifp->if_flags & IFF_UP) {
4805            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4806                /* set the receive mode flags */
4807                bxe_set_rx_mode(sc);
4808            } else {
4809                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4810                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4811            }
4812        } else {
4813            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4814                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4815                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4816            }
4817        }
4818
4819        break;
4820
4821    case SIOCADDMULTI:
4822    case SIOCDELMULTI:
4823        /* add/delete multicast addresses */
4824        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4825
4826        /* check if the interface is up */
4827        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4828            /* set the receive mode flags */
4829            bxe_set_rx_mode(sc);
4830        }
4831
4832        break;
4833
4834    case SIOCSIFCAP:
4835        /* find out which capabilities have changed */
4836        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4837
4838        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4839              mask);
4840
4841        /* toggle the LRO capabilites enable flag */
4842        if (mask & IFCAP_LRO) {
4843            ifp->if_capenable ^= IFCAP_LRO;
4844            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4845                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4846            reinit = 1;
4847        }
4848
4849        /* toggle the TXCSUM checksum capabilites enable flag */
4850        if (mask & IFCAP_TXCSUM) {
4851            ifp->if_capenable ^= IFCAP_TXCSUM;
4852            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4853                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4854            if (ifp->if_capenable & IFCAP_TXCSUM) {
4855                ifp->if_hwassist = (CSUM_IP       |
4856                                    CSUM_TCP      |
4857                                    CSUM_UDP      |
4858                                    CSUM_TSO      |
4859                                    CSUM_TCP_IPV6 |
4860                                    CSUM_UDP_IPV6);
4861            } else {
4862                ifp->if_hwassist = 0;
4863            }
4864        }
4865
4866        /* toggle the RXCSUM checksum capabilities enable flag */
4867        if (mask & IFCAP_RXCSUM) {
4868            ifp->if_capenable ^= IFCAP_RXCSUM;
4869            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4870                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4871            if (ifp->if_capenable & IFCAP_RXCSUM) {
4872                ifp->if_hwassist = (CSUM_IP       |
4873                                    CSUM_TCP      |
4874                                    CSUM_UDP      |
4875                                    CSUM_TSO      |
4876                                    CSUM_TCP_IPV6 |
4877                                    CSUM_UDP_IPV6);
4878            } else {
4879                ifp->if_hwassist = 0;
4880            }
4881        }
4882
4883        /* toggle TSO4 capabilities enabled flag */
4884        if (mask & IFCAP_TSO4) {
4885            ifp->if_capenable ^= IFCAP_TSO4;
4886            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4887                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4888        }
4889
4890        /* toggle TSO6 capabilities enabled flag */
4891        if (mask & IFCAP_TSO6) {
4892            ifp->if_capenable ^= IFCAP_TSO6;
4893            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4894                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle VLAN_HWTSO capabilities enabled flag */
4898        if (mask & IFCAP_VLAN_HWTSO) {
4899            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4900            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4901                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle VLAN_HWCSUM capabilities enabled flag */
4905        if (mask & IFCAP_VLAN_HWCSUM) {
4906            /* XXX investigate this... */
4907            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4908            error = EINVAL;
4909        }
4910
4911        /* toggle VLAN_MTU capabilities enable flag */
4912        if (mask & IFCAP_VLAN_MTU) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4919        if (mask & IFCAP_VLAN_HWTAGGING) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_HWFILTER capabilities enabled flag */
4926        if (mask & IFCAP_VLAN_HWFILTER) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* XXX not yet...
4933         * IFCAP_WOL_MAGIC
4934         */
4935
4936        break;
4937
4938    case SIOCSIFMEDIA:
4939    case SIOCGIFMEDIA:
4940        /* set/get interface media */
4941        BLOGD(sc, DBG_IOCTL,
4942              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4943              (command & 0xff));
4944        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4945        break;
4946
4947    case SIOCGPRIVATE_0:
4948        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4949
4950        switch (priv_op)
4951        {
4952        case BXE_IOC_RD_NVRAM:
4953        case BXE_IOC_WR_NVRAM:
4954            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4955            BLOGD(sc, DBG_IOCTL,
4956                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4957                  nvdata->offset, nvdata->len);
4958            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4959            break;
4960
4961        case BXE_IOC_STATS_SHOW_NUM:
4962        case BXE_IOC_STATS_SHOW_STR:
4963        case BXE_IOC_STATS_SHOW_CNT:
4964            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4965                  priv_op);
4966            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4967            break;
4968
4969        default:
4970            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4971            error = EINVAL;
4972            break;
4973        }
4974
4975        break;
4976
4977    default:
4978        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4979              (command & 0xff));
4980        error = ether_ioctl(ifp, command, data);
4981        break;
4982    }
4983
4984    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4985        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4986              "Re-initializing hardware from IOCTL change\n");
4987        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4988        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4989    }
4990
4991    return (error);
4992}
4993
4994static __noinline void
4995bxe_dump_mbuf(struct bxe_softc *sc,
4996              struct mbuf      *m,
4997              uint8_t          contents)
4998{
4999    char * type;
5000    int i = 0;
5001
5002    if (!(sc->debug & DBG_MBUF)) {
5003        return;
5004    }
5005
5006    if (m == NULL) {
5007        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5008        return;
5009    }
5010
5011    while (m) {
5012        BLOGD(sc, DBG_MBUF,
5013              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5014              i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5015
5016        if (m->m_flags & M_PKTHDR) {
5017             BLOGD(sc, DBG_MBUF,
5018                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5019                   i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5020                   (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5021        }
5022
5023        if (m->m_flags & M_EXT) {
5024            switch (m->m_ext.ext_type) {
5025            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5026            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5027            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5028            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5029            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5030            case EXT_PACKET:     type = "EXT_PACKET";     break;
5031            case EXT_MBUF:       type = "EXT_MBUF";       break;
5032            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5033            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5034            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5035            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5036            default:             type = "UNKNOWN";        break;
5037            }
5038
5039            BLOGD(sc, DBG_MBUF,
5040                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5041                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5042        }
5043
5044        if (contents) {
5045            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5046        }
5047
5048        m = m->m_next;
5049        i++;
5050    }
5051}
5052
5053/*
5054 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5055 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5056 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5057 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5058 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5059 */
5060static int
5061bxe_chktso_window(struct bxe_softc  *sc,
5062                  int               nsegs,
5063                  bus_dma_segment_t *segs,
5064                  struct mbuf       *m)
5065{
5066    uint32_t num_wnds, wnd_size, wnd_sum;
5067    int32_t frag_idx, wnd_idx;
5068    unsigned short lso_mss;
5069    int defrag;
5070
5071    defrag = 0;
5072    wnd_sum = 0;
5073    wnd_size = 10;
5074    num_wnds = nsegs - wnd_size;
5075    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5076
5077    /*
5078     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5079     * first window sum of data while skipping the first assuming it is the
5080     * header in FreeBSD.
5081     */
5082    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5083        wnd_sum += htole16(segs[frag_idx].ds_len);
5084    }
5085
5086    /* check the first 10 bd window size */
5087    if (wnd_sum < lso_mss) {
5088        return (1);
5089    }
5090
5091    /* run through the windows */
5092    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5093        /* subtract the first mbuf->m_len of the last wndw(-header) */
5094        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5095        /* add the next mbuf len to the len of our new window */
5096        wnd_sum += htole16(segs[frag_idx].ds_len);
5097        if (wnd_sum < lso_mss) {
5098            return (1);
5099        }
5100    }
5101
5102    return (0);
5103}
5104
5105static uint8_t
5106bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5107                    struct mbuf         *m,
5108                    uint32_t            *parsing_data)
5109{
5110    struct ether_vlan_header *eh = NULL;
5111    struct ip *ip4 = NULL;
5112    struct ip6_hdr *ip6 = NULL;
5113    caddr_t ip = NULL;
5114    struct tcphdr *th = NULL;
5115    int e_hlen, ip_hlen, l4_off;
5116    uint16_t proto;
5117
5118    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5119        /* no L4 checksum offload needed */
5120        return (0);
5121    }
5122
5123    /* get the Ethernet header */
5124    eh = mtod(m, struct ether_vlan_header *);
5125
5126    /* handle VLAN encapsulation if present */
5127    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5128        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5129        proto  = ntohs(eh->evl_proto);
5130    } else {
5131        e_hlen = ETHER_HDR_LEN;
5132        proto  = ntohs(eh->evl_encap_proto);
5133    }
5134
5135    switch (proto) {
5136    case ETHERTYPE_IP:
5137        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5138        ip4 = (m->m_len < sizeof(struct ip)) ?
5139                  (struct ip *)m->m_next->m_data :
5140                  (struct ip *)(m->m_data + e_hlen);
5141        /* ip_hl is number of 32-bit words */
5142        ip_hlen = (ip4->ip_hl << 2);
5143        ip = (caddr_t)ip4;
5144        break;
5145    case ETHERTYPE_IPV6:
5146        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5147        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5148                  (struct ip6_hdr *)m->m_next->m_data :
5149                  (struct ip6_hdr *)(m->m_data + e_hlen);
5150        /* XXX cannot support offload with IPv6 extensions */
5151        ip_hlen = sizeof(struct ip6_hdr);
5152        ip = (caddr_t)ip6;
5153        break;
5154    default:
5155        /* We can't offload in this case... */
5156        /* XXX error stat ??? */
5157        return (0);
5158    }
5159
5160    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5161    l4_off = (e_hlen + ip_hlen);
5162
5163    *parsing_data |=
5164        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5165         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5166
5167    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5168                                  CSUM_TSO |
5169                                  CSUM_TCP_IPV6)) {
5170        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5171        th = (struct tcphdr *)(ip + ip_hlen);
5172        /* th_off is number of 32-bit words */
5173        *parsing_data |= ((th->th_off <<
5174                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5175                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5176        return (l4_off + (th->th_off << 2)); /* entire header length */
5177    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5178                                         CSUM_UDP_IPV6)) {
5179        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5180        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5181    } else {
5182        /* XXX error stat ??? */
5183        return (0);
5184    }
5185}
5186
5187static uint8_t
5188bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5189                 struct mbuf                *m,
5190                 struct eth_tx_parse_bd_e1x *pbd)
5191{
5192    struct ether_vlan_header *eh = NULL;
5193    struct ip *ip4 = NULL;
5194    struct ip6_hdr *ip6 = NULL;
5195    caddr_t ip = NULL;
5196    struct tcphdr *th = NULL;
5197    struct udphdr *uh = NULL;
5198    int e_hlen, ip_hlen;
5199    uint16_t proto;
5200    uint8_t hlen;
5201    uint16_t tmp_csum;
5202    uint32_t *tmp_uh;
5203
5204    /* get the Ethernet header */
5205    eh = mtod(m, struct ether_vlan_header *);
5206
5207    /* handle VLAN encapsulation if present */
5208    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5209        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5210        proto  = ntohs(eh->evl_proto);
5211    } else {
5212        e_hlen = ETHER_HDR_LEN;
5213        proto  = ntohs(eh->evl_encap_proto);
5214    }
5215
5216    switch (proto) {
5217    case ETHERTYPE_IP:
5218        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5219        ip4 = (m->m_len < sizeof(struct ip)) ?
5220                  (struct ip *)m->m_next->m_data :
5221                  (struct ip *)(m->m_data + e_hlen);
5222        /* ip_hl is number of 32-bit words */
5223        ip_hlen = (ip4->ip_hl << 1);
5224        ip = (caddr_t)ip4;
5225        break;
5226    case ETHERTYPE_IPV6:
5227        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5228        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5229                  (struct ip6_hdr *)m->m_next->m_data :
5230                  (struct ip6_hdr *)(m->m_data + e_hlen);
5231        /* XXX cannot support offload with IPv6 extensions */
5232        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5233        ip = (caddr_t)ip6;
5234        break;
5235    default:
5236        /* We can't offload in this case... */
5237        /* XXX error stat ??? */
5238        return (0);
5239    }
5240
5241    hlen = (e_hlen >> 1);
5242
5243    /* note that rest of global_data is indirectly zeroed here */
5244    if (m->m_flags & M_VLANTAG) {
5245        pbd->global_data =
5246            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5247    } else {
5248        pbd->global_data = htole16(hlen);
5249    }
5250
5251    pbd->ip_hlen_w = ip_hlen;
5252
5253    hlen += pbd->ip_hlen_w;
5254
5255    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5256
5257    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5258                                  CSUM_TSO |
5259                                  CSUM_TCP_IPV6)) {
5260        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5261        /* th_off is number of 32-bit words */
5262        hlen += (uint16_t)(th->th_off << 1);
5263    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5264                                         CSUM_UDP_IPV6)) {
5265        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5266        hlen += (sizeof(struct udphdr) / 2);
5267    } else {
5268        /* valid case as only CSUM_IP was set */
5269        return (0);
5270    }
5271
5272    pbd->total_hlen_w = htole16(hlen);
5273
5274    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5275                                  CSUM_TSO |
5276                                  CSUM_TCP_IPV6)) {
5277        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5278        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5279    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5280                                         CSUM_UDP_IPV6)) {
5281        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5282
5283        /*
5284         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5285         * checksums and does not know anything about the UDP header and where
5286         * the checksum field is located. It only knows about TCP. Therefore
5287         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5288         * offload. Since the checksum field offset for TCP is 16 bytes and
5289         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5290         * bytes less than the start of the UDP header. This allows the
5291         * hardware to write the checksum in the correct spot. But the
5292         * hardware will compute a checksum which includes the last 10 bytes
5293         * of the IP header. To correct this we tweak the stack computed
5294         * pseudo checksum by folding in the calculation of the inverse
5295         * checksum for those final 10 bytes of the IP header. This allows
5296         * the correct checksum to be computed by the hardware.
5297         */
5298
5299        /* set pointer 10 bytes before UDP header */
5300        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5301
5302        /* calculate a pseudo header checksum over the first 10 bytes */
5303        tmp_csum = in_pseudo(*tmp_uh,
5304                             *(tmp_uh + 1),
5305                             *(uint16_t *)(tmp_uh + 2));
5306
5307        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5308    }
5309
5310    return (hlen * 2); /* entire header length, number of bytes */
5311}
5312
5313static void
5314bxe_set_pbd_lso_e2(struct mbuf *m,
5315                   uint32_t    *parsing_data)
5316{
5317    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5318                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5319                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5320
5321    /* XXX test for IPv6 with extension header... */
5322#if 0
5323    struct ip6_hdr *ip6;
5324    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5325        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5326#endif
5327}
5328
5329static void
5330bxe_set_pbd_lso(struct mbuf                *m,
5331                struct eth_tx_parse_bd_e1x *pbd)
5332{
5333    struct ether_vlan_header *eh = NULL;
5334    struct ip *ip = NULL;
5335    struct tcphdr *th = NULL;
5336    int e_hlen;
5337
5338    /* get the Ethernet header */
5339    eh = mtod(m, struct ether_vlan_header *);
5340
5341    /* handle VLAN encapsulation if present */
5342    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5343                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5344
5345    /* get the IP and TCP header, with LSO entire header in first mbuf */
5346    /* XXX assuming IPv4 */
5347    ip = (struct ip *)(m->m_data + e_hlen);
5348    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5349
5350    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5351    pbd->tcp_send_seq = ntohl(th->th_seq);
5352    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5353
5354#if 1
5355        /* XXX IPv4 */
5356        pbd->ip_id = ntohs(ip->ip_id);
5357        pbd->tcp_pseudo_csum =
5358            ntohs(in_pseudo(ip->ip_src.s_addr,
5359                            ip->ip_dst.s_addr,
5360                            htons(IPPROTO_TCP)));
5361#else
5362        /* XXX IPv6 */
5363        pbd->tcp_pseudo_csum =
5364            ntohs(in_pseudo(&ip6->ip6_src,
5365                            &ip6->ip6_dst,
5366                            htons(IPPROTO_TCP)));
5367#endif
5368
5369    pbd->global_data |=
5370        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5371}
5372
5373/*
5374 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5375 * visible to the controller.
5376 *
5377 * If an mbuf is submitted to this routine and cannot be given to the
5378 * controller (e.g. it has too many fragments) then the function may free
5379 * the mbuf and return to the caller.
5380 *
5381 * Returns:
5382 *   0 = Success, !0 = Failure
5383 *   Note the side effect that an mbuf may be freed if it causes a problem.
5384 */
5385static int
5386bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5387{
5388    bus_dma_segment_t segs[32];
5389    struct mbuf *m0;
5390    struct bxe_sw_tx_bd *tx_buf;
5391    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5392    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5393    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5394    struct eth_tx_bd *tx_data_bd;
5395    struct eth_tx_bd *tx_total_pkt_size_bd;
5396    struct eth_tx_start_bd *tx_start_bd;
5397    uint16_t bd_prod, pkt_prod, total_pkt_size;
5398    uint8_t mac_type;
5399    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5400    struct bxe_softc *sc;
5401    uint16_t tx_bd_avail;
5402    struct ether_vlan_header *eh;
5403    uint32_t pbd_e2_parsing_data = 0;
5404    uint8_t hlen = 0;
5405    int tmp_bd;
5406    int i;
5407
5408    sc = fp->sc;
5409
5410    M_ASSERTPKTHDR(*m_head);
5411
5412    m0 = *m_head;
5413    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5414    tx_start_bd = NULL;
5415    tx_data_bd = NULL;
5416    tx_total_pkt_size_bd = NULL;
5417
5418    /* get the H/W pointer for packets and BDs */
5419    pkt_prod = fp->tx_pkt_prod;
5420    bd_prod = fp->tx_bd_prod;
5421
5422    mac_type = UNICAST_ADDRESS;
5423
5424    /* map the mbuf into the next open DMAable memory */
5425    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5426    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5427                                    tx_buf->m_map, m0,
5428                                    segs, &nsegs, BUS_DMA_NOWAIT);
5429
5430    /* mapping errors */
5431    if(__predict_false(error != 0)) {
5432        fp->eth_q_stats.tx_dma_mapping_failure++;
5433        if (error == ENOMEM) {
5434            /* resource issue, try again later */
5435            rc = ENOMEM;
5436        } else if (error == EFBIG) {
5437            /* possibly recoverable with defragmentation */
5438            fp->eth_q_stats.mbuf_defrag_attempts++;
5439            m0 = m_defrag(*m_head, M_DONTWAIT);
5440            if (m0 == NULL) {
5441                fp->eth_q_stats.mbuf_defrag_failures++;
5442                rc = ENOBUFS;
5443            } else {
5444                /* defrag successful, try mapping again */
5445                *m_head = m0;
5446                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5447                                                tx_buf->m_map, m0,
5448                                                segs, &nsegs, BUS_DMA_NOWAIT);
5449                if (error) {
5450                    fp->eth_q_stats.tx_dma_mapping_failure++;
5451                    rc = error;
5452                }
5453            }
5454        } else {
5455            /* unknown, unrecoverable mapping error */
5456            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5457            bxe_dump_mbuf(sc, m0, FALSE);
5458            rc = error;
5459        }
5460
5461        goto bxe_tx_encap_continue;
5462    }
5463
5464    tx_bd_avail = bxe_tx_avail(sc, fp);
5465
5466    /* make sure there is enough room in the send queue */
5467    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5468        /* Recoverable, try again later. */
5469        fp->eth_q_stats.tx_hw_queue_full++;
5470        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5471        rc = ENOMEM;
5472        goto bxe_tx_encap_continue;
5473    }
5474
5475    /* capture the current H/W TX chain high watermark */
5476    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5477                        (TX_BD_USABLE - tx_bd_avail))) {
5478        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5479    }
5480
5481    /* make sure it fits in the packet window */
5482    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5483        /*
5484         * The mbuf may be to big for the controller to handle. If the frame
5485         * is a TSO frame we'll need to do an additional check.
5486         */
5487        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5488            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5489                goto bxe_tx_encap_continue; /* OK to send */
5490            } else {
5491                fp->eth_q_stats.tx_window_violation_tso++;
5492            }
5493        } else {
5494            fp->eth_q_stats.tx_window_violation_std++;
5495        }
5496
5497        /* lets try to defragment this mbuf and remap it */
5498        fp->eth_q_stats.mbuf_defrag_attempts++;
5499        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5500
5501        m0 = m_defrag(*m_head, M_DONTWAIT);
5502        if (m0 == NULL) {
5503            fp->eth_q_stats.mbuf_defrag_failures++;
5504            /* Ugh, just drop the frame... :( */
5505            rc = ENOBUFS;
5506        } else {
5507            /* defrag successful, try mapping again */
5508            *m_head = m0;
5509            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5510                                            tx_buf->m_map, m0,
5511                                            segs, &nsegs, BUS_DMA_NOWAIT);
5512            if (error) {
5513                fp->eth_q_stats.tx_dma_mapping_failure++;
5514                /* No sense in trying to defrag/copy chain, drop it. :( */
5515                rc = error;
5516            }
5517            else {
5518                /* if the chain is still too long then drop it */
5519                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5520                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5521                    rc = ENODEV;
5522                }
5523            }
5524        }
5525    }
5526
5527bxe_tx_encap_continue:
5528
5529    /* Check for errors */
5530    if (rc) {
5531        if (rc == ENOMEM) {
5532            /* recoverable try again later  */
5533        } else {
5534            fp->eth_q_stats.tx_soft_errors++;
5535            fp->eth_q_stats.mbuf_alloc_tx--;
5536            m_freem(*m_head);
5537            *m_head = NULL;
5538        }
5539
5540        return (rc);
5541    }
5542
5543    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5544    if (m0->m_flags & M_BCAST) {
5545        mac_type = BROADCAST_ADDRESS;
5546    } else if (m0->m_flags & M_MCAST) {
5547        mac_type = MULTICAST_ADDRESS;
5548    }
5549
5550    /* store the mbuf into the mbuf ring */
5551    tx_buf->m        = m0;
5552    tx_buf->first_bd = fp->tx_bd_prod;
5553    tx_buf->flags    = 0;
5554
5555    /* prepare the first transmit (start) BD for the mbuf */
5556    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5557
5558    BLOGD(sc, DBG_TX,
5559          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5560          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5561
5562    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5563    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5564    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5565    total_pkt_size += tx_start_bd->nbytes;
5566    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5567
5568    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5569
5570    /* all frames have at least Start BD + Parsing BD */
5571    nbds = nsegs + 1;
5572    tx_start_bd->nbd = htole16(nbds);
5573
5574    if (m0->m_flags & M_VLANTAG) {
5575        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5576        tx_start_bd->bd_flags.as_bitfield |=
5577            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5578    } else {
5579        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5580        if (IS_VF(sc)) {
5581            /* map ethernet header to find type and header length */
5582            eh = mtod(m0, struct ether_vlan_header *);
5583            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5584        } else {
5585            /* used by FW for packet accounting */
5586            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5587#if 0
5588            /*
5589             * If NPAR-SD is active then FW should do the tagging regardless
5590             * of value of priority. Otherwise, if priority indicates this is
5591             * a control packet we need to indicate to FW to avoid tagging.
5592             */
5593            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5594                SET_FLAG(tx_start_bd->general_data,
5595                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5596            }
5597#endif
5598        }
5599    }
5600
5601    /*
5602     * add a parsing BD from the chain. The parsing BD is always added
5603     * though it is only used for TSO and chksum
5604     */
5605    bd_prod = TX_BD_NEXT(bd_prod);
5606
5607    if (m0->m_pkthdr.csum_flags) {
5608        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5609            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5610            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5611        }
5612
5613        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5614            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5615                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5616        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5617            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5618                                                  ETH_TX_BD_FLAGS_IS_UDP |
5619                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5620        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5621                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5622            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5623        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5624            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5625                                                  ETH_TX_BD_FLAGS_IS_UDP);
5626        }
5627    }
5628
5629    if (!CHIP_IS_E1x(sc)) {
5630        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5631        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5632
5633        if (m0->m_pkthdr.csum_flags) {
5634            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5635        }
5636
5637#if 0
5638        /*
5639         * Add the MACs to the parsing BD if the module param was
5640         * explicitly set, if this is a vf, or in switch independent
5641         * mode.
5642         */
5643        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5644            eh = mtod(m0, struct ether_vlan_header *);
5645            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5646                                &pbd_e2->data.mac_addr.src_mid,
5647                                &pbd_e2->data.mac_addr.src_lo,
5648                                eh->evl_shost);
5649            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5650                                &pbd_e2->data.mac_addr.dst_mid,
5651                                &pbd_e2->data.mac_addr.dst_lo,
5652                                eh->evl_dhost);
5653        }
5654#endif
5655
5656        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5657                 mac_type);
5658    } else {
5659        uint16_t global_data = 0;
5660
5661        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5662        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5663
5664        if (m0->m_pkthdr.csum_flags) {
5665            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5666        }
5667
5668        SET_FLAG(global_data,
5669                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5670        pbd_e1x->global_data |= htole16(global_data);
5671    }
5672
5673    /* setup the parsing BD with TSO specific info */
5674    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5675        fp->eth_q_stats.tx_ofld_frames_lso++;
5676        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5677
5678        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5679            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5680
5681            /* split the first BD into header/data making the fw job easy */
5682            nbds++;
5683            tx_start_bd->nbd = htole16(nbds);
5684            tx_start_bd->nbytes = htole16(hlen);
5685
5686            bd_prod = TX_BD_NEXT(bd_prod);
5687
5688            /* new transmit BD after the tx_parse_bd */
5689            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5690            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5691            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5692            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5693            if (tx_total_pkt_size_bd == NULL) {
5694                tx_total_pkt_size_bd = tx_data_bd;
5695            }
5696
5697            BLOGD(sc, DBG_TX,
5698                  "TSO split header size is %d (%x:%x) nbds %d\n",
5699                  le16toh(tx_start_bd->nbytes),
5700                  le32toh(tx_start_bd->addr_hi),
5701                  le32toh(tx_start_bd->addr_lo),
5702                  nbds);
5703        }
5704
5705        if (!CHIP_IS_E1x(sc)) {
5706            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5707        } else {
5708            bxe_set_pbd_lso(m0, pbd_e1x);
5709        }
5710    }
5711
5712    if (pbd_e2_parsing_data) {
5713        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5714    }
5715
5716    /* prepare remaining BDs, start tx bd contains first seg/frag */
5717    for (i = 1; i < nsegs ; i++) {
5718        bd_prod = TX_BD_NEXT(bd_prod);
5719        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5720        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5721        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5722        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5723        if (tx_total_pkt_size_bd == NULL) {
5724            tx_total_pkt_size_bd = tx_data_bd;
5725        }
5726        total_pkt_size += tx_data_bd->nbytes;
5727    }
5728
5729    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5730
5731    if (tx_total_pkt_size_bd != NULL) {
5732        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5733    }
5734
5735    if (__predict_false(sc->debug & DBG_TX)) {
5736        tmp_bd = tx_buf->first_bd;
5737        for (i = 0; i < nbds; i++)
5738        {
5739            if (i == 0) {
5740                BLOGD(sc, DBG_TX,
5741                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5742                      "bd_flags=0x%x hdr_nbds=%d\n",
5743                      tx_start_bd,
5744                      tmp_bd,
5745                      le16toh(tx_start_bd->nbd),
5746                      le16toh(tx_start_bd->vlan_or_ethertype),
5747                      tx_start_bd->bd_flags.as_bitfield,
5748                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5749            } else if (i == 1) {
5750                if (pbd_e1x) {
5751                    BLOGD(sc, DBG_TX,
5752                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5753                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5754                          "tcp_seq=%u total_hlen_w=%u\n",
5755                          pbd_e1x,
5756                          tmp_bd,
5757                          pbd_e1x->global_data,
5758                          pbd_e1x->ip_hlen_w,
5759                          pbd_e1x->ip_id,
5760                          pbd_e1x->lso_mss,
5761                          pbd_e1x->tcp_flags,
5762                          pbd_e1x->tcp_pseudo_csum,
5763                          pbd_e1x->tcp_send_seq,
5764                          le16toh(pbd_e1x->total_hlen_w));
5765                } else { /* if (pbd_e2) */
5766                    BLOGD(sc, DBG_TX,
5767                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5768                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5769                          pbd_e2,
5770                          tmp_bd,
5771                          pbd_e2->data.mac_addr.dst_hi,
5772                          pbd_e2->data.mac_addr.dst_mid,
5773                          pbd_e2->data.mac_addr.dst_lo,
5774                          pbd_e2->data.mac_addr.src_hi,
5775                          pbd_e2->data.mac_addr.src_mid,
5776                          pbd_e2->data.mac_addr.src_lo,
5777                          pbd_e2->parsing_data);
5778                }
5779            }
5780
5781            if (i != 1) { /* skip parse db as it doesn't hold data */
5782                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5783                BLOGD(sc, DBG_TX,
5784                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5785                      tx_data_bd,
5786                      tmp_bd,
5787                      le16toh(tx_data_bd->nbytes),
5788                      le32toh(tx_data_bd->addr_hi),
5789                      le32toh(tx_data_bd->addr_lo));
5790            }
5791
5792            tmp_bd = TX_BD_NEXT(tmp_bd);
5793        }
5794    }
5795
5796    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5797
5798    /* update TX BD producer index value for next TX */
5799    bd_prod = TX_BD_NEXT(bd_prod);
5800
5801    /*
5802     * If the chain of tx_bd's describing this frame is adjacent to or spans
5803     * an eth_tx_next_bd element then we need to increment the nbds value.
5804     */
5805    if (TX_BD_IDX(bd_prod) < nbds) {
5806        nbds++;
5807    }
5808
5809    /* don't allow reordering of writes for nbd and packets */
5810    mb();
5811
5812    fp->tx_db.data.prod += nbds;
5813
5814    /* producer points to the next free tx_bd at this point */
5815    fp->tx_pkt_prod++;
5816    fp->tx_bd_prod = bd_prod;
5817
5818    DOORBELL(sc, fp->index, fp->tx_db.raw);
5819
5820    fp->eth_q_stats.tx_pkts++;
5821
5822    /* Prevent speculative reads from getting ahead of the status block. */
5823    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5824                      0, 0, BUS_SPACE_BARRIER_READ);
5825
5826    /* Prevent speculative reads from getting ahead of the doorbell. */
5827    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5828                      0, 0, BUS_SPACE_BARRIER_READ);
5829
5830    return (0);
5831}
5832
5833static void
5834bxe_tx_start_locked(struct bxe_softc    *sc,
5835                    struct ifnet        *ifp,
5836                    struct bxe_fastpath *fp)
5837{
5838    struct mbuf *m = NULL;
5839    int tx_count = 0;
5840    uint16_t tx_bd_avail;
5841
5842    BXE_FP_TX_LOCK_ASSERT(fp);
5843
5844    /* keep adding entries while there are frames to send */
5845    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5846
5847        /*
5848         * check for any frames to send
5849         * dequeue can still be NULL even if queue is not empty
5850         */
5851        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5852        if (__predict_false(m == NULL)) {
5853            break;
5854        }
5855
5856        /* the mbuf now belongs to us */
5857        fp->eth_q_stats.mbuf_alloc_tx++;
5858
5859        /*
5860         * Put the frame into the transmit ring. If we don't have room,
5861         * place the mbuf back at the head of the TX queue, set the
5862         * OACTIVE flag, and wait for the NIC to drain the chain.
5863         */
5864        if (__predict_false(bxe_tx_encap(fp, &m))) {
5865            fp->eth_q_stats.tx_encap_failures++;
5866            if (m != NULL) {
5867                /* mark the TX queue as full and return the frame */
5868                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5869                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5870                fp->eth_q_stats.mbuf_alloc_tx--;
5871                fp->eth_q_stats.tx_queue_xoff++;
5872            }
5873
5874            /* stop looking for more work */
5875            break;
5876        }
5877
5878        /* the frame was enqueued successfully */
5879        tx_count++;
5880
5881        /* send a copy of the frame to any BPF listeners. */
5882        BPF_MTAP(ifp, m);
5883
5884        tx_bd_avail = bxe_tx_avail(sc, fp);
5885
5886        /* handle any completions if we're running low */
5887        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5888            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5889            bxe_txeof(sc, fp);
5890            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5891                break;
5892            }
5893        }
5894    }
5895
5896    /* all TX packets were dequeued and/or the tx ring is full */
5897    if (tx_count > 0) {
5898        /* reset the TX watchdog timeout timer */
5899        fp->watchdog_timer = BXE_TX_TIMEOUT;
5900    }
5901}
5902
5903/* Legacy (non-RSS) dispatch routine */
5904static void
5905bxe_tx_start(struct ifnet *ifp)
5906{
5907    struct bxe_softc *sc;
5908    struct bxe_fastpath *fp;
5909
5910    sc = ifp->if_softc;
5911
5912    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5913        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5914        return;
5915    }
5916
5917    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5918        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5919        return;
5920    }
5921
5922    if (!sc->link_vars.link_up) {
5923        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5924        return;
5925    }
5926
5927    fp = &sc->fp[0];
5928
5929    BXE_FP_TX_LOCK(fp);
5930    bxe_tx_start_locked(sc, ifp, fp);
5931    BXE_FP_TX_UNLOCK(fp);
5932}
5933
5934#if __FreeBSD_version >= 800000
5935
5936static int
5937bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5938                       struct ifnet        *ifp,
5939                       struct bxe_fastpath *fp,
5940                       struct mbuf         *m)
5941{
5942    struct buf_ring *tx_br = fp->tx_br;
5943    struct mbuf *next;
5944    int depth, rc, tx_count;
5945    uint16_t tx_bd_avail;
5946
5947    rc = tx_count = 0;
5948
5949    if (!tx_br) {
5950        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5951        return (EINVAL);
5952    }
5953
5954    /* fetch the depth of the driver queue */
5955    depth = drbr_inuse(ifp, tx_br);
5956    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5957        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5958    }
5959
5960    BXE_FP_TX_LOCK_ASSERT(fp);
5961
5962    if (m == NULL) {
5963        /* no new work, check for pending frames */
5964        next = drbr_dequeue(ifp, tx_br);
5965    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5966        /* have both new and pending work, maintain packet order */
5967        rc = drbr_enqueue(ifp, tx_br, m);
5968        if (rc != 0) {
5969            fp->eth_q_stats.tx_soft_errors++;
5970            goto bxe_tx_mq_start_locked_exit;
5971        }
5972        next = drbr_dequeue(ifp, tx_br);
5973    } else {
5974        /* new work only and nothing pending */
5975        next = m;
5976    }
5977
5978    /* keep adding entries while there are frames to send */
5979    while (next != NULL) {
5980
5981        /* the mbuf now belongs to us */
5982        fp->eth_q_stats.mbuf_alloc_tx++;
5983
5984        /*
5985         * Put the frame into the transmit ring. If we don't have room,
5986         * place the mbuf back at the head of the TX queue, set the
5987         * OACTIVE flag, and wait for the NIC to drain the chain.
5988         */
5989        rc = bxe_tx_encap(fp, &next);
5990        if (__predict_false(rc != 0)) {
5991            fp->eth_q_stats.tx_encap_failures++;
5992            if (next != NULL) {
5993                /* mark the TX queue as full and save the frame */
5994                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5995                /* XXX this may reorder the frame */
5996                rc = drbr_enqueue(ifp, tx_br, next);
5997                fp->eth_q_stats.mbuf_alloc_tx--;
5998                fp->eth_q_stats.tx_frames_deferred++;
5999            }
6000
6001            /* stop looking for more work */
6002            break;
6003        }
6004
6005        /* the transmit frame was enqueued successfully */
6006        tx_count++;
6007
6008        /* send a copy of the frame to any BPF listeners */
6009        BPF_MTAP(ifp, next);
6010
6011        tx_bd_avail = bxe_tx_avail(sc, fp);
6012
6013        /* handle any completions if we're running low */
6014        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6015            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6016            bxe_txeof(sc, fp);
6017            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6018                break;
6019            }
6020        }
6021
6022        next = drbr_dequeue(ifp, tx_br);
6023    }
6024
6025    /* all TX packets were dequeued and/or the tx ring is full */
6026    if (tx_count > 0) {
6027        /* reset the TX watchdog timeout timer */
6028        fp->watchdog_timer = BXE_TX_TIMEOUT;
6029    }
6030
6031bxe_tx_mq_start_locked_exit:
6032
6033    return (rc);
6034}
6035
6036/* Multiqueue (TSS) dispatch routine. */
6037static int
6038bxe_tx_mq_start(struct ifnet *ifp,
6039                struct mbuf  *m)
6040{
6041    struct bxe_softc *sc = ifp->if_softc;
6042    struct bxe_fastpath *fp;
6043    int fp_index, rc;
6044
6045    fp_index = 0; /* default is the first queue */
6046
6047    /* change the queue if using flow ID */
6048    if ((m->m_flags & M_FLOWID) != 0) {
6049        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6050    }
6051
6052    fp = &sc->fp[fp_index];
6053
6054    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6055        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6056        return (ENETDOWN);
6057    }
6058
6059    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6060        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6061        return (EBUSY);
6062    }
6063
6064    if (!sc->link_vars.link_up) {
6065        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6066        return (ENETDOWN);
6067    }
6068
6069    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6070
6071    BXE_FP_TX_LOCK(fp);
6072    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6073    BXE_FP_TX_UNLOCK(fp);
6074
6075    return (rc);
6076}
6077
6078static void
6079bxe_mq_flush(struct ifnet *ifp)
6080{
6081    struct bxe_softc *sc = ifp->if_softc;
6082    struct bxe_fastpath *fp;
6083    struct mbuf *m;
6084    int i;
6085
6086    for (i = 0; i < sc->num_queues; i++) {
6087        fp = &sc->fp[i];
6088
6089        if (fp->state != BXE_FP_STATE_OPEN) {
6090            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6091                  fp->index, fp->state);
6092            continue;
6093        }
6094
6095        if (fp->tx_br != NULL) {
6096            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6097            BXE_FP_TX_LOCK(fp);
6098            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6099                m_freem(m);
6100            }
6101            BXE_FP_TX_UNLOCK(fp);
6102        }
6103    }
6104
6105    if_qflush(ifp);
6106}
6107
6108#endif /* FreeBSD_version >= 800000 */
6109
6110static uint16_t
6111bxe_cid_ilt_lines(struct bxe_softc *sc)
6112{
6113    if (IS_SRIOV(sc)) {
6114        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6115    }
6116    return (L2_ILT_LINES(sc));
6117}
6118
6119static void
6120bxe_ilt_set_info(struct bxe_softc *sc)
6121{
6122    struct ilt_client_info *ilt_client;
6123    struct ecore_ilt *ilt = sc->ilt;
6124    uint16_t line = 0;
6125
6126    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6127    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6128
6129    /* CDU */
6130    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6131    ilt_client->client_num = ILT_CLIENT_CDU;
6132    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6133    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6134    ilt_client->start = line;
6135    line += bxe_cid_ilt_lines(sc);
6136
6137    if (CNIC_SUPPORT(sc)) {
6138        line += CNIC_ILT_LINES;
6139    }
6140
6141    ilt_client->end = (line - 1);
6142
6143    BLOGD(sc, DBG_LOAD,
6144          "ilt client[CDU]: start %d, end %d, "
6145          "psz 0x%x, flags 0x%x, hw psz %d\n",
6146          ilt_client->start, ilt_client->end,
6147          ilt_client->page_size,
6148          ilt_client->flags,
6149          ilog2(ilt_client->page_size >> 12));
6150
6151    /* QM */
6152    if (QM_INIT(sc->qm_cid_count)) {
6153        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6154        ilt_client->client_num = ILT_CLIENT_QM;
6155        ilt_client->page_size = QM_ILT_PAGE_SZ;
6156        ilt_client->flags = 0;
6157        ilt_client->start = line;
6158
6159        /* 4 bytes for each cid */
6160        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6161                             QM_ILT_PAGE_SZ);
6162
6163        ilt_client->end = (line - 1);
6164
6165        BLOGD(sc, DBG_LOAD,
6166              "ilt client[QM]: start %d, end %d, "
6167              "psz 0x%x, flags 0x%x, hw psz %d\n",
6168              ilt_client->start, ilt_client->end,
6169              ilt_client->page_size, ilt_client->flags,
6170              ilog2(ilt_client->page_size >> 12));
6171    }
6172
6173    if (CNIC_SUPPORT(sc)) {
6174        /* SRC */
6175        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6176        ilt_client->client_num = ILT_CLIENT_SRC;
6177        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6178        ilt_client->flags = 0;
6179        ilt_client->start = line;
6180        line += SRC_ILT_LINES;
6181        ilt_client->end = (line - 1);
6182
6183        BLOGD(sc, DBG_LOAD,
6184              "ilt client[SRC]: start %d, end %d, "
6185              "psz 0x%x, flags 0x%x, hw psz %d\n",
6186              ilt_client->start, ilt_client->end,
6187              ilt_client->page_size, ilt_client->flags,
6188              ilog2(ilt_client->page_size >> 12));
6189
6190        /* TM */
6191        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6192        ilt_client->client_num = ILT_CLIENT_TM;
6193        ilt_client->page_size = TM_ILT_PAGE_SZ;
6194        ilt_client->flags = 0;
6195        ilt_client->start = line;
6196        line += TM_ILT_LINES;
6197        ilt_client->end = (line - 1);
6198
6199        BLOGD(sc, DBG_LOAD,
6200              "ilt client[TM]: start %d, end %d, "
6201              "psz 0x%x, flags 0x%x, hw psz %d\n",
6202              ilt_client->start, ilt_client->end,
6203              ilt_client->page_size, ilt_client->flags,
6204              ilog2(ilt_client->page_size >> 12));
6205    }
6206
6207    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6208}
6209
6210static void
6211bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6212{
6213    int i;
6214
6215    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6216
6217    for (i = 0; i < sc->num_queues; i++) {
6218        /* get the Rx buffer size for RX frames */
6219        sc->fp[i].rx_buf_size =
6220            (IP_HEADER_ALIGNMENT_PADDING +
6221             ETH_OVERHEAD +
6222             sc->mtu);
6223
6224        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6225              i, sc->fp[i].rx_buf_size);
6226
6227        /* get the mbuf allocation size for RX frames */
6228        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6229            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6230        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6231            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6232        } else {
6233            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6234        }
6235
6236        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6237              i, sc->fp[i].mbuf_alloc_size);
6238    }
6239}
6240
6241static int
6242bxe_alloc_ilt_mem(struct bxe_softc *sc)
6243{
6244    int rc = 0;
6245
6246    if ((sc->ilt =
6247         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6248                                    M_BXE_ILT,
6249                                    (M_NOWAIT | M_ZERO))) == NULL) {
6250        rc = 1;
6251    }
6252
6253    return (rc);
6254}
6255
6256static int
6257bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6258{
6259    int rc = 0;
6260
6261    if ((sc->ilt->lines =
6262         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6263                                    M_BXE_ILT,
6264                                    (M_NOWAIT | M_ZERO))) == NULL) {
6265        rc = 1;
6266    }
6267
6268    return (rc);
6269}
6270
6271static void
6272bxe_free_ilt_mem(struct bxe_softc *sc)
6273{
6274    if (sc->ilt != NULL) {
6275        free(sc->ilt, M_BXE_ILT);
6276        sc->ilt = NULL;
6277    }
6278}
6279
6280static void
6281bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6282{
6283    if (sc->ilt->lines != NULL) {
6284        free(sc->ilt->lines, M_BXE_ILT);
6285        sc->ilt->lines = NULL;
6286    }
6287}
6288
6289static void
6290bxe_free_mem(struct bxe_softc *sc)
6291{
6292    int i;
6293
6294#if 0
6295    if (!CONFIGURE_NIC_MODE(sc)) {
6296        /* free searcher T2 table */
6297        bxe_dma_free(sc, &sc->t2);
6298    }
6299#endif
6300
6301    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6302        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6303        sc->context[i].vcxt = NULL;
6304        sc->context[i].size = 0;
6305    }
6306
6307    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6308
6309    bxe_free_ilt_lines_mem(sc);
6310
6311#if 0
6312    bxe_iov_free_mem(sc);
6313#endif
6314}
6315
6316static int
6317bxe_alloc_mem(struct bxe_softc *sc)
6318{
6319    int context_size;
6320    int allocated;
6321    int i;
6322
6323#if 0
6324    if (!CONFIGURE_NIC_MODE(sc)) {
6325        /* allocate searcher T2 table */
6326        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6327                          &sc->t2, "searcher t2 table") != 0) {
6328            return (-1);
6329        }
6330    }
6331#endif
6332
6333    /*
6334     * Allocate memory for CDU context:
6335     * This memory is allocated separately and not in the generic ILT
6336     * functions because CDU differs in few aspects:
6337     * 1. There can be multiple entities allocating memory for context -
6338     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6339     * its own ILT lines.
6340     * 2. Since CDU page-size is not a single 4KB page (which is the case
6341     * for the other ILT clients), to be efficient we want to support
6342     * allocation of sub-page-size in the last entry.
6343     * 3. Context pointers are used by the driver to pass to FW / update
6344     * the context (for the other ILT clients the pointers are used just to
6345     * free the memory during unload).
6346     */
6347    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6348    for (i = 0, allocated = 0; allocated < context_size; i++) {
6349        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6350                                  (context_size - allocated));
6351
6352        if (bxe_dma_alloc(sc, sc->context[i].size,
6353                          &sc->context[i].vcxt_dma,
6354                          "cdu context") != 0) {
6355            bxe_free_mem(sc);
6356            return (-1);
6357        }
6358
6359        sc->context[i].vcxt =
6360            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6361
6362        allocated += sc->context[i].size;
6363    }
6364
6365    bxe_alloc_ilt_lines_mem(sc);
6366
6367    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6368          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6369    {
6370        for (i = 0; i < 4; i++) {
6371            BLOGD(sc, DBG_LOAD,
6372                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6373                  i,
6374                  sc->ilt->clients[i].page_size,
6375                  sc->ilt->clients[i].start,
6376                  sc->ilt->clients[i].end,
6377                  sc->ilt->clients[i].client_num,
6378                  sc->ilt->clients[i].flags);
6379        }
6380    }
6381    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6382        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6383        bxe_free_mem(sc);
6384        return (-1);
6385    }
6386
6387#if 0
6388    if (bxe_iov_alloc_mem(sc)) {
6389        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6390        bxe_free_mem(sc);
6391        return (-1);
6392    }
6393#endif
6394
6395    return (0);
6396}
6397
6398static void
6399bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6400{
6401    struct bxe_softc *sc;
6402    int i;
6403
6404    sc = fp->sc;
6405
6406    if (fp->rx_mbuf_tag == NULL) {
6407        return;
6408    }
6409
6410    /* free all mbufs and unload all maps */
6411    for (i = 0; i < RX_BD_TOTAL; i++) {
6412        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6413            bus_dmamap_sync(fp->rx_mbuf_tag,
6414                            fp->rx_mbuf_chain[i].m_map,
6415                            BUS_DMASYNC_POSTREAD);
6416            bus_dmamap_unload(fp->rx_mbuf_tag,
6417                              fp->rx_mbuf_chain[i].m_map);
6418        }
6419
6420        if (fp->rx_mbuf_chain[i].m != NULL) {
6421            m_freem(fp->rx_mbuf_chain[i].m);
6422            fp->rx_mbuf_chain[i].m = NULL;
6423            fp->eth_q_stats.mbuf_alloc_rx--;
6424        }
6425    }
6426}
6427
6428static void
6429bxe_free_tpa_pool(struct bxe_fastpath *fp)
6430{
6431    struct bxe_softc *sc;
6432    int i, max_agg_queues;
6433
6434    sc = fp->sc;
6435
6436    if (fp->rx_mbuf_tag == NULL) {
6437        return;
6438    }
6439
6440    max_agg_queues = MAX_AGG_QS(sc);
6441
6442    /* release all mbufs and unload all DMA maps in the TPA pool */
6443    for (i = 0; i < max_agg_queues; i++) {
6444        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6445            bus_dmamap_sync(fp->rx_mbuf_tag,
6446                            fp->rx_tpa_info[i].bd.m_map,
6447                            BUS_DMASYNC_POSTREAD);
6448            bus_dmamap_unload(fp->rx_mbuf_tag,
6449                              fp->rx_tpa_info[i].bd.m_map);
6450        }
6451
6452        if (fp->rx_tpa_info[i].bd.m != NULL) {
6453            m_freem(fp->rx_tpa_info[i].bd.m);
6454            fp->rx_tpa_info[i].bd.m = NULL;
6455            fp->eth_q_stats.mbuf_alloc_tpa--;
6456        }
6457    }
6458}
6459
6460static void
6461bxe_free_sge_chain(struct bxe_fastpath *fp)
6462{
6463    struct bxe_softc *sc;
6464    int i;
6465
6466    sc = fp->sc;
6467
6468    if (fp->rx_sge_mbuf_tag == NULL) {
6469        return;
6470    }
6471
6472    /* rree all mbufs and unload all maps */
6473    for (i = 0; i < RX_SGE_TOTAL; i++) {
6474        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6475            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6476                            fp->rx_sge_mbuf_chain[i].m_map,
6477                            BUS_DMASYNC_POSTREAD);
6478            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6479                              fp->rx_sge_mbuf_chain[i].m_map);
6480        }
6481
6482        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6483            m_freem(fp->rx_sge_mbuf_chain[i].m);
6484            fp->rx_sge_mbuf_chain[i].m = NULL;
6485            fp->eth_q_stats.mbuf_alloc_sge--;
6486        }
6487    }
6488}
6489
6490static void
6491bxe_free_fp_buffers(struct bxe_softc *sc)
6492{
6493    struct bxe_fastpath *fp;
6494    int i;
6495
6496    for (i = 0; i < sc->num_queues; i++) {
6497        fp = &sc->fp[i];
6498
6499#if __FreeBSD_version >= 800000
6500        if (fp->tx_br != NULL) {
6501            struct mbuf *m;
6502            /* just in case bxe_mq_flush() wasn't called */
6503            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6504                m_freem(m);
6505            }
6506            buf_ring_free(fp->tx_br, M_DEVBUF);
6507            fp->tx_br = NULL;
6508        }
6509#endif
6510
6511        /* free all RX buffers */
6512        bxe_free_rx_bd_chain(fp);
6513        bxe_free_tpa_pool(fp);
6514        bxe_free_sge_chain(fp);
6515
6516        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6517            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6518                  fp->eth_q_stats.mbuf_alloc_rx);
6519        }
6520
6521        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6522            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6523                  fp->eth_q_stats.mbuf_alloc_sge);
6524        }
6525
6526        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6527            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6528                  fp->eth_q_stats.mbuf_alloc_tpa);
6529        }
6530
6531        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6532            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6533                  fp->eth_q_stats.mbuf_alloc_tx);
6534        }
6535
6536        /* XXX verify all mbufs were reclaimed */
6537
6538        if (mtx_initialized(&fp->tx_mtx)) {
6539            mtx_destroy(&fp->tx_mtx);
6540        }
6541
6542        if (mtx_initialized(&fp->rx_mtx)) {
6543            mtx_destroy(&fp->rx_mtx);
6544        }
6545    }
6546}
6547
6548static int
6549bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6550                     uint16_t            prev_index,
6551                     uint16_t            index)
6552{
6553    struct bxe_sw_rx_bd *rx_buf;
6554    struct eth_rx_bd *rx_bd;
6555    bus_dma_segment_t segs[1];
6556    bus_dmamap_t map;
6557    struct mbuf *m;
6558    int nsegs, rc;
6559
6560    rc = 0;
6561
6562    /* allocate the new RX BD mbuf */
6563    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6564    if (__predict_false(m == NULL)) {
6565        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6566        return (ENOBUFS);
6567    }
6568
6569    fp->eth_q_stats.mbuf_alloc_rx++;
6570
6571    /* initialize the mbuf buffer length */
6572    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6573
6574    /* map the mbuf into non-paged pool */
6575    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6576                                 fp->rx_mbuf_spare_map,
6577                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6578    if (__predict_false(rc != 0)) {
6579        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6580        m_freem(m);
6581        fp->eth_q_stats.mbuf_alloc_rx--;
6582        return (rc);
6583    }
6584
6585    /* all mbufs must map to a single segment */
6586    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6587
6588    /* release any existing RX BD mbuf mappings */
6589
6590    if (prev_index != index) {
6591        rx_buf = &fp->rx_mbuf_chain[prev_index];
6592
6593        if (rx_buf->m_map != NULL) {
6594            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6595                            BUS_DMASYNC_POSTREAD);
6596            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6597        }
6598
6599        /*
6600         * We only get here from bxe_rxeof() when the maximum number
6601         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6602         * holds the mbuf in the prev_index so it's OK to NULL it out
6603         * here without concern of a memory leak.
6604         */
6605        fp->rx_mbuf_chain[prev_index].m = NULL;
6606    }
6607
6608    rx_buf = &fp->rx_mbuf_chain[index];
6609
6610    if (rx_buf->m_map != NULL) {
6611        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6612                        BUS_DMASYNC_POSTREAD);
6613        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6614    }
6615
6616    /* save the mbuf and mapping info for a future packet */
6617    map = (prev_index != index) ?
6618              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6619    rx_buf->m_map = fp->rx_mbuf_spare_map;
6620    fp->rx_mbuf_spare_map = map;
6621    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6622                    BUS_DMASYNC_PREREAD);
6623    rx_buf->m = m;
6624
6625    rx_bd = &fp->rx_chain[index];
6626    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6627    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6628
6629    return (rc);
6630}
6631
6632static int
6633bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6634                      int                 queue)
6635{
6636    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6637    bus_dma_segment_t segs[1];
6638    bus_dmamap_t map;
6639    struct mbuf *m;
6640    int nsegs;
6641    int rc = 0;
6642
6643    /* allocate the new TPA mbuf */
6644    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6645    if (__predict_false(m == NULL)) {
6646        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6647        return (ENOBUFS);
6648    }
6649
6650    fp->eth_q_stats.mbuf_alloc_tpa++;
6651
6652    /* initialize the mbuf buffer length */
6653    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6654
6655    /* map the mbuf into non-paged pool */
6656    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6657                                 fp->rx_tpa_info_mbuf_spare_map,
6658                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6659    if (__predict_false(rc != 0)) {
6660        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6661        m_free(m);
6662        fp->eth_q_stats.mbuf_alloc_tpa--;
6663        return (rc);
6664    }
6665
6666    /* all mbufs must map to a single segment */
6667    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6668
6669    /* release any existing TPA mbuf mapping */
6670    if (tpa_info->bd.m_map != NULL) {
6671        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6672                        BUS_DMASYNC_POSTREAD);
6673        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6674    }
6675
6676    /* save the mbuf and mapping info for the TPA mbuf */
6677    map = tpa_info->bd.m_map;
6678    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6679    fp->rx_tpa_info_mbuf_spare_map = map;
6680    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6681                    BUS_DMASYNC_PREREAD);
6682    tpa_info->bd.m = m;
6683    tpa_info->seg = segs[0];
6684
6685    return (rc);
6686}
6687
6688/*
6689 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6690 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6691 * chain.
6692 */
6693static int
6694bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6695                      uint16_t            index)
6696{
6697    struct bxe_sw_rx_bd *sge_buf;
6698    struct eth_rx_sge *sge;
6699    bus_dma_segment_t segs[1];
6700    bus_dmamap_t map;
6701    struct mbuf *m;
6702    int nsegs;
6703    int rc = 0;
6704
6705    /* allocate a new SGE mbuf */
6706    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6707    if (__predict_false(m == NULL)) {
6708        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6709        return (ENOMEM);
6710    }
6711
6712    fp->eth_q_stats.mbuf_alloc_sge++;
6713
6714    /* initialize the mbuf buffer length */
6715    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6716
6717    /* map the SGE mbuf into non-paged pool */
6718    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6719                                 fp->rx_sge_mbuf_spare_map,
6720                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6721    if (__predict_false(rc != 0)) {
6722        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6723        m_freem(m);
6724        fp->eth_q_stats.mbuf_alloc_sge--;
6725        return (rc);
6726    }
6727
6728    /* all mbufs must map to a single segment */
6729    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6730
6731    sge_buf = &fp->rx_sge_mbuf_chain[index];
6732
6733    /* release any existing SGE mbuf mapping */
6734    if (sge_buf->m_map != NULL) {
6735        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6736                        BUS_DMASYNC_POSTREAD);
6737        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6738    }
6739
6740    /* save the mbuf and mapping info for a future packet */
6741    map = sge_buf->m_map;
6742    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6743    fp->rx_sge_mbuf_spare_map = map;
6744    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6745                    BUS_DMASYNC_PREREAD);
6746    sge_buf->m = m;
6747
6748    sge = &fp->rx_sge_chain[index];
6749    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6750    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6751
6752    return (rc);
6753}
6754
6755static __noinline int
6756bxe_alloc_fp_buffers(struct bxe_softc *sc)
6757{
6758    struct bxe_fastpath *fp;
6759    int i, j, rc = 0;
6760    int ring_prod, cqe_ring_prod;
6761    int max_agg_queues;
6762
6763    for (i = 0; i < sc->num_queues; i++) {
6764        fp = &sc->fp[i];
6765
6766#if __FreeBSD_version >= 800000
6767        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6768                                   M_DONTWAIT, &fp->tx_mtx);
6769        if (fp->tx_br == NULL) {
6770            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6771            goto bxe_alloc_fp_buffers_error;
6772        }
6773#endif
6774
6775        ring_prod = cqe_ring_prod = 0;
6776        fp->rx_bd_cons = 0;
6777        fp->rx_cq_cons = 0;
6778
6779        /* allocate buffers for the RX BDs in RX BD chain */
6780        for (j = 0; j < sc->max_rx_bufs; j++) {
6781            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6782            if (rc != 0) {
6783                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6784                      i, rc);
6785                goto bxe_alloc_fp_buffers_error;
6786            }
6787
6788            ring_prod     = RX_BD_NEXT(ring_prod);
6789            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6790        }
6791
6792        fp->rx_bd_prod = ring_prod;
6793        fp->rx_cq_prod = cqe_ring_prod;
6794        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6795
6796        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6797            max_agg_queues = MAX_AGG_QS(sc);
6798
6799            fp->tpa_enable = TRUE;
6800
6801            /* fill the TPA pool */
6802            for (j = 0; j < max_agg_queues; j++) {
6803                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6804                if (rc != 0) {
6805                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6806                          i, j);
6807                    fp->tpa_enable = FALSE;
6808                    goto bxe_alloc_fp_buffers_error;
6809                }
6810
6811                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6812            }
6813
6814            if (fp->tpa_enable) {
6815                /* fill the RX SGE chain */
6816                ring_prod = 0;
6817                for (j = 0; j < RX_SGE_USABLE; j++) {
6818                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6819                    if (rc != 0) {
6820                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6821                              i, ring_prod);
6822                        fp->tpa_enable = FALSE;
6823                        ring_prod = 0;
6824                        goto bxe_alloc_fp_buffers_error;
6825                    }
6826
6827                    ring_prod = RX_SGE_NEXT(ring_prod);
6828                }
6829
6830                fp->rx_sge_prod = ring_prod;
6831            }
6832        }
6833    }
6834
6835    return (0);
6836
6837bxe_alloc_fp_buffers_error:
6838
6839    /* unwind what was already allocated */
6840    bxe_free_rx_bd_chain(fp);
6841    bxe_free_tpa_pool(fp);
6842    bxe_free_sge_chain(fp);
6843
6844    return (ENOBUFS);
6845}
6846
6847static void
6848bxe_free_fw_stats_mem(struct bxe_softc *sc)
6849{
6850    bxe_dma_free(sc, &sc->fw_stats_dma);
6851
6852    sc->fw_stats_num = 0;
6853
6854    sc->fw_stats_req_size = 0;
6855    sc->fw_stats_req = NULL;
6856    sc->fw_stats_req_mapping = 0;
6857
6858    sc->fw_stats_data_size = 0;
6859    sc->fw_stats_data = NULL;
6860    sc->fw_stats_data_mapping = 0;
6861}
6862
6863static int
6864bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6865{
6866    uint8_t num_queue_stats;
6867    int num_groups;
6868
6869    /* number of queues for statistics is number of eth queues */
6870    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6871
6872    /*
6873     * Total number of FW statistics requests =
6874     *   1 for port stats + 1 for PF stats + num of queues
6875     */
6876    sc->fw_stats_num = (2 + num_queue_stats);
6877
6878    /*
6879     * Request is built from stats_query_header and an array of
6880     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6881     * rules. The real number or requests is configured in the
6882     * stats_query_header.
6883     */
6884    num_groups =
6885        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6886         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6887
6888    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6889          sc->fw_stats_num, num_groups);
6890
6891    sc->fw_stats_req_size =
6892        (sizeof(struct stats_query_header) +
6893         (num_groups * sizeof(struct stats_query_cmd_group)));
6894
6895    /*
6896     * Data for statistics requests + stats_counter.
6897     * stats_counter holds per-STORM counters that are incremented when
6898     * STORM has finished with the current request. Memory for FCoE
6899     * offloaded statistics are counted anyway, even if they will not be sent.
6900     * VF stats are not accounted for here as the data of VF stats is stored
6901     * in memory allocated by the VF, not here.
6902     */
6903    sc->fw_stats_data_size =
6904        (sizeof(struct stats_counter) +
6905         sizeof(struct per_port_stats) +
6906         sizeof(struct per_pf_stats) +
6907         /* sizeof(struct fcoe_statistics_params) + */
6908         (sizeof(struct per_queue_stats) * num_queue_stats));
6909
6910    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6911                      &sc->fw_stats_dma, "fw stats") != 0) {
6912        bxe_free_fw_stats_mem(sc);
6913        return (-1);
6914    }
6915
6916    /* set up the shortcuts */
6917
6918    sc->fw_stats_req =
6919        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6920    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6921
6922    sc->fw_stats_data =
6923        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6924                                     sc->fw_stats_req_size);
6925    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6926                                 sc->fw_stats_req_size);
6927
6928    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6929          (uintmax_t)sc->fw_stats_req_mapping);
6930
6931    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6932          (uintmax_t)sc->fw_stats_data_mapping);
6933
6934    return (0);
6935}
6936
6937/*
6938 * Bits map:
6939 * 0-7  - Engine0 load counter.
6940 * 8-15 - Engine1 load counter.
6941 * 16   - Engine0 RESET_IN_PROGRESS bit.
6942 * 17   - Engine1 RESET_IN_PROGRESS bit.
6943 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6944 *        function on the engine
6945 * 19   - Engine1 ONE_IS_LOADED.
6946 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6947 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6948 *        for just the one belonging to its engine).
6949 */
6950#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6951#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6952#define BXE_PATH0_LOAD_CNT_SHIFT  0
6953#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6954#define BXE_PATH1_LOAD_CNT_SHIFT  8
6955#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6956#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6957#define BXE_GLOBAL_RESET_BIT      0x00040000
6958
6959/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6960static void
6961bxe_set_reset_global(struct bxe_softc *sc)
6962{
6963    uint32_t val;
6964    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6965    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6966    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6967    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6968}
6969
6970/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6971static void
6972bxe_clear_reset_global(struct bxe_softc *sc)
6973{
6974    uint32_t val;
6975    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6976    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6977    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6978    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6979}
6980
6981/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6982static uint8_t
6983bxe_reset_is_global(struct bxe_softc *sc)
6984{
6985    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6986    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6987    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6988}
6989
6990/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6991static void
6992bxe_set_reset_done(struct bxe_softc *sc)
6993{
6994    uint32_t val;
6995    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6996                                 BXE_PATH0_RST_IN_PROG_BIT;
6997
6998    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6999
7000    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7001    /* Clear the bit */
7002    val &= ~bit;
7003    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7004
7005    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7006}
7007
7008/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7009static void
7010bxe_set_reset_in_progress(struct bxe_softc *sc)
7011{
7012    uint32_t val;
7013    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7014                                 BXE_PATH0_RST_IN_PROG_BIT;
7015
7016    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7017
7018    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7019    /* Set the bit */
7020    val |= bit;
7021    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7022
7023    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7024}
7025
7026/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7027static uint8_t
7028bxe_reset_is_done(struct bxe_softc *sc,
7029                  int              engine)
7030{
7031    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7032    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7033                            BXE_PATH0_RST_IN_PROG_BIT;
7034
7035    /* return false if bit is set */
7036    return (val & bit) ? FALSE : TRUE;
7037}
7038
7039/* get the load status for an engine, should be run under rtnl lock */
7040static uint8_t
7041bxe_get_load_status(struct bxe_softc *sc,
7042                    int              engine)
7043{
7044    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7045                             BXE_PATH0_LOAD_CNT_MASK;
7046    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7047                              BXE_PATH0_LOAD_CNT_SHIFT;
7048    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7049
7050    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7051
7052    val = ((val & mask) >> shift);
7053
7054    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7055
7056    return (val != 0);
7057}
7058
7059/* set pf load mark */
7060/* XXX needs to be under rtnl lock */
7061static void
7062bxe_set_pf_load(struct bxe_softc *sc)
7063{
7064    uint32_t val;
7065    uint32_t val1;
7066    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7067                                  BXE_PATH0_LOAD_CNT_MASK;
7068    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7069                                   BXE_PATH0_LOAD_CNT_SHIFT;
7070
7071    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7072
7073    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7074    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7075
7076    /* get the current counter value */
7077    val1 = ((val & mask) >> shift);
7078
7079    /* set bit of this PF */
7080    val1 |= (1 << SC_ABS_FUNC(sc));
7081
7082    /* clear the old value */
7083    val &= ~mask;
7084
7085    /* set the new one */
7086    val |= ((val1 << shift) & mask);
7087
7088    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7089
7090    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7091}
7092
7093/* clear pf load mark */
7094/* XXX needs to be under rtnl lock */
7095static uint8_t
7096bxe_clear_pf_load(struct bxe_softc *sc)
7097{
7098    uint32_t val1, val;
7099    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7100                                  BXE_PATH0_LOAD_CNT_MASK;
7101    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7102                                   BXE_PATH0_LOAD_CNT_SHIFT;
7103
7104    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7105    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7106    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7107
7108    /* get the current counter value */
7109    val1 = (val & mask) >> shift;
7110
7111    /* clear bit of that PF */
7112    val1 &= ~(1 << SC_ABS_FUNC(sc));
7113
7114    /* clear the old value */
7115    val &= ~mask;
7116
7117    /* set the new one */
7118    val |= ((val1 << shift) & mask);
7119
7120    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7121    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7122    return (val1 != 0);
7123}
7124
7125/* send load requrest to mcp and analyze response */
7126static int
7127bxe_nic_load_request(struct bxe_softc *sc,
7128                     uint32_t         *load_code)
7129{
7130    /* init fw_seq */
7131    sc->fw_seq =
7132        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7133         DRV_MSG_SEQ_NUMBER_MASK);
7134
7135    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7136
7137    /* get the current FW pulse sequence */
7138    sc->fw_drv_pulse_wr_seq =
7139        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7140         DRV_PULSE_SEQ_MASK);
7141
7142    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7143          sc->fw_drv_pulse_wr_seq);
7144
7145    /* load request */
7146    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7147                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7148
7149    /* if the MCP fails to respond we must abort */
7150    if (!(*load_code)) {
7151        BLOGE(sc, "MCP response failure!\n");
7152        return (-1);
7153    }
7154
7155    /* if MCP refused then must abort */
7156    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7157        BLOGE(sc, "MCP refused load request\n");
7158        return (-1);
7159    }
7160
7161    return (0);
7162}
7163
7164/*
7165 * Check whether another PF has already loaded FW to chip. In virtualized
7166 * environments a pf from anoth VM may have already initialized the device
7167 * including loading FW.
7168 */
7169static int
7170bxe_nic_load_analyze_req(struct bxe_softc *sc,
7171                         uint32_t         load_code)
7172{
7173    uint32_t my_fw, loaded_fw;
7174
7175    /* is another pf loaded on this engine? */
7176    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7177        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7178        /* build my FW version dword */
7179        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7180                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7181                 (BCM_5710_FW_REVISION_VERSION << 16) +
7182                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7183
7184        /* read loaded FW from chip */
7185        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7186        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7187              loaded_fw, my_fw);
7188
7189        /* abort nic load if version mismatch */
7190        if (my_fw != loaded_fw) {
7191            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7192                  loaded_fw, my_fw);
7193            return (-1);
7194        }
7195    }
7196
7197    return (0);
7198}
7199
7200/* mark PMF if applicable */
7201static void
7202bxe_nic_load_pmf(struct bxe_softc *sc,
7203                 uint32_t         load_code)
7204{
7205    uint32_t ncsi_oem_data_addr;
7206
7207    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7208        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7209        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7210        /*
7211         * Barrier here for ordering between the writing to sc->port.pmf here
7212         * and reading it from the periodic task.
7213         */
7214        sc->port.pmf = 1;
7215        mb();
7216    } else {
7217        sc->port.pmf = 0;
7218    }
7219
7220    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7221
7222    /* XXX needed? */
7223    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7224        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7225            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7226            if (ncsi_oem_data_addr) {
7227                REG_WR(sc,
7228                       (ncsi_oem_data_addr +
7229                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7230                       0);
7231            }
7232        }
7233    }
7234}
7235
7236static void
7237bxe_read_mf_cfg(struct bxe_softc *sc)
7238{
7239    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7240    int abs_func;
7241    int vn;
7242
7243    if (BXE_NOMCP(sc)) {
7244        return; /* what should be the default bvalue in this case */
7245    }
7246
7247    /*
7248     * The formula for computing the absolute function number is...
7249     * For 2 port configuration (4 functions per port):
7250     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7251     * For 4 port configuration (2 functions per port):
7252     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7253     */
7254    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7255        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7256        if (abs_func >= E1H_FUNC_MAX) {
7257            break;
7258        }
7259        sc->devinfo.mf_info.mf_config[vn] =
7260            MFCFG_RD(sc, func_mf_config[abs_func].config);
7261    }
7262
7263    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7264        FUNC_MF_CFG_FUNC_DISABLED) {
7265        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7266        sc->flags |= BXE_MF_FUNC_DIS;
7267    } else {
7268        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7269        sc->flags &= ~BXE_MF_FUNC_DIS;
7270    }
7271}
7272
7273/* acquire split MCP access lock register */
7274static int bxe_acquire_alr(struct bxe_softc *sc)
7275{
7276    uint32_t j, val;
7277
7278    for (j = 0; j < 1000; j++) {
7279        val = (1UL << 31);
7280        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7281        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7282        if (val & (1L << 31))
7283            break;
7284
7285        DELAY(5000);
7286    }
7287
7288    if (!(val & (1L << 31))) {
7289        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7290        return (-1);
7291    }
7292
7293    return (0);
7294}
7295
7296/* release split MCP access lock register */
7297static void bxe_release_alr(struct bxe_softc *sc)
7298{
7299    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7300}
7301
7302static void
7303bxe_fan_failure(struct bxe_softc *sc)
7304{
7305    int port = SC_PORT(sc);
7306    uint32_t ext_phy_config;
7307
7308    /* mark the failure */
7309    ext_phy_config =
7310        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7311
7312    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7313    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7314    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7315             ext_phy_config);
7316
7317    /* log the failure */
7318    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7319              "the card to prevent permanent damage. "
7320              "Please contact OEM Support for assistance\n");
7321
7322    /* XXX */
7323#if 1
7324    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7325#else
7326    /*
7327     * Schedule device reset (unload)
7328     * This is due to some boards consuming sufficient power when driver is
7329     * up to overheat if fan fails.
7330     */
7331    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7332    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7333#endif
7334}
7335
7336/* this function is called upon a link interrupt */
7337static void
7338bxe_link_attn(struct bxe_softc *sc)
7339{
7340    uint32_t pause_enabled = 0;
7341    struct host_port_stats *pstats;
7342    int cmng_fns;
7343
7344    /* Make sure that we are synced with the current statistics */
7345    bxe_stats_handle(sc, STATS_EVENT_STOP);
7346
7347    elink_link_update(&sc->link_params, &sc->link_vars);
7348
7349    if (sc->link_vars.link_up) {
7350
7351        /* dropless flow control */
7352        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7353            pause_enabled = 0;
7354
7355            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7356                pause_enabled = 1;
7357            }
7358
7359            REG_WR(sc,
7360                   (BAR_USTRORM_INTMEM +
7361                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7362                   pause_enabled);
7363        }
7364
7365        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7366            pstats = BXE_SP(sc, port_stats);
7367            /* reset old mac stats */
7368            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7369        }
7370
7371        if (sc->state == BXE_STATE_OPEN) {
7372            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7373        }
7374    }
7375
7376    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7377        cmng_fns = bxe_get_cmng_fns_mode(sc);
7378
7379        if (cmng_fns != CMNG_FNS_NONE) {
7380            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7381            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7382        } else {
7383            /* rate shaping and fairness are disabled */
7384            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7385        }
7386    }
7387
7388    bxe_link_report_locked(sc);
7389
7390    if (IS_MF(sc)) {
7391        ; // XXX bxe_link_sync_notify(sc);
7392    }
7393}
7394
7395static void
7396bxe_attn_int_asserted(struct bxe_softc *sc,
7397                      uint32_t         asserted)
7398{
7399    int port = SC_PORT(sc);
7400    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7401                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7402    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7403                                        NIG_REG_MASK_INTERRUPT_PORT0;
7404    uint32_t aeu_mask;
7405    uint32_t nig_mask = 0;
7406    uint32_t reg_addr;
7407    uint32_t igu_acked;
7408    uint32_t cnt;
7409
7410    if (sc->attn_state & asserted) {
7411        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7412    }
7413
7414    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7415
7416    aeu_mask = REG_RD(sc, aeu_addr);
7417
7418    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7419          aeu_mask, asserted);
7420
7421    aeu_mask &= ~(asserted & 0x3ff);
7422
7423    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7424
7425    REG_WR(sc, aeu_addr, aeu_mask);
7426
7427    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7428
7429    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7430    sc->attn_state |= asserted;
7431    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7432
7433    if (asserted & ATTN_HARD_WIRED_MASK) {
7434        if (asserted & ATTN_NIG_FOR_FUNC) {
7435
7436            BXE_PHY_LOCK(sc);
7437
7438            /* save nig interrupt mask */
7439            nig_mask = REG_RD(sc, nig_int_mask_addr);
7440
7441            /* If nig_mask is not set, no need to call the update function */
7442            if (nig_mask) {
7443                REG_WR(sc, nig_int_mask_addr, 0);
7444
7445                bxe_link_attn(sc);
7446            }
7447
7448            /* handle unicore attn? */
7449        }
7450
7451        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7452            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7453        }
7454
7455        if (asserted & GPIO_2_FUNC) {
7456            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7457        }
7458
7459        if (asserted & GPIO_3_FUNC) {
7460            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7461        }
7462
7463        if (asserted & GPIO_4_FUNC) {
7464            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7465        }
7466
7467        if (port == 0) {
7468            if (asserted & ATTN_GENERAL_ATTN_1) {
7469                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7470                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7471            }
7472            if (asserted & ATTN_GENERAL_ATTN_2) {
7473                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7474                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7475            }
7476            if (asserted & ATTN_GENERAL_ATTN_3) {
7477                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7478                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7479            }
7480        } else {
7481            if (asserted & ATTN_GENERAL_ATTN_4) {
7482                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7483                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7484            }
7485            if (asserted & ATTN_GENERAL_ATTN_5) {
7486                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7487                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7488            }
7489            if (asserted & ATTN_GENERAL_ATTN_6) {
7490                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7491                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7492            }
7493        }
7494    } /* hardwired */
7495
7496    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7497        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7498    } else {
7499        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7500    }
7501
7502    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7503          asserted,
7504          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7505    REG_WR(sc, reg_addr, asserted);
7506
7507    /* now set back the mask */
7508    if (asserted & ATTN_NIG_FOR_FUNC) {
7509        /*
7510         * Verify that IGU ack through BAR was written before restoring
7511         * NIG mask. This loop should exit after 2-3 iterations max.
7512         */
7513        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7514            cnt = 0;
7515
7516            do {
7517                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7518            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7519                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7520
7521            if (!igu_acked) {
7522                BLOGE(sc, "Failed to verify IGU ack on time\n");
7523            }
7524
7525            mb();
7526        }
7527
7528        REG_WR(sc, nig_int_mask_addr, nig_mask);
7529
7530        BXE_PHY_UNLOCK(sc);
7531    }
7532}
7533
7534static void
7535bxe_print_next_block(struct bxe_softc *sc,
7536                     int              idx,
7537                     const char       *blk)
7538{
7539    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7540}
7541
7542static int
7543bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7544                              uint32_t         sig,
7545                              int              par_num,
7546                              uint8_t          print)
7547{
7548    uint32_t cur_bit = 0;
7549    int i = 0;
7550
7551    for (i = 0; sig; i++) {
7552        cur_bit = ((uint32_t)0x1 << i);
7553        if (sig & cur_bit) {
7554            switch (cur_bit) {
7555            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7556                if (print)
7557                    bxe_print_next_block(sc, par_num++, "BRB");
7558                break;
7559            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7560                if (print)
7561                    bxe_print_next_block(sc, par_num++, "PARSER");
7562                break;
7563            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7564                if (print)
7565                    bxe_print_next_block(sc, par_num++, "TSDM");
7566                break;
7567            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7568                if (print)
7569                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7570                break;
7571            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7572                if (print)
7573                    bxe_print_next_block(sc, par_num++, "TCM");
7574                break;
7575            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7576                if (print)
7577                    bxe_print_next_block(sc, par_num++, "TSEMI");
7578                break;
7579            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7580                if (print)
7581                    bxe_print_next_block(sc, par_num++, "XPB");
7582                break;
7583            }
7584
7585            /* Clear the bit */
7586            sig &= ~cur_bit;
7587        }
7588    }
7589
7590    return (par_num);
7591}
7592
7593static int
7594bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7595                              uint32_t         sig,
7596                              int              par_num,
7597                              uint8_t          *global,
7598                              uint8_t          print)
7599{
7600    int i = 0;
7601    uint32_t cur_bit = 0;
7602    for (i = 0; sig; i++) {
7603        cur_bit = ((uint32_t)0x1 << i);
7604        if (sig & cur_bit) {
7605            switch (cur_bit) {
7606            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7607                if (print)
7608                    bxe_print_next_block(sc, par_num++, "PBF");
7609                break;
7610            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7611                if (print)
7612                    bxe_print_next_block(sc, par_num++, "QM");
7613                break;
7614            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7615                if (print)
7616                    bxe_print_next_block(sc, par_num++, "TM");
7617                break;
7618            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7619                if (print)
7620                    bxe_print_next_block(sc, par_num++, "XSDM");
7621                break;
7622            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7623                if (print)
7624                    bxe_print_next_block(sc, par_num++, "XCM");
7625                break;
7626            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7627                if (print)
7628                    bxe_print_next_block(sc, par_num++, "XSEMI");
7629                break;
7630            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7631                if (print)
7632                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7633                break;
7634            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7635                if (print)
7636                    bxe_print_next_block(sc, par_num++, "NIG");
7637                break;
7638            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7639                if (print)
7640                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7641                *global = TRUE;
7642                break;
7643            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7644                if (print)
7645                    bxe_print_next_block(sc, par_num++, "DEBUG");
7646                break;
7647            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7648                if (print)
7649                    bxe_print_next_block(sc, par_num++, "USDM");
7650                break;
7651            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7652                if (print)
7653                    bxe_print_next_block(sc, par_num++, "UCM");
7654                break;
7655            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7656                if (print)
7657                    bxe_print_next_block(sc, par_num++, "USEMI");
7658                break;
7659            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7660                if (print)
7661                    bxe_print_next_block(sc, par_num++, "UPB");
7662                break;
7663            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7664                if (print)
7665                    bxe_print_next_block(sc, par_num++, "CSDM");
7666                break;
7667            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7668                if (print)
7669                    bxe_print_next_block(sc, par_num++, "CCM");
7670                break;
7671            }
7672
7673            /* Clear the bit */
7674            sig &= ~cur_bit;
7675        }
7676    }
7677
7678    return (par_num);
7679}
7680
7681static int
7682bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7683                              uint32_t         sig,
7684                              int              par_num,
7685                              uint8_t          print)
7686{
7687    uint32_t cur_bit = 0;
7688    int i = 0;
7689
7690    for (i = 0; sig; i++) {
7691        cur_bit = ((uint32_t)0x1 << i);
7692        if (sig & cur_bit) {
7693            switch (cur_bit) {
7694            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7695                if (print)
7696                    bxe_print_next_block(sc, par_num++, "CSEMI");
7697                break;
7698            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7699                if (print)
7700                    bxe_print_next_block(sc, par_num++, "PXP");
7701                break;
7702            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7703                if (print)
7704                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7705                break;
7706            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7707                if (print)
7708                    bxe_print_next_block(sc, par_num++, "CFC");
7709                break;
7710            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7711                if (print)
7712                    bxe_print_next_block(sc, par_num++, "CDU");
7713                break;
7714            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7715                if (print)
7716                    bxe_print_next_block(sc, par_num++, "DMAE");
7717                break;
7718            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7719                if (print)
7720                    bxe_print_next_block(sc, par_num++, "IGU");
7721                break;
7722            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7723                if (print)
7724                    bxe_print_next_block(sc, par_num++, "MISC");
7725                break;
7726            }
7727
7728            /* Clear the bit */
7729            sig &= ~cur_bit;
7730        }
7731    }
7732
7733    return (par_num);
7734}
7735
7736static int
7737bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7738                              uint32_t         sig,
7739                              int              par_num,
7740                              uint8_t          *global,
7741                              uint8_t          print)
7742{
7743    uint32_t cur_bit = 0;
7744    int i = 0;
7745
7746    for (i = 0; sig; i++) {
7747        cur_bit = ((uint32_t)0x1 << i);
7748        if (sig & cur_bit) {
7749            switch (cur_bit) {
7750            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7751                if (print)
7752                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7753                *global = TRUE;
7754                break;
7755            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7756                if (print)
7757                    bxe_print_next_block(sc, par_num++,
7758                              "MCP UMP RX");
7759                *global = TRUE;
7760                break;
7761            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7762                if (print)
7763                    bxe_print_next_block(sc, par_num++,
7764                              "MCP UMP TX");
7765                *global = TRUE;
7766                break;
7767            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7768                if (print)
7769                    bxe_print_next_block(sc, par_num++,
7770                              "MCP SCPAD");
7771                *global = TRUE;
7772                break;
7773            }
7774
7775            /* Clear the bit */
7776            sig &= ~cur_bit;
7777        }
7778    }
7779
7780    return (par_num);
7781}
7782
7783static int
7784bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7785                              uint32_t         sig,
7786                              int              par_num,
7787                              uint8_t          print)
7788{
7789    uint32_t cur_bit = 0;
7790    int i = 0;
7791
7792    for (i = 0; sig; i++) {
7793        cur_bit = ((uint32_t)0x1 << i);
7794        if (sig & cur_bit) {
7795            switch (cur_bit) {
7796            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7797                if (print)
7798                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7799                break;
7800            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7801                if (print)
7802                    bxe_print_next_block(sc, par_num++, "ATC");
7803                break;
7804            }
7805
7806            /* Clear the bit */
7807            sig &= ~cur_bit;
7808        }
7809    }
7810
7811    return (par_num);
7812}
7813
7814static uint8_t
7815bxe_parity_attn(struct bxe_softc *sc,
7816                uint8_t          *global,
7817                uint8_t          print,
7818                uint32_t         *sig)
7819{
7820    int par_num = 0;
7821
7822    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7823        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7824        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7825        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7826        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7827        BLOGE(sc, "Parity error: HW block parity attention:\n"
7828                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7829              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7830              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7831              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7832              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7833              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7834
7835        if (print)
7836            BLOGI(sc, "Parity errors detected in blocks: ");
7837
7838        par_num =
7839            bxe_check_blocks_with_parity0(sc, sig[0] &
7840                                          HW_PRTY_ASSERT_SET_0,
7841                                          par_num, print);
7842        par_num =
7843            bxe_check_blocks_with_parity1(sc, sig[1] &
7844                                          HW_PRTY_ASSERT_SET_1,
7845                                          par_num, global, print);
7846        par_num =
7847            bxe_check_blocks_with_parity2(sc, sig[2] &
7848                                          HW_PRTY_ASSERT_SET_2,
7849                                          par_num, print);
7850        par_num =
7851            bxe_check_blocks_with_parity3(sc, sig[3] &
7852                                          HW_PRTY_ASSERT_SET_3,
7853                                          par_num, global, print);
7854        par_num =
7855            bxe_check_blocks_with_parity4(sc, sig[4] &
7856                                          HW_PRTY_ASSERT_SET_4,
7857                                          par_num, print);
7858
7859        if (print)
7860            BLOGI(sc, "\n");
7861
7862        return (TRUE);
7863    }
7864
7865    return (FALSE);
7866}
7867
7868static uint8_t
7869bxe_chk_parity_attn(struct bxe_softc *sc,
7870                    uint8_t          *global,
7871                    uint8_t          print)
7872{
7873    struct attn_route attn = { {0} };
7874    int port = SC_PORT(sc);
7875
7876    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7877    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7878    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7879    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7880
7881    if (!CHIP_IS_E1x(sc))
7882        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7883
7884    return (bxe_parity_attn(sc, global, print, attn.sig));
7885}
7886
7887static void
7888bxe_attn_int_deasserted4(struct bxe_softc *sc,
7889                         uint32_t         attn)
7890{
7891    uint32_t val;
7892
7893    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7894        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7895        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7896        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7897            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7898        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7899            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7900        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7901            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7902        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7903            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7904        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7905            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7906        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7907            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7908        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7909            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7910        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7911            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7912        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7913            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7914    }
7915
7916    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7917        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7918        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7919        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7920            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7921        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7922            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7923        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7924            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7925        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7926            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7927        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7928            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7929        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7930            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7931    }
7932
7933    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7934                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7935        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7936              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7937                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7938    }
7939}
7940
7941static void
7942bxe_e1h_disable(struct bxe_softc *sc)
7943{
7944    int port = SC_PORT(sc);
7945
7946    bxe_tx_disable(sc);
7947
7948    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7949}
7950
7951static void
7952bxe_e1h_enable(struct bxe_softc *sc)
7953{
7954    int port = SC_PORT(sc);
7955
7956    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7957
7958    // XXX bxe_tx_enable(sc);
7959}
7960
7961/*
7962 * called due to MCP event (on pmf):
7963 *   reread new bandwidth configuration
7964 *   configure FW
7965 *   notify others function about the change
7966 */
7967static void
7968bxe_config_mf_bw(struct bxe_softc *sc)
7969{
7970    if (sc->link_vars.link_up) {
7971        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7972        // XXX bxe_link_sync_notify(sc);
7973    }
7974
7975    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7976}
7977
7978static void
7979bxe_set_mf_bw(struct bxe_softc *sc)
7980{
7981    bxe_config_mf_bw(sc);
7982    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7983}
7984
7985static void
7986bxe_handle_eee_event(struct bxe_softc *sc)
7987{
7988    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7989    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7990}
7991
7992#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7993
7994static void
7995bxe_drv_info_ether_stat(struct bxe_softc *sc)
7996{
7997    struct eth_stats_info *ether_stat =
7998        &sc->sp->drv_info_to_mcp.ether_stat;
7999
8000    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8001            ETH_STAT_INFO_VERSION_LEN);
8002
8003    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8004    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8005                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8006                                          ether_stat->mac_local + MAC_PAD,
8007                                          MAC_PAD, ETH_ALEN);
8008
8009    ether_stat->mtu_size = sc->mtu;
8010
8011    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8012    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8013        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8014    }
8015
8016    // XXX ether_stat->feature_flags |= ???;
8017
8018    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8019
8020    ether_stat->txq_size = sc->tx_ring_size;
8021    ether_stat->rxq_size = sc->rx_ring_size;
8022}
8023
8024static void
8025bxe_handle_drv_info_req(struct bxe_softc *sc)
8026{
8027    enum drv_info_opcode op_code;
8028    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8029
8030    /* if drv_info version supported by MFW doesn't match - send NACK */
8031    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8032        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8033        return;
8034    }
8035
8036    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8037               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8038
8039    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8040
8041    switch (op_code) {
8042    case ETH_STATS_OPCODE:
8043        bxe_drv_info_ether_stat(sc);
8044        break;
8045    case FCOE_STATS_OPCODE:
8046    case ISCSI_STATS_OPCODE:
8047    default:
8048        /* if op code isn't supported - send NACK */
8049        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8050        return;
8051    }
8052
8053    /*
8054     * If we got drv_info attn from MFW then these fields are defined in
8055     * shmem2 for sure
8056     */
8057    SHMEM2_WR(sc, drv_info_host_addr_lo,
8058              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8059    SHMEM2_WR(sc, drv_info_host_addr_hi,
8060              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8061
8062    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8063}
8064
8065static void
8066bxe_dcc_event(struct bxe_softc *sc,
8067              uint32_t         dcc_event)
8068{
8069    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8070
8071    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8072        /*
8073         * This is the only place besides the function initialization
8074         * where the sc->flags can change so it is done without any
8075         * locks
8076         */
8077        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8078            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8079            sc->flags |= BXE_MF_FUNC_DIS;
8080            bxe_e1h_disable(sc);
8081        } else {
8082            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8083            sc->flags &= ~BXE_MF_FUNC_DIS;
8084            bxe_e1h_enable(sc);
8085        }
8086        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8087    }
8088
8089    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8090        bxe_config_mf_bw(sc);
8091        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8092    }
8093
8094    /* Report results to MCP */
8095    if (dcc_event)
8096        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8097    else
8098        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8099}
8100
8101static void
8102bxe_pmf_update(struct bxe_softc *sc)
8103{
8104    int port = SC_PORT(sc);
8105    uint32_t val;
8106
8107    sc->port.pmf = 1;
8108    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8109
8110    /*
8111     * We need the mb() to ensure the ordering between the writing to
8112     * sc->port.pmf here and reading it from the bxe_periodic_task().
8113     */
8114    mb();
8115
8116    /* queue a periodic task */
8117    // XXX schedule task...
8118
8119    // XXX bxe_dcbx_pmf_update(sc);
8120
8121    /* enable nig attention */
8122    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8123    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8124        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8125        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8126    } else if (!CHIP_IS_E1x(sc)) {
8127        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8128        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8129    }
8130
8131    bxe_stats_handle(sc, STATS_EVENT_PMF);
8132}
8133
8134static int
8135bxe_mc_assert(struct bxe_softc *sc)
8136{
8137    char last_idx;
8138    int i, rc = 0;
8139    uint32_t row0, row1, row2, row3;
8140
8141    /* XSTORM */
8142    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8143    if (last_idx)
8144        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8145
8146    /* print the asserts */
8147    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8148
8149        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8150        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8151        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8152        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8153
8154        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8155            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8156                  i, row3, row2, row1, row0);
8157            rc++;
8158        } else {
8159            break;
8160        }
8161    }
8162
8163    /* TSTORM */
8164    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8165    if (last_idx) {
8166        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8167    }
8168
8169    /* print the asserts */
8170    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8171
8172        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8173        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8174        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8175        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8176
8177        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8178            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8179                  i, row3, row2, row1, row0);
8180            rc++;
8181        } else {
8182            break;
8183        }
8184    }
8185
8186    /* CSTORM */
8187    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8188    if (last_idx) {
8189        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8190    }
8191
8192    /* print the asserts */
8193    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8194
8195        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8196        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8197        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8198        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8199
8200        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8201            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8202                  i, row3, row2, row1, row0);
8203            rc++;
8204        } else {
8205            break;
8206        }
8207    }
8208
8209    /* USTORM */
8210    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8211    if (last_idx) {
8212        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8213    }
8214
8215    /* print the asserts */
8216    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8217
8218        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8219        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8220        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8221        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8222
8223        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8224            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8225                  i, row3, row2, row1, row0);
8226            rc++;
8227        } else {
8228            break;
8229        }
8230    }
8231
8232    return (rc);
8233}
8234
8235static void
8236bxe_attn_int_deasserted3(struct bxe_softc *sc,
8237                         uint32_t         attn)
8238{
8239    int func = SC_FUNC(sc);
8240    uint32_t val;
8241
8242    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8243
8244        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8245
8246            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8247            bxe_read_mf_cfg(sc);
8248            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8249                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8250            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8251
8252            if (val & DRV_STATUS_DCC_EVENT_MASK)
8253                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8254
8255            if (val & DRV_STATUS_SET_MF_BW)
8256                bxe_set_mf_bw(sc);
8257
8258            if (val & DRV_STATUS_DRV_INFO_REQ)
8259                bxe_handle_drv_info_req(sc);
8260
8261#if 0
8262            if (val & DRV_STATUS_VF_DISABLED)
8263                bxe_vf_handle_flr_event(sc);
8264#endif
8265
8266            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8267                bxe_pmf_update(sc);
8268
8269#if 0
8270            if (sc->port.pmf &&
8271                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8272                (sc->dcbx_enabled > 0))
8273                /* start dcbx state machine */
8274                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8275#endif
8276
8277#if 0
8278            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8279                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8280#endif
8281
8282            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8283                bxe_handle_eee_event(sc);
8284
8285            if (sc->link_vars.periodic_flags &
8286                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8287                /* sync with link */
8288                BXE_PHY_LOCK(sc);
8289                sc->link_vars.periodic_flags &=
8290                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8291                BXE_PHY_UNLOCK(sc);
8292                if (IS_MF(sc))
8293                    ; // XXX bxe_link_sync_notify(sc);
8294                bxe_link_report(sc);
8295            }
8296
8297            /*
8298             * Always call it here: bxe_link_report() will
8299             * prevent the link indication duplication.
8300             */
8301            bxe_link_status_update(sc);
8302
8303        } else if (attn & BXE_MC_ASSERT_BITS) {
8304
8305            BLOGE(sc, "MC assert!\n");
8306            bxe_mc_assert(sc);
8307            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8308            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8309            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8310            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8311            bxe_panic(sc, ("MC assert!\n"));
8312
8313        } else if (attn & BXE_MCP_ASSERT) {
8314
8315            BLOGE(sc, "MCP assert!\n");
8316            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8317            // XXX bxe_fw_dump(sc);
8318
8319        } else {
8320            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8321        }
8322    }
8323
8324    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8325        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8326        if (attn & BXE_GRC_TIMEOUT) {
8327            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8328            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8329        }
8330        if (attn & BXE_GRC_RSV) {
8331            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8332            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8333        }
8334        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8335    }
8336}
8337
8338static void
8339bxe_attn_int_deasserted2(struct bxe_softc *sc,
8340                         uint32_t         attn)
8341{
8342    int port = SC_PORT(sc);
8343    int reg_offset;
8344    uint32_t val0, mask0, val1, mask1;
8345    uint32_t val;
8346
8347    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8348        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8349        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8350        /* CFC error attention */
8351        if (val & 0x2) {
8352            BLOGE(sc, "FATAL error from CFC\n");
8353        }
8354    }
8355
8356    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8357        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8358        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8359        /* RQ_USDMDP_FIFO_OVERFLOW */
8360        if (val & 0x18000) {
8361            BLOGE(sc, "FATAL error from PXP\n");
8362        }
8363
8364        if (!CHIP_IS_E1x(sc)) {
8365            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8366            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8367        }
8368    }
8369
8370#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8371#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8372
8373    if (attn & AEU_PXP2_HW_INT_BIT) {
8374        /*  CQ47854 workaround do not panic on
8375         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8376         */
8377        if (!CHIP_IS_E1x(sc)) {
8378            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8379            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8380            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8381            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8382            /*
8383             * If the olny PXP2_EOP_ERROR_BIT is set in
8384             * STS0 and STS1 - clear it
8385             *
8386             * probably we lose additional attentions between
8387             * STS0 and STS_CLR0, in this case user will not
8388             * be notified about them
8389             */
8390            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8391                !(val1 & mask1))
8392                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8393
8394            /* print the register, since no one can restore it */
8395            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8396
8397            /*
8398             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8399             * then notify
8400             */
8401            if (val0 & PXP2_EOP_ERROR_BIT) {
8402                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8403
8404                /*
8405                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8406                 * set then clear attention from PXP2 block without panic
8407                 */
8408                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8409                    ((val1 & mask1) == 0))
8410                    attn &= ~AEU_PXP2_HW_INT_BIT;
8411            }
8412        }
8413    }
8414
8415    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8416        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8417                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8418
8419        val = REG_RD(sc, reg_offset);
8420        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8421        REG_WR(sc, reg_offset, val);
8422
8423        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8424              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8425        bxe_panic(sc, ("HW block attention set2\n"));
8426    }
8427}
8428
8429static void
8430bxe_attn_int_deasserted1(struct bxe_softc *sc,
8431                         uint32_t         attn)
8432{
8433    int port = SC_PORT(sc);
8434    int reg_offset;
8435    uint32_t val;
8436
8437    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8438        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8439        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8440        /* DORQ discard attention */
8441        if (val & 0x2) {
8442            BLOGE(sc, "FATAL error from DORQ\n");
8443        }
8444    }
8445
8446    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8447        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8448                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8449
8450        val = REG_RD(sc, reg_offset);
8451        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8452        REG_WR(sc, reg_offset, val);
8453
8454        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8455              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8456        bxe_panic(sc, ("HW block attention set1\n"));
8457    }
8458}
8459
8460static void
8461bxe_attn_int_deasserted0(struct bxe_softc *sc,
8462                         uint32_t         attn)
8463{
8464    int port = SC_PORT(sc);
8465    int reg_offset;
8466    uint32_t val;
8467
8468    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8469                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8470
8471    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8472        val = REG_RD(sc, reg_offset);
8473        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8474        REG_WR(sc, reg_offset, val);
8475
8476        BLOGW(sc, "SPIO5 hw attention\n");
8477
8478        /* Fan failure attention */
8479        elink_hw_reset_phy(&sc->link_params);
8480        bxe_fan_failure(sc);
8481    }
8482
8483    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8484        BXE_PHY_LOCK(sc);
8485        elink_handle_module_detect_int(&sc->link_params);
8486        BXE_PHY_UNLOCK(sc);
8487    }
8488
8489    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8490        val = REG_RD(sc, reg_offset);
8491        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8492        REG_WR(sc, reg_offset, val);
8493
8494        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8495                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8496    }
8497}
8498
8499static void
8500bxe_attn_int_deasserted(struct bxe_softc *sc,
8501                        uint32_t         deasserted)
8502{
8503    struct attn_route attn;
8504    struct attn_route *group_mask;
8505    int port = SC_PORT(sc);
8506    int index;
8507    uint32_t reg_addr;
8508    uint32_t val;
8509    uint32_t aeu_mask;
8510    uint8_t global = FALSE;
8511
8512    /*
8513     * Need to take HW lock because MCP or other port might also
8514     * try to handle this event.
8515     */
8516    bxe_acquire_alr(sc);
8517
8518    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8519        /* XXX
8520         * In case of parity errors don't handle attentions so that
8521         * other function would "see" parity errors.
8522         */
8523        sc->recovery_state = BXE_RECOVERY_INIT;
8524        // XXX schedule a recovery task...
8525        /* disable HW interrupts */
8526        bxe_int_disable(sc);
8527        bxe_release_alr(sc);
8528        return;
8529    }
8530
8531    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8532    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8533    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8534    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8535    if (!CHIP_IS_E1x(sc)) {
8536        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8537    } else {
8538        attn.sig[4] = 0;
8539    }
8540
8541    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8542          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8543
8544    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8545        if (deasserted & (1 << index)) {
8546            group_mask = &sc->attn_group[index];
8547
8548            BLOGD(sc, DBG_INTR,
8549                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8550                  group_mask->sig[0], group_mask->sig[1],
8551                  group_mask->sig[2], group_mask->sig[3],
8552                  group_mask->sig[4]);
8553
8554            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8555            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8556            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8557            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8558            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8559        }
8560    }
8561
8562    bxe_release_alr(sc);
8563
8564    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8565        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8566                    COMMAND_REG_ATTN_BITS_CLR);
8567    } else {
8568        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8569    }
8570
8571    val = ~deasserted;
8572    BLOGD(sc, DBG_INTR,
8573          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8574          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8575    REG_WR(sc, reg_addr, val);
8576
8577    if (~sc->attn_state & deasserted) {
8578        BLOGE(sc, "IGU error\n");
8579    }
8580
8581    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8582                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8583
8584    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8585
8586    aeu_mask = REG_RD(sc, reg_addr);
8587
8588    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8589          aeu_mask, deasserted);
8590    aeu_mask |= (deasserted & 0x3ff);
8591    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8592
8593    REG_WR(sc, reg_addr, aeu_mask);
8594    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8595
8596    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8597    sc->attn_state &= ~deasserted;
8598    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8599}
8600
8601static void
8602bxe_attn_int(struct bxe_softc *sc)
8603{
8604    /* read local copy of bits */
8605    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8606    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8607    uint32_t attn_state = sc->attn_state;
8608
8609    /* look for changed bits */
8610    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8611    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8612
8613    BLOGD(sc, DBG_INTR,
8614          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8615          attn_bits, attn_ack, asserted, deasserted);
8616
8617    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8618        BLOGE(sc, "BAD attention state\n");
8619    }
8620
8621    /* handle bits that were raised */
8622    if (asserted) {
8623        bxe_attn_int_asserted(sc, asserted);
8624    }
8625
8626    if (deasserted) {
8627        bxe_attn_int_deasserted(sc, deasserted);
8628    }
8629}
8630
8631static uint16_t
8632bxe_update_dsb_idx(struct bxe_softc *sc)
8633{
8634    struct host_sp_status_block *def_sb = sc->def_sb;
8635    uint16_t rc = 0;
8636
8637    mb(); /* status block is written to by the chip */
8638
8639    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8640        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8641        rc |= BXE_DEF_SB_ATT_IDX;
8642    }
8643
8644    if (sc->def_idx != def_sb->sp_sb.running_index) {
8645        sc->def_idx = def_sb->sp_sb.running_index;
8646        rc |= BXE_DEF_SB_IDX;
8647    }
8648
8649    mb();
8650
8651    return (rc);
8652}
8653
8654static inline struct ecore_queue_sp_obj *
8655bxe_cid_to_q_obj(struct bxe_softc *sc,
8656                 uint32_t         cid)
8657{
8658    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8659    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8660}
8661
8662static void
8663bxe_handle_mcast_eqe(struct bxe_softc *sc)
8664{
8665    struct ecore_mcast_ramrod_params rparam;
8666    int rc;
8667
8668    memset(&rparam, 0, sizeof(rparam));
8669
8670    rparam.mcast_obj = &sc->mcast_obj;
8671
8672    BXE_MCAST_LOCK(sc);
8673
8674    /* clear pending state for the last command */
8675    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8676
8677    /* if there are pending mcast commands - send them */
8678    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8679        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8680        if (rc < 0) {
8681            BLOGD(sc, DBG_SP,
8682                  "ERROR: Failed to send pending mcast commands (%d)\n",
8683                  rc);
8684        }
8685    }
8686
8687    BXE_MCAST_UNLOCK(sc);
8688}
8689
8690static void
8691bxe_handle_classification_eqe(struct bxe_softc      *sc,
8692                              union event_ring_elem *elem)
8693{
8694    unsigned long ramrod_flags = 0;
8695    int rc = 0;
8696    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8697    struct ecore_vlan_mac_obj *vlan_mac_obj;
8698
8699    /* always push next commands out, don't wait here */
8700    bit_set(&ramrod_flags, RAMROD_CONT);
8701
8702    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8703    case ECORE_FILTER_MAC_PENDING:
8704        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8705        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8706        break;
8707
8708    case ECORE_FILTER_MCAST_PENDING:
8709        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8710        /*
8711         * This is only relevant for 57710 where multicast MACs are
8712         * configured as unicast MACs using the same ramrod.
8713         */
8714        bxe_handle_mcast_eqe(sc);
8715        return;
8716
8717    default:
8718        BLOGE(sc, "Unsupported classification command: %d\n",
8719              elem->message.data.eth_event.echo);
8720        return;
8721    }
8722
8723    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8724
8725    if (rc < 0) {
8726        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8727    } else if (rc > 0) {
8728        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8729    }
8730}
8731
8732static void
8733bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8734                       union event_ring_elem *elem)
8735{
8736    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8737
8738    /* send rx_mode command again if was requested */
8739    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8740                               &sc->sp_state)) {
8741        bxe_set_storm_rx_mode(sc);
8742    }
8743#if 0
8744    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8745                                    &sc->sp_state)) {
8746        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8747    }
8748    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8749                                    &sc->sp_state)) {
8750        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8751    }
8752#endif
8753}
8754
8755static void
8756bxe_update_eq_prod(struct bxe_softc *sc,
8757                   uint16_t         prod)
8758{
8759    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8760    wmb(); /* keep prod updates ordered */
8761}
8762
8763static void
8764bxe_eq_int(struct bxe_softc *sc)
8765{
8766    uint16_t hw_cons, sw_cons, sw_prod;
8767    union event_ring_elem *elem;
8768    uint8_t echo;
8769    uint32_t cid;
8770    uint8_t opcode;
8771    int spqe_cnt = 0;
8772    struct ecore_queue_sp_obj *q_obj;
8773    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8774    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8775
8776    hw_cons = le16toh(*sc->eq_cons_sb);
8777
8778    /*
8779     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8780     * when we get to the next-page we need to adjust so the loop
8781     * condition below will be met. The next element is the size of a
8782     * regular element and hence incrementing by 1
8783     */
8784    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8785        hw_cons++;
8786    }
8787
8788    /*
8789     * This function may never run in parallel with itself for a
8790     * specific sc and no need for a read memory barrier here.
8791     */
8792    sw_cons = sc->eq_cons;
8793    sw_prod = sc->eq_prod;
8794
8795    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8796          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8797
8798    for (;
8799         sw_cons != hw_cons;
8800         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8801
8802        elem = &sc->eq[EQ_DESC(sw_cons)];
8803
8804#if 0
8805        int rc;
8806        rc = bxe_iov_eq_sp_event(sc, elem);
8807        if (!rc) {
8808            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8809            goto next_spqe;
8810        }
8811#endif
8812
8813        /* elem CID originates from FW, actually LE */
8814        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8815        opcode = elem->message.opcode;
8816
8817        /* handle eq element */
8818        switch (opcode) {
8819#if 0
8820        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8821            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8822            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8823            continue;
8824#endif
8825
8826        case EVENT_RING_OPCODE_STAT_QUERY:
8827            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8828                  sc->stats_comp++);
8829            /* nothing to do with stats comp */
8830            goto next_spqe;
8831
8832        case EVENT_RING_OPCODE_CFC_DEL:
8833            /* handle according to cid range */
8834            /* we may want to verify here that the sc state is HALTING */
8835            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8836            q_obj = bxe_cid_to_q_obj(sc, cid);
8837            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8838                break;
8839            }
8840            goto next_spqe;
8841
8842        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8843            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8844            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8845                break;
8846            }
8847            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8848            goto next_spqe;
8849
8850        case EVENT_RING_OPCODE_START_TRAFFIC:
8851            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8852            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8853                break;
8854            }
8855            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8856            goto next_spqe;
8857
8858        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8859            echo = elem->message.data.function_update_event.echo;
8860            if (echo == SWITCH_UPDATE) {
8861                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8862                if (f_obj->complete_cmd(sc, f_obj,
8863                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8864                    break;
8865                }
8866            }
8867            else {
8868                BLOGD(sc, DBG_SP,
8869                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8870#if 0
8871                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8872                /*
8873                 * We will perform the queues update from the sp_core_task as
8874                 * all queue SP operations should run with CORE_LOCK.
8875                 */
8876                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8877                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8878#endif
8879            }
8880            goto next_spqe;
8881
8882#if 0
8883        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8884            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8885            bxe_after_afex_vif_lists(sc, elem);
8886            goto next_spqe;
8887#endif
8888
8889        case EVENT_RING_OPCODE_FORWARD_SETUP:
8890            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8891            if (q_obj->complete_cmd(sc, q_obj,
8892                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8893                break;
8894            }
8895            goto next_spqe;
8896
8897        case EVENT_RING_OPCODE_FUNCTION_START:
8898            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8899            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8900                break;
8901            }
8902            goto next_spqe;
8903
8904        case EVENT_RING_OPCODE_FUNCTION_STOP:
8905            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8906            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8907                break;
8908            }
8909            goto next_spqe;
8910        }
8911
8912        switch (opcode | sc->state) {
8913        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8914        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8915            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8916            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8917            rss_raw->clear_pending(rss_raw);
8918            break;
8919
8920        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8921        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8922        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8923        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8924        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8925        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8926            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8927            bxe_handle_classification_eqe(sc, elem);
8928            break;
8929
8930        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8931        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8932        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8933            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8934            bxe_handle_mcast_eqe(sc);
8935            break;
8936
8937        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8938        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8939        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8940            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8941            bxe_handle_rx_mode_eqe(sc, elem);
8942            break;
8943
8944        default:
8945            /* unknown event log error and continue */
8946            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8947                  elem->message.opcode, sc->state);
8948        }
8949
8950next_spqe:
8951        spqe_cnt++;
8952    } /* for */
8953
8954    mb();
8955    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8956
8957    sc->eq_cons = sw_cons;
8958    sc->eq_prod = sw_prod;
8959
8960    /* make sure that above mem writes were issued towards the memory */
8961    wmb();
8962
8963    /* update producer */
8964    bxe_update_eq_prod(sc, sc->eq_prod);
8965}
8966
8967static void
8968bxe_handle_sp_tq(void *context,
8969                 int  pending)
8970{
8971    struct bxe_softc *sc = (struct bxe_softc *)context;
8972    uint16_t status;
8973
8974    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8975
8976    /* what work needs to be performed? */
8977    status = bxe_update_dsb_idx(sc);
8978
8979    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8980
8981    /* HW attentions */
8982    if (status & BXE_DEF_SB_ATT_IDX) {
8983        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8984        bxe_attn_int(sc);
8985        status &= ~BXE_DEF_SB_ATT_IDX;
8986    }
8987
8988    /* SP events: STAT_QUERY and others */
8989    if (status & BXE_DEF_SB_IDX) {
8990        /* handle EQ completions */
8991        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8992        bxe_eq_int(sc);
8993        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8994                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8995        status &= ~BXE_DEF_SB_IDX;
8996    }
8997
8998    /* if status is non zero then something went wrong */
8999    if (__predict_false(status)) {
9000        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9001    }
9002
9003    /* ack status block only if something was actually handled */
9004    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9005               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9006
9007    /*
9008     * Must be called after the EQ processing (since eq leads to sriov
9009     * ramrod completion flows).
9010     * This flow may have been scheduled by the arrival of a ramrod
9011     * completion, or by the sriov code rescheduling itself.
9012     */
9013    // XXX bxe_iov_sp_task(sc);
9014
9015#if 0
9016    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9017    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9018                               &sc->sp_state)) {
9019        bxe_link_report(sc);
9020        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9021    }
9022#endif
9023}
9024
9025static void
9026bxe_handle_fp_tq(void *context,
9027                 int  pending)
9028{
9029    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9030    struct bxe_softc *sc = fp->sc;
9031    uint8_t more_tx = FALSE;
9032    uint8_t more_rx = FALSE;
9033
9034    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9035
9036    /* XXX
9037     * IFF_DRV_RUNNING state can't be checked here since we process
9038     * slowpath events on a client queue during setup. Instead
9039     * we need to add a "process/continue" flag here that the driver
9040     * can use to tell the task here not to do anything.
9041     */
9042#if 0
9043    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9044        return;
9045    }
9046#endif
9047
9048    /* update the fastpath index */
9049    bxe_update_fp_sb_idx(fp);
9050
9051    /* XXX add loop here if ever support multiple tx CoS */
9052    /* fp->txdata[cos] */
9053    if (bxe_has_tx_work(fp)) {
9054        BXE_FP_TX_LOCK(fp);
9055        more_tx = bxe_txeof(sc, fp);
9056        BXE_FP_TX_UNLOCK(fp);
9057    }
9058
9059    if (bxe_has_rx_work(fp)) {
9060        more_rx = bxe_rxeof(sc, fp);
9061    }
9062
9063    if (more_rx /*|| more_tx*/) {
9064        /* still more work to do */
9065        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9066        return;
9067    }
9068
9069    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9070               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9071}
9072
9073static void
9074bxe_task_fp(struct bxe_fastpath *fp)
9075{
9076    struct bxe_softc *sc = fp->sc;
9077    uint8_t more_tx = FALSE;
9078    uint8_t more_rx = FALSE;
9079
9080    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9081
9082    /* update the fastpath index */
9083    bxe_update_fp_sb_idx(fp);
9084
9085    /* XXX add loop here if ever support multiple tx CoS */
9086    /* fp->txdata[cos] */
9087    if (bxe_has_tx_work(fp)) {
9088        BXE_FP_TX_LOCK(fp);
9089        more_tx = bxe_txeof(sc, fp);
9090        BXE_FP_TX_UNLOCK(fp);
9091    }
9092
9093    if (bxe_has_rx_work(fp)) {
9094        more_rx = bxe_rxeof(sc, fp);
9095    }
9096
9097    if (more_rx /*|| more_tx*/) {
9098        /* still more work to do, bail out if this ISR and process later */
9099        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9100        return;
9101    }
9102
9103    /*
9104     * Here we write the fastpath index taken before doing any tx or rx work.
9105     * It is very well possible other hw events occurred up to this point and
9106     * they were actually processed accordingly above. Since we're going to
9107     * write an older fastpath index, an interrupt is coming which we might
9108     * not do any work in.
9109     */
9110    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9111               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9112}
9113
9114/*
9115 * Legacy interrupt entry point.
9116 *
9117 * Verifies that the controller generated the interrupt and
9118 * then calls a separate routine to handle the various
9119 * interrupt causes: link, RX, and TX.
9120 */
9121static void
9122bxe_intr_legacy(void *xsc)
9123{
9124    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9125    struct bxe_fastpath *fp;
9126    uint16_t status, mask;
9127    int i;
9128
9129    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9130
9131#if 0
9132    /* Don't handle any interrupts if we're not ready. */
9133    if (__predict_false(sc->intr_sem != 0)) {
9134        return;
9135    }
9136#endif
9137
9138    /*
9139     * 0 for ustorm, 1 for cstorm
9140     * the bits returned from ack_int() are 0-15
9141     * bit 0 = attention status block
9142     * bit 1 = fast path status block
9143     * a mask of 0x2 or more = tx/rx event
9144     * a mask of 1 = slow path event
9145     */
9146
9147    status = bxe_ack_int(sc);
9148
9149    /* the interrupt is not for us */
9150    if (__predict_false(status == 0)) {
9151        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9152        return;
9153    }
9154
9155    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9156
9157    FOR_EACH_ETH_QUEUE(sc, i) {
9158        fp = &sc->fp[i];
9159        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9160        if (status & mask) {
9161            /* acknowledge and disable further fastpath interrupts */
9162            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9163            bxe_task_fp(fp);
9164            status &= ~mask;
9165        }
9166    }
9167
9168#if 0
9169    if (CNIC_SUPPORT(sc)) {
9170        mask = 0x2;
9171        if (status & (mask | 0x1)) {
9172            ...
9173            status &= ~mask;
9174        }
9175    }
9176#endif
9177
9178    if (__predict_false(status & 0x1)) {
9179        /* acknowledge and disable further slowpath interrupts */
9180        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9181
9182        /* schedule slowpath handler */
9183        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9184
9185        status &= ~0x1;
9186    }
9187
9188    if (__predict_false(status)) {
9189        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9190    }
9191}
9192
9193/* slowpath interrupt entry point */
9194static void
9195bxe_intr_sp(void *xsc)
9196{
9197    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9198
9199    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9200
9201    /* acknowledge and disable further slowpath interrupts */
9202    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9203
9204    /* schedule slowpath handler */
9205    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9206}
9207
9208/* fastpath interrupt entry point */
9209static void
9210bxe_intr_fp(void *xfp)
9211{
9212    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9213    struct bxe_softc *sc = fp->sc;
9214
9215    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9216
9217    BLOGD(sc, DBG_INTR,
9218          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9219          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9220
9221#if 0
9222    /* Don't handle any interrupts if we're not ready. */
9223    if (__predict_false(sc->intr_sem != 0)) {
9224        return;
9225    }
9226#endif
9227
9228    /* acknowledge and disable further fastpath interrupts */
9229    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9230
9231    bxe_task_fp(fp);
9232}
9233
9234/* Release all interrupts allocated by the driver. */
9235static void
9236bxe_interrupt_free(struct bxe_softc *sc)
9237{
9238    int i;
9239
9240    switch (sc->interrupt_mode) {
9241    case INTR_MODE_INTX:
9242        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9243        if (sc->intr[0].resource != NULL) {
9244            bus_release_resource(sc->dev,
9245                                 SYS_RES_IRQ,
9246                                 sc->intr[0].rid,
9247                                 sc->intr[0].resource);
9248        }
9249        break;
9250    case INTR_MODE_MSI:
9251        for (i = 0; i < sc->intr_count; i++) {
9252            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9253            if (sc->intr[i].resource && sc->intr[i].rid) {
9254                bus_release_resource(sc->dev,
9255                                     SYS_RES_IRQ,
9256                                     sc->intr[i].rid,
9257                                     sc->intr[i].resource);
9258            }
9259        }
9260        pci_release_msi(sc->dev);
9261        break;
9262    case INTR_MODE_MSIX:
9263        for (i = 0; i < sc->intr_count; i++) {
9264            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9265            if (sc->intr[i].resource && sc->intr[i].rid) {
9266                bus_release_resource(sc->dev,
9267                                     SYS_RES_IRQ,
9268                                     sc->intr[i].rid,
9269                                     sc->intr[i].resource);
9270            }
9271        }
9272        pci_release_msi(sc->dev);
9273        break;
9274    default:
9275        /* nothing to do as initial allocation failed */
9276        break;
9277    }
9278}
9279
9280/*
9281 * This function determines and allocates the appropriate
9282 * interrupt based on system capabilites and user request.
9283 *
9284 * The user may force a particular interrupt mode, specify
9285 * the number of receive queues, specify the method for
9286 * distribuitng received frames to receive queues, or use
9287 * the default settings which will automatically select the
9288 * best supported combination.  In addition, the OS may or
9289 * may not support certain combinations of these settings.
9290 * This routine attempts to reconcile the settings requested
9291 * by the user with the capabilites available from the system
9292 * to select the optimal combination of features.
9293 *
9294 * Returns:
9295 *   0 = Success, !0 = Failure.
9296 */
9297static int
9298bxe_interrupt_alloc(struct bxe_softc *sc)
9299{
9300    int msix_count = 0;
9301    int msi_count = 0;
9302    int num_requested = 0;
9303    int num_allocated = 0;
9304    int rid, i, j;
9305    int rc;
9306
9307    /* get the number of available MSI/MSI-X interrupts from the OS */
9308    if (sc->interrupt_mode > 0) {
9309        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9310            msix_count = pci_msix_count(sc->dev);
9311        }
9312
9313        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9314            msi_count = pci_msi_count(sc->dev);
9315        }
9316
9317        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9318              msi_count, msix_count);
9319    }
9320
9321    do { /* try allocating MSI-X interrupt resources (at least 2) */
9322        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9323            break;
9324        }
9325
9326        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9327            (msix_count < 2)) {
9328            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9329            break;
9330        }
9331
9332        /* ask for the necessary number of MSI-X vectors */
9333        num_requested = min((sc->num_queues + 1), msix_count);
9334
9335        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9336
9337        num_allocated = num_requested;
9338        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9339            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9340            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9341            break;
9342        }
9343
9344        if (num_allocated < 2) { /* possible? */
9345            BLOGE(sc, "MSI-X allocation less than 2!\n");
9346            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9347            pci_release_msi(sc->dev);
9348            break;
9349        }
9350
9351        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9352              num_requested, num_allocated);
9353
9354        /* best effort so use the number of vectors allocated to us */
9355        sc->intr_count = num_allocated;
9356        sc->num_queues = num_allocated - 1;
9357
9358        rid = 1; /* initial resource identifier */
9359
9360        /* allocate the MSI-X vectors */
9361        for (i = 0; i < num_allocated; i++) {
9362            sc->intr[i].rid = (rid + i);
9363
9364            if ((sc->intr[i].resource =
9365                 bus_alloc_resource_any(sc->dev,
9366                                        SYS_RES_IRQ,
9367                                        &sc->intr[i].rid,
9368                                        RF_ACTIVE)) == NULL) {
9369                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9370                      i, (rid + i));
9371
9372                for (j = (i - 1); j >= 0; j--) {
9373                    bus_release_resource(sc->dev,
9374                                         SYS_RES_IRQ,
9375                                         sc->intr[j].rid,
9376                                         sc->intr[j].resource);
9377                }
9378
9379                sc->intr_count = 0;
9380                sc->num_queues = 0;
9381                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9382                pci_release_msi(sc->dev);
9383                break;
9384            }
9385
9386            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9387        }
9388    } while (0);
9389
9390    do { /* try allocating MSI vector resources (at least 2) */
9391        if (sc->interrupt_mode != INTR_MODE_MSI) {
9392            break;
9393        }
9394
9395        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9396            (msi_count < 1)) {
9397            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9398            break;
9399        }
9400
9401        /* ask for a single MSI vector */
9402        num_requested = 1;
9403
9404        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9405
9406        num_allocated = num_requested;
9407        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9408            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9409            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9410            break;
9411        }
9412
9413        if (num_allocated != 1) { /* possible? */
9414            BLOGE(sc, "MSI allocation is not 1!\n");
9415            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9416            pci_release_msi(sc->dev);
9417            break;
9418        }
9419
9420        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9421              num_requested, num_allocated);
9422
9423        /* best effort so use the number of vectors allocated to us */
9424        sc->intr_count = num_allocated;
9425        sc->num_queues = num_allocated;
9426
9427        rid = 1; /* initial resource identifier */
9428
9429        sc->intr[0].rid = rid;
9430
9431        if ((sc->intr[0].resource =
9432             bus_alloc_resource_any(sc->dev,
9433                                    SYS_RES_IRQ,
9434                                    &sc->intr[0].rid,
9435                                    RF_ACTIVE)) == NULL) {
9436            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9437            sc->intr_count = 0;
9438            sc->num_queues = 0;
9439            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9440            pci_release_msi(sc->dev);
9441            break;
9442        }
9443
9444        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9445    } while (0);
9446
9447    do { /* try allocating INTx vector resources */
9448        if (sc->interrupt_mode != INTR_MODE_INTX) {
9449            break;
9450        }
9451
9452        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9453
9454        /* only one vector for INTx */
9455        sc->intr_count = 1;
9456        sc->num_queues = 1;
9457
9458        rid = 0; /* initial resource identifier */
9459
9460        sc->intr[0].rid = rid;
9461
9462        if ((sc->intr[0].resource =
9463             bus_alloc_resource_any(sc->dev,
9464                                    SYS_RES_IRQ,
9465                                    &sc->intr[0].rid,
9466                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9467            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9468            sc->intr_count = 0;
9469            sc->num_queues = 0;
9470            sc->interrupt_mode = -1; /* Failed! */
9471            break;
9472        }
9473
9474        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9475    } while (0);
9476
9477    if (sc->interrupt_mode == -1) {
9478        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9479        rc = 1;
9480    } else {
9481        BLOGD(sc, DBG_LOAD,
9482              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9483              sc->interrupt_mode, sc->num_queues);
9484        rc = 0;
9485    }
9486
9487    return (rc);
9488}
9489
9490static void
9491bxe_interrupt_detach(struct bxe_softc *sc)
9492{
9493    struct bxe_fastpath *fp;
9494    int i;
9495
9496    /* release interrupt resources */
9497    for (i = 0; i < sc->intr_count; i++) {
9498        if (sc->intr[i].resource && sc->intr[i].tag) {
9499            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9500            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9501        }
9502    }
9503
9504    for (i = 0; i < sc->num_queues; i++) {
9505        fp = &sc->fp[i];
9506        if (fp->tq) {
9507            taskqueue_drain(fp->tq, &fp->tq_task);
9508            taskqueue_free(fp->tq);
9509            fp->tq = NULL;
9510        }
9511    }
9512
9513    if (sc->rx_mode_tq) {
9514        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9515        taskqueue_free(sc->rx_mode_tq);
9516        sc->rx_mode_tq = NULL;
9517    }
9518
9519    if (sc->sp_tq) {
9520        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9521        taskqueue_free(sc->sp_tq);
9522        sc->sp_tq = NULL;
9523    }
9524}
9525
9526/*
9527 * Enables interrupts and attach to the ISR.
9528 *
9529 * When using multiple MSI/MSI-X vectors the first vector
9530 * is used for slowpath operations while all remaining
9531 * vectors are used for fastpath operations.  If only a
9532 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9533 * ISR must look for both slowpath and fastpath completions.
9534 */
9535static int
9536bxe_interrupt_attach(struct bxe_softc *sc)
9537{
9538    struct bxe_fastpath *fp;
9539    int rc = 0;
9540    int i;
9541
9542    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9543             "bxe%d_sp_tq", sc->unit);
9544    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9545    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9546                                      taskqueue_thread_enqueue,
9547                                      &sc->sp_tq);
9548    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9549                            "%s", sc->sp_tq_name);
9550
9551    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9552             "bxe%d_rx_mode_tq", sc->unit);
9553    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9554    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9555                                           taskqueue_thread_enqueue,
9556                                           &sc->rx_mode_tq);
9557    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9558                            "%s", sc->rx_mode_tq_name);
9559
9560    for (i = 0; i < sc->num_queues; i++) {
9561        fp = &sc->fp[i];
9562        snprintf(fp->tq_name, sizeof(fp->tq_name),
9563                 "bxe%d_fp%d_tq", sc->unit, i);
9564        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9565        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9566                                       taskqueue_thread_enqueue,
9567                                       &fp->tq);
9568        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9569                                "%s", fp->tq_name);
9570    }
9571
9572    /* setup interrupt handlers */
9573    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9574        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9575
9576        /*
9577         * Setup the interrupt handler. Note that we pass the driver instance
9578         * to the interrupt handler for the slowpath.
9579         */
9580        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9581                                 (INTR_TYPE_NET | INTR_MPSAFE),
9582                                 NULL, bxe_intr_sp, sc,
9583                                 &sc->intr[0].tag)) != 0) {
9584            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9585            goto bxe_interrupt_attach_exit;
9586        }
9587
9588        bus_describe_intr(sc->dev, sc->intr[0].resource,
9589                          sc->intr[0].tag, "sp");
9590
9591        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9592
9593        /* initialize the fastpath vectors (note the first was used for sp) */
9594        for (i = 0; i < sc->num_queues; i++) {
9595            fp = &sc->fp[i];
9596            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9597
9598            /*
9599             * Setup the interrupt handler. Note that we pass the
9600             * fastpath context to the interrupt handler in this
9601             * case.
9602             */
9603            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9604                                     (INTR_TYPE_NET | INTR_MPSAFE),
9605                                     NULL, bxe_intr_fp, fp,
9606                                     &sc->intr[i + 1].tag)) != 0) {
9607                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9608                      (i + 1), rc);
9609                goto bxe_interrupt_attach_exit;
9610            }
9611
9612            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9613                              sc->intr[i + 1].tag, "fp%02d", i);
9614
9615            /* bind the fastpath instance to a cpu */
9616            if (sc->num_queues > 1) {
9617                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9618            }
9619
9620            fp->state = BXE_FP_STATE_IRQ;
9621        }
9622    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9623        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9624
9625        /*
9626         * Setup the interrupt handler. Note that we pass the
9627         * driver instance to the interrupt handler which
9628         * will handle both the slowpath and fastpath.
9629         */
9630        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9631                                 (INTR_TYPE_NET | INTR_MPSAFE),
9632                                 NULL, bxe_intr_legacy, sc,
9633                                 &sc->intr[0].tag)) != 0) {
9634            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9635            goto bxe_interrupt_attach_exit;
9636        }
9637
9638    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9639        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9640
9641        /*
9642         * Setup the interrupt handler. Note that we pass the
9643         * driver instance to the interrupt handler which
9644         * will handle both the slowpath and fastpath.
9645         */
9646        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9647                                 (INTR_TYPE_NET | INTR_MPSAFE),
9648                                 NULL, bxe_intr_legacy, sc,
9649                                 &sc->intr[0].tag)) != 0) {
9650            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9651            goto bxe_interrupt_attach_exit;
9652        }
9653    }
9654
9655bxe_interrupt_attach_exit:
9656
9657    return (rc);
9658}
9659
9660static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9661static int  bxe_init_hw_common(struct bxe_softc *sc);
9662static int  bxe_init_hw_port(struct bxe_softc *sc);
9663static int  bxe_init_hw_func(struct bxe_softc *sc);
9664static void bxe_reset_common(struct bxe_softc *sc);
9665static void bxe_reset_port(struct bxe_softc *sc);
9666static void bxe_reset_func(struct bxe_softc *sc);
9667static int  bxe_gunzip_init(struct bxe_softc *sc);
9668static void bxe_gunzip_end(struct bxe_softc *sc);
9669static int  bxe_init_firmware(struct bxe_softc *sc);
9670static void bxe_release_firmware(struct bxe_softc *sc);
9671
9672static struct
9673ecore_func_sp_drv_ops bxe_func_sp_drv = {
9674    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9675    .init_hw_cmn      = bxe_init_hw_common,
9676    .init_hw_port     = bxe_init_hw_port,
9677    .init_hw_func     = bxe_init_hw_func,
9678
9679    .reset_hw_cmn     = bxe_reset_common,
9680    .reset_hw_port    = bxe_reset_port,
9681    .reset_hw_func    = bxe_reset_func,
9682
9683    .gunzip_init      = bxe_gunzip_init,
9684    .gunzip_end       = bxe_gunzip_end,
9685
9686    .init_fw          = bxe_init_firmware,
9687    .release_fw       = bxe_release_firmware,
9688};
9689
9690static void
9691bxe_init_func_obj(struct bxe_softc *sc)
9692{
9693    sc->dmae_ready = 0;
9694
9695    ecore_init_func_obj(sc,
9696                        &sc->func_obj,
9697                        BXE_SP(sc, func_rdata),
9698                        BXE_SP_MAPPING(sc, func_rdata),
9699                        BXE_SP(sc, func_afex_rdata),
9700                        BXE_SP_MAPPING(sc, func_afex_rdata),
9701                        &bxe_func_sp_drv);
9702}
9703
9704static int
9705bxe_init_hw(struct bxe_softc *sc,
9706            uint32_t         load_code)
9707{
9708    struct ecore_func_state_params func_params = { NULL };
9709    int rc;
9710
9711    /* prepare the parameters for function state transitions */
9712    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9713
9714    func_params.f_obj = &sc->func_obj;
9715    func_params.cmd = ECORE_F_CMD_HW_INIT;
9716
9717    func_params.params.hw_init.load_phase = load_code;
9718
9719    /*
9720     * Via a plethora of function pointers, we will eventually reach
9721     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9722     */
9723    rc = ecore_func_state_change(sc, &func_params);
9724
9725    return (rc);
9726}
9727
9728static void
9729bxe_fill(struct bxe_softc *sc,
9730         uint32_t         addr,
9731         int              fill,
9732         uint32_t         len)
9733{
9734    uint32_t i;
9735
9736    if (!(len % 4) && !(addr % 4)) {
9737        for (i = 0; i < len; i += 4) {
9738            REG_WR(sc, (addr + i), fill);
9739        }
9740    } else {
9741        for (i = 0; i < len; i++) {
9742            REG_WR8(sc, (addr + i), fill);
9743        }
9744    }
9745}
9746
9747/* writes FP SP data to FW - data_size in dwords */
9748static void
9749bxe_wr_fp_sb_data(struct bxe_softc *sc,
9750                  int              fw_sb_id,
9751                  uint32_t         *sb_data_p,
9752                  uint32_t         data_size)
9753{
9754    int index;
9755
9756    for (index = 0; index < data_size; index++) {
9757        REG_WR(sc,
9758               (BAR_CSTRORM_INTMEM +
9759                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9760                (sizeof(uint32_t) * index)),
9761               *(sb_data_p + index));
9762    }
9763}
9764
9765static void
9766bxe_zero_fp_sb(struct bxe_softc *sc,
9767               int              fw_sb_id)
9768{
9769    struct hc_status_block_data_e2 sb_data_e2;
9770    struct hc_status_block_data_e1x sb_data_e1x;
9771    uint32_t *sb_data_p;
9772    uint32_t data_size = 0;
9773
9774    if (!CHIP_IS_E1x(sc)) {
9775        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9776        sb_data_e2.common.state = SB_DISABLED;
9777        sb_data_e2.common.p_func.vf_valid = FALSE;
9778        sb_data_p = (uint32_t *)&sb_data_e2;
9779        data_size = (sizeof(struct hc_status_block_data_e2) /
9780                     sizeof(uint32_t));
9781    } else {
9782        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9783        sb_data_e1x.common.state = SB_DISABLED;
9784        sb_data_e1x.common.p_func.vf_valid = FALSE;
9785        sb_data_p = (uint32_t *)&sb_data_e1x;
9786        data_size = (sizeof(struct hc_status_block_data_e1x) /
9787                     sizeof(uint32_t));
9788    }
9789
9790    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9791
9792    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9793             0, CSTORM_STATUS_BLOCK_SIZE);
9794    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9795             0, CSTORM_SYNC_BLOCK_SIZE);
9796}
9797
9798static void
9799bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9800                  struct hc_sp_status_block_data *sp_sb_data)
9801{
9802    int i;
9803
9804    for (i = 0;
9805         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9806         i++) {
9807        REG_WR(sc,
9808               (BAR_CSTRORM_INTMEM +
9809                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9810                (i * sizeof(uint32_t))),
9811               *((uint32_t *)sp_sb_data + i));
9812    }
9813}
9814
9815static void
9816bxe_zero_sp_sb(struct bxe_softc *sc)
9817{
9818    struct hc_sp_status_block_data sp_sb_data;
9819
9820    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9821
9822    sp_sb_data.state           = SB_DISABLED;
9823    sp_sb_data.p_func.vf_valid = FALSE;
9824
9825    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9826
9827    bxe_fill(sc,
9828             (BAR_CSTRORM_INTMEM +
9829              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9830              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9831    bxe_fill(sc,
9832             (BAR_CSTRORM_INTMEM +
9833              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9834              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9835}
9836
9837static void
9838bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9839                             int                       igu_sb_id,
9840                             int                       igu_seg_id)
9841{
9842    hc_sm->igu_sb_id      = igu_sb_id;
9843    hc_sm->igu_seg_id     = igu_seg_id;
9844    hc_sm->timer_value    = 0xFF;
9845    hc_sm->time_to_expire = 0xFFFFFFFF;
9846}
9847
9848static void
9849bxe_map_sb_state_machines(struct hc_index_data *index_data)
9850{
9851    /* zero out state machine indices */
9852
9853    /* rx indices */
9854    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9855
9856    /* tx indices */
9857    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9858    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9859    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9860    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9861
9862    /* map indices */
9863
9864    /* rx indices */
9865    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9866        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9867
9868    /* tx indices */
9869    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9870        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9871    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9872        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9873    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9874        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9875    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9876        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9877}
9878
9879static void
9880bxe_init_sb(struct bxe_softc *sc,
9881            bus_addr_t       busaddr,
9882            int              vfid,
9883            uint8_t          vf_valid,
9884            int              fw_sb_id,
9885            int              igu_sb_id)
9886{
9887    struct hc_status_block_data_e2  sb_data_e2;
9888    struct hc_status_block_data_e1x sb_data_e1x;
9889    struct hc_status_block_sm       *hc_sm_p;
9890    uint32_t *sb_data_p;
9891    int igu_seg_id;
9892    int data_size;
9893
9894    if (CHIP_INT_MODE_IS_BC(sc)) {
9895        igu_seg_id = HC_SEG_ACCESS_NORM;
9896    } else {
9897        igu_seg_id = IGU_SEG_ACCESS_NORM;
9898    }
9899
9900    bxe_zero_fp_sb(sc, fw_sb_id);
9901
9902    if (!CHIP_IS_E1x(sc)) {
9903        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9904        sb_data_e2.common.state = SB_ENABLED;
9905        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9906        sb_data_e2.common.p_func.vf_id = vfid;
9907        sb_data_e2.common.p_func.vf_valid = vf_valid;
9908        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9909        sb_data_e2.common.same_igu_sb_1b = TRUE;
9910        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9911        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9912        hc_sm_p = sb_data_e2.common.state_machine;
9913        sb_data_p = (uint32_t *)&sb_data_e2;
9914        data_size = (sizeof(struct hc_status_block_data_e2) /
9915                     sizeof(uint32_t));
9916        bxe_map_sb_state_machines(sb_data_e2.index_data);
9917    } else {
9918        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9919        sb_data_e1x.common.state = SB_ENABLED;
9920        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9921        sb_data_e1x.common.p_func.vf_id = 0xff;
9922        sb_data_e1x.common.p_func.vf_valid = FALSE;
9923        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9924        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9925        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9926        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9927        hc_sm_p = sb_data_e1x.common.state_machine;
9928        sb_data_p = (uint32_t *)&sb_data_e1x;
9929        data_size = (sizeof(struct hc_status_block_data_e1x) /
9930                     sizeof(uint32_t));
9931        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9932    }
9933
9934    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9935    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9936
9937    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9938
9939    /* write indices to HW - PCI guarantees endianity of regpairs */
9940    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9941}
9942
9943static inline uint8_t
9944bxe_fp_qzone_id(struct bxe_fastpath *fp)
9945{
9946    if (CHIP_IS_E1x(fp->sc)) {
9947        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9948    } else {
9949        return (fp->cl_id);
9950    }
9951}
9952
9953static inline uint32_t
9954bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9955                           struct bxe_fastpath *fp)
9956{
9957    uint32_t offset = BAR_USTRORM_INTMEM;
9958
9959#if 0
9960    if (IS_VF(sc)) {
9961        return (PXP_VF_ADDR_USDM_QUEUES_START +
9962                (sc->acquire_resp.resc.hw_qid[fp->index] *
9963                 sizeof(struct ustorm_queue_zone_data)));
9964    } else
9965#endif
9966    if (!CHIP_IS_E1x(sc)) {
9967        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9968    } else {
9969        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9970    }
9971
9972    return (offset);
9973}
9974
9975static void
9976bxe_init_eth_fp(struct bxe_softc *sc,
9977                int              idx)
9978{
9979    struct bxe_fastpath *fp = &sc->fp[idx];
9980    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9981    unsigned long q_type = 0;
9982    int cos;
9983
9984    fp->sc    = sc;
9985    fp->index = idx;
9986
9987    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9988             "bxe%d_fp%d_tx_lock", sc->unit, idx);
9989    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9990
9991    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
9992             "bxe%d_fp%d_rx_lock", sc->unit, idx);
9993    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
9994
9995    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9996    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9997
9998    fp->cl_id = (CHIP_IS_E1x(sc)) ?
9999                    (SC_L_ID(sc) + idx) :
10000                    /* want client ID same as IGU SB ID for non-E1 */
10001                    fp->igu_sb_id;
10002    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10003
10004    /* setup sb indices */
10005    if (!CHIP_IS_E1x(sc)) {
10006        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10007        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10008    } else {
10009        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10010        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10011    }
10012
10013    /* init shortcut */
10014    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10015
10016    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10017
10018    /*
10019     * XXX If multiple CoS is ever supported then each fastpath structure
10020     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10021     */
10022    for (cos = 0; cos < sc->max_cos; cos++) {
10023        cids[cos] = idx;
10024    }
10025    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10026
10027    /* nothing more for a VF to do */
10028    if (IS_VF(sc)) {
10029        return;
10030    }
10031
10032    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10033                fp->fw_sb_id, fp->igu_sb_id);
10034
10035    bxe_update_fp_sb_idx(fp);
10036
10037    /* Configure Queue State object */
10038    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10039    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10040
10041    ecore_init_queue_obj(sc,
10042                         &sc->sp_objs[idx].q_obj,
10043                         fp->cl_id,
10044                         cids,
10045                         sc->max_cos,
10046                         SC_FUNC(sc),
10047                         BXE_SP(sc, q_rdata),
10048                         BXE_SP_MAPPING(sc, q_rdata),
10049                         q_type);
10050
10051    /* configure classification DBs */
10052    ecore_init_mac_obj(sc,
10053                       &sc->sp_objs[idx].mac_obj,
10054                       fp->cl_id,
10055                       idx,
10056                       SC_FUNC(sc),
10057                       BXE_SP(sc, mac_rdata),
10058                       BXE_SP_MAPPING(sc, mac_rdata),
10059                       ECORE_FILTER_MAC_PENDING,
10060                       &sc->sp_state,
10061                       ECORE_OBJ_TYPE_RX_TX,
10062                       &sc->macs_pool);
10063
10064    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10065          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10066}
10067
10068static inline void
10069bxe_update_rx_prod(struct bxe_softc    *sc,
10070                   struct bxe_fastpath *fp,
10071                   uint16_t            rx_bd_prod,
10072                   uint16_t            rx_cq_prod,
10073                   uint16_t            rx_sge_prod)
10074{
10075    struct ustorm_eth_rx_producers rx_prods = { 0 };
10076    uint32_t i;
10077
10078    /* update producers */
10079    rx_prods.bd_prod  = rx_bd_prod;
10080    rx_prods.cqe_prod = rx_cq_prod;
10081    rx_prods.sge_prod = rx_sge_prod;
10082
10083    /*
10084     * Make sure that the BD and SGE data is updated before updating the
10085     * producers since FW might read the BD/SGE right after the producer
10086     * is updated.
10087     * This is only applicable for weak-ordered memory model archs such
10088     * as IA-64. The following barrier is also mandatory since FW will
10089     * assumes BDs must have buffers.
10090     */
10091    wmb();
10092
10093    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10094        REG_WR(sc,
10095               (fp->ustorm_rx_prods_offset + (i * 4)),
10096               ((uint32_t *)&rx_prods)[i]);
10097    }
10098
10099    wmb(); /* keep prod updates ordered */
10100
10101    BLOGD(sc, DBG_RX,
10102          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10103          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10104}
10105
10106static void
10107bxe_init_rx_rings(struct bxe_softc *sc)
10108{
10109    struct bxe_fastpath *fp;
10110    int i;
10111
10112    for (i = 0; i < sc->num_queues; i++) {
10113        fp = &sc->fp[i];
10114
10115        fp->rx_bd_cons = 0;
10116
10117        /*
10118         * Activate the BD ring...
10119         * Warning, this will generate an interrupt (to the TSTORM)
10120         * so this can only be done after the chip is initialized
10121         */
10122        bxe_update_rx_prod(sc, fp,
10123                           fp->rx_bd_prod,
10124                           fp->rx_cq_prod,
10125                           fp->rx_sge_prod);
10126
10127        if (i != 0) {
10128            continue;
10129        }
10130
10131        if (CHIP_IS_E1(sc)) {
10132            REG_WR(sc,
10133                   (BAR_USTRORM_INTMEM +
10134                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10135                   U64_LO(fp->rcq_dma.paddr));
10136            REG_WR(sc,
10137                   (BAR_USTRORM_INTMEM +
10138                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10139                   U64_HI(fp->rcq_dma.paddr));
10140        }
10141    }
10142}
10143
10144static void
10145bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10146{
10147    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10148    fp->tx_db.data.zero_fill1 = 0;
10149    fp->tx_db.data.prod = 0;
10150
10151    fp->tx_pkt_prod = 0;
10152    fp->tx_pkt_cons = 0;
10153    fp->tx_bd_prod = 0;
10154    fp->tx_bd_cons = 0;
10155    fp->eth_q_stats.tx_pkts = 0;
10156}
10157
10158static inline void
10159bxe_init_tx_rings(struct bxe_softc *sc)
10160{
10161    int i;
10162
10163    for (i = 0; i < sc->num_queues; i++) {
10164#if 0
10165        uint8_t cos;
10166        for (cos = 0; cos < sc->max_cos; cos++) {
10167            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10168        }
10169#else
10170        bxe_init_tx_ring_one(&sc->fp[i]);
10171#endif
10172    }
10173}
10174
10175static void
10176bxe_init_def_sb(struct bxe_softc *sc)
10177{
10178    struct host_sp_status_block *def_sb = sc->def_sb;
10179    bus_addr_t mapping = sc->def_sb_dma.paddr;
10180    int igu_sp_sb_index;
10181    int igu_seg_id;
10182    int port = SC_PORT(sc);
10183    int func = SC_FUNC(sc);
10184    int reg_offset, reg_offset_en5;
10185    uint64_t section;
10186    int index, sindex;
10187    struct hc_sp_status_block_data sp_sb_data;
10188
10189    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10190
10191    if (CHIP_INT_MODE_IS_BC(sc)) {
10192        igu_sp_sb_index = DEF_SB_IGU_ID;
10193        igu_seg_id = HC_SEG_ACCESS_DEF;
10194    } else {
10195        igu_sp_sb_index = sc->igu_dsb_id;
10196        igu_seg_id = IGU_SEG_ACCESS_DEF;
10197    }
10198
10199    /* attentions */
10200    section = ((uint64_t)mapping +
10201               offsetof(struct host_sp_status_block, atten_status_block));
10202    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10203    sc->attn_state = 0;
10204
10205    reg_offset = (port) ?
10206                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10207                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10208    reg_offset_en5 = (port) ?
10209                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10210                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10211
10212    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10213        /* take care of sig[0]..sig[4] */
10214        for (sindex = 0; sindex < 4; sindex++) {
10215            sc->attn_group[index].sig[sindex] =
10216                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10217        }
10218
10219        if (!CHIP_IS_E1x(sc)) {
10220            /*
10221             * enable5 is separate from the rest of the registers,
10222             * and the address skip is 4 and not 16 between the
10223             * different groups
10224             */
10225            sc->attn_group[index].sig[4] =
10226                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10227        } else {
10228            sc->attn_group[index].sig[4] = 0;
10229        }
10230    }
10231
10232    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10233        reg_offset = (port) ?
10234                         HC_REG_ATTN_MSG1_ADDR_L :
10235                         HC_REG_ATTN_MSG0_ADDR_L;
10236        REG_WR(sc, reg_offset, U64_LO(section));
10237        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10238    } else if (!CHIP_IS_E1x(sc)) {
10239        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10240        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10241    }
10242
10243    section = ((uint64_t)mapping +
10244               offsetof(struct host_sp_status_block, sp_sb));
10245
10246    bxe_zero_sp_sb(sc);
10247
10248    /* PCI guarantees endianity of regpair */
10249    sp_sb_data.state           = SB_ENABLED;
10250    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10251    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10252    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10253    sp_sb_data.igu_seg_id      = igu_seg_id;
10254    sp_sb_data.p_func.pf_id    = func;
10255    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10256    sp_sb_data.p_func.vf_id    = 0xff;
10257
10258    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10259
10260    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10261}
10262
10263static void
10264bxe_init_sp_ring(struct bxe_softc *sc)
10265{
10266    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10267    sc->spq_prod_idx = 0;
10268    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10269    sc->spq_prod_bd = sc->spq;
10270    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10271}
10272
10273static void
10274bxe_init_eq_ring(struct bxe_softc *sc)
10275{
10276    union event_ring_elem *elem;
10277    int i;
10278
10279    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10280        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10281
10282        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10283                                                 BCM_PAGE_SIZE *
10284                                                 (i % NUM_EQ_PAGES)));
10285        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10286                                                 BCM_PAGE_SIZE *
10287                                                 (i % NUM_EQ_PAGES)));
10288    }
10289
10290    sc->eq_cons    = 0;
10291    sc->eq_prod    = NUM_EQ_DESC;
10292    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10293
10294    atomic_store_rel_long(&sc->eq_spq_left,
10295                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10296                               NUM_EQ_DESC) - 1));
10297}
10298
10299static void
10300bxe_init_internal_common(struct bxe_softc *sc)
10301{
10302    int i;
10303
10304    if (IS_MF_SI(sc)) {
10305        /*
10306         * In switch independent mode, the TSTORM needs to accept
10307         * packets that failed classification, since approximate match
10308         * mac addresses aren't written to NIG LLH.
10309         */
10310        REG_WR8(sc,
10311                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10312                2);
10313    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10314        REG_WR8(sc,
10315                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10316                0);
10317    }
10318
10319    /*
10320     * Zero this manually as its initialization is currently missing
10321     * in the initTool.
10322     */
10323    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10324        REG_WR(sc,
10325               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10326               0);
10327    }
10328
10329    if (!CHIP_IS_E1x(sc)) {
10330        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10331                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10332    }
10333}
10334
10335static void
10336bxe_init_internal(struct bxe_softc *sc,
10337                  uint32_t         load_code)
10338{
10339    switch (load_code) {
10340    case FW_MSG_CODE_DRV_LOAD_COMMON:
10341    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10342        bxe_init_internal_common(sc);
10343        /* no break */
10344
10345    case FW_MSG_CODE_DRV_LOAD_PORT:
10346        /* nothing to do */
10347        /* no break */
10348
10349    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10350        /* internal memory per function is initialized inside bxe_pf_init */
10351        break;
10352
10353    default:
10354        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10355        break;
10356    }
10357}
10358
10359static void
10360storm_memset_func_cfg(struct bxe_softc                         *sc,
10361                      struct tstorm_eth_function_common_config *tcfg,
10362                      uint16_t                                  abs_fid)
10363{
10364    uint32_t addr;
10365    size_t size;
10366
10367    addr = (BAR_TSTRORM_INTMEM +
10368            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10369    size = sizeof(struct tstorm_eth_function_common_config);
10370    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10371}
10372
10373static void
10374bxe_func_init(struct bxe_softc            *sc,
10375              struct bxe_func_init_params *p)
10376{
10377    struct tstorm_eth_function_common_config tcfg = { 0 };
10378
10379    if (CHIP_IS_E1x(sc)) {
10380        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10381    }
10382
10383    /* Enable the function in the FW */
10384    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10385    storm_memset_func_en(sc, p->func_id, 1);
10386
10387    /* spq */
10388    if (p->func_flgs & FUNC_FLG_SPQ) {
10389        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10390        REG_WR(sc,
10391               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10392               p->spq_prod);
10393    }
10394}
10395
10396/*
10397 * Calculates the sum of vn_min_rates.
10398 * It's needed for further normalizing of the min_rates.
10399 * Returns:
10400 *   sum of vn_min_rates.
10401 *     or
10402 *   0 - if all the min_rates are 0.
10403 * In the later case fainess algorithm should be deactivated.
10404 * If all min rates are not zero then those that are zeroes will be set to 1.
10405 */
10406static void
10407bxe_calc_vn_min(struct bxe_softc       *sc,
10408                struct cmng_init_input *input)
10409{
10410    uint32_t vn_cfg;
10411    uint32_t vn_min_rate;
10412    int all_zero = 1;
10413    int vn;
10414
10415    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10416        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10417        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10418                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10419
10420        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10421            /* skip hidden VNs */
10422            vn_min_rate = 0;
10423        } else if (!vn_min_rate) {
10424            /* If min rate is zero - set it to 100 */
10425            vn_min_rate = DEF_MIN_RATE;
10426        } else {
10427            all_zero = 0;
10428        }
10429
10430        input->vnic_min_rate[vn] = vn_min_rate;
10431    }
10432
10433    /* if ETS or all min rates are zeros - disable fairness */
10434    if (BXE_IS_ETS_ENABLED(sc)) {
10435        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10436        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10437    } else if (all_zero) {
10438        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10439        BLOGD(sc, DBG_LOAD,
10440              "Fariness disabled (all MIN values are zeroes)\n");
10441    } else {
10442        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10443    }
10444}
10445
10446static inline uint16_t
10447bxe_extract_max_cfg(struct bxe_softc *sc,
10448                    uint32_t         mf_cfg)
10449{
10450    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10451                        FUNC_MF_CFG_MAX_BW_SHIFT);
10452
10453    if (!max_cfg) {
10454        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10455        max_cfg = 100;
10456    }
10457
10458    return (max_cfg);
10459}
10460
10461static void
10462bxe_calc_vn_max(struct bxe_softc       *sc,
10463                int                    vn,
10464                struct cmng_init_input *input)
10465{
10466    uint16_t vn_max_rate;
10467    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10468    uint32_t max_cfg;
10469
10470    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10471        vn_max_rate = 0;
10472    } else {
10473        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10474
10475        if (IS_MF_SI(sc)) {
10476            /* max_cfg in percents of linkspeed */
10477            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10478        } else { /* SD modes */
10479            /* max_cfg is absolute in 100Mb units */
10480            vn_max_rate = (max_cfg * 100);
10481        }
10482    }
10483
10484    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10485
10486    input->vnic_max_rate[vn] = vn_max_rate;
10487}
10488
10489static void
10490bxe_cmng_fns_init(struct bxe_softc *sc,
10491                  uint8_t          read_cfg,
10492                  uint8_t          cmng_type)
10493{
10494    struct cmng_init_input input;
10495    int vn;
10496
10497    memset(&input, 0, sizeof(struct cmng_init_input));
10498
10499    input.port_rate = sc->link_vars.line_speed;
10500
10501    if (cmng_type == CMNG_FNS_MINMAX) {
10502        /* read mf conf from shmem */
10503        if (read_cfg) {
10504            bxe_read_mf_cfg(sc);
10505        }
10506
10507        /* get VN min rate and enable fairness if not 0 */
10508        bxe_calc_vn_min(sc, &input);
10509
10510        /* get VN max rate */
10511        if (sc->port.pmf) {
10512            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10513                bxe_calc_vn_max(sc, vn, &input);
10514            }
10515        }
10516
10517        /* always enable rate shaping and fairness */
10518        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10519
10520        ecore_init_cmng(&input, &sc->cmng);
10521        return;
10522    }
10523
10524    /* rate shaping and fairness are disabled */
10525    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10526}
10527
10528static int
10529bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10530{
10531    if (CHIP_REV_IS_SLOW(sc)) {
10532        return (CMNG_FNS_NONE);
10533    }
10534
10535    if (IS_MF(sc)) {
10536        return (CMNG_FNS_MINMAX);
10537    }
10538
10539    return (CMNG_FNS_NONE);
10540}
10541
10542static void
10543storm_memset_cmng(struct bxe_softc *sc,
10544                  struct cmng_init *cmng,
10545                  uint8_t          port)
10546{
10547    int vn;
10548    int func;
10549    uint32_t addr;
10550    size_t size;
10551
10552    addr = (BAR_XSTRORM_INTMEM +
10553            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10554    size = sizeof(struct cmng_struct_per_port);
10555    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10556
10557    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10558        func = func_by_vn(sc, vn);
10559
10560        addr = (BAR_XSTRORM_INTMEM +
10561                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10562        size = sizeof(struct rate_shaping_vars_per_vn);
10563        ecore_storm_memset_struct(sc, addr, size,
10564                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10565
10566        addr = (BAR_XSTRORM_INTMEM +
10567                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10568        size = sizeof(struct fairness_vars_per_vn);
10569        ecore_storm_memset_struct(sc, addr, size,
10570                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10571    }
10572}
10573
10574static void
10575bxe_pf_init(struct bxe_softc *sc)
10576{
10577    struct bxe_func_init_params func_init = { 0 };
10578    struct event_ring_data eq_data = { { 0 } };
10579    uint16_t flags;
10580
10581    if (!CHIP_IS_E1x(sc)) {
10582        /* reset IGU PF statistics: MSIX + ATTN */
10583        /* PF */
10584        REG_WR(sc,
10585               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10586                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10587                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10588               0);
10589        /* ATTN */
10590        REG_WR(sc,
10591               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10592                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10593                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10594                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10595               0);
10596    }
10597
10598    /* function setup flags */
10599    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10600
10601    /*
10602     * This flag is relevant for E1x only.
10603     * E2 doesn't have a TPA configuration in a function level.
10604     */
10605    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10606
10607    func_init.func_flgs = flags;
10608    func_init.pf_id     = SC_FUNC(sc);
10609    func_init.func_id   = SC_FUNC(sc);
10610    func_init.spq_map   = sc->spq_dma.paddr;
10611    func_init.spq_prod  = sc->spq_prod_idx;
10612
10613    bxe_func_init(sc, &func_init);
10614
10615    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10616
10617    /*
10618     * Congestion management values depend on the link rate.
10619     * There is no active link so initial link rate is set to 10Gbps.
10620     * When the link comes up the congestion management values are
10621     * re-calculated according to the actual link rate.
10622     */
10623    sc->link_vars.line_speed = SPEED_10000;
10624    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10625
10626    /* Only the PMF sets the HW */
10627    if (sc->port.pmf) {
10628        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10629    }
10630
10631    /* init Event Queue - PCI bus guarantees correct endainity */
10632    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10633    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10634    eq_data.producer     = sc->eq_prod;
10635    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10636    eq_data.sb_id        = DEF_SB_ID;
10637    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10638}
10639
10640static void
10641bxe_hc_int_enable(struct bxe_softc *sc)
10642{
10643    int port = SC_PORT(sc);
10644    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10645    uint32_t val = REG_RD(sc, addr);
10646    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10647    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10648                           (sc->intr_count == 1)) ? TRUE : FALSE;
10649    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10650
10651    if (msix) {
10652        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10653                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10654        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10655                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10656        if (single_msix) {
10657            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10658        }
10659    } else if (msi) {
10660        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10661        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10662                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10663                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10664    } else {
10665        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10666                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10667                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10668                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10669
10670        if (!CHIP_IS_E1(sc)) {
10671            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10672                  val, port, addr);
10673
10674            REG_WR(sc, addr, val);
10675
10676            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10677        }
10678    }
10679
10680    if (CHIP_IS_E1(sc)) {
10681        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10682    }
10683
10684    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10685          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10686
10687    REG_WR(sc, addr, val);
10688
10689    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10690    mb();
10691
10692    if (!CHIP_IS_E1(sc)) {
10693        /* init leading/trailing edge */
10694        if (IS_MF(sc)) {
10695            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10696            if (sc->port.pmf) {
10697                /* enable nig and gpio3 attention */
10698                val |= 0x1100;
10699            }
10700        } else {
10701            val = 0xffff;
10702        }
10703
10704        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10705        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10706    }
10707
10708    /* make sure that interrupts are indeed enabled from here on */
10709    mb();
10710}
10711
10712static void
10713bxe_igu_int_enable(struct bxe_softc *sc)
10714{
10715    uint32_t val;
10716    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10717    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10718                           (sc->intr_count == 1)) ? TRUE : FALSE;
10719    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10720
10721    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10722
10723    if (msix) {
10724        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10725                 IGU_PF_CONF_SINGLE_ISR_EN);
10726        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10727                IGU_PF_CONF_ATTN_BIT_EN);
10728        if (single_msix) {
10729            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10730        }
10731    } else if (msi) {
10732        val &= ~IGU_PF_CONF_INT_LINE_EN;
10733        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10734                IGU_PF_CONF_ATTN_BIT_EN |
10735                IGU_PF_CONF_SINGLE_ISR_EN);
10736    } else {
10737        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10738        val |= (IGU_PF_CONF_INT_LINE_EN |
10739                IGU_PF_CONF_ATTN_BIT_EN |
10740                IGU_PF_CONF_SINGLE_ISR_EN);
10741    }
10742
10743    /* clean previous status - need to configure igu prior to ack*/
10744    if ((!msix) || single_msix) {
10745        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10746        bxe_ack_int(sc);
10747    }
10748
10749    val |= IGU_PF_CONF_FUNC_EN;
10750
10751    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10752          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10753
10754    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10755
10756    mb();
10757
10758    /* init leading/trailing edge */
10759    if (IS_MF(sc)) {
10760        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10761        if (sc->port.pmf) {
10762            /* enable nig and gpio3 attention */
10763            val |= 0x1100;
10764        }
10765    } else {
10766        val = 0xffff;
10767    }
10768
10769    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10770    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10771
10772    /* make sure that interrupts are indeed enabled from here on */
10773    mb();
10774}
10775
10776static void
10777bxe_int_enable(struct bxe_softc *sc)
10778{
10779    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10780        bxe_hc_int_enable(sc);
10781    } else {
10782        bxe_igu_int_enable(sc);
10783    }
10784}
10785
10786static void
10787bxe_hc_int_disable(struct bxe_softc *sc)
10788{
10789    int port = SC_PORT(sc);
10790    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10791    uint32_t val = REG_RD(sc, addr);
10792
10793    /*
10794     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10795     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10796     * block
10797     */
10798    if (CHIP_IS_E1(sc)) {
10799        /*
10800         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10801         * to prevent from HC sending interrupts after we exit the function
10802         */
10803        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10804
10805        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10806                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10807                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10808    } else {
10809        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10810                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10811                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10812                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10813    }
10814
10815    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10816
10817    /* flush all outstanding writes */
10818    mb();
10819
10820    REG_WR(sc, addr, val);
10821    if (REG_RD(sc, addr) != val) {
10822        BLOGE(sc, "proper val not read from HC IGU!\n");
10823    }
10824}
10825
10826static void
10827bxe_igu_int_disable(struct bxe_softc *sc)
10828{
10829    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10830
10831    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10832             IGU_PF_CONF_INT_LINE_EN |
10833             IGU_PF_CONF_ATTN_BIT_EN);
10834
10835    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10836
10837    /* flush all outstanding writes */
10838    mb();
10839
10840    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10841    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10842        BLOGE(sc, "proper val not read from IGU!\n");
10843    }
10844}
10845
10846static void
10847bxe_int_disable(struct bxe_softc *sc)
10848{
10849    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10850        bxe_hc_int_disable(sc);
10851    } else {
10852        bxe_igu_int_disable(sc);
10853    }
10854}
10855
10856static void
10857bxe_nic_init(struct bxe_softc *sc,
10858             int              load_code)
10859{
10860    int i;
10861
10862    for (i = 0; i < sc->num_queues; i++) {
10863        bxe_init_eth_fp(sc, i);
10864    }
10865
10866    rmb(); /* ensure status block indices were read */
10867
10868    bxe_init_rx_rings(sc);
10869    bxe_init_tx_rings(sc);
10870
10871    if (IS_VF(sc)) {
10872        return;
10873    }
10874
10875    /* initialize MOD_ABS interrupts */
10876    elink_init_mod_abs_int(sc, &sc->link_vars,
10877                           sc->devinfo.chip_id,
10878                           sc->devinfo.shmem_base,
10879                           sc->devinfo.shmem2_base,
10880                           SC_PORT(sc));
10881
10882    bxe_init_def_sb(sc);
10883    bxe_update_dsb_idx(sc);
10884    bxe_init_sp_ring(sc);
10885    bxe_init_eq_ring(sc);
10886    bxe_init_internal(sc, load_code);
10887    bxe_pf_init(sc);
10888    bxe_stats_init(sc);
10889
10890    /* flush all before enabling interrupts */
10891    mb();
10892
10893    bxe_int_enable(sc);
10894
10895    /* check for SPIO5 */
10896    bxe_attn_int_deasserted0(sc,
10897                             REG_RD(sc,
10898                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10899                                     SC_PORT(sc)*4)) &
10900                             AEU_INPUTS_ATTN_BITS_SPIO5);
10901}
10902
10903static inline void
10904bxe_init_objs(struct bxe_softc *sc)
10905{
10906    /* mcast rules must be added to tx if tx switching is enabled */
10907    ecore_obj_type o_type =
10908        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10909                                         ECORE_OBJ_TYPE_RX;
10910
10911    /* RX_MODE controlling object */
10912    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10913
10914    /* multicast configuration controlling object */
10915    ecore_init_mcast_obj(sc,
10916                         &sc->mcast_obj,
10917                         sc->fp[0].cl_id,
10918                         sc->fp[0].index,
10919                         SC_FUNC(sc),
10920                         SC_FUNC(sc),
10921                         BXE_SP(sc, mcast_rdata),
10922                         BXE_SP_MAPPING(sc, mcast_rdata),
10923                         ECORE_FILTER_MCAST_PENDING,
10924                         &sc->sp_state,
10925                         o_type);
10926
10927    /* Setup CAM credit pools */
10928    ecore_init_mac_credit_pool(sc,
10929                               &sc->macs_pool,
10930                               SC_FUNC(sc),
10931                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10932                                                 VNICS_PER_PATH(sc));
10933
10934    ecore_init_vlan_credit_pool(sc,
10935                                &sc->vlans_pool,
10936                                SC_ABS_FUNC(sc) >> 1,
10937                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10938                                                  VNICS_PER_PATH(sc));
10939
10940    /* RSS configuration object */
10941    ecore_init_rss_config_obj(sc,
10942                              &sc->rss_conf_obj,
10943                              sc->fp[0].cl_id,
10944                              sc->fp[0].index,
10945                              SC_FUNC(sc),
10946                              SC_FUNC(sc),
10947                              BXE_SP(sc, rss_rdata),
10948                              BXE_SP_MAPPING(sc, rss_rdata),
10949                              ECORE_FILTER_RSS_CONF_PENDING,
10950                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10951}
10952
10953/*
10954 * Initialize the function. This must be called before sending CLIENT_SETUP
10955 * for the first client.
10956 */
10957static inline int
10958bxe_func_start(struct bxe_softc *sc)
10959{
10960    struct ecore_func_state_params func_params = { NULL };
10961    struct ecore_func_start_params *start_params = &func_params.params.start;
10962
10963    /* Prepare parameters for function state transitions */
10964    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10965
10966    func_params.f_obj = &sc->func_obj;
10967    func_params.cmd = ECORE_F_CMD_START;
10968
10969    /* Function parameters */
10970    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10971    start_params->sd_vlan_tag = OVLAN(sc);
10972
10973    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10974        start_params->network_cos_mode = STATIC_COS;
10975    } else { /* CHIP_IS_E1X */
10976        start_params->network_cos_mode = FW_WRR;
10977    }
10978
10979    start_params->gre_tunnel_mode = 0;
10980    start_params->gre_tunnel_rss  = 0;
10981
10982    return (ecore_func_state_change(sc, &func_params));
10983}
10984
10985static int
10986bxe_set_power_state(struct bxe_softc *sc,
10987                    uint8_t          state)
10988{
10989    uint16_t pmcsr;
10990
10991    /* If there is no power capability, silently succeed */
10992    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10993        BLOGW(sc, "No power capability\n");
10994        return (0);
10995    }
10996
10997    pmcsr = pci_read_config(sc->dev,
10998                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10999                            2);
11000
11001    switch (state) {
11002    case PCI_PM_D0:
11003        pci_write_config(sc->dev,
11004                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11005                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11006
11007        if (pmcsr & PCIM_PSTAT_DMASK) {
11008            /* delay required during transition out of D3hot */
11009            DELAY(20000);
11010        }
11011
11012        break;
11013
11014    case PCI_PM_D3hot:
11015        /* XXX if there are other clients above don't shut down the power */
11016
11017        /* don't shut down the power for emulation and FPGA */
11018        if (CHIP_REV_IS_SLOW(sc)) {
11019            return (0);
11020        }
11021
11022        pmcsr &= ~PCIM_PSTAT_DMASK;
11023        pmcsr |= PCIM_PSTAT_D3;
11024
11025        if (sc->wol) {
11026            pmcsr |= PCIM_PSTAT_PMEENABLE;
11027        }
11028
11029        pci_write_config(sc->dev,
11030                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11031                         pmcsr, 4);
11032
11033        /*
11034         * No more memory access after this point until device is brought back
11035         * to D0 state.
11036         */
11037        break;
11038
11039    default:
11040        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11041        return (-1);
11042    }
11043
11044    return (0);
11045}
11046
11047
11048/* return true if succeeded to acquire the lock */
11049static uint8_t
11050bxe_trylock_hw_lock(struct bxe_softc *sc,
11051                    uint32_t         resource)
11052{
11053    uint32_t lock_status;
11054    uint32_t resource_bit = (1 << resource);
11055    int func = SC_FUNC(sc);
11056    uint32_t hw_lock_control_reg;
11057
11058    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11059
11060    /* Validating that the resource is within range */
11061    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11062        BLOGD(sc, DBG_LOAD,
11063              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11064              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11065        return (FALSE);
11066    }
11067
11068    if (func <= 5) {
11069        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11070    } else {
11071        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11072    }
11073
11074    /* try to acquire the lock */
11075    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11076    lock_status = REG_RD(sc, hw_lock_control_reg);
11077    if (lock_status & resource_bit) {
11078        return (TRUE);
11079    }
11080
11081    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11082
11083    return (FALSE);
11084}
11085
11086/*
11087 * Get the recovery leader resource id according to the engine this function
11088 * belongs to. Currently only only 2 engines is supported.
11089 */
11090static int
11091bxe_get_leader_lock_resource(struct bxe_softc *sc)
11092{
11093    if (SC_PATH(sc)) {
11094        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11095    } else {
11096        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11097    }
11098}
11099
11100/* try to acquire a leader lock for current engine */
11101static uint8_t
11102bxe_trylock_leader_lock(struct bxe_softc *sc)
11103{
11104    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11105}
11106
11107static int
11108bxe_release_leader_lock(struct bxe_softc *sc)
11109{
11110    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11111}
11112
11113/* close gates #2, #3 and #4 */
11114static void
11115bxe_set_234_gates(struct bxe_softc *sc,
11116                  uint8_t          close)
11117{
11118    uint32_t val;
11119
11120    /* gates #2 and #4a are closed/opened for "not E1" only */
11121    if (!CHIP_IS_E1(sc)) {
11122        /* #4 */
11123        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11124        /* #2 */
11125        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11126    }
11127
11128    /* #3 */
11129    if (CHIP_IS_E1x(sc)) {
11130        /* prevent interrupts from HC on both ports */
11131        val = REG_RD(sc, HC_REG_CONFIG_1);
11132        REG_WR(sc, HC_REG_CONFIG_1,
11133               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11134               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11135
11136        val = REG_RD(sc, HC_REG_CONFIG_0);
11137        REG_WR(sc, HC_REG_CONFIG_0,
11138               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11139               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11140    } else {
11141        /* Prevent incomming interrupts in IGU */
11142        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11143
11144        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11145               (!close) ?
11146               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11147               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11148    }
11149
11150    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11151          close ? "closing" : "opening");
11152
11153    wmb();
11154}
11155
11156/* poll for pending writes bit, it should get cleared in no more than 1s */
11157static int
11158bxe_er_poll_igu_vq(struct bxe_softc *sc)
11159{
11160    uint32_t cnt = 1000;
11161    uint32_t pend_bits = 0;
11162
11163    do {
11164        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11165
11166        if (pend_bits == 0) {
11167            break;
11168        }
11169
11170        DELAY(1000);
11171    } while (--cnt > 0);
11172
11173    if (cnt == 0) {
11174        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11175        return (-1);
11176    }
11177
11178    return (0);
11179}
11180
11181#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11182
11183static void
11184bxe_clp_reset_prep(struct bxe_softc *sc,
11185                   uint32_t         *magic_val)
11186{
11187    /* Do some magic... */
11188    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11189    *magic_val = val & SHARED_MF_CLP_MAGIC;
11190    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11191}
11192
11193/* restore the value of the 'magic' bit */
11194static void
11195bxe_clp_reset_done(struct bxe_softc *sc,
11196                   uint32_t         magic_val)
11197{
11198    /* Restore the 'magic' bit value... */
11199    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11200    MFCFG_WR(sc, shared_mf_config.clp_mb,
11201              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11202}
11203
11204/* prepare for MCP reset, takes care of CLP configurations */
11205static void
11206bxe_reset_mcp_prep(struct bxe_softc *sc,
11207                   uint32_t         *magic_val)
11208{
11209    uint32_t shmem;
11210    uint32_t validity_offset;
11211
11212    /* set `magic' bit in order to save MF config */
11213    if (!CHIP_IS_E1(sc)) {
11214        bxe_clp_reset_prep(sc, magic_val);
11215    }
11216
11217    /* get shmem offset */
11218    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11219    validity_offset =
11220        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11221
11222    /* Clear validity map flags */
11223    if (shmem > 0) {
11224        REG_WR(sc, shmem + validity_offset, 0);
11225    }
11226}
11227
11228#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11229#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11230
11231static void
11232bxe_mcp_wait_one(struct bxe_softc *sc)
11233{
11234    /* special handling for emulation and FPGA (10 times longer) */
11235    if (CHIP_REV_IS_SLOW(sc)) {
11236        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11237    } else {
11238        DELAY((MCP_ONE_TIMEOUT) * 1000);
11239    }
11240}
11241
11242/* initialize shmem_base and waits for validity signature to appear */
11243static int
11244bxe_init_shmem(struct bxe_softc *sc)
11245{
11246    int cnt = 0;
11247    uint32_t val = 0;
11248
11249    do {
11250        sc->devinfo.shmem_base     =
11251        sc->link_params.shmem_base =
11252            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11253
11254        if (sc->devinfo.shmem_base) {
11255            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11256            if (val & SHR_MEM_VALIDITY_MB)
11257                return (0);
11258        }
11259
11260        bxe_mcp_wait_one(sc);
11261
11262    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11263
11264    BLOGE(sc, "BAD MCP validity signature\n");
11265
11266    return (-1);
11267}
11268
11269static int
11270bxe_reset_mcp_comp(struct bxe_softc *sc,
11271                   uint32_t         magic_val)
11272{
11273    int rc = bxe_init_shmem(sc);
11274
11275    /* Restore the `magic' bit value */
11276    if (!CHIP_IS_E1(sc)) {
11277        bxe_clp_reset_done(sc, magic_val);
11278    }
11279
11280    return (rc);
11281}
11282
11283static void
11284bxe_pxp_prep(struct bxe_softc *sc)
11285{
11286    if (!CHIP_IS_E1(sc)) {
11287        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11288        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11289        wmb();
11290    }
11291}
11292
11293/*
11294 * Reset the whole chip except for:
11295 *      - PCIE core
11296 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11297 *      - IGU
11298 *      - MISC (including AEU)
11299 *      - GRC
11300 *      - RBCN, RBCP
11301 */
11302static void
11303bxe_process_kill_chip_reset(struct bxe_softc *sc,
11304                            uint8_t          global)
11305{
11306    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11307    uint32_t global_bits2, stay_reset2;
11308
11309    /*
11310     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11311     * (per chip) blocks.
11312     */
11313    global_bits2 =
11314        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11315        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11316
11317    /*
11318     * Don't reset the following blocks.
11319     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11320     *            reset, as in 4 port device they might still be owned
11321     *            by the MCP (there is only one leader per path).
11322     */
11323    not_reset_mask1 =
11324        MISC_REGISTERS_RESET_REG_1_RST_HC |
11325        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11326        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11327
11328    not_reset_mask2 =
11329        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11330        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11331        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11332        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11333        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11334        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11335        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11336        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11337        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11338        MISC_REGISTERS_RESET_REG_2_PGLC |
11339        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11340        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11341        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11342        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11343        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11344        MISC_REGISTERS_RESET_REG_2_UMAC1;
11345
11346    /*
11347     * Keep the following blocks in reset:
11348     *  - all xxMACs are handled by the elink code.
11349     */
11350    stay_reset2 =
11351        MISC_REGISTERS_RESET_REG_2_XMAC |
11352        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11353
11354    /* Full reset masks according to the chip */
11355    reset_mask1 = 0xffffffff;
11356
11357    if (CHIP_IS_E1(sc))
11358        reset_mask2 = 0xffff;
11359    else if (CHIP_IS_E1H(sc))
11360        reset_mask2 = 0x1ffff;
11361    else if (CHIP_IS_E2(sc))
11362        reset_mask2 = 0xfffff;
11363    else /* CHIP_IS_E3 */
11364        reset_mask2 = 0x3ffffff;
11365
11366    /* Don't reset global blocks unless we need to */
11367    if (!global)
11368        reset_mask2 &= ~global_bits2;
11369
11370    /*
11371     * In case of attention in the QM, we need to reset PXP
11372     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11373     * because otherwise QM reset would release 'close the gates' shortly
11374     * before resetting the PXP, then the PSWRQ would send a write
11375     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11376     * read the payload data from PSWWR, but PSWWR would not
11377     * respond. The write queue in PGLUE would stuck, dmae commands
11378     * would not return. Therefore it's important to reset the second
11379     * reset register (containing the
11380     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11381     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11382     * bit).
11383     */
11384    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11385           reset_mask2 & (~not_reset_mask2));
11386
11387    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11388           reset_mask1 & (~not_reset_mask1));
11389
11390    mb();
11391    wmb();
11392
11393    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11394           reset_mask2 & (~stay_reset2));
11395
11396    mb();
11397    wmb();
11398
11399    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11400    wmb();
11401}
11402
11403static int
11404bxe_process_kill(struct bxe_softc *sc,
11405                 uint8_t          global)
11406{
11407    int cnt = 1000;
11408    uint32_t val = 0;
11409    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11410    uint32_t tags_63_32 = 0;
11411
11412    /* Empty the Tetris buffer, wait for 1s */
11413    do {
11414        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11415        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11416        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11417        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11418        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11419        if (CHIP_IS_E3(sc)) {
11420            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11421        }
11422
11423        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11424            ((port_is_idle_0 & 0x1) == 0x1) &&
11425            ((port_is_idle_1 & 0x1) == 0x1) &&
11426            (pgl_exp_rom2 == 0xffffffff) &&
11427            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11428            break;
11429        DELAY(1000);
11430    } while (cnt-- > 0);
11431
11432    if (cnt <= 0) {
11433        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11434                  "are still outstanding read requests after 1s! "
11435                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11436                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11437              sr_cnt, blk_cnt, port_is_idle_0,
11438              port_is_idle_1, pgl_exp_rom2);
11439        return (-1);
11440    }
11441
11442    mb();
11443
11444    /* Close gates #2, #3 and #4 */
11445    bxe_set_234_gates(sc, TRUE);
11446
11447    /* Poll for IGU VQs for 57712 and newer chips */
11448    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11449        return (-1);
11450    }
11451
11452    /* XXX indicate that "process kill" is in progress to MCP */
11453
11454    /* clear "unprepared" bit */
11455    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11456    mb();
11457
11458    /* Make sure all is written to the chip before the reset */
11459    wmb();
11460
11461    /*
11462     * Wait for 1ms to empty GLUE and PCI-E core queues,
11463     * PSWHST, GRC and PSWRD Tetris buffer.
11464     */
11465    DELAY(1000);
11466
11467    /* Prepare to chip reset: */
11468    /* MCP */
11469    if (global) {
11470        bxe_reset_mcp_prep(sc, &val);
11471    }
11472
11473    /* PXP */
11474    bxe_pxp_prep(sc);
11475    mb();
11476
11477    /* reset the chip */
11478    bxe_process_kill_chip_reset(sc, global);
11479    mb();
11480
11481    /* clear errors in PGB */
11482    if (!CHIP_IS_E1(sc))
11483        REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11484
11485    /* Recover after reset: */
11486    /* MCP */
11487    if (global && bxe_reset_mcp_comp(sc, val)) {
11488        return (-1);
11489    }
11490
11491    /* XXX add resetting the NO_MCP mode DB here */
11492
11493    /* Open the gates #2, #3 and #4 */
11494    bxe_set_234_gates(sc, FALSE);
11495
11496    /* XXX
11497     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11498     * re-enable attentions
11499     */
11500
11501    return (0);
11502}
11503
11504static int
11505bxe_leader_reset(struct bxe_softc *sc)
11506{
11507    int rc = 0;
11508    uint8_t global = bxe_reset_is_global(sc);
11509    uint32_t load_code;
11510
11511    /*
11512     * If not going to reset MCP, load "fake" driver to reset HW while
11513     * driver is owner of the HW.
11514     */
11515    if (!global && !BXE_NOMCP(sc)) {
11516        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11517                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11518        if (!load_code) {
11519            BLOGE(sc, "MCP response failure, aborting\n");
11520            rc = -1;
11521            goto exit_leader_reset;
11522        }
11523
11524        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11525            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11526            BLOGE(sc, "MCP unexpected response, aborting\n");
11527            rc = -1;
11528            goto exit_leader_reset2;
11529        }
11530
11531        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11532        if (!load_code) {
11533            BLOGE(sc, "MCP response failure, aborting\n");
11534            rc = -1;
11535            goto exit_leader_reset2;
11536        }
11537    }
11538
11539    /* try to recover after the failure */
11540    if (bxe_process_kill(sc, global)) {
11541        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11542        rc = -1;
11543        goto exit_leader_reset2;
11544    }
11545
11546    /*
11547     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11548     * state.
11549     */
11550    bxe_set_reset_done(sc);
11551    if (global) {
11552        bxe_clear_reset_global(sc);
11553    }
11554
11555exit_leader_reset2:
11556
11557    /* unload "fake driver" if it was loaded */
11558    if (!global && !BXE_NOMCP(sc)) {
11559        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11560        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11561    }
11562
11563exit_leader_reset:
11564
11565    sc->is_leader = 0;
11566    bxe_release_leader_lock(sc);
11567
11568    mb();
11569    return (rc);
11570}
11571
11572/*
11573 * prepare INIT transition, parameters configured:
11574 *   - HC configuration
11575 *   - Queue's CDU context
11576 */
11577static void
11578bxe_pf_q_prep_init(struct bxe_softc               *sc,
11579                   struct bxe_fastpath            *fp,
11580                   struct ecore_queue_init_params *init_params)
11581{
11582    uint8_t cos;
11583    int cxt_index, cxt_offset;
11584
11585    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11586    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11587
11588    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11589    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11590
11591    /* HC rate */
11592    init_params->rx.hc_rate =
11593        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11594    init_params->tx.hc_rate =
11595        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11596
11597    /* FW SB ID */
11598    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11599
11600    /* CQ index among the SB indices */
11601    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11602    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11603
11604    /* set maximum number of COSs supported by this queue */
11605    init_params->max_cos = sc->max_cos;
11606
11607    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11608          fp->index, init_params->max_cos);
11609
11610    /* set the context pointers queue object */
11611    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11612        /* XXX change index/cid here if ever support multiple tx CoS */
11613        /* fp->txdata[cos]->cid */
11614        cxt_index = fp->index / ILT_PAGE_CIDS;
11615        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11616        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11617    }
11618}
11619
11620/* set flags that are common for the Tx-only and not normal connections */
11621static unsigned long
11622bxe_get_common_flags(struct bxe_softc    *sc,
11623                     struct bxe_fastpath *fp,
11624                     uint8_t             zero_stats)
11625{
11626    unsigned long flags = 0;
11627
11628    /* PF driver will always initialize the Queue to an ACTIVE state */
11629    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11630
11631    /*
11632     * tx only connections collect statistics (on the same index as the
11633     * parent connection). The statistics are zeroed when the parent
11634     * connection is initialized.
11635     */
11636
11637    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11638    if (zero_stats) {
11639        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11640    }
11641
11642    /*
11643     * tx only connections can support tx-switching, though their
11644     * CoS-ness doesn't survive the loopback
11645     */
11646    if (sc->flags & BXE_TX_SWITCHING) {
11647        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11648    }
11649
11650    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11651
11652    return (flags);
11653}
11654
11655static unsigned long
11656bxe_get_q_flags(struct bxe_softc    *sc,
11657                struct bxe_fastpath *fp,
11658                uint8_t             leading)
11659{
11660    unsigned long flags = 0;
11661
11662    if (IS_MF_SD(sc)) {
11663        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11664    }
11665
11666    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11667        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11668        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11669#if 0
11670        if (fp->mode == TPA_MODE_GRO)
11671            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11672#endif
11673    }
11674
11675    if (leading) {
11676        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11677        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11678    }
11679
11680    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11681
11682#if 0
11683    /* configure silent vlan removal */
11684    if (IS_MF_AFEX(sc)) {
11685        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11686    }
11687#endif
11688
11689    /* merge with common flags */
11690    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11691}
11692
11693static void
11694bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11695                      struct bxe_fastpath               *fp,
11696                      struct ecore_general_setup_params *gen_init,
11697                      uint8_t                           cos)
11698{
11699    gen_init->stat_id = bxe_stats_id(fp);
11700    gen_init->spcl_id = fp->cl_id;
11701    gen_init->mtu = sc->mtu;
11702    gen_init->cos = cos;
11703}
11704
11705static void
11706bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11707                 struct bxe_fastpath           *fp,
11708                 struct rxq_pause_params       *pause,
11709                 struct ecore_rxq_setup_params *rxq_init)
11710{
11711    uint8_t max_sge = 0;
11712    uint16_t sge_sz = 0;
11713    uint16_t tpa_agg_size = 0;
11714
11715    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11716        pause->sge_th_lo = SGE_TH_LO(sc);
11717        pause->sge_th_hi = SGE_TH_HI(sc);
11718
11719        /* validate SGE ring has enough to cross high threshold */
11720        if (sc->dropless_fc &&
11721            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11722            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11723            BLOGW(sc, "sge ring threshold limit\n");
11724        }
11725
11726        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11727        tpa_agg_size = (2 * sc->mtu);
11728        if (tpa_agg_size < sc->max_aggregation_size) {
11729            tpa_agg_size = sc->max_aggregation_size;
11730        }
11731
11732        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11733        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11734                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11735        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11736    }
11737
11738    /* pause - not for e1 */
11739    if (!CHIP_IS_E1(sc)) {
11740        pause->bd_th_lo = BD_TH_LO(sc);
11741        pause->bd_th_hi = BD_TH_HI(sc);
11742
11743        pause->rcq_th_lo = RCQ_TH_LO(sc);
11744        pause->rcq_th_hi = RCQ_TH_HI(sc);
11745
11746        /* validate rings have enough entries to cross high thresholds */
11747        if (sc->dropless_fc &&
11748            pause->bd_th_hi + FW_PREFETCH_CNT >
11749            sc->rx_ring_size) {
11750            BLOGW(sc, "rx bd ring threshold limit\n");
11751        }
11752
11753        if (sc->dropless_fc &&
11754            pause->rcq_th_hi + FW_PREFETCH_CNT >
11755            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11756            BLOGW(sc, "rcq ring threshold limit\n");
11757        }
11758
11759        pause->pri_map = 1;
11760    }
11761
11762    /* rxq setup */
11763    rxq_init->dscr_map   = fp->rx_dma.paddr;
11764    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11765    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11766    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11767
11768    /*
11769     * This should be a maximum number of data bytes that may be
11770     * placed on the BD (not including paddings).
11771     */
11772    rxq_init->buf_sz = (fp->rx_buf_size -
11773                        IP_HEADER_ALIGNMENT_PADDING);
11774
11775    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11776    rxq_init->tpa_agg_sz      = tpa_agg_size;
11777    rxq_init->sge_buf_sz      = sge_sz;
11778    rxq_init->max_sges_pkt    = max_sge;
11779    rxq_init->rss_engine_id   = SC_FUNC(sc);
11780    rxq_init->mcast_engine_id = SC_FUNC(sc);
11781
11782    /*
11783     * Maximum number or simultaneous TPA aggregation for this Queue.
11784     * For PF Clients it should be the maximum available number.
11785     * VF driver(s) may want to define it to a smaller value.
11786     */
11787    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11788
11789    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11790    rxq_init->fw_sb_id = fp->fw_sb_id;
11791
11792    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11793
11794    /*
11795     * configure silent vlan removal
11796     * if multi function mode is afex, then mask default vlan
11797     */
11798    if (IS_MF_AFEX(sc)) {
11799        rxq_init->silent_removal_value =
11800            sc->devinfo.mf_info.afex_def_vlan_tag;
11801        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11802    }
11803}
11804
11805static void
11806bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11807                 struct bxe_fastpath           *fp,
11808                 struct ecore_txq_setup_params *txq_init,
11809                 uint8_t                       cos)
11810{
11811    /*
11812     * XXX If multiple CoS is ever supported then each fastpath structure
11813     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11814     * fp->txdata[cos]->tx_dma.paddr;
11815     */
11816    txq_init->dscr_map     = fp->tx_dma.paddr;
11817    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11818    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11819    txq_init->fw_sb_id     = fp->fw_sb_id;
11820
11821    /*
11822     * set the TSS leading client id for TX classfication to the
11823     * leading RSS client id
11824     */
11825    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11826}
11827
11828/*
11829 * This function performs 2 steps in a queue state machine:
11830 *   1) RESET->INIT
11831 *   2) INIT->SETUP
11832 */
11833static int
11834bxe_setup_queue(struct bxe_softc    *sc,
11835                struct bxe_fastpath *fp,
11836                uint8_t             leading)
11837{
11838    struct ecore_queue_state_params q_params = { NULL };
11839    struct ecore_queue_setup_params *setup_params =
11840                        &q_params.params.setup;
11841#if 0
11842    struct ecore_queue_setup_tx_only_params *tx_only_params =
11843                        &q_params.params.tx_only;
11844    uint8_t tx_index;
11845#endif
11846    int rc;
11847
11848    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11849
11850    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11851
11852    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11853
11854    /* we want to wait for completion in this context */
11855    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11856
11857    /* prepare the INIT parameters */
11858    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11859
11860    /* Set the command */
11861    q_params.cmd = ECORE_Q_CMD_INIT;
11862
11863    /* Change the state to INIT */
11864    rc = ecore_queue_state_change(sc, &q_params);
11865    if (rc) {
11866        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11867        return (rc);
11868    }
11869
11870    BLOGD(sc, DBG_LOAD, "init complete\n");
11871
11872    /* now move the Queue to the SETUP state */
11873    memset(setup_params, 0, sizeof(*setup_params));
11874
11875    /* set Queue flags */
11876    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11877
11878    /* set general SETUP parameters */
11879    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11880                          FIRST_TX_COS_INDEX);
11881
11882    bxe_pf_rx_q_prep(sc, fp,
11883                     &setup_params->pause_params,
11884                     &setup_params->rxq_params);
11885
11886    bxe_pf_tx_q_prep(sc, fp,
11887                     &setup_params->txq_params,
11888                     FIRST_TX_COS_INDEX);
11889
11890    /* Set the command */
11891    q_params.cmd = ECORE_Q_CMD_SETUP;
11892
11893    /* change the state to SETUP */
11894    rc = ecore_queue_state_change(sc, &q_params);
11895    if (rc) {
11896        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11897        return (rc);
11898    }
11899
11900#if 0
11901    /* loop through the relevant tx-only indices */
11902    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11903         tx_index < sc->max_cos;
11904         tx_index++) {
11905        /* prepare and send tx-only ramrod*/
11906        rc = bxe_setup_tx_only(sc, fp, &q_params,
11907                               tx_only_params, tx_index, leading);
11908        if (rc) {
11909            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11910                  fp->index, tx_index);
11911            return (rc);
11912        }
11913    }
11914#endif
11915
11916    return (rc);
11917}
11918
11919static int
11920bxe_setup_leading(struct bxe_softc *sc)
11921{
11922    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11923}
11924
11925static int
11926bxe_config_rss_pf(struct bxe_softc            *sc,
11927                  struct ecore_rss_config_obj *rss_obj,
11928                  uint8_t                     config_hash)
11929{
11930    struct ecore_config_rss_params params = { NULL };
11931    int i;
11932
11933    /*
11934     * Although RSS is meaningless when there is a single HW queue we
11935     * still need it enabled in order to have HW Rx hash generated.
11936     */
11937
11938    params.rss_obj = rss_obj;
11939
11940    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11941
11942    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11943
11944    /* RSS configuration */
11945    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11946    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11947    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11948    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11949    if (rss_obj->udp_rss_v4) {
11950        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11951    }
11952    if (rss_obj->udp_rss_v6) {
11953        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11954    }
11955
11956    /* Hash bits */
11957    params.rss_result_mask = MULTI_MASK;
11958
11959    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11960
11961    if (config_hash) {
11962        /* RSS keys */
11963        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11964            params.rss_key[i] = arc4random();
11965        }
11966
11967        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11968    }
11969
11970    return (ecore_config_rss(sc, &params));
11971}
11972
11973static int
11974bxe_config_rss_eth(struct bxe_softc *sc,
11975                   uint8_t          config_hash)
11976{
11977    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11978}
11979
11980static int
11981bxe_init_rss_pf(struct bxe_softc *sc)
11982{
11983    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11984    int i;
11985
11986    /*
11987     * Prepare the initial contents of the indirection table if
11988     * RSS is enabled
11989     */
11990    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11991        sc->rss_conf_obj.ind_table[i] =
11992            (sc->fp->cl_id + (i % num_eth_queues));
11993    }
11994
11995    if (sc->udp_rss) {
11996        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11997    }
11998
11999    /*
12000     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12001     * per-port, so if explicit configuration is needed, do it only
12002     * for a PMF.
12003     *
12004     * For 57712 and newer it's a per-function configuration.
12005     */
12006    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12007}
12008
12009static int
12010bxe_set_mac_one(struct bxe_softc          *sc,
12011                uint8_t                   *mac,
12012                struct ecore_vlan_mac_obj *obj,
12013                uint8_t                   set,
12014                int                       mac_type,
12015                unsigned long             *ramrod_flags)
12016{
12017    struct ecore_vlan_mac_ramrod_params ramrod_param;
12018    int rc;
12019
12020    memset(&ramrod_param, 0, sizeof(ramrod_param));
12021
12022    /* fill in general parameters */
12023    ramrod_param.vlan_mac_obj = obj;
12024    ramrod_param.ramrod_flags = *ramrod_flags;
12025
12026    /* fill a user request section if needed */
12027    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12028        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12029
12030        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12031
12032        /* Set the command: ADD or DEL */
12033        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12034                                            ECORE_VLAN_MAC_DEL;
12035    }
12036
12037    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12038
12039    if (rc == ECORE_EXISTS) {
12040        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12041        /* do not treat adding same MAC as error */
12042        rc = 0;
12043    } else if (rc < 0) {
12044        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12045    }
12046
12047    return (rc);
12048}
12049
12050static int
12051bxe_set_eth_mac(struct bxe_softc *sc,
12052                uint8_t          set)
12053{
12054    unsigned long ramrod_flags = 0;
12055
12056    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12057
12058    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12059
12060    /* Eth MAC is set on RSS leading client (fp[0]) */
12061    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12062                            &sc->sp_objs->mac_obj,
12063                            set, ECORE_ETH_MAC, &ramrod_flags));
12064}
12065
12066#if 0
12067static void
12068bxe_update_max_mf_config(struct bxe_softc *sc,
12069                         uint32_t         value)
12070{
12071    /* load old values */
12072    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12073
12074    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12075        /* leave all but MAX value */
12076        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12077
12078        /* set new MAX value */
12079        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12080                   FUNC_MF_CFG_MAX_BW_MASK);
12081
12082        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12083    }
12084}
12085#endif
12086
12087static int
12088bxe_get_cur_phy_idx(struct bxe_softc *sc)
12089{
12090    uint32_t sel_phy_idx = 0;
12091
12092    if (sc->link_params.num_phys <= 1) {
12093        return (ELINK_INT_PHY);
12094    }
12095
12096    if (sc->link_vars.link_up) {
12097        sel_phy_idx = ELINK_EXT_PHY1;
12098        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12099        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12100            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12101             ELINK_SUPPORTED_FIBRE))
12102            sel_phy_idx = ELINK_EXT_PHY2;
12103    } else {
12104        switch (elink_phy_selection(&sc->link_params)) {
12105        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12106        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12107        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12108               sel_phy_idx = ELINK_EXT_PHY1;
12109               break;
12110        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12111        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12112               sel_phy_idx = ELINK_EXT_PHY2;
12113               break;
12114        }
12115    }
12116
12117    return (sel_phy_idx);
12118}
12119
12120static int
12121bxe_get_link_cfg_idx(struct bxe_softc *sc)
12122{
12123    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12124
12125    /*
12126     * The selected activated PHY is always after swapping (in case PHY
12127     * swapping is enabled). So when swapping is enabled, we need to reverse
12128     * the configuration
12129     */
12130
12131    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12132        if (sel_phy_idx == ELINK_EXT_PHY1)
12133            sel_phy_idx = ELINK_EXT_PHY2;
12134        else if (sel_phy_idx == ELINK_EXT_PHY2)
12135            sel_phy_idx = ELINK_EXT_PHY1;
12136    }
12137
12138    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12139}
12140
12141static void
12142bxe_set_requested_fc(struct bxe_softc *sc)
12143{
12144    /*
12145     * Initialize link parameters structure variables
12146     * It is recommended to turn off RX FC for jumbo frames
12147     * for better performance
12148     */
12149    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12150        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12151    } else {
12152        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12153    }
12154}
12155
12156static void
12157bxe_calc_fc_adv(struct bxe_softc *sc)
12158{
12159    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12160    switch (sc->link_vars.ieee_fc &
12161            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12162    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12163    default:
12164        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12165                                           ADVERTISED_Pause);
12166        break;
12167
12168    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12169        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12170                                          ADVERTISED_Pause);
12171        break;
12172
12173    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12174        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12175        break;
12176    }
12177}
12178
12179static uint16_t
12180bxe_get_mf_speed(struct bxe_softc *sc)
12181{
12182    uint16_t line_speed = sc->link_vars.line_speed;
12183    if (IS_MF(sc)) {
12184        uint16_t maxCfg =
12185            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12186
12187        /* calculate the current MAX line speed limit for the MF devices */
12188        if (IS_MF_SI(sc)) {
12189            line_speed = (line_speed * maxCfg) / 100;
12190        } else { /* SD mode */
12191            uint16_t vn_max_rate = maxCfg * 100;
12192
12193            if (vn_max_rate < line_speed) {
12194                line_speed = vn_max_rate;
12195            }
12196        }
12197    }
12198
12199    return (line_speed);
12200}
12201
12202static void
12203bxe_fill_report_data(struct bxe_softc            *sc,
12204                     struct bxe_link_report_data *data)
12205{
12206    uint16_t line_speed = bxe_get_mf_speed(sc);
12207
12208    memset(data, 0, sizeof(*data));
12209
12210    /* fill the report data with the effective line speed */
12211    data->line_speed = line_speed;
12212
12213    /* Link is down */
12214    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12215        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12216    }
12217
12218    /* Full DUPLEX */
12219    if (sc->link_vars.duplex == DUPLEX_FULL) {
12220        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12221    }
12222
12223    /* Rx Flow Control is ON */
12224    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12225        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12226    }
12227
12228    /* Tx Flow Control is ON */
12229    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12230        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12231    }
12232}
12233
12234/* report link status to OS, should be called under phy_lock */
12235static void
12236bxe_link_report_locked(struct bxe_softc *sc)
12237{
12238    struct bxe_link_report_data cur_data;
12239
12240    /* reread mf_cfg */
12241    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12242        bxe_read_mf_cfg(sc);
12243    }
12244
12245    /* Read the current link report info */
12246    bxe_fill_report_data(sc, &cur_data);
12247
12248    /* Don't report link down or exactly the same link status twice */
12249    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12250        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12251                      &sc->last_reported_link.link_report_flags) &&
12252         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12253                      &cur_data.link_report_flags))) {
12254        return;
12255    }
12256
12257    sc->link_cnt++;
12258
12259    /* report new link params and remember the state for the next time */
12260    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12261
12262    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12263                     &cur_data.link_report_flags)) {
12264        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12265        BLOGI(sc, "NIC Link is Down\n");
12266    } else {
12267        const char *duplex;
12268        const char *flow;
12269
12270        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12271                                   &cur_data.link_report_flags)) {
12272            duplex = "full";
12273        } else {
12274            duplex = "half";
12275        }
12276
12277        /*
12278         * Handle the FC at the end so that only these flags would be
12279         * possibly set. This way we may easily check if there is no FC
12280         * enabled.
12281         */
12282        if (cur_data.link_report_flags) {
12283            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12284                             &cur_data.link_report_flags) &&
12285                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12286                             &cur_data.link_report_flags)) {
12287                flow = "ON - receive & transmit";
12288            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12289                                    &cur_data.link_report_flags) &&
12290                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12291                                     &cur_data.link_report_flags)) {
12292                flow = "ON - receive";
12293            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12294                                     &cur_data.link_report_flags) &&
12295                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12296                                    &cur_data.link_report_flags)) {
12297                flow = "ON - transmit";
12298            } else {
12299                flow = "none"; /* possible? */
12300            }
12301        } else {
12302            flow = "none";
12303        }
12304
12305        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12306        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12307              cur_data.line_speed, duplex, flow);
12308    }
12309}
12310
12311static void
12312bxe_link_report(struct bxe_softc *sc)
12313{
12314    BXE_PHY_LOCK(sc);
12315    bxe_link_report_locked(sc);
12316    BXE_PHY_UNLOCK(sc);
12317}
12318
12319static void
12320bxe_link_status_update(struct bxe_softc *sc)
12321{
12322    if (sc->state != BXE_STATE_OPEN) {
12323        return;
12324    }
12325
12326#if 0
12327    /* read updated dcb configuration */
12328    if (IS_PF(sc))
12329        bxe_dcbx_pmf_update(sc);
12330#endif
12331
12332    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12333        elink_link_status_update(&sc->link_params, &sc->link_vars);
12334    } else {
12335        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12336                                  ELINK_SUPPORTED_10baseT_Full |
12337                                  ELINK_SUPPORTED_100baseT_Half |
12338                                  ELINK_SUPPORTED_100baseT_Full |
12339                                  ELINK_SUPPORTED_1000baseT_Full |
12340                                  ELINK_SUPPORTED_2500baseX_Full |
12341                                  ELINK_SUPPORTED_10000baseT_Full |
12342                                  ELINK_SUPPORTED_TP |
12343                                  ELINK_SUPPORTED_FIBRE |
12344                                  ELINK_SUPPORTED_Autoneg |
12345                                  ELINK_SUPPORTED_Pause |
12346                                  ELINK_SUPPORTED_Asym_Pause);
12347        sc->port.advertising[0] = sc->port.supported[0];
12348
12349        sc->link_params.sc                = sc;
12350        sc->link_params.port              = SC_PORT(sc);
12351        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12352        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12353        sc->link_params.req_line_speed[0] = SPEED_10000;
12354        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12355        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12356
12357        if (CHIP_REV_IS_FPGA(sc)) {
12358            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12359            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12360            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12361                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12362        } else {
12363            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12364            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12365            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12366                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12367        }
12368
12369        sc->link_vars.link_up = 1;
12370
12371        sc->link_vars.duplex    = DUPLEX_FULL;
12372        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12373
12374        if (IS_PF(sc)) {
12375            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12376            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12377            bxe_link_report(sc);
12378        }
12379    }
12380
12381    if (IS_PF(sc)) {
12382        if (sc->link_vars.link_up) {
12383            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12384        } else {
12385            bxe_stats_handle(sc, STATS_EVENT_STOP);
12386        }
12387        bxe_link_report(sc);
12388    } else {
12389        bxe_link_report(sc);
12390        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12391    }
12392}
12393
12394static int
12395bxe_initial_phy_init(struct bxe_softc *sc,
12396                     int              load_mode)
12397{
12398    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12399    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12400    struct elink_params *lp = &sc->link_params;
12401
12402    bxe_set_requested_fc(sc);
12403
12404    if (CHIP_REV_IS_SLOW(sc)) {
12405        uint32_t bond = CHIP_BOND_ID(sc);
12406        uint32_t feat = 0;
12407
12408        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12409            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12410        } else if (bond & 0x4) {
12411            if (CHIP_IS_E3(sc)) {
12412                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12413            } else {
12414                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12415            }
12416        } else if (bond & 0x8) {
12417            if (CHIP_IS_E3(sc)) {
12418                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12419            } else {
12420                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12421            }
12422        }
12423
12424        /* disable EMAC for E3 and above */
12425        if (bond & 0x2) {
12426            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12427        }
12428
12429        sc->link_params.feature_config_flags |= feat;
12430    }
12431
12432    BXE_PHY_LOCK(sc);
12433
12434    if (load_mode == LOAD_DIAG) {
12435        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12436        /* Prefer doing PHY loopback at 10G speed, if possible */
12437        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12438            if (lp->speed_cap_mask[cfg_idx] &
12439                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12440                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12441            } else {
12442                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12443            }
12444        }
12445    }
12446
12447    if (load_mode == LOAD_LOOPBACK_EXT) {
12448        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12449    }
12450
12451    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12452
12453    BXE_PHY_UNLOCK(sc);
12454
12455    bxe_calc_fc_adv(sc);
12456
12457    if (sc->link_vars.link_up) {
12458        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12459        bxe_link_report(sc);
12460    }
12461
12462    if (!CHIP_REV_IS_SLOW(sc)) {
12463        bxe_periodic_start(sc);
12464    }
12465
12466    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12467    return (rc);
12468}
12469
12470/* must be called under IF_ADDR_LOCK */
12471static int
12472bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12473                         struct ecore_mcast_ramrod_params *p)
12474{
12475    struct ifnet *ifp = sc->ifnet;
12476    int mc_count = 0;
12477    struct ifmultiaddr *ifma;
12478    struct ecore_mcast_list_elem *mc_mac;
12479
12480    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12481        if (ifma->ifma_addr->sa_family != AF_LINK) {
12482            continue;
12483        }
12484
12485        mc_count++;
12486    }
12487
12488    ECORE_LIST_INIT(&p->mcast_list);
12489    p->mcast_list_len = 0;
12490
12491    if (!mc_count) {
12492        return (0);
12493    }
12494
12495    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12496                    (M_NOWAIT | M_ZERO));
12497    if (!mc_mac) {
12498        BLOGE(sc, "Failed to allocate temp mcast list\n");
12499        return (-1);
12500    }
12501
12502    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12503        if (ifma->ifma_addr->sa_family != AF_LINK) {
12504            continue;
12505        }
12506
12507        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12508        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12509
12510        BLOGD(sc, DBG_LOAD,
12511              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12512              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12513              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12514
12515        mc_mac++;
12516    }
12517
12518    p->mcast_list_len = mc_count;
12519
12520    return (0);
12521}
12522
12523static void
12524bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12525{
12526    struct ecore_mcast_list_elem *mc_mac =
12527        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12528                               struct ecore_mcast_list_elem,
12529                               link);
12530
12531    if (mc_mac) {
12532        /* only a single free as all mc_macs are in the same heap array */
12533        free(mc_mac, M_DEVBUF);
12534    }
12535}
12536
12537static int
12538bxe_set_mc_list(struct bxe_softc *sc)
12539{
12540    struct ecore_mcast_ramrod_params rparam = { NULL };
12541    int rc = 0;
12542
12543    rparam.mcast_obj = &sc->mcast_obj;
12544
12545    BXE_MCAST_LOCK(sc);
12546
12547    /* first, clear all configured multicast MACs */
12548    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12549    if (rc < 0) {
12550        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12551        return (rc);
12552    }
12553
12554    /* configure a new MACs list */
12555    rc = bxe_init_mcast_macs_list(sc, &rparam);
12556    if (rc) {
12557        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12558        BXE_MCAST_UNLOCK(sc);
12559        return (rc);
12560    }
12561
12562    /* Now add the new MACs */
12563    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12564    if (rc < 0) {
12565        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12566    }
12567
12568    bxe_free_mcast_macs_list(&rparam);
12569
12570    BXE_MCAST_UNLOCK(sc);
12571
12572    return (rc);
12573}
12574
12575static int
12576bxe_set_uc_list(struct bxe_softc *sc)
12577{
12578    struct ifnet *ifp = sc->ifnet;
12579    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12580    struct ifaddr *ifa;
12581    unsigned long ramrod_flags = 0;
12582    int rc;
12583
12584#if __FreeBSD_version < 800000
12585    IF_ADDR_LOCK(ifp);
12586#else
12587    if_addr_rlock(ifp);
12588#endif
12589
12590    /* first schedule a cleanup up of old configuration */
12591    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12592    if (rc < 0) {
12593        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12594#if __FreeBSD_version < 800000
12595        IF_ADDR_UNLOCK(ifp);
12596#else
12597        if_addr_runlock(ifp);
12598#endif
12599        return (rc);
12600    }
12601
12602    ifa = ifp->if_addr;
12603    while (ifa) {
12604        if (ifa->ifa_addr->sa_family != AF_LINK) {
12605            ifa = TAILQ_NEXT(ifa, ifa_link);
12606            continue;
12607        }
12608
12609        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12610                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12611        if (rc == -EEXIST) {
12612            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12613            /* do not treat adding same MAC as an error */
12614            rc = 0;
12615        } else if (rc < 0) {
12616            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12617#if __FreeBSD_version < 800000
12618            IF_ADDR_UNLOCK(ifp);
12619#else
12620            if_addr_runlock(ifp);
12621#endif
12622            return (rc);
12623        }
12624
12625        ifa = TAILQ_NEXT(ifa, ifa_link);
12626    }
12627
12628#if __FreeBSD_version < 800000
12629    IF_ADDR_UNLOCK(ifp);
12630#else
12631    if_addr_runlock(ifp);
12632#endif
12633
12634    /* Execute the pending commands */
12635    bit_set(&ramrod_flags, RAMROD_CONT);
12636    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12637                            ECORE_UC_LIST_MAC, &ramrod_flags));
12638}
12639
12640static void
12641bxe_handle_rx_mode_tq(void *context,
12642                      int  pending)
12643{
12644    struct bxe_softc *sc = (struct bxe_softc *)context;
12645    struct ifnet *ifp = sc->ifnet;
12646    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12647
12648    BXE_CORE_LOCK(sc);
12649
12650    if (sc->state != BXE_STATE_OPEN) {
12651        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12652        BXE_CORE_UNLOCK(sc);
12653        return;
12654    }
12655
12656    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12657
12658    if (ifp->if_flags & IFF_PROMISC) {
12659        rx_mode = BXE_RX_MODE_PROMISC;
12660    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12661               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12662                CHIP_IS_E1(sc))) {
12663        rx_mode = BXE_RX_MODE_ALLMULTI;
12664    } else {
12665        if (IS_PF(sc)) {
12666            /* some multicasts */
12667            if (bxe_set_mc_list(sc) < 0) {
12668                rx_mode = BXE_RX_MODE_ALLMULTI;
12669            }
12670            if (bxe_set_uc_list(sc) < 0) {
12671                rx_mode = BXE_RX_MODE_PROMISC;
12672            }
12673        }
12674#if 0
12675        else {
12676            /*
12677             * Configuring mcast to a VF involves sleeping (when we
12678             * wait for the PF's response). Since this function is
12679             * called from a non sleepable context we must schedule
12680             * a work item for this purpose
12681             */
12682            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12683            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12684        }
12685#endif
12686    }
12687
12688    sc->rx_mode = rx_mode;
12689
12690    /* schedule the rx_mode command */
12691    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12692        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12693        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12694        BXE_CORE_UNLOCK(sc);
12695        return;
12696    }
12697
12698    if (IS_PF(sc)) {
12699        bxe_set_storm_rx_mode(sc);
12700    }
12701#if 0
12702    else {
12703        /*
12704         * Configuring mcast to a VF involves sleeping (when we
12705         * wait for the PF's response). Since this function is
12706         * called from a non sleepable context we must schedule
12707         * a work item for this purpose
12708         */
12709        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12710        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12711    }
12712#endif
12713
12714    BXE_CORE_UNLOCK(sc);
12715}
12716
12717static void
12718bxe_set_rx_mode(struct bxe_softc *sc)
12719{
12720    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12721}
12722
12723/* update flags in shmem */
12724static void
12725bxe_update_drv_flags(struct bxe_softc *sc,
12726                     uint32_t         flags,
12727                     uint32_t         set)
12728{
12729    uint32_t drv_flags;
12730
12731    if (SHMEM2_HAS(sc, drv_flags)) {
12732        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12733        drv_flags = SHMEM2_RD(sc, drv_flags);
12734
12735        if (set) {
12736            SET_FLAGS(drv_flags, flags);
12737        } else {
12738            RESET_FLAGS(drv_flags, flags);
12739        }
12740
12741        SHMEM2_WR(sc, drv_flags, drv_flags);
12742        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12743
12744        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12745    }
12746}
12747
12748/* periodic timer callout routine, only runs when the interface is up */
12749
12750static void
12751bxe_periodic_callout_func(void *xsc)
12752{
12753    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12754    int i;
12755
12756    if (!BXE_CORE_TRYLOCK(sc)) {
12757        /* just bail and try again next time */
12758
12759        if ((sc->state == BXE_STATE_OPEN) &&
12760            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12761            /* schedule the next periodic callout */
12762            callout_reset(&sc->periodic_callout, hz,
12763                          bxe_periodic_callout_func, sc);
12764        }
12765
12766        return;
12767    }
12768
12769    if ((sc->state != BXE_STATE_OPEN) ||
12770        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12771        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12772        BXE_CORE_UNLOCK(sc);
12773        return;
12774    }
12775
12776    /* Check for TX timeouts on any fastpath. */
12777    FOR_EACH_QUEUE(sc, i) {
12778        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12779            /* Ruh-Roh, chip was reset! */
12780            break;
12781        }
12782    }
12783
12784    if (!CHIP_REV_IS_SLOW(sc)) {
12785        /*
12786         * This barrier is needed to ensure the ordering between the writing
12787         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12788         * the reading here.
12789         */
12790        mb();
12791        if (sc->port.pmf) {
12792            BXE_PHY_LOCK(sc);
12793            elink_period_func(&sc->link_params, &sc->link_vars);
12794            BXE_PHY_UNLOCK(sc);
12795        }
12796    }
12797
12798    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12799        int mb_idx = SC_FW_MB_IDX(sc);
12800        uint32_t drv_pulse;
12801        uint32_t mcp_pulse;
12802
12803        ++sc->fw_drv_pulse_wr_seq;
12804        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12805
12806        drv_pulse = sc->fw_drv_pulse_wr_seq;
12807        bxe_drv_pulse(sc);
12808
12809        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12810                     MCP_PULSE_SEQ_MASK);
12811
12812        /*
12813         * The delta between driver pulse and mcp response should
12814         * be 1 (before mcp response) or 0 (after mcp response).
12815         */
12816        if ((drv_pulse != mcp_pulse) &&
12817            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12818            /* someone lost a heartbeat... */
12819            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12820                  drv_pulse, mcp_pulse);
12821        }
12822    }
12823
12824    /* state is BXE_STATE_OPEN */
12825    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12826
12827#if 0
12828    /* sample VF bulletin board for new posts from PF */
12829    if (IS_VF(sc)) {
12830        bxe_sample_bulletin(sc);
12831    }
12832#endif
12833
12834    BXE_CORE_UNLOCK(sc);
12835
12836    if ((sc->state == BXE_STATE_OPEN) &&
12837        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12838        /* schedule the next periodic callout */
12839        callout_reset(&sc->periodic_callout, hz,
12840                      bxe_periodic_callout_func, sc);
12841    }
12842}
12843
12844static void
12845bxe_periodic_start(struct bxe_softc *sc)
12846{
12847    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12848    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12849}
12850
12851static void
12852bxe_periodic_stop(struct bxe_softc *sc)
12853{
12854    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12855    callout_drain(&sc->periodic_callout);
12856}
12857
12858/* start the controller */
12859static __noinline int
12860bxe_nic_load(struct bxe_softc *sc,
12861             int              load_mode)
12862{
12863    uint32_t val;
12864    int load_code = 0;
12865    int i, rc = 0;
12866
12867    BXE_CORE_LOCK_ASSERT(sc);
12868
12869    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12870
12871    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12872
12873    if (IS_PF(sc)) {
12874        /* must be called before memory allocation and HW init */
12875        bxe_ilt_set_info(sc);
12876    }
12877
12878    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12879
12880    bxe_set_fp_rx_buf_size(sc);
12881
12882    if (bxe_alloc_fp_buffers(sc) != 0) {
12883        BLOGE(sc, "Failed to allocate fastpath memory\n");
12884        sc->state = BXE_STATE_CLOSED;
12885        rc = ENOMEM;
12886        goto bxe_nic_load_error0;
12887    }
12888
12889    if (bxe_alloc_mem(sc) != 0) {
12890        sc->state = BXE_STATE_CLOSED;
12891        rc = ENOMEM;
12892        goto bxe_nic_load_error0;
12893    }
12894
12895    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12896        sc->state = BXE_STATE_CLOSED;
12897        rc = ENOMEM;
12898        goto bxe_nic_load_error0;
12899    }
12900
12901    if (IS_PF(sc)) {
12902        /* set pf load just before approaching the MCP */
12903        bxe_set_pf_load(sc);
12904
12905        /* if MCP exists send load request and analyze response */
12906        if (!BXE_NOMCP(sc)) {
12907            /* attempt to load pf */
12908            if (bxe_nic_load_request(sc, &load_code) != 0) {
12909                sc->state = BXE_STATE_CLOSED;
12910                rc = ENXIO;
12911                goto bxe_nic_load_error1;
12912            }
12913
12914            /* what did the MCP say? */
12915            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12916                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12917                sc->state = BXE_STATE_CLOSED;
12918                rc = ENXIO;
12919                goto bxe_nic_load_error2;
12920            }
12921        } else {
12922            BLOGI(sc, "Device has no MCP!\n");
12923            load_code = bxe_nic_load_no_mcp(sc);
12924        }
12925
12926        /* mark PMF if applicable */
12927        bxe_nic_load_pmf(sc, load_code);
12928
12929        /* Init Function state controlling object */
12930        bxe_init_func_obj(sc);
12931
12932        /* Initialize HW */
12933        if (bxe_init_hw(sc, load_code) != 0) {
12934            BLOGE(sc, "HW init failed\n");
12935            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12936            sc->state = BXE_STATE_CLOSED;
12937            rc = ENXIO;
12938            goto bxe_nic_load_error2;
12939        }
12940    }
12941
12942    /* attach interrupts */
12943    if (bxe_interrupt_attach(sc) != 0) {
12944        sc->state = BXE_STATE_CLOSED;
12945        rc = ENXIO;
12946        goto bxe_nic_load_error2;
12947    }
12948
12949    bxe_nic_init(sc, load_code);
12950
12951    /* Init per-function objects */
12952    if (IS_PF(sc)) {
12953        bxe_init_objs(sc);
12954        // XXX bxe_iov_nic_init(sc);
12955
12956        /* set AFEX default VLAN tag to an invalid value */
12957        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12958        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12959
12960        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12961        rc = bxe_func_start(sc);
12962        if (rc) {
12963            BLOGE(sc, "Function start failed!\n");
12964            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12965            sc->state = BXE_STATE_ERROR;
12966            goto bxe_nic_load_error3;
12967        }
12968
12969        /* send LOAD_DONE command to MCP */
12970        if (!BXE_NOMCP(sc)) {
12971            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12972            if (!load_code) {
12973                BLOGE(sc, "MCP response failure, aborting\n");
12974                sc->state = BXE_STATE_ERROR;
12975                rc = ENXIO;
12976                goto bxe_nic_load_error3;
12977            }
12978        }
12979
12980        rc = bxe_setup_leading(sc);
12981        if (rc) {
12982            BLOGE(sc, "Setup leading failed!\n");
12983            sc->state = BXE_STATE_ERROR;
12984            goto bxe_nic_load_error3;
12985        }
12986
12987        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12988            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12989            if (rc) {
12990                BLOGE(sc, "Queue(%d) setup failed\n", i);
12991                sc->state = BXE_STATE_ERROR;
12992                goto bxe_nic_load_error3;
12993            }
12994        }
12995
12996        rc = bxe_init_rss_pf(sc);
12997        if (rc) {
12998            BLOGE(sc, "PF RSS init failed\n");
12999            sc->state = BXE_STATE_ERROR;
13000            goto bxe_nic_load_error3;
13001        }
13002    }
13003    /* XXX VF */
13004#if 0
13005    else { /* VF */
13006        FOR_EACH_ETH_QUEUE(sc, i) {
13007            rc = bxe_vfpf_setup_q(sc, i);
13008            if (rc) {
13009                BLOGE(sc, "Queue(%d) setup failed\n", i);
13010                sc->state = BXE_STATE_ERROR;
13011                goto bxe_nic_load_error3;
13012            }
13013        }
13014    }
13015#endif
13016
13017    /* now when Clients are configured we are ready to work */
13018    sc->state = BXE_STATE_OPEN;
13019
13020    /* Configure a ucast MAC */
13021    if (IS_PF(sc)) {
13022        rc = bxe_set_eth_mac(sc, TRUE);
13023    }
13024#if 0
13025    else { /* IS_VF(sc) */
13026        rc = bxe_vfpf_set_mac(sc);
13027    }
13028#endif
13029    if (rc) {
13030        BLOGE(sc, "Setting Ethernet MAC failed\n");
13031        sc->state = BXE_STATE_ERROR;
13032        goto bxe_nic_load_error3;
13033    }
13034
13035#if 0
13036    if (IS_PF(sc) && sc->pending_max) {
13037        /* for AFEX */
13038        bxe_update_max_mf_config(sc, sc->pending_max);
13039        sc->pending_max = 0;
13040    }
13041#endif
13042
13043    if (sc->port.pmf) {
13044        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13045        if (rc) {
13046            sc->state = BXE_STATE_ERROR;
13047            goto bxe_nic_load_error3;
13048        }
13049    }
13050
13051    sc->link_params.feature_config_flags &=
13052        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13053
13054    /* start fast path */
13055
13056    /* Initialize Rx filter */
13057    bxe_set_rx_mode(sc);
13058
13059    /* start the Tx */
13060    switch (/* XXX load_mode */LOAD_OPEN) {
13061    case LOAD_NORMAL:
13062    case LOAD_OPEN:
13063        break;
13064
13065    case LOAD_DIAG:
13066    case LOAD_LOOPBACK_EXT:
13067        sc->state = BXE_STATE_DIAG;
13068        break;
13069
13070    default:
13071        break;
13072    }
13073
13074    if (sc->port.pmf) {
13075        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13076    } else {
13077        bxe_link_status_update(sc);
13078    }
13079
13080    /* start the periodic timer callout */
13081    bxe_periodic_start(sc);
13082
13083    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13084        /* mark driver is loaded in shmem2 */
13085        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13086        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13087                  (val |
13088                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13089                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13090    }
13091
13092    /* wait for all pending SP commands to complete */
13093    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13094        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13095        bxe_periodic_stop(sc);
13096        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13097        return (ENXIO);
13098    }
13099
13100#if 0
13101    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13102    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13103        bxe_dcbx_init(sc, FALSE);
13104    }
13105#endif
13106
13107    /* Tell the stack the driver is running! */
13108    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13109
13110    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13111
13112    return (0);
13113
13114bxe_nic_load_error3:
13115
13116    if (IS_PF(sc)) {
13117        bxe_int_disable_sync(sc, 1);
13118
13119        /* clean out queued objects */
13120        bxe_squeeze_objects(sc);
13121    }
13122
13123    bxe_interrupt_detach(sc);
13124
13125bxe_nic_load_error2:
13126
13127    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13128        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13129        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13130    }
13131
13132    sc->port.pmf = 0;
13133
13134bxe_nic_load_error1:
13135
13136    /* clear pf_load status, as it was already set */
13137    if (IS_PF(sc)) {
13138        bxe_clear_pf_load(sc);
13139    }
13140
13141bxe_nic_load_error0:
13142
13143    bxe_free_fw_stats_mem(sc);
13144    bxe_free_fp_buffers(sc);
13145    bxe_free_mem(sc);
13146
13147    return (rc);
13148}
13149
13150static int
13151bxe_init_locked(struct bxe_softc *sc)
13152{
13153    int other_engine = SC_PATH(sc) ? 0 : 1;
13154    uint8_t other_load_status, load_status;
13155    uint8_t global = FALSE;
13156    int rc;
13157
13158    BXE_CORE_LOCK_ASSERT(sc);
13159
13160    /* check if the driver is already running */
13161    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13162        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13163        return (0);
13164    }
13165
13166    bxe_set_power_state(sc, PCI_PM_D0);
13167
13168    /*
13169     * If parity occurred during the unload, then attentions and/or
13170     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13171     * loaded on the current engine to complete the recovery. Parity recovery
13172     * is only relevant for PF driver.
13173     */
13174    if (IS_PF(sc)) {
13175        other_load_status = bxe_get_load_status(sc, other_engine);
13176        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13177
13178        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13179            bxe_chk_parity_attn(sc, &global, TRUE)) {
13180            do {
13181                /*
13182                 * If there are attentions and they are in global blocks, set
13183                 * the GLOBAL_RESET bit regardless whether it will be this
13184                 * function that will complete the recovery or not.
13185                 */
13186                if (global) {
13187                    bxe_set_reset_global(sc);
13188                }
13189
13190                /*
13191                 * Only the first function on the current engine should try
13192                 * to recover in open. In case of attentions in global blocks
13193                 * only the first in the chip should try to recover.
13194                 */
13195                if ((!load_status && (!global || !other_load_status)) &&
13196                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13197                    BLOGI(sc, "Recovered during init\n");
13198                    break;
13199                }
13200
13201                /* recovery has failed... */
13202                bxe_set_power_state(sc, PCI_PM_D3hot);
13203                sc->recovery_state = BXE_RECOVERY_FAILED;
13204
13205                BLOGE(sc, "Recovery flow hasn't properly "
13206                          "completed yet, try again later. "
13207                          "If you still see this message after a "
13208                          "few retries then power cycle is required.\n");
13209
13210                rc = ENXIO;
13211                goto bxe_init_locked_done;
13212            } while (0);
13213        }
13214    }
13215
13216    sc->recovery_state = BXE_RECOVERY_DONE;
13217
13218    rc = bxe_nic_load(sc, LOAD_OPEN);
13219
13220bxe_init_locked_done:
13221
13222    if (rc) {
13223        /* Tell the stack the driver is NOT running! */
13224        BLOGE(sc, "Initialization failed, "
13225                  "stack notified driver is NOT running!\n");
13226        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13227    }
13228
13229    return (rc);
13230}
13231
13232static int
13233bxe_stop_locked(struct bxe_softc *sc)
13234{
13235    BXE_CORE_LOCK_ASSERT(sc);
13236    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13237}
13238
13239/*
13240 * Handles controller initialization when called from an unlocked routine.
13241 * ifconfig calls this function.
13242 *
13243 * Returns:
13244 *   void
13245 */
13246static void
13247bxe_init(void *xsc)
13248{
13249    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13250
13251    BXE_CORE_LOCK(sc);
13252    bxe_init_locked(sc);
13253    BXE_CORE_UNLOCK(sc);
13254}
13255
13256static int
13257bxe_init_ifnet(struct bxe_softc *sc)
13258{
13259    struct ifnet *ifp;
13260
13261    /* ifconfig entrypoint for media type/status reporting */
13262    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13263                 bxe_ifmedia_update,
13264                 bxe_ifmedia_status);
13265
13266    /* set the default interface values */
13267    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13268    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13269    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13270
13271    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13272
13273    /* allocate the ifnet structure */
13274    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13275        BLOGE(sc, "Interface allocation failed!\n");
13276        return (ENXIO);
13277    }
13278
13279    ifp->if_softc = sc;
13280    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13281    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13282    ifp->if_ioctl = bxe_ioctl;
13283    ifp->if_start = bxe_tx_start;
13284#if __FreeBSD_version >= 800000
13285    ifp->if_transmit = bxe_tx_mq_start;
13286    ifp->if_qflush = bxe_mq_flush;
13287#endif
13288#ifdef FreeBSD8_0
13289    ifp->if_timer = 0;
13290#endif
13291    ifp->if_init = bxe_init;
13292    ifp->if_mtu = sc->mtu;
13293    ifp->if_hwassist = (CSUM_IP       |
13294                        CSUM_TCP      |
13295                        CSUM_UDP      |
13296                        CSUM_TSO      |
13297                        CSUM_TCP_IPV6 |
13298                        CSUM_UDP_IPV6);
13299    ifp->if_capabilities =
13300#if __FreeBSD_version < 700000
13301        (IFCAP_VLAN_MTU       |
13302         IFCAP_VLAN_HWTAGGING |
13303         IFCAP_HWCSUM         |
13304         IFCAP_JUMBO_MTU      |
13305         IFCAP_LRO);
13306#else
13307        (IFCAP_VLAN_MTU       |
13308         IFCAP_VLAN_HWTAGGING |
13309         IFCAP_VLAN_HWTSO     |
13310         IFCAP_VLAN_HWFILTER  |
13311         IFCAP_VLAN_HWCSUM    |
13312         IFCAP_HWCSUM         |
13313         IFCAP_JUMBO_MTU      |
13314         IFCAP_LRO            |
13315         IFCAP_TSO4           |
13316         IFCAP_TSO6           |
13317         IFCAP_WOL_MAGIC);
13318#endif
13319    ifp->if_capenable = ifp->if_capabilities;
13320    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13321#if __FreeBSD_version < 1000025
13322    ifp->if_baudrate = 1000000000;
13323#else
13324    if_initbaudrate(ifp, IF_Gbps(10));
13325#endif
13326    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13327
13328    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13329    IFQ_SET_READY(&ifp->if_snd);
13330
13331    sc->ifnet = ifp;
13332
13333    /* attach to the Ethernet interface list */
13334    ether_ifattach(ifp, sc->link_params.mac_addr);
13335
13336    return (0);
13337}
13338
13339static void
13340bxe_deallocate_bars(struct bxe_softc *sc)
13341{
13342    int i;
13343
13344    for (i = 0; i < MAX_BARS; i++) {
13345        if (sc->bar[i].resource != NULL) {
13346            bus_release_resource(sc->dev,
13347                                 SYS_RES_MEMORY,
13348                                 sc->bar[i].rid,
13349                                 sc->bar[i].resource);
13350            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13351                  i, PCIR_BAR(i));
13352        }
13353    }
13354}
13355
13356static int
13357bxe_allocate_bars(struct bxe_softc *sc)
13358{
13359    u_int flags;
13360    int i;
13361
13362    memset(sc->bar, 0, sizeof(sc->bar));
13363
13364    for (i = 0; i < MAX_BARS; i++) {
13365
13366        /* memory resources reside at BARs 0, 2, 4 */
13367        /* Run `pciconf -lb` to see mappings */
13368        if ((i != 0) && (i != 2) && (i != 4)) {
13369            continue;
13370        }
13371
13372        sc->bar[i].rid = PCIR_BAR(i);
13373
13374        flags = RF_ACTIVE;
13375        if (i == 0) {
13376            flags |= RF_SHAREABLE;
13377        }
13378
13379        if ((sc->bar[i].resource =
13380             bus_alloc_resource_any(sc->dev,
13381                                    SYS_RES_MEMORY,
13382                                    &sc->bar[i].rid,
13383                                    flags)) == NULL) {
13384#if 0
13385            /* BAR4 doesn't exist for E1 */
13386            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13387                  i, PCIR_BAR(i));
13388#endif
13389            return (0);
13390        }
13391
13392        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13393        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13394        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13395
13396        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13397              i, PCIR_BAR(i),
13398              (void *)rman_get_start(sc->bar[i].resource),
13399              (void *)rman_get_end(sc->bar[i].resource),
13400              rman_get_size(sc->bar[i].resource),
13401              (void *)sc->bar[i].kva);
13402    }
13403
13404    return (0);
13405}
13406
13407static void
13408bxe_get_function_num(struct bxe_softc *sc)
13409{
13410    uint32_t val = 0;
13411
13412    /*
13413     * Read the ME register to get the function number. The ME register
13414     * holds the relative-function number and absolute-function number. The
13415     * absolute-function number appears only in E2 and above. Before that
13416     * these bits always contained zero, therefore we cannot blindly use them.
13417     */
13418
13419    val = REG_RD(sc, BAR_ME_REGISTER);
13420
13421    sc->pfunc_rel =
13422        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13423    sc->path_id =
13424        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13425
13426    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13427        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13428    } else {
13429        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13430    }
13431
13432    BLOGD(sc, DBG_LOAD,
13433          "Relative function %d, Absolute function %d, Path %d\n",
13434          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13435}
13436
13437static uint32_t
13438bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13439{
13440    uint32_t shmem2_size;
13441    uint32_t offset;
13442    uint32_t mf_cfg_offset_value;
13443
13444    /* Non 57712 */
13445    offset = (SHMEM_RD(sc, func_mb) +
13446              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13447
13448    /* 57712 plus */
13449    if (sc->devinfo.shmem2_base != 0) {
13450        shmem2_size = SHMEM2_RD(sc, size);
13451        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13452            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13453            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13454                offset = mf_cfg_offset_value;
13455            }
13456        }
13457    }
13458
13459    return (offset);
13460}
13461
13462static uint32_t
13463bxe_pcie_capability_read(struct bxe_softc *sc,
13464                         int    reg,
13465                         int    width)
13466{
13467    int pcie_reg;
13468
13469    /* ensure PCIe capability is enabled */
13470    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13471        if (pcie_reg != 0) {
13472            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13473            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13474        }
13475    }
13476
13477    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13478
13479    return (0);
13480}
13481
13482static uint8_t
13483bxe_is_pcie_pending(struct bxe_softc *sc)
13484{
13485    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13486            PCIM_EXP_STA_TRANSACTION_PND);
13487}
13488
13489/*
13490 * Walk the PCI capabiites list for the device to find what features are
13491 * supported. These capabilites may be enabled/disabled by firmware so it's
13492 * best to walk the list rather than make assumptions.
13493 */
13494static void
13495bxe_probe_pci_caps(struct bxe_softc *sc)
13496{
13497    uint16_t link_status;
13498    int reg;
13499
13500    /* check if PCI Power Management is enabled */
13501    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13502        if (reg != 0) {
13503            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13504
13505            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13506            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13507        }
13508    }
13509
13510    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13511
13512    /* handle PCIe 2.0 workarounds for 57710 */
13513    if (CHIP_IS_E1(sc)) {
13514        /* workaround for 57710 errata E4_57710_27462 */
13515        sc->devinfo.pcie_link_speed =
13516            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13517
13518        /* workaround for 57710 errata E4_57710_27488 */
13519        sc->devinfo.pcie_link_width =
13520            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13521        if (sc->devinfo.pcie_link_speed > 1) {
13522            sc->devinfo.pcie_link_width =
13523                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13524        }
13525    } else {
13526        sc->devinfo.pcie_link_speed =
13527            (link_status & PCIM_LINK_STA_SPEED);
13528        sc->devinfo.pcie_link_width =
13529            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13530    }
13531
13532    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13533          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13534
13535    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13536    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13537
13538    /* check if MSI capability is enabled */
13539    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13540        if (reg != 0) {
13541            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13542
13543            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13544            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13545        }
13546    }
13547
13548    /* check if MSI-X capability is enabled */
13549    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13550        if (reg != 0) {
13551            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13552
13553            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13554            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13555        }
13556    }
13557}
13558
13559static int
13560bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13561{
13562    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13563    uint32_t val;
13564
13565    /* get the outer vlan if we're in switch-dependent mode */
13566
13567    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13568    mf_info->ext_id = (uint16_t)val;
13569
13570    mf_info->multi_vnics_mode = 1;
13571
13572    if (!VALID_OVLAN(mf_info->ext_id)) {
13573        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13574        return (1);
13575    }
13576
13577    /* get the capabilities */
13578    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13579        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13580        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13581    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13582               FUNC_MF_CFG_PROTOCOL_FCOE) {
13583        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13584    } else {
13585        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13586    }
13587
13588    mf_info->vnics_per_port =
13589        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13590
13591    return (0);
13592}
13593
13594static uint32_t
13595bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13596{
13597    uint32_t retval = 0;
13598    uint32_t val;
13599
13600    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13601
13602    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13603        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13604            retval |= MF_PROTO_SUPPORT_ETHERNET;
13605        }
13606        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13607            retval |= MF_PROTO_SUPPORT_ISCSI;
13608        }
13609        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13610            retval |= MF_PROTO_SUPPORT_FCOE;
13611        }
13612    }
13613
13614    return (retval);
13615}
13616
13617static int
13618bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13619{
13620    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13621    uint32_t val;
13622
13623    /*
13624     * There is no outer vlan if we're in switch-independent mode.
13625     * If the mac is valid then assume multi-function.
13626     */
13627
13628    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13629
13630    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13631
13632    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13633
13634    mf_info->vnics_per_port =
13635        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13636
13637    return (0);
13638}
13639
13640static int
13641bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13642{
13643    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13644    uint32_t e1hov_tag;
13645    uint32_t func_config;
13646    uint32_t niv_config;
13647
13648    mf_info->multi_vnics_mode = 1;
13649
13650    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13651    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13652    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13653
13654    mf_info->ext_id =
13655        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13656                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13657
13658    mf_info->default_vlan =
13659        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13660                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13661
13662    mf_info->niv_allowed_priorities =
13663        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13664                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13665
13666    mf_info->niv_default_cos =
13667        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13668                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13669
13670    mf_info->afex_vlan_mode =
13671        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13672         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13673
13674    mf_info->niv_mba_enabled =
13675        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13676         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13677
13678    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13679
13680    mf_info->vnics_per_port =
13681        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13682
13683    return (0);
13684}
13685
13686static int
13687bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13688{
13689    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13690    uint32_t mf_cfg1;
13691    uint32_t mf_cfg2;
13692    uint32_t ovlan1;
13693    uint32_t ovlan2;
13694    uint8_t i, j;
13695
13696    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13697          SC_PORT(sc));
13698    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13699          mf_info->mf_config[SC_VN(sc)]);
13700    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13701          mf_info->multi_vnics_mode);
13702    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13703          mf_info->vnics_per_port);
13704    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13705          mf_info->ext_id);
13706    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13707          mf_info->min_bw[0], mf_info->min_bw[1],
13708          mf_info->min_bw[2], mf_info->min_bw[3]);
13709    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13710          mf_info->max_bw[0], mf_info->max_bw[1],
13711          mf_info->max_bw[2], mf_info->max_bw[3]);
13712    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13713          sc->mac_addr_str);
13714
13715    /* various MF mode sanity checks... */
13716
13717    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13718        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13719              SC_PORT(sc));
13720        return (1);
13721    }
13722
13723    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13724        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13725              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13726        return (1);
13727    }
13728
13729    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13730        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13731        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13732            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13733                  SC_VN(sc), OVLAN(sc));
13734            return (1);
13735        }
13736
13737        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13738            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13739                  mf_info->multi_vnics_mode, OVLAN(sc));
13740            return (1);
13741        }
13742
13743        /*
13744         * Verify all functions are either MF or SF mode. If MF, make sure
13745         * sure that all non-hidden functions have a valid ovlan. If SF,
13746         * make sure that all non-hidden functions have an invalid ovlan.
13747         */
13748        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13749            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13750            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13751            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13752                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13753                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13754                BLOGE(sc, "mf_mode=SD function %d MF config "
13755                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13756                      i, mf_info->multi_vnics_mode, ovlan1);
13757                return (1);
13758            }
13759        }
13760
13761        /* Verify all funcs on the same port each have a different ovlan. */
13762        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13763            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13764            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13765            /* iterate from the next function on the port to the max func */
13766            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13767                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13768                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13769                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13770                    VALID_OVLAN(ovlan1) &&
13771                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13772                    VALID_OVLAN(ovlan2) &&
13773                    (ovlan1 == ovlan2)) {
13774                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13775                              "have the same ovlan (%d)\n",
13776                          i, j, ovlan1);
13777                    return (1);
13778                }
13779            }
13780        }
13781    } /* MULTI_FUNCTION_SD */
13782
13783    return (0);
13784}
13785
13786static int
13787bxe_get_mf_cfg_info(struct bxe_softc *sc)
13788{
13789    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13790    uint32_t val, mac_upper;
13791    uint8_t i, vnic;
13792
13793    /* initialize mf_info defaults */
13794    mf_info->vnics_per_port   = 1;
13795    mf_info->multi_vnics_mode = FALSE;
13796    mf_info->path_has_ovlan   = FALSE;
13797    mf_info->mf_mode          = SINGLE_FUNCTION;
13798
13799    if (!CHIP_IS_MF_CAP(sc)) {
13800        return (0);
13801    }
13802
13803    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13804        BLOGE(sc, "Invalid mf_cfg_base!\n");
13805        return (1);
13806    }
13807
13808    /* get the MF mode (switch dependent / independent / single-function) */
13809
13810    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13811
13812    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13813    {
13814    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13815
13816        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13817
13818        /* check for legal upper mac bytes */
13819        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13820            mf_info->mf_mode = MULTI_FUNCTION_SI;
13821        } else {
13822            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13823        }
13824
13825        break;
13826
13827    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13828    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13829
13830        /* get outer vlan configuration */
13831        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13832
13833        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13834            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13835            mf_info->mf_mode = MULTI_FUNCTION_SD;
13836        } else {
13837            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13838        }
13839
13840        break;
13841
13842    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13843
13844        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13845        return (0);
13846
13847    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13848
13849        /*
13850         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13851         * and the MAC address is valid.
13852         */
13853        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13854
13855        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13856            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13857            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13858        } else {
13859            BLOGE(sc, "Invalid config for AFEX mode\n");
13860        }
13861
13862        break;
13863
13864    default:
13865
13866        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13867              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13868
13869        return (1);
13870    }
13871
13872    /* set path mf_mode (which could be different than function mf_mode) */
13873    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13874        mf_info->path_has_ovlan = TRUE;
13875    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13876        /*
13877         * Decide on path multi vnics mode. If we're not in MF mode and in
13878         * 4-port mode, this is good enough to check vnic-0 of the other port
13879         * on the same path
13880         */
13881        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13882            uint8_t other_port = !(PORT_ID(sc) & 1);
13883            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13884
13885            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13886
13887            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13888        }
13889    }
13890
13891    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13892        /* invalid MF config */
13893        if (SC_VN(sc) >= 1) {
13894            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13895            return (1);
13896        }
13897
13898        return (0);
13899    }
13900
13901    /* get the MF configuration */
13902    mf_info->mf_config[SC_VN(sc)] =
13903        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13904
13905    switch(mf_info->mf_mode)
13906    {
13907    case MULTI_FUNCTION_SD:
13908
13909        bxe_get_shmem_mf_cfg_info_sd(sc);
13910        break;
13911
13912    case MULTI_FUNCTION_SI:
13913
13914        bxe_get_shmem_mf_cfg_info_si(sc);
13915        break;
13916
13917    case MULTI_FUNCTION_AFEX:
13918
13919        bxe_get_shmem_mf_cfg_info_niv(sc);
13920        break;
13921
13922    default:
13923
13924        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13925              mf_info->mf_mode);
13926        return (1);
13927    }
13928
13929    /* get the congestion management parameters */
13930
13931    vnic = 0;
13932    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13933        /* get min/max bw */
13934        val = MFCFG_RD(sc, func_mf_config[i].config);
13935        mf_info->min_bw[vnic] =
13936            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13937        mf_info->max_bw[vnic] =
13938            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13939        vnic++;
13940    }
13941
13942    return (bxe_check_valid_mf_cfg(sc));
13943}
13944
13945static int
13946bxe_get_shmem_info(struct bxe_softc *sc)
13947{
13948    int port;
13949    uint32_t mac_hi, mac_lo, val;
13950
13951    port = SC_PORT(sc);
13952    mac_hi = mac_lo = 0;
13953
13954    sc->link_params.sc   = sc;
13955    sc->link_params.port = port;
13956
13957    /* get the hardware config info */
13958    sc->devinfo.hw_config =
13959        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13960    sc->devinfo.hw_config2 =
13961        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13962
13963    sc->link_params.hw_led_mode =
13964        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13965         SHARED_HW_CFG_LED_MODE_SHIFT);
13966
13967    /* get the port feature config */
13968    sc->port.config =
13969        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13970
13971    /* get the link params */
13972    sc->link_params.speed_cap_mask[0] =
13973        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13974    sc->link_params.speed_cap_mask[1] =
13975        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13976
13977    /* get the lane config */
13978    sc->link_params.lane_config =
13979        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13980
13981    /* get the link config */
13982    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13983    sc->port.link_config[ELINK_INT_PHY] = val;
13984    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13985    sc->port.link_config[ELINK_EXT_PHY1] =
13986        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13987
13988    /* get the override preemphasis flag and enable it or turn it off */
13989    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13990    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13991        sc->link_params.feature_config_flags |=
13992            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13993    } else {
13994        sc->link_params.feature_config_flags &=
13995            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13996    }
13997
13998    /* get the initial value of the link params */
13999    sc->link_params.multi_phy_config =
14000        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14001
14002    /* get external phy info */
14003    sc->port.ext_phy_config =
14004        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14005
14006    /* get the multifunction configuration */
14007    bxe_get_mf_cfg_info(sc);
14008
14009    /* get the mac address */
14010    if (IS_MF(sc)) {
14011        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14012        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14013    } else {
14014        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14015        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14016    }
14017
14018    if ((mac_lo == 0) && (mac_hi == 0)) {
14019        *sc->mac_addr_str = 0;
14020        BLOGE(sc, "No Ethernet address programmed!\n");
14021    } else {
14022        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14023        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14024        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14025        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14026        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14027        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14028        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14029                 "%02x:%02x:%02x:%02x:%02x:%02x",
14030                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14031                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14032                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14033        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14034    }
14035
14036#if 0
14037    if (!IS_MF(sc) &&
14038        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14039         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14040        sc->flags |= BXE_NO_ISCSI;
14041    }
14042    if (!IS_MF(sc) &&
14043        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14044         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14045        sc->flags |= BXE_NO_FCOE_FLAG;
14046    }
14047#endif
14048
14049    return (0);
14050}
14051
14052static void
14053bxe_get_tunable_params(struct bxe_softc *sc)
14054{
14055    /* sanity checks */
14056
14057    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14058        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14059        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14060        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14061        bxe_interrupt_mode = INTR_MODE_MSIX;
14062    }
14063
14064    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14065        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14066        bxe_queue_count = 0;
14067    }
14068
14069    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14070        if (bxe_max_rx_bufs == 0) {
14071            bxe_max_rx_bufs = RX_BD_USABLE;
14072        } else {
14073            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14074            bxe_max_rx_bufs = 2048;
14075        }
14076    }
14077
14078    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14079        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14080        bxe_hc_rx_ticks = 25;
14081    }
14082
14083    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14084        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14085        bxe_hc_tx_ticks = 50;
14086    }
14087
14088    if (bxe_max_aggregation_size == 0) {
14089        bxe_max_aggregation_size = TPA_AGG_SIZE;
14090    }
14091
14092    if (bxe_max_aggregation_size > 0xffff) {
14093        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14094              bxe_max_aggregation_size);
14095        bxe_max_aggregation_size = TPA_AGG_SIZE;
14096    }
14097
14098    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14099        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14100        bxe_mrrs = -1;
14101    }
14102
14103    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14104        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14105        bxe_autogreeen = 0;
14106    }
14107
14108    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14109        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14110        bxe_udp_rss = 0;
14111    }
14112
14113    /* pull in user settings */
14114
14115    sc->interrupt_mode       = bxe_interrupt_mode;
14116    sc->max_rx_bufs          = bxe_max_rx_bufs;
14117    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14118    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14119    sc->max_aggregation_size = bxe_max_aggregation_size;
14120    sc->mrrs                 = bxe_mrrs;
14121    sc->autogreeen           = bxe_autogreeen;
14122    sc->udp_rss              = bxe_udp_rss;
14123
14124    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14125        sc->num_queues = 1;
14126    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14127        sc->num_queues =
14128            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14129                MAX_RSS_CHAINS);
14130        if (sc->num_queues > mp_ncpus) {
14131            sc->num_queues = mp_ncpus;
14132        }
14133    }
14134
14135    BLOGD(sc, DBG_LOAD,
14136          "User Config: "
14137          "debug=0x%lx "
14138          "interrupt_mode=%d "
14139          "queue_count=%d "
14140          "hc_rx_ticks=%d "
14141          "hc_tx_ticks=%d "
14142          "rx_budget=%d "
14143          "max_aggregation_size=%d "
14144          "mrrs=%d "
14145          "autogreeen=%d "
14146          "udp_rss=%d\n",
14147          bxe_debug,
14148          sc->interrupt_mode,
14149          sc->num_queues,
14150          sc->hc_rx_ticks,
14151          sc->hc_tx_ticks,
14152          bxe_rx_budget,
14153          sc->max_aggregation_size,
14154          sc->mrrs,
14155          sc->autogreeen,
14156          sc->udp_rss);
14157}
14158
14159static void
14160bxe_media_detect(struct bxe_softc *sc)
14161{
14162    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14163    switch (sc->link_params.phy[phy_idx].media_type) {
14164    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14165    case ELINK_ETH_PHY_XFP_FIBER:
14166        BLOGI(sc, "Found 10Gb Fiber media.\n");
14167        sc->media = IFM_10G_SR;
14168        break;
14169    case ELINK_ETH_PHY_SFP_1G_FIBER:
14170        BLOGI(sc, "Found 1Gb Fiber media.\n");
14171        sc->media = IFM_1000_SX;
14172        break;
14173    case ELINK_ETH_PHY_KR:
14174    case ELINK_ETH_PHY_CX4:
14175        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14176        sc->media = IFM_10G_CX4;
14177        break;
14178    case ELINK_ETH_PHY_DA_TWINAX:
14179        BLOGI(sc, "Found 10Gb Twinax media.\n");
14180        sc->media = IFM_10G_TWINAX;
14181        break;
14182    case ELINK_ETH_PHY_BASE_T:
14183        if (sc->link_params.speed_cap_mask[0] &
14184            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14185            BLOGI(sc, "Found 10GBase-T media.\n");
14186            sc->media = IFM_10G_T;
14187        } else {
14188            BLOGI(sc, "Found 1000Base-T media.\n");
14189            sc->media = IFM_1000_T;
14190        }
14191        break;
14192    case ELINK_ETH_PHY_NOT_PRESENT:
14193        BLOGI(sc, "Media not present.\n");
14194        sc->media = 0;
14195        break;
14196    case ELINK_ETH_PHY_UNSPECIFIED:
14197    default:
14198        BLOGI(sc, "Unknown media!\n");
14199        sc->media = 0;
14200        break;
14201    }
14202}
14203
14204#define GET_FIELD(value, fname)                     \
14205    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14206#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14207#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14208
14209static int
14210bxe_get_igu_cam_info(struct bxe_softc *sc)
14211{
14212    int pfid = SC_FUNC(sc);
14213    int igu_sb_id;
14214    uint32_t val;
14215    uint8_t fid, igu_sb_cnt = 0;
14216
14217    sc->igu_base_sb = 0xff;
14218
14219    if (CHIP_INT_MODE_IS_BC(sc)) {
14220        int vn = SC_VN(sc);
14221        igu_sb_cnt = sc->igu_sb_cnt;
14222        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14223                           FP_SB_MAX_E1x);
14224        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14225                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14226        return (0);
14227    }
14228
14229    /* IGU in normal mode - read CAM */
14230    for (igu_sb_id = 0;
14231         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14232         igu_sb_id++) {
14233        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14234        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14235            continue;
14236        }
14237        fid = IGU_FID(val);
14238        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14239            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14240                continue;
14241            }
14242            if (IGU_VEC(val) == 0) {
14243                /* default status block */
14244                sc->igu_dsb_id = igu_sb_id;
14245            } else {
14246                if (sc->igu_base_sb == 0xff) {
14247                    sc->igu_base_sb = igu_sb_id;
14248                }
14249                igu_sb_cnt++;
14250            }
14251        }
14252    }
14253
14254    /*
14255     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14256     * that number of CAM entries will not be equal to the value advertised in
14257     * PCI. Driver should use the minimal value of both as the actual status
14258     * block count
14259     */
14260    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14261
14262    if (igu_sb_cnt == 0) {
14263        BLOGE(sc, "CAM configuration error\n");
14264        return (-1);
14265    }
14266
14267    return (0);
14268}
14269
14270/*
14271 * Gather various information from the device config space, the device itself,
14272 * shmem, and the user input.
14273 */
14274static int
14275bxe_get_device_info(struct bxe_softc *sc)
14276{
14277    uint32_t val;
14278    int rc;
14279
14280    /* Get the data for the device */
14281    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14282    sc->devinfo.device_id    = pci_get_device(sc->dev);
14283    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14284    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14285
14286    /* get the chip revision (chip metal comes from pci config space) */
14287    sc->devinfo.chip_id     =
14288    sc->link_params.chip_id =
14289        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14290         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14291         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14292         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14293
14294    /* force 57811 according to MISC register */
14295    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14296        if (CHIP_IS_57810(sc)) {
14297            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14298                                   (sc->devinfo.chip_id & 0x0000ffff));
14299        } else if (CHIP_IS_57810_MF(sc)) {
14300            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14301                                   (sc->devinfo.chip_id & 0x0000ffff));
14302        }
14303        sc->devinfo.chip_id |= 0x1;
14304    }
14305
14306    BLOGD(sc, DBG_LOAD,
14307          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14308          sc->devinfo.chip_id,
14309          ((sc->devinfo.chip_id >> 16) & 0xffff),
14310          ((sc->devinfo.chip_id >> 12) & 0xf),
14311          ((sc->devinfo.chip_id >>  4) & 0xff),
14312          ((sc->devinfo.chip_id >>  0) & 0xf));
14313
14314    val = (REG_RD(sc, 0x2874) & 0x55);
14315    if ((sc->devinfo.chip_id & 0x1) ||
14316        (CHIP_IS_E1(sc) && val) ||
14317        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14318        sc->flags |= BXE_ONE_PORT_FLAG;
14319        BLOGD(sc, DBG_LOAD, "single port device\n");
14320    }
14321
14322    /* set the doorbell size */
14323    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14324
14325    /* determine whether the device is in 2 port or 4 port mode */
14326    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14327    if (CHIP_IS_E2E3(sc)) {
14328        /*
14329         * Read port4mode_en_ovwr[0]:
14330         *   If 1, four port mode is in port4mode_en_ovwr[1].
14331         *   If 0, four port mode is in port4mode_en[0].
14332         */
14333        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14334        if (val & 1) {
14335            val = ((val >> 1) & 1);
14336        } else {
14337            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14338        }
14339
14340        sc->devinfo.chip_port_mode =
14341            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14342
14343        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14344    }
14345
14346    /* get the function and path info for the device */
14347    bxe_get_function_num(sc);
14348
14349    /* get the shared memory base address */
14350    sc->devinfo.shmem_base     =
14351    sc->link_params.shmem_base =
14352        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14353    sc->devinfo.shmem2_base =
14354        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14355                                  MISC_REG_GENERIC_CR_0));
14356
14357    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14358          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14359
14360    if (!sc->devinfo.shmem_base) {
14361        /* this should ONLY prevent upcoming shmem reads */
14362        BLOGI(sc, "MCP not active\n");
14363        sc->flags |= BXE_NO_MCP_FLAG;
14364        return (0);
14365    }
14366
14367    /* make sure the shared memory contents are valid */
14368    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14369    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14370        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14371        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14372        return (0);
14373    }
14374    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14375
14376    /* get the bootcode version */
14377    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14378    snprintf(sc->devinfo.bc_ver_str,
14379             sizeof(sc->devinfo.bc_ver_str),
14380             "%d.%d.%d",
14381             ((sc->devinfo.bc_ver >> 24) & 0xff),
14382             ((sc->devinfo.bc_ver >> 16) & 0xff),
14383             ((sc->devinfo.bc_ver >>  8) & 0xff));
14384    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14385
14386    /* get the bootcode shmem address */
14387    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14388    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14389
14390    /* clean indirect addresses as they're not used */
14391    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14392    if (IS_PF(sc)) {
14393        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14394        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14395        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14396        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14397        if (CHIP_IS_E1x(sc)) {
14398            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14399            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14400            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14401            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14402        }
14403
14404        /*
14405         * Enable internal target-read (in case we are probed after PF
14406         * FLR). Must be done prior to any BAR read access. Only for
14407         * 57712 and up
14408         */
14409        if (!CHIP_IS_E1x(sc)) {
14410            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14411        }
14412    }
14413
14414    /* get the nvram size */
14415    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14416    sc->devinfo.flash_size =
14417        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14418    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14419
14420    /* get PCI capabilites */
14421    bxe_probe_pci_caps(sc);
14422
14423    bxe_set_power_state(sc, PCI_PM_D0);
14424
14425    /* get various configuration parameters from shmem */
14426    bxe_get_shmem_info(sc);
14427
14428    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14429        val = pci_read_config(sc->dev,
14430                              (sc->devinfo.pcie_msix_cap_reg +
14431                               PCIR_MSIX_CTRL),
14432                              2);
14433        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14434    } else {
14435        sc->igu_sb_cnt = 1;
14436    }
14437
14438    sc->igu_base_addr = BAR_IGU_INTMEM;
14439
14440    /* initialize IGU parameters */
14441    if (CHIP_IS_E1x(sc)) {
14442        sc->devinfo.int_block = INT_BLOCK_HC;
14443        sc->igu_dsb_id = DEF_SB_IGU_ID;
14444        sc->igu_base_sb = 0;
14445    } else {
14446        sc->devinfo.int_block = INT_BLOCK_IGU;
14447
14448        /* do not allow device reset during IGU info preocessing */
14449        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14450
14451        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14452
14453        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14454            int tout = 5000;
14455
14456            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14457
14458            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14459            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14460            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14461
14462            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14463                tout--;
14464                DELAY(1000);
14465            }
14466
14467            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14468                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14469                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14470                return (-1);
14471            }
14472        }
14473
14474        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14475            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14476            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14477        } else {
14478            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14479        }
14480
14481        rc = bxe_get_igu_cam_info(sc);
14482
14483        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14484
14485        if (rc) {
14486            return (rc);
14487        }
14488    }
14489
14490    /*
14491     * Get base FW non-default (fast path) status block ID. This value is
14492     * used to initialize the fw_sb_id saved on the fp/queue structure to
14493     * determine the id used by the FW.
14494     */
14495    if (CHIP_IS_E1x(sc)) {
14496        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14497    } else {
14498        /*
14499         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14500         * the same queue are indicated on the same IGU SB). So we prefer
14501         * FW and IGU SBs to be the same value.
14502         */
14503        sc->base_fw_ndsb = sc->igu_base_sb;
14504    }
14505
14506    BLOGD(sc, DBG_LOAD,
14507          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14508          sc->igu_dsb_id, sc->igu_base_sb,
14509          sc->igu_sb_cnt, sc->base_fw_ndsb);
14510
14511    elink_phy_probe(&sc->link_params);
14512
14513    return (0);
14514}
14515
14516static void
14517bxe_link_settings_supported(struct bxe_softc *sc,
14518                            uint32_t         switch_cfg)
14519{
14520    uint32_t cfg_size = 0;
14521    uint32_t idx;
14522    uint8_t port = SC_PORT(sc);
14523
14524    /* aggregation of supported attributes of all external phys */
14525    sc->port.supported[0] = 0;
14526    sc->port.supported[1] = 0;
14527
14528    switch (sc->link_params.num_phys) {
14529    case 1:
14530        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14531        cfg_size = 1;
14532        break;
14533    case 2:
14534        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14535        cfg_size = 1;
14536        break;
14537    case 3:
14538        if (sc->link_params.multi_phy_config &
14539            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14540            sc->port.supported[1] =
14541                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14542            sc->port.supported[0] =
14543                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14544        } else {
14545            sc->port.supported[0] =
14546                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14547            sc->port.supported[1] =
14548                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14549        }
14550        cfg_size = 2;
14551        break;
14552    }
14553
14554    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14555        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14556              SHMEM_RD(sc,
14557                       dev_info.port_hw_config[port].external_phy_config),
14558              SHMEM_RD(sc,
14559                       dev_info.port_hw_config[port].external_phy_config2));
14560        return;
14561    }
14562
14563    if (CHIP_IS_E3(sc))
14564        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14565    else {
14566        switch (switch_cfg) {
14567        case ELINK_SWITCH_CFG_1G:
14568            sc->port.phy_addr =
14569                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14570            break;
14571        case ELINK_SWITCH_CFG_10G:
14572            sc->port.phy_addr =
14573                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14574            break;
14575        default:
14576            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14577                  sc->port.link_config[0]);
14578            return;
14579        }
14580    }
14581
14582    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14583
14584    /* mask what we support according to speed_cap_mask per configuration */
14585    for (idx = 0; idx < cfg_size; idx++) {
14586        if (!(sc->link_params.speed_cap_mask[idx] &
14587              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14588            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14589        }
14590
14591        if (!(sc->link_params.speed_cap_mask[idx] &
14592              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14593            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14594        }
14595
14596        if (!(sc->link_params.speed_cap_mask[idx] &
14597              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14598            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14599        }
14600
14601        if (!(sc->link_params.speed_cap_mask[idx] &
14602              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14603            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14604        }
14605
14606        if (!(sc->link_params.speed_cap_mask[idx] &
14607              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14608            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14609        }
14610
14611        if (!(sc->link_params.speed_cap_mask[idx] &
14612              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14613            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14614        }
14615
14616        if (!(sc->link_params.speed_cap_mask[idx] &
14617              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14618            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14619        }
14620
14621        if (!(sc->link_params.speed_cap_mask[idx] &
14622              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14623            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14624        }
14625    }
14626
14627    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14628          sc->port.supported[0], sc->port.supported[1]);
14629}
14630
14631static void
14632bxe_link_settings_requested(struct bxe_softc *sc)
14633{
14634    uint32_t link_config;
14635    uint32_t idx;
14636    uint32_t cfg_size = 0;
14637
14638    sc->port.advertising[0] = 0;
14639    sc->port.advertising[1] = 0;
14640
14641    switch (sc->link_params.num_phys) {
14642    case 1:
14643    case 2:
14644        cfg_size = 1;
14645        break;
14646    case 3:
14647        cfg_size = 2;
14648        break;
14649    }
14650
14651    for (idx = 0; idx < cfg_size; idx++) {
14652        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14653        link_config = sc->port.link_config[idx];
14654
14655        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14656        case PORT_FEATURE_LINK_SPEED_AUTO:
14657            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14658                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14659                sc->port.advertising[idx] |= sc->port.supported[idx];
14660                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14661                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14662                    sc->port.advertising[idx] |=
14663                        (ELINK_SUPPORTED_100baseT_Half |
14664                         ELINK_SUPPORTED_100baseT_Full);
14665            } else {
14666                /* force 10G, no AN */
14667                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14668                sc->port.advertising[idx] |=
14669                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14670                continue;
14671            }
14672            break;
14673
14674        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14675            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14676                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14677                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14678                                              ADVERTISED_TP);
14679            } else {
14680                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14681                          "speed_cap_mask=0x%08x\n",
14682                      link_config, sc->link_params.speed_cap_mask[idx]);
14683                return;
14684            }
14685            break;
14686
14687        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14688            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14689                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14690                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14691                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14692                                              ADVERTISED_TP);
14693            } else {
14694                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14695                          "speed_cap_mask=0x%08x\n",
14696                      link_config, sc->link_params.speed_cap_mask[idx]);
14697                return;
14698            }
14699            break;
14700
14701        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14702            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14703                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14704                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14705                                              ADVERTISED_TP);
14706            } else {
14707                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14708                          "speed_cap_mask=0x%08x\n",
14709                      link_config, sc->link_params.speed_cap_mask[idx]);
14710                return;
14711            }
14712            break;
14713
14714        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14715            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14716                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14717                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14718                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14719                                              ADVERTISED_TP);
14720            } else {
14721                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14722                          "speed_cap_mask=0x%08x\n",
14723                      link_config, sc->link_params.speed_cap_mask[idx]);
14724                return;
14725            }
14726            break;
14727
14728        case PORT_FEATURE_LINK_SPEED_1G:
14729            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14730                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14731                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14732                                              ADVERTISED_TP);
14733            } else {
14734                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14735                          "speed_cap_mask=0x%08x\n",
14736                      link_config, sc->link_params.speed_cap_mask[idx]);
14737                return;
14738            }
14739            break;
14740
14741        case PORT_FEATURE_LINK_SPEED_2_5G:
14742            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14743                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14744                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14745                                              ADVERTISED_TP);
14746            } else {
14747                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14748                          "speed_cap_mask=0x%08x\n",
14749                      link_config, sc->link_params.speed_cap_mask[idx]);
14750                return;
14751            }
14752            break;
14753
14754        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14755            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14756                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14757                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14758                                              ADVERTISED_FIBRE);
14759            } else {
14760                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14761                          "speed_cap_mask=0x%08x\n",
14762                      link_config, sc->link_params.speed_cap_mask[idx]);
14763                return;
14764            }
14765            break;
14766
14767        case PORT_FEATURE_LINK_SPEED_20G:
14768            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14769            break;
14770
14771        default:
14772            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14773                      "speed_cap_mask=0x%08x\n",
14774                  link_config, sc->link_params.speed_cap_mask[idx]);
14775            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14776            sc->port.advertising[idx] = sc->port.supported[idx];
14777            break;
14778        }
14779
14780        sc->link_params.req_flow_ctrl[idx] =
14781            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14782
14783        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14784            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14785                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14786            } else {
14787                bxe_set_requested_fc(sc);
14788            }
14789        }
14790
14791        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14792                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14793              sc->link_params.req_line_speed[idx],
14794              sc->link_params.req_duplex[idx],
14795              sc->link_params.req_flow_ctrl[idx],
14796              sc->port.advertising[idx]);
14797    }
14798}
14799
14800static void
14801bxe_get_phy_info(struct bxe_softc *sc)
14802{
14803    uint8_t port = SC_PORT(sc);
14804    uint32_t config = sc->port.config;
14805    uint32_t eee_mode;
14806
14807    /* shmem data already read in bxe_get_shmem_info() */
14808
14809    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14810                        "link_config0=0x%08x\n",
14811               sc->link_params.lane_config,
14812               sc->link_params.speed_cap_mask[0],
14813               sc->port.link_config[0]);
14814
14815    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14816    bxe_link_settings_requested(sc);
14817
14818    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14819        sc->link_params.feature_config_flags |=
14820            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14821    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14822        sc->link_params.feature_config_flags &=
14823            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14824    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14825        sc->link_params.feature_config_flags |=
14826            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14827    }
14828
14829    /* configure link feature according to nvram value */
14830    eee_mode =
14831        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14832          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14833         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14834    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14835        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14836                                    ELINK_EEE_MODE_ENABLE_LPI |
14837                                    ELINK_EEE_MODE_OUTPUT_TIME);
14838    } else {
14839        sc->link_params.eee_mode = 0;
14840    }
14841
14842    /* get the media type */
14843    bxe_media_detect(sc);
14844}
14845
14846static void
14847bxe_get_params(struct bxe_softc *sc)
14848{
14849    /* get user tunable params */
14850    bxe_get_tunable_params(sc);
14851
14852    /* select the RX and TX ring sizes */
14853    sc->tx_ring_size = TX_BD_USABLE;
14854    sc->rx_ring_size = RX_BD_USABLE;
14855
14856    /* XXX disable WoL */
14857    sc->wol = 0;
14858}
14859
14860static void
14861bxe_set_modes_bitmap(struct bxe_softc *sc)
14862{
14863    uint32_t flags = 0;
14864
14865    if (CHIP_REV_IS_FPGA(sc)) {
14866        SET_FLAGS(flags, MODE_FPGA);
14867    } else if (CHIP_REV_IS_EMUL(sc)) {
14868        SET_FLAGS(flags, MODE_EMUL);
14869    } else {
14870        SET_FLAGS(flags, MODE_ASIC);
14871    }
14872
14873    if (CHIP_IS_MODE_4_PORT(sc)) {
14874        SET_FLAGS(flags, MODE_PORT4);
14875    } else {
14876        SET_FLAGS(flags, MODE_PORT2);
14877    }
14878
14879    if (CHIP_IS_E2(sc)) {
14880        SET_FLAGS(flags, MODE_E2);
14881    } else if (CHIP_IS_E3(sc)) {
14882        SET_FLAGS(flags, MODE_E3);
14883        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14884            SET_FLAGS(flags, MODE_E3_A0);
14885        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14886            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14887        }
14888    }
14889
14890    if (IS_MF(sc)) {
14891        SET_FLAGS(flags, MODE_MF);
14892        switch (sc->devinfo.mf_info.mf_mode) {
14893        case MULTI_FUNCTION_SD:
14894            SET_FLAGS(flags, MODE_MF_SD);
14895            break;
14896        case MULTI_FUNCTION_SI:
14897            SET_FLAGS(flags, MODE_MF_SI);
14898            break;
14899        case MULTI_FUNCTION_AFEX:
14900            SET_FLAGS(flags, MODE_MF_AFEX);
14901            break;
14902        }
14903    } else {
14904        SET_FLAGS(flags, MODE_SF);
14905    }
14906
14907#if defined(__LITTLE_ENDIAN)
14908    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14909#else /* __BIG_ENDIAN */
14910    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14911#endif
14912
14913    INIT_MODE_FLAGS(sc) = flags;
14914}
14915
14916static int
14917bxe_alloc_hsi_mem(struct bxe_softc *sc)
14918{
14919    struct bxe_fastpath *fp;
14920    bus_addr_t busaddr;
14921    int max_agg_queues;
14922    int max_segments;
14923    bus_size_t max_size;
14924    bus_size_t max_seg_size;
14925    char buf[32];
14926    int rc;
14927    int i, j;
14928
14929    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14930
14931    /* allocate the parent bus DMA tag */
14932    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14933                            1,                        /* alignment */
14934                            0,                        /* boundary limit */
14935                            BUS_SPACE_MAXADDR,        /* restricted low */
14936                            BUS_SPACE_MAXADDR,        /* restricted hi */
14937                            NULL,                     /* addr filter() */
14938                            NULL,                     /* addr filter() arg */
14939                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14940                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14941                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14942                            0,                        /* flags */
14943                            NULL,                     /* lock() */
14944                            NULL,                     /* lock() arg */
14945                            &sc->parent_dma_tag);     /* returned dma tag */
14946    if (rc != 0) {
14947        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14948        return (1);
14949    }
14950
14951    /************************/
14952    /* DEFAULT STATUS BLOCK */
14953    /************************/
14954
14955    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14956                      &sc->def_sb_dma, "default status block") != 0) {
14957        /* XXX */
14958        bus_dma_tag_destroy(sc->parent_dma_tag);
14959        return (1);
14960    }
14961
14962    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14963
14964    /***************/
14965    /* EVENT QUEUE */
14966    /***************/
14967
14968    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14969                      &sc->eq_dma, "event queue") != 0) {
14970        /* XXX */
14971        bxe_dma_free(sc, &sc->def_sb_dma);
14972        sc->def_sb = NULL;
14973        bus_dma_tag_destroy(sc->parent_dma_tag);
14974        return (1);
14975    }
14976
14977    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14978
14979    /*************/
14980    /* SLOW PATH */
14981    /*************/
14982
14983    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14984                      &sc->sp_dma, "slow path") != 0) {
14985        /* XXX */
14986        bxe_dma_free(sc, &sc->eq_dma);
14987        sc->eq = NULL;
14988        bxe_dma_free(sc, &sc->def_sb_dma);
14989        sc->def_sb = NULL;
14990        bus_dma_tag_destroy(sc->parent_dma_tag);
14991        return (1);
14992    }
14993
14994    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14995
14996    /*******************/
14997    /* SLOW PATH QUEUE */
14998    /*******************/
14999
15000    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15001                      &sc->spq_dma, "slow path queue") != 0) {
15002        /* XXX */
15003        bxe_dma_free(sc, &sc->sp_dma);
15004        sc->sp = NULL;
15005        bxe_dma_free(sc, &sc->eq_dma);
15006        sc->eq = NULL;
15007        bxe_dma_free(sc, &sc->def_sb_dma);
15008        sc->def_sb = NULL;
15009        bus_dma_tag_destroy(sc->parent_dma_tag);
15010        return (1);
15011    }
15012
15013    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15014
15015    /***************************/
15016    /* FW DECOMPRESSION BUFFER */
15017    /***************************/
15018
15019    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15020                      "fw decompression buffer") != 0) {
15021        /* XXX */
15022        bxe_dma_free(sc, &sc->spq_dma);
15023        sc->spq = NULL;
15024        bxe_dma_free(sc, &sc->sp_dma);
15025        sc->sp = NULL;
15026        bxe_dma_free(sc, &sc->eq_dma);
15027        sc->eq = NULL;
15028        bxe_dma_free(sc, &sc->def_sb_dma);
15029        sc->def_sb = NULL;
15030        bus_dma_tag_destroy(sc->parent_dma_tag);
15031        return (1);
15032    }
15033
15034    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15035
15036    if ((sc->gz_strm =
15037         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15038        /* XXX */
15039        bxe_dma_free(sc, &sc->gz_buf_dma);
15040        sc->gz_buf = NULL;
15041        bxe_dma_free(sc, &sc->spq_dma);
15042        sc->spq = NULL;
15043        bxe_dma_free(sc, &sc->sp_dma);
15044        sc->sp = NULL;
15045        bxe_dma_free(sc, &sc->eq_dma);
15046        sc->eq = NULL;
15047        bxe_dma_free(sc, &sc->def_sb_dma);
15048        sc->def_sb = NULL;
15049        bus_dma_tag_destroy(sc->parent_dma_tag);
15050        return (1);
15051    }
15052
15053    /*************/
15054    /* FASTPATHS */
15055    /*************/
15056
15057    /* allocate DMA memory for each fastpath structure */
15058    for (i = 0; i < sc->num_queues; i++) {
15059        fp = &sc->fp[i];
15060        fp->sc    = sc;
15061        fp->index = i;
15062
15063        /*******************/
15064        /* FP STATUS BLOCK */
15065        /*******************/
15066
15067        snprintf(buf, sizeof(buf), "fp %d status block", i);
15068        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15069                          &fp->sb_dma, buf) != 0) {
15070            /* XXX unwind and free previous fastpath allocations */
15071            BLOGE(sc, "Failed to alloc %s\n", buf);
15072            return (1);
15073        } else {
15074            if (CHIP_IS_E2E3(sc)) {
15075                fp->status_block.e2_sb =
15076                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15077            } else {
15078                fp->status_block.e1x_sb =
15079                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15080            }
15081        }
15082
15083        /******************/
15084        /* FP TX BD CHAIN */
15085        /******************/
15086
15087        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15088        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15089                          &fp->tx_dma, buf) != 0) {
15090            /* XXX unwind and free previous fastpath allocations */
15091            BLOGE(sc, "Failed to alloc %s\n", buf);
15092            return (1);
15093        } else {
15094            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15095        }
15096
15097        /* link together the tx bd chain pages */
15098        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15099            /* index into the tx bd chain array to last entry per page */
15100            struct eth_tx_next_bd *tx_next_bd =
15101                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15102            /* point to the next page and wrap from last page */
15103            busaddr = (fp->tx_dma.paddr +
15104                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15105            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15106            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15107        }
15108
15109        /******************/
15110        /* FP RX BD CHAIN */
15111        /******************/
15112
15113        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15114        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15115                          &fp->rx_dma, buf) != 0) {
15116            /* XXX unwind and free previous fastpath allocations */
15117            BLOGE(sc, "Failed to alloc %s\n", buf);
15118            return (1);
15119        } else {
15120            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15121        }
15122
15123        /* link together the rx bd chain pages */
15124        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15125            /* index into the rx bd chain array to last entry per page */
15126            struct eth_rx_bd *rx_bd =
15127                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15128            /* point to the next page and wrap from last page */
15129            busaddr = (fp->rx_dma.paddr +
15130                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15131            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15132            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15133        }
15134
15135        /*******************/
15136        /* FP RX RCQ CHAIN */
15137        /*******************/
15138
15139        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15140        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15141                          &fp->rcq_dma, buf) != 0) {
15142            /* XXX unwind and free previous fastpath allocations */
15143            BLOGE(sc, "Failed to alloc %s\n", buf);
15144            return (1);
15145        } else {
15146            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15147        }
15148
15149        /* link together the rcq chain pages */
15150        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15151            /* index into the rcq chain array to last entry per page */
15152            struct eth_rx_cqe_next_page *rx_cqe_next =
15153                (struct eth_rx_cqe_next_page *)
15154                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15155            /* point to the next page and wrap from last page */
15156            busaddr = (fp->rcq_dma.paddr +
15157                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15158            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15159            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15160        }
15161
15162        /*******************/
15163        /* FP RX SGE CHAIN */
15164        /*******************/
15165
15166        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15167        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15168                          &fp->rx_sge_dma, buf) != 0) {
15169            /* XXX unwind and free previous fastpath allocations */
15170            BLOGE(sc, "Failed to alloc %s\n", buf);
15171            return (1);
15172        } else {
15173            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15174        }
15175
15176        /* link together the sge chain pages */
15177        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15178            /* index into the rcq chain array to last entry per page */
15179            struct eth_rx_sge *rx_sge =
15180                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15181            /* point to the next page and wrap from last page */
15182            busaddr = (fp->rx_sge_dma.paddr +
15183                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15184            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15185            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15186        }
15187
15188        /***********************/
15189        /* FP TX MBUF DMA MAPS */
15190        /***********************/
15191
15192        /* set required sizes before mapping to conserve resources */
15193        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15194            max_size     = BXE_TSO_MAX_SIZE;
15195            max_segments = BXE_TSO_MAX_SEGMENTS;
15196            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15197        } else {
15198            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15199            max_segments = BXE_MAX_SEGMENTS;
15200            max_seg_size = MCLBYTES;
15201        }
15202
15203        /* create a dma tag for the tx mbufs */
15204        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15205                                1,                  /* alignment */
15206                                0,                  /* boundary limit */
15207                                BUS_SPACE_MAXADDR,  /* restricted low */
15208                                BUS_SPACE_MAXADDR,  /* restricted hi */
15209                                NULL,               /* addr filter() */
15210                                NULL,               /* addr filter() arg */
15211                                max_size,           /* max map size */
15212                                max_segments,       /* num discontinuous */
15213                                max_seg_size,       /* max seg size */
15214                                0,                  /* flags */
15215                                NULL,               /* lock() */
15216                                NULL,               /* lock() arg */
15217                                &fp->tx_mbuf_tag);  /* returned dma tag */
15218        if (rc != 0) {
15219            /* XXX unwind and free previous fastpath allocations */
15220            BLOGE(sc, "Failed to create dma tag for "
15221                      "'fp %d tx mbufs' (%d)\n",
15222                  i, rc);
15223            return (1);
15224        }
15225
15226        /* create dma maps for each of the tx mbuf clusters */
15227        for (j = 0; j < TX_BD_TOTAL; j++) {
15228            if (bus_dmamap_create(fp->tx_mbuf_tag,
15229                                  BUS_DMA_NOWAIT,
15230                                  &fp->tx_mbuf_chain[j].m_map)) {
15231                /* XXX unwind and free previous fastpath allocations */
15232                BLOGE(sc, "Failed to create dma map for "
15233                          "'fp %d tx mbuf %d' (%d)\n",
15234                      i, j, rc);
15235                return (1);
15236            }
15237        }
15238
15239        /***********************/
15240        /* FP RX MBUF DMA MAPS */
15241        /***********************/
15242
15243        /* create a dma tag for the rx mbufs */
15244        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15245                                1,                  /* alignment */
15246                                0,                  /* boundary limit */
15247                                BUS_SPACE_MAXADDR,  /* restricted low */
15248                                BUS_SPACE_MAXADDR,  /* restricted hi */
15249                                NULL,               /* addr filter() */
15250                                NULL,               /* addr filter() arg */
15251                                MJUM9BYTES,         /* max map size */
15252                                1,                  /* num discontinuous */
15253                                MJUM9BYTES,         /* max seg size */
15254                                0,                  /* flags */
15255                                NULL,               /* lock() */
15256                                NULL,               /* lock() arg */
15257                                &fp->rx_mbuf_tag);  /* returned dma tag */
15258        if (rc != 0) {
15259            /* XXX unwind and free previous fastpath allocations */
15260            BLOGE(sc, "Failed to create dma tag for "
15261                      "'fp %d rx mbufs' (%d)\n",
15262                  i, rc);
15263            return (1);
15264        }
15265
15266        /* create dma maps for each of the rx mbuf clusters */
15267        for (j = 0; j < RX_BD_TOTAL; j++) {
15268            if (bus_dmamap_create(fp->rx_mbuf_tag,
15269                                  BUS_DMA_NOWAIT,
15270                                  &fp->rx_mbuf_chain[j].m_map)) {
15271                /* XXX unwind and free previous fastpath allocations */
15272                BLOGE(sc, "Failed to create dma map for "
15273                          "'fp %d rx mbuf %d' (%d)\n",
15274                      i, j, rc);
15275                return (1);
15276            }
15277        }
15278
15279        /* create dma map for the spare rx mbuf cluster */
15280        if (bus_dmamap_create(fp->rx_mbuf_tag,
15281                              BUS_DMA_NOWAIT,
15282                              &fp->rx_mbuf_spare_map)) {
15283            /* XXX unwind and free previous fastpath allocations */
15284            BLOGE(sc, "Failed to create dma map for "
15285                      "'fp %d spare rx mbuf' (%d)\n",
15286                  i, rc);
15287            return (1);
15288        }
15289
15290        /***************************/
15291        /* FP RX SGE MBUF DMA MAPS */
15292        /***************************/
15293
15294        /* create a dma tag for the rx sge mbufs */
15295        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15296                                1,                  /* alignment */
15297                                0,                  /* boundary limit */
15298                                BUS_SPACE_MAXADDR,  /* restricted low */
15299                                BUS_SPACE_MAXADDR,  /* restricted hi */
15300                                NULL,               /* addr filter() */
15301                                NULL,               /* addr filter() arg */
15302                                BCM_PAGE_SIZE,      /* max map size */
15303                                1,                  /* num discontinuous */
15304                                BCM_PAGE_SIZE,      /* max seg size */
15305                                0,                  /* flags */
15306                                NULL,               /* lock() */
15307                                NULL,               /* lock() arg */
15308                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15309        if (rc != 0) {
15310            /* XXX unwind and free previous fastpath allocations */
15311            BLOGE(sc, "Failed to create dma tag for "
15312                      "'fp %d rx sge mbufs' (%d)\n",
15313                  i, rc);
15314            return (1);
15315        }
15316
15317        /* create dma maps for the rx sge mbuf clusters */
15318        for (j = 0; j < RX_SGE_TOTAL; j++) {
15319            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15320                                  BUS_DMA_NOWAIT,
15321                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15322                /* XXX unwind and free previous fastpath allocations */
15323                BLOGE(sc, "Failed to create dma map for "
15324                          "'fp %d rx sge mbuf %d' (%d)\n",
15325                      i, j, rc);
15326                return (1);
15327            }
15328        }
15329
15330        /* create dma map for the spare rx sge mbuf cluster */
15331        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15332                              BUS_DMA_NOWAIT,
15333                              &fp->rx_sge_mbuf_spare_map)) {
15334            /* XXX unwind and free previous fastpath allocations */
15335            BLOGE(sc, "Failed to create dma map for "
15336                      "'fp %d spare rx sge mbuf' (%d)\n",
15337                  i, rc);
15338            return (1);
15339        }
15340
15341        /***************************/
15342        /* FP RX TPA MBUF DMA MAPS */
15343        /***************************/
15344
15345        /* create dma maps for the rx tpa mbuf clusters */
15346        max_agg_queues = MAX_AGG_QS(sc);
15347
15348        for (j = 0; j < max_agg_queues; j++) {
15349            if (bus_dmamap_create(fp->rx_mbuf_tag,
15350                                  BUS_DMA_NOWAIT,
15351                                  &fp->rx_tpa_info[j].bd.m_map)) {
15352                /* XXX unwind and free previous fastpath allocations */
15353                BLOGE(sc, "Failed to create dma map for "
15354                          "'fp %d rx tpa mbuf %d' (%d)\n",
15355                      i, j, rc);
15356                return (1);
15357            }
15358        }
15359
15360        /* create dma map for the spare rx tpa mbuf cluster */
15361        if (bus_dmamap_create(fp->rx_mbuf_tag,
15362                              BUS_DMA_NOWAIT,
15363                              &fp->rx_tpa_info_mbuf_spare_map)) {
15364            /* XXX unwind and free previous fastpath allocations */
15365            BLOGE(sc, "Failed to create dma map for "
15366                      "'fp %d spare rx tpa mbuf' (%d)\n",
15367                  i, rc);
15368            return (1);
15369        }
15370
15371        bxe_init_sge_ring_bit_mask(fp);
15372    }
15373
15374    return (0);
15375}
15376
15377static void
15378bxe_free_hsi_mem(struct bxe_softc *sc)
15379{
15380    struct bxe_fastpath *fp;
15381    int max_agg_queues;
15382    int i, j;
15383
15384    if (sc->parent_dma_tag == NULL) {
15385        return; /* assume nothing was allocated */
15386    }
15387
15388    for (i = 0; i < sc->num_queues; i++) {
15389        fp = &sc->fp[i];
15390
15391        /*******************/
15392        /* FP STATUS BLOCK */
15393        /*******************/
15394
15395        bxe_dma_free(sc, &fp->sb_dma);
15396        memset(&fp->status_block, 0, sizeof(fp->status_block));
15397
15398        /******************/
15399        /* FP TX BD CHAIN */
15400        /******************/
15401
15402        bxe_dma_free(sc, &fp->tx_dma);
15403        fp->tx_chain = NULL;
15404
15405        /******************/
15406        /* FP RX BD CHAIN */
15407        /******************/
15408
15409        bxe_dma_free(sc, &fp->rx_dma);
15410        fp->rx_chain = NULL;
15411
15412        /*******************/
15413        /* FP RX RCQ CHAIN */
15414        /*******************/
15415
15416        bxe_dma_free(sc, &fp->rcq_dma);
15417        fp->rcq_chain = NULL;
15418
15419        /*******************/
15420        /* FP RX SGE CHAIN */
15421        /*******************/
15422
15423        bxe_dma_free(sc, &fp->rx_sge_dma);
15424        fp->rx_sge_chain = NULL;
15425
15426        /***********************/
15427        /* FP TX MBUF DMA MAPS */
15428        /***********************/
15429
15430        if (fp->tx_mbuf_tag != NULL) {
15431            for (j = 0; j < TX_BD_TOTAL; j++) {
15432                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15433                    bus_dmamap_unload(fp->tx_mbuf_tag,
15434                                      fp->tx_mbuf_chain[j].m_map);
15435                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15436                                       fp->tx_mbuf_chain[j].m_map);
15437                }
15438            }
15439
15440            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15441            fp->tx_mbuf_tag = NULL;
15442        }
15443
15444        /***********************/
15445        /* FP RX MBUF DMA MAPS */
15446        /***********************/
15447
15448        if (fp->rx_mbuf_tag != NULL) {
15449            for (j = 0; j < RX_BD_TOTAL; j++) {
15450                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15451                    bus_dmamap_unload(fp->rx_mbuf_tag,
15452                                      fp->rx_mbuf_chain[j].m_map);
15453                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15454                                       fp->rx_mbuf_chain[j].m_map);
15455                }
15456            }
15457
15458            if (fp->rx_mbuf_spare_map != NULL) {
15459                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15460                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15461            }
15462
15463            /***************************/
15464            /* FP RX TPA MBUF DMA MAPS */
15465            /***************************/
15466
15467            max_agg_queues = MAX_AGG_QS(sc);
15468
15469            for (j = 0; j < max_agg_queues; j++) {
15470                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15471                    bus_dmamap_unload(fp->rx_mbuf_tag,
15472                                      fp->rx_tpa_info[j].bd.m_map);
15473                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15474                                       fp->rx_tpa_info[j].bd.m_map);
15475                }
15476            }
15477
15478            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15479                bus_dmamap_unload(fp->rx_mbuf_tag,
15480                                  fp->rx_tpa_info_mbuf_spare_map);
15481                bus_dmamap_destroy(fp->rx_mbuf_tag,
15482                                   fp->rx_tpa_info_mbuf_spare_map);
15483            }
15484
15485            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15486            fp->rx_mbuf_tag = NULL;
15487        }
15488
15489        /***************************/
15490        /* FP RX SGE MBUF DMA MAPS */
15491        /***************************/
15492
15493        if (fp->rx_sge_mbuf_tag != NULL) {
15494            for (j = 0; j < RX_SGE_TOTAL; j++) {
15495                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15496                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15497                                      fp->rx_sge_mbuf_chain[j].m_map);
15498                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15499                                       fp->rx_sge_mbuf_chain[j].m_map);
15500                }
15501            }
15502
15503            if (fp->rx_sge_mbuf_spare_map != NULL) {
15504                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15505                                  fp->rx_sge_mbuf_spare_map);
15506                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15507                                   fp->rx_sge_mbuf_spare_map);
15508            }
15509
15510            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15511            fp->rx_sge_mbuf_tag = NULL;
15512        }
15513    }
15514
15515    /***************************/
15516    /* FW DECOMPRESSION BUFFER */
15517    /***************************/
15518
15519    bxe_dma_free(sc, &sc->gz_buf_dma);
15520    sc->gz_buf = NULL;
15521    free(sc->gz_strm, M_DEVBUF);
15522    sc->gz_strm = NULL;
15523
15524    /*******************/
15525    /* SLOW PATH QUEUE */
15526    /*******************/
15527
15528    bxe_dma_free(sc, &sc->spq_dma);
15529    sc->spq = NULL;
15530
15531    /*************/
15532    /* SLOW PATH */
15533    /*************/
15534
15535    bxe_dma_free(sc, &sc->sp_dma);
15536    sc->sp = NULL;
15537
15538    /***************/
15539    /* EVENT QUEUE */
15540    /***************/
15541
15542    bxe_dma_free(sc, &sc->eq_dma);
15543    sc->eq = NULL;
15544
15545    /************************/
15546    /* DEFAULT STATUS BLOCK */
15547    /************************/
15548
15549    bxe_dma_free(sc, &sc->def_sb_dma);
15550    sc->def_sb = NULL;
15551
15552    bus_dma_tag_destroy(sc->parent_dma_tag);
15553    sc->parent_dma_tag = NULL;
15554}
15555
15556/*
15557 * Previous driver DMAE transaction may have occurred when pre-boot stage
15558 * ended and boot began. This would invalidate the addresses of the
15559 * transaction, resulting in was-error bit set in the PCI causing all
15560 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15561 * the interrupt which detected this from the pglueb and the was-done bit
15562 */
15563static void
15564bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15565{
15566    uint32_t val;
15567
15568    if (!CHIP_IS_E1x(sc)) {
15569        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15570        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15571            BLOGD(sc, DBG_LOAD,
15572                  "Clearing 'was-error' bit that was set in pglueb");
15573            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15574        }
15575    }
15576}
15577
15578static int
15579bxe_prev_mcp_done(struct bxe_softc *sc)
15580{
15581    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15582                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15583    if (!rc) {
15584        BLOGE(sc, "MCP response failure, aborting\n");
15585        return (-1);
15586    }
15587
15588    return (0);
15589}
15590
15591static struct bxe_prev_list_node *
15592bxe_prev_path_get_entry(struct bxe_softc *sc)
15593{
15594    struct bxe_prev_list_node *tmp;
15595
15596    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15597        if ((sc->pcie_bus == tmp->bus) &&
15598            (sc->pcie_device == tmp->slot) &&
15599            (SC_PATH(sc) == tmp->path)) {
15600            return (tmp);
15601        }
15602    }
15603
15604    return (NULL);
15605}
15606
15607static uint8_t
15608bxe_prev_is_path_marked(struct bxe_softc *sc)
15609{
15610    struct bxe_prev_list_node *tmp;
15611    int rc = FALSE;
15612
15613    mtx_lock(&bxe_prev_mtx);
15614
15615    tmp = bxe_prev_path_get_entry(sc);
15616    if (tmp) {
15617        if (tmp->aer) {
15618            BLOGD(sc, DBG_LOAD,
15619                  "Path %d/%d/%d was marked by AER\n",
15620                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15621        } else {
15622            rc = TRUE;
15623            BLOGD(sc, DBG_LOAD,
15624                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15625                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15626        }
15627    }
15628
15629    mtx_unlock(&bxe_prev_mtx);
15630
15631    return (rc);
15632}
15633
15634static int
15635bxe_prev_mark_path(struct bxe_softc *sc,
15636                   uint8_t          after_undi)
15637{
15638    struct bxe_prev_list_node *tmp;
15639
15640    mtx_lock(&bxe_prev_mtx);
15641
15642    /* Check whether the entry for this path already exists */
15643    tmp = bxe_prev_path_get_entry(sc);
15644    if (tmp) {
15645        if (!tmp->aer) {
15646            BLOGD(sc, DBG_LOAD,
15647                  "Re-marking AER in path %d/%d/%d\n",
15648                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15649        } else {
15650            BLOGD(sc, DBG_LOAD,
15651                  "Removing AER indication from path %d/%d/%d\n",
15652                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15653            tmp->aer = 0;
15654        }
15655
15656        mtx_unlock(&bxe_prev_mtx);
15657        return (0);
15658    }
15659
15660    mtx_unlock(&bxe_prev_mtx);
15661
15662    /* Create an entry for this path and add it */
15663    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15664                 (M_NOWAIT | M_ZERO));
15665    if (!tmp) {
15666        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15667        return (-1);
15668    }
15669
15670    tmp->bus  = sc->pcie_bus;
15671    tmp->slot = sc->pcie_device;
15672    tmp->path = SC_PATH(sc);
15673    tmp->aer  = 0;
15674    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15675
15676    mtx_lock(&bxe_prev_mtx);
15677
15678    BLOGD(sc, DBG_LOAD,
15679          "Marked path %d/%d/%d - finished previous unload\n",
15680          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15681    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15682
15683    mtx_unlock(&bxe_prev_mtx);
15684
15685    return (0);
15686}
15687
15688static int
15689bxe_do_flr(struct bxe_softc *sc)
15690{
15691    int i;
15692
15693    /* only E2 and onwards support FLR */
15694    if (CHIP_IS_E1x(sc)) {
15695        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15696        return (-1);
15697    }
15698
15699    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15700    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15701        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15702              sc->devinfo.bc_ver);
15703        return (-1);
15704    }
15705
15706    /* Wait for Transaction Pending bit clean */
15707    for (i = 0; i < 4; i++) {
15708        if (i) {
15709            DELAY(((1 << (i - 1)) * 100) * 1000);
15710        }
15711
15712        if (!bxe_is_pcie_pending(sc)) {
15713            goto clear;
15714        }
15715    }
15716
15717    BLOGE(sc, "PCIE transaction is not cleared, "
15718              "proceeding with reset anyway\n");
15719
15720clear:
15721
15722    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15723    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15724
15725    return (0);
15726}
15727
15728struct bxe_mac_vals {
15729    uint32_t xmac_addr;
15730    uint32_t xmac_val;
15731    uint32_t emac_addr;
15732    uint32_t emac_val;
15733    uint32_t umac_addr;
15734    uint32_t umac_val;
15735    uint32_t bmac_addr;
15736    uint32_t bmac_val[2];
15737};
15738
15739static void
15740bxe_prev_unload_close_mac(struct bxe_softc *sc,
15741                          struct bxe_mac_vals *vals)
15742{
15743    uint32_t val, base_addr, offset, mask, reset_reg;
15744    uint8_t mac_stopped = FALSE;
15745    uint8_t port = SC_PORT(sc);
15746    uint32_t wb_data[2];
15747
15748    /* reset addresses as they also mark which values were changed */
15749    vals->bmac_addr = 0;
15750    vals->umac_addr = 0;
15751    vals->xmac_addr = 0;
15752    vals->emac_addr = 0;
15753
15754    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15755
15756    if (!CHIP_IS_E3(sc)) {
15757        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15758        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15759        if ((mask & reset_reg) && val) {
15760            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15761            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15762                                    : NIG_REG_INGRESS_BMAC0_MEM;
15763            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15764                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15765
15766            /*
15767             * use rd/wr since we cannot use dmae. This is safe
15768             * since MCP won't access the bus due to the request
15769             * to unload, and no function on the path can be
15770             * loaded at this time.
15771             */
15772            wb_data[0] = REG_RD(sc, base_addr + offset);
15773            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15774            vals->bmac_addr = base_addr + offset;
15775            vals->bmac_val[0] = wb_data[0];
15776            vals->bmac_val[1] = wb_data[1];
15777            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15778            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15779            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15780        }
15781
15782        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15783        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15784        vals->emac_val = REG_RD(sc, vals->emac_addr);
15785        REG_WR(sc, vals->emac_addr, 0);
15786        mac_stopped = TRUE;
15787    } else {
15788        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15789            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15790            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15791            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15792            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15793            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15794            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15795            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15796            REG_WR(sc, vals->xmac_addr, 0);
15797            mac_stopped = TRUE;
15798        }
15799
15800        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15801        if (mask & reset_reg) {
15802            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15803            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15804            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15805            vals->umac_val = REG_RD(sc, vals->umac_addr);
15806            REG_WR(sc, vals->umac_addr, 0);
15807            mac_stopped = TRUE;
15808        }
15809    }
15810
15811    if (mac_stopped) {
15812        DELAY(20000);
15813    }
15814}
15815
15816#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15817#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15818#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15819#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15820
15821static void
15822bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15823                         uint8_t          port,
15824                         uint8_t          inc)
15825{
15826    uint16_t rcq, bd;
15827    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15828
15829    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15830    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15831
15832    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15833    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15834
15835    BLOGD(sc, DBG_LOAD,
15836          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15837          port, bd, rcq);
15838}
15839
15840static int
15841bxe_prev_unload_common(struct bxe_softc *sc)
15842{
15843    uint32_t reset_reg, tmp_reg = 0, rc;
15844    uint8_t prev_undi = FALSE;
15845    struct bxe_mac_vals mac_vals;
15846    uint32_t timer_count = 1000;
15847    uint32_t prev_brb;
15848
15849    /*
15850     * It is possible a previous function received 'common' answer,
15851     * but hasn't loaded yet, therefore creating a scenario of
15852     * multiple functions receiving 'common' on the same path.
15853     */
15854    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15855
15856    memset(&mac_vals, 0, sizeof(mac_vals));
15857
15858    if (bxe_prev_is_path_marked(sc)) {
15859        return (bxe_prev_mcp_done(sc));
15860    }
15861
15862    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15863
15864    /* Reset should be performed after BRB is emptied */
15865    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15866        /* Close the MAC Rx to prevent BRB from filling up */
15867        bxe_prev_unload_close_mac(sc, &mac_vals);
15868
15869        /* close LLH filters towards the BRB */
15870        elink_set_rx_filter(&sc->link_params, 0);
15871
15872        /*
15873         * Check if the UNDI driver was previously loaded.
15874         * UNDI driver initializes CID offset for normal bell to 0x7
15875         */
15876        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15877            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15878            if (tmp_reg == 0x7) {
15879                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15880                prev_undi = TRUE;
15881                /* clear the UNDI indication */
15882                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15883                /* clear possible idle check errors */
15884                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15885            }
15886        }
15887
15888        /* wait until BRB is empty */
15889        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15890        while (timer_count) {
15891            prev_brb = tmp_reg;
15892
15893            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15894            if (!tmp_reg) {
15895                break;
15896            }
15897
15898            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15899
15900            /* reset timer as long as BRB actually gets emptied */
15901            if (prev_brb > tmp_reg) {
15902                timer_count = 1000;
15903            } else {
15904                timer_count--;
15905            }
15906
15907            /* If UNDI resides in memory, manually increment it */
15908            if (prev_undi) {
15909                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15910            }
15911
15912            DELAY(10);
15913        }
15914
15915        if (!timer_count) {
15916            BLOGE(sc, "Failed to empty BRB\n");
15917        }
15918    }
15919
15920    /* No packets are in the pipeline, path is ready for reset */
15921    bxe_reset_common(sc);
15922
15923    if (mac_vals.xmac_addr) {
15924        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15925    }
15926    if (mac_vals.umac_addr) {
15927        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15928    }
15929    if (mac_vals.emac_addr) {
15930        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15931    }
15932    if (mac_vals.bmac_addr) {
15933        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15934        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15935    }
15936
15937    rc = bxe_prev_mark_path(sc, prev_undi);
15938    if (rc) {
15939        bxe_prev_mcp_done(sc);
15940        return (rc);
15941    }
15942
15943    return (bxe_prev_mcp_done(sc));
15944}
15945
15946static int
15947bxe_prev_unload_uncommon(struct bxe_softc *sc)
15948{
15949    int rc;
15950
15951    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15952
15953    /* Test if previous unload process was already finished for this path */
15954    if (bxe_prev_is_path_marked(sc)) {
15955        return (bxe_prev_mcp_done(sc));
15956    }
15957
15958    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15959
15960    /*
15961     * If function has FLR capabilities, and existing FW version matches
15962     * the one required, then FLR will be sufficient to clean any residue
15963     * left by previous driver
15964     */
15965    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15966    if (!rc) {
15967        /* fw version is good */
15968        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15969        rc = bxe_do_flr(sc);
15970    }
15971
15972    if (!rc) {
15973        /* FLR was performed */
15974        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15975        return (0);
15976    }
15977
15978    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15979
15980    /* Close the MCP request, return failure*/
15981    rc = bxe_prev_mcp_done(sc);
15982    if (!rc) {
15983        rc = BXE_PREV_WAIT_NEEDED;
15984    }
15985
15986    return (rc);
15987}
15988
15989static int
15990bxe_prev_unload(struct bxe_softc *sc)
15991{
15992    int time_counter = 10;
15993    uint32_t fw, hw_lock_reg, hw_lock_val;
15994    uint32_t rc = 0;
15995
15996    /*
15997     * Clear HW from errors which may have resulted from an interrupted
15998     * DMAE transaction.
15999     */
16000    bxe_prev_interrupted_dmae(sc);
16001
16002    /* Release previously held locks */
16003    hw_lock_reg =
16004        (SC_FUNC(sc) <= 5) ?
16005            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16006            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16007
16008    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16009    if (hw_lock_val) {
16010        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16011            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16012            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16013                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16014        }
16015        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16016        REG_WR(sc, hw_lock_reg, 0xffffffff);
16017    } else {
16018        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16019    }
16020
16021    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16022        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16023        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16024    }
16025
16026    do {
16027        /* Lock MCP using an unload request */
16028        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16029        if (!fw) {
16030            BLOGE(sc, "MCP response failure, aborting\n");
16031            rc = -1;
16032            break;
16033        }
16034
16035        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16036            rc = bxe_prev_unload_common(sc);
16037            break;
16038        }
16039
16040        /* non-common reply from MCP night require looping */
16041        rc = bxe_prev_unload_uncommon(sc);
16042        if (rc != BXE_PREV_WAIT_NEEDED) {
16043            break;
16044        }
16045
16046        DELAY(20000);
16047    } while (--time_counter);
16048
16049    if (!time_counter || rc) {
16050        BLOGE(sc, "Failed to unload previous driver!\n");
16051        rc = -1;
16052    }
16053
16054    return (rc);
16055}
16056
16057void
16058bxe_dcbx_set_state(struct bxe_softc *sc,
16059                   uint8_t          dcb_on,
16060                   uint32_t         dcbx_enabled)
16061{
16062    if (!CHIP_IS_E1x(sc)) {
16063        sc->dcb_state = dcb_on;
16064        sc->dcbx_enabled = dcbx_enabled;
16065    } else {
16066        sc->dcb_state = FALSE;
16067        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16068    }
16069    BLOGD(sc, DBG_LOAD,
16070          "DCB state [%s:%s]\n",
16071          dcb_on ? "ON" : "OFF",
16072          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16073          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16074          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16075          "on-chip with negotiation" : "invalid");
16076}
16077
16078/* must be called after sriov-enable */
16079static int
16080bxe_set_qm_cid_count(struct bxe_softc *sc)
16081{
16082    int cid_count = BXE_L2_MAX_CID(sc);
16083
16084    if (IS_SRIOV(sc)) {
16085        cid_count += BXE_VF_CIDS;
16086    }
16087
16088    if (CNIC_SUPPORT(sc)) {
16089        cid_count += CNIC_CID_MAX;
16090    }
16091
16092    return (roundup(cid_count, QM_CID_ROUND));
16093}
16094
16095static void
16096bxe_init_multi_cos(struct bxe_softc *sc)
16097{
16098    int pri, cos;
16099
16100    uint32_t pri_map = 0; /* XXX change to user config */
16101
16102    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16103        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16104        if (cos < sc->max_cos) {
16105            sc->prio_to_cos[pri] = cos;
16106        } else {
16107            BLOGW(sc, "Invalid COS %d for priority %d "
16108                      "(max COS is %d), setting to 0\n",
16109                  cos, pri, (sc->max_cos - 1));
16110            sc->prio_to_cos[pri] = 0;
16111        }
16112    }
16113}
16114
16115static int
16116bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16117{
16118    struct bxe_softc *sc;
16119    int error, result;
16120
16121    result = 0;
16122    error = sysctl_handle_int(oidp, &result, 0, req);
16123
16124    if (error || !req->newptr) {
16125        return (error);
16126    }
16127
16128    if (result == 1) {
16129        sc = (struct bxe_softc *)arg1;
16130        BLOGI(sc, "... dumping driver state ...\n");
16131        /* XXX */
16132    }
16133
16134    return (error);
16135}
16136
16137static int
16138bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16139{
16140    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16141    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16142    uint32_t *offset;
16143    uint64_t value = 0;
16144    int index = (int)arg2;
16145
16146    if (index >= BXE_NUM_ETH_STATS) {
16147        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16148        return (-1);
16149    }
16150
16151    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16152
16153    switch (bxe_eth_stats_arr[index].size) {
16154    case 4:
16155        value = (uint64_t)*offset;
16156        break;
16157    case 8:
16158        value = HILO_U64(*offset, *(offset + 1));
16159        break;
16160    default:
16161        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16162              index, bxe_eth_stats_arr[index].size);
16163        return (-1);
16164    }
16165
16166    return (sysctl_handle_64(oidp, &value, 0, req));
16167}
16168
16169static int
16170bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16171{
16172    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16173    uint32_t *eth_stats;
16174    uint32_t *offset;
16175    uint64_t value = 0;
16176    uint32_t q_stat = (uint32_t)arg2;
16177    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16178    uint32_t index = (q_stat & 0xffff);
16179
16180    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16181
16182    if (index >= BXE_NUM_ETH_Q_STATS) {
16183        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16184        return (-1);
16185    }
16186
16187    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16188
16189    switch (bxe_eth_q_stats_arr[index].size) {
16190    case 4:
16191        value = (uint64_t)*offset;
16192        break;
16193    case 8:
16194        value = HILO_U64(*offset, *(offset + 1));
16195        break;
16196    default:
16197        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16198              index, bxe_eth_q_stats_arr[index].size);
16199        return (-1);
16200    }
16201
16202    return (sysctl_handle_64(oidp, &value, 0, req));
16203}
16204
16205static void
16206bxe_add_sysctls(struct bxe_softc *sc)
16207{
16208    struct sysctl_ctx_list *ctx;
16209    struct sysctl_oid_list *children;
16210    struct sysctl_oid *queue_top, *queue;
16211    struct sysctl_oid_list *queue_top_children, *queue_children;
16212    char queue_num_buf[32];
16213    uint32_t q_stat;
16214    int i, j;
16215
16216    ctx = device_get_sysctl_ctx(sc->dev);
16217    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16218
16219    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16220                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16221                      "version");
16222
16223    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16224                      CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16225                      "bootcode version");
16226
16227    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16228             BCM_5710_FW_MAJOR_VERSION,
16229             BCM_5710_FW_MINOR_VERSION,
16230             BCM_5710_FW_REVISION_VERSION,
16231             BCM_5710_FW_ENGINEERING_VERSION);
16232    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16233                      CTLFLAG_RD, sc->fw_ver_str, 0,
16234                      "firmware version");
16235
16236    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16237        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16238         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16239         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16240         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16241                                                                "Unknown"));
16242    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16243                      CTLFLAG_RD, sc->mf_mode_str, 0,
16244                      "multifunction mode");
16245
16246    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16247                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16248                    "multifunction vnics per port");
16249
16250    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16251                      CTLFLAG_RD, sc->mac_addr_str, 0,
16252                      "mac address");
16253
16254    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16255        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16256         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16257         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16258                                              "???GT/s"),
16259        sc->devinfo.pcie_link_width);
16260    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16261                      CTLFLAG_RD, sc->pci_link_str, 0,
16262                      "pci link status");
16263
16264    sc->debug = bxe_debug;
16265    SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16266                    CTLFLAG_RW, &sc->debug,
16267                    "debug logging mode");
16268
16269    sc->rx_budget = bxe_rx_budget;
16270    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16271                    CTLFLAG_RW, &sc->rx_budget, 0,
16272                    "rx processing budget");
16273
16274    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16275                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16276                    bxe_sysctl_state, "IU", "dump driver state");
16277
16278    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16279        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16280                        bxe_eth_stats_arr[i].string,
16281                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16282                        bxe_sysctl_eth_stat, "LU",
16283                        bxe_eth_stats_arr[i].string);
16284    }
16285
16286    /* add a new parent node for all queues "dev.bxe.#.queue" */
16287    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16288                                CTLFLAG_RD, NULL, "queue");
16289    queue_top_children = SYSCTL_CHILDREN(queue_top);
16290
16291    for (i = 0; i < sc->num_queues; i++) {
16292        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16293        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16294        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16295                                queue_num_buf, CTLFLAG_RD, NULL,
16296                                "single queue");
16297        queue_children = SYSCTL_CHILDREN(queue);
16298
16299        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16300            q_stat = ((i << 16) | j);
16301            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16302                            bxe_eth_q_stats_arr[j].string,
16303                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16304                            bxe_sysctl_eth_q_stat, "LU",
16305                            bxe_eth_q_stats_arr[j].string);
16306        }
16307    }
16308}
16309
16310/*
16311 * Device attach function.
16312 *
16313 * Allocates device resources, performs secondary chip identification, and
16314 * initializes driver instance variables. This function is called from driver
16315 * load after a successful probe.
16316 *
16317 * Returns:
16318 *   0 = Success, >0 = Failure
16319 */
16320static int
16321bxe_attach(device_t dev)
16322{
16323    struct bxe_softc *sc;
16324
16325    sc = device_get_softc(dev);
16326
16327    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16328
16329    sc->state = BXE_STATE_CLOSED;
16330
16331    sc->dev  = dev;
16332    sc->unit = device_get_unit(dev);
16333
16334    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16335
16336    sc->pcie_bus    = pci_get_bus(dev);
16337    sc->pcie_device = pci_get_slot(dev);
16338    sc->pcie_func   = pci_get_function(dev);
16339
16340    /* enable bus master capability */
16341    pci_enable_busmaster(dev);
16342
16343    /* get the BARs */
16344    if (bxe_allocate_bars(sc) != 0) {
16345        return (ENXIO);
16346    }
16347
16348    /* initialize the mutexes */
16349    bxe_init_mutexes(sc);
16350
16351    /* prepare the periodic callout */
16352    callout_init(&sc->periodic_callout, 0);
16353
16354    /* prepare the chip taskqueue */
16355    sc->chip_tq_flags = CHIP_TQ_NONE;
16356    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16357             "bxe%d_chip_tq", sc->unit);
16358    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16359    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16360                                   taskqueue_thread_enqueue,
16361                                   &sc->chip_tq);
16362    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16363                            "%s", sc->chip_tq_name);
16364
16365    /* get device info and set params */
16366    if (bxe_get_device_info(sc) != 0) {
16367        BLOGE(sc, "getting device info\n");
16368        bxe_deallocate_bars(sc);
16369        pci_disable_busmaster(dev);
16370        return (ENXIO);
16371    }
16372
16373    /* get final misc params */
16374    bxe_get_params(sc);
16375
16376    /* set the default MTU (changed via ifconfig) */
16377    sc->mtu = ETHERMTU;
16378
16379    bxe_set_modes_bitmap(sc);
16380
16381    /* XXX
16382     * If in AFEX mode and the function is configured for FCoE
16383     * then bail... no L2 allowed.
16384     */
16385
16386    /* get phy settings from shmem and 'and' against admin settings */
16387    bxe_get_phy_info(sc);
16388
16389    /* initialize the FreeBSD ifnet interface */
16390    if (bxe_init_ifnet(sc) != 0) {
16391        bxe_release_mutexes(sc);
16392        bxe_deallocate_bars(sc);
16393        pci_disable_busmaster(dev);
16394        return (ENXIO);
16395    }
16396
16397    /* allocate device interrupts */
16398    if (bxe_interrupt_alloc(sc) != 0) {
16399        if (sc->ifnet != NULL) {
16400            ether_ifdetach(sc->ifnet);
16401        }
16402        ifmedia_removeall(&sc->ifmedia);
16403        bxe_release_mutexes(sc);
16404        bxe_deallocate_bars(sc);
16405        pci_disable_busmaster(dev);
16406        return (ENXIO);
16407    }
16408
16409    /* allocate ilt */
16410    if (bxe_alloc_ilt_mem(sc) != 0) {
16411        bxe_interrupt_free(sc);
16412        if (sc->ifnet != NULL) {
16413            ether_ifdetach(sc->ifnet);
16414        }
16415        ifmedia_removeall(&sc->ifmedia);
16416        bxe_release_mutexes(sc);
16417        bxe_deallocate_bars(sc);
16418        pci_disable_busmaster(dev);
16419        return (ENXIO);
16420    }
16421
16422    /* allocate the host hardware/software hsi structures */
16423    if (bxe_alloc_hsi_mem(sc) != 0) {
16424        bxe_free_ilt_mem(sc);
16425        bxe_interrupt_free(sc);
16426        if (sc->ifnet != NULL) {
16427            ether_ifdetach(sc->ifnet);
16428        }
16429        ifmedia_removeall(&sc->ifmedia);
16430        bxe_release_mutexes(sc);
16431        bxe_deallocate_bars(sc);
16432        pci_disable_busmaster(dev);
16433        return (ENXIO);
16434    }
16435
16436    /* need to reset chip if UNDI was active */
16437    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16438        /* init fw_seq */
16439        sc->fw_seq =
16440            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16441             DRV_MSG_SEQ_NUMBER_MASK);
16442        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16443        bxe_prev_unload(sc);
16444    }
16445
16446#if 1
16447    /* XXX */
16448    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16449#else
16450    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16451        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16452        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16453        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16454        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16455        bxe_dcbx_init_params(sc);
16456    } else {
16457        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16458    }
16459#endif
16460
16461    /* calculate qm_cid_count */
16462    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16463    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16464
16465    sc->max_cos = 1;
16466    bxe_init_multi_cos(sc);
16467
16468    bxe_add_sysctls(sc);
16469
16470    return (0);
16471}
16472
16473/*
16474 * Device detach function.
16475 *
16476 * Stops the controller, resets the controller, and releases resources.
16477 *
16478 * Returns:
16479 *   0 = Success, >0 = Failure
16480 */
16481static int
16482bxe_detach(device_t dev)
16483{
16484    struct bxe_softc *sc;
16485    struct ifnet *ifp;
16486
16487    sc = device_get_softc(dev);
16488
16489    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16490
16491    ifp = sc->ifnet;
16492    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16493        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16494        return(EBUSY);
16495    }
16496
16497    /* stop the periodic callout */
16498    bxe_periodic_stop(sc);
16499
16500    /* stop the chip taskqueue */
16501    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16502    if (sc->chip_tq) {
16503        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16504        taskqueue_free(sc->chip_tq);
16505        sc->chip_tq = NULL;
16506    }
16507
16508    /* stop and reset the controller if it was open */
16509    if (sc->state != BXE_STATE_CLOSED) {
16510        BXE_CORE_LOCK(sc);
16511        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16512        BXE_CORE_UNLOCK(sc);
16513    }
16514
16515    /* release the network interface */
16516    if (ifp != NULL) {
16517        ether_ifdetach(ifp);
16518    }
16519    ifmedia_removeall(&sc->ifmedia);
16520
16521    /* XXX do the following based on driver state... */
16522
16523    /* free the host hardware/software hsi structures */
16524    bxe_free_hsi_mem(sc);
16525
16526    /* free ilt */
16527    bxe_free_ilt_mem(sc);
16528
16529    /* release the interrupts */
16530    bxe_interrupt_free(sc);
16531
16532    /* Release the mutexes*/
16533    bxe_release_mutexes(sc);
16534
16535    /* Release the PCIe BAR mapped memory */
16536    bxe_deallocate_bars(sc);
16537
16538    /* Release the FreeBSD interface. */
16539    if (sc->ifnet != NULL) {
16540        if_free(sc->ifnet);
16541    }
16542
16543    pci_disable_busmaster(dev);
16544
16545    return (0);
16546}
16547
16548/*
16549 * Device shutdown function.
16550 *
16551 * Stops and resets the controller.
16552 *
16553 * Returns:
16554 *   Nothing
16555 */
16556static int
16557bxe_shutdown(device_t dev)
16558{
16559    struct bxe_softc *sc;
16560
16561    sc = device_get_softc(dev);
16562
16563    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16564
16565    /* stop the periodic callout */
16566    bxe_periodic_stop(sc);
16567
16568    BXE_CORE_LOCK(sc);
16569    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16570    BXE_CORE_UNLOCK(sc);
16571
16572    return (0);
16573}
16574
16575void
16576bxe_igu_ack_sb(struct bxe_softc *sc,
16577               uint8_t          igu_sb_id,
16578               uint8_t          segment,
16579               uint16_t         index,
16580               uint8_t          op,
16581               uint8_t          update)
16582{
16583    uint32_t igu_addr = sc->igu_base_addr;
16584    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16585    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16586}
16587
16588static void
16589bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16590                     uint8_t          func,
16591                     uint8_t          idu_sb_id,
16592                     uint8_t          is_pf)
16593{
16594    uint32_t data, ctl, cnt = 100;
16595    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16596    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16597    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16598    uint32_t sb_bit =  1 << (idu_sb_id%32);
16599    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16600    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16601
16602    /* Not supported in BC mode */
16603    if (CHIP_INT_MODE_IS_BC(sc)) {
16604        return;
16605    }
16606
16607    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16608             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16609            IGU_REGULAR_CLEANUP_SET |
16610            IGU_REGULAR_BCLEANUP);
16611
16612    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16613           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16614           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16615
16616    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16617            data, igu_addr_data);
16618    REG_WR(sc, igu_addr_data, data);
16619
16620    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16621                      BUS_SPACE_BARRIER_WRITE);
16622    mb();
16623
16624    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16625            ctl, igu_addr_ctl);
16626    REG_WR(sc, igu_addr_ctl, ctl);
16627
16628    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16629                      BUS_SPACE_BARRIER_WRITE);
16630    mb();
16631
16632    /* wait for clean up to finish */
16633    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16634        DELAY(20000);
16635    }
16636
16637    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16638        BLOGD(sc, DBG_LOAD,
16639              "Unable to finish IGU cleanup: "
16640              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16641              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16642    }
16643}
16644
16645static void
16646bxe_igu_clear_sb(struct bxe_softc *sc,
16647                 uint8_t          idu_sb_id)
16648{
16649    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16650}
16651
16652
16653
16654
16655
16656
16657
16658/*******************/
16659/* ECORE CALLBACKS */
16660/*******************/
16661
16662static void
16663bxe_reset_common(struct bxe_softc *sc)
16664{
16665    uint32_t val = 0x1400;
16666
16667    /* reset_common */
16668    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16669
16670    if (CHIP_IS_E3(sc)) {
16671        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16672        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16673    }
16674
16675    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16676}
16677
16678static void
16679bxe_common_init_phy(struct bxe_softc *sc)
16680{
16681    uint32_t shmem_base[2];
16682    uint32_t shmem2_base[2];
16683
16684    /* Avoid common init in case MFW supports LFA */
16685    if (SHMEM2_RD(sc, size) >
16686        (uint32_t)offsetof(struct shmem2_region,
16687                           lfa_host_addr[SC_PORT(sc)])) {
16688        return;
16689    }
16690
16691    shmem_base[0]  = sc->devinfo.shmem_base;
16692    shmem2_base[0] = sc->devinfo.shmem2_base;
16693
16694    if (!CHIP_IS_E1x(sc)) {
16695        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16696        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16697    }
16698
16699    BXE_PHY_LOCK(sc);
16700    elink_common_init_phy(sc, shmem_base, shmem2_base,
16701                          sc->devinfo.chip_id, 0);
16702    BXE_PHY_UNLOCK(sc);
16703}
16704
16705static void
16706bxe_pf_disable(struct bxe_softc *sc)
16707{
16708    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16709
16710    val &= ~IGU_PF_CONF_FUNC_EN;
16711
16712    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16713    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16714    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16715}
16716
16717static void
16718bxe_init_pxp(struct bxe_softc *sc)
16719{
16720    uint16_t devctl;
16721    int r_order, w_order;
16722
16723    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16724
16725    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16726
16727    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16728
16729    if (sc->mrrs == -1) {
16730        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16731    } else {
16732        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16733        r_order = sc->mrrs;
16734    }
16735
16736    ecore_init_pxp_arb(sc, r_order, w_order);
16737}
16738
16739static uint32_t
16740bxe_get_pretend_reg(struct bxe_softc *sc)
16741{
16742    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16743    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16744    return (base + (SC_ABS_FUNC(sc)) * stride);
16745}
16746
16747/*
16748 * Called only on E1H or E2.
16749 * When pretending to be PF, the pretend value is the function number 0..7.
16750 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16751 * combination.
16752 */
16753static int
16754bxe_pretend_func(struct bxe_softc *sc,
16755                 uint16_t         pretend_func_val)
16756{
16757    uint32_t pretend_reg;
16758
16759    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16760        return (-1);
16761    }
16762
16763    /* get my own pretend register */
16764    pretend_reg = bxe_get_pretend_reg(sc);
16765    REG_WR(sc, pretend_reg, pretend_func_val);
16766    REG_RD(sc, pretend_reg);
16767    return (0);
16768}
16769
16770static void
16771bxe_iov_init_dmae(struct bxe_softc *sc)
16772{
16773    return;
16774#if 0
16775    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16776
16777    if (!IS_SRIOV(sc)) {
16778        return;
16779    }
16780
16781    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16782#endif
16783}
16784
16785#if 0
16786static int
16787bxe_iov_init_ilt(struct bxe_softc *sc,
16788                 uint16_t         line)
16789{
16790    return (line);
16791#if 0
16792    int i;
16793    struct ecore_ilt* ilt = sc->ilt;
16794
16795    if (!IS_SRIOV(sc)) {
16796        return (line);
16797    }
16798
16799    /* set vfs ilt lines */
16800    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16801        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16802        ilt->lines[line+i].page = hw_cxt->addr;
16803        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16804        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16805    }
16806    return (line+i);
16807#endif
16808}
16809#endif
16810
16811static void
16812bxe_iov_init_dq(struct bxe_softc *sc)
16813{
16814    return;
16815#if 0
16816    if (!IS_SRIOV(sc)) {
16817        return;
16818    }
16819
16820    /* Set the DQ such that the CID reflect the abs_vfid */
16821    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16822    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16823
16824    /*
16825     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16826     * the PF L2 queues
16827     */
16828    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16829
16830    /* The VF window size is the log2 of the max number of CIDs per VF */
16831    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16832
16833    /*
16834     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16835     * the Pf doorbell size although the 2 are independent.
16836     */
16837    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16838           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16839
16840    /*
16841     * No security checks for now -
16842     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16843     * CID range 0 - 0x1ffff
16844     */
16845    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16846    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16847    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16848    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16849
16850    /* set the number of VF alllowed doorbells to the full DQ range */
16851    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16852
16853    /* set the VF doorbell threshold */
16854    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16855#endif
16856}
16857
16858/* send a NIG loopback debug packet */
16859static void
16860bxe_lb_pckt(struct bxe_softc *sc)
16861{
16862    uint32_t wb_write[3];
16863
16864    /* Ethernet source and destination addresses */
16865    wb_write[0] = 0x55555555;
16866    wb_write[1] = 0x55555555;
16867    wb_write[2] = 0x20;     /* SOP */
16868    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16869
16870    /* NON-IP protocol */
16871    wb_write[0] = 0x09000000;
16872    wb_write[1] = 0x55555555;
16873    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16874    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16875}
16876
16877/*
16878 * Some of the internal memories are not directly readable from the driver.
16879 * To test them we send debug packets.
16880 */
16881static int
16882bxe_int_mem_test(struct bxe_softc *sc)
16883{
16884    int factor;
16885    int count, i;
16886    uint32_t val = 0;
16887
16888    if (CHIP_REV_IS_FPGA(sc)) {
16889        factor = 120;
16890    } else if (CHIP_REV_IS_EMUL(sc)) {
16891        factor = 200;
16892    } else {
16893        factor = 1;
16894    }
16895
16896    /* disable inputs of parser neighbor blocks */
16897    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16898    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16899    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16900    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16901
16902    /*  write 0 to parser credits for CFC search request */
16903    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16904
16905    /* send Ethernet packet */
16906    bxe_lb_pckt(sc);
16907
16908    /* TODO do i reset NIG statistic? */
16909    /* Wait until NIG register shows 1 packet of size 0x10 */
16910    count = 1000 * factor;
16911    while (count) {
16912        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16913        val = *BXE_SP(sc, wb_data[0]);
16914        if (val == 0x10) {
16915            break;
16916        }
16917
16918        DELAY(10000);
16919        count--;
16920    }
16921
16922    if (val != 0x10) {
16923        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16924        return (-1);
16925    }
16926
16927    /* wait until PRS register shows 1 packet */
16928    count = (1000 * factor);
16929    while (count) {
16930        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16931        if (val == 1) {
16932            break;
16933        }
16934
16935        DELAY(10000);
16936        count--;
16937    }
16938
16939    if (val != 0x1) {
16940        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16941        return (-2);
16942    }
16943
16944    /* Reset and init BRB, PRS */
16945    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16946    DELAY(50000);
16947    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16948    DELAY(50000);
16949    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16950    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16951
16952    /* Disable inputs of parser neighbor blocks */
16953    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16954    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16955    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16956    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16957
16958    /* Write 0 to parser credits for CFC search request */
16959    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16960
16961    /* send 10 Ethernet packets */
16962    for (i = 0; i < 10; i++) {
16963        bxe_lb_pckt(sc);
16964    }
16965
16966    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16967    count = (1000 * factor);
16968    while (count) {
16969        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16970        val = *BXE_SP(sc, wb_data[0]);
16971        if (val == 0xb0) {
16972            break;
16973        }
16974
16975        DELAY(10000);
16976        count--;
16977    }
16978
16979    if (val != 0xb0) {
16980        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16981        return (-3);
16982    }
16983
16984    /* Wait until PRS register shows 2 packets */
16985    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16986    if (val != 2) {
16987        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16988    }
16989
16990    /* Write 1 to parser credits for CFC search request */
16991    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16992
16993    /* Wait until PRS register shows 3 packets */
16994    DELAY(10000 * factor);
16995
16996    /* Wait until NIG register shows 1 packet of size 0x10 */
16997    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16998    if (val != 3) {
16999        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17000    }
17001
17002    /* clear NIG EOP FIFO */
17003    for (i = 0; i < 11; i++) {
17004        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17005    }
17006
17007    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17008    if (val != 1) {
17009        BLOGE(sc, "clear of NIG failed\n");
17010        return (-4);
17011    }
17012
17013    /* Reset and init BRB, PRS, NIG */
17014    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17015    DELAY(50000);
17016    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17017    DELAY(50000);
17018    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17019    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17020    if (!CNIC_SUPPORT(sc)) {
17021        /* set NIC mode */
17022        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17023    }
17024
17025    /* Enable inputs of parser neighbor blocks */
17026    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17027    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17028    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17029    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17030
17031    return (0);
17032}
17033
17034static void
17035bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17036{
17037    int is_required;
17038    uint32_t val;
17039    int port;
17040
17041    is_required = 0;
17042    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17043           SHARED_HW_CFG_FAN_FAILURE_MASK);
17044
17045    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17046        is_required = 1;
17047    }
17048    /*
17049     * The fan failure mechanism is usually related to the PHY type since
17050     * the power consumption of the board is affected by the PHY. Currently,
17051     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17052     */
17053    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17054        for (port = PORT_0; port < PORT_MAX; port++) {
17055            is_required |= elink_fan_failure_det_req(sc,
17056                                                     sc->devinfo.shmem_base,
17057                                                     sc->devinfo.shmem2_base,
17058                                                     port);
17059        }
17060    }
17061
17062    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17063
17064    if (is_required == 0) {
17065        return;
17066    }
17067
17068    /* Fan failure is indicated by SPIO 5 */
17069    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17070
17071    /* set to active low mode */
17072    val = REG_RD(sc, MISC_REG_SPIO_INT);
17073    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17074    REG_WR(sc, MISC_REG_SPIO_INT, val);
17075
17076    /* enable interrupt to signal the IGU */
17077    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17078    val |= MISC_SPIO_SPIO5;
17079    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17080}
17081
17082static void
17083bxe_enable_blocks_attention(struct bxe_softc *sc)
17084{
17085    uint32_t val;
17086
17087    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17088    if (!CHIP_IS_E1x(sc)) {
17089        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17090    } else {
17091        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17092    }
17093    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17094    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17095    /*
17096     * mask read length error interrupts in brb for parser
17097     * (parsing unit and 'checksum and crc' unit)
17098     * these errors are legal (PU reads fixed length and CAC can cause
17099     * read length error on truncated packets)
17100     */
17101    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17102    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17103    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17104    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17105    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17106    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17107/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17108/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17109    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17110    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17111    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17112/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17113/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17114    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17115    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17116    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17117    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17118/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17119/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17120
17121    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17122           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17123           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17124    if (!CHIP_IS_E1x(sc)) {
17125        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17126                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17127    }
17128    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17129
17130    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17131    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17132    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17133/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17134
17135    if (!CHIP_IS_E1x(sc)) {
17136        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17137        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17138    }
17139
17140    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17141    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17142/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17143    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17144}
17145
17146/**
17147 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17148 *
17149 * @sc:     driver handle
17150 */
17151static int
17152bxe_init_hw_common(struct bxe_softc *sc)
17153{
17154    uint8_t abs_func_id;
17155    uint32_t val;
17156
17157    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17158          SC_ABS_FUNC(sc));
17159
17160    /*
17161     * take the RESET lock to protect undi_unload flow from accessing
17162     * registers while we are resetting the chip
17163     */
17164    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17165
17166    bxe_reset_common(sc);
17167
17168    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17169
17170    val = 0xfffc;
17171    if (CHIP_IS_E3(sc)) {
17172        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17173        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17174    }
17175
17176    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17177
17178    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17179
17180    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17181    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17182
17183    if (!CHIP_IS_E1x(sc)) {
17184        /*
17185         * 4-port mode or 2-port mode we need to turn off master-enable for
17186         * everyone. After that we turn it back on for self. So, we disregard
17187         * multi-function, and always disable all functions on the given path,
17188         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17189         */
17190        for (abs_func_id = SC_PATH(sc);
17191             abs_func_id < (E2_FUNC_MAX * 2);
17192             abs_func_id += 2) {
17193            if (abs_func_id == SC_ABS_FUNC(sc)) {
17194                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17195                continue;
17196            }
17197
17198            bxe_pretend_func(sc, abs_func_id);
17199
17200            /* clear pf enable */
17201            bxe_pf_disable(sc);
17202
17203            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17204        }
17205    }
17206
17207    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17208
17209    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17210
17211    if (CHIP_IS_E1(sc)) {
17212        /*
17213         * enable HW interrupt from PXP on USDM overflow
17214         * bit 16 on INT_MASK_0
17215         */
17216        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17217    }
17218
17219    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17220    bxe_init_pxp(sc);
17221
17222#ifdef __BIG_ENDIAN
17223    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17224    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17225    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17226    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17227    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17228    /* make sure this value is 0 */
17229    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17230
17231    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17232    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17233    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17234    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17235    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17236#endif
17237
17238    ecore_ilt_init_page_size(sc, INITOP_SET);
17239
17240    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17241        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17242    }
17243
17244    /* let the HW do it's magic... */
17245    DELAY(100000);
17246
17247    /* finish PXP init */
17248    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17249    if (val != 1) {
17250        BLOGE(sc, "PXP2 CFG failed\n");
17251        return (-1);
17252    }
17253    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17254    if (val != 1) {
17255        BLOGE(sc, "PXP2 RD_INIT failed\n");
17256        return (-1);
17257    }
17258
17259    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17260
17261    /*
17262     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17263     * entries with value "0" and valid bit on. This needs to be done by the
17264     * first PF that is loaded in a path (i.e. common phase)
17265     */
17266    if (!CHIP_IS_E1x(sc)) {
17267/*
17268 * In E2 there is a bug in the timers block that can cause function 6 / 7
17269 * (i.e. vnic3) to start even if it is marked as "scan-off".
17270 * This occurs when a different function (func2,3) is being marked
17271 * as "scan-off". Real-life scenario for example: if a driver is being
17272 * load-unloaded while func6,7 are down. This will cause the timer to access
17273 * the ilt, translate to a logical address and send a request to read/write.
17274 * Since the ilt for the function that is down is not valid, this will cause
17275 * a translation error which is unrecoverable.
17276 * The Workaround is intended to make sure that when this happens nothing
17277 * fatal will occur. The workaround:
17278 *  1.  First PF driver which loads on a path will:
17279 *      a.  After taking the chip out of reset, by using pretend,
17280 *          it will write "0" to the following registers of
17281 *          the other vnics.
17282 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17283 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17284 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17285 *          And for itself it will write '1' to
17286 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17287 *          dmae-operations (writing to pram for example.)
17288 *          note: can be done for only function 6,7 but cleaner this
17289 *            way.
17290 *      b.  Write zero+valid to the entire ILT.
17291 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17292 *          VNIC3 (of that port). The range allocated will be the
17293 *          entire ILT. This is needed to prevent  ILT range error.
17294 *  2.  Any PF driver load flow:
17295 *      a.  ILT update with the physical addresses of the allocated
17296 *          logical pages.
17297 *      b.  Wait 20msec. - note that this timeout is needed to make
17298 *          sure there are no requests in one of the PXP internal
17299 *          queues with "old" ILT addresses.
17300 *      c.  PF enable in the PGLC.
17301 *      d.  Clear the was_error of the PF in the PGLC. (could have
17302 *          occurred while driver was down)
17303 *      e.  PF enable in the CFC (WEAK + STRONG)
17304 *      f.  Timers scan enable
17305 *  3.  PF driver unload flow:
17306 *      a.  Clear the Timers scan_en.
17307 *      b.  Polling for scan_on=0 for that PF.
17308 *      c.  Clear the PF enable bit in the PXP.
17309 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17310 *      e.  Write zero+valid to all ILT entries (The valid bit must
17311 *          stay set)
17312 *      f.  If this is VNIC 3 of a port then also init
17313 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17314 *          to the last enrty in the ILT.
17315 *
17316 *      Notes:
17317 *      Currently the PF error in the PGLC is non recoverable.
17318 *      In the future the there will be a recovery routine for this error.
17319 *      Currently attention is masked.
17320 *      Having an MCP lock on the load/unload process does not guarantee that
17321 *      there is no Timer disable during Func6/7 enable. This is because the
17322 *      Timers scan is currently being cleared by the MCP on FLR.
17323 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17324 *      there is error before clearing it. But the flow above is simpler and
17325 *      more general.
17326 *      All ILT entries are written by zero+valid and not just PF6/7
17327 *      ILT entries since in the future the ILT entries allocation for
17328 *      PF-s might be dynamic.
17329 */
17330        struct ilt_client_info ilt_cli;
17331        struct ecore_ilt ilt;
17332
17333        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17334        memset(&ilt, 0, sizeof(struct ecore_ilt));
17335
17336        /* initialize dummy TM client */
17337        ilt_cli.start      = 0;
17338        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17339        ilt_cli.client_num = ILT_CLIENT_TM;
17340
17341        /*
17342         * Step 1: set zeroes to all ilt page entries with valid bit on
17343         * Step 2: set the timers first/last ilt entry to point
17344         * to the entire range to prevent ILT range error for 3rd/4th
17345         * vnic (this code assumes existence of the vnic)
17346         *
17347         * both steps performed by call to ecore_ilt_client_init_op()
17348         * with dummy TM client
17349         *
17350         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17351         * and his brother are split registers
17352         */
17353
17354        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17355        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17356        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17357
17358        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17359        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17360        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17361    }
17362
17363    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17364    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17365
17366    if (!CHIP_IS_E1x(sc)) {
17367        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17368                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17369
17370        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17371        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17372
17373        /* let the HW do it's magic... */
17374        do {
17375            DELAY(200000);
17376            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17377        } while (factor-- && (val != 1));
17378
17379        if (val != 1) {
17380            BLOGE(sc, "ATC_INIT failed\n");
17381            return (-1);
17382        }
17383    }
17384
17385    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17386
17387    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17388
17389    bxe_iov_init_dmae(sc);
17390
17391    /* clean the DMAE memory */
17392    sc->dmae_ready = 1;
17393    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17394
17395    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17396
17397    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17398
17399    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17400
17401    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17402
17403    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17404    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17405    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17406    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17407
17408    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17409
17410    /* QM queues pointers table */
17411    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17412
17413    /* soft reset pulse */
17414    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17415    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17416
17417    if (CNIC_SUPPORT(sc))
17418        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17419
17420    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17421    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17422    if (!CHIP_REV_IS_SLOW(sc)) {
17423        /* enable hw interrupt from doorbell Q */
17424        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17425    }
17426
17427    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17428
17429    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17430    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17431
17432    if (!CHIP_IS_E1(sc)) {
17433        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17434    }
17435
17436    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17437        if (IS_MF_AFEX(sc)) {
17438            /*
17439             * configure that AFEX and VLAN headers must be
17440             * received in AFEX mode
17441             */
17442            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17443            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17444            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17445            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17446            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17447        } else {
17448            /*
17449             * Bit-map indicating which L2 hdrs may appear
17450             * after the basic Ethernet header
17451             */
17452            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17453                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17454        }
17455    }
17456
17457    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17458    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17459    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17460    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17461
17462    if (!CHIP_IS_E1x(sc)) {
17463        /* reset VFC memories */
17464        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17465               VFC_MEMORIES_RST_REG_CAM_RST |
17466               VFC_MEMORIES_RST_REG_RAM_RST);
17467        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17468               VFC_MEMORIES_RST_REG_CAM_RST |
17469               VFC_MEMORIES_RST_REG_RAM_RST);
17470
17471        DELAY(20000);
17472    }
17473
17474    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17475    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17476    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17477    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17478
17479    /* sync semi rtc */
17480    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17481           0x80000000);
17482    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17483           0x80000000);
17484
17485    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17486    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17487    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17488
17489    if (!CHIP_IS_E1x(sc)) {
17490        if (IS_MF_AFEX(sc)) {
17491            /*
17492             * configure that AFEX and VLAN headers must be
17493             * sent in AFEX mode
17494             */
17495            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17496            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17497            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17498            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17499            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17500        } else {
17501            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17502                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17503        }
17504    }
17505
17506    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17507
17508    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17509
17510    if (CNIC_SUPPORT(sc)) {
17511        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17512        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17513        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17514        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17515        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17516        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17517        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17518        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17519        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17520        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17521    }
17522    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17523
17524    if (sizeof(union cdu_context) != 1024) {
17525        /* we currently assume that a context is 1024 bytes */
17526        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17527              (long)sizeof(union cdu_context));
17528    }
17529
17530    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17531    val = (4 << 24) + (0 << 12) + 1024;
17532    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17533
17534    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17535
17536    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17537    /* enable context validation interrupt from CFC */
17538    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17539
17540    /* set the thresholds to prevent CFC/CDU race */
17541    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17542    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17543
17544    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17545        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17546    }
17547
17548    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17549    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17550
17551    /* Reset PCIE errors for debug */
17552    REG_WR(sc, 0x2814, 0xffffffff);
17553    REG_WR(sc, 0x3820, 0xffffffff);
17554
17555    if (!CHIP_IS_E1x(sc)) {
17556        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17557               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17558                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17559        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17560               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17561                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17562                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17563        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17564               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17565                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17566                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17567    }
17568
17569    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17570
17571    if (!CHIP_IS_E1(sc)) {
17572        /* in E3 this done in per-port section */
17573        if (!CHIP_IS_E3(sc))
17574            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17575    }
17576
17577    if (CHIP_IS_E1H(sc)) {
17578        /* not applicable for E2 (and above ...) */
17579        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17580    }
17581
17582    if (CHIP_REV_IS_SLOW(sc)) {
17583        DELAY(200000);
17584    }
17585
17586    /* finish CFC init */
17587    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17588    if (val != 1) {
17589        BLOGE(sc, "CFC LL_INIT failed\n");
17590        return (-1);
17591    }
17592    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17593    if (val != 1) {
17594        BLOGE(sc, "CFC AC_INIT failed\n");
17595        return (-1);
17596    }
17597    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17598    if (val != 1) {
17599        BLOGE(sc, "CFC CAM_INIT failed\n");
17600        return (-1);
17601    }
17602    REG_WR(sc, CFC_REG_DEBUG0, 0);
17603
17604    if (CHIP_IS_E1(sc)) {
17605        /* read NIG statistic to see if this is our first up since powerup */
17606        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17607        val = *BXE_SP(sc, wb_data[0]);
17608
17609        /* do internal memory self test */
17610        if ((val == 0) && bxe_int_mem_test(sc)) {
17611            BLOGE(sc, "internal mem self test failed\n");
17612            return (-1);
17613        }
17614    }
17615
17616    bxe_setup_fan_failure_detection(sc);
17617
17618    /* clear PXP2 attentions */
17619    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17620
17621    bxe_enable_blocks_attention(sc);
17622
17623    if (!CHIP_REV_IS_SLOW(sc)) {
17624        ecore_enable_blocks_parity(sc);
17625    }
17626
17627    if (!BXE_NOMCP(sc)) {
17628        if (CHIP_IS_E1x(sc)) {
17629            bxe_common_init_phy(sc);
17630        }
17631    }
17632
17633    return (0);
17634}
17635
17636/**
17637 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17638 *
17639 * @sc:     driver handle
17640 */
17641static int
17642bxe_init_hw_common_chip(struct bxe_softc *sc)
17643{
17644    int rc = bxe_init_hw_common(sc);
17645
17646    if (rc) {
17647        return (rc);
17648    }
17649
17650    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17651    if (!BXE_NOMCP(sc)) {
17652        bxe_common_init_phy(sc);
17653    }
17654
17655    return (0);
17656}
17657
17658static int
17659bxe_init_hw_port(struct bxe_softc *sc)
17660{
17661    int port = SC_PORT(sc);
17662    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17663    uint32_t low, high;
17664    uint32_t val;
17665
17666    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17667
17668    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17669
17670    ecore_init_block(sc, BLOCK_MISC, init_phase);
17671    ecore_init_block(sc, BLOCK_PXP, init_phase);
17672    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17673
17674    /*
17675     * Timers bug workaround: disables the pf_master bit in pglue at
17676     * common phase, we need to enable it here before any dmae access are
17677     * attempted. Therefore we manually added the enable-master to the
17678     * port phase (it also happens in the function phase)
17679     */
17680    if (!CHIP_IS_E1x(sc)) {
17681        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17682    }
17683
17684    ecore_init_block(sc, BLOCK_ATC, init_phase);
17685    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17686    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17687    ecore_init_block(sc, BLOCK_QM, init_phase);
17688
17689    ecore_init_block(sc, BLOCK_TCM, init_phase);
17690    ecore_init_block(sc, BLOCK_UCM, init_phase);
17691    ecore_init_block(sc, BLOCK_CCM, init_phase);
17692    ecore_init_block(sc, BLOCK_XCM, init_phase);
17693
17694    /* QM cid (connection) count */
17695    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17696
17697    if (CNIC_SUPPORT(sc)) {
17698        ecore_init_block(sc, BLOCK_TM, init_phase);
17699        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17700        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17701    }
17702
17703    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17704
17705    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17706
17707    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17708        if (IS_MF(sc)) {
17709            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17710        } else if (sc->mtu > 4096) {
17711            if (BXE_ONE_PORT(sc)) {
17712                low = 160;
17713            } else {
17714                val = sc->mtu;
17715                /* (24*1024 + val*4)/256 */
17716                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17717            }
17718        } else {
17719            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17720        }
17721        high = (low + 56); /* 14*1024/256 */
17722        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17723        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17724    }
17725
17726    if (CHIP_IS_MODE_4_PORT(sc)) {
17727        REG_WR(sc, SC_PORT(sc) ?
17728               BRB1_REG_MAC_GUARANTIED_1 :
17729               BRB1_REG_MAC_GUARANTIED_0, 40);
17730    }
17731
17732    ecore_init_block(sc, BLOCK_PRS, init_phase);
17733    if (CHIP_IS_E3B0(sc)) {
17734        if (IS_MF_AFEX(sc)) {
17735            /* configure headers for AFEX mode */
17736            REG_WR(sc, SC_PORT(sc) ?
17737                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17738                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17739            REG_WR(sc, SC_PORT(sc) ?
17740                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17741                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17742            REG_WR(sc, SC_PORT(sc) ?
17743                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17744                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17745        } else {
17746            /* Ovlan exists only if we are in multi-function +
17747             * switch-dependent mode, in switch-independent there
17748             * is no ovlan headers
17749             */
17750            REG_WR(sc, SC_PORT(sc) ?
17751                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17752                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17753                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17754        }
17755    }
17756
17757    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17758    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17759    ecore_init_block(sc, BLOCK_USDM, init_phase);
17760    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17761
17762    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17763    ecore_init_block(sc, BLOCK_USEM, init_phase);
17764    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17765    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17766
17767    ecore_init_block(sc, BLOCK_UPB, init_phase);
17768    ecore_init_block(sc, BLOCK_XPB, init_phase);
17769
17770    ecore_init_block(sc, BLOCK_PBF, init_phase);
17771
17772    if (CHIP_IS_E1x(sc)) {
17773        /* configure PBF to work without PAUSE mtu 9000 */
17774        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17775
17776        /* update threshold */
17777        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17778        /* update init credit */
17779        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17780
17781        /* probe changes */
17782        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17783        DELAY(50);
17784        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17785    }
17786
17787    if (CNIC_SUPPORT(sc)) {
17788        ecore_init_block(sc, BLOCK_SRC, init_phase);
17789    }
17790
17791    ecore_init_block(sc, BLOCK_CDU, init_phase);
17792    ecore_init_block(sc, BLOCK_CFC, init_phase);
17793
17794    if (CHIP_IS_E1(sc)) {
17795        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17796        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17797    }
17798    ecore_init_block(sc, BLOCK_HC, init_phase);
17799
17800    ecore_init_block(sc, BLOCK_IGU, init_phase);
17801
17802    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17803    /* init aeu_mask_attn_func_0/1:
17804     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17805     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17806     *             bits 4-7 are used for "per vn group attention" */
17807    val = IS_MF(sc) ? 0xF7 : 0x7;
17808    /* Enable DCBX attention for all but E1 */
17809    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17810    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17811
17812    ecore_init_block(sc, BLOCK_NIG, init_phase);
17813
17814    if (!CHIP_IS_E1x(sc)) {
17815        /* Bit-map indicating which L2 hdrs may appear after the
17816         * basic Ethernet header
17817         */
17818        if (IS_MF_AFEX(sc)) {
17819            REG_WR(sc, SC_PORT(sc) ?
17820                   NIG_REG_P1_HDRS_AFTER_BASIC :
17821                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17822        } else {
17823            REG_WR(sc, SC_PORT(sc) ?
17824                   NIG_REG_P1_HDRS_AFTER_BASIC :
17825                   NIG_REG_P0_HDRS_AFTER_BASIC,
17826                   IS_MF_SD(sc) ? 7 : 6);
17827        }
17828
17829        if (CHIP_IS_E3(sc)) {
17830            REG_WR(sc, SC_PORT(sc) ?
17831                   NIG_REG_LLH1_MF_MODE :
17832                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17833        }
17834    }
17835    if (!CHIP_IS_E3(sc)) {
17836        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17837    }
17838
17839    if (!CHIP_IS_E1(sc)) {
17840        /* 0x2 disable mf_ov, 0x1 enable */
17841        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17842               (IS_MF_SD(sc) ? 0x1 : 0x2));
17843
17844        if (!CHIP_IS_E1x(sc)) {
17845            val = 0;
17846            switch (sc->devinfo.mf_info.mf_mode) {
17847            case MULTI_FUNCTION_SD:
17848                val = 1;
17849                break;
17850            case MULTI_FUNCTION_SI:
17851            case MULTI_FUNCTION_AFEX:
17852                val = 2;
17853                break;
17854            }
17855
17856            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17857                        NIG_REG_LLH0_CLS_TYPE), val);
17858        }
17859        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17860        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17861        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17862    }
17863
17864    /* If SPIO5 is set to generate interrupts, enable it for this port */
17865    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17866    if (val & MISC_SPIO_SPIO5) {
17867        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17868                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17869        val = REG_RD(sc, reg_addr);
17870        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17871        REG_WR(sc, reg_addr, val);
17872    }
17873
17874    return (0);
17875}
17876
17877static uint32_t
17878bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17879                       uint32_t         reg,
17880                       uint32_t         expected,
17881                       uint32_t         poll_count)
17882{
17883    uint32_t cur_cnt = poll_count;
17884    uint32_t val;
17885
17886    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17887        DELAY(FLR_WAIT_INTERVAL);
17888    }
17889
17890    return (val);
17891}
17892
17893static int
17894bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17895                              uint32_t         reg,
17896                              char             *msg,
17897                              uint32_t         poll_cnt)
17898{
17899    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17900
17901    if (val != 0) {
17902        BLOGE(sc, "%s usage count=%d\n", msg, val);
17903        return (1);
17904    }
17905
17906    return (0);
17907}
17908
17909/* Common routines with VF FLR cleanup */
17910static uint32_t
17911bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17912{
17913    /* adjust polling timeout */
17914    if (CHIP_REV_IS_EMUL(sc)) {
17915        return (FLR_POLL_CNT * 2000);
17916    }
17917
17918    if (CHIP_REV_IS_FPGA(sc)) {
17919        return (FLR_POLL_CNT * 120);
17920    }
17921
17922    return (FLR_POLL_CNT);
17923}
17924
17925static int
17926bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17927                           uint32_t         poll_cnt)
17928{
17929    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17930    if (bxe_flr_clnup_poll_hw_counter(sc,
17931                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17932                                      "CFC PF usage counter timed out",
17933                                      poll_cnt)) {
17934        return (1);
17935    }
17936
17937    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17938    if (bxe_flr_clnup_poll_hw_counter(sc,
17939                                      DORQ_REG_PF_USAGE_CNT,
17940                                      "DQ PF usage counter timed out",
17941                                      poll_cnt)) {
17942        return (1);
17943    }
17944
17945    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17946    if (bxe_flr_clnup_poll_hw_counter(sc,
17947                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17948                                      "QM PF usage counter timed out",
17949                                      poll_cnt)) {
17950        return (1);
17951    }
17952
17953    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17954    if (bxe_flr_clnup_poll_hw_counter(sc,
17955                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17956                                      "Timers VNIC usage counter timed out",
17957                                      poll_cnt)) {
17958        return (1);
17959    }
17960
17961    if (bxe_flr_clnup_poll_hw_counter(sc,
17962                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17963                                      "Timers NUM_SCANS usage counter timed out",
17964                                      poll_cnt)) {
17965        return (1);
17966    }
17967
17968    /* Wait DMAE PF usage counter to zero */
17969    if (bxe_flr_clnup_poll_hw_counter(sc,
17970                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17971                                      "DMAE dommand register timed out",
17972                                      poll_cnt)) {
17973        return (1);
17974    }
17975
17976    return (0);
17977}
17978
17979#define OP_GEN_PARAM(param)                                            \
17980    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17981#define OP_GEN_TYPE(type)                                           \
17982    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17983#define OP_GEN_AGG_VECT(index)                                             \
17984    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17985
17986static int
17987bxe_send_final_clnup(struct bxe_softc *sc,
17988                     uint8_t          clnup_func,
17989                     uint32_t         poll_cnt)
17990{
17991    uint32_t op_gen_command = 0;
17992    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17993                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17994    int ret = 0;
17995
17996    if (REG_RD(sc, comp_addr)) {
17997        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17998        return (1);
17999    }
18000
18001    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18002    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18003    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18004    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18005
18006    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18007    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18008
18009    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18010        BLOGE(sc, "FW final cleanup did not succeed\n");
18011        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18012              (REG_RD(sc, comp_addr)));
18013        bxe_panic(sc, ("FLR cleanup failed\n"));
18014        return (1);
18015    }
18016
18017    /* Zero completion for nxt FLR */
18018    REG_WR(sc, comp_addr, 0);
18019
18020    return (ret);
18021}
18022
18023static void
18024bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18025                       struct pbf_pN_buf_regs *regs,
18026                       uint32_t               poll_count)
18027{
18028    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18029    uint32_t cur_cnt = poll_count;
18030
18031    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18032    crd = crd_start = REG_RD(sc, regs->crd);
18033    init_crd = REG_RD(sc, regs->init_crd);
18034
18035    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18036    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18037    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18038
18039    while ((crd != init_crd) &&
18040           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18041            (init_crd - crd_start))) {
18042        if (cur_cnt--) {
18043            DELAY(FLR_WAIT_INTERVAL);
18044            crd = REG_RD(sc, regs->crd);
18045            crd_freed = REG_RD(sc, regs->crd_freed);
18046        } else {
18047            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18048            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18049            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18050            break;
18051        }
18052    }
18053
18054    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18055          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18056}
18057
18058static void
18059bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18060                       struct pbf_pN_cmd_regs *regs,
18061                       uint32_t               poll_count)
18062{
18063    uint32_t occup, to_free, freed, freed_start;
18064    uint32_t cur_cnt = poll_count;
18065
18066    occup = to_free = REG_RD(sc, regs->lines_occup);
18067    freed = freed_start = REG_RD(sc, regs->lines_freed);
18068
18069    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18070    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18071
18072    while (occup &&
18073           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18074        if (cur_cnt--) {
18075            DELAY(FLR_WAIT_INTERVAL);
18076            occup = REG_RD(sc, regs->lines_occup);
18077            freed = REG_RD(sc, regs->lines_freed);
18078        } else {
18079            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18080            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18081            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18082            break;
18083        }
18084    }
18085
18086    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18087          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18088}
18089
18090static void
18091bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18092{
18093    struct pbf_pN_cmd_regs cmd_regs[] = {
18094        {0, (CHIP_IS_E3B0(sc)) ?
18095            PBF_REG_TQ_OCCUPANCY_Q0 :
18096            PBF_REG_P0_TQ_OCCUPANCY,
18097            (CHIP_IS_E3B0(sc)) ?
18098            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18099            PBF_REG_P0_TQ_LINES_FREED_CNT},
18100        {1, (CHIP_IS_E3B0(sc)) ?
18101            PBF_REG_TQ_OCCUPANCY_Q1 :
18102            PBF_REG_P1_TQ_OCCUPANCY,
18103            (CHIP_IS_E3B0(sc)) ?
18104            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18105            PBF_REG_P1_TQ_LINES_FREED_CNT},
18106        {4, (CHIP_IS_E3B0(sc)) ?
18107            PBF_REG_TQ_OCCUPANCY_LB_Q :
18108            PBF_REG_P4_TQ_OCCUPANCY,
18109            (CHIP_IS_E3B0(sc)) ?
18110            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18111            PBF_REG_P4_TQ_LINES_FREED_CNT}
18112    };
18113
18114    struct pbf_pN_buf_regs buf_regs[] = {
18115        {0, (CHIP_IS_E3B0(sc)) ?
18116            PBF_REG_INIT_CRD_Q0 :
18117            PBF_REG_P0_INIT_CRD ,
18118            (CHIP_IS_E3B0(sc)) ?
18119            PBF_REG_CREDIT_Q0 :
18120            PBF_REG_P0_CREDIT,
18121            (CHIP_IS_E3B0(sc)) ?
18122            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18123            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18124        {1, (CHIP_IS_E3B0(sc)) ?
18125            PBF_REG_INIT_CRD_Q1 :
18126            PBF_REG_P1_INIT_CRD,
18127            (CHIP_IS_E3B0(sc)) ?
18128            PBF_REG_CREDIT_Q1 :
18129            PBF_REG_P1_CREDIT,
18130            (CHIP_IS_E3B0(sc)) ?
18131            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18132            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18133        {4, (CHIP_IS_E3B0(sc)) ?
18134            PBF_REG_INIT_CRD_LB_Q :
18135            PBF_REG_P4_INIT_CRD,
18136            (CHIP_IS_E3B0(sc)) ?
18137            PBF_REG_CREDIT_LB_Q :
18138            PBF_REG_P4_CREDIT,
18139            (CHIP_IS_E3B0(sc)) ?
18140            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18141            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18142    };
18143
18144    int i;
18145
18146    /* Verify the command queues are flushed P0, P1, P4 */
18147    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18148        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18149    }
18150
18151    /* Verify the transmission buffers are flushed P0, P1, P4 */
18152    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18153        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18154    }
18155}
18156
18157static void
18158bxe_hw_enable_status(struct bxe_softc *sc)
18159{
18160    uint32_t val;
18161
18162    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18163    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18164
18165    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18166    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18167
18168    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18169    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18170
18171    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18172    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18173
18174    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18175    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18176
18177    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18178    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18179
18180    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18181    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18182
18183    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18184    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18185}
18186
18187static int
18188bxe_pf_flr_clnup(struct bxe_softc *sc)
18189{
18190    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18191
18192    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18193
18194    /* Re-enable PF target read access */
18195    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18196
18197    /* Poll HW usage counters */
18198    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18199    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18200        return (-1);
18201    }
18202
18203    /* Zero the igu 'trailing edge' and 'leading edge' */
18204
18205    /* Send the FW cleanup command */
18206    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18207        return (-1);
18208    }
18209
18210    /* ATC cleanup */
18211
18212    /* Verify TX hw is flushed */
18213    bxe_tx_hw_flushed(sc, poll_cnt);
18214
18215    /* Wait 100ms (not adjusted according to platform) */
18216    DELAY(100000);
18217
18218    /* Verify no pending pci transactions */
18219    if (bxe_is_pcie_pending(sc)) {
18220        BLOGE(sc, "PCIE Transactions still pending\n");
18221    }
18222
18223    /* Debug */
18224    bxe_hw_enable_status(sc);
18225
18226    /*
18227     * Master enable - Due to WB DMAE writes performed before this
18228     * register is re-initialized as part of the regular function init
18229     */
18230    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18231
18232    return (0);
18233}
18234
18235#if 0
18236static void
18237bxe_init_searcher(struct bxe_softc *sc)
18238{
18239    int port = SC_PORT(sc);
18240    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18241    /* T1 hash bits value determines the T1 number of entries */
18242    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18243}
18244#endif
18245
18246static int
18247bxe_init_hw_func(struct bxe_softc *sc)
18248{
18249    int port = SC_PORT(sc);
18250    int func = SC_FUNC(sc);
18251    int init_phase = PHASE_PF0 + func;
18252    struct ecore_ilt *ilt = sc->ilt;
18253    uint16_t cdu_ilt_start;
18254    uint32_t addr, val;
18255    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18256    int i, main_mem_width, rc;
18257
18258    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18259
18260    /* FLR cleanup */
18261    if (!CHIP_IS_E1x(sc)) {
18262        rc = bxe_pf_flr_clnup(sc);
18263        if (rc) {
18264            BLOGE(sc, "FLR cleanup failed!\n");
18265            // XXX bxe_fw_dump(sc);
18266            // XXX bxe_idle_chk(sc);
18267            return (rc);
18268        }
18269    }
18270
18271    /* set MSI reconfigure capability */
18272    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18273        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18274        val = REG_RD(sc, addr);
18275        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18276        REG_WR(sc, addr, val);
18277    }
18278
18279    ecore_init_block(sc, BLOCK_PXP, init_phase);
18280    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18281
18282    ilt = sc->ilt;
18283    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18284
18285#if 0
18286    if (IS_SRIOV(sc)) {
18287        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18288    }
18289    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18290
18291#if (BXE_FIRST_VF_CID > 0)
18292    /*
18293     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18294     * those of the VFs, so start line should be reset
18295     */
18296    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18297#endif
18298#endif
18299
18300    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18301        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18302        ilt->lines[cdu_ilt_start + i].page_mapping =
18303            sc->context[i].vcxt_dma.paddr;
18304        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18305    }
18306    ecore_ilt_init_op(sc, INITOP_SET);
18307
18308#if 0
18309    if (!CONFIGURE_NIC_MODE(sc)) {
18310        bxe_init_searcher(sc);
18311        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18312        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18313    } else
18314#endif
18315    {
18316        /* Set NIC mode */
18317        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18318        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18319    }
18320
18321    if (!CHIP_IS_E1x(sc)) {
18322        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18323
18324        /* Turn on a single ISR mode in IGU if driver is going to use
18325         * INT#x or MSI
18326         */
18327        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18328            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18329        }
18330
18331        /*
18332         * Timers workaround bug: function init part.
18333         * Need to wait 20msec after initializing ILT,
18334         * needed to make sure there are no requests in
18335         * one of the PXP internal queues with "old" ILT addresses
18336         */
18337        DELAY(20000);
18338
18339        /*
18340         * Master enable - Due to WB DMAE writes performed before this
18341         * register is re-initialized as part of the regular function
18342         * init
18343         */
18344        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18345        /* Enable the function in IGU */
18346        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18347    }
18348
18349    sc->dmae_ready = 1;
18350
18351    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18352
18353    if (!CHIP_IS_E1x(sc))
18354        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18355
18356    ecore_init_block(sc, BLOCK_ATC, init_phase);
18357    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18358    ecore_init_block(sc, BLOCK_NIG, init_phase);
18359    ecore_init_block(sc, BLOCK_SRC, init_phase);
18360    ecore_init_block(sc, BLOCK_MISC, init_phase);
18361    ecore_init_block(sc, BLOCK_TCM, init_phase);
18362    ecore_init_block(sc, BLOCK_UCM, init_phase);
18363    ecore_init_block(sc, BLOCK_CCM, init_phase);
18364    ecore_init_block(sc, BLOCK_XCM, init_phase);
18365    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18366    ecore_init_block(sc, BLOCK_USEM, init_phase);
18367    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18368    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18369
18370    if (!CHIP_IS_E1x(sc))
18371        REG_WR(sc, QM_REG_PF_EN, 1);
18372
18373    if (!CHIP_IS_E1x(sc)) {
18374        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18375        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18376        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18377        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18378    }
18379    ecore_init_block(sc, BLOCK_QM, init_phase);
18380
18381    ecore_init_block(sc, BLOCK_TM, init_phase);
18382    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18383
18384    bxe_iov_init_dq(sc);
18385
18386    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18387    ecore_init_block(sc, BLOCK_PRS, init_phase);
18388    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18389    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18390    ecore_init_block(sc, BLOCK_USDM, init_phase);
18391    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18392    ecore_init_block(sc, BLOCK_UPB, init_phase);
18393    ecore_init_block(sc, BLOCK_XPB, init_phase);
18394    ecore_init_block(sc, BLOCK_PBF, init_phase);
18395    if (!CHIP_IS_E1x(sc))
18396        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18397
18398    ecore_init_block(sc, BLOCK_CDU, init_phase);
18399
18400    ecore_init_block(sc, BLOCK_CFC, init_phase);
18401
18402    if (!CHIP_IS_E1x(sc))
18403        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18404
18405    if (IS_MF(sc)) {
18406        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18407        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18408    }
18409
18410    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18411
18412    /* HC init per function */
18413    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18414        if (CHIP_IS_E1H(sc)) {
18415            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18416
18417            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18418            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18419        }
18420        ecore_init_block(sc, BLOCK_HC, init_phase);
18421
18422    } else {
18423        int num_segs, sb_idx, prod_offset;
18424
18425        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18426
18427        if (!CHIP_IS_E1x(sc)) {
18428            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18429            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18430        }
18431
18432        ecore_init_block(sc, BLOCK_IGU, init_phase);
18433
18434        if (!CHIP_IS_E1x(sc)) {
18435            int dsb_idx = 0;
18436            /**
18437             * Producer memory:
18438             * E2 mode: address 0-135 match to the mapping memory;
18439             * 136 - PF0 default prod; 137 - PF1 default prod;
18440             * 138 - PF2 default prod; 139 - PF3 default prod;
18441             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18442             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18443             * 144-147 reserved.
18444             *
18445             * E1.5 mode - In backward compatible mode;
18446             * for non default SB; each even line in the memory
18447             * holds the U producer and each odd line hold
18448             * the C producer. The first 128 producers are for
18449             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18450             * producers are for the DSB for each PF.
18451             * Each PF has five segments: (the order inside each
18452             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18453             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18454             * 144-147 attn prods;
18455             */
18456            /* non-default-status-blocks */
18457            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18458                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18459            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18460                prod_offset = (sc->igu_base_sb + sb_idx) *
18461                    num_segs;
18462
18463                for (i = 0; i < num_segs; i++) {
18464                    addr = IGU_REG_PROD_CONS_MEMORY +
18465                            (prod_offset + i) * 4;
18466                    REG_WR(sc, addr, 0);
18467                }
18468                /* send consumer update with value 0 */
18469                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18470                           USTORM_ID, 0, IGU_INT_NOP, 1);
18471                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18472            }
18473
18474            /* default-status-blocks */
18475            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18476                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18477
18478            if (CHIP_IS_MODE_4_PORT(sc))
18479                dsb_idx = SC_FUNC(sc);
18480            else
18481                dsb_idx = SC_VN(sc);
18482
18483            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18484                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18485                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18486
18487            /*
18488             * igu prods come in chunks of E1HVN_MAX (4) -
18489             * does not matters what is the current chip mode
18490             */
18491            for (i = 0; i < (num_segs * E1HVN_MAX);
18492                 i += E1HVN_MAX) {
18493                addr = IGU_REG_PROD_CONS_MEMORY +
18494                            (prod_offset + i)*4;
18495                REG_WR(sc, addr, 0);
18496            }
18497            /* send consumer update with 0 */
18498            if (CHIP_INT_MODE_IS_BC(sc)) {
18499                bxe_ack_sb(sc, sc->igu_dsb_id,
18500                           USTORM_ID, 0, IGU_INT_NOP, 1);
18501                bxe_ack_sb(sc, sc->igu_dsb_id,
18502                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18503                bxe_ack_sb(sc, sc->igu_dsb_id,
18504                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18505                bxe_ack_sb(sc, sc->igu_dsb_id,
18506                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18507                bxe_ack_sb(sc, sc->igu_dsb_id,
18508                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18509            } else {
18510                bxe_ack_sb(sc, sc->igu_dsb_id,
18511                           USTORM_ID, 0, IGU_INT_NOP, 1);
18512                bxe_ack_sb(sc, sc->igu_dsb_id,
18513                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18514            }
18515            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18516
18517            /* !!! these should become driver const once
18518               rf-tool supports split-68 const */
18519            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18520            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18521            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18522            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18523            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18524            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18525        }
18526    }
18527
18528    /* Reset PCIE errors for debug */
18529    REG_WR(sc, 0x2114, 0xffffffff);
18530    REG_WR(sc, 0x2120, 0xffffffff);
18531
18532    if (CHIP_IS_E1x(sc)) {
18533        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18534        main_mem_base = HC_REG_MAIN_MEMORY +
18535                SC_PORT(sc) * (main_mem_size * 4);
18536        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18537        main_mem_width = 8;
18538
18539        val = REG_RD(sc, main_mem_prty_clr);
18540        if (val) {
18541            BLOGD(sc, DBG_LOAD,
18542                  "Parity errors in HC block during function init (0x%x)!\n",
18543                  val);
18544        }
18545
18546        /* Clear "false" parity errors in MSI-X table */
18547        for (i = main_mem_base;
18548             i < main_mem_base + main_mem_size * 4;
18549             i += main_mem_width) {
18550            bxe_read_dmae(sc, i, main_mem_width / 4);
18551            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18552                           i, main_mem_width / 4);
18553        }
18554        /* Clear HC parity attention */
18555        REG_RD(sc, main_mem_prty_clr);
18556    }
18557
18558#if 1
18559    /* Enable STORMs SP logging */
18560    REG_WR8(sc, BAR_USTRORM_INTMEM +
18561           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18562    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18563           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18564    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18565           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18566    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18567           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18568#endif
18569
18570    elink_phy_probe(&sc->link_params);
18571
18572    return (0);
18573}
18574
18575static void
18576bxe_link_reset(struct bxe_softc *sc)
18577{
18578    if (!BXE_NOMCP(sc)) {
18579        BXE_PHY_LOCK(sc);
18580        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18581        BXE_PHY_UNLOCK(sc);
18582    } else {
18583        if (!CHIP_REV_IS_SLOW(sc)) {
18584            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18585        }
18586    }
18587}
18588
18589static void
18590bxe_reset_port(struct bxe_softc *sc)
18591{
18592    int port = SC_PORT(sc);
18593    uint32_t val;
18594
18595    /* reset physical Link */
18596    bxe_link_reset(sc);
18597
18598    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18599
18600    /* Do not rcv packets to BRB */
18601    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18602    /* Do not direct rcv packets that are not for MCP to the BRB */
18603    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18604               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18605
18606    /* Configure AEU */
18607    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18608
18609    DELAY(100000);
18610
18611    /* Check for BRB port occupancy */
18612    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18613    if (val) {
18614        BLOGD(sc, DBG_LOAD,
18615              "BRB1 is not empty, %d blocks are occupied\n", val);
18616    }
18617
18618    /* TODO: Close Doorbell port? */
18619}
18620
18621static void
18622bxe_ilt_wr(struct bxe_softc *sc,
18623           uint32_t         index,
18624           bus_addr_t       addr)
18625{
18626    int reg;
18627    uint32_t wb_write[2];
18628
18629    if (CHIP_IS_E1(sc)) {
18630        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18631    } else {
18632        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18633    }
18634
18635    wb_write[0] = ONCHIP_ADDR1(addr);
18636    wb_write[1] = ONCHIP_ADDR2(addr);
18637    REG_WR_DMAE(sc, reg, wb_write, 2);
18638}
18639
18640static void
18641bxe_clear_func_ilt(struct bxe_softc *sc,
18642                   uint32_t         func)
18643{
18644    uint32_t i, base = FUNC_ILT_BASE(func);
18645    for (i = base; i < base + ILT_PER_FUNC; i++) {
18646        bxe_ilt_wr(sc, i, 0);
18647    }
18648}
18649
18650static void
18651bxe_reset_func(struct bxe_softc *sc)
18652{
18653    struct bxe_fastpath *fp;
18654    int port = SC_PORT(sc);
18655    int func = SC_FUNC(sc);
18656    int i;
18657
18658    /* Disable the function in the FW */
18659    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18660    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18661    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18662    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18663
18664    /* FP SBs */
18665    FOR_EACH_ETH_QUEUE(sc, i) {
18666        fp = &sc->fp[i];
18667        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18668                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18669                SB_DISABLED);
18670    }
18671
18672#if 0
18673    if (CNIC_LOADED(sc)) {
18674        /* CNIC SB */
18675        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18676                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18677                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18678    }
18679#endif
18680
18681    /* SP SB */
18682    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18683            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18684            SB_DISABLED);
18685
18686    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18687        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18688    }
18689
18690    /* Configure IGU */
18691    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18692        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18693        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18694    } else {
18695        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18696        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18697    }
18698
18699    if (CNIC_LOADED(sc)) {
18700        /* Disable Timer scan */
18701        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18702        /*
18703         * Wait for at least 10ms and up to 2 second for the timers
18704         * scan to complete
18705         */
18706        for (i = 0; i < 200; i++) {
18707            DELAY(10000);
18708            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18709                break;
18710        }
18711    }
18712
18713    /* Clear ILT */
18714    bxe_clear_func_ilt(sc, func);
18715
18716    /*
18717     * Timers workaround bug for E2: if this is vnic-3,
18718     * we need to set the entire ilt range for this timers.
18719     */
18720    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18721        struct ilt_client_info ilt_cli;
18722        /* use dummy TM client */
18723        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18724        ilt_cli.start = 0;
18725        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18726        ilt_cli.client_num = ILT_CLIENT_TM;
18727
18728        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18729    }
18730
18731    /* this assumes that reset_port() called before reset_func()*/
18732    if (!CHIP_IS_E1x(sc)) {
18733        bxe_pf_disable(sc);
18734    }
18735
18736    sc->dmae_ready = 0;
18737}
18738
18739static int
18740bxe_gunzip_init(struct bxe_softc *sc)
18741{
18742    return (0);
18743}
18744
18745static void
18746bxe_gunzip_end(struct bxe_softc *sc)
18747{
18748    return;
18749}
18750
18751static int
18752bxe_init_firmware(struct bxe_softc *sc)
18753{
18754    if (CHIP_IS_E1(sc)) {
18755        ecore_init_e1_firmware(sc);
18756        sc->iro_array = e1_iro_arr;
18757    } else if (CHIP_IS_E1H(sc)) {
18758        ecore_init_e1h_firmware(sc);
18759        sc->iro_array = e1h_iro_arr;
18760    } else if (!CHIP_IS_E1x(sc)) {
18761        ecore_init_e2_firmware(sc);
18762        sc->iro_array = e2_iro_arr;
18763    } else {
18764        BLOGE(sc, "Unsupported chip revision\n");
18765        return (-1);
18766    }
18767
18768    return (0);
18769}
18770
18771static void
18772bxe_release_firmware(struct bxe_softc *sc)
18773{
18774    /* Do nothing */
18775    return;
18776}
18777
18778static int
18779ecore_gunzip(struct bxe_softc *sc,
18780             const uint8_t    *zbuf,
18781             int              len)
18782{
18783    /* XXX : Implement... */
18784    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18785    return (FALSE);
18786}
18787
18788static void
18789ecore_reg_wr_ind(struct bxe_softc *sc,
18790                 uint32_t         addr,
18791                 uint32_t         val)
18792{
18793    bxe_reg_wr_ind(sc, addr, val);
18794}
18795
18796static void
18797ecore_write_dmae_phys_len(struct bxe_softc *sc,
18798                          bus_addr_t       phys_addr,
18799                          uint32_t         addr,
18800                          uint32_t         len)
18801{
18802    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18803}
18804
18805void
18806ecore_storm_memset_struct(struct bxe_softc *sc,
18807                          uint32_t         addr,
18808                          size_t           size,
18809                          uint32_t         *data)
18810{
18811    uint8_t i;
18812    for (i = 0; i < size/4; i++) {
18813        REG_WR(sc, addr + (i * 4), data[i]);
18814    }
18815}
18816
18817