sha256c.c revision 314335
1/*-
2 * Copyright 2005 Colin Percival
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/crypto/sha2/sha256c.c 314335 2017-02-27 13:05:17Z avg $");
29
30#include <sys/endian.h>
31#include <sys/types.h>
32
33#ifdef _KERNEL
34#include <sys/systm.h>
35#else
36#include <string.h>
37#endif
38
39#include "sha256.h"
40
41#if BYTE_ORDER == BIG_ENDIAN
42
43/* Copy a vector of big-endian uint32_t into a vector of bytes */
44#define be32enc_vect(dst, src, len)	\
45	memcpy((void *)dst, (const void *)src, (size_t)len)
46
47/* Copy a vector of bytes into a vector of big-endian uint32_t */
48#define be32dec_vect(dst, src, len)	\
49	memcpy((void *)dst, (const void *)src, (size_t)len)
50
51#else /* BYTE_ORDER != BIG_ENDIAN */
52
53/*
54 * Encode a length len/4 vector of (uint32_t) into a length len vector of
55 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
56 */
57static void
58be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
59{
60	size_t i;
61
62	for (i = 0; i < len / 4; i++)
63		be32enc(dst + i * 4, src[i]);
64}
65
66/*
67 * Decode a big-endian length len vector of (unsigned char) into a length
68 * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
69 */
70static void
71be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
72{
73	size_t i;
74
75	for (i = 0; i < len / 4; i++)
76		dst[i] = be32dec(src + i * 4);
77}
78
79#endif /* BYTE_ORDER != BIG_ENDIAN */
80
81/* SHA256 round constants. */
82static const uint32_t K[64] = {
83	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
84	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
85	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
86	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
87	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
88	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
89	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
90	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
91	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
92	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
93	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
94	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
95	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
96	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
97	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
98	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
99};
100
101/* Elementary functions used by SHA256 */
102#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
103#define Maj(x, y, z)	((x & (y | z)) | (y & z))
104#define SHR(x, n)	(x >> n)
105#define ROTR(x, n)	((x >> n) | (x << (32 - n)))
106#define S0(x)		(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
107#define S1(x)		(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
108#define s0(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
109#define s1(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
110
111/* SHA256 round function */
112#define RND(a, b, c, d, e, f, g, h, k)			\
113	h += S1(e) + Ch(e, f, g) + k;			\
114	d += h;						\
115	h += S0(a) + Maj(a, b, c);
116
117/* Adjusted round function for rotating state */
118#define RNDr(S, W, i, ii)			\
119	RND(S[(64 - i) % 8], S[(65 - i) % 8],	\
120	    S[(66 - i) % 8], S[(67 - i) % 8],	\
121	    S[(68 - i) % 8], S[(69 - i) % 8],	\
122	    S[(70 - i) % 8], S[(71 - i) % 8],	\
123	    W[i + ii] + K[i + ii])
124
125/* Message schedule computation */
126#define MSCH(W, ii, i)				\
127	W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
128
129/*
130 * SHA256 block compression function.  The 256-bit state is transformed via
131 * the 512-bit input block to produce a new state.
132 */
133static void
134SHA256_Transform(uint32_t * state, const unsigned char block[64])
135{
136	uint32_t W[64];
137	uint32_t S[8];
138	int i;
139
140	/* 1. Prepare the first part of the message schedule W. */
141	be32dec_vect(W, block, 64);
142
143	/* 2. Initialize working variables. */
144	memcpy(S, state, 32);
145
146	/* 3. Mix. */
147	for (i = 0; i < 64; i += 16) {
148		RNDr(S, W, 0, i);
149		RNDr(S, W, 1, i);
150		RNDr(S, W, 2, i);
151		RNDr(S, W, 3, i);
152		RNDr(S, W, 4, i);
153		RNDr(S, W, 5, i);
154		RNDr(S, W, 6, i);
155		RNDr(S, W, 7, i);
156		RNDr(S, W, 8, i);
157		RNDr(S, W, 9, i);
158		RNDr(S, W, 10, i);
159		RNDr(S, W, 11, i);
160		RNDr(S, W, 12, i);
161		RNDr(S, W, 13, i);
162		RNDr(S, W, 14, i);
163		RNDr(S, W, 15, i);
164
165		if (i == 48)
166			break;
167		MSCH(W, 0, i);
168		MSCH(W, 1, i);
169		MSCH(W, 2, i);
170		MSCH(W, 3, i);
171		MSCH(W, 4, i);
172		MSCH(W, 5, i);
173		MSCH(W, 6, i);
174		MSCH(W, 7, i);
175		MSCH(W, 8, i);
176		MSCH(W, 9, i);
177		MSCH(W, 10, i);
178		MSCH(W, 11, i);
179		MSCH(W, 12, i);
180		MSCH(W, 13, i);
181		MSCH(W, 14, i);
182		MSCH(W, 15, i);
183	}
184
185	/* 4. Mix local working variables into global state */
186	for (i = 0; i < 8; i++)
187		state[i] += S[i];
188}
189
190static unsigned char PAD[64] = {
191	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
192	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
194	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
195};
196
197/* Add padding and terminating bit-count. */
198static void
199SHA256_Pad(SHA256_CTX * ctx)
200{
201	size_t r;
202
203	/* Figure out how many bytes we have buffered. */
204	r = (ctx->count >> 3) & 0x3f;
205
206	/* Pad to 56 mod 64, transforming if we finish a block en route. */
207	if (r < 56) {
208		/* Pad to 56 mod 64. */
209		memcpy(&ctx->buf[r], PAD, 56 - r);
210	} else {
211		/* Finish the current block and mix. */
212		memcpy(&ctx->buf[r], PAD, 64 - r);
213		SHA256_Transform(ctx->state, ctx->buf);
214
215		/* The start of the final block is all zeroes. */
216		memset(&ctx->buf[0], 0, 56);
217	}
218
219	/* Add the terminating bit-count. */
220	be64enc(&ctx->buf[56], ctx->count);
221
222	/* Mix in the final block. */
223	SHA256_Transform(ctx->state, ctx->buf);
224}
225
226/* SHA-256 initialization.  Begins a SHA-256 operation. */
227void
228SHA256_Init(SHA256_CTX * ctx)
229{
230
231	/* Zero bits processed so far */
232	ctx->count = 0;
233
234	/* Magic initialization constants */
235	ctx->state[0] = 0x6A09E667;
236	ctx->state[1] = 0xBB67AE85;
237	ctx->state[2] = 0x3C6EF372;
238	ctx->state[3] = 0xA54FF53A;
239	ctx->state[4] = 0x510E527F;
240	ctx->state[5] = 0x9B05688C;
241	ctx->state[6] = 0x1F83D9AB;
242	ctx->state[7] = 0x5BE0CD19;
243}
244
245/* Add bytes into the hash */
246void
247SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
248{
249	uint64_t bitlen;
250	uint32_t r;
251	const unsigned char *src = in;
252
253	/* Number of bytes left in the buffer from previous updates */
254	r = (ctx->count >> 3) & 0x3f;
255
256	/* Convert the length into a number of bits */
257	bitlen = len << 3;
258
259	/* Update number of bits */
260	ctx->count += bitlen;
261
262	/* Handle the case where we don't need to perform any transforms */
263	if (len < 64 - r) {
264		memcpy(&ctx->buf[r], src, len);
265		return;
266	}
267
268	/* Finish the current block */
269	memcpy(&ctx->buf[r], src, 64 - r);
270	SHA256_Transform(ctx->state, ctx->buf);
271	src += 64 - r;
272	len -= 64 - r;
273
274	/* Perform complete blocks */
275	while (len >= 64) {
276		SHA256_Transform(ctx->state, src);
277		src += 64;
278		len -= 64;
279	}
280
281	/* Copy left over data into buffer */
282	memcpy(ctx->buf, src, len);
283}
284
285/*
286 * SHA-256 finalization.  Pads the input data, exports the hash value,
287 * and clears the context state.
288 */
289void
290SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
291{
292
293	/* Add padding */
294	SHA256_Pad(ctx);
295
296	/* Write the hash */
297	be32enc_vect(digest, ctx->state, 32);
298
299	/* Clear the context state */
300	memset((void *)ctx, 0, sizeof(*ctx));
301}
302
303#ifdef WEAK_REFS
304/* When building libmd, provide weak references. Note: this is not
305   activated in the context of compiling these sources for internal
306   use in libcrypt.
307 */
308#undef SHA256_Init
309__weak_reference(_libmd_SHA256_Init, SHA256_Init);
310#undef SHA256_Update
311__weak_reference(_libmd_SHA256_Update, SHA256_Update);
312#undef SHA256_Final
313__weak_reference(_libmd_SHA256_Final, SHA256_Final);
314#undef SHA256_Transform
315__weak_reference(_libmd_SHA256_Transform, SHA256_Transform);
316#endif
317