fil.c revision 334202
1/*	$FreeBSD: stable/10/sys/contrib/ipfilter/netinet/fil.c 334202 2018-05-25 06:26:07Z cy $	*/
2
3/*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Copyright 2008 Sun Microsystems.
9 *
10 * $Id$
11 *
12 */
13#if defined(KERNEL) || defined(_KERNEL)
14# undef KERNEL
15# undef _KERNEL
16# define        KERNEL	1
17# define        _KERNEL	1
18#endif
19#include <sys/errno.h>
20#include <sys/types.h>
21#include <sys/param.h>
22#include <sys/time.h>
23#if defined(_KERNEL) && defined(__FreeBSD_version) && \
24    (__FreeBSD_version >= 220000)
25# if (__FreeBSD_version >= 400000)
26#  if !defined(IPFILTER_LKM)
27#   include "opt_inet6.h"
28#  endif
29#  if (__FreeBSD_version == 400019)
30#   define CSUM_DELAY_DATA
31#  endif
32# endif
33# include <sys/filio.h>
34#else
35# include <sys/ioctl.h>
36#endif
37#if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
38# include <sys/filio.h>
39#endif
40#if !defined(_AIX51)
41# include <sys/fcntl.h>
42#endif
43#if defined(_KERNEL)
44# include <sys/systm.h>
45# include <sys/file.h>
46#else
47# include <stdio.h>
48# include <string.h>
49# include <stdlib.h>
50# include <stddef.h>
51# include <sys/file.h>
52# define _KERNEL
53# ifdef __OpenBSD__
54struct file;
55# endif
56# include <sys/uio.h>
57# undef _KERNEL
58#endif
59#if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
60    !defined(linux)
61# include <sys/mbuf.h>
62#else
63# if !defined(linux)
64#  include <sys/byteorder.h>
65# endif
66# if (SOLARIS2 < 5) && defined(sun)
67#  include <sys/dditypes.h>
68# endif
69#endif
70#ifdef __hpux
71# define _NET_ROUTE_INCLUDED
72#endif
73#if !defined(linux)
74# include <sys/protosw.h>
75#endif
76#include <sys/socket.h>
77#include <net/if.h>
78#ifdef sun
79# include <net/af.h>
80#endif
81#include <netinet/in.h>
82#include <netinet/in_systm.h>
83#include <netinet/ip.h>
84#if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
85# include <sys/hashing.h>
86# include <netinet/in_var.h>
87#endif
88#include <netinet/tcp.h>
89#if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
90# include <netinet/udp.h>
91# include <netinet/ip_icmp.h>
92#endif
93#ifdef __hpux
94# undef _NET_ROUTE_INCLUDED
95#endif
96#ifdef __osf__
97# undef _RADIX_H_
98#endif
99#include "netinet/ip_compat.h"
100#ifdef	USE_INET6
101# include <netinet/icmp6.h>
102# if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
103#  include <netinet6/in6_var.h>
104# endif
105#endif
106#include "netinet/ip_fil.h"
107#include "netinet/ip_nat.h"
108#include "netinet/ip_frag.h"
109#include "netinet/ip_state.h"
110#include "netinet/ip_proxy.h"
111#include "netinet/ip_auth.h"
112#ifdef IPFILTER_SCAN
113# include "netinet/ip_scan.h"
114#endif
115#include "netinet/ip_sync.h"
116#include "netinet/ip_lookup.h"
117#include "netinet/ip_pool.h"
118#include "netinet/ip_htable.h"
119#ifdef IPFILTER_COMPILED
120# include "netinet/ip_rules.h"
121#endif
122#if defined(IPFILTER_BPF) && defined(_KERNEL)
123# include <net/bpf.h>
124#endif
125#if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
126# include <sys/malloc.h>
127#endif
128#include "netinet/ipl.h"
129
130#if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
131# include <sys/callout.h>
132extern struct callout ipf_slowtimer_ch;
133#endif
134#if defined(__OpenBSD__)
135# include <sys/timeout.h>
136extern struct timeout ipf_slowtimer_ch;
137#endif
138/* END OF INCLUDES */
139
140#if !defined(lint)
141static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
142static const char rcsid[] = "@(#)$FreeBSD: stable/10/sys/contrib/ipfilter/netinet/fil.c 334202 2018-05-25 06:26:07Z cy $";
143/* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */
144#endif
145
146#ifndef	_KERNEL
147# include "ipf.h"
148# include "ipt.h"
149extern	int	opts;
150extern	int	blockreason;
151#endif /* _KERNEL */
152
153#define	LBUMP(x)	softc->x++
154#define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
155
156static	INLINE int	ipf_check_ipf __P((fr_info_t *, frentry_t *, int));
157static	u_32_t		ipf_checkcipso __P((fr_info_t *, u_char *, int));
158static	u_32_t		ipf_checkripso __P((u_char *));
159static	u_32_t		ipf_decaps __P((fr_info_t *, u_32_t, int));
160#ifdef IPFILTER_LOG
161static	frentry_t	*ipf_dolog __P((fr_info_t *, u_32_t *));
162#endif
163static	int		ipf_flushlist __P((ipf_main_softc_t *, int *,
164					   frentry_t **));
165static	int		ipf_flush_groups __P((ipf_main_softc_t *, frgroup_t **,
166					      int));
167static	ipfunc_t	ipf_findfunc __P((ipfunc_t));
168static	void		*ipf_findlookup __P((ipf_main_softc_t *, int,
169					     frentry_t *,
170					     i6addr_t *, i6addr_t *));
171static	frentry_t	*ipf_firewall __P((fr_info_t *, u_32_t *));
172static	int		ipf_fr_matcharray __P((fr_info_t *, int *));
173static	int		ipf_frruleiter __P((ipf_main_softc_t *, void *, int,
174					    void *));
175static	void		ipf_funcfini __P((ipf_main_softc_t *, frentry_t *));
176static	int		ipf_funcinit __P((ipf_main_softc_t *, frentry_t *));
177static	int		ipf_geniter __P((ipf_main_softc_t *, ipftoken_t *,
178					 ipfgeniter_t *));
179static	void		ipf_getstat __P((ipf_main_softc_t *,
180					 struct friostat *, int));
181static	int		ipf_group_flush __P((ipf_main_softc_t *, frgroup_t *));
182static	void		ipf_group_free __P((frgroup_t *));
183static	int		ipf_grpmapfini __P((struct ipf_main_softc_s *,
184					    frentry_t *));
185static	int		ipf_grpmapinit __P((struct ipf_main_softc_s *,
186					    frentry_t *));
187static	frentry_t	*ipf_nextrule __P((ipf_main_softc_t *, int, int,
188					   frentry_t *, int));
189static	int		ipf_portcheck __P((frpcmp_t *, u_32_t));
190static	INLINE int	ipf_pr_ah __P((fr_info_t *));
191static	INLINE void	ipf_pr_esp __P((fr_info_t *));
192static	INLINE void	ipf_pr_gre __P((fr_info_t *));
193static	INLINE void	ipf_pr_udp __P((fr_info_t *));
194static	INLINE void	ipf_pr_tcp __P((fr_info_t *));
195static	INLINE void	ipf_pr_icmp __P((fr_info_t *));
196static	INLINE void	ipf_pr_ipv4hdr __P((fr_info_t *));
197static	INLINE void	ipf_pr_short __P((fr_info_t *, int));
198static	INLINE int	ipf_pr_tcpcommon __P((fr_info_t *));
199static	INLINE int	ipf_pr_udpcommon __P((fr_info_t *));
200static	void		ipf_rule_delete __P((ipf_main_softc_t *, frentry_t *f,
201					     int, int));
202static	void		ipf_rule_expire_insert __P((ipf_main_softc_t *,
203						    frentry_t *, int));
204static	int		ipf_synclist __P((ipf_main_softc_t *, frentry_t *,
205					  void *));
206static	void		ipf_token_flush __P((ipf_main_softc_t *));
207static	void		ipf_token_unlink __P((ipf_main_softc_t *,
208					      ipftoken_t *));
209static	ipftuneable_t	*ipf_tune_findbyname __P((ipftuneable_t *,
210						  const char *));
211static	ipftuneable_t	*ipf_tune_findbycookie __P((ipftuneable_t **, void *,
212						    void **));
213static	int		ipf_updateipid __P((fr_info_t *));
214static	int		ipf_settimeout __P((struct ipf_main_softc_s *,
215					    struct ipftuneable *,
216					    ipftuneval_t *));
217#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
218     !defined(__FreeBSD__)) || \
219    FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
220    OPENBSD_LT_REV(200006)
221static	int		ppsratecheck(struct timeval *, int *, int);
222#endif
223
224
225/*
226 * bit values for identifying presence of individual IP options
227 * All of these tables should be ordered by increasing key value on the left
228 * hand side to allow for binary searching of the array and include a trailer
229 * with a 0 for the bitmask for linear searches to easily find the end with.
230 */
231static const	struct	optlist	ipopts[20] = {
232	{ IPOPT_NOP,	0x000001 },
233	{ IPOPT_RR,	0x000002 },
234	{ IPOPT_ZSU,	0x000004 },
235	{ IPOPT_MTUP,	0x000008 },
236	{ IPOPT_MTUR,	0x000010 },
237	{ IPOPT_ENCODE,	0x000020 },
238	{ IPOPT_TS,	0x000040 },
239	{ IPOPT_TR,	0x000080 },
240	{ IPOPT_SECURITY, 0x000100 },
241	{ IPOPT_LSRR,	0x000200 },
242	{ IPOPT_E_SEC,	0x000400 },
243	{ IPOPT_CIPSO,	0x000800 },
244	{ IPOPT_SATID,	0x001000 },
245	{ IPOPT_SSRR,	0x002000 },
246	{ IPOPT_ADDEXT,	0x004000 },
247	{ IPOPT_VISA,	0x008000 },
248	{ IPOPT_IMITD,	0x010000 },
249	{ IPOPT_EIP,	0x020000 },
250	{ IPOPT_FINN,	0x040000 },
251	{ 0,		0x000000 }
252};
253
254#ifdef USE_INET6
255static const struct optlist ip6exthdr[] = {
256	{ IPPROTO_HOPOPTS,		0x000001 },
257	{ IPPROTO_IPV6,			0x000002 },
258	{ IPPROTO_ROUTING,		0x000004 },
259	{ IPPROTO_FRAGMENT,		0x000008 },
260	{ IPPROTO_ESP,			0x000010 },
261	{ IPPROTO_AH,			0x000020 },
262	{ IPPROTO_NONE,			0x000040 },
263	{ IPPROTO_DSTOPTS,		0x000080 },
264	{ IPPROTO_MOBILITY,		0x000100 },
265	{ 0,				0 }
266};
267#endif
268
269/*
270 * bit values for identifying presence of individual IP security options
271 */
272static const	struct	optlist	secopt[8] = {
273	{ IPSO_CLASS_RES4,	0x01 },
274	{ IPSO_CLASS_TOPS,	0x02 },
275	{ IPSO_CLASS_SECR,	0x04 },
276	{ IPSO_CLASS_RES3,	0x08 },
277	{ IPSO_CLASS_CONF,	0x10 },
278	{ IPSO_CLASS_UNCL,	0x20 },
279	{ IPSO_CLASS_RES2,	0x40 },
280	{ IPSO_CLASS_RES1,	0x80 }
281};
282
283char	ipfilter_version[] = IPL_VERSION;
284
285int	ipf_features = 0
286#ifdef	IPFILTER_LKM
287		| IPF_FEAT_LKM
288#endif
289#ifdef	IPFILTER_LOG
290		| IPF_FEAT_LOG
291#endif
292		| IPF_FEAT_LOOKUP
293#ifdef	IPFILTER_BPF
294		| IPF_FEAT_BPF
295#endif
296#ifdef	IPFILTER_COMPILED
297		| IPF_FEAT_COMPILED
298#endif
299#ifdef	IPFILTER_CKSUM
300		| IPF_FEAT_CKSUM
301#endif
302		| IPF_FEAT_SYNC
303#ifdef	IPFILTER_SCAN
304		| IPF_FEAT_SCAN
305#endif
306#ifdef	USE_INET6
307		| IPF_FEAT_IPV6
308#endif
309	;
310
311
312/*
313 * Table of functions available for use with call rules.
314 */
315static ipfunc_resolve_t ipf_availfuncs[] = {
316	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
317	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
318	{ "",	      NULL,	      NULL,	      NULL }
319};
320
321static ipftuneable_t ipf_main_tuneables[] = {
322	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
323		"ipf_flags",		0,	0xffffffff,
324		stsizeof(ipf_main_softc_t, ipf_flags),
325		0,			NULL,	NULL },
326	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
327		"active",		0,	0,
328		stsizeof(ipf_main_softc_t, ipf_active),
329		IPFT_RDONLY,		NULL,	NULL },
330	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
331		"control_forwarding",	0, 1,
332		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
333		0,			NULL,	NULL },
334	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
335		"update_ipid",		0,	1,
336		stsizeof(ipf_main_softc_t, ipf_update_ipid),
337		0,			NULL,	NULL },
338	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
339		"chksrc",		0,	1,
340		stsizeof(ipf_main_softc_t, ipf_chksrc),
341		0,			NULL,	NULL },
342	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
343		"min_ttl",		0,	1,
344		stsizeof(ipf_main_softc_t, ipf_minttl),
345		0,			NULL,	NULL },
346	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
347		"icmp_minfragmtu",	0,	1,
348		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
349		0,			NULL,	NULL },
350	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
351		"default_pass",		0,	0xffffffff,
352		stsizeof(ipf_main_softc_t, ipf_pass),
353		0,			NULL,	NULL },
354	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
355		"tcp_idle_timeout",	1,	0x7fffffff,
356		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
357		0,			NULL,	ipf_settimeout },
358	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
359		"tcp_close_wait",	1,	0x7fffffff,
360		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
361		0,			NULL,	ipf_settimeout },
362	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
363		"tcp_last_ack",		1,	0x7fffffff,
364		stsizeof(ipf_main_softc_t, ipf_tcplastack),
365		0,			NULL,	ipf_settimeout },
366	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
367		"tcp_timeout",		1,	0x7fffffff,
368		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
369		0,			NULL,	ipf_settimeout },
370	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
371		"tcp_syn_sent",		1,	0x7fffffff,
372		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
373		0,			NULL,	ipf_settimeout },
374	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
375		"tcp_syn_received",	1,	0x7fffffff,
376		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
377		0,			NULL,	ipf_settimeout },
378	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
379		"tcp_closed",		1,	0x7fffffff,
380		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
381		0,			NULL,	ipf_settimeout },
382	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
383		"tcp_half_closed",	1,	0x7fffffff,
384		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
385		0,			NULL,	ipf_settimeout },
386	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
387		"tcp_time_wait",	1,	0x7fffffff,
388		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
389		0,			NULL,	ipf_settimeout },
390	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
391		"udp_timeout",		1,	0x7fffffff,
392		stsizeof(ipf_main_softc_t, ipf_udptimeout),
393		0,			NULL,	ipf_settimeout },
394	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
395		"udp_ack_timeout",	1,	0x7fffffff,
396		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
397		0,			NULL,	ipf_settimeout },
398	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
399		"icmp_timeout",		1,	0x7fffffff,
400		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
401		0,			NULL,	ipf_settimeout },
402	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
403		"icmp_ack_timeout",	1,	0x7fffffff,
404		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
405		0,			NULL,	ipf_settimeout },
406	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
407		"ip_timeout",		1,	0x7fffffff,
408		stsizeof(ipf_main_softc_t, ipf_iptimeout),
409		0,			NULL,	ipf_settimeout },
410#if defined(INSTANCES) && defined(_KERNEL)
411	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
412		"intercept_loopback",	0,	1,
413		stsizeof(ipf_main_softc_t, ipf_get_loopback),
414		0,			NULL,	ipf_set_loopback },
415#endif
416	{ { 0 },
417		NULL,			0,	0,
418		0,
419		0,			NULL,	NULL }
420};
421
422
423/*
424 * The next section of code is a a collection of small routines that set
425 * fields in the fr_info_t structure passed based on properties of the
426 * current packet.  There are different routines for the same protocol
427 * for each of IPv4 and IPv6.  Adding a new protocol, for which there
428 * will "special" inspection for setup, is now more easily done by adding
429 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
430 * adding more code to a growing switch statement.
431 */
432#ifdef USE_INET6
433static	INLINE int	ipf_pr_ah6 __P((fr_info_t *));
434static	INLINE void	ipf_pr_esp6 __P((fr_info_t *));
435static	INLINE void	ipf_pr_gre6 __P((fr_info_t *));
436static	INLINE void	ipf_pr_udp6 __P((fr_info_t *));
437static	INLINE void	ipf_pr_tcp6 __P((fr_info_t *));
438static	INLINE void	ipf_pr_icmp6 __P((fr_info_t *));
439static	INLINE void	ipf_pr_ipv6hdr __P((fr_info_t *));
440static	INLINE void	ipf_pr_short6 __P((fr_info_t *, int));
441static	INLINE int	ipf_pr_hopopts6 __P((fr_info_t *));
442static	INLINE int	ipf_pr_mobility6 __P((fr_info_t *));
443static	INLINE int	ipf_pr_routing6 __P((fr_info_t *));
444static	INLINE int	ipf_pr_dstopts6 __P((fr_info_t *));
445static	INLINE int	ipf_pr_fragment6 __P((fr_info_t *));
446static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int));
447
448
449/* ------------------------------------------------------------------------ */
450/* Function:    ipf_pr_short6                                               */
451/* Returns:     void                                                        */
452/* Parameters:  fin(I)  - pointer to packet information                     */
453/*              xmin(I) - minimum header size                               */
454/*                                                                          */
455/* IPv6 Only                                                                */
456/* This is function enforces the 'is a packet too short to be legit' rule   */
457/* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
458/* for ipf_pr_short() for more details.                                     */
459/* ------------------------------------------------------------------------ */
460static INLINE void
461ipf_pr_short6(fin, xmin)
462	fr_info_t *fin;
463	int xmin;
464{
465
466	if (fin->fin_dlen < xmin)
467		fin->fin_flx |= FI_SHORT;
468}
469
470
471/* ------------------------------------------------------------------------ */
472/* Function:    ipf_pr_ipv6hdr                                              */
473/* Returns:     void                                                        */
474/* Parameters:  fin(I) - pointer to packet information                      */
475/*                                                                          */
476/* IPv6 Only                                                                */
477/* Copy values from the IPv6 header into the fr_info_t struct and call the  */
478/* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
479/* analyzer may pullup or free the packet itself so we need to be vigiliant */
480/* of that possibility arising.                                             */
481/* ------------------------------------------------------------------------ */
482static INLINE void
483ipf_pr_ipv6hdr(fin)
484	fr_info_t *fin;
485{
486	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
487	int p, go = 1, i, hdrcount;
488	fr_ip_t *fi = &fin->fin_fi;
489
490	fin->fin_off = 0;
491
492	fi->fi_tos = 0;
493	fi->fi_optmsk = 0;
494	fi->fi_secmsk = 0;
495	fi->fi_auth = 0;
496
497	p = ip6->ip6_nxt;
498	fin->fin_crc = p;
499	fi->fi_ttl = ip6->ip6_hlim;
500	fi->fi_src.in6 = ip6->ip6_src;
501	fin->fin_crc += fi->fi_src.i6[0];
502	fin->fin_crc += fi->fi_src.i6[1];
503	fin->fin_crc += fi->fi_src.i6[2];
504	fin->fin_crc += fi->fi_src.i6[3];
505	fi->fi_dst.in6 = ip6->ip6_dst;
506	fin->fin_crc += fi->fi_dst.i6[0];
507	fin->fin_crc += fi->fi_dst.i6[1];
508	fin->fin_crc += fi->fi_dst.i6[2];
509	fin->fin_crc += fi->fi_dst.i6[3];
510	fin->fin_id = 0;
511	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
512		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
513
514	hdrcount = 0;
515	while (go && !(fin->fin_flx & FI_SHORT)) {
516		switch (p)
517		{
518		case IPPROTO_UDP :
519			ipf_pr_udp6(fin);
520			go = 0;
521			break;
522
523		case IPPROTO_TCP :
524			ipf_pr_tcp6(fin);
525			go = 0;
526			break;
527
528		case IPPROTO_ICMPV6 :
529			ipf_pr_icmp6(fin);
530			go = 0;
531			break;
532
533		case IPPROTO_GRE :
534			ipf_pr_gre6(fin);
535			go = 0;
536			break;
537
538		case IPPROTO_HOPOPTS :
539			p = ipf_pr_hopopts6(fin);
540			break;
541
542		case IPPROTO_MOBILITY :
543			p = ipf_pr_mobility6(fin);
544			break;
545
546		case IPPROTO_DSTOPTS :
547			p = ipf_pr_dstopts6(fin);
548			break;
549
550		case IPPROTO_ROUTING :
551			p = ipf_pr_routing6(fin);
552			break;
553
554		case IPPROTO_AH :
555			p = ipf_pr_ah6(fin);
556			break;
557
558		case IPPROTO_ESP :
559			ipf_pr_esp6(fin);
560			go = 0;
561			break;
562
563		case IPPROTO_IPV6 :
564			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
565				if (ip6exthdr[i].ol_val == p) {
566					fin->fin_flx |= ip6exthdr[i].ol_bit;
567					break;
568				}
569			go = 0;
570			break;
571
572		case IPPROTO_NONE :
573			go = 0;
574			break;
575
576		case IPPROTO_FRAGMENT :
577			p = ipf_pr_fragment6(fin);
578			/*
579			 * Given that the only fragments we want to let through
580			 * (where fin_off != 0) are those where the non-first
581			 * fragments only have data, we can safely stop looking
582			 * at headers if this is a non-leading fragment.
583			 */
584			if (fin->fin_off != 0)
585				go = 0;
586			break;
587
588		default :
589			go = 0;
590			break;
591		}
592		hdrcount++;
593
594		/*
595		 * It is important to note that at this point, for the
596		 * extension headers (go != 0), the entire header may not have
597		 * been pulled up when the code gets to this point.  This is
598		 * only done for "go != 0" because the other header handlers
599		 * will all pullup their complete header.  The other indicator
600		 * of an incomplete packet is that this was just an extension
601		 * header.
602		 */
603		if ((go != 0) && (p != IPPROTO_NONE) &&
604		    (ipf_pr_pullup(fin, 0) == -1)) {
605			p = IPPROTO_NONE;
606			break;
607		}
608	}
609
610	/*
611	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
612	 * and destroy whatever packet was here.  The caller of this function
613	 * expects us to return if there is a problem with ipf_pullup.
614	 */
615	if (fin->fin_m == NULL) {
616		ipf_main_softc_t *softc = fin->fin_main_soft;
617
618		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
619		return;
620	}
621
622	fi->fi_p = p;
623
624	/*
625	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
626	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
627	 */
628	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
629		ipf_main_softc_t *softc = fin->fin_main_soft;
630
631		fin->fin_flx |= FI_BAD;
632		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
633		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
634	}
635}
636
637
638/* ------------------------------------------------------------------------ */
639/* Function:    ipf_pr_ipv6exthdr                                           */
640/* Returns:     struct ip6_ext * - pointer to the start of the next header  */
641/*                                 or NULL if there is a prolblem.          */
642/* Parameters:  fin(I)      - pointer to packet information                 */
643/*              multiple(I) - flag indicating yes/no if multiple occurances */
644/*                            of this extension header are allowed.         */
645/*              proto(I)    - protocol number for this extension header     */
646/*                                                                          */
647/* IPv6 Only                                                                */
648/* This function embodies a number of common checks that all IPv6 extension */
649/* headers must be subjected to.  For example, making sure the packet is    */
650/* big enough for it to be in, checking if it is repeated and setting a     */
651/* flag to indicate its presence.                                           */
652/* ------------------------------------------------------------------------ */
653static INLINE struct ip6_ext *
654ipf_pr_ipv6exthdr(fin, multiple, proto)
655	fr_info_t *fin;
656	int multiple, proto;
657{
658	ipf_main_softc_t *softc = fin->fin_main_soft;
659	struct ip6_ext *hdr;
660	u_short shift;
661	int i;
662
663	fin->fin_flx |= FI_V6EXTHDR;
664
665				/* 8 is default length of extension hdr */
666	if ((fin->fin_dlen - 8) < 0) {
667		fin->fin_flx |= FI_SHORT;
668		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
669		return NULL;
670	}
671
672	if (ipf_pr_pullup(fin, 8) == -1) {
673		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
674		return NULL;
675	}
676
677	hdr = fin->fin_dp;
678	switch (proto)
679	{
680	case IPPROTO_FRAGMENT :
681		shift = 8;
682		break;
683	default :
684		shift = 8 + (hdr->ip6e_len << 3);
685		break;
686	}
687
688	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
689		fin->fin_flx |= FI_BAD;
690		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
691		return NULL;
692	}
693
694	fin->fin_dp = (char *)fin->fin_dp + shift;
695	fin->fin_dlen -= shift;
696
697	/*
698	 * If we have seen a fragment header, do not set any flags to indicate
699	 * the presence of this extension header as it has no impact on the
700	 * end result until after it has been defragmented.
701	 */
702	if (fin->fin_flx & FI_FRAG)
703		return hdr;
704
705	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
706		if (ip6exthdr[i].ol_val == proto) {
707			/*
708			 * Most IPv6 extension headers are only allowed once.
709			 */
710			if ((multiple == 0) &&
711			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
712				fin->fin_flx |= FI_BAD;
713			else
714				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
715			break;
716		}
717
718	return hdr;
719}
720
721
722/* ------------------------------------------------------------------------ */
723/* Function:    ipf_pr_hopopts6                                             */
724/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
725/* Parameters:  fin(I) - pointer to packet information                      */
726/*                                                                          */
727/* IPv6 Only                                                                */
728/* This is function checks pending hop by hop options extension header      */
729/* ------------------------------------------------------------------------ */
730static INLINE int
731ipf_pr_hopopts6(fin)
732	fr_info_t *fin;
733{
734	struct ip6_ext *hdr;
735
736	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
737	if (hdr == NULL)
738		return IPPROTO_NONE;
739	return hdr->ip6e_nxt;
740}
741
742
743/* ------------------------------------------------------------------------ */
744/* Function:    ipf_pr_mobility6                                            */
745/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
746/* Parameters:  fin(I) - pointer to packet information                      */
747/*                                                                          */
748/* IPv6 Only                                                                */
749/* This is function checks the IPv6 mobility extension header               */
750/* ------------------------------------------------------------------------ */
751static INLINE int
752ipf_pr_mobility6(fin)
753	fr_info_t *fin;
754{
755	struct ip6_ext *hdr;
756
757	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
758	if (hdr == NULL)
759		return IPPROTO_NONE;
760	return hdr->ip6e_nxt;
761}
762
763
764/* ------------------------------------------------------------------------ */
765/* Function:    ipf_pr_routing6                                             */
766/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
767/* Parameters:  fin(I) - pointer to packet information                      */
768/*                                                                          */
769/* IPv6 Only                                                                */
770/* This is function checks pending routing extension header                 */
771/* ------------------------------------------------------------------------ */
772static INLINE int
773ipf_pr_routing6(fin)
774	fr_info_t *fin;
775{
776	struct ip6_routing *hdr;
777
778	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
779	if (hdr == NULL)
780		return IPPROTO_NONE;
781
782	switch (hdr->ip6r_type)
783	{
784	case 0 :
785		/*
786		 * Nasty extension header length?
787		 */
788		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
789		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
790			ipf_main_softc_t *softc = fin->fin_main_soft;
791
792			fin->fin_flx |= FI_BAD;
793			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
794			return IPPROTO_NONE;
795		}
796		break;
797
798	default :
799		break;
800	}
801
802	return hdr->ip6r_nxt;
803}
804
805
806/* ------------------------------------------------------------------------ */
807/* Function:    ipf_pr_fragment6                                            */
808/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
809/* Parameters:  fin(I) - pointer to packet information                      */
810/*                                                                          */
811/* IPv6 Only                                                                */
812/* Examine the IPv6 fragment header and extract fragment offset information.*/
813/*                                                                          */
814/* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
815/* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
816/* packets with a fragment header can fit into.  They are as follows:       */
817/*                                                                          */
818/* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
819/* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
820/* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
821/* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
822/* 5.  [IPV6][0-n EH][FH][data]                                             */
823/*                                                                          */
824/* IPV6 = IPv6 header, FH = Fragment Header,                                */
825/* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
826/*                                                                          */
827/* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
828/* scenario in which they happen is in extreme circumstances that are most  */
829/* likely to be an indication of an attack rather than normal traffic.      */
830/* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
831/* are two rules that can be used to guard against type 3 packets: L4       */
832/* headers must always be in a packet that has the offset field set to 0    */
833/* and no packet is allowed to overlay that where offset = 0.               */
834/* ------------------------------------------------------------------------ */
835static INLINE int
836ipf_pr_fragment6(fin)
837	fr_info_t *fin;
838{
839	ipf_main_softc_t *softc = fin->fin_main_soft;
840	struct ip6_frag *frag;
841
842	fin->fin_flx |= FI_FRAG;
843
844	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
845	if (frag == NULL) {
846		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
847		return IPPROTO_NONE;
848	}
849
850	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
851		/*
852		 * Any fragment that isn't the last fragment must have its
853		 * length as a multiple of 8.
854		 */
855		if ((fin->fin_plen & 7) != 0)
856			fin->fin_flx |= FI_BAD;
857	}
858
859	fin->fin_fraghdr = frag;
860	fin->fin_id = frag->ip6f_ident;
861	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
862	if (fin->fin_off != 0)
863		fin->fin_flx |= FI_FRAGBODY;
864
865	/*
866	 * Jumbograms aren't handled, so the max. length is 64k
867	 */
868	if ((fin->fin_off << 3) + fin->fin_dlen > 65535)
869		  fin->fin_flx |= FI_BAD;
870
871	/*
872	 * We don't know where the transport layer header (or whatever is next
873	 * is), as it could be behind destination options (amongst others) so
874	 * return the fragment header as the type of packet this is.  Note that
875	 * this effectively disables the fragment cache for > 1 protocol at a
876	 * time.
877	 */
878	return frag->ip6f_nxt;
879}
880
881
882/* ------------------------------------------------------------------------ */
883/* Function:    ipf_pr_dstopts6                                             */
884/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
885/* Parameters:  fin(I) - pointer to packet information                      */
886/*                                                                          */
887/* IPv6 Only                                                                */
888/* This is function checks pending destination options extension header     */
889/* ------------------------------------------------------------------------ */
890static INLINE int
891ipf_pr_dstopts6(fin)
892	fr_info_t *fin;
893{
894	ipf_main_softc_t *softc = fin->fin_main_soft;
895	struct ip6_ext *hdr;
896
897	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
898	if (hdr == NULL) {
899		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
900		return IPPROTO_NONE;
901	}
902	return hdr->ip6e_nxt;
903}
904
905
906/* ------------------------------------------------------------------------ */
907/* Function:    ipf_pr_icmp6                                                */
908/* Returns:     void                                                        */
909/* Parameters:  fin(I) - pointer to packet information                      */
910/*                                                                          */
911/* IPv6 Only                                                                */
912/* This routine is mainly concerned with determining the minimum valid size */
913/* for an ICMPv6 packet.                                                    */
914/* ------------------------------------------------------------------------ */
915static INLINE void
916ipf_pr_icmp6(fin)
917	fr_info_t *fin;
918{
919	int minicmpsz = sizeof(struct icmp6_hdr);
920	struct icmp6_hdr *icmp6;
921
922	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
923		ipf_main_softc_t *softc = fin->fin_main_soft;
924
925		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
926		return;
927	}
928
929	if (fin->fin_dlen > 1) {
930		ip6_t *ip6;
931
932		icmp6 = fin->fin_dp;
933
934		fin->fin_data[0] = *(u_short *)icmp6;
935
936		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
937			fin->fin_flx |= FI_ICMPQUERY;
938
939		switch (icmp6->icmp6_type)
940		{
941		case ICMP6_ECHO_REPLY :
942		case ICMP6_ECHO_REQUEST :
943			if (fin->fin_dlen >= 6)
944				fin->fin_data[1] = icmp6->icmp6_id;
945			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
946			break;
947
948		case ICMP6_DST_UNREACH :
949		case ICMP6_PACKET_TOO_BIG :
950		case ICMP6_TIME_EXCEEDED :
951		case ICMP6_PARAM_PROB :
952			fin->fin_flx |= FI_ICMPERR;
953			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
954			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
955				break;
956
957			if (M_LEN(fin->fin_m) < fin->fin_plen) {
958				if (ipf_coalesce(fin) != 1)
959					return;
960			}
961
962			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
963				return;
964
965			/*
966			 * If the destination of this packet doesn't match the
967			 * source of the original packet then this packet is
968			 * not correct.
969			 */
970			icmp6 = fin->fin_dp;
971			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
972			if (IP6_NEQ(&fin->fin_fi.fi_dst,
973				    (i6addr_t *)&ip6->ip6_src))
974				fin->fin_flx |= FI_BAD;
975			break;
976		default :
977			break;
978		}
979	}
980
981	ipf_pr_short6(fin, minicmpsz);
982	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
983		u_char p = fin->fin_p;
984
985		fin->fin_p = IPPROTO_ICMPV6;
986		ipf_checkv6sum(fin);
987		fin->fin_p = p;
988	}
989}
990
991
992/* ------------------------------------------------------------------------ */
993/* Function:    ipf_pr_udp6                                                 */
994/* Returns:     void                                                        */
995/* Parameters:  fin(I) - pointer to packet information                      */
996/*                                                                          */
997/* IPv6 Only                                                                */
998/* Analyse the packet for IPv6/UDP properties.                              */
999/* Is not expected to be called for fragmented packets.                     */
1000/* ------------------------------------------------------------------------ */
1001static INLINE void
1002ipf_pr_udp6(fin)
1003	fr_info_t *fin;
1004{
1005
1006	if (ipf_pr_udpcommon(fin) == 0) {
1007		u_char p = fin->fin_p;
1008
1009		fin->fin_p = IPPROTO_UDP;
1010		ipf_checkv6sum(fin);
1011		fin->fin_p = p;
1012	}
1013}
1014
1015
1016/* ------------------------------------------------------------------------ */
1017/* Function:    ipf_pr_tcp6                                                 */
1018/* Returns:     void                                                        */
1019/* Parameters:  fin(I) - pointer to packet information                      */
1020/*                                                                          */
1021/* IPv6 Only                                                                */
1022/* Analyse the packet for IPv6/TCP properties.                              */
1023/* Is not expected to be called for fragmented packets.                     */
1024/* ------------------------------------------------------------------------ */
1025static INLINE void
1026ipf_pr_tcp6(fin)
1027	fr_info_t *fin;
1028{
1029
1030	if (ipf_pr_tcpcommon(fin) == 0) {
1031		u_char p = fin->fin_p;
1032
1033		fin->fin_p = IPPROTO_TCP;
1034		ipf_checkv6sum(fin);
1035		fin->fin_p = p;
1036	}
1037}
1038
1039
1040/* ------------------------------------------------------------------------ */
1041/* Function:    ipf_pr_esp6                                                 */
1042/* Returns:     void                                                        */
1043/* Parameters:  fin(I) - pointer to packet information                      */
1044/*                                                                          */
1045/* IPv6 Only                                                                */
1046/* Analyse the packet for ESP properties.                                   */
1047/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1048/* even though the newer ESP packets must also have a sequence number that  */
1049/* is 32bits as well, it is not possible(?) to determine the version from a */
1050/* simple packet header.                                                    */
1051/* ------------------------------------------------------------------------ */
1052static INLINE void
1053ipf_pr_esp6(fin)
1054	fr_info_t *fin;
1055{
1056
1057	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1058		ipf_main_softc_t *softc = fin->fin_main_soft;
1059
1060		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1061		return;
1062	}
1063}
1064
1065
1066/* ------------------------------------------------------------------------ */
1067/* Function:    ipf_pr_ah6                                                  */
1068/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1069/* Parameters:  fin(I) - pointer to packet information                      */
1070/*                                                                          */
1071/* IPv6 Only                                                                */
1072/* Analyse the packet for AH properties.                                    */
1073/* The minimum length is taken to be the combination of all fields in the   */
1074/* header being present and no authentication data (null algorithm used.)   */
1075/* ------------------------------------------------------------------------ */
1076static INLINE int
1077ipf_pr_ah6(fin)
1078	fr_info_t *fin;
1079{
1080	authhdr_t *ah;
1081
1082	fin->fin_flx |= FI_AH;
1083
1084	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1085	if (ah == NULL) {
1086		ipf_main_softc_t *softc = fin->fin_main_soft;
1087
1088		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1089		return IPPROTO_NONE;
1090	}
1091
1092	ipf_pr_short6(fin, sizeof(*ah));
1093
1094	/*
1095	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1096	 * enough data to satisfy ah_next (the very first one.)
1097	 */
1098	return ah->ah_next;
1099}
1100
1101
1102/* ------------------------------------------------------------------------ */
1103/* Function:    ipf_pr_gre6                                                 */
1104/* Returns:     void                                                        */
1105/* Parameters:  fin(I) - pointer to packet information                      */
1106/*                                                                          */
1107/* Analyse the packet for GRE properties.                                   */
1108/* ------------------------------------------------------------------------ */
1109static INLINE void
1110ipf_pr_gre6(fin)
1111	fr_info_t *fin;
1112{
1113	grehdr_t *gre;
1114
1115	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1116		ipf_main_softc_t *softc = fin->fin_main_soft;
1117
1118		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1119		return;
1120	}
1121
1122	gre = fin->fin_dp;
1123	if (GRE_REV(gre->gr_flags) == 1)
1124		fin->fin_data[0] = gre->gr_call;
1125}
1126#endif	/* USE_INET6 */
1127
1128
1129/* ------------------------------------------------------------------------ */
1130/* Function:    ipf_pr_pullup                                               */
1131/* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1132/* Parameters:  fin(I)  - pointer to packet information                     */
1133/*              plen(I) - length (excluding L3 header) to pullup            */
1134/*                                                                          */
1135/* Short inline function to cut down on code duplication to perform a call  */
1136/* to ipf_pullup to ensure there is the required amount of data,            */
1137/* consecutively in the packet buffer.                                      */
1138/*                                                                          */
1139/* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1140/* points to the first byte after the complete layer 3 header, which will   */
1141/* include all of the known extension headers for IPv6 or options for IPv4. */
1142/*                                                                          */
1143/* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1144/* is necessary to add those we can already assume to be pulled up (fin_dp  */
1145/* - fin_ip) to what is passed through.                                     */
1146/* ------------------------------------------------------------------------ */
1147int
1148ipf_pr_pullup(fin, plen)
1149	fr_info_t *fin;
1150	int plen;
1151{
1152	ipf_main_softc_t *softc = fin->fin_main_soft;
1153
1154	if (fin->fin_m != NULL) {
1155		if (fin->fin_dp != NULL)
1156			plen += (char *)fin->fin_dp -
1157				((char *)fin->fin_ip + fin->fin_hlen);
1158		plen += fin->fin_hlen;
1159		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1160#if defined(_KERNEL)
1161			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1162				DT(ipf_pullup_fail);
1163				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1164				return -1;
1165			}
1166			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1167#else
1168			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1169			/*
1170			 * Fake ipf_pullup failing
1171			 */
1172			fin->fin_reason = FRB_PULLUP;
1173			*fin->fin_mp = NULL;
1174			fin->fin_m = NULL;
1175			fin->fin_ip = NULL;
1176			return -1;
1177#endif
1178		}
1179	}
1180	return 0;
1181}
1182
1183
1184/* ------------------------------------------------------------------------ */
1185/* Function:    ipf_pr_short                                                */
1186/* Returns:     void                                                        */
1187/* Parameters:  fin(I)  - pointer to packet information                     */
1188/*              xmin(I) - minimum header size                               */
1189/*                                                                          */
1190/* Check if a packet is "short" as defined by xmin.  The rule we are        */
1191/* applying here is that the packet must not be fragmented within the layer */
1192/* 4 header.  That is, it must not be a fragment that has its offset set to */
1193/* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1194/* entire layer 4 header must be present (min).                             */
1195/* ------------------------------------------------------------------------ */
1196static INLINE void
1197ipf_pr_short(fin, xmin)
1198	fr_info_t *fin;
1199	int xmin;
1200{
1201
1202	if (fin->fin_off == 0) {
1203		if (fin->fin_dlen < xmin)
1204			fin->fin_flx |= FI_SHORT;
1205	} else if (fin->fin_off < xmin) {
1206		fin->fin_flx |= FI_SHORT;
1207	}
1208}
1209
1210
1211/* ------------------------------------------------------------------------ */
1212/* Function:    ipf_pr_icmp                                                 */
1213/* Returns:     void                                                        */
1214/* Parameters:  fin(I) - pointer to packet information                      */
1215/*                                                                          */
1216/* IPv4 Only                                                                */
1217/* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1218/* except extrememly bad packets, both type and code will be present.       */
1219/* The expected minimum size of an ICMP packet is very much dependent on    */
1220/* the type of it.                                                          */
1221/*                                                                          */
1222/* XXX - other ICMP sanity checks?                                          */
1223/* ------------------------------------------------------------------------ */
1224static INLINE void
1225ipf_pr_icmp(fin)
1226	fr_info_t *fin;
1227{
1228	ipf_main_softc_t *softc = fin->fin_main_soft;
1229	int minicmpsz = sizeof(struct icmp);
1230	icmphdr_t *icmp;
1231	ip_t *oip;
1232
1233	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1234
1235	if (fin->fin_off != 0) {
1236		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1237		return;
1238	}
1239
1240	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1241		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1242		return;
1243	}
1244
1245	icmp = fin->fin_dp;
1246
1247	fin->fin_data[0] = *(u_short *)icmp;
1248	fin->fin_data[1] = icmp->icmp_id;
1249
1250	switch (icmp->icmp_type)
1251	{
1252	case ICMP_ECHOREPLY :
1253	case ICMP_ECHO :
1254	/* Router discovery messaes - RFC 1256 */
1255	case ICMP_ROUTERADVERT :
1256	case ICMP_ROUTERSOLICIT :
1257		fin->fin_flx |= FI_ICMPQUERY;
1258		minicmpsz = ICMP_MINLEN;
1259		break;
1260	/*
1261	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1262	 * 3 * timestamp(3 * 4)
1263	 */
1264	case ICMP_TSTAMP :
1265	case ICMP_TSTAMPREPLY :
1266		fin->fin_flx |= FI_ICMPQUERY;
1267		minicmpsz = 20;
1268		break;
1269	/*
1270	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1271	 * mask(4)
1272	 */
1273	case ICMP_IREQ :
1274	case ICMP_IREQREPLY :
1275	case ICMP_MASKREQ :
1276	case ICMP_MASKREPLY :
1277		fin->fin_flx |= FI_ICMPQUERY;
1278		minicmpsz = 12;
1279		break;
1280	/*
1281	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1282	 */
1283	case ICMP_UNREACH :
1284#ifdef icmp_nextmtu
1285		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1286			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu)
1287				fin->fin_flx |= FI_BAD;
1288		}
1289#endif
1290		/* FALLTHROUGH */
1291	case ICMP_SOURCEQUENCH :
1292	case ICMP_REDIRECT :
1293	case ICMP_TIMXCEED :
1294	case ICMP_PARAMPROB :
1295		fin->fin_flx |= FI_ICMPERR;
1296		if (ipf_coalesce(fin) != 1) {
1297			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1298			return;
1299		}
1300
1301		/*
1302		 * ICMP error packets should not be generated for IP
1303		 * packets that are a fragment that isn't the first
1304		 * fragment.
1305		 */
1306		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1307		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1308			fin->fin_flx |= FI_BAD;
1309
1310		/*
1311		 * If the destination of this packet doesn't match the
1312		 * source of the original packet then this packet is
1313		 * not correct.
1314		 */
1315		if (oip->ip_src.s_addr != fin->fin_daddr)
1316			fin->fin_flx |= FI_BAD;
1317		break;
1318	default :
1319		break;
1320	}
1321
1322	ipf_pr_short(fin, minicmpsz);
1323
1324	ipf_checkv4sum(fin);
1325}
1326
1327
1328/* ------------------------------------------------------------------------ */
1329/* Function:    ipf_pr_tcpcommon                                            */
1330/* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1331/* Parameters:  fin(I) - pointer to packet information                      */
1332/*                                                                          */
1333/* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1334/* and make some checks with how they interact with other fields.           */
1335/* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1336/* valid and mark the packet as bad if not.                                 */
1337/* ------------------------------------------------------------------------ */
1338static INLINE int
1339ipf_pr_tcpcommon(fin)
1340	fr_info_t *fin;
1341{
1342	ipf_main_softc_t *softc = fin->fin_main_soft;
1343	int flags, tlen;
1344	tcphdr_t *tcp;
1345
1346	fin->fin_flx |= FI_TCPUDP;
1347	if (fin->fin_off != 0) {
1348		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1349		return 0;
1350	}
1351
1352	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1353		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1354		return -1;
1355	}
1356
1357	tcp = fin->fin_dp;
1358	if (fin->fin_dlen > 3) {
1359		fin->fin_sport = ntohs(tcp->th_sport);
1360		fin->fin_dport = ntohs(tcp->th_dport);
1361	}
1362
1363	if ((fin->fin_flx & FI_SHORT) != 0) {
1364		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1365		return 1;
1366	}
1367
1368	/*
1369	 * Use of the TCP data offset *must* result in a value that is at
1370	 * least the same size as the TCP header.
1371	 */
1372	tlen = TCP_OFF(tcp) << 2;
1373	if (tlen < sizeof(tcphdr_t)) {
1374		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1375		fin->fin_flx |= FI_BAD;
1376		return 1;
1377	}
1378
1379	flags = tcp->th_flags;
1380	fin->fin_tcpf = tcp->th_flags;
1381
1382	/*
1383	 * If the urgent flag is set, then the urgent pointer must
1384	 * also be set and vice versa.  Good TCP packets do not have
1385	 * just one of these set.
1386	 */
1387	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1388		fin->fin_flx |= FI_BAD;
1389#if 0
1390	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1391		/*
1392		 * Ignore this case (#if 0) as it shows up in "real"
1393		 * traffic with bogus values in the urgent pointer field.
1394		 */
1395		fin->fin_flx |= FI_BAD;
1396#endif
1397	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1398		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1399		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1400		fin->fin_flx |= FI_BAD;
1401#if 1
1402	} else if (((flags & TH_SYN) != 0) &&
1403		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1404		/*
1405		 * SYN with URG and PUSH set is not for normal TCP but it is
1406		 * possible(?) with T/TCP...but who uses T/TCP?
1407		 */
1408		fin->fin_flx |= FI_BAD;
1409#endif
1410	} else if (!(flags & TH_ACK)) {
1411		/*
1412		 * If the ack bit isn't set, then either the SYN or
1413		 * RST bit must be set.  If the SYN bit is set, then
1414		 * we expect the ACK field to be 0.  If the ACK is
1415		 * not set and if URG, PSH or FIN are set, consdier
1416		 * that to indicate a bad TCP packet.
1417		 */
1418		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1419			/*
1420			 * Cisco PIX sets the ACK field to a random value.
1421			 * In light of this, do not set FI_BAD until a patch
1422			 * is available from Cisco to ensure that
1423			 * interoperability between existing systems is
1424			 * achieved.
1425			 */
1426			/*fin->fin_flx |= FI_BAD*/;
1427		} else if (!(flags & (TH_RST|TH_SYN))) {
1428			fin->fin_flx |= FI_BAD;
1429		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1430			fin->fin_flx |= FI_BAD;
1431		}
1432	}
1433	if (fin->fin_flx & FI_BAD) {
1434		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1435		return 1;
1436	}
1437
1438	/*
1439	 * At this point, it's not exactly clear what is to be gained by
1440	 * marking up which TCP options are and are not present.  The one we
1441	 * are most interested in is the TCP window scale.  This is only in
1442	 * a SYN packet [RFC1323] so we don't need this here...?
1443	 * Now if we were to analyse the header for passive fingerprinting,
1444	 * then that might add some weight to adding this...
1445	 */
1446	if (tlen == sizeof(tcphdr_t)) {
1447		return 0;
1448	}
1449
1450	if (ipf_pr_pullup(fin, tlen) == -1) {
1451		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1452		return -1;
1453	}
1454
1455#if 0
1456	tcp = fin->fin_dp;
1457	ip = fin->fin_ip;
1458	s = (u_char *)(tcp + 1);
1459	off = IP_HL(ip) << 2;
1460# ifdef _KERNEL
1461	if (fin->fin_mp != NULL) {
1462		mb_t *m = *fin->fin_mp;
1463
1464		if (off + tlen > M_LEN(m))
1465			return;
1466	}
1467# endif
1468	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1469		opt = *s;
1470		if (opt == '\0')
1471			break;
1472		else if (opt == TCPOPT_NOP)
1473			ol = 1;
1474		else {
1475			if (tlen < 2)
1476				break;
1477			ol = (int)*(s + 1);
1478			if (ol < 2 || ol > tlen)
1479				break;
1480		}
1481
1482		for (i = 9, mv = 4; mv >= 0; ) {
1483			op = ipopts + i;
1484			if (opt == (u_char)op->ol_val) {
1485				optmsk |= op->ol_bit;
1486				break;
1487			}
1488		}
1489		tlen -= ol;
1490		s += ol;
1491	}
1492#endif /* 0 */
1493
1494	return 0;
1495}
1496
1497
1498
1499/* ------------------------------------------------------------------------ */
1500/* Function:    ipf_pr_udpcommon                                            */
1501/* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1502/* Parameters:  fin(I) - pointer to packet information                      */
1503/*                                                                          */
1504/* Extract the UDP source and destination ports, if present.  If compiled   */
1505/* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1506/* ------------------------------------------------------------------------ */
1507static INLINE int
1508ipf_pr_udpcommon(fin)
1509	fr_info_t *fin;
1510{
1511	udphdr_t *udp;
1512
1513	fin->fin_flx |= FI_TCPUDP;
1514
1515	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1516		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1517			ipf_main_softc_t *softc = fin->fin_main_soft;
1518
1519			fin->fin_flx |= FI_SHORT;
1520			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1521			return 1;
1522		}
1523
1524		udp = fin->fin_dp;
1525
1526		fin->fin_sport = ntohs(udp->uh_sport);
1527		fin->fin_dport = ntohs(udp->uh_dport);
1528	}
1529
1530	return 0;
1531}
1532
1533
1534/* ------------------------------------------------------------------------ */
1535/* Function:    ipf_pr_tcp                                                  */
1536/* Returns:     void                                                        */
1537/* Parameters:  fin(I) - pointer to packet information                      */
1538/*                                                                          */
1539/* IPv4 Only                                                                */
1540/* Analyse the packet for IPv4/TCP properties.                              */
1541/* ------------------------------------------------------------------------ */
1542static INLINE void
1543ipf_pr_tcp(fin)
1544	fr_info_t *fin;
1545{
1546
1547	ipf_pr_short(fin, sizeof(tcphdr_t));
1548
1549	if (ipf_pr_tcpcommon(fin) == 0)
1550		ipf_checkv4sum(fin);
1551}
1552
1553
1554/* ------------------------------------------------------------------------ */
1555/* Function:    ipf_pr_udp                                                  */
1556/* Returns:     void                                                        */
1557/* Parameters:  fin(I) - pointer to packet information                      */
1558/*                                                                          */
1559/* IPv4 Only                                                                */
1560/* Analyse the packet for IPv4/UDP properties.                              */
1561/* ------------------------------------------------------------------------ */
1562static INLINE void
1563ipf_pr_udp(fin)
1564	fr_info_t *fin;
1565{
1566
1567	ipf_pr_short(fin, sizeof(udphdr_t));
1568
1569	if (ipf_pr_udpcommon(fin) == 0)
1570		ipf_checkv4sum(fin);
1571}
1572
1573
1574/* ------------------------------------------------------------------------ */
1575/* Function:    ipf_pr_esp                                                  */
1576/* Returns:     void                                                        */
1577/* Parameters:  fin(I) - pointer to packet information                      */
1578/*                                                                          */
1579/* Analyse the packet for ESP properties.                                   */
1580/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1581/* even though the newer ESP packets must also have a sequence number that  */
1582/* is 32bits as well, it is not possible(?) to determine the version from a */
1583/* simple packet header.                                                    */
1584/* ------------------------------------------------------------------------ */
1585static INLINE void
1586ipf_pr_esp(fin)
1587	fr_info_t *fin;
1588{
1589
1590	if (fin->fin_off == 0) {
1591		ipf_pr_short(fin, 8);
1592		if (ipf_pr_pullup(fin, 8) == -1) {
1593			ipf_main_softc_t *softc = fin->fin_main_soft;
1594
1595			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1596		}
1597	}
1598}
1599
1600
1601/* ------------------------------------------------------------------------ */
1602/* Function:    ipf_pr_ah                                                   */
1603/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1604/* Parameters:  fin(I) - pointer to packet information                      */
1605/*                                                                          */
1606/* Analyse the packet for AH properties.                                    */
1607/* The minimum length is taken to be the combination of all fields in the   */
1608/* header being present and no authentication data (null algorithm used.)   */
1609/* ------------------------------------------------------------------------ */
1610static INLINE int
1611ipf_pr_ah(fin)
1612	fr_info_t *fin;
1613{
1614	ipf_main_softc_t *softc = fin->fin_main_soft;
1615	authhdr_t *ah;
1616	int len;
1617
1618	fin->fin_flx |= FI_AH;
1619	ipf_pr_short(fin, sizeof(*ah));
1620
1621	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1622		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1623		return IPPROTO_NONE;
1624	}
1625
1626	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1627		DT(fr_v4_ah_pullup_1);
1628		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1629		return IPPROTO_NONE;
1630	}
1631
1632	ah = (authhdr_t *)fin->fin_dp;
1633
1634	len = (ah->ah_plen + 2) << 2;
1635	ipf_pr_short(fin, len);
1636	if (ipf_pr_pullup(fin, len) == -1) {
1637		DT(fr_v4_ah_pullup_2);
1638		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1639		return IPPROTO_NONE;
1640	}
1641
1642	/*
1643	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1644	 * header.
1645	 */
1646	fin->fin_dp = (char *)fin->fin_dp + len;
1647	fin->fin_dlen -= len;
1648	return ah->ah_next;
1649}
1650
1651
1652/* ------------------------------------------------------------------------ */
1653/* Function:    ipf_pr_gre                                                  */
1654/* Returns:     void                                                        */
1655/* Parameters:  fin(I) - pointer to packet information                      */
1656/*                                                                          */
1657/* Analyse the packet for GRE properties.                                   */
1658/* ------------------------------------------------------------------------ */
1659static INLINE void
1660ipf_pr_gre(fin)
1661	fr_info_t *fin;
1662{
1663	ipf_main_softc_t *softc = fin->fin_main_soft;
1664	grehdr_t *gre;
1665
1666	ipf_pr_short(fin, sizeof(grehdr_t));
1667
1668	if (fin->fin_off != 0) {
1669		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1670		return;
1671	}
1672
1673	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1674		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1675		return;
1676	}
1677
1678	gre = fin->fin_dp;
1679	if (GRE_REV(gre->gr_flags) == 1)
1680		fin->fin_data[0] = gre->gr_call;
1681}
1682
1683
1684/* ------------------------------------------------------------------------ */
1685/* Function:    ipf_pr_ipv4hdr                                              */
1686/* Returns:     void                                                        */
1687/* Parameters:  fin(I) - pointer to packet information                      */
1688/*                                                                          */
1689/* IPv4 Only                                                                */
1690/* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1691/* Check all options present and flag their presence if any exist.          */
1692/* ------------------------------------------------------------------------ */
1693static INLINE void
1694ipf_pr_ipv4hdr(fin)
1695	fr_info_t *fin;
1696{
1697	u_short optmsk = 0, secmsk = 0, auth = 0;
1698	int hlen, ol, mv, p, i;
1699	const struct optlist *op;
1700	u_char *s, opt;
1701	u_short off;
1702	fr_ip_t *fi;
1703	ip_t *ip;
1704
1705	fi = &fin->fin_fi;
1706	hlen = fin->fin_hlen;
1707
1708	ip = fin->fin_ip;
1709	p = ip->ip_p;
1710	fi->fi_p = p;
1711	fin->fin_crc = p;
1712	fi->fi_tos = ip->ip_tos;
1713	fin->fin_id = ip->ip_id;
1714	off = ntohs(ip->ip_off);
1715
1716	/* Get both TTL and protocol */
1717	fi->fi_p = ip->ip_p;
1718	fi->fi_ttl = ip->ip_ttl;
1719
1720	/* Zero out bits not used in IPv6 address */
1721	fi->fi_src.i6[1] = 0;
1722	fi->fi_src.i6[2] = 0;
1723	fi->fi_src.i6[3] = 0;
1724	fi->fi_dst.i6[1] = 0;
1725	fi->fi_dst.i6[2] = 0;
1726	fi->fi_dst.i6[3] = 0;
1727
1728	fi->fi_saddr = ip->ip_src.s_addr;
1729	fin->fin_crc += fi->fi_saddr;
1730	fi->fi_daddr = ip->ip_dst.s_addr;
1731	fin->fin_crc += fi->fi_daddr;
1732	if (IN_CLASSD(ntohl(fi->fi_daddr)))
1733		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1734
1735	/*
1736	 * set packet attribute flags based on the offset and
1737	 * calculate the byte offset that it represents.
1738	 */
1739	off &= IP_MF|IP_OFFMASK;
1740	if (off != 0) {
1741		int morefrag = off & IP_MF;
1742
1743		fi->fi_flx |= FI_FRAG;
1744		off &= IP_OFFMASK;
1745		if (off != 0) {
1746			fin->fin_flx |= FI_FRAGBODY;
1747			off <<= 3;
1748			if ((off + fin->fin_dlen > 65535) ||
1749			    (fin->fin_dlen == 0) ||
1750			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1751				/*
1752				 * The length of the packet, starting at its
1753				 * offset cannot exceed 65535 (0xffff) as the
1754				 * length of an IP packet is only 16 bits.
1755				 *
1756				 * Any fragment that isn't the last fragment
1757				 * must have a length greater than 0 and it
1758				 * must be an even multiple of 8.
1759				 */
1760				fi->fi_flx |= FI_BAD;
1761			}
1762		}
1763	}
1764	fin->fin_off = off;
1765
1766	/*
1767	 * Call per-protocol setup and checking
1768	 */
1769	if (p == IPPROTO_AH) {
1770		/*
1771		 * Treat AH differently because we expect there to be another
1772		 * layer 4 header after it.
1773		 */
1774		p = ipf_pr_ah(fin);
1775	}
1776
1777	switch (p)
1778	{
1779	case IPPROTO_UDP :
1780		ipf_pr_udp(fin);
1781		break;
1782	case IPPROTO_TCP :
1783		ipf_pr_tcp(fin);
1784		break;
1785	case IPPROTO_ICMP :
1786		ipf_pr_icmp(fin);
1787		break;
1788	case IPPROTO_ESP :
1789		ipf_pr_esp(fin);
1790		break;
1791	case IPPROTO_GRE :
1792		ipf_pr_gre(fin);
1793		break;
1794	}
1795
1796	ip = fin->fin_ip;
1797	if (ip == NULL)
1798		return;
1799
1800	/*
1801	 * If it is a standard IP header (no options), set the flag fields
1802	 * which relate to options to 0.
1803	 */
1804	if (hlen == sizeof(*ip)) {
1805		fi->fi_optmsk = 0;
1806		fi->fi_secmsk = 0;
1807		fi->fi_auth = 0;
1808		return;
1809	}
1810
1811	/*
1812	 * So the IP header has some IP options attached.  Walk the entire
1813	 * list of options present with this packet and set flags to indicate
1814	 * which ones are here and which ones are not.  For the somewhat out
1815	 * of date and obscure security classification options, set a flag to
1816	 * represent which classification is present.
1817	 */
1818	fi->fi_flx |= FI_OPTIONS;
1819
1820	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1821		opt = *s;
1822		if (opt == '\0')
1823			break;
1824		else if (opt == IPOPT_NOP)
1825			ol = 1;
1826		else {
1827			if (hlen < 2)
1828				break;
1829			ol = (int)*(s + 1);
1830			if (ol < 2 || ol > hlen)
1831				break;
1832		}
1833		for (i = 9, mv = 4; mv >= 0; ) {
1834			op = ipopts + i;
1835
1836			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1837				u_32_t doi;
1838
1839				switch (opt)
1840				{
1841				case IPOPT_SECURITY :
1842					if (optmsk & op->ol_bit) {
1843						fin->fin_flx |= FI_BAD;
1844					} else {
1845						doi = ipf_checkripso(s);
1846						secmsk = doi >> 16;
1847						auth = doi & 0xffff;
1848					}
1849					break;
1850
1851				case IPOPT_CIPSO :
1852
1853					if (optmsk & op->ol_bit) {
1854						fin->fin_flx |= FI_BAD;
1855					} else {
1856						doi = ipf_checkcipso(fin,
1857								     s, ol);
1858						secmsk = doi >> 16;
1859						auth = doi & 0xffff;
1860					}
1861					break;
1862				}
1863				optmsk |= op->ol_bit;
1864			}
1865
1866			if (opt < op->ol_val)
1867				i -= mv;
1868			else
1869				i += mv;
1870			mv--;
1871		}
1872		hlen -= ol;
1873		s += ol;
1874	}
1875
1876	/*
1877	 *
1878	 */
1879	if (auth && !(auth & 0x0100))
1880		auth &= 0xff00;
1881	fi->fi_optmsk = optmsk;
1882	fi->fi_secmsk = secmsk;
1883	fi->fi_auth = auth;
1884}
1885
1886
1887/* ------------------------------------------------------------------------ */
1888/* Function:    ipf_checkripso                                              */
1889/* Returns:     void                                                        */
1890/* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1891/*                                                                          */
1892/* ------------------------------------------------------------------------ */
1893static u_32_t
1894ipf_checkripso(s)
1895	u_char *s;
1896{
1897	const struct optlist *sp;
1898	u_short secmsk = 0, auth = 0;
1899	u_char sec;
1900	int j, m;
1901
1902	sec = *(s + 2);	/* classification */
1903	for (j = 3, m = 2; m >= 0; ) {
1904		sp = secopt + j;
1905		if (sec == sp->ol_val) {
1906			secmsk |= sp->ol_bit;
1907			auth = *(s + 3);
1908			auth *= 256;
1909			auth += *(s + 4);
1910			break;
1911		}
1912		if (sec < sp->ol_val)
1913			j -= m;
1914		else
1915			j += m;
1916		m--;
1917	}
1918
1919	return (secmsk << 16) | auth;
1920}
1921
1922
1923/* ------------------------------------------------------------------------ */
1924/* Function:    ipf_checkcipso                                              */
1925/* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1926/* Parameters:  fin(IO) - pointer to packet information                     */
1927/*              s(I)    - pointer to start of CIPSO option                  */
1928/*              ol(I)   - length of CIPSO option field                      */
1929/*                                                                          */
1930/* This function returns the domain of integrity (DOI) field from the CIPSO */
1931/* header and returns that whilst also storing the highest sensitivity      */
1932/* value found in the fr_info_t structure.                                  */
1933/*                                                                          */
1934/* No attempt is made to extract the category bitmaps as these are defined  */
1935/* by the user (rather than the protocol) and can be rather numerous on the */
1936/* end nodes.                                                               */
1937/* ------------------------------------------------------------------------ */
1938static u_32_t
1939ipf_checkcipso(fin, s, ol)
1940	fr_info_t *fin;
1941	u_char *s;
1942	int ol;
1943{
1944	ipf_main_softc_t *softc = fin->fin_main_soft;
1945	fr_ip_t *fi;
1946	u_32_t doi;
1947	u_char *t, tag, tlen, sensitivity;
1948	int len;
1949
1950	if (ol < 6 || ol > 40) {
1951		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1952		fin->fin_flx |= FI_BAD;
1953		return 0;
1954	}
1955
1956	fi = &fin->fin_fi;
1957	fi->fi_sensitivity = 0;
1958	/*
1959	 * The DOI field MUST be there.
1960	 */
1961	bcopy(s + 2, &doi, sizeof(doi));
1962
1963	t = (u_char *)s + 6;
1964	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1965		tag = *t;
1966		tlen = *(t + 1);
1967		if (tlen > len || tlen < 4 || tlen > 34) {
1968			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1969			fin->fin_flx |= FI_BAD;
1970			return 0;
1971		}
1972
1973		sensitivity = 0;
1974		/*
1975		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1976		 * draft (16 July 1992) that has expired.
1977		 */
1978		if (tag == 0) {
1979			fin->fin_flx |= FI_BAD;
1980			continue;
1981		} else if (tag == 1) {
1982			if (*(t + 2) != 0) {
1983				fin->fin_flx |= FI_BAD;
1984				continue;
1985			}
1986			sensitivity = *(t + 3);
1987			/* Category bitmap for categories 0-239 */
1988
1989		} else if (tag == 4) {
1990			if (*(t + 2) != 0) {
1991				fin->fin_flx |= FI_BAD;
1992				continue;
1993			}
1994			sensitivity = *(t + 3);
1995			/* Enumerated categories, 16bits each, upto 15 */
1996
1997		} else if (tag == 5) {
1998			if (*(t + 2) != 0) {
1999				fin->fin_flx |= FI_BAD;
2000				continue;
2001			}
2002			sensitivity = *(t + 3);
2003			/* Range of categories (2*16bits), up to 7 pairs */
2004
2005		} else if (tag > 127) {
2006			/* Custom defined DOI */
2007			;
2008		} else {
2009			fin->fin_flx |= FI_BAD;
2010			continue;
2011		}
2012
2013		if (sensitivity > fi->fi_sensitivity)
2014			fi->fi_sensitivity = sensitivity;
2015	}
2016
2017	return doi;
2018}
2019
2020
2021/* ------------------------------------------------------------------------ */
2022/* Function:    ipf_makefrip                                                */
2023/* Returns:     int     - 0 == packet ok, -1 == packet freed                */
2024/* Parameters:  hlen(I) - length of IP packet header                        */
2025/*              ip(I)   - pointer to the IP header                          */
2026/*              fin(IO) - pointer to packet information                     */
2027/*                                                                          */
2028/* Compact the IP header into a structure which contains just the info.     */
2029/* which is useful for comparing IP headers with and store this information */
2030/* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2031/* this function will be called with either an IPv4 or IPv6 packet.         */
2032/* ------------------------------------------------------------------------ */
2033int
2034ipf_makefrip(hlen, ip, fin)
2035	int hlen;
2036	ip_t *ip;
2037	fr_info_t *fin;
2038{
2039	ipf_main_softc_t *softc = fin->fin_main_soft;
2040	int v;
2041
2042	fin->fin_depth = 0;
2043	fin->fin_hlen = (u_short)hlen;
2044	fin->fin_ip = ip;
2045	fin->fin_rule = 0xffffffff;
2046	fin->fin_group[0] = -1;
2047	fin->fin_group[1] = '\0';
2048	fin->fin_dp = (char *)ip + hlen;
2049
2050	v = fin->fin_v;
2051	if (v == 4) {
2052		fin->fin_plen = ntohs(ip->ip_len);
2053		fin->fin_dlen = fin->fin_plen - hlen;
2054		ipf_pr_ipv4hdr(fin);
2055#ifdef	USE_INET6
2056	} else if (v == 6) {
2057		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2058		fin->fin_dlen = fin->fin_plen;
2059		fin->fin_plen += hlen;
2060
2061		ipf_pr_ipv6hdr(fin);
2062#endif
2063	}
2064	if (fin->fin_ip == NULL) {
2065		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2066		return -1;
2067	}
2068	return 0;
2069}
2070
2071
2072/* ------------------------------------------------------------------------ */
2073/* Function:    ipf_portcheck                                               */
2074/* Returns:     int - 1 == port matched, 0 == port match failed             */
2075/* Parameters:  frp(I) - pointer to port check `expression'                 */
2076/*              pop(I) - port number to evaluate                            */
2077/*                                                                          */
2078/* Perform a comparison of a port number against some other(s), using a     */
2079/* structure with compare information stored in it.                         */
2080/* ------------------------------------------------------------------------ */
2081static INLINE int
2082ipf_portcheck(frp, pop)
2083	frpcmp_t *frp;
2084	u_32_t pop;
2085{
2086	int err = 1;
2087	u_32_t po;
2088
2089	po = frp->frp_port;
2090
2091	/*
2092	 * Do opposite test to that required and continue if that succeeds.
2093	 */
2094	switch (frp->frp_cmp)
2095	{
2096	case FR_EQUAL :
2097		if (pop != po) /* EQUAL */
2098			err = 0;
2099		break;
2100	case FR_NEQUAL :
2101		if (pop == po) /* NOTEQUAL */
2102			err = 0;
2103		break;
2104	case FR_LESST :
2105		if (pop >= po) /* LESSTHAN */
2106			err = 0;
2107		break;
2108	case FR_GREATERT :
2109		if (pop <= po) /* GREATERTHAN */
2110			err = 0;
2111		break;
2112	case FR_LESSTE :
2113		if (pop > po) /* LT or EQ */
2114			err = 0;
2115		break;
2116	case FR_GREATERTE :
2117		if (pop < po) /* GT or EQ */
2118			err = 0;
2119		break;
2120	case FR_OUTRANGE :
2121		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2122			err = 0;
2123		break;
2124	case FR_INRANGE :
2125		if (pop <= po || pop >= frp->frp_top) /* In range */
2126			err = 0;
2127		break;
2128	case FR_INCRANGE :
2129		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2130			err = 0;
2131		break;
2132	default :
2133		break;
2134	}
2135	return err;
2136}
2137
2138
2139/* ------------------------------------------------------------------------ */
2140/* Function:    ipf_tcpudpchk                                               */
2141/* Returns:     int - 1 == protocol matched, 0 == check failed              */
2142/* Parameters:  fda(I) - pointer to packet information                      */
2143/*              ft(I)  - pointer to structure with comparison data          */
2144/*                                                                          */
2145/* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2146/* structure containing information that we want to match against.          */
2147/* ------------------------------------------------------------------------ */
2148int
2149ipf_tcpudpchk(fi, ft)
2150	fr_ip_t *fi;
2151	frtuc_t *ft;
2152{
2153	int err = 1;
2154
2155	/*
2156	 * Both ports should *always* be in the first fragment.
2157	 * So far, I cannot find any cases where they can not be.
2158	 *
2159	 * compare destination ports
2160	 */
2161	if (ft->ftu_dcmp)
2162		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2163
2164	/*
2165	 * compare source ports
2166	 */
2167	if (err && ft->ftu_scmp)
2168		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2169
2170	/*
2171	 * If we don't have all the TCP/UDP header, then how can we
2172	 * expect to do any sort of match on it ?  If we were looking for
2173	 * TCP flags, then NO match.  If not, then match (which should
2174	 * satisfy the "short" class too).
2175	 */
2176	if (err && (fi->fi_p == IPPROTO_TCP)) {
2177		if (fi->fi_flx & FI_SHORT)
2178			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2179		/*
2180		 * Match the flags ?  If not, abort this match.
2181		 */
2182		if (ft->ftu_tcpfm &&
2183		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2184			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2185				 ft->ftu_tcpfm, ft->ftu_tcpf));
2186			err = 0;
2187		}
2188	}
2189	return err;
2190}
2191
2192
2193/* ------------------------------------------------------------------------ */
2194/* Function:    ipf_check_ipf                                               */
2195/* Returns:     int - 0 == match, else no match                             */
2196/* Parameters:  fin(I)     - pointer to packet information                  */
2197/*              fr(I)      - pointer to filter rule                         */
2198/*              portcmp(I) - flag indicating whether to attempt matching on */
2199/*                           TCP/UDP port data.                             */
2200/*                                                                          */
2201/* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2202/* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2203/* this function.                                                           */
2204/* ------------------------------------------------------------------------ */
2205static INLINE int
2206ipf_check_ipf(fin, fr, portcmp)
2207	fr_info_t *fin;
2208	frentry_t *fr;
2209	int portcmp;
2210{
2211	u_32_t	*ld, *lm, *lip;
2212	fripf_t *fri;
2213	fr_ip_t *fi;
2214	int i;
2215
2216	fi = &fin->fin_fi;
2217	fri = fr->fr_ipf;
2218	lip = (u_32_t *)fi;
2219	lm = (u_32_t *)&fri->fri_mip;
2220	ld = (u_32_t *)&fri->fri_ip;
2221
2222	/*
2223	 * first 32 bits to check coversion:
2224	 * IP version, TOS, TTL, protocol
2225	 */
2226	i = ((*lip & *lm) != *ld);
2227	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2228		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2229	if (i)
2230		return 1;
2231
2232	/*
2233	 * Next 32 bits is a constructed bitmask indicating which IP options
2234	 * are present (if any) in this packet.
2235	 */
2236	lip++, lm++, ld++;
2237	i = ((*lip & *lm) != *ld);
2238	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2239		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2240	if (i != 0)
2241		return 1;
2242
2243	lip++, lm++, ld++;
2244	/*
2245	 * Unrolled loops (4 each, for 32 bits) for address checks.
2246	 */
2247	/*
2248	 * Check the source address.
2249	 */
2250	if (fr->fr_satype == FRI_LOOKUP) {
2251		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2252				      fi->fi_v, lip, fin->fin_plen);
2253		if (i == -1)
2254			return 1;
2255		lip += 3;
2256		lm += 3;
2257		ld += 3;
2258	} else {
2259		i = ((*lip & *lm) != *ld);
2260		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2261			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2262		if (fi->fi_v == 6) {
2263			lip++, lm++, ld++;
2264			i |= ((*lip & *lm) != *ld);
2265			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2266				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2267			lip++, lm++, ld++;
2268			i |= ((*lip & *lm) != *ld);
2269			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2270				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2271			lip++, lm++, ld++;
2272			i |= ((*lip & *lm) != *ld);
2273			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2274				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2275		} else {
2276			lip += 3;
2277			lm += 3;
2278			ld += 3;
2279		}
2280	}
2281	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2282	if (i != 0)
2283		return 1;
2284
2285	/*
2286	 * Check the destination address.
2287	 */
2288	lip++, lm++, ld++;
2289	if (fr->fr_datype == FRI_LOOKUP) {
2290		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2291				      fi->fi_v, lip, fin->fin_plen);
2292		if (i == -1)
2293			return 1;
2294		lip += 3;
2295		lm += 3;
2296		ld += 3;
2297	} else {
2298		i = ((*lip & *lm) != *ld);
2299		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2300			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2301		if (fi->fi_v == 6) {
2302			lip++, lm++, ld++;
2303			i |= ((*lip & *lm) != *ld);
2304			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2305				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2306			lip++, lm++, ld++;
2307			i |= ((*lip & *lm) != *ld);
2308			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2309				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2310			lip++, lm++, ld++;
2311			i |= ((*lip & *lm) != *ld);
2312			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2313				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2314		} else {
2315			lip += 3;
2316			lm += 3;
2317			ld += 3;
2318		}
2319	}
2320	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2321	if (i != 0)
2322		return 1;
2323	/*
2324	 * IP addresses matched.  The next 32bits contains:
2325	 * mast of old IP header security & authentication bits.
2326	 */
2327	lip++, lm++, ld++;
2328	i = (*ld - (*lip & *lm));
2329	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2330
2331	/*
2332	 * Next we have 32 bits of packet flags.
2333	 */
2334	lip++, lm++, ld++;
2335	i |= (*ld - (*lip & *lm));
2336	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2337
2338	if (i == 0) {
2339		/*
2340		 * If a fragment, then only the first has what we're
2341		 * looking for here...
2342		 */
2343		if (portcmp) {
2344			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2345				i = 1;
2346		} else {
2347			if (fr->fr_dcmp || fr->fr_scmp ||
2348			    fr->fr_tcpf || fr->fr_tcpfm)
2349				i = 1;
2350			if (fr->fr_icmpm || fr->fr_icmp) {
2351				if (((fi->fi_p != IPPROTO_ICMP) &&
2352				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2353				    fin->fin_off || (fin->fin_dlen < 2))
2354					i = 1;
2355				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2356					 fr->fr_icmp) {
2357					FR_DEBUG(("i. %#x & %#x != %#x\n",
2358						 fin->fin_data[0],
2359						 fr->fr_icmpm, fr->fr_icmp));
2360					i = 1;
2361				}
2362			}
2363		}
2364	}
2365	return i;
2366}
2367
2368
2369/* ------------------------------------------------------------------------ */
2370/* Function:    ipf_scanlist                                                */
2371/* Returns:     int - result flags of scanning filter list                  */
2372/* Parameters:  fin(I) - pointer to packet information                      */
2373/*              pass(I) - default result to return for filtering            */
2374/*                                                                          */
2375/* Check the input/output list of rules for a match to the current packet.  */
2376/* If a match is found, the value of fr_flags from the rule becomes the     */
2377/* return value and fin->fin_fr points to the matched rule.                 */
2378/*                                                                          */
2379/* This function may be called recusively upto 16 times (limit inbuilt.)    */
2380/* When unwinding, it should finish up with fin_depth as 0.                 */
2381/*                                                                          */
2382/* Could be per interface, but this gets real nasty when you don't have,    */
2383/* or can't easily change, the kernel source code to .                      */
2384/* ------------------------------------------------------------------------ */
2385int
2386ipf_scanlist(fin, pass)
2387	fr_info_t *fin;
2388	u_32_t pass;
2389{
2390	ipf_main_softc_t *softc = fin->fin_main_soft;
2391	int rulen, portcmp, off, skip;
2392	struct frentry *fr, *fnext;
2393	u_32_t passt, passo;
2394
2395	/*
2396	 * Do not allow nesting deeper than 16 levels.
2397	 */
2398	if (fin->fin_depth >= 16)
2399		return pass;
2400
2401	fr = fin->fin_fr;
2402
2403	/*
2404	 * If there are no rules in this list, return now.
2405	 */
2406	if (fr == NULL)
2407		return pass;
2408
2409	skip = 0;
2410	portcmp = 0;
2411	fin->fin_depth++;
2412	fin->fin_fr = NULL;
2413	off = fin->fin_off;
2414
2415	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2416		portcmp = 1;
2417
2418	for (rulen = 0; fr; fr = fnext, rulen++) {
2419		fnext = fr->fr_next;
2420		if (skip != 0) {
2421			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2422			skip--;
2423			continue;
2424		}
2425
2426		/*
2427		 * In all checks below, a null (zero) value in the
2428		 * filter struture is taken to mean a wildcard.
2429		 *
2430		 * check that we are working for the right interface
2431		 */
2432#ifdef	_KERNEL
2433		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2434			continue;
2435#else
2436		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2437			printf("\n");
2438		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2439				  FR_ISPASS(pass) ? 'p' :
2440				  FR_ISACCOUNT(pass) ? 'A' :
2441				  FR_ISAUTH(pass) ? 'a' :
2442				  (pass & FR_NOMATCH) ? 'n' :'b'));
2443		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2444			continue;
2445		FR_VERBOSE((":i"));
2446#endif
2447
2448		switch (fr->fr_type)
2449		{
2450		case FR_T_IPF :
2451		case FR_T_IPF_BUILTIN :
2452			if (ipf_check_ipf(fin, fr, portcmp))
2453				continue;
2454			break;
2455#if defined(IPFILTER_BPF)
2456		case FR_T_BPFOPC :
2457		case FR_T_BPFOPC_BUILTIN :
2458		    {
2459			u_char *mc;
2460			int wlen;
2461
2462			if (*fin->fin_mp == NULL)
2463				continue;
2464			if (fin->fin_family != fr->fr_family)
2465				continue;
2466			mc = (u_char *)fin->fin_m;
2467			wlen = fin->fin_dlen + fin->fin_hlen;
2468			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2469				continue;
2470			break;
2471		    }
2472#endif
2473		case FR_T_CALLFUNC_BUILTIN :
2474		    {
2475			frentry_t *f;
2476
2477			f = (*fr->fr_func)(fin, &pass);
2478			if (f != NULL)
2479				fr = f;
2480			else
2481				continue;
2482			break;
2483		    }
2484
2485		case FR_T_IPFEXPR :
2486		case FR_T_IPFEXPR_BUILTIN :
2487			if (fin->fin_family != fr->fr_family)
2488				continue;
2489			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2490				continue;
2491			break;
2492
2493		default :
2494			break;
2495		}
2496
2497		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2498			if (fin->fin_nattag == NULL)
2499				continue;
2500			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2501				continue;
2502		}
2503		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2504
2505		passt = fr->fr_flags;
2506
2507		/*
2508		 * If the rule is a "call now" rule, then call the function
2509		 * in the rule, if it exists and use the results from that.
2510		 * If the function pointer is bad, just make like we ignore
2511		 * it, except for increasing the hit counter.
2512		 */
2513		if ((passt & FR_CALLNOW) != 0) {
2514			frentry_t *frs;
2515
2516			ATOMIC_INC64(fr->fr_hits);
2517			if ((fr->fr_func == NULL) ||
2518			    (fr->fr_func == (ipfunc_t)-1))
2519				continue;
2520
2521			frs = fin->fin_fr;
2522			fin->fin_fr = fr;
2523			fr = (*fr->fr_func)(fin, &passt);
2524			if (fr == NULL) {
2525				fin->fin_fr = frs;
2526				continue;
2527			}
2528			passt = fr->fr_flags;
2529		}
2530		fin->fin_fr = fr;
2531
2532#ifdef  IPFILTER_LOG
2533		/*
2534		 * Just log this packet...
2535		 */
2536		if ((passt & FR_LOGMASK) == FR_LOG) {
2537			if (ipf_log_pkt(fin, passt) == -1) {
2538				if (passt & FR_LOGORBLOCK) {
2539					DT(frb_logfail);
2540					passt &= ~FR_CMDMASK;
2541					passt |= FR_BLOCK|FR_QUICK;
2542					fin->fin_reason = FRB_LOGFAIL;
2543				}
2544			}
2545		}
2546#endif /* IPFILTER_LOG */
2547
2548		MUTEX_ENTER(&fr->fr_lock);
2549		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2550		fr->fr_hits++;
2551		MUTEX_EXIT(&fr->fr_lock);
2552		fin->fin_rule = rulen;
2553
2554		passo = pass;
2555		if (FR_ISSKIP(passt)) {
2556			skip = fr->fr_arg;
2557			continue;
2558		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2559			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2560			pass = passt;
2561		}
2562
2563		if (passt & (FR_RETICMP|FR_FAKEICMP))
2564			fin->fin_icode = fr->fr_icode;
2565
2566		if (fr->fr_group != -1) {
2567			(void) strncpy(fin->fin_group,
2568				       FR_NAME(fr, fr_group),
2569				       strlen(FR_NAME(fr, fr_group)));
2570		} else {
2571			fin->fin_group[0] = '\0';
2572		}
2573
2574		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2575
2576		if (fr->fr_grphead != NULL) {
2577			fin->fin_fr = fr->fr_grphead->fg_start;
2578			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2579
2580			if (FR_ISDECAPS(passt))
2581				passt = ipf_decaps(fin, pass, fr->fr_icode);
2582			else
2583				passt = ipf_scanlist(fin, pass);
2584
2585			if (fin->fin_fr == NULL) {
2586				fin->fin_rule = rulen;
2587				if (fr->fr_group != -1)
2588					(void) strncpy(fin->fin_group,
2589						       fr->fr_names +
2590						       fr->fr_group,
2591						       strlen(fr->fr_names +
2592							      fr->fr_group));
2593				fin->fin_fr = fr;
2594				passt = pass;
2595			}
2596			pass = passt;
2597		}
2598
2599		if (pass & FR_QUICK) {
2600			/*
2601			 * Finally, if we've asked to track state for this
2602			 * packet, set it up.  Add state for "quick" rules
2603			 * here so that if the action fails we can consider
2604			 * the rule to "not match" and keep on processing
2605			 * filter rules.
2606			 */
2607			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2608			    !(fin->fin_flx & FI_STATE)) {
2609				int out = fin->fin_out;
2610
2611				fin->fin_fr = fr;
2612				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2613					LBUMPD(ipf_stats[out], fr_ads);
2614				} else {
2615					LBUMPD(ipf_stats[out], fr_bads);
2616					pass = passo;
2617					continue;
2618				}
2619			}
2620			break;
2621		}
2622	}
2623	fin->fin_depth--;
2624	return pass;
2625}
2626
2627
2628/* ------------------------------------------------------------------------ */
2629/* Function:    ipf_acctpkt                                                 */
2630/* Returns:     frentry_t* - always returns NULL                            */
2631/* Parameters:  fin(I) - pointer to packet information                      */
2632/*              passp(IO) - pointer to current/new filter decision (unused) */
2633/*                                                                          */
2634/* Checks a packet against accounting rules, if there are any for the given */
2635/* IP protocol version.                                                     */
2636/*                                                                          */
2637/* N.B.: this function returns NULL to match the prototype used by other    */
2638/* functions called from the IPFilter "mainline" in ipf_check().            */
2639/* ------------------------------------------------------------------------ */
2640frentry_t *
2641ipf_acctpkt(fin, passp)
2642	fr_info_t *fin;
2643	u_32_t *passp;
2644{
2645	ipf_main_softc_t *softc = fin->fin_main_soft;
2646	char group[FR_GROUPLEN];
2647	frentry_t *fr, *frsave;
2648	u_32_t pass, rulen;
2649
2650	passp = passp;
2651	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2652
2653	if (fr != NULL) {
2654		frsave = fin->fin_fr;
2655		bcopy(fin->fin_group, group, FR_GROUPLEN);
2656		rulen = fin->fin_rule;
2657		fin->fin_fr = fr;
2658		pass = ipf_scanlist(fin, FR_NOMATCH);
2659		if (FR_ISACCOUNT(pass)) {
2660			LBUMPD(ipf_stats[0], fr_acct);
2661		}
2662		fin->fin_fr = frsave;
2663		bcopy(group, fin->fin_group, FR_GROUPLEN);
2664		fin->fin_rule = rulen;
2665	}
2666	return NULL;
2667}
2668
2669
2670/* ------------------------------------------------------------------------ */
2671/* Function:    ipf_firewall                                                */
2672/* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2673/*                           were found, returns NULL.                      */
2674/* Parameters:  fin(I) - pointer to packet information                      */
2675/*              passp(IO) - pointer to current/new filter decision (unused) */
2676/*                                                                          */
2677/* Applies an appropriate set of firewall rules to the packet, to see if    */
2678/* there are any matches.  The first check is to see if a match can be seen */
2679/* in the cache.  If not, then search an appropriate list of rules.  Once a */
2680/* matching rule is found, take any appropriate actions as defined by the   */
2681/* rule - except logging.                                                   */
2682/* ------------------------------------------------------------------------ */
2683static frentry_t *
2684ipf_firewall(fin, passp)
2685	fr_info_t *fin;
2686	u_32_t *passp;
2687{
2688	ipf_main_softc_t *softc = fin->fin_main_soft;
2689	frentry_t *fr;
2690	u_32_t pass;
2691	int out;
2692
2693	out = fin->fin_out;
2694	pass = *passp;
2695
2696	/*
2697	 * This rule cache will only affect packets that are not being
2698	 * statefully filtered.
2699	 */
2700	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2701	if (fin->fin_fr != NULL)
2702		pass = ipf_scanlist(fin, softc->ipf_pass);
2703
2704	if ((pass & FR_NOMATCH)) {
2705		LBUMPD(ipf_stats[out], fr_nom);
2706	}
2707	fr = fin->fin_fr;
2708
2709	/*
2710	 * Apply packets per second rate-limiting to a rule as required.
2711	 */
2712	if ((fr != NULL) && (fr->fr_pps != 0) &&
2713	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2714		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2715		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2716		pass |= FR_BLOCK;
2717		LBUMPD(ipf_stats[out], fr_ppshit);
2718		fin->fin_reason = FRB_PPSRATE;
2719	}
2720
2721	/*
2722	 * If we fail to add a packet to the authorization queue, then we
2723	 * drop the packet later.  However, if it was added then pretend
2724	 * we've dropped it already.
2725	 */
2726	if (FR_ISAUTH(pass)) {
2727		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2728			DT1(frb_authnew, fr_info_t *, fin);
2729			fin->fin_m = *fin->fin_mp = NULL;
2730			fin->fin_reason = FRB_AUTHNEW;
2731			fin->fin_error = 0;
2732		} else {
2733			IPFERROR(1);
2734			fin->fin_error = ENOSPC;
2735		}
2736	}
2737
2738	if ((fr != NULL) && (fr->fr_func != NULL) &&
2739	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2740		(void) (*fr->fr_func)(fin, &pass);
2741
2742	/*
2743	 * If a rule is a pre-auth rule, check again in the list of rules
2744	 * loaded for authenticated use.  It does not particulary matter
2745	 * if this search fails because a "preauth" result, from a rule,
2746	 * is treated as "not a pass", hence the packet is blocked.
2747	 */
2748	if (FR_ISPREAUTH(pass)) {
2749		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2750	}
2751
2752	/*
2753	 * If the rule has "keep frag" and the packet is actually a fragment,
2754	 * then create a fragment state entry.
2755	 */
2756	if (pass & FR_KEEPFRAG) {
2757		if (fin->fin_flx & FI_FRAG) {
2758			if (ipf_frag_new(softc, fin, pass) == -1) {
2759				LBUMP(ipf_stats[out].fr_bnfr);
2760			} else {
2761				LBUMP(ipf_stats[out].fr_nfr);
2762			}
2763		} else {
2764			LBUMP(ipf_stats[out].fr_cfr);
2765		}
2766	}
2767
2768	fr = fin->fin_fr;
2769	*passp = pass;
2770
2771	return fr;
2772}
2773
2774
2775/* ------------------------------------------------------------------------ */
2776/* Function:    ipf_check                                                   */
2777/* Returns:     int -  0 == packet allowed through,                         */
2778/*              User space:                                                 */
2779/*                    -1 == packet blocked                                  */
2780/*                     1 == packet not matched                              */
2781/*                    -2 == requires authentication                         */
2782/*              Kernel:                                                     */
2783/*                   > 0 == filter error # for packet                       */
2784/* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2785/*             hlen(I) - length of header                                   */
2786/*             ifp(I)  - pointer to interface this packet is on             */
2787/*             out(I)  - 0 == packet going in, 1 == packet going out        */
2788/*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2789/*                       IP packet.                                         */
2790/* Solaris & HP-UX ONLY :                                                   */
2791/*             qpi(I)  - pointer to STREAMS queue information for this      */
2792/*                       interface & direction.                             */
2793/*                                                                          */
2794/* ipf_check() is the master function for all IPFilter packet processing.   */
2795/* It orchestrates: Network Address Translation (NAT), checking for packet  */
2796/* authorisation (or pre-authorisation), presence of related state info.,   */
2797/* generating log entries, IP packet accounting, routing of packets as      */
2798/* directed by firewall rules and of course whether or not to allow the     */
2799/* packet to be further processed by the kernel.                            */
2800/*                                                                          */
2801/* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2802/* freed.  Packets passed may be returned with the pointer pointed to by    */
2803/* by "mp" changed to a new buffer.                                         */
2804/* ------------------------------------------------------------------------ */
2805int
2806ipf_check(ctx, ip, hlen, ifp, out
2807#if defined(_KERNEL) && defined(MENTAT)
2808	, qif, mp)
2809	void *qif;
2810#else
2811	, mp)
2812#endif
2813	mb_t **mp;
2814	ip_t *ip;
2815	int hlen;
2816	void *ifp;
2817	int out;
2818	void *ctx;
2819{
2820	/*
2821	 * The above really sucks, but short of writing a diff
2822	 */
2823	ipf_main_softc_t *softc = ctx;
2824	fr_info_t frinfo;
2825	fr_info_t *fin = &frinfo;
2826	u_32_t pass = softc->ipf_pass;
2827	frentry_t *fr = NULL;
2828	int v = IP_V(ip);
2829	mb_t *mc = NULL;
2830	mb_t *m;
2831	/*
2832	 * The first part of ipf_check() deals with making sure that what goes
2833	 * into the filtering engine makes some sense.  Information about the
2834	 * the packet is distilled, collected into a fr_info_t structure and
2835	 * the an attempt to ensure the buffer the packet is in is big enough
2836	 * to hold all the required packet headers.
2837	 */
2838#ifdef	_KERNEL
2839# ifdef MENTAT
2840	qpktinfo_t *qpi = qif;
2841
2842#  ifdef __sparc
2843	if ((u_int)ip & 0x3)
2844		return 2;
2845#  endif
2846# else
2847	SPL_INT(s);
2848# endif
2849
2850	if (softc->ipf_running <= 0) {
2851		return 0;
2852	}
2853
2854	bzero((char *)fin, sizeof(*fin));
2855
2856# ifdef MENTAT
2857	if (qpi->qpi_flags & QF_BROADCAST)
2858		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2859	if (qpi->qpi_flags & QF_MULTICAST)
2860		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2861	m = qpi->qpi_m;
2862	fin->fin_qfm = m;
2863	fin->fin_qpi = qpi;
2864# else /* MENTAT */
2865
2866	m = *mp;
2867
2868#  if defined(M_MCAST)
2869	if ((m->m_flags & M_MCAST) != 0)
2870		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2871#  endif
2872#  if defined(M_MLOOP)
2873	if ((m->m_flags & M_MLOOP) != 0)
2874		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2875#  endif
2876#  if defined(M_BCAST)
2877	if ((m->m_flags & M_BCAST) != 0)
2878		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2879#  endif
2880#  ifdef M_CANFASTFWD
2881	/*
2882	 * XXX For now, IP Filter and fast-forwarding of cached flows
2883	 * XXX are mutually exclusive.  Eventually, IP Filter should
2884	 * XXX get a "can-fast-forward" filter rule.
2885	 */
2886	m->m_flags &= ~M_CANFASTFWD;
2887#  endif /* M_CANFASTFWD */
2888#  if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2889				   (__FreeBSD_version < 501108))
2890	/*
2891	 * disable delayed checksums.
2892	 */
2893	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2894		in_delayed_cksum(m);
2895		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2896	}
2897#  endif /* CSUM_DELAY_DATA */
2898# endif /* MENTAT */
2899#else
2900	bzero((char *)fin, sizeof(*fin));
2901	m = *mp;
2902# if defined(M_MCAST)
2903	if ((m->m_flags & M_MCAST) != 0)
2904		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2905# endif
2906# if defined(M_MLOOP)
2907	if ((m->m_flags & M_MLOOP) != 0)
2908		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2909# endif
2910# if defined(M_BCAST)
2911	if ((m->m_flags & M_BCAST) != 0)
2912		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2913# endif
2914#endif /* _KERNEL */
2915
2916	fin->fin_v = v;
2917	fin->fin_m = m;
2918	fin->fin_ip = ip;
2919	fin->fin_mp = mp;
2920	fin->fin_out = out;
2921	fin->fin_ifp = ifp;
2922	fin->fin_error = ENETUNREACH;
2923	fin->fin_hlen = (u_short)hlen;
2924	fin->fin_dp = (char *)ip + hlen;
2925	fin->fin_main_soft = softc;
2926
2927	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2928
2929	SPL_NET(s);
2930
2931#ifdef	USE_INET6
2932	if (v == 6) {
2933		LBUMP(ipf_stats[out].fr_ipv6);
2934		/*
2935		 * Jumbo grams are quite likely too big for internal buffer
2936		 * structures to handle comfortably, for now, so just drop
2937		 * them.
2938		 */
2939		if (((ip6_t *)ip)->ip6_plen == 0) {
2940			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2941			pass = FR_BLOCK|FR_NOMATCH;
2942			fin->fin_reason = FRB_JUMBO;
2943			goto finished;
2944		}
2945		fin->fin_family = AF_INET6;
2946	} else
2947#endif
2948	{
2949		fin->fin_family = AF_INET;
2950	}
2951
2952	if (ipf_makefrip(hlen, ip, fin) == -1) {
2953		DT1(frb_makefrip, fr_info_t *, fin);
2954		pass = FR_BLOCK|FR_NOMATCH;
2955		fin->fin_reason = FRB_MAKEFRIP;
2956		goto finished;
2957	}
2958
2959	/*
2960	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2961	 * becomes NULL and so we have no packet to free.
2962	 */
2963	if (*fin->fin_mp == NULL)
2964		goto finished;
2965
2966	if (!out) {
2967		if (v == 4) {
2968			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2969				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2970				fin->fin_flx |= FI_BADSRC;
2971			}
2972			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2973				LBUMPD(ipf_stats[0], fr_v4_badttl);
2974				fin->fin_flx |= FI_LOWTTL;
2975			}
2976		}
2977#ifdef USE_INET6
2978		else  if (v == 6) {
2979			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2980				LBUMPD(ipf_stats[0], fr_v6_badttl);
2981				fin->fin_flx |= FI_LOWTTL;
2982			}
2983		}
2984#endif
2985	}
2986
2987	if (fin->fin_flx & FI_SHORT) {
2988		LBUMPD(ipf_stats[out], fr_short);
2989	}
2990
2991	READ_ENTER(&softc->ipf_mutex);
2992
2993	if (!out) {
2994		switch (fin->fin_v)
2995		{
2996		case 4 :
2997			if (ipf_nat_checkin(fin, &pass) == -1) {
2998				goto filterdone;
2999			}
3000			break;
3001#ifdef USE_INET6
3002		case 6 :
3003			if (ipf_nat6_checkin(fin, &pass) == -1) {
3004				goto filterdone;
3005			}
3006			break;
3007#endif
3008		default :
3009			break;
3010		}
3011	}
3012	/*
3013	 * Check auth now.
3014	 * If a packet is found in the auth table, then skip checking
3015	 * the access lists for permission but we do need to consider
3016	 * the result as if it were from the ACL's.  In addition, being
3017	 * found in the auth table means it has been seen before, so do
3018	 * not pass it through accounting (again), lest it be counted twice.
3019	 */
3020	fr = ipf_auth_check(fin, &pass);
3021	if (!out && (fr == NULL))
3022		(void) ipf_acctpkt(fin, NULL);
3023
3024	if (fr == NULL) {
3025		if ((fin->fin_flx & FI_FRAG) != 0)
3026			fr = ipf_frag_known(fin, &pass);
3027
3028		if (fr == NULL)
3029			fr = ipf_state_check(fin, &pass);
3030	}
3031
3032	if ((pass & FR_NOMATCH) || (fr == NULL))
3033		fr = ipf_firewall(fin, &pass);
3034
3035	/*
3036	 * If we've asked to track state for this packet, set it up.
3037	 * Here rather than ipf_firewall because ipf_checkauth may decide
3038	 * to return a packet for "keep state"
3039	 */
3040	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3041	    !(fin->fin_flx & FI_STATE)) {
3042		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3043			LBUMP(ipf_stats[out].fr_ads);
3044		} else {
3045			LBUMP(ipf_stats[out].fr_bads);
3046			if (FR_ISPASS(pass)) {
3047				DT(frb_stateadd);
3048				pass &= ~FR_CMDMASK;
3049				pass |= FR_BLOCK;
3050				fin->fin_reason = FRB_STATEADD;
3051			}
3052		}
3053	}
3054
3055	fin->fin_fr = fr;
3056	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3057		fin->fin_dif = &fr->fr_dif;
3058		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3059	}
3060
3061	/*
3062	 * Only count/translate packets which will be passed on, out the
3063	 * interface.
3064	 */
3065	if (out && FR_ISPASS(pass)) {
3066		(void) ipf_acctpkt(fin, NULL);
3067
3068		switch (fin->fin_v)
3069		{
3070		case 4 :
3071			if (ipf_nat_checkout(fin, &pass) == -1) {
3072				;
3073			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3074				if (ipf_updateipid(fin) == -1) {
3075					DT(frb_updateipid);
3076					LBUMP(ipf_stats[1].fr_ipud);
3077					pass &= ~FR_CMDMASK;
3078					pass |= FR_BLOCK;
3079					fin->fin_reason = FRB_UPDATEIPID;
3080				} else {
3081					LBUMP(ipf_stats[0].fr_ipud);
3082				}
3083			}
3084			break;
3085#ifdef USE_INET6
3086		case 6 :
3087			(void) ipf_nat6_checkout(fin, &pass);
3088			break;
3089#endif
3090		default :
3091			break;
3092		}
3093	}
3094
3095filterdone:
3096#ifdef	IPFILTER_LOG
3097	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3098		(void) ipf_dolog(fin, &pass);
3099	}
3100#endif
3101
3102	/*
3103	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3104	 * will work when called from inside of fr_fastroute.  Although
3105	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3106	 * impact on code execution.
3107	 */
3108	fin->fin_flx &= ~FI_STATE;
3109
3110#if defined(FASTROUTE_RECURSION)
3111	/*
3112	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3113	 * a packet below can sometimes cause a recursive call into IPFilter.
3114	 * On those platforms where that does happen, we need to hang onto
3115	 * the filter rule just in case someone decides to remove or flush it
3116	 * in the meantime.
3117	 */
3118	if (fr != NULL) {
3119		MUTEX_ENTER(&fr->fr_lock);
3120		fr->fr_ref++;
3121		MUTEX_EXIT(&fr->fr_lock);
3122	}
3123
3124	RWLOCK_EXIT(&softc->ipf_mutex);
3125#endif
3126
3127	if ((pass & FR_RETMASK) != 0) {
3128		/*
3129		 * Should we return an ICMP packet to indicate error
3130		 * status passing through the packet filter ?
3131		 * WARNING: ICMP error packets AND TCP RST packets should
3132		 * ONLY be sent in repsonse to incoming packets.  Sending
3133		 * them in response to outbound packets can result in a
3134		 * panic on some operating systems.
3135		 */
3136		if (!out) {
3137			if (pass & FR_RETICMP) {
3138				int dst;
3139
3140				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3141					dst = 1;
3142				else
3143					dst = 0;
3144				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3145							 dst);
3146				LBUMP(ipf_stats[0].fr_ret);
3147			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3148				   !(fin->fin_flx & FI_SHORT)) {
3149				if (((fin->fin_flx & FI_OOW) != 0) ||
3150				    (ipf_send_reset(fin) == 0)) {
3151					LBUMP(ipf_stats[1].fr_ret);
3152				}
3153			}
3154
3155			/*
3156			 * When using return-* with auth rules, the auth code
3157			 * takes over disposing of this packet.
3158			 */
3159			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3160				DT1(frb_authcapture, fr_info_t *, fin);
3161				fin->fin_m = *fin->fin_mp = NULL;
3162				fin->fin_reason = FRB_AUTHCAPTURE;
3163				m = NULL;
3164			}
3165		} else {
3166			if (pass & FR_RETRST) {
3167				fin->fin_error = ECONNRESET;
3168			}
3169		}
3170	}
3171
3172	/*
3173	 * After the above so that ICMP unreachables and TCP RSTs get
3174	 * created properly.
3175	 */
3176	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3177		ipf_nat_uncreate(fin);
3178
3179	/*
3180	 * If we didn't drop off the bottom of the list of rules (and thus
3181	 * the 'current' rule fr is not NULL), then we may have some extra
3182	 * instructions about what to do with a packet.
3183	 * Once we're finished return to our caller, freeing the packet if
3184	 * we are dropping it.
3185	 */
3186	if (fr != NULL) {
3187		frdest_t *fdp;
3188
3189		/*
3190		 * Generate a duplicated packet first because ipf_fastroute
3191		 * can lead to fin_m being free'd... not good.
3192		 */
3193		fdp = fin->fin_dif;
3194		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3195		    (fdp->fd_ptr != (void *)-1)) {
3196			mc = M_COPY(fin->fin_m);
3197			if (mc != NULL)
3198				ipf_fastroute(mc, &mc, fin, fdp);
3199		}
3200
3201		fdp = fin->fin_tif;
3202		if (!out && (pass & FR_FASTROUTE)) {
3203			/*
3204			 * For fastroute rule, no destination interface defined
3205			 * so pass NULL as the frdest_t parameter
3206			 */
3207			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3208			m = *mp = NULL;
3209		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3210			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3211			/* this is for to rules: */
3212			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3213			m = *mp = NULL;
3214		}
3215
3216#if defined(FASTROUTE_RECURSION)
3217		(void) ipf_derefrule(softc, &fr);
3218#endif
3219	}
3220#if !defined(FASTROUTE_RECURSION)
3221	RWLOCK_EXIT(&softc->ipf_mutex);
3222#endif
3223
3224finished:
3225	if (!FR_ISPASS(pass)) {
3226		LBUMP(ipf_stats[out].fr_block);
3227		if (*mp != NULL) {
3228#ifdef _KERNEL
3229			FREE_MB_T(*mp);
3230#endif
3231			m = *mp = NULL;
3232		}
3233	} else {
3234		LBUMP(ipf_stats[out].fr_pass);
3235#if defined(_KERNEL) && defined(__sgi)
3236		if ((fin->fin_hbuf != NULL) &&
3237		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3238			COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3239		}
3240#endif
3241	}
3242
3243	SPL_X(s);
3244
3245#ifdef _KERNEL
3246	if (FR_ISPASS(pass))
3247		return 0;
3248	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3249	return fin->fin_error;
3250#else /* _KERNEL */
3251	if (*mp != NULL)
3252		(*mp)->mb_ifp = fin->fin_ifp;
3253	blockreason = fin->fin_reason;
3254	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3255	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3256		if ((pass & FR_NOMATCH) != 0)
3257			return 1;
3258
3259	if ((pass & FR_RETMASK) != 0)
3260		switch (pass & FR_RETMASK)
3261		{
3262		case FR_RETRST :
3263			return 3;
3264		case FR_RETICMP :
3265			return 4;
3266		case FR_FAKEICMP :
3267			return 5;
3268		}
3269
3270	switch (pass & FR_CMDMASK)
3271	{
3272	case FR_PASS :
3273		return 0;
3274	case FR_BLOCK :
3275		return -1;
3276	case FR_AUTH :
3277		return -2;
3278	case FR_ACCOUNT :
3279		return -3;
3280	case FR_PREAUTH :
3281		return -4;
3282	}
3283	return 2;
3284#endif /* _KERNEL */
3285}
3286
3287
3288#ifdef	IPFILTER_LOG
3289/* ------------------------------------------------------------------------ */
3290/* Function:    ipf_dolog                                                   */
3291/* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3292/* Parameters:  fin(I) - pointer to packet information                      */
3293/*              passp(IO) - pointer to current/new filter decision (unused) */
3294/*                                                                          */
3295/* Checks flags set to see how a packet should be logged, if it is to be    */
3296/* logged.  Adjust statistics based on its success or not.                  */
3297/* ------------------------------------------------------------------------ */
3298frentry_t *
3299ipf_dolog(fin, passp)
3300	fr_info_t *fin;
3301	u_32_t *passp;
3302{
3303	ipf_main_softc_t *softc = fin->fin_main_soft;
3304	u_32_t pass;
3305	int out;
3306
3307	out = fin->fin_out;
3308	pass = *passp;
3309
3310	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3311		pass |= FF_LOGNOMATCH;
3312		LBUMPD(ipf_stats[out], fr_npkl);
3313		goto logit;
3314
3315	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3316	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3317		if ((pass & FR_LOGMASK) != FR_LOGP)
3318			pass |= FF_LOGPASS;
3319		LBUMPD(ipf_stats[out], fr_ppkl);
3320		goto logit;
3321
3322	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3323		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3324		if ((pass & FR_LOGMASK) != FR_LOGB)
3325			pass |= FF_LOGBLOCK;
3326		LBUMPD(ipf_stats[out], fr_bpkl);
3327
3328logit:
3329		if (ipf_log_pkt(fin, pass) == -1) {
3330			/*
3331			 * If the "or-block" option has been used then
3332			 * block the packet if we failed to log it.
3333			 */
3334			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3335				DT1(frb_logfail2, u_int, pass);
3336				pass &= ~FR_CMDMASK;
3337				pass |= FR_BLOCK;
3338				fin->fin_reason = FRB_LOGFAIL2;
3339			}
3340		}
3341		*passp = pass;
3342	}
3343
3344	return fin->fin_fr;
3345}
3346#endif /* IPFILTER_LOG */
3347
3348
3349/* ------------------------------------------------------------------------ */
3350/* Function:    ipf_cksum                                                   */
3351/* Returns:     u_short - IP header checksum                                */
3352/* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3353/*              len(I)  - length of buffer in bytes                         */
3354/*                                                                          */
3355/* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3356/*                                                                          */
3357/* N.B.: addr should be 16bit aligned.                                      */
3358/* ------------------------------------------------------------------------ */
3359u_short
3360ipf_cksum(addr, len)
3361	u_short *addr;
3362	int len;
3363{
3364	u_32_t sum = 0;
3365
3366	for (sum = 0; len > 1; len -= 2)
3367		sum += *addr++;
3368
3369	/* mop up an odd byte, if necessary */
3370	if (len == 1)
3371		sum += *(u_char *)addr;
3372
3373	/*
3374	 * add back carry outs from top 16 bits to low 16 bits
3375	 */
3376	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3377	sum += (sum >> 16);			/* add carry */
3378	return (u_short)(~sum);
3379}
3380
3381
3382/* ------------------------------------------------------------------------ */
3383/* Function:    fr_cksum                                                    */
3384/* Returns:     u_short - layer 4 checksum                                  */
3385/* Parameters:  fin(I)     - pointer to packet information                  */
3386/*              ip(I)      - pointer to IP header                           */
3387/*              l4proto(I) - protocol to caclulate checksum for             */
3388/*              l4hdr(I)   - pointer to layer 4 header                      */
3389/*                                                                          */
3390/* Calculates the TCP checksum for the packet held in "m", using the data   */
3391/* in the IP header "ip" to seed it.                                        */
3392/*                                                                          */
3393/* NB: This function assumes we've pullup'd enough for all of the IP header */
3394/* and the TCP header.  We also assume that data blocks aren't allocated in */
3395/* odd sizes.                                                               */
3396/*                                                                          */
3397/* Expects ip_len and ip_off to be in network byte order when called.       */
3398/* ------------------------------------------------------------------------ */
3399u_short
3400fr_cksum(fin, ip, l4proto, l4hdr)
3401	fr_info_t *fin;
3402	ip_t *ip;
3403	int l4proto;
3404	void *l4hdr;
3405{
3406	u_short *sp, slen, sumsave, *csump;
3407	u_int sum, sum2;
3408	int hlen;
3409	int off;
3410#ifdef	USE_INET6
3411	ip6_t *ip6;
3412#endif
3413
3414	csump = NULL;
3415	sumsave = 0;
3416	sp = NULL;
3417	slen = 0;
3418	hlen = 0;
3419	sum = 0;
3420
3421	sum = htons((u_short)l4proto);
3422	/*
3423	 * Add up IP Header portion
3424	 */
3425#ifdef	USE_INET6
3426	if (IP_V(ip) == 4) {
3427#endif
3428		hlen = IP_HL(ip) << 2;
3429		off = hlen;
3430		sp = (u_short *)&ip->ip_src;
3431		sum += *sp++;	/* ip_src */
3432		sum += *sp++;
3433		sum += *sp++;	/* ip_dst */
3434		sum += *sp++;
3435#ifdef	USE_INET6
3436	} else if (IP_V(ip) == 6) {
3437		ip6 = (ip6_t *)ip;
3438		hlen = sizeof(*ip6);
3439		off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3440		sp = (u_short *)&ip6->ip6_src;
3441		sum += *sp++;	/* ip6_src */
3442		sum += *sp++;
3443		sum += *sp++;
3444		sum += *sp++;
3445		sum += *sp++;
3446		sum += *sp++;
3447		sum += *sp++;
3448		sum += *sp++;
3449		/* This needs to be routing header aware. */
3450		sum += *sp++;	/* ip6_dst */
3451		sum += *sp++;
3452		sum += *sp++;
3453		sum += *sp++;
3454		sum += *sp++;
3455		sum += *sp++;
3456		sum += *sp++;
3457		sum += *sp++;
3458	} else {
3459		return 0xffff;
3460	}
3461#endif
3462	slen = fin->fin_plen - off;
3463	sum += htons(slen);
3464
3465	switch (l4proto)
3466	{
3467	case IPPROTO_UDP :
3468		csump = &((udphdr_t *)l4hdr)->uh_sum;
3469		break;
3470
3471	case IPPROTO_TCP :
3472		csump = &((tcphdr_t *)l4hdr)->th_sum;
3473		break;
3474	case IPPROTO_ICMP :
3475		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3476		sum = 0;	/* Pseudo-checksum is not included */
3477		break;
3478#ifdef USE_INET6
3479	case IPPROTO_ICMPV6 :
3480		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3481		break;
3482#endif
3483	default :
3484		break;
3485	}
3486
3487	if (csump != NULL) {
3488		sumsave = *csump;
3489		*csump = 0;
3490	}
3491
3492	sum2 = ipf_pcksum(fin, off, sum);
3493	if (csump != NULL)
3494		*csump = sumsave;
3495	return sum2;
3496}
3497
3498
3499/* ------------------------------------------------------------------------ */
3500/* Function:    ipf_findgroup                                               */
3501/* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3502/* Parameters:  softc(I) - pointer to soft context main structure           */
3503/*              group(I) - group name to search for                         */
3504/*              unit(I)  - device to which this group belongs               */
3505/*              set(I)   - which set of rules (inactive/inactive) this is   */
3506/*              fgpp(O)  - pointer to place to store pointer to the pointer */
3507/*                         to where to add the next (last) group or where   */
3508/*                         to delete group from.                            */
3509/*                                                                          */
3510/* Search amongst the defined groups for a particular group number.         */
3511/* ------------------------------------------------------------------------ */
3512frgroup_t *
3513ipf_findgroup(softc, group, unit, set, fgpp)
3514	ipf_main_softc_t *softc;
3515	char *group;
3516	minor_t unit;
3517	int set;
3518	frgroup_t ***fgpp;
3519{
3520	frgroup_t *fg, **fgp;
3521
3522	/*
3523	 * Which list of groups to search in is dependent on which list of
3524	 * rules are being operated on.
3525	 */
3526	fgp = &softc->ipf_groups[unit][set];
3527
3528	while ((fg = *fgp) != NULL) {
3529		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3530			break;
3531		else
3532			fgp = &fg->fg_next;
3533	}
3534	if (fgpp != NULL)
3535		*fgpp = fgp;
3536	return fg;
3537}
3538
3539
3540/* ------------------------------------------------------------------------ */
3541/* Function:    ipf_group_add                                               */
3542/* Returns:     frgroup_t * - NULL == did not create group,                 */
3543/*                            != NULL == pointer to the group               */
3544/* Parameters:  softc(I) - pointer to soft context main structure           */
3545/*              num(I)   - group number to add                              */
3546/*              head(I)  - rule pointer that is using this as the head      */
3547/*              flags(I) - rule flags which describe the type of rule it is */
3548/*              unit(I)  - device to which this group will belong to        */
3549/*              set(I)   - which set of rules (inactive/inactive) this is   */
3550/* Write Locks: ipf_mutex                                                   */
3551/*                                                                          */
3552/* Add a new group head, or if it already exists, increase the reference    */
3553/* count to it.                                                             */
3554/* ------------------------------------------------------------------------ */
3555frgroup_t *
3556ipf_group_add(softc, group, head, flags, unit, set)
3557	ipf_main_softc_t *softc;
3558	char *group;
3559	void *head;
3560	u_32_t flags;
3561	minor_t unit;
3562	int set;
3563{
3564	frgroup_t *fg, **fgp;
3565	u_32_t gflags;
3566
3567	if (group == NULL)
3568		return NULL;
3569
3570	if (unit == IPL_LOGIPF && *group == '\0')
3571		return NULL;
3572
3573	fgp = NULL;
3574	gflags = flags & FR_INOUT;
3575
3576	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3577	if (fg != NULL) {
3578		if (fg->fg_head == NULL && head != NULL)
3579			fg->fg_head = head;
3580		if (fg->fg_flags == 0)
3581			fg->fg_flags = gflags;
3582		else if (gflags != fg->fg_flags)
3583			return NULL;
3584		fg->fg_ref++;
3585		return fg;
3586	}
3587
3588	KMALLOC(fg, frgroup_t *);
3589	if (fg != NULL) {
3590		fg->fg_head = head;
3591		fg->fg_start = NULL;
3592		fg->fg_next = *fgp;
3593		bcopy(group, fg->fg_name, strlen(group) + 1);
3594		fg->fg_flags = gflags;
3595		fg->fg_ref = 1;
3596		fg->fg_set = &softc->ipf_groups[unit][set];
3597		*fgp = fg;
3598	}
3599	return fg;
3600}
3601
3602
3603/* ------------------------------------------------------------------------ */
3604/* Function:    ipf_group_del                                               */
3605/* Returns:     int      - number of rules deleted                          */
3606/* Parameters:  softc(I) - pointer to soft context main structure           */
3607/*              group(I) - group name to delete                             */
3608/*              fr(I)    - filter rule from which group is referenced       */
3609/* Write Locks: ipf_mutex                                                   */
3610/*                                                                          */
3611/* This function is called whenever a reference to a group is to be dropped */
3612/* and thus its reference count needs to be lowered and the group free'd if */
3613/* the reference count reaches zero. Passing in fr is really for the sole   */
3614/* purpose of knowing when the head rule is being deleted.                  */
3615/* ------------------------------------------------------------------------ */
3616void
3617ipf_group_del(softc, group, fr)
3618	ipf_main_softc_t *softc;
3619	frgroup_t *group;
3620	frentry_t *fr;
3621{
3622
3623	if (group->fg_head == fr)
3624		group->fg_head = NULL;
3625
3626	group->fg_ref--;
3627	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3628		ipf_group_free(group);
3629}
3630
3631
3632/* ------------------------------------------------------------------------ */
3633/* Function:    ipf_group_free                                              */
3634/* Returns:     Nil                                                         */
3635/* Parameters:  group(I) - pointer to filter rule group                     */
3636/*                                                                          */
3637/* Remove the group from the list of groups and free it.                    */
3638/* ------------------------------------------------------------------------ */
3639static void
3640ipf_group_free(group)
3641	frgroup_t *group;
3642{
3643	frgroup_t **gp;
3644
3645	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3646		if (*gp == group) {
3647			*gp = group->fg_next;
3648			break;
3649		}
3650	}
3651	KFREE(group);
3652}
3653
3654
3655/* ------------------------------------------------------------------------ */
3656/* Function:    ipf_group_flush                                             */
3657/* Returns:     int      - number of rules flush from group                 */
3658/* Parameters:  softc(I) - pointer to soft context main structure           */
3659/* Parameters:  group(I) - pointer to filter rule group                     */
3660/*                                                                          */
3661/* Remove all of the rules that currently are listed under the given group. */
3662/* ------------------------------------------------------------------------ */
3663static int
3664ipf_group_flush(softc, group)
3665	ipf_main_softc_t *softc;
3666	frgroup_t *group;
3667{
3668	int gone = 0;
3669
3670	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3671
3672	return gone;
3673}
3674
3675
3676/* ------------------------------------------------------------------------ */
3677/* Function:    ipf_getrulen                                                */
3678/* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3679/* Parameters:  softc(I) - pointer to soft context main structure           */
3680/* Parameters:  unit(I)  - device for which to count the rule's number      */
3681/*              flags(I) - which set of rules to find the rule in           */
3682/*              group(I) - group name                                       */
3683/*              n(I)     - rule number to find                              */
3684/*                                                                          */
3685/* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3686/* group # g doesn't exist or there are less than n rules in the group.     */
3687/* ------------------------------------------------------------------------ */
3688frentry_t *
3689ipf_getrulen(softc, unit, group, n)
3690	ipf_main_softc_t *softc;
3691	int unit;
3692	char *group;
3693	u_32_t n;
3694{
3695	frentry_t *fr;
3696	frgroup_t *fg;
3697
3698	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3699	if (fg == NULL)
3700		return NULL;
3701	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3702		;
3703	if (n != 0)
3704		return NULL;
3705	return fr;
3706}
3707
3708
3709/* ------------------------------------------------------------------------ */
3710/* Function:    ipf_flushlist                                               */
3711/* Returns:     int - >= 0 - number of flushed rules                        */
3712/* Parameters:  softc(I)   - pointer to soft context main structure         */
3713/*              nfreedp(O) - pointer to int where flush count is stored     */
3714/*              listp(I)   - pointer to list to flush pointer               */
3715/* Write Locks: ipf_mutex                                                   */
3716/*                                                                          */
3717/* Recursively flush rules from the list, descending groups as they are     */
3718/* encountered.  if a rule is the head of a group and it has lost all its   */
3719/* group members, then also delete the group reference.  nfreedp is needed  */
3720/* to store the accumulating count of rules removed, whereas the returned   */
3721/* value is just the number removed from the current list.  The latter is   */
3722/* needed to correctly adjust reference counts on rules that define groups. */
3723/*                                                                          */
3724/* NOTE: Rules not loaded from user space cannot be flushed.                */
3725/* ------------------------------------------------------------------------ */
3726static int
3727ipf_flushlist(softc, nfreedp, listp)
3728	ipf_main_softc_t *softc;
3729	int *nfreedp;
3730	frentry_t **listp;
3731{
3732	int freed = 0;
3733	frentry_t *fp;
3734
3735	while ((fp = *listp) != NULL) {
3736		if ((fp->fr_type & FR_T_BUILTIN) ||
3737		    !(fp->fr_flags & FR_COPIED)) {
3738			listp = &fp->fr_next;
3739			continue;
3740		}
3741		*listp = fp->fr_next;
3742		if (fp->fr_next != NULL)
3743			fp->fr_next->fr_pnext = fp->fr_pnext;
3744		fp->fr_pnext = NULL;
3745
3746		if (fp->fr_grphead != NULL) {
3747			freed += ipf_group_flush(softc, fp->fr_grphead);
3748			fp->fr_names[fp->fr_grhead] = '\0';
3749		}
3750
3751		if (fp->fr_icmpgrp != NULL) {
3752			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3753			fp->fr_names[fp->fr_icmphead] = '\0';
3754		}
3755
3756		if (fp->fr_srctrack.ht_max_nodes)
3757			ipf_rb_ht_flush(&fp->fr_srctrack);
3758
3759		fp->fr_next = NULL;
3760
3761		ASSERT(fp->fr_ref > 0);
3762		if (ipf_derefrule(softc, &fp) == 0)
3763			freed++;
3764	}
3765	*nfreedp += freed;
3766	return freed;
3767}
3768
3769
3770/* ------------------------------------------------------------------------ */
3771/* Function:    ipf_flush                                                   */
3772/* Returns:     int - >= 0 - number of flushed rules                        */
3773/* Parameters:  softc(I) - pointer to soft context main structure           */
3774/*              unit(I)  - device for which to flush rules                  */
3775/*              flags(I) - which set of rules to flush                      */
3776/*                                                                          */
3777/* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3778/* and IPv6) as defined by the value of flags.                              */
3779/* ------------------------------------------------------------------------ */
3780int
3781ipf_flush(softc, unit, flags)
3782	ipf_main_softc_t *softc;
3783	minor_t unit;
3784	int flags;
3785{
3786	int flushed = 0, set;
3787
3788	WRITE_ENTER(&softc->ipf_mutex);
3789
3790	set = softc->ipf_active;
3791	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3792		set = 1 - set;
3793
3794	if (flags & FR_OUTQUE) {
3795		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3796		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3797	}
3798	if (flags & FR_INQUE) {
3799		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3800		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3801	}
3802
3803	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3804				    flags & (FR_INQUE|FR_OUTQUE));
3805
3806	RWLOCK_EXIT(&softc->ipf_mutex);
3807
3808	if (unit == IPL_LOGIPF) {
3809		int tmp;
3810
3811		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3812		if (tmp >= 0)
3813			flushed += tmp;
3814	}
3815	return flushed;
3816}
3817
3818
3819/* ------------------------------------------------------------------------ */
3820/* Function:    ipf_flush_groups                                            */
3821/* Returns:     int - >= 0 - number of flushed rules                        */
3822/* Parameters:  softc(I)  - soft context pointerto work with                */
3823/*              grhead(I) - pointer to the start of the group list to flush */
3824/*              flags(I)  - which set of rules to flush                     */
3825/*                                                                          */
3826/* Walk through all of the groups under the given group head and remove all */
3827/* of those that match the flags passed in. The for loop here is bit more   */
3828/* complicated than usual because the removal of a rule with ipf_derefrule  */
3829/* may end up removing not only the structure pointed to by "fg" but also   */
3830/* what is fg_next and fg_next after that. So if a filter rule is actually  */
3831/* removed from the group then it is necessary to start again.              */
3832/* ------------------------------------------------------------------------ */
3833static int
3834ipf_flush_groups(softc, grhead, flags)
3835	ipf_main_softc_t *softc;
3836	frgroup_t **grhead;
3837	int flags;
3838{
3839	frentry_t *fr, **frp;
3840	frgroup_t *fg, **fgp;
3841	int flushed = 0;
3842	int removed = 0;
3843
3844	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3845		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3846			fg = fg->fg_next;
3847		if (fg == NULL)
3848			break;
3849		removed = 0;
3850		frp = &fg->fg_start;
3851		while ((removed == 0) && ((fr = *frp) != NULL)) {
3852			if ((fr->fr_flags & flags) == 0) {
3853				frp = &fr->fr_next;
3854			} else {
3855				if (fr->fr_next != NULL)
3856					fr->fr_next->fr_pnext = fr->fr_pnext;
3857				*frp = fr->fr_next;
3858				fr->fr_pnext = NULL;
3859				fr->fr_next = NULL;
3860				(void) ipf_derefrule(softc, &fr);
3861				flushed++;
3862				removed++;
3863			}
3864		}
3865		if (removed == 0)
3866			fgp = &fg->fg_next;
3867	}
3868	return flushed;
3869}
3870
3871
3872/* ------------------------------------------------------------------------ */
3873/* Function:    memstr                                                      */
3874/* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3875/* Parameters:  src(I)  - pointer to byte sequence to match                 */
3876/*              dst(I)  - pointer to byte sequence to search                */
3877/*              slen(I) - match length                                      */
3878/*              dlen(I) - length available to search in                     */
3879/*                                                                          */
3880/* Search dst for a sequence of bytes matching those at src and extend for  */
3881/* slen bytes.                                                              */
3882/* ------------------------------------------------------------------------ */
3883char *
3884memstr(src, dst, slen, dlen)
3885	const char *src;
3886	char *dst;
3887	size_t slen, dlen;
3888{
3889	char *s = NULL;
3890
3891	while (dlen >= slen) {
3892		if (bcmp(src, dst, slen) == 0) {
3893			s = dst;
3894			break;
3895		}
3896		dst++;
3897		dlen--;
3898	}
3899	return s;
3900}
3901/* ------------------------------------------------------------------------ */
3902/* Function:    ipf_fixskip                                                 */
3903/* Returns:     Nil                                                         */
3904/* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3905/*              rp(I)        - rule added/removed with skip in it.          */
3906/*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3907/*                             depending on whether a rule was just added   */
3908/*                             or removed.                                  */
3909/*                                                                          */
3910/* Adjust all the rules in a list which would have skip'd past the position */
3911/* where we are inserting to skip to the right place given the change.      */
3912/* ------------------------------------------------------------------------ */
3913void
3914ipf_fixskip(listp, rp, addremove)
3915	frentry_t **listp, *rp;
3916	int addremove;
3917{
3918	int rules, rn;
3919	frentry_t *fp;
3920
3921	rules = 0;
3922	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3923		rules++;
3924
3925	if (!fp)
3926		return;
3927
3928	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3929		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3930			fp->fr_arg += addremove;
3931}
3932
3933
3934#ifdef	_KERNEL
3935/* ------------------------------------------------------------------------ */
3936/* Function:    count4bits                                                  */
3937/* Returns:     int - >= 0 - number of consecutive bits in input            */
3938/* Parameters:  ip(I) - 32bit IP address                                    */
3939/*                                                                          */
3940/* IPv4 ONLY                                                                */
3941/* count consecutive 1's in bit mask.  If the mask generated by counting    */
3942/* consecutive 1's is different to that passed, return -1, else return #    */
3943/* of bits.                                                                 */
3944/* ------------------------------------------------------------------------ */
3945int
3946count4bits(ip)
3947	u_32_t	ip;
3948{
3949	u_32_t	ipn;
3950	int	cnt = 0, i, j;
3951
3952	ip = ipn = ntohl(ip);
3953	for (i = 32; i; i--, ipn *= 2)
3954		if (ipn & 0x80000000)
3955			cnt++;
3956		else
3957			break;
3958	ipn = 0;
3959	for (i = 32, j = cnt; i; i--, j--) {
3960		ipn *= 2;
3961		if (j > 0)
3962			ipn++;
3963	}
3964	if (ipn == ip)
3965		return cnt;
3966	return -1;
3967}
3968
3969
3970/* ------------------------------------------------------------------------ */
3971/* Function:    count6bits                                                  */
3972/* Returns:     int - >= 0 - number of consecutive bits in input            */
3973/* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3974/*                                                                          */
3975/* IPv6 ONLY                                                                */
3976/* count consecutive 1's in bit mask.                                       */
3977/* ------------------------------------------------------------------------ */
3978# ifdef USE_INET6
3979int
3980count6bits(msk)
3981	u_32_t *msk;
3982{
3983	int i = 0, k;
3984	u_32_t j;
3985
3986	for (k = 3; k >= 0; k--)
3987		if (msk[k] == 0xffffffff)
3988			i += 32;
3989		else {
3990			for (j = msk[k]; j; j <<= 1)
3991				if (j & 0x80000000)
3992					i++;
3993		}
3994	return i;
3995}
3996# endif
3997#endif /* _KERNEL */
3998
3999
4000/* ------------------------------------------------------------------------ */
4001/* Function:    ipf_synclist                                                */
4002/* Returns:     int    - 0 = no failures, else indication of first failure  */
4003/* Parameters:  fr(I)  - start of filter list to sync interface names for   */
4004/*              ifp(I) - interface pointer for limiting sync lookups        */
4005/* Write Locks: ipf_mutex                                                   */
4006/*                                                                          */
4007/* Walk through a list of filter rules and resolve any interface names into */
4008/* pointers.  Where dynamic addresses are used, also update the IP address  */
4009/* used in the rule.  The interface pointer is used to limit the lookups to */
4010/* a specific set of matching names if it is non-NULL.                      */
4011/* Errors can occur when resolving the destination name of to/dup-to fields */
4012/* when the name points to a pool and that pool doest not exist. If this    */
4013/* does happen then it is necessary to check if there are any lookup refs   */
4014/* that need to be dropped before returning with an error.                  */
4015/* ------------------------------------------------------------------------ */
4016static int
4017ipf_synclist(softc, fr, ifp)
4018	ipf_main_softc_t *softc;
4019	frentry_t *fr;
4020	void *ifp;
4021{
4022	frentry_t *frt, *start = fr;
4023	frdest_t *fdp;
4024	char *name;
4025	int error;
4026	void *ifa;
4027	int v, i;
4028
4029	error = 0;
4030
4031	for (; fr; fr = fr->fr_next) {
4032		if (fr->fr_family == AF_INET)
4033			v = 4;
4034		else if (fr->fr_family == AF_INET6)
4035			v = 6;
4036		else
4037			v = 0;
4038
4039		/*
4040		 * Lookup all the interface names that are part of the rule.
4041		 */
4042		for (i = 0; i < 4; i++) {
4043			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
4044				continue;
4045			if (fr->fr_ifnames[i] == -1)
4046				continue;
4047			name = FR_NAME(fr, fr_ifnames[i]);
4048			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
4049		}
4050
4051		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4052			if (fr->fr_satype != FRI_NORMAL &&
4053			    fr->fr_satype != FRI_LOOKUP) {
4054				ifa = ipf_resolvenic(softc, fr->fr_names +
4055						     fr->fr_sifpidx, v);
4056				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
4057					    &fr->fr_src6, &fr->fr_smsk6);
4058			}
4059			if (fr->fr_datype != FRI_NORMAL &&
4060			    fr->fr_datype != FRI_LOOKUP) {
4061				ifa = ipf_resolvenic(softc, fr->fr_names +
4062						     fr->fr_sifpidx, v);
4063				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
4064					    &fr->fr_dst6, &fr->fr_dmsk6);
4065			}
4066		}
4067
4068		fdp = &fr->fr_tifs[0];
4069		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4070			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4071			if (error != 0)
4072				goto unwind;
4073		}
4074
4075		fdp = &fr->fr_tifs[1];
4076		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4077			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4078			if (error != 0)
4079				goto unwind;
4080		}
4081
4082		fdp = &fr->fr_dif;
4083		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4084			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4085			if (error != 0)
4086				goto unwind;
4087		}
4088
4089		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4090		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4091			fr->fr_srcptr = ipf_lookup_res_num(softc,
4092							   fr->fr_srctype,
4093							   IPL_LOGIPF,
4094							   fr->fr_srcnum,
4095							   &fr->fr_srcfunc);
4096		}
4097		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4098		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4099			fr->fr_dstptr = ipf_lookup_res_num(softc,
4100							   fr->fr_dsttype,
4101							   IPL_LOGIPF,
4102							   fr->fr_dstnum,
4103							   &fr->fr_dstfunc);
4104		}
4105	}
4106	return 0;
4107
4108unwind:
4109	for (frt = start; frt != fr; fr = fr->fr_next) {
4110		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4111		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4112				ipf_lookup_deref(softc, frt->fr_srctype,
4113						 frt->fr_srcptr);
4114		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4115		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4116				ipf_lookup_deref(softc, frt->fr_dsttype,
4117						 frt->fr_dstptr);
4118	}
4119	return error;
4120}
4121
4122
4123/* ------------------------------------------------------------------------ */
4124/* Function:    ipf_sync                                                    */
4125/* Returns:     void                                                        */
4126/* Parameters:  Nil                                                         */
4127/*                                                                          */
4128/* ipf_sync() is called when we suspect that the interface list or          */
4129/* information about interfaces (like IP#) has changed.  Go through all     */
4130/* filter rules, NAT entries and the state table and check if anything      */
4131/* needs to be changed/updated.                                             */
4132/* ------------------------------------------------------------------------ */
4133int
4134ipf_sync(softc, ifp)
4135	ipf_main_softc_t *softc;
4136	void *ifp;
4137{
4138	int i;
4139
4140# if !SOLARIS
4141	ipf_nat_sync(softc, ifp);
4142	ipf_state_sync(softc, ifp);
4143	ipf_lookup_sync(softc, ifp);
4144# endif
4145
4146	WRITE_ENTER(&softc->ipf_mutex);
4147	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4148	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4149	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4150	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4151
4152	for (i = 0; i < IPL_LOGSIZE; i++) {
4153		frgroup_t *g;
4154
4155		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4156			(void) ipf_synclist(softc, g->fg_start, ifp);
4157		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4158			(void) ipf_synclist(softc, g->fg_start, ifp);
4159	}
4160	RWLOCK_EXIT(&softc->ipf_mutex);
4161
4162	return 0;
4163}
4164
4165
4166/*
4167 * In the functions below, bcopy() is called because the pointer being
4168 * copied _from_ in this instance is a pointer to a char buf (which could
4169 * end up being unaligned) and on the kernel's local stack.
4170 */
4171/* ------------------------------------------------------------------------ */
4172/* Function:    copyinptr                                                   */
4173/* Returns:     int - 0 = success, else failure                             */
4174/* Parameters:  src(I)  - pointer to the source address                     */
4175/*              dst(I)  - destination address                               */
4176/*              size(I) - number of bytes to copy                           */
4177/*                                                                          */
4178/* Copy a block of data in from user space, given a pointer to the pointer  */
4179/* to start copying from (src) and a pointer to where to store it (dst).    */
4180/* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4181/* ------------------------------------------------------------------------ */
4182int
4183copyinptr(softc, src, dst, size)
4184	ipf_main_softc_t *softc;
4185	void *src, *dst;
4186	size_t size;
4187{
4188	caddr_t ca;
4189	int error;
4190
4191# if SOLARIS
4192	error = COPYIN(src, &ca, sizeof(ca));
4193	if (error != 0)
4194		return error;
4195# else
4196	bcopy(src, (caddr_t)&ca, sizeof(ca));
4197# endif
4198	error = COPYIN(ca, dst, size);
4199	if (error != 0) {
4200		IPFERROR(3);
4201		error = EFAULT;
4202	}
4203	return error;
4204}
4205
4206
4207/* ------------------------------------------------------------------------ */
4208/* Function:    copyoutptr                                                  */
4209/* Returns:     int - 0 = success, else failure                             */
4210/* Parameters:  src(I)  - pointer to the source address                     */
4211/*              dst(I)  - destination address                               */
4212/*              size(I) - number of bytes to copy                           */
4213/*                                                                          */
4214/* Copy a block of data out to user space, given a pointer to the pointer   */
4215/* to start copying from (src) and a pointer to where to store it (dst).    */
4216/* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4217/* ------------------------------------------------------------------------ */
4218int
4219copyoutptr(softc, src, dst, size)
4220	ipf_main_softc_t *softc;
4221	void *src, *dst;
4222	size_t size;
4223{
4224	caddr_t ca;
4225	int error;
4226
4227	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4228	error = COPYOUT(src, ca, size);
4229	if (error != 0) {
4230		IPFERROR(4);
4231		error = EFAULT;
4232	}
4233	return error;
4234}
4235#ifdef	_KERNEL
4236#endif
4237
4238
4239/* ------------------------------------------------------------------------ */
4240/* Function:    ipf_lock                                                    */
4241/* Returns:     int      - 0 = success, else error                          */
4242/* Parameters:  data(I)  - pointer to lock value to set                     */
4243/*              lockp(O) - pointer to location to store old lock value      */
4244/*                                                                          */
4245/* Get the new value for the lock integer, set it and return the old value  */
4246/* in *lockp.                                                               */
4247/* ------------------------------------------------------------------------ */
4248int
4249ipf_lock(data, lockp)
4250	caddr_t data;
4251	int *lockp;
4252{
4253	int arg, err;
4254
4255	err = BCOPYIN(data, &arg, sizeof(arg));
4256	if (err != 0)
4257		return EFAULT;
4258	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4259	if (err != 0)
4260		return EFAULT;
4261	*lockp = arg;
4262	return 0;
4263}
4264
4265
4266/* ------------------------------------------------------------------------ */
4267/* Function:    ipf_getstat                                                 */
4268/* Returns:     Nil                                                         */
4269/* Parameters:  softc(I) - pointer to soft context main structure           */
4270/*              fiop(I)  - pointer to ipfilter stats structure              */
4271/*              rev(I)   - version claim by program doing ioctl             */
4272/*                                                                          */
4273/* Stores a copy of current pointers, counters, etc, in the friostat        */
4274/* structure.                                                               */
4275/* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4276/* program is looking for. This ensure that validation of the version it    */
4277/* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4278/* allow older binaries to work but kernels without it will not.            */
4279/* ------------------------------------------------------------------------ */
4280/*ARGSUSED*/
4281static void
4282ipf_getstat(softc, fiop, rev)
4283	ipf_main_softc_t *softc;
4284	friostat_t *fiop;
4285	int rev;
4286{
4287	int i;
4288
4289	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4290	      sizeof(ipf_statistics_t) * 2);
4291	fiop->f_locks[IPL_LOGSTATE] = -1;
4292	fiop->f_locks[IPL_LOGNAT] = -1;
4293	fiop->f_locks[IPL_LOGIPF] = -1;
4294	fiop->f_locks[IPL_LOGAUTH] = -1;
4295
4296	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4297	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4298	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4299	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4300	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4301	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4302	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4303	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4304
4305	fiop->f_ticks = softc->ipf_ticks;
4306	fiop->f_active = softc->ipf_active;
4307	fiop->f_froute[0] = softc->ipf_frouteok[0];
4308	fiop->f_froute[1] = softc->ipf_frouteok[1];
4309	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4310	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4311
4312	fiop->f_running = softc->ipf_running;
4313	for (i = 0; i < IPL_LOGSIZE; i++) {
4314		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4315		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4316	}
4317#ifdef  IPFILTER_LOG
4318	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4319	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4320	fiop->f_logging = 1;
4321#else
4322	fiop->f_log_ok = 0;
4323	fiop->f_log_fail = 0;
4324	fiop->f_logging = 0;
4325#endif
4326	fiop->f_defpass = softc->ipf_pass;
4327	fiop->f_features = ipf_features;
4328
4329#ifdef IPFILTER_COMPAT
4330	sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4331		(rev / 1000000) % 100,
4332		(rev / 10000) % 100,
4333		(rev / 100) % 100);
4334#else
4335	rev = rev;
4336	(void) strncpy(fiop->f_version, ipfilter_version,
4337		       sizeof(fiop->f_version));
4338#endif
4339}
4340
4341
4342#ifdef	USE_INET6
4343int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4344	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4345	-1,			/* 1: UNUSED */
4346	-1,			/* 2: UNUSED */
4347	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4348	-1,			/* 4: ICMP_SOURCEQUENCH */
4349	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4350	-1,			/* 6: UNUSED */
4351	-1,			/* 7: UNUSED */
4352	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4353	-1,			/* 9: UNUSED */
4354	-1,			/* 10: UNUSED */
4355	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4356	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4357	-1,			/* 13: ICMP_TSTAMP */
4358	-1,			/* 14: ICMP_TSTAMPREPLY */
4359	-1,			/* 15: ICMP_IREQ */
4360	-1,			/* 16: ICMP_IREQREPLY */
4361	-1,			/* 17: ICMP_MASKREQ */
4362	-1,			/* 18: ICMP_MASKREPLY */
4363};
4364
4365
4366int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4367	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4368	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4369	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4370	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4371	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4372	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4373	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4374	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4375	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4376	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4377	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4378	-1,				/* 11: ICMP_UNREACH_TOSNET */
4379	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4380	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4381};
4382int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4383#endif
4384
4385int	icmpreplytype4[ICMP_MAXTYPE + 1];
4386
4387
4388/* ------------------------------------------------------------------------ */
4389/* Function:    ipf_matchicmpqueryreply                                     */
4390/* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4391/* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4392/*              ic(I)   - ICMP information                                  */
4393/*              icmp(I) - ICMP packet header                                */
4394/*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4395/*                                                                          */
4396/* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4397/* reply to one as described by what's in ic.  If it is a match, return 1,  */
4398/* else return 0 for no match.                                              */
4399/* ------------------------------------------------------------------------ */
4400int
4401ipf_matchicmpqueryreply(v, ic, icmp, rev)
4402	int v;
4403	icmpinfo_t *ic;
4404	icmphdr_t *icmp;
4405	int rev;
4406{
4407	int ictype;
4408
4409	ictype = ic->ici_type;
4410
4411	if (v == 4) {
4412		/*
4413		 * If we matched its type on the way in, then when going out
4414		 * it will still be the same type.
4415		 */
4416		if ((!rev && (icmp->icmp_type == ictype)) ||
4417		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4418			if (icmp->icmp_type != ICMP_ECHOREPLY)
4419				return 1;
4420			if (icmp->icmp_id == ic->ici_id)
4421				return 1;
4422		}
4423	}
4424#ifdef	USE_INET6
4425	else if (v == 6) {
4426		if ((!rev && (icmp->icmp_type == ictype)) ||
4427		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4428			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4429				return 1;
4430			if (icmp->icmp_id == ic->ici_id)
4431				return 1;
4432		}
4433	}
4434#endif
4435	return 0;
4436}
4437
4438
4439/* ------------------------------------------------------------------------ */
4440/* Function:    ipf_rule_compare                                            */
4441/* Parameters:  fr1(I) - first rule structure to compare                    */
4442/*              fr2(I) - second rule structure to compare                   */
4443/* Returns:     int    - 0 == rules are the same, else mismatch             */
4444/*                                                                          */
4445/* Compare two rules and return 0 if they match or a number indicating      */
4446/* which of the individual checks failed.                                   */
4447/* ------------------------------------------------------------------------ */
4448static int
4449ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4450{
4451	if (fr1->fr_cksum != fr2->fr_cksum)
4452		return 1;
4453	if (fr1->fr_size != fr2->fr_size)
4454		return 2;
4455	if (fr1->fr_dsize != fr2->fr_dsize)
4456		return 3;
4457	if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func,
4458		 fr1->fr_size - offsetof(struct frentry, fr_func)) != 0)
4459		return 4;
4460	if (fr1->fr_data && !fr2->fr_data)
4461		return 5;
4462	if (!fr1->fr_data && fr2->fr_data)
4463		return 6;
4464	if (fr1->fr_data) {
4465		if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize))
4466			return 7;
4467	}
4468	return 0;
4469}
4470
4471
4472/* ------------------------------------------------------------------------ */
4473/* Function:    frrequest                                                   */
4474/* Returns:     int - 0 == success, > 0 == errno value                      */
4475/* Parameters:  unit(I)     - device for which this is for                  */
4476/*              req(I)      - ioctl command (SIOC*)                         */
4477/*              data(I)     - pointr to ioctl data                          */
4478/*              set(I)      - 1 or 0 (filter set)                           */
4479/*              makecopy(I) - flag indicating whether data points to a rule */
4480/*                            in kernel space & hence doesn't need copying. */
4481/*                                                                          */
4482/* This function handles all the requests which operate on the list of      */
4483/* filter rules.  This includes adding, deleting, insertion.  It is also    */
4484/* responsible for creating groups when a "head" rule is loaded.  Interface */
4485/* names are resolved here and other sanity checks are made on the content  */
4486/* of the rule structure being loaded.  If a rule has user defined timeouts */
4487/* then make sure they are created and initialised before exiting.          */
4488/* ------------------------------------------------------------------------ */
4489int
4490frrequest(softc, unit, req, data, set, makecopy)
4491	ipf_main_softc_t *softc;
4492	int unit;
4493	ioctlcmd_t req;
4494	int set, makecopy;
4495	caddr_t data;
4496{
4497	int error = 0, in, family, addrem, need_free = 0;
4498	frentry_t frd, *fp, *f, **fprev, **ftail;
4499	void *ptr, *uptr, *cptr;
4500	u_int *p, *pp;
4501	frgroup_t *fg;
4502	char *group;
4503
4504	ptr = NULL;
4505	cptr = NULL;
4506	fg = NULL;
4507	fp = &frd;
4508	if (makecopy != 0) {
4509		bzero(fp, sizeof(frd));
4510		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4511		if (error) {
4512			return error;
4513		}
4514		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4515			IPFERROR(6);
4516			return EINVAL;
4517		}
4518		KMALLOCS(f, frentry_t *, fp->fr_size);
4519		if (f == NULL) {
4520			IPFERROR(131);
4521			return ENOMEM;
4522		}
4523		bzero(f, fp->fr_size);
4524		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4525				    fp->fr_size);
4526		if (error) {
4527			KFREES(f, fp->fr_size);
4528			return error;
4529		}
4530
4531		fp = f;
4532		f = NULL;
4533		fp->fr_next = NULL;
4534		fp->fr_dnext = NULL;
4535		fp->fr_pnext = NULL;
4536		fp->fr_pdnext = NULL;
4537		fp->fr_grp = NULL;
4538		fp->fr_grphead = NULL;
4539		fp->fr_icmpgrp = NULL;
4540		fp->fr_isc = (void *)-1;
4541		fp->fr_ptr = NULL;
4542		fp->fr_ref = 0;
4543		fp->fr_flags |= FR_COPIED;
4544	} else {
4545		fp = (frentry_t *)data;
4546		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4547			IPFERROR(7);
4548			return EINVAL;
4549		}
4550		fp->fr_flags &= ~FR_COPIED;
4551	}
4552
4553	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4554	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4555		IPFERROR(8);
4556		error = EINVAL;
4557		goto donenolock;
4558	}
4559
4560	family = fp->fr_family;
4561	uptr = fp->fr_data;
4562
4563	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4564	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4565		addrem = 0;
4566	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4567		addrem = 1;
4568	else if (req == (ioctlcmd_t)SIOCZRLST)
4569		addrem = 2;
4570	else {
4571		IPFERROR(9);
4572		error = EINVAL;
4573		goto donenolock;
4574	}
4575
4576	/*
4577	 * Only filter rules for IPv4 or IPv6 are accepted.
4578	 */
4579	if (family == AF_INET) {
4580		/*EMPTY*/;
4581#ifdef	USE_INET6
4582	} else if (family == AF_INET6) {
4583		/*EMPTY*/;
4584#endif
4585	} else if (family != 0) {
4586		IPFERROR(10);
4587		error = EINVAL;
4588		goto donenolock;
4589	}
4590
4591	/*
4592	 * If the rule is being loaded from user space, i.e. we had to copy it
4593	 * into kernel space, then do not trust the function pointer in the
4594	 * rule.
4595	 */
4596	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4597		if (ipf_findfunc(fp->fr_func) == NULL) {
4598			IPFERROR(11);
4599			error = ESRCH;
4600			goto donenolock;
4601		}
4602
4603		if (addrem == 0) {
4604			error = ipf_funcinit(softc, fp);
4605			if (error != 0)
4606				goto donenolock;
4607		}
4608	}
4609	if ((fp->fr_flags & FR_CALLNOW) &&
4610	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4611		IPFERROR(142);
4612		error = ESRCH;
4613		goto donenolock;
4614	}
4615	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4616	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4617		IPFERROR(143);
4618		error = ESRCH;
4619		goto donenolock;
4620	}
4621
4622	ptr = NULL;
4623	cptr = NULL;
4624
4625	if (FR_ISACCOUNT(fp->fr_flags))
4626		unit = IPL_LOGCOUNT;
4627
4628	/*
4629	 * Check that each group name in the rule has a start index that
4630	 * is valid.
4631	 */
4632	if (fp->fr_icmphead != -1) {
4633		if ((fp->fr_icmphead < 0) ||
4634		    (fp->fr_icmphead >= fp->fr_namelen)) {
4635			IPFERROR(136);
4636			error = EINVAL;
4637			goto donenolock;
4638		}
4639		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4640			fp->fr_names[fp->fr_icmphead] = '\0';
4641	}
4642
4643	if (fp->fr_grhead != -1) {
4644		if ((fp->fr_grhead < 0) ||
4645		    (fp->fr_grhead >= fp->fr_namelen)) {
4646			IPFERROR(137);
4647			error = EINVAL;
4648			goto donenolock;
4649		}
4650		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4651			fp->fr_names[fp->fr_grhead] = '\0';
4652	}
4653
4654	if (fp->fr_group != -1) {
4655		if ((fp->fr_group < 0) ||
4656		    (fp->fr_group >= fp->fr_namelen)) {
4657			IPFERROR(138);
4658			error = EINVAL;
4659			goto donenolock;
4660		}
4661		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4662			/*
4663			 * Allow loading rules that are in groups to cause
4664			 * them to be created if they don't already exit.
4665			 */
4666			group = FR_NAME(fp, fr_group);
4667			if (addrem == 0) {
4668				fg = ipf_group_add(softc, group, NULL,
4669						   fp->fr_flags, unit, set);
4670				fp->fr_grp = fg;
4671			} else {
4672				fg = ipf_findgroup(softc, group, unit,
4673						   set, NULL);
4674				if (fg == NULL) {
4675					IPFERROR(12);
4676					error = ESRCH;
4677					goto donenolock;
4678				}
4679			}
4680
4681			if (fg->fg_flags == 0) {
4682				fg->fg_flags = fp->fr_flags & FR_INOUT;
4683			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4684				IPFERROR(13);
4685				error = ESRCH;
4686				goto donenolock;
4687			}
4688		}
4689	} else {
4690		/*
4691		 * If a rule is going to be part of a group then it does
4692		 * not matter whether it is an in or out rule, but if it
4693		 * isn't in a group, then it does...
4694		 */
4695		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4696			IPFERROR(14);
4697			error = EINVAL;
4698			goto donenolock;
4699		}
4700	}
4701	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4702
4703	/*
4704	 * Work out which rule list this change is being applied to.
4705	 */
4706	ftail = NULL;
4707	fprev = NULL;
4708	if (unit == IPL_LOGAUTH) {
4709                if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4710		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4711		    (fp->fr_dif.fd_ptr != NULL) ||
4712		    (fp->fr_flags & FR_FASTROUTE)) {
4713			softc->ipf_interror = 145;
4714			error = EINVAL;
4715			goto donenolock;
4716		}
4717		fprev = ipf_auth_rulehead(softc);
4718	} else {
4719		if (FR_ISACCOUNT(fp->fr_flags))
4720			fprev = &softc->ipf_acct[in][set];
4721		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4722			fprev = &softc->ipf_rules[in][set];
4723	}
4724	if (fprev == NULL) {
4725		IPFERROR(15);
4726		error = ESRCH;
4727		goto donenolock;
4728	}
4729
4730	if (fg != NULL)
4731		fprev = &fg->fg_start;
4732
4733	/*
4734	 * Copy in extra data for the rule.
4735	 */
4736	if (fp->fr_dsize != 0) {
4737		if (makecopy != 0) {
4738			KMALLOCS(ptr, void *, fp->fr_dsize);
4739			if (ptr == NULL) {
4740				IPFERROR(16);
4741				error = ENOMEM;
4742				goto donenolock;
4743			}
4744
4745			/*
4746			 * The bcopy case is for when the data is appended
4747			 * to the rule by ipf_in_compat().
4748			 */
4749			if (uptr >= (void *)fp &&
4750			    uptr < (void *)((char *)fp + fp->fr_size)) {
4751				bcopy(uptr, ptr, fp->fr_dsize);
4752				error = 0;
4753			} else {
4754				error = COPYIN(uptr, ptr, fp->fr_dsize);
4755				if (error != 0) {
4756					IPFERROR(17);
4757					error = EFAULT;
4758					goto donenolock;
4759				}
4760			}
4761		} else {
4762			ptr = uptr;
4763		}
4764		fp->fr_data = ptr;
4765	} else {
4766		fp->fr_data = NULL;
4767	}
4768
4769	/*
4770	 * Perform per-rule type sanity checks of their members.
4771	 * All code after this needs to be aware that allocated memory
4772	 * may need to be free'd before exiting.
4773	 */
4774	switch (fp->fr_type & ~FR_T_BUILTIN)
4775	{
4776#if defined(IPFILTER_BPF)
4777	case FR_T_BPFOPC :
4778		if (fp->fr_dsize == 0) {
4779			IPFERROR(19);
4780			error = EINVAL;
4781			break;
4782		}
4783		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4784			IPFERROR(20);
4785			error = EINVAL;
4786			break;
4787		}
4788		break;
4789#endif
4790	case FR_T_IPF :
4791		/*
4792		 * Preparation for error case at the bottom of this function.
4793		 */
4794		if (fp->fr_datype == FRI_LOOKUP)
4795			fp->fr_dstptr = NULL;
4796		if (fp->fr_satype == FRI_LOOKUP)
4797			fp->fr_srcptr = NULL;
4798
4799		if (fp->fr_dsize != sizeof(fripf_t)) {
4800			IPFERROR(21);
4801			error = EINVAL;
4802			break;
4803		}
4804
4805		/*
4806		 * Allowing a rule with both "keep state" and "with oow" is
4807		 * pointless because adding a state entry to the table will
4808		 * fail with the out of window (oow) flag set.
4809		 */
4810		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4811			IPFERROR(22);
4812			error = EINVAL;
4813			break;
4814		}
4815
4816		switch (fp->fr_satype)
4817		{
4818		case FRI_BROADCAST :
4819		case FRI_DYNAMIC :
4820		case FRI_NETWORK :
4821		case FRI_NETMASKED :
4822		case FRI_PEERADDR :
4823			if (fp->fr_sifpidx < 0) {
4824				IPFERROR(23);
4825				error = EINVAL;
4826			}
4827			break;
4828		case FRI_LOOKUP :
4829			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4830						       &fp->fr_src6,
4831						       &fp->fr_smsk6);
4832			if (fp->fr_srcfunc == NULL) {
4833				IPFERROR(132);
4834				error = ESRCH;
4835				break;
4836			}
4837			break;
4838		case FRI_NORMAL :
4839			break;
4840		default :
4841			IPFERROR(133);
4842			error = EINVAL;
4843			break;
4844		}
4845		if (error != 0)
4846			break;
4847
4848		switch (fp->fr_datype)
4849		{
4850		case FRI_BROADCAST :
4851		case FRI_DYNAMIC :
4852		case FRI_NETWORK :
4853		case FRI_NETMASKED :
4854		case FRI_PEERADDR :
4855			if (fp->fr_difpidx < 0) {
4856				IPFERROR(24);
4857				error = EINVAL;
4858			}
4859			break;
4860		case FRI_LOOKUP :
4861			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4862						       &fp->fr_dst6,
4863						       &fp->fr_dmsk6);
4864			if (fp->fr_dstfunc == NULL) {
4865				IPFERROR(134);
4866				error = ESRCH;
4867			}
4868			break;
4869		case FRI_NORMAL :
4870			break;
4871		default :
4872			IPFERROR(135);
4873			error = EINVAL;
4874		}
4875		break;
4876
4877	case FR_T_NONE :
4878	case FR_T_CALLFUNC :
4879	case FR_T_COMPIPF :
4880		break;
4881
4882	case FR_T_IPFEXPR :
4883		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4884			IPFERROR(25);
4885			error = EINVAL;
4886		}
4887		break;
4888
4889	default :
4890		IPFERROR(26);
4891		error = EINVAL;
4892		break;
4893	}
4894	if (error != 0)
4895		goto donenolock;
4896
4897	if (fp->fr_tif.fd_name != -1) {
4898		if ((fp->fr_tif.fd_name < 0) ||
4899		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4900			IPFERROR(139);
4901			error = EINVAL;
4902			goto donenolock;
4903		}
4904	}
4905
4906	if (fp->fr_dif.fd_name != -1) {
4907		if ((fp->fr_dif.fd_name < 0) ||
4908		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4909			IPFERROR(140);
4910			error = EINVAL;
4911			goto donenolock;
4912		}
4913	}
4914
4915	if (fp->fr_rif.fd_name != -1) {
4916		if ((fp->fr_rif.fd_name < 0) ||
4917		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4918			IPFERROR(141);
4919			error = EINVAL;
4920			goto donenolock;
4921		}
4922	}
4923
4924	/*
4925	 * Lookup all the interface names that are part of the rule.
4926	 */
4927	error = ipf_synclist(softc, fp, NULL);
4928	if (error != 0)
4929		goto donenolock;
4930	fp->fr_statecnt = 0;
4931	if (fp->fr_srctrack.ht_max_nodes != 0)
4932		ipf_rb_ht_init(&fp->fr_srctrack);
4933
4934	/*
4935	 * Look for an existing matching filter rule, but don't include the
4936	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4937	 * This elminates rules which are indentical being loaded.  Checksum
4938	 * the constant part of the filter rule to make comparisons quicker
4939	 * (this meaning no pointers are included).
4940	 */
4941	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4942	     p < pp; p++)
4943		fp->fr_cksum += *p;
4944	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4945	for (p = (u_int *)fp->fr_data; p < pp; p++)
4946		fp->fr_cksum += *p;
4947
4948	WRITE_ENTER(&softc->ipf_mutex);
4949
4950	/*
4951	 * Now that the filter rule lists are locked, we can walk the
4952	 * chain of them without fear.
4953	 */
4954	ftail = fprev;
4955	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4956		if (fp->fr_collect <= f->fr_collect) {
4957			ftail = fprev;
4958			f = NULL;
4959			break;
4960		}
4961		fprev = ftail;
4962	}
4963
4964	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4965		if (ipf_rule_compare(fp, f) == 0)
4966			break;
4967	}
4968
4969	/*
4970	 * If zero'ing statistics, copy current to caller and zero.
4971	 */
4972	if (addrem == 2) {
4973		if (f == NULL) {
4974			IPFERROR(27);
4975			error = ESRCH;
4976		} else {
4977			/*
4978			 * Copy and reduce lock because of impending copyout.
4979			 * Well we should, but if we do then the atomicity of
4980			 * this call and the correctness of fr_hits and
4981			 * fr_bytes cannot be guaranteed.  As it is, this code
4982			 * only resets them to 0 if they are successfully
4983			 * copied out into user space.
4984			 */
4985			bcopy((char *)f, (char *)fp, f->fr_size);
4986			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4987
4988			/*
4989			 * When we copy this rule back out, set the data
4990			 * pointer to be what it was in user space.
4991			 */
4992			fp->fr_data = uptr;
4993			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4994
4995			if (error == 0) {
4996				if ((f->fr_dsize != 0) && (uptr != NULL))
4997					error = COPYOUT(f->fr_data, uptr,
4998							f->fr_dsize);
4999					if (error != 0) {
5000						IPFERROR(28);
5001						error = EFAULT;
5002					}
5003				if (error == 0) {
5004					f->fr_hits = 0;
5005					f->fr_bytes = 0;
5006				}
5007			}
5008		}
5009
5010		if (makecopy != 0) {
5011			if (ptr != NULL) {
5012				KFREES(ptr, fp->fr_dsize);
5013			}
5014			KFREES(fp, fp->fr_size);
5015		}
5016		RWLOCK_EXIT(&softc->ipf_mutex);
5017		return error;
5018	}
5019
5020  	if (!f) {
5021		/*
5022		 * At the end of this, ftail must point to the place where the
5023		 * new rule is to be saved/inserted/added.
5024		 * For SIOCAD*FR, this should be the last rule in the group of
5025		 * rules that have equal fr_collect fields.
5026		 * For SIOCIN*FR, ...
5027		 */
5028		if (req == (ioctlcmd_t)SIOCADAFR ||
5029		    req == (ioctlcmd_t)SIOCADIFR) {
5030
5031			for (ftail = fprev; (f = *ftail) != NULL; ) {
5032				if (f->fr_collect > fp->fr_collect)
5033					break;
5034				ftail = &f->fr_next;
5035				fprev = ftail;
5036			}
5037			ftail = fprev;
5038			f = NULL;
5039			ptr = NULL;
5040		} else if (req == (ioctlcmd_t)SIOCINAFR ||
5041			   req == (ioctlcmd_t)SIOCINIFR) {
5042			while ((f = *fprev) != NULL) {
5043				if (f->fr_collect >= fp->fr_collect)
5044					break;
5045				fprev = &f->fr_next;
5046			}
5047  			ftail = fprev;
5048  			if (fp->fr_hits != 0) {
5049				while (fp->fr_hits && (f = *ftail)) {
5050					if (f->fr_collect != fp->fr_collect)
5051						break;
5052					fprev = ftail;
5053  					ftail = &f->fr_next;
5054					fp->fr_hits--;
5055				}
5056  			}
5057  			f = NULL;
5058  			ptr = NULL;
5059		}
5060	}
5061
5062	/*
5063	 * Request to remove a rule.
5064	 */
5065	if (addrem == 1) {
5066		if (!f) {
5067			IPFERROR(29);
5068			error = ESRCH;
5069		} else {
5070			/*
5071			 * Do not allow activity from user space to interfere
5072			 * with rules not loaded that way.
5073			 */
5074			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5075				IPFERROR(30);
5076				error = EPERM;
5077				goto done;
5078			}
5079
5080			/*
5081			 * Return EBUSY if the rule is being reference by
5082			 * something else (eg state information.)
5083			 */
5084			if (f->fr_ref > 1) {
5085				IPFERROR(31);
5086				error = EBUSY;
5087				goto done;
5088			}
5089#ifdef	IPFILTER_SCAN
5090			if (f->fr_isctag != -1 &&
5091			    (f->fr_isc != (struct ipscan *)-1))
5092				ipf_scan_detachfr(f);
5093#endif
5094
5095			if (unit == IPL_LOGAUTH) {
5096				error = ipf_auth_precmd(softc, req, f, ftail);
5097				goto done;
5098			}
5099
5100			ipf_rule_delete(softc, f, unit, set);
5101
5102			need_free = makecopy;
5103		}
5104	} else {
5105		/*
5106		 * Not removing, so we must be adding/inserting a rule.
5107		 */
5108		if (f != NULL) {
5109			IPFERROR(32);
5110			error = EEXIST;
5111			goto done;
5112		}
5113		if (unit == IPL_LOGAUTH) {
5114			error = ipf_auth_precmd(softc, req, fp, ftail);
5115			goto done;
5116		}
5117
5118		MUTEX_NUKE(&fp->fr_lock);
5119		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5120		if (fp->fr_die != 0)
5121			ipf_rule_expire_insert(softc, fp, set);
5122
5123		fp->fr_hits = 0;
5124		if (makecopy != 0)
5125			fp->fr_ref = 1;
5126		fp->fr_pnext = ftail;
5127		fp->fr_next = *ftail;
5128		if (fp->fr_next != NULL)
5129			fp->fr_next->fr_pnext = &fp->fr_next;
5130		*ftail = fp;
5131		if (addrem == 0)
5132			ipf_fixskip(ftail, fp, 1);
5133
5134		fp->fr_icmpgrp = NULL;
5135		if (fp->fr_icmphead != -1) {
5136			group = FR_NAME(fp, fr_icmphead);
5137			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5138			fp->fr_icmpgrp = fg;
5139		}
5140
5141		fp->fr_grphead = NULL;
5142		if (fp->fr_grhead != -1) {
5143			group = FR_NAME(fp, fr_grhead);
5144			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5145					   unit, set);
5146			fp->fr_grphead = fg;
5147		}
5148	}
5149done:
5150	RWLOCK_EXIT(&softc->ipf_mutex);
5151donenolock:
5152	if (need_free || (error != 0)) {
5153		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5154			if ((fp->fr_satype == FRI_LOOKUP) &&
5155			    (fp->fr_srcptr != NULL))
5156				ipf_lookup_deref(softc, fp->fr_srctype,
5157						 fp->fr_srcptr);
5158			if ((fp->fr_datype == FRI_LOOKUP) &&
5159			    (fp->fr_dstptr != NULL))
5160				ipf_lookup_deref(softc, fp->fr_dsttype,
5161						 fp->fr_dstptr);
5162		}
5163		if (fp->fr_grp != NULL) {
5164			WRITE_ENTER(&softc->ipf_mutex);
5165			ipf_group_del(softc, fp->fr_grp, fp);
5166			RWLOCK_EXIT(&softc->ipf_mutex);
5167		}
5168		if ((ptr != NULL) && (makecopy != 0)) {
5169			KFREES(ptr, fp->fr_dsize);
5170		}
5171		KFREES(fp, fp->fr_size);
5172	}
5173	return (error);
5174}
5175
5176
5177/* ------------------------------------------------------------------------ */
5178/* Function:   ipf_rule_delete                                              */
5179/* Returns:    Nil                                                          */
5180/* Parameters: softc(I) - pointer to soft context main structure            */
5181/*             f(I)     - pointer to the rule being deleted                 */
5182/*             ftail(I) - pointer to the pointer to f                       */
5183/*             unit(I)  - device for which this is for                      */
5184/*             set(I)   - 1 or 0 (filter set)                               */
5185/*                                                                          */
5186/* This function attempts to do what it can to delete a filter rule: remove */
5187/* it from any linked lists and remove any groups it is responsible for.    */
5188/* But in the end, removing a rule can only drop the reference count - we   */
5189/* must use that as the guide for whether or not it can be freed.           */
5190/* ------------------------------------------------------------------------ */
5191static void
5192ipf_rule_delete(softc, f, unit, set)
5193	ipf_main_softc_t *softc;
5194	frentry_t *f;
5195	int unit, set;
5196{
5197
5198	/*
5199	 * If fr_pdnext is set, then the rule is on the expire list, so
5200	 * remove it from there.
5201	 */
5202	if (f->fr_pdnext != NULL) {
5203		*f->fr_pdnext = f->fr_dnext;
5204		if (f->fr_dnext != NULL)
5205			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5206		f->fr_pdnext = NULL;
5207		f->fr_dnext = NULL;
5208	}
5209
5210	ipf_fixskip(f->fr_pnext, f, -1);
5211	if (f->fr_pnext != NULL)
5212		*f->fr_pnext = f->fr_next;
5213	if (f->fr_next != NULL)
5214		f->fr_next->fr_pnext = f->fr_pnext;
5215	f->fr_pnext = NULL;
5216	f->fr_next = NULL;
5217
5218	(void) ipf_derefrule(softc, &f);
5219}
5220
5221/* ------------------------------------------------------------------------ */
5222/* Function:   ipf_rule_expire_insert                                       */
5223/* Returns:    Nil                                                          */
5224/* Parameters: softc(I) - pointer to soft context main structure            */
5225/*             f(I)     - pointer to rule to be added to expire list        */
5226/*             set(I)   - 1 or 0 (filter set)                               */
5227/*                                                                          */
5228/* If the new rule has a given expiration time, insert it into the list of  */
5229/* expiring rules with the ones to be removed first added to the front of   */
5230/* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5231/* expiration interval checks.                                              */
5232/* ------------------------------------------------------------------------ */
5233static void
5234ipf_rule_expire_insert(softc, f, set)
5235	ipf_main_softc_t *softc;
5236	frentry_t *f;
5237	int set;
5238{
5239	frentry_t *fr;
5240
5241	/*
5242	 */
5243
5244	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5245	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5246	     fr = fr->fr_dnext) {
5247		if (f->fr_die < fr->fr_die)
5248			break;
5249		if (fr->fr_dnext == NULL) {
5250			/*
5251			 * We've got to the last rule and everything
5252			 * wanted to be expired before this new node,
5253			 * so we have to tack it on the end...
5254			 */
5255			fr->fr_dnext = f;
5256			f->fr_pdnext = &fr->fr_dnext;
5257			fr = NULL;
5258			break;
5259		}
5260	}
5261
5262	if (softc->ipf_rule_explist[set] == NULL) {
5263		softc->ipf_rule_explist[set] = f;
5264		f->fr_pdnext = &softc->ipf_rule_explist[set];
5265	} else if (fr != NULL) {
5266		f->fr_dnext = fr;
5267		f->fr_pdnext = fr->fr_pdnext;
5268		fr->fr_pdnext = &f->fr_dnext;
5269	}
5270}
5271
5272
5273/* ------------------------------------------------------------------------ */
5274/* Function:   ipf_findlookup                                               */
5275/* Returns:    NULL = failure, else success                                 */
5276/* Parameters: softc(I) - pointer to soft context main structure            */
5277/*             unit(I)  - ipf device we want to find match for              */
5278/*             fp(I)    - rule for which lookup is for                      */
5279/*             addrp(I) - pointer to lookup information in address struct   */
5280/*             maskp(O) - pointer to lookup information for storage         */
5281/*                                                                          */
5282/* When using pools and hash tables to store addresses for matching in      */
5283/* rules, it is necessary to resolve both the object referred to by the     */
5284/* name or address (and return that pointer) and also provide the means by  */
5285/* which to determine if an address belongs to that object to make the      */
5286/* packet matching quicker.                                                 */
5287/* ------------------------------------------------------------------------ */
5288static void *
5289ipf_findlookup(softc, unit, fr, addrp, maskp)
5290	ipf_main_softc_t *softc;
5291	int unit;
5292	frentry_t *fr;
5293	i6addr_t *addrp, *maskp;
5294{
5295	void *ptr = NULL;
5296
5297	switch (addrp->iplookupsubtype)
5298	{
5299	case 0 :
5300		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5301					 addrp->iplookupnum,
5302					 &maskp->iplookupfunc);
5303		break;
5304	case 1 :
5305		if (addrp->iplookupname < 0)
5306			break;
5307		if (addrp->iplookupname >= fr->fr_namelen)
5308			break;
5309		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5310					  fr->fr_names + addrp->iplookupname,
5311					  &maskp->iplookupfunc);
5312		break;
5313	default :
5314		break;
5315	}
5316
5317	return ptr;
5318}
5319
5320
5321/* ------------------------------------------------------------------------ */
5322/* Function:    ipf_funcinit                                                */
5323/* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5324/* Parameters:  softc(I) - pointer to soft context main structure           */
5325/*              fr(I)    - pointer to filter rule                           */
5326/*                                                                          */
5327/* If a rule is a call rule, then check if the function it points to needs  */
5328/* an init function to be called now the rule has been loaded.              */
5329/* ------------------------------------------------------------------------ */
5330static int
5331ipf_funcinit(softc, fr)
5332	ipf_main_softc_t *softc;
5333	frentry_t *fr;
5334{
5335	ipfunc_resolve_t *ft;
5336	int err;
5337
5338	IPFERROR(34);
5339	err = ESRCH;
5340
5341	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5342		if (ft->ipfu_addr == fr->fr_func) {
5343			err = 0;
5344			if (ft->ipfu_init != NULL)
5345				err = (*ft->ipfu_init)(softc, fr);
5346			break;
5347		}
5348	return err;
5349}
5350
5351
5352/* ------------------------------------------------------------------------ */
5353/* Function:    ipf_funcfini                                                */
5354/* Returns:     Nil                                                         */
5355/* Parameters:  softc(I) - pointer to soft context main structure           */
5356/*              fr(I)    - pointer to filter rule                           */
5357/*                                                                          */
5358/* For a given filter rule, call the matching "fini" function if the rule   */
5359/* is using a known function that would have resulted in the "init" being   */
5360/* called for ealier.                                                       */
5361/* ------------------------------------------------------------------------ */
5362static void
5363ipf_funcfini(softc, fr)
5364	ipf_main_softc_t *softc;
5365	frentry_t *fr;
5366{
5367	ipfunc_resolve_t *ft;
5368
5369	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5370		if (ft->ipfu_addr == fr->fr_func) {
5371			if (ft->ipfu_fini != NULL)
5372				(void) (*ft->ipfu_fini)(softc, fr);
5373			break;
5374		}
5375}
5376
5377
5378/* ------------------------------------------------------------------------ */
5379/* Function:    ipf_findfunc                                                */
5380/* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5381/* Parameters:  funcptr(I) - function pointer to lookup                     */
5382/*                                                                          */
5383/* Look for a function in the table of known functions.                     */
5384/* ------------------------------------------------------------------------ */
5385static ipfunc_t
5386ipf_findfunc(funcptr)
5387	ipfunc_t funcptr;
5388{
5389	ipfunc_resolve_t *ft;
5390
5391	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5392		if (ft->ipfu_addr == funcptr)
5393			return funcptr;
5394	return NULL;
5395}
5396
5397
5398/* ------------------------------------------------------------------------ */
5399/* Function:    ipf_resolvefunc                                             */
5400/* Returns:     int - 0 == success, else error                              */
5401/* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5402/*                                                                          */
5403/* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5404/* This will either be the function name (if the pointer is set) or the     */
5405/* function pointer if the name is set.  When found, fill in the other one  */
5406/* so that the entire, complete, structure can be copied back to user space.*/
5407/* ------------------------------------------------------------------------ */
5408int
5409ipf_resolvefunc(softc, data)
5410	ipf_main_softc_t *softc;
5411	void *data;
5412{
5413	ipfunc_resolve_t res, *ft;
5414	int error;
5415
5416	error = BCOPYIN(data, &res, sizeof(res));
5417	if (error != 0) {
5418		IPFERROR(123);
5419		return EFAULT;
5420	}
5421
5422	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5423		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5424			if (strncmp(res.ipfu_name, ft->ipfu_name,
5425				    sizeof(res.ipfu_name)) == 0) {
5426				res.ipfu_addr = ft->ipfu_addr;
5427				res.ipfu_init = ft->ipfu_init;
5428				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5429					IPFERROR(35);
5430					return EFAULT;
5431				}
5432				return 0;
5433			}
5434	}
5435	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5436		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5437			if (ft->ipfu_addr == res.ipfu_addr) {
5438				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5439					       sizeof(res.ipfu_name));
5440				res.ipfu_init = ft->ipfu_init;
5441				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5442					IPFERROR(36);
5443					return EFAULT;
5444				}
5445				return 0;
5446			}
5447	}
5448	IPFERROR(37);
5449	return ESRCH;
5450}
5451
5452
5453#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5454     !defined(__FreeBSD__)) || \
5455    FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5456    OPENBSD_LT_REV(200006)
5457/*
5458 * From: NetBSD
5459 * ppsratecheck(): packets (or events) per second limitation.
5460 */
5461int
5462ppsratecheck(lasttime, curpps, maxpps)
5463	struct timeval *lasttime;
5464	int *curpps;
5465	int maxpps;	/* maximum pps allowed */
5466{
5467	struct timeval tv, delta;
5468	int rv;
5469
5470	GETKTIME(&tv);
5471
5472	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5473	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5474	if (delta.tv_usec < 0) {
5475		delta.tv_sec--;
5476		delta.tv_usec += 1000000;
5477	}
5478
5479	/*
5480	 * check for 0,0 is so that the message will be seen at least once.
5481	 * if more than one second have passed since the last update of
5482	 * lasttime, reset the counter.
5483	 *
5484	 * we do increment *curpps even in *curpps < maxpps case, as some may
5485	 * try to use *curpps for stat purposes as well.
5486	 */
5487	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5488	    delta.tv_sec >= 1) {
5489		*lasttime = tv;
5490		*curpps = 0;
5491		rv = 1;
5492	} else if (maxpps < 0)
5493		rv = 1;
5494	else if (*curpps < maxpps)
5495		rv = 1;
5496	else
5497		rv = 0;
5498	*curpps = *curpps + 1;
5499
5500	return (rv);
5501}
5502#endif
5503
5504
5505/* ------------------------------------------------------------------------ */
5506/* Function:    ipf_derefrule                                               */
5507/* Returns:     int   - 0 == rule freed up, else rule not freed             */
5508/* Parameters:  fr(I) - pointer to filter rule                              */
5509/*                                                                          */
5510/* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5511/* free it and any associated storage space being used by it.               */
5512/* ------------------------------------------------------------------------ */
5513int
5514ipf_derefrule(softc, frp)
5515	ipf_main_softc_t *softc;
5516	frentry_t **frp;
5517{
5518	frentry_t *fr;
5519	frdest_t *fdp;
5520
5521	fr = *frp;
5522	*frp = NULL;
5523
5524	MUTEX_ENTER(&fr->fr_lock);
5525	fr->fr_ref--;
5526	if (fr->fr_ref == 0) {
5527		MUTEX_EXIT(&fr->fr_lock);
5528		MUTEX_DESTROY(&fr->fr_lock);
5529
5530		ipf_funcfini(softc, fr);
5531
5532		fdp = &fr->fr_tif;
5533		if (fdp->fd_type == FRD_DSTLIST)
5534			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5535
5536		fdp = &fr->fr_rif;
5537		if (fdp->fd_type == FRD_DSTLIST)
5538			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5539
5540		fdp = &fr->fr_dif;
5541		if (fdp->fd_type == FRD_DSTLIST)
5542			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5543
5544		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5545		    fr->fr_satype == FRI_LOOKUP)
5546			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5547		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5548		    fr->fr_datype == FRI_LOOKUP)
5549			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5550
5551		if (fr->fr_grp != NULL)
5552			ipf_group_del(softc, fr->fr_grp, fr);
5553
5554		if (fr->fr_grphead != NULL)
5555			ipf_group_del(softc, fr->fr_grphead, fr);
5556
5557		if (fr->fr_icmpgrp != NULL)
5558			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5559
5560		if ((fr->fr_flags & FR_COPIED) != 0) {
5561			if (fr->fr_dsize) {
5562				KFREES(fr->fr_data, fr->fr_dsize);
5563			}
5564			KFREES(fr, fr->fr_size);
5565			return 0;
5566		}
5567		return 1;
5568	} else {
5569		MUTEX_EXIT(&fr->fr_lock);
5570	}
5571	return -1;
5572}
5573
5574
5575/* ------------------------------------------------------------------------ */
5576/* Function:    ipf_grpmapinit                                              */
5577/* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5578/* Parameters:  fr(I) - pointer to rule to find hash table for              */
5579/*                                                                          */
5580/* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5581/* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5582/* ------------------------------------------------------------------------ */
5583static int
5584ipf_grpmapinit(softc, fr)
5585	ipf_main_softc_t *softc;
5586	frentry_t *fr;
5587{
5588	char name[FR_GROUPLEN];
5589	iphtable_t *iph;
5590
5591#if defined(SNPRINTF) && defined(_KERNEL)
5592	SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5593#else
5594	(void) sprintf(name, "%d", fr->fr_arg);
5595#endif
5596	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5597	if (iph == NULL) {
5598		IPFERROR(38);
5599		return ESRCH;
5600	}
5601	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5602		IPFERROR(39);
5603		return ESRCH;
5604	}
5605	iph->iph_ref++;
5606	fr->fr_ptr = iph;
5607	return 0;
5608}
5609
5610
5611/* ------------------------------------------------------------------------ */
5612/* Function:    ipf_grpmapfini                                              */
5613/* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5614/* Parameters:  softc(I) - pointer to soft context main structure           */
5615/*              fr(I)    - pointer to rule to release hash table for        */
5616/*                                                                          */
5617/* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5618/* be called to undo what ipf_grpmapinit caused to be done.                 */
5619/* ------------------------------------------------------------------------ */
5620static int
5621ipf_grpmapfini(softc, fr)
5622	ipf_main_softc_t *softc;
5623	frentry_t *fr;
5624{
5625	iphtable_t *iph;
5626	iph = fr->fr_ptr;
5627	if (iph != NULL)
5628		ipf_lookup_deref(softc, IPLT_HASH, iph);
5629	return 0;
5630}
5631
5632
5633/* ------------------------------------------------------------------------ */
5634/* Function:    ipf_srcgrpmap                                               */
5635/* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5636/* Parameters:  fin(I)    - pointer to packet information                   */
5637/*              passp(IO) - pointer to current/new filter decision (unused) */
5638/*                                                                          */
5639/* Look for a rule group head in a hash table, using the source address as  */
5640/* the key, and descend into that group and continue matching rules against */
5641/* the packet.                                                              */
5642/* ------------------------------------------------------------------------ */
5643frentry_t *
5644ipf_srcgrpmap(fin, passp)
5645	fr_info_t *fin;
5646	u_32_t *passp;
5647{
5648	frgroup_t *fg;
5649	void *rval;
5650
5651	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5652				 &fin->fin_src);
5653	if (rval == NULL)
5654		return NULL;
5655
5656	fg = rval;
5657	fin->fin_fr = fg->fg_start;
5658	(void) ipf_scanlist(fin, *passp);
5659	return fin->fin_fr;
5660}
5661
5662
5663/* ------------------------------------------------------------------------ */
5664/* Function:    ipf_dstgrpmap                                               */
5665/* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5666/* Parameters:  fin(I)    - pointer to packet information                   */
5667/*              passp(IO) - pointer to current/new filter decision (unused) */
5668/*                                                                          */
5669/* Look for a rule group head in a hash table, using the destination        */
5670/* address as the key, and descend into that group and continue matching    */
5671/* rules against  the packet.                                               */
5672/* ------------------------------------------------------------------------ */
5673frentry_t *
5674ipf_dstgrpmap(fin, passp)
5675	fr_info_t *fin;
5676	u_32_t *passp;
5677{
5678	frgroup_t *fg;
5679	void *rval;
5680
5681	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5682				 &fin->fin_dst);
5683	if (rval == NULL)
5684		return NULL;
5685
5686	fg = rval;
5687	fin->fin_fr = fg->fg_start;
5688	(void) ipf_scanlist(fin, *passp);
5689	return fin->fin_fr;
5690}
5691
5692/*
5693 * Queue functions
5694 * ===============
5695 * These functions manage objects on queues for efficient timeouts.  There
5696 * are a number of system defined queues as well as user defined timeouts.
5697 * It is expected that a lock is held in the domain in which the queue
5698 * belongs (i.e. either state or NAT) when calling any of these functions
5699 * that prevents ipf_freetimeoutqueue() from being called at the same time
5700 * as any other.
5701 */
5702
5703
5704/* ------------------------------------------------------------------------ */
5705/* Function:    ipf_addtimeoutqueue                                         */
5706/* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5707/*                               timeout queue with given interval.         */
5708/* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5709/*                           of interface queues.                           */
5710/*              seconds(I) - timeout value in seconds for this queue.       */
5711/*                                                                          */
5712/* This routine first looks for a timeout queue that matches the interval   */
5713/* being requested.  If it finds one, increments the reference counter and  */
5714/* returns a pointer to it.  If none are found, it allocates a new one and  */
5715/* inserts it at the top of the list.                                       */
5716/*                                                                          */
5717/* Locking.                                                                 */
5718/* It is assumed that the caller of this function has an appropriate lock   */
5719/* held (exclusively) in the domain that encompases 'parent'.               */
5720/* ------------------------------------------------------------------------ */
5721ipftq_t *
5722ipf_addtimeoutqueue(softc, parent, seconds)
5723	ipf_main_softc_t *softc;
5724	ipftq_t **parent;
5725	u_int seconds;
5726{
5727	ipftq_t *ifq;
5728	u_int period;
5729
5730	period = seconds * IPF_HZ_DIVIDE;
5731
5732	MUTEX_ENTER(&softc->ipf_timeoutlock);
5733	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5734		if (ifq->ifq_ttl == period) {
5735			/*
5736			 * Reset the delete flag, if set, so the structure
5737			 * gets reused rather than freed and reallocated.
5738			 */
5739			MUTEX_ENTER(&ifq->ifq_lock);
5740			ifq->ifq_flags &= ~IFQF_DELETE;
5741			ifq->ifq_ref++;
5742			MUTEX_EXIT(&ifq->ifq_lock);
5743			MUTEX_EXIT(&softc->ipf_timeoutlock);
5744
5745			return ifq;
5746		}
5747	}
5748
5749	KMALLOC(ifq, ipftq_t *);
5750	if (ifq != NULL) {
5751		MUTEX_NUKE(&ifq->ifq_lock);
5752		IPFTQ_INIT(ifq, period, "ipftq mutex");
5753		ifq->ifq_next = *parent;
5754		ifq->ifq_pnext = parent;
5755		ifq->ifq_flags = IFQF_USER;
5756		ifq->ifq_ref++;
5757		*parent = ifq;
5758		softc->ipf_userifqs++;
5759	}
5760	MUTEX_EXIT(&softc->ipf_timeoutlock);
5761	return ifq;
5762}
5763
5764
5765/* ------------------------------------------------------------------------ */
5766/* Function:    ipf_deletetimeoutqueue                                      */
5767/* Returns:     int    - new reference count value of the timeout queue     */
5768/* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5769/* Locks:       ifq->ifq_lock                                               */
5770/*                                                                          */
5771/* This routine must be called when we're discarding a pointer to a timeout */
5772/* queue object, taking care of the reference counter.                      */
5773/*                                                                          */
5774/* Now that this just sets a DELETE flag, it requires the expire code to    */
5775/* check the list of user defined timeout queues and call the free function */
5776/* below (currently commented out) to stop memory leaking.  It is done this */
5777/* way because the locking may not be sufficient to safely do a free when   */
5778/* this function is called.                                                 */
5779/* ------------------------------------------------------------------------ */
5780int
5781ipf_deletetimeoutqueue(ifq)
5782	ipftq_t *ifq;
5783{
5784
5785	ifq->ifq_ref--;
5786	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5787		ifq->ifq_flags |= IFQF_DELETE;
5788	}
5789
5790	return ifq->ifq_ref;
5791}
5792
5793
5794/* ------------------------------------------------------------------------ */
5795/* Function:    ipf_freetimeoutqueue                                        */
5796/* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5797/* Returns:     Nil                                                         */
5798/*                                                                          */
5799/* Locking:                                                                 */
5800/* It is assumed that the caller of this function has an appropriate lock   */
5801/* held (exclusively) in the domain that encompases the callers "domain".   */
5802/* The ifq_lock for this structure should not be held.                      */
5803/*                                                                          */
5804/* Remove a user defined timeout queue from the list of queues it is in and */
5805/* tidy up after this is done.                                              */
5806/* ------------------------------------------------------------------------ */
5807void
5808ipf_freetimeoutqueue(softc, ifq)
5809	ipf_main_softc_t *softc;
5810	ipftq_t *ifq;
5811{
5812
5813	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5814	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5815		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5816		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5817		       ifq->ifq_ref);
5818		return;
5819	}
5820
5821	/*
5822	 * Remove from its position in the list.
5823	 */
5824	*ifq->ifq_pnext = ifq->ifq_next;
5825	if (ifq->ifq_next != NULL)
5826		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5827	ifq->ifq_next = NULL;
5828	ifq->ifq_pnext = NULL;
5829
5830	MUTEX_DESTROY(&ifq->ifq_lock);
5831	ATOMIC_DEC(softc->ipf_userifqs);
5832	KFREE(ifq);
5833}
5834
5835
5836/* ------------------------------------------------------------------------ */
5837/* Function:    ipf_deletequeueentry                                        */
5838/* Returns:     Nil                                                         */
5839/* Parameters:  tqe(I) - timeout queue entry to delete                      */
5840/*                                                                          */
5841/* Remove a tail queue entry from its queue and make it an orphan.          */
5842/* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5843/* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5844/* the correct lock(s) may not be held that would make it safe to do so.    */
5845/* ------------------------------------------------------------------------ */
5846void
5847ipf_deletequeueentry(tqe)
5848	ipftqent_t *tqe;
5849{
5850	ipftq_t *ifq;
5851
5852	ifq = tqe->tqe_ifq;
5853
5854	MUTEX_ENTER(&ifq->ifq_lock);
5855
5856	if (tqe->tqe_pnext != NULL) {
5857		*tqe->tqe_pnext = tqe->tqe_next;
5858		if (tqe->tqe_next != NULL)
5859			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5860		else    /* we must be the tail anyway */
5861			ifq->ifq_tail = tqe->tqe_pnext;
5862
5863		tqe->tqe_pnext = NULL;
5864		tqe->tqe_ifq = NULL;
5865	}
5866
5867	(void) ipf_deletetimeoutqueue(ifq);
5868	ASSERT(ifq->ifq_ref > 0);
5869
5870	MUTEX_EXIT(&ifq->ifq_lock);
5871}
5872
5873
5874/* ------------------------------------------------------------------------ */
5875/* Function:    ipf_queuefront                                              */
5876/* Returns:     Nil                                                         */
5877/* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5878/*                                                                          */
5879/* Move a queue entry to the front of the queue, if it isn't already there. */
5880/* ------------------------------------------------------------------------ */
5881void
5882ipf_queuefront(tqe)
5883	ipftqent_t *tqe;
5884{
5885	ipftq_t *ifq;
5886
5887	ifq = tqe->tqe_ifq;
5888	if (ifq == NULL)
5889		return;
5890
5891	MUTEX_ENTER(&ifq->ifq_lock);
5892	if (ifq->ifq_head != tqe) {
5893		*tqe->tqe_pnext = tqe->tqe_next;
5894		if (tqe->tqe_next)
5895			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5896		else
5897			ifq->ifq_tail = tqe->tqe_pnext;
5898
5899		tqe->tqe_next = ifq->ifq_head;
5900		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5901		ifq->ifq_head = tqe;
5902		tqe->tqe_pnext = &ifq->ifq_head;
5903	}
5904	MUTEX_EXIT(&ifq->ifq_lock);
5905}
5906
5907
5908/* ------------------------------------------------------------------------ */
5909/* Function:    ipf_queueback                                               */
5910/* Returns:     Nil                                                         */
5911/* Parameters:  ticks(I) - ipf tick time to use with this call              */
5912/*              tqe(I)   - pointer to timeout queue entry                   */
5913/*                                                                          */
5914/* Move a queue entry to the back of the queue, if it isn't already there.  */
5915/* We use use ticks to calculate the expiration and mark for when we last   */
5916/* touched the structure.                                                   */
5917/* ------------------------------------------------------------------------ */
5918void
5919ipf_queueback(ticks, tqe)
5920	u_long ticks;
5921	ipftqent_t *tqe;
5922{
5923	ipftq_t *ifq;
5924
5925	ifq = tqe->tqe_ifq;
5926	if (ifq == NULL)
5927		return;
5928	tqe->tqe_die = ticks + ifq->ifq_ttl;
5929	tqe->tqe_touched = ticks;
5930
5931	MUTEX_ENTER(&ifq->ifq_lock);
5932	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5933		/*
5934		 * Remove from list
5935		 */
5936		*tqe->tqe_pnext = tqe->tqe_next;
5937		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5938
5939		/*
5940		 * Make it the last entry.
5941		 */
5942		tqe->tqe_next = NULL;
5943		tqe->tqe_pnext = ifq->ifq_tail;
5944		*ifq->ifq_tail = tqe;
5945		ifq->ifq_tail = &tqe->tqe_next;
5946	}
5947	MUTEX_EXIT(&ifq->ifq_lock);
5948}
5949
5950
5951/* ------------------------------------------------------------------------ */
5952/* Function:    ipf_queueappend                                             */
5953/* Returns:     Nil                                                         */
5954/* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5955/*              tqe(I)    - pointer to timeout queue entry                  */
5956/*              ifq(I)    - pointer to timeout queue                        */
5957/*              parent(I) - owing object pointer                            */
5958/*                                                                          */
5959/* Add a new item to this queue and put it on the very end.                 */
5960/* We use use ticks to calculate the expiration and mark for when we last   */
5961/* touched the structure.                                                   */
5962/* ------------------------------------------------------------------------ */
5963void
5964ipf_queueappend(ticks, tqe, ifq, parent)
5965	u_long ticks;
5966	ipftqent_t *tqe;
5967	ipftq_t *ifq;
5968	void *parent;
5969{
5970
5971	MUTEX_ENTER(&ifq->ifq_lock);
5972	tqe->tqe_parent = parent;
5973	tqe->tqe_pnext = ifq->ifq_tail;
5974	*ifq->ifq_tail = tqe;
5975	ifq->ifq_tail = &tqe->tqe_next;
5976	tqe->tqe_next = NULL;
5977	tqe->tqe_ifq = ifq;
5978	tqe->tqe_die = ticks + ifq->ifq_ttl;
5979	tqe->tqe_touched = ticks;
5980	ifq->ifq_ref++;
5981	MUTEX_EXIT(&ifq->ifq_lock);
5982}
5983
5984
5985/* ------------------------------------------------------------------------ */
5986/* Function:    ipf_movequeue                                               */
5987/* Returns:     Nil                                                         */
5988/* Parameters:  tq(I)   - pointer to timeout queue information              */
5989/*              oifp(I) - old timeout queue entry was on                    */
5990/*              nifp(I) - new timeout queue to put entry on                 */
5991/*                                                                          */
5992/* Move a queue entry from one timeout queue to another timeout queue.      */
5993/* If it notices that the current entry is already last and does not need   */
5994/* to move queue, the return.                                               */
5995/* ------------------------------------------------------------------------ */
5996void
5997ipf_movequeue(ticks, tqe, oifq, nifq)
5998	u_long ticks;
5999	ipftqent_t *tqe;
6000	ipftq_t *oifq, *nifq;
6001{
6002
6003	/*
6004	 * If the queue hasn't changed and we last touched this entry at the
6005	 * same ipf time, then we're not going to achieve anything by either
6006	 * changing the ttl or moving it on the queue.
6007	 */
6008	if (oifq == nifq && tqe->tqe_touched == ticks)
6009		return;
6010
6011	/*
6012	 * For any of this to be outside the lock, there is a risk that two
6013	 * packets entering simultaneously, with one changing to a different
6014	 * queue and one not, could end up with things in a bizarre state.
6015	 */
6016	MUTEX_ENTER(&oifq->ifq_lock);
6017
6018	tqe->tqe_touched = ticks;
6019	tqe->tqe_die = ticks + nifq->ifq_ttl;
6020	/*
6021	 * Is the operation here going to be a no-op ?
6022	 */
6023	if (oifq == nifq) {
6024		if ((tqe->tqe_next == NULL) ||
6025		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
6026			MUTEX_EXIT(&oifq->ifq_lock);
6027			return;
6028		}
6029	}
6030
6031	/*
6032	 * Remove from the old queue
6033	 */
6034	*tqe->tqe_pnext = tqe->tqe_next;
6035	if (tqe->tqe_next)
6036		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
6037	else
6038		oifq->ifq_tail = tqe->tqe_pnext;
6039	tqe->tqe_next = NULL;
6040
6041	/*
6042	 * If we're moving from one queue to another, release the
6043	 * lock on the old queue and get a lock on the new queue.
6044	 * For user defined queues, if we're moving off it, call
6045	 * delete in case it can now be freed.
6046	 */
6047	if (oifq != nifq) {
6048		tqe->tqe_ifq = NULL;
6049
6050		(void) ipf_deletetimeoutqueue(oifq);
6051
6052		MUTEX_EXIT(&oifq->ifq_lock);
6053
6054		MUTEX_ENTER(&nifq->ifq_lock);
6055
6056		tqe->tqe_ifq = nifq;
6057		nifq->ifq_ref++;
6058	}
6059
6060	/*
6061	 * Add to the bottom of the new queue
6062	 */
6063	tqe->tqe_pnext = nifq->ifq_tail;
6064	*nifq->ifq_tail = tqe;
6065	nifq->ifq_tail = &tqe->tqe_next;
6066	MUTEX_EXIT(&nifq->ifq_lock);
6067}
6068
6069
6070/* ------------------------------------------------------------------------ */
6071/* Function:    ipf_updateipid                                              */
6072/* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
6073/* Parameters:  fin(I) - pointer to packet information                      */
6074/*                                                                          */
6075/* When we are doing NAT, change the IP of every packet to represent a      */
6076/* single sequence of packets coming from the host, hiding any host         */
6077/* specific sequencing that might otherwise be revealed.  If the packet is  */
6078/* a fragment, then store the 'new' IPid in the fragment cache and look up  */
6079/* the fragment cache for non-leading fragments.  If a non-leading fragment */
6080/* has no match in the cache, return an error.                              */
6081/* ------------------------------------------------------------------------ */
6082static int
6083ipf_updateipid(fin)
6084	fr_info_t *fin;
6085{
6086	u_short id, ido, sums;
6087	u_32_t sumd, sum;
6088	ip_t *ip;
6089
6090	if (fin->fin_off != 0) {
6091		sum = ipf_frag_ipidknown(fin);
6092		if (sum == 0xffffffff)
6093			return -1;
6094		sum &= 0xffff;
6095		id = (u_short)sum;
6096	} else {
6097		id = ipf_nextipid(fin);
6098		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
6099			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
6100	}
6101
6102	ip = fin->fin_ip;
6103	ido = ntohs(ip->ip_id);
6104	if (id == ido)
6105		return 0;
6106	ip->ip_id = htons(id);
6107	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
6108	sum = (~ntohs(ip->ip_sum)) & 0xffff;
6109	sum += sumd;
6110	sum = (sum >> 16) + (sum & 0xffff);
6111	sum = (sum >> 16) + (sum & 0xffff);
6112	sums = ~(u_short)sum;
6113	ip->ip_sum = htons(sums);
6114	return 0;
6115}
6116
6117
6118#ifdef	NEED_FRGETIFNAME
6119/* ------------------------------------------------------------------------ */
6120/* Function:    ipf_getifname                                               */
6121/* Returns:     char *    - pointer to interface name                       */
6122/* Parameters:  ifp(I)    - pointer to network interface                    */
6123/*              buffer(O) - pointer to where to store interface name        */
6124/*                                                                          */
6125/* Constructs an interface name in the buffer passed.  The buffer passed is */
6126/* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
6127/* as a NULL pointer then return a pointer to a static array.               */
6128/* ------------------------------------------------------------------------ */
6129char *
6130ipf_getifname(ifp, buffer)
6131	struct ifnet *ifp;
6132	char *buffer;
6133{
6134	static char namebuf[LIFNAMSIZ];
6135# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6136     defined(__sgi) || defined(linux) || defined(_AIX51) || \
6137     (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6138	int unit, space;
6139	char temp[20];
6140	char *s;
6141# endif
6142
6143	if (buffer == NULL)
6144		buffer = namebuf;
6145	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6146	buffer[LIFNAMSIZ - 1] = '\0';
6147# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6148     defined(__sgi) || defined(_AIX51) || \
6149     (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6150	for (s = buffer; *s; s++)
6151		;
6152	unit = ifp->if_unit;
6153	space = LIFNAMSIZ - (s - buffer);
6154	if ((space > 0) && (unit >= 0)) {
6155#  if defined(SNPRINTF) && defined(_KERNEL)
6156		SNPRINTF(temp, sizeof(temp), "%d", unit);
6157#  else
6158		(void) sprintf(temp, "%d", unit);
6159#  endif
6160		(void) strncpy(s, temp, space);
6161	}
6162# endif
6163	return buffer;
6164}
6165#endif
6166
6167
6168/* ------------------------------------------------------------------------ */
6169/* Function:    ipf_ioctlswitch                                             */
6170/* Returns:     int     - -1 continue processing, else ioctl return value   */
6171/* Parameters:  unit(I) - device unit opened                                */
6172/*              data(I) - pointer to ioctl data                             */
6173/*              cmd(I)  - ioctl command                                     */
6174/*              mode(I) - mode value                                        */
6175/*              uid(I)  - uid making the ioctl call                         */
6176/*              ctx(I)  - pointer to context data                           */
6177/*                                                                          */
6178/* Based on the value of unit, call the appropriate ioctl handler or return */
6179/* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6180/* for the device in order to execute the ioctl.  A special case is made    */
6181/* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6182/* The context data pointer is passed through as this is used as the key    */
6183/* for locating a matching token for continued access for walking lists,    */
6184/* etc.                                                                     */
6185/* ------------------------------------------------------------------------ */
6186int
6187ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx)
6188	ipf_main_softc_t *softc;
6189	int unit, mode, uid;
6190	ioctlcmd_t cmd;
6191	void *data, *ctx;
6192{
6193	int error = 0;
6194
6195	switch (cmd)
6196	{
6197	case SIOCIPFINTERROR :
6198		error = BCOPYOUT(&softc->ipf_interror, data,
6199				 sizeof(softc->ipf_interror));
6200		if (error != 0) {
6201			IPFERROR(40);
6202			error = EFAULT;
6203		}
6204		return error;
6205	default :
6206		break;
6207	}
6208
6209	switch (unit)
6210	{
6211	case IPL_LOGIPF :
6212		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6213		break;
6214	case IPL_LOGNAT :
6215		if (softc->ipf_running > 0) {
6216			error = ipf_nat_ioctl(softc, data, cmd, mode,
6217					      uid, ctx);
6218		} else {
6219			IPFERROR(42);
6220			error = EIO;
6221		}
6222		break;
6223	case IPL_LOGSTATE :
6224		if (softc->ipf_running > 0) {
6225			error = ipf_state_ioctl(softc, data, cmd, mode,
6226						uid, ctx);
6227		} else {
6228			IPFERROR(43);
6229			error = EIO;
6230		}
6231		break;
6232	case IPL_LOGAUTH :
6233		if (softc->ipf_running > 0) {
6234			error = ipf_auth_ioctl(softc, data, cmd, mode,
6235					       uid, ctx);
6236		} else {
6237			IPFERROR(44);
6238			error = EIO;
6239		}
6240		break;
6241	case IPL_LOGSYNC :
6242		if (softc->ipf_running > 0) {
6243			error = ipf_sync_ioctl(softc, data, cmd, mode,
6244					       uid, ctx);
6245		} else {
6246			error = EIO;
6247			IPFERROR(45);
6248		}
6249		break;
6250	case IPL_LOGSCAN :
6251#ifdef IPFILTER_SCAN
6252		if (softc->ipf_running > 0)
6253			error = ipf_scan_ioctl(softc, data, cmd, mode,
6254					       uid, ctx);
6255		else
6256#endif
6257		{
6258			error = EIO;
6259			IPFERROR(46);
6260		}
6261		break;
6262	case IPL_LOGLOOKUP :
6263		if (softc->ipf_running > 0) {
6264			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6265						 uid, ctx);
6266		} else {
6267			error = EIO;
6268			IPFERROR(47);
6269		}
6270		break;
6271	default :
6272		IPFERROR(48);
6273		error = EIO;
6274		break;
6275	}
6276
6277	return error;
6278}
6279
6280
6281/*
6282 * This array defines the expected size of objects coming into the kernel
6283 * for the various recognised object types. The first column is flags (see
6284 * below), 2nd column is current size, 3rd column is the version number of
6285 * when the current size became current.
6286 * Flags:
6287 * 1 = minimum size, not absolute size
6288 */
6289static	int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6290	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6291	{ 1,	sizeof(struct friostat),	5010000 },
6292	{ 0,	sizeof(struct fr_info),		5010000 },
6293	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6294	{ 0,	sizeof(struct ipfrstat),	5010000 },
6295	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6296	{ 0,	sizeof(struct natstat),		5010000 },
6297	{ 0,	sizeof(struct ipstate_save),	5010000 },
6298	{ 1,	sizeof(struct nat_save),	5010000 },
6299	{ 0,	sizeof(struct natlookup),	5010000 },
6300	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6301	{ 0,	sizeof(struct ips_stat),	5010000 },
6302	{ 0,	sizeof(struct frauth),		5010000 },
6303	{ 0,	sizeof(struct ipftune),		4010100 },
6304	{ 0,	sizeof(struct nat),		5010000 },
6305	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6306	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6307	{ 0,	sizeof(struct ipftable),	4011400 },
6308	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6309	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6310	{ 1,	0,				0	}, /* IPFEXPR */
6311	{ 0,	0,				0	}, /* PROXYCTL */
6312	{ 0,	sizeof (struct fripf),		5010000	}
6313};
6314
6315
6316/* ------------------------------------------------------------------------ */
6317/* Function:    ipf_inobj                                                   */
6318/* Returns:     int     - 0 = success, else failure                         */
6319/* Parameters:  softc(I) - soft context pointerto work with                 */
6320/*              data(I)  - pointer to ioctl data                            */
6321/*              objp(O)  - where to store ipfobj structure                  */
6322/*              ptr(I)   - pointer to data to copy out                      */
6323/*              type(I)  - type of structure being moved                    */
6324/*                                                                          */
6325/* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6326/* add things to check for version numbers, sizes, etc, to make it backward */
6327/* compatible at the ABI for user land.                                     */
6328/* If objp is not NULL then we assume that the caller wants to see what is  */
6329/* in the ipfobj_t structure being copied in. As an example, this can tell  */
6330/* the caller what version of ipfilter the ioctl program was written to.    */
6331/* ------------------------------------------------------------------------ */
6332int
6333ipf_inobj(softc, data, objp, ptr, type)
6334	ipf_main_softc_t *softc;
6335	void *data;
6336	ipfobj_t *objp;
6337	void *ptr;
6338	int type;
6339{
6340	ipfobj_t obj;
6341	int error;
6342	int size;
6343
6344	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6345		IPFERROR(49);
6346		return EINVAL;
6347	}
6348
6349	if (objp == NULL)
6350		objp = &obj;
6351	error = BCOPYIN(data, objp, sizeof(*objp));
6352	if (error != 0) {
6353		IPFERROR(124);
6354		return EFAULT;
6355	}
6356
6357	if (objp->ipfo_type != type) {
6358		IPFERROR(50);
6359		return EINVAL;
6360	}
6361
6362	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6363		if ((ipf_objbytes[type][0] & 1) != 0) {
6364			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6365				IPFERROR(51);
6366				return EINVAL;
6367			}
6368			size =  ipf_objbytes[type][1];
6369		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6370			size =  objp->ipfo_size;
6371		} else {
6372			IPFERROR(52);
6373			return EINVAL;
6374		}
6375		error = COPYIN(objp->ipfo_ptr, ptr, size);
6376		if (error != 0) {
6377			IPFERROR(55);
6378			error = EFAULT;
6379		}
6380	} else {
6381#ifdef  IPFILTER_COMPAT
6382		error = ipf_in_compat(softc, objp, ptr, 0);
6383#else
6384		IPFERROR(54);
6385		error = EINVAL;
6386#endif
6387	}
6388	return error;
6389}
6390
6391
6392/* ------------------------------------------------------------------------ */
6393/* Function:    ipf_inobjsz                                                 */
6394/* Returns:     int     - 0 = success, else failure                         */
6395/* Parameters:  softc(I) - soft context pointerto work with                 */
6396/*              data(I)  - pointer to ioctl data                            */
6397/*              ptr(I)   - pointer to store real data in                    */
6398/*              type(I)  - type of structure being moved                    */
6399/*              sz(I)    - size of data to copy                             */
6400/*                                                                          */
6401/* As per ipf_inobj, except the size of the object to copy in is passed in  */
6402/* but it must not be smaller than the size defined for the type and the    */
6403/* type must allow for varied sized objects.  The extra requirement here is */
6404/* that sz must match the size of the object being passed in - this is not  */
6405/* not possible nor required in ipf_inobj().                                */
6406/* ------------------------------------------------------------------------ */
6407int
6408ipf_inobjsz(softc, data, ptr, type, sz)
6409	ipf_main_softc_t *softc;
6410	void *data;
6411	void *ptr;
6412	int type, sz;
6413{
6414	ipfobj_t obj;
6415	int error;
6416
6417	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6418		IPFERROR(56);
6419		return EINVAL;
6420	}
6421
6422	error = BCOPYIN(data, &obj, sizeof(obj));
6423	if (error != 0) {
6424		IPFERROR(125);
6425		return EFAULT;
6426	}
6427
6428	if (obj.ipfo_type != type) {
6429		IPFERROR(58);
6430		return EINVAL;
6431	}
6432
6433	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6434		if (((ipf_objbytes[type][0] & 1) == 0) ||
6435		    (sz < ipf_objbytes[type][1])) {
6436			IPFERROR(57);
6437			return EINVAL;
6438		}
6439		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6440		if (error != 0) {
6441			IPFERROR(61);
6442			error = EFAULT;
6443		}
6444	} else {
6445#ifdef	IPFILTER_COMPAT
6446		error = ipf_in_compat(softc, &obj, ptr, sz);
6447#else
6448		IPFERROR(60);
6449		error = EINVAL;
6450#endif
6451	}
6452	return error;
6453}
6454
6455
6456/* ------------------------------------------------------------------------ */
6457/* Function:    ipf_outobjsz                                                */
6458/* Returns:     int     - 0 = success, else failure                         */
6459/* Parameters:  data(I) - pointer to ioctl data                             */
6460/*              ptr(I)  - pointer to store real data in                     */
6461/*              type(I) - type of structure being moved                     */
6462/*              sz(I)   - size of data to copy                              */
6463/*                                                                          */
6464/* As per ipf_outobj, except the size of the object to copy out is passed in*/
6465/* but it must not be smaller than the size defined for the type and the    */
6466/* type must allow for varied sized objects.  The extra requirement here is */
6467/* that sz must match the size of the object being passed in - this is not  */
6468/* not possible nor required in ipf_outobj().                               */
6469/* ------------------------------------------------------------------------ */
6470int
6471ipf_outobjsz(softc, data, ptr, type, sz)
6472	ipf_main_softc_t *softc;
6473	void *data;
6474	void *ptr;
6475	int type, sz;
6476{
6477	ipfobj_t obj;
6478	int error;
6479
6480	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6481		IPFERROR(62);
6482		return EINVAL;
6483	}
6484
6485	error = BCOPYIN(data, &obj, sizeof(obj));
6486	if (error != 0) {
6487		IPFERROR(127);
6488		return EFAULT;
6489	}
6490
6491	if (obj.ipfo_type != type) {
6492		IPFERROR(63);
6493		return EINVAL;
6494	}
6495
6496	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6497		if (((ipf_objbytes[type][0] & 1) == 0) ||
6498		    (sz < ipf_objbytes[type][1])) {
6499			IPFERROR(146);
6500			return EINVAL;
6501		}
6502		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6503		if (error != 0) {
6504			IPFERROR(66);
6505			error = EFAULT;
6506		}
6507	} else {
6508#ifdef	IPFILTER_COMPAT
6509		error = ipf_out_compat(softc, &obj, ptr);
6510#else
6511		IPFERROR(65);
6512		error = EINVAL;
6513#endif
6514	}
6515	return error;
6516}
6517
6518
6519/* ------------------------------------------------------------------------ */
6520/* Function:    ipf_outobj                                                  */
6521/* Returns:     int     - 0 = success, else failure                         */
6522/* Parameters:  data(I) - pointer to ioctl data                             */
6523/*              ptr(I)  - pointer to store real data in                     */
6524/*              type(I) - type of structure being moved                     */
6525/*                                                                          */
6526/* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6527/* future, we add things to check for version numbers, sizes, etc, to make  */
6528/* it backward  compatible at the ABI for user land.                        */
6529/* ------------------------------------------------------------------------ */
6530int
6531ipf_outobj(softc, data, ptr, type)
6532	ipf_main_softc_t *softc;
6533	void *data;
6534	void *ptr;
6535	int type;
6536{
6537	ipfobj_t obj;
6538	int error;
6539
6540	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6541		IPFERROR(67);
6542		return EINVAL;
6543	}
6544
6545	error = BCOPYIN(data, &obj, sizeof(obj));
6546	if (error != 0) {
6547		IPFERROR(126);
6548		return EFAULT;
6549	}
6550
6551	if (obj.ipfo_type != type) {
6552		IPFERROR(68);
6553		return EINVAL;
6554	}
6555
6556	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6557		if ((ipf_objbytes[type][0] & 1) != 0) {
6558			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6559				IPFERROR(69);
6560				return EINVAL;
6561			}
6562		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6563			IPFERROR(70);
6564			return EINVAL;
6565		}
6566
6567		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6568		if (error != 0) {
6569			IPFERROR(73);
6570			error = EFAULT;
6571		}
6572	} else {
6573#ifdef	IPFILTER_COMPAT
6574		error = ipf_out_compat(softc, &obj, ptr);
6575#else
6576		IPFERROR(72);
6577		error = EINVAL;
6578#endif
6579	}
6580	return error;
6581}
6582
6583
6584/* ------------------------------------------------------------------------ */
6585/* Function:    ipf_outobjk                                                 */
6586/* Returns:     int     - 0 = success, else failure                         */
6587/* Parameters:  obj(I)  - pointer to data description structure             */
6588/*              ptr(I)  - pointer to kernel data to copy out                */
6589/*                                                                          */
6590/* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6591/* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6592/* already populated with information and now we just need to use it.       */
6593/* There is no need for this function to have a "type" parameter as there   */
6594/* is no point in validating information that comes from the kernel with    */
6595/* itself.                                                                  */
6596/* ------------------------------------------------------------------------ */
6597int
6598ipf_outobjk(softc, obj, ptr)
6599	ipf_main_softc_t *softc;
6600	ipfobj_t *obj;
6601	void *ptr;
6602{
6603	int type = obj->ipfo_type;
6604	int error;
6605
6606	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6607		IPFERROR(147);
6608		return EINVAL;
6609	}
6610
6611	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6612		if ((ipf_objbytes[type][0] & 1) != 0) {
6613			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6614				IPFERROR(148);
6615				return EINVAL;
6616			}
6617
6618		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6619			IPFERROR(149);
6620			return EINVAL;
6621		}
6622
6623		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6624		if (error != 0) {
6625			IPFERROR(150);
6626			error = EFAULT;
6627		}
6628	} else {
6629#ifdef  IPFILTER_COMPAT
6630		error = ipf_out_compat(softc, obj, ptr);
6631#else
6632		IPFERROR(151);
6633		error = EINVAL;
6634#endif
6635	}
6636	return error;
6637}
6638
6639
6640/* ------------------------------------------------------------------------ */
6641/* Function:    ipf_checkl4sum                                              */
6642/* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6643/* Parameters:  fin(I) - pointer to packet information                      */
6644/*                                                                          */
6645/* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6646/* not possible, return without indicating a failure or success but in a    */
6647/* way that is ditinguishable. This function should only be called by the   */
6648/* ipf_checkv6sum() for each platform.                                      */
6649/* ------------------------------------------------------------------------ */
6650INLINE int
6651ipf_checkl4sum(fin)
6652	fr_info_t *fin;
6653{
6654	u_short sum, hdrsum, *csump;
6655	udphdr_t *udp;
6656	int dosum;
6657
6658	/*
6659	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6660	 * isn't already considered "bad", then validate the checksum.  If
6661	 * this check fails then considered the packet to be "bad".
6662	 */
6663	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6664		return 1;
6665
6666	csump = NULL;
6667	hdrsum = 0;
6668	dosum = 0;
6669	sum = 0;
6670
6671	switch (fin->fin_p)
6672	{
6673	case IPPROTO_TCP :
6674		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6675		dosum = 1;
6676		break;
6677
6678	case IPPROTO_UDP :
6679		udp = fin->fin_dp;
6680		if (udp->uh_sum != 0) {
6681			csump = &udp->uh_sum;
6682			dosum = 1;
6683		}
6684		break;
6685
6686#ifdef USE_INET6
6687	case IPPROTO_ICMPV6 :
6688		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6689		dosum = 1;
6690		break;
6691#endif
6692
6693	case IPPROTO_ICMP :
6694		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6695		dosum = 1;
6696		break;
6697
6698	default :
6699		return 1;
6700		/*NOTREACHED*/
6701	}
6702
6703	if (csump != NULL)
6704		hdrsum = *csump;
6705
6706	if (dosum) {
6707		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6708	}
6709#if !defined(_KERNEL)
6710	if (sum == hdrsum) {
6711		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6712	} else {
6713		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6714	}
6715#endif
6716	DT2(l4sums, u_short, hdrsum, u_short, sum);
6717	if (hdrsum == sum) {
6718		fin->fin_cksum = FI_CK_SUMOK;
6719		return 0;
6720	}
6721	fin->fin_cksum = FI_CK_BAD;
6722	return -1;
6723}
6724
6725
6726/* ------------------------------------------------------------------------ */
6727/* Function:    ipf_ifpfillv4addr                                           */
6728/* Returns:     int     - 0 = address update, -1 = address not updated      */
6729/* Parameters:  atype(I)   - type of network address update to perform      */
6730/*              sin(I)     - pointer to source of address information       */
6731/*              mask(I)    - pointer to source of netmask information       */
6732/*              inp(I)     - pointer to destination address store           */
6733/*              inpmask(I) - pointer to destination netmask store           */
6734/*                                                                          */
6735/* Given a type of network address update (atype) to perform, copy          */
6736/* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6737/* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6738/* which case the operation fails.  For all values of atype other than      */
6739/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6740/* value.                                                                   */
6741/* ------------------------------------------------------------------------ */
6742int
6743ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask)
6744	int atype;
6745	struct sockaddr_in *sin, *mask;
6746	struct in_addr *inp, *inpmask;
6747{
6748	if (inpmask != NULL && atype != FRI_NETMASKED)
6749		inpmask->s_addr = 0xffffffff;
6750
6751	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6752		if (atype == FRI_NETMASKED) {
6753			if (inpmask == NULL)
6754				return -1;
6755			inpmask->s_addr = mask->sin_addr.s_addr;
6756		}
6757		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6758	} else {
6759		inp->s_addr = sin->sin_addr.s_addr;
6760	}
6761	return 0;
6762}
6763
6764
6765#ifdef	USE_INET6
6766/* ------------------------------------------------------------------------ */
6767/* Function:    ipf_ifpfillv6addr                                           */
6768/* Returns:     int     - 0 = address update, -1 = address not updated      */
6769/* Parameters:  atype(I)   - type of network address update to perform      */
6770/*              sin(I)     - pointer to source of address information       */
6771/*              mask(I)    - pointer to source of netmask information       */
6772/*              inp(I)     - pointer to destination address store           */
6773/*              inpmask(I) - pointer to destination netmask store           */
6774/*                                                                          */
6775/* Given a type of network address update (atype) to perform, copy          */
6776/* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6777/* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6778/* which case the operation fails.  For all values of atype other than      */
6779/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6780/* value.                                                                   */
6781/* ------------------------------------------------------------------------ */
6782int
6783ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask)
6784	int atype;
6785	struct sockaddr_in6 *sin, *mask;
6786	i6addr_t *inp, *inpmask;
6787{
6788	i6addr_t *src, *and;
6789
6790	src = (i6addr_t *)&sin->sin6_addr;
6791	and = (i6addr_t *)&mask->sin6_addr;
6792
6793	if (inpmask != NULL && atype != FRI_NETMASKED) {
6794		inpmask->i6[0] = 0xffffffff;
6795		inpmask->i6[1] = 0xffffffff;
6796		inpmask->i6[2] = 0xffffffff;
6797		inpmask->i6[3] = 0xffffffff;
6798	}
6799
6800	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6801		if (atype == FRI_NETMASKED) {
6802			if (inpmask == NULL)
6803				return -1;
6804			inpmask->i6[0] = and->i6[0];
6805			inpmask->i6[1] = and->i6[1];
6806			inpmask->i6[2] = and->i6[2];
6807			inpmask->i6[3] = and->i6[3];
6808		}
6809
6810		inp->i6[0] = src->i6[0] & and->i6[0];
6811		inp->i6[1] = src->i6[1] & and->i6[1];
6812		inp->i6[2] = src->i6[2] & and->i6[2];
6813		inp->i6[3] = src->i6[3] & and->i6[3];
6814	} else {
6815		inp->i6[0] = src->i6[0];
6816		inp->i6[1] = src->i6[1];
6817		inp->i6[2] = src->i6[2];
6818		inp->i6[3] = src->i6[3];
6819	}
6820	return 0;
6821}
6822#endif
6823
6824
6825/* ------------------------------------------------------------------------ */
6826/* Function:    ipf_matchtag                                                */
6827/* Returns:     0 == mismatch, 1 == match.                                  */
6828/* Parameters:  tag1(I) - pointer to first tag to compare                   */
6829/*              tag2(I) - pointer to second tag to compare                  */
6830/*                                                                          */
6831/* Returns true (non-zero) or false(0) if the two tag structures can be     */
6832/* considered to be a match or not match, respectively.  The tag is 16      */
6833/* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6834/* compare the ints instead, for speed. tag1 is the master of the           */
6835/* comparison.  This function should only be called with both tag1 and tag2 */
6836/* as non-NULL pointers.                                                    */
6837/* ------------------------------------------------------------------------ */
6838int
6839ipf_matchtag(tag1, tag2)
6840	ipftag_t *tag1, *tag2;
6841{
6842	if (tag1 == tag2)
6843		return 1;
6844
6845	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6846		return 1;
6847
6848	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6849	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6850	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6851	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6852		return 1;
6853	return 0;
6854}
6855
6856
6857/* ------------------------------------------------------------------------ */
6858/* Function:    ipf_coalesce                                                */
6859/* Returns:     1 == success, -1 == failure, 0 == no change                 */
6860/* Parameters:  fin(I) - pointer to packet information                      */
6861/*                                                                          */
6862/* Attempt to get all of the packet data into a single, contiguous buffer.  */
6863/* If this call returns a failure then the buffers have also been freed.    */
6864/* ------------------------------------------------------------------------ */
6865int
6866ipf_coalesce(fin)
6867	fr_info_t *fin;
6868{
6869
6870	if ((fin->fin_flx & FI_COALESCE) != 0)
6871		return 1;
6872
6873	/*
6874	 * If the mbuf pointers indicate that there is no mbuf to work with,
6875	 * return but do not indicate success or failure.
6876	 */
6877	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6878		return 0;
6879
6880#if defined(_KERNEL)
6881	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6882		ipf_main_softc_t *softc = fin->fin_main_soft;
6883
6884		DT1(frb_coalesce, fr_info_t *, fin);
6885		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6886# ifdef MENTAT
6887		FREE_MB_T(*fin->fin_mp);
6888# endif
6889		fin->fin_reason = FRB_COALESCE;
6890		*fin->fin_mp = NULL;
6891		fin->fin_m = NULL;
6892		return -1;
6893	}
6894#else
6895	fin = fin;	/* LINT */
6896#endif
6897	return 1;
6898}
6899
6900
6901/*
6902 * The following table lists all of the tunable variables that can be
6903 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6904 * in the table below is as follows:
6905 *
6906 * pointer to value, name of value, minimum, maximum, size of the value's
6907 *     container, value attribute flags
6908 *
6909 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6910 * means the value can only be written to when IPFilter is loaded but disabled.
6911 * The obvious implication is if neither of these are set then the value can be
6912 * changed at any time without harm.
6913 */
6914
6915
6916/* ------------------------------------------------------------------------ */
6917/* Function:    ipf_tune_findbycookie                                       */
6918/* Returns:     NULL = search failed, else pointer to tune struct           */
6919/* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6920/*              next(O)   - pointer to place to store the cookie for the    */
6921/*                          "next" tuneable, if it is desired.              */
6922/*                                                                          */
6923/* This function is used to walk through all of the existing tunables with  */
6924/* successive calls.  It searches the known tunables for the one which has  */
6925/* a matching value for "cookie" - ie its address.  When returning a match, */
6926/* the next one to be found may be returned inside next.                    */
6927/* ------------------------------------------------------------------------ */
6928static ipftuneable_t *
6929ipf_tune_findbycookie(ptop, cookie, next)
6930	ipftuneable_t **ptop;
6931	void *cookie, **next;
6932{
6933	ipftuneable_t *ta, **tap;
6934
6935	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6936		if (ta == cookie) {
6937			if (next != NULL) {
6938				/*
6939				 * If the next entry in the array has a name
6940				 * present, then return a pointer to it for
6941				 * where to go next, else return a pointer to
6942				 * the dynaminc list as a key to search there
6943				 * next.  This facilitates a weak linking of
6944				 * the two "lists" together.
6945				 */
6946				if ((ta + 1)->ipft_name != NULL)
6947					*next = ta + 1;
6948				else
6949					*next = ptop;
6950			}
6951			return ta;
6952		}
6953
6954	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6955		if (tap == cookie) {
6956			if (next != NULL)
6957				*next = &ta->ipft_next;
6958			return ta;
6959		}
6960
6961	if (next != NULL)
6962		*next = NULL;
6963	return NULL;
6964}
6965
6966
6967/* ------------------------------------------------------------------------ */
6968/* Function:    ipf_tune_findbyname                                         */
6969/* Returns:     NULL = search failed, else pointer to tune struct           */
6970/* Parameters:  name(I) - name of the tuneable entry to find.               */
6971/*                                                                          */
6972/* Search the static array of tuneables and the list of dynamic tuneables   */
6973/* for an entry with a matching name.  If we can find one, return a pointer */
6974/* to the matching structure.                                               */
6975/* ------------------------------------------------------------------------ */
6976static ipftuneable_t *
6977ipf_tune_findbyname(top, name)
6978	ipftuneable_t *top;
6979	const char *name;
6980{
6981	ipftuneable_t *ta;
6982
6983	for (ta = top; ta != NULL; ta = ta->ipft_next)
6984		if (!strcmp(ta->ipft_name, name)) {
6985			return ta;
6986		}
6987
6988	return NULL;
6989}
6990
6991
6992/* ------------------------------------------------------------------------ */
6993/* Function:    ipf_tune_add_array                                          */
6994/* Returns:     int - 0 == success, else failure                            */
6995/* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6996/*                                                                          */
6997/* Appends tune structures from the array passed in (newtune) to the end of */
6998/* the current list of "dynamic" tuneable parameters.                       */
6999/* If any entry to be added is already present (by name) then the operation */
7000/* is aborted - entries that have been added are removed before returning.  */
7001/* An entry with no name (NULL) is used as the indication that the end of   */
7002/* the array has been reached.                                              */
7003/* ------------------------------------------------------------------------ */
7004int
7005ipf_tune_add_array(softc, newtune)
7006	ipf_main_softc_t *softc;
7007	ipftuneable_t *newtune;
7008{
7009	ipftuneable_t *nt, *dt;
7010	int error = 0;
7011
7012	for (nt = newtune; nt->ipft_name != NULL; nt++) {
7013		error = ipf_tune_add(softc, nt);
7014		if (error != 0) {
7015			for (dt = newtune; dt != nt; dt++) {
7016				(void) ipf_tune_del(softc, dt);
7017			}
7018		}
7019	}
7020
7021	return error;
7022}
7023
7024
7025/* ------------------------------------------------------------------------ */
7026/* Function:    ipf_tune_array_link                                         */
7027/* Returns:     0 == success, -1 == failure                                 */
7028/* Parameters:  softc(I) - soft context pointerto work with                 */
7029/*              array(I) - pointer to an array of tuneables                 */
7030/*                                                                          */
7031/* Given an array of tunables (array), append them to the current list of   */
7032/* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
7033/* the array for being appended to the list, initialise all of the next     */
7034/* pointers so we don't need to walk parts of it with ++ and others with    */
7035/* next. The array is expected to have an entry with a NULL name as the     */
7036/* terminator. Trying to add an array with no non-NULL names will return as */
7037/* a failure.                                                               */
7038/* ------------------------------------------------------------------------ */
7039int
7040ipf_tune_array_link(softc, array)
7041	ipf_main_softc_t *softc;
7042	ipftuneable_t *array;
7043{
7044	ipftuneable_t *t, **p;
7045
7046	t = array;
7047	if (t->ipft_name == NULL)
7048		return -1;
7049
7050	for (; t[1].ipft_name != NULL; t++)
7051		t[0].ipft_next = &t[1];
7052	t->ipft_next = NULL;
7053
7054	/*
7055	 * Since a pointer to the last entry isn't kept, we need to find it
7056	 * each time we want to add new variables to the list.
7057	 */
7058	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7059		if (t->ipft_name == NULL)
7060			break;
7061	*p = array;
7062
7063	return 0;
7064}
7065
7066
7067/* ------------------------------------------------------------------------ */
7068/* Function:    ipf_tune_array_unlink                                       */
7069/* Returns:     0 == success, -1 == failure                                 */
7070/* Parameters:  softc(I) - soft context pointerto work with                 */
7071/*              array(I) - pointer to an array of tuneables                 */
7072/*                                                                          */
7073/* ------------------------------------------------------------------------ */
7074int
7075ipf_tune_array_unlink(softc, array)
7076	ipf_main_softc_t *softc;
7077	ipftuneable_t *array;
7078{
7079	ipftuneable_t *t, **p;
7080
7081	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7082		if (t == array)
7083			break;
7084	if (t == NULL)
7085		return -1;
7086
7087	for (; t[1].ipft_name != NULL; t++)
7088		;
7089
7090	*p = t->ipft_next;
7091
7092	return 0;
7093}
7094
7095
7096/* ------------------------------------------------------------------------ */
7097/* Function:   ipf_tune_array_copy                                          */
7098/* Returns:    NULL = failure, else pointer to new array                    */
7099/* Parameters: base(I)     - pointer to structure base                      */
7100/*             size(I)     - size of the array at template                  */
7101/*             template(I) - original array to copy                         */
7102/*                                                                          */
7103/* Allocate memory for a new set of tuneable values and copy everything     */
7104/* from template into the new region of memory.  The new region is full of  */
7105/* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
7106/*                                                                          */
7107/* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
7108/* In the array template, ipftp_offset is the offset (in bytes) of the      */
7109/* location of the tuneable value inside the structure pointed to by base.  */
7110/* As ipftp_offset is a union over the pointers to the tuneable values, if  */
7111/* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
7112/* ipftp_void that points to the stored value.                              */
7113/* ------------------------------------------------------------------------ */
7114ipftuneable_t *
7115ipf_tune_array_copy(base, size, template)
7116	void *base;
7117	size_t size;
7118	ipftuneable_t *template;
7119{
7120	ipftuneable_t *copy;
7121	int i;
7122
7123
7124	KMALLOCS(copy, ipftuneable_t *, size);
7125	if (copy == NULL) {
7126		return NULL;
7127	}
7128	bcopy(template, copy, size);
7129
7130	for (i = 0; copy[i].ipft_name; i++) {
7131		copy[i].ipft_una.ipftp_offset += (u_long)base;
7132		copy[i].ipft_next = copy + i + 1;
7133	}
7134
7135	return copy;
7136}
7137
7138
7139/* ------------------------------------------------------------------------ */
7140/* Function:    ipf_tune_add                                                */
7141/* Returns:     int - 0 == success, else failure                            */
7142/* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
7143/*                                                                          */
7144/* Appends tune structures from the array passed in (newtune) to the end of */
7145/* the current list of "dynamic" tuneable parameters.  Once added, the      */
7146/* owner of the object is not expected to ever change "ipft_next".          */
7147/* ------------------------------------------------------------------------ */
7148int
7149ipf_tune_add(softc, newtune)
7150	ipf_main_softc_t *softc;
7151	ipftuneable_t *newtune;
7152{
7153	ipftuneable_t *ta, **tap;
7154
7155	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7156	if (ta != NULL) {
7157		IPFERROR(74);
7158		return EEXIST;
7159	}
7160
7161	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7162		;
7163
7164	newtune->ipft_next = NULL;
7165	*tap = newtune;
7166	return 0;
7167}
7168
7169
7170/* ------------------------------------------------------------------------ */
7171/* Function:    ipf_tune_del                                                */
7172/* Returns:     int - 0 == success, else failure                            */
7173/* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
7174/*                        current dynamic tuneables                         */
7175/*                                                                          */
7176/* Search for the tune structure, by pointer, in the list of those that are */
7177/* dynamically added at run time.  If found, adjust the list so that this   */
7178/* structure is no longer part of it.                                       */
7179/* ------------------------------------------------------------------------ */
7180int
7181ipf_tune_del(softc, oldtune)
7182	ipf_main_softc_t *softc;
7183	ipftuneable_t *oldtune;
7184{
7185	ipftuneable_t *ta, **tap;
7186	int error = 0;
7187
7188	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7189	     tap = &ta->ipft_next) {
7190		if (ta == oldtune) {
7191			*tap = oldtune->ipft_next;
7192			oldtune->ipft_next = NULL;
7193			break;
7194		}
7195	}
7196
7197	if (ta == NULL) {
7198		error = ESRCH;
7199		IPFERROR(75);
7200	}
7201	return error;
7202}
7203
7204
7205/* ------------------------------------------------------------------------ */
7206/* Function:    ipf_tune_del_array                                          */
7207/* Returns:     int - 0 == success, else failure                            */
7208/* Parameters:  oldtune - pointer to tuneables array                        */
7209/*                                                                          */
7210/* Remove each tuneable entry in the array from the list of "dynamic"       */
7211/* tunables.  If one entry should fail to be found, an error will be        */
7212/* returned and no further ones removed.                                    */
7213/* An entry with a NULL name is used as the indicator of the last entry in  */
7214/* the array.                                                               */
7215/* ------------------------------------------------------------------------ */
7216int
7217ipf_tune_del_array(softc, oldtune)
7218	ipf_main_softc_t *softc;
7219	ipftuneable_t *oldtune;
7220{
7221	ipftuneable_t *ot;
7222	int error = 0;
7223
7224	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7225		error = ipf_tune_del(softc, ot);
7226		if (error != 0)
7227			break;
7228	}
7229
7230	return error;
7231
7232}
7233
7234
7235/* ------------------------------------------------------------------------ */
7236/* Function:    ipf_tune                                                    */
7237/* Returns:     int - 0 == success, else failure                            */
7238/* Parameters:  cmd(I)  - ioctl command number                              */
7239/*              data(I) - pointer to ioctl data structure                   */
7240/*                                                                          */
7241/* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7242/* three ioctls provide the means to access and control global variables    */
7243/* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7244/* changed without rebooting, reloading or recompiling.  The initialisation */
7245/* and 'destruction' routines of the various components of ipfilter are all */
7246/* each responsible for handling their own values being too big.            */
7247/* ------------------------------------------------------------------------ */
7248int
7249ipf_ipftune(softc, cmd, data)
7250	ipf_main_softc_t *softc;
7251	ioctlcmd_t cmd;
7252	void *data;
7253{
7254	ipftuneable_t *ta;
7255	ipftune_t tu;
7256	void *cookie;
7257	int error;
7258
7259	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7260	if (error != 0)
7261		return error;
7262
7263	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7264	cookie = tu.ipft_cookie;
7265	ta = NULL;
7266
7267	switch (cmd)
7268	{
7269	case SIOCIPFGETNEXT :
7270		/*
7271		 * If cookie is non-NULL, assume it to be a pointer to the last
7272		 * entry we looked at, so find it (if possible) and return a
7273		 * pointer to the next one after it.  The last entry in the
7274		 * the table is a NULL entry, so when we get to it, set cookie
7275		 * to NULL and return that, indicating end of list, erstwhile
7276		 * if we come in with cookie set to NULL, we are starting anew
7277		 * at the front of the list.
7278		 */
7279		if (cookie != NULL) {
7280			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7281						   cookie, &tu.ipft_cookie);
7282		} else {
7283			ta = softc->ipf_tuners;
7284			tu.ipft_cookie = ta + 1;
7285		}
7286		if (ta != NULL) {
7287			/*
7288			 * Entry found, but does the data pointed to by that
7289			 * row fit in what we can return?
7290			 */
7291			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7292				IPFERROR(76);
7293				return EINVAL;
7294			}
7295
7296			tu.ipft_vlong = 0;
7297			if (ta->ipft_sz == sizeof(u_long))
7298				tu.ipft_vlong = *ta->ipft_plong;
7299			else if (ta->ipft_sz == sizeof(u_int))
7300				tu.ipft_vint = *ta->ipft_pint;
7301			else if (ta->ipft_sz == sizeof(u_short))
7302				tu.ipft_vshort = *ta->ipft_pshort;
7303			else if (ta->ipft_sz == sizeof(u_char))
7304				tu.ipft_vchar = *ta->ipft_pchar;
7305
7306			tu.ipft_sz = ta->ipft_sz;
7307			tu.ipft_min = ta->ipft_min;
7308			tu.ipft_max = ta->ipft_max;
7309			tu.ipft_flags = ta->ipft_flags;
7310			bcopy(ta->ipft_name, tu.ipft_name,
7311			      MIN(sizeof(tu.ipft_name),
7312				  strlen(ta->ipft_name) + 1));
7313		}
7314		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7315		break;
7316
7317	case SIOCIPFGET :
7318	case SIOCIPFSET :
7319		/*
7320		 * Search by name or by cookie value for a particular entry
7321		 * in the tuning paramter table.
7322		 */
7323		IPFERROR(77);
7324		error = ESRCH;
7325		if (cookie != NULL) {
7326			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7327						   cookie, NULL);
7328			if (ta != NULL)
7329				error = 0;
7330		} else if (tu.ipft_name[0] != '\0') {
7331			ta = ipf_tune_findbyname(softc->ipf_tuners,
7332						 tu.ipft_name);
7333			if (ta != NULL)
7334				error = 0;
7335		}
7336		if (error != 0)
7337			break;
7338
7339		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7340			/*
7341			 * Fetch the tuning parameters for a particular value
7342			 */
7343			tu.ipft_vlong = 0;
7344			if (ta->ipft_sz == sizeof(u_long))
7345				tu.ipft_vlong = *ta->ipft_plong;
7346			else if (ta->ipft_sz == sizeof(u_int))
7347				tu.ipft_vint = *ta->ipft_pint;
7348			else if (ta->ipft_sz == sizeof(u_short))
7349				tu.ipft_vshort = *ta->ipft_pshort;
7350			else if (ta->ipft_sz == sizeof(u_char))
7351				tu.ipft_vchar = *ta->ipft_pchar;
7352			tu.ipft_cookie = ta;
7353			tu.ipft_sz = ta->ipft_sz;
7354			tu.ipft_min = ta->ipft_min;
7355			tu.ipft_max = ta->ipft_max;
7356			tu.ipft_flags = ta->ipft_flags;
7357			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7358
7359		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7360			/*
7361			 * Set an internal parameter.  The hard part here is
7362			 * getting the new value safely and correctly out of
7363			 * the kernel (given we only know its size, not type.)
7364			 */
7365			u_long in;
7366
7367			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7368			    (softc->ipf_running > 0)) {
7369				IPFERROR(78);
7370				error = EBUSY;
7371				break;
7372			}
7373
7374			in = tu.ipft_vlong;
7375			if (in < ta->ipft_min || in > ta->ipft_max) {
7376				IPFERROR(79);
7377				error = EINVAL;
7378				break;
7379			}
7380
7381			if (ta->ipft_func != NULL) {
7382				SPL_INT(s);
7383
7384				SPL_NET(s);
7385				error = (*ta->ipft_func)(softc, ta,
7386							 &tu.ipft_un);
7387				SPL_X(s);
7388
7389			} else if (ta->ipft_sz == sizeof(u_long)) {
7390				tu.ipft_vlong = *ta->ipft_plong;
7391				*ta->ipft_plong = in;
7392
7393			} else if (ta->ipft_sz == sizeof(u_int)) {
7394				tu.ipft_vint = *ta->ipft_pint;
7395				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7396
7397			} else if (ta->ipft_sz == sizeof(u_short)) {
7398				tu.ipft_vshort = *ta->ipft_pshort;
7399				*ta->ipft_pshort = (u_short)(in & 0xffff);
7400
7401			} else if (ta->ipft_sz == sizeof(u_char)) {
7402				tu.ipft_vchar = *ta->ipft_pchar;
7403				*ta->ipft_pchar = (u_char)(in & 0xff);
7404			}
7405			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7406		}
7407		break;
7408
7409	default :
7410		IPFERROR(80);
7411		error = EINVAL;
7412		break;
7413	}
7414
7415	return error;
7416}
7417
7418
7419/* ------------------------------------------------------------------------ */
7420/* Function:    ipf_zerostats                                               */
7421/* Returns:     int - 0 = success, else failure                             */
7422/* Parameters:  data(O) - pointer to pointer for copying data back to       */
7423/*                                                                          */
7424/* Copies the current statistics out to userspace and then zero's the       */
7425/* current ones in the kernel. The lock is only held across the bzero() as  */
7426/* the copyout may result in paging (ie network activity.)                  */
7427/* ------------------------------------------------------------------------ */
7428int
7429ipf_zerostats(softc, data)
7430	ipf_main_softc_t *softc;
7431	caddr_t	data;
7432{
7433	friostat_t fio;
7434	ipfobj_t obj;
7435	int error;
7436
7437	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7438	if (error != 0)
7439		return error;
7440	ipf_getstat(softc, &fio, obj.ipfo_rev);
7441	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7442	if (error != 0)
7443		return error;
7444
7445	WRITE_ENTER(&softc->ipf_mutex);
7446	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7447	RWLOCK_EXIT(&softc->ipf_mutex);
7448
7449	return 0;
7450}
7451
7452
7453/* ------------------------------------------------------------------------ */
7454/* Function:    ipf_resolvedest                                             */
7455/* Returns:     Nil                                                         */
7456/* Parameters:  softc(I) - pointer to soft context main structure           */
7457/*              base(I)  - where strings are stored                         */
7458/*              fdp(IO)  - pointer to destination information to resolve    */
7459/*              v(I)     - IP protocol version to match                     */
7460/*                                                                          */
7461/* Looks up an interface name in the frdest structure pointed to by fdp and */
7462/* if a matching name can be found for the particular IP protocol version   */
7463/* then store the interface pointer in the frdest struct.  If no match is   */
7464/* found, then set the interface pointer to be -1 as NULL is considered to  */
7465/* indicate there is no information at all in the structure.                */
7466/* ------------------------------------------------------------------------ */
7467int
7468ipf_resolvedest(softc, base, fdp, v)
7469	ipf_main_softc_t *softc;
7470	char *base;
7471	frdest_t *fdp;
7472	int v;
7473{
7474	int errval = 0;
7475	void *ifp;
7476
7477	ifp = NULL;
7478
7479	if (fdp->fd_name != -1) {
7480		if (fdp->fd_type == FRD_DSTLIST) {
7481			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7482						  IPLT_DSTLIST,
7483						  base + fdp->fd_name,
7484						  NULL);
7485			if (ifp == NULL) {
7486				IPFERROR(144);
7487				errval = ESRCH;
7488			}
7489		} else {
7490			ifp = GETIFP(base + fdp->fd_name, v);
7491			if (ifp == NULL)
7492				ifp = (void *)-1;
7493		}
7494	}
7495	fdp->fd_ptr = ifp;
7496
7497	if ((ifp != NULL) && (ifp != (void *)-1)) {
7498		fdp->fd_local = ipf_deliverlocal(softc, v, ifp, &fdp->fd_ip6);
7499	}
7500
7501	return errval;
7502}
7503
7504
7505/* ------------------------------------------------------------------------ */
7506/* Function:    ipf_resolvenic                                              */
7507/* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7508/*                      pointer to interface structure for NIC              */
7509/* Parameters:  softc(I)- pointer to soft context main structure            */
7510/*              name(I) - complete interface name                           */
7511/*              v(I)    - IP protocol version                               */
7512/*                                                                          */
7513/* Look for a network interface structure that firstly has a matching name  */
7514/* to that passed in and that is also being used for that IP protocol       */
7515/* version (necessary on some platforms where there are separate listings   */
7516/* for both IPv4 and IPv6 on the same physical NIC.                         */
7517/* ------------------------------------------------------------------------ */
7518void *
7519ipf_resolvenic(softc, name, v)
7520	ipf_main_softc_t *softc;
7521	char *name;
7522	int v;
7523{
7524	void *nic;
7525
7526	softc = softc;	/* gcc -Wextra */
7527	if (name[0] == '\0')
7528		return NULL;
7529
7530	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7531		return NULL;
7532	}
7533
7534	nic = GETIFP(name, v);
7535	if (nic == NULL)
7536		nic = (void *)-1;
7537	return nic;
7538}
7539
7540
7541/* ------------------------------------------------------------------------ */
7542/* Function:    ipf_token_expire                                            */
7543/* Returns:     None.                                                       */
7544/* Parameters:  softc(I) - pointer to soft context main structure           */
7545/*                                                                          */
7546/* This function is run every ipf tick to see if there are any tokens that  */
7547/* have been held for too long and need to be freed up.                     */
7548/* ------------------------------------------------------------------------ */
7549void
7550ipf_token_expire(softc)
7551	ipf_main_softc_t *softc;
7552{
7553	ipftoken_t *it;
7554
7555	WRITE_ENTER(&softc->ipf_tokens);
7556	while ((it = softc->ipf_token_head) != NULL) {
7557		if (it->ipt_die > softc->ipf_ticks)
7558			break;
7559
7560		ipf_token_deref(softc, it);
7561	}
7562	RWLOCK_EXIT(&softc->ipf_tokens);
7563}
7564
7565
7566/* ------------------------------------------------------------------------ */
7567/* Function:    ipf_token_flush                                             */
7568/* Returns:     None.                                                       */
7569/* Parameters:  softc(I) - pointer to soft context main structure           */
7570/*                                                                          */
7571/* Loop through all of the existing tokens and call deref to see if they    */
7572/* can be freed. Normally a function like this might just loop on           */
7573/* ipf_token_head but there is a chance that a token might have a ref count */
7574/* of greater than one and in that case the the reference would drop twice  */
7575/* by code that is only entitled to drop it once.                           */
7576/* ------------------------------------------------------------------------ */
7577static void
7578ipf_token_flush(softc)
7579	ipf_main_softc_t *softc;
7580{
7581	ipftoken_t *it, *next;
7582
7583	WRITE_ENTER(&softc->ipf_tokens);
7584	for (it = softc->ipf_token_head; it != NULL; it = next) {
7585		next = it->ipt_next;
7586		(void) ipf_token_deref(softc, it);
7587	}
7588	RWLOCK_EXIT(&softc->ipf_tokens);
7589}
7590
7591
7592/* ------------------------------------------------------------------------ */
7593/* Function:    ipf_token_del                                               */
7594/* Returns:     int     - 0 = success, else error                           */
7595/* Parameters:  softc(I)- pointer to soft context main structure            */
7596/*              type(I) - the token type to match                           */
7597/*              uid(I)  - uid owning the token                              */
7598/*              ptr(I)  - context pointer for the token                     */
7599/*                                                                          */
7600/* This function looks for a a token in the current list that matches up    */
7601/* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7602/* call ipf_token_dewref() to remove it from the list. In the event that    */
7603/* the token has a reference held elsewhere, setting ipt_complete to 2      */
7604/* enables debugging to distinguish between the two paths that ultimately   */
7605/* lead to a token to be deleted.                                           */
7606/* ------------------------------------------------------------------------ */
7607int
7608ipf_token_del(softc, type, uid, ptr)
7609	ipf_main_softc_t *softc;
7610	int type, uid;
7611	void *ptr;
7612{
7613	ipftoken_t *it;
7614	int error;
7615
7616	IPFERROR(82);
7617	error = ESRCH;
7618
7619	WRITE_ENTER(&softc->ipf_tokens);
7620	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7621		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7622		    uid == it->ipt_uid) {
7623			it->ipt_complete = 2;
7624			ipf_token_deref(softc, it);
7625			error = 0;
7626			break;
7627		}
7628	}
7629	RWLOCK_EXIT(&softc->ipf_tokens);
7630
7631	return error;
7632}
7633
7634
7635/* ------------------------------------------------------------------------ */
7636/* Function:    ipf_token_mark_complete                                     */
7637/* Returns:     None.                                                       */
7638/* Parameters:  token(I) - pointer to token structure                       */
7639/*                                                                          */
7640/* Mark a token as being ineligable for being found with ipf_token_find.    */
7641/* ------------------------------------------------------------------------ */
7642void
7643ipf_token_mark_complete(token)
7644	ipftoken_t *token;
7645{
7646	if (token->ipt_complete == 0)
7647		token->ipt_complete = 1;
7648}
7649
7650
7651/* ------------------------------------------------------------------------ */
7652/* Function:    ipf_token_find                                               */
7653/* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7654/* Parameters:  softc(I)- pointer to soft context main structure            */
7655/*              type(I) - the token type to match                           */
7656/*              uid(I)  - uid owning the token                              */
7657/*              ptr(I)  - context pointer for the token                     */
7658/*                                                                          */
7659/* This function looks for a live token in the list of current tokens that  */
7660/* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7661/* allocated.  If one is found then it is moved to the top of the list of   */
7662/* currently active tokens.                                                 */
7663/* ------------------------------------------------------------------------ */
7664ipftoken_t *
7665ipf_token_find(softc, type, uid, ptr)
7666	ipf_main_softc_t *softc;
7667	int type, uid;
7668	void *ptr;
7669{
7670	ipftoken_t *it, *new;
7671
7672	KMALLOC(new, ipftoken_t *);
7673	if (new != NULL)
7674		bzero((char *)new, sizeof(*new));
7675
7676	WRITE_ENTER(&softc->ipf_tokens);
7677	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7678		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7679		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7680			break;
7681	}
7682
7683	if (it == NULL) {
7684		it = new;
7685		new = NULL;
7686		if (it == NULL) {
7687			RWLOCK_EXIT(&softc->ipf_tokens);
7688			return NULL;
7689		}
7690		it->ipt_ctx = ptr;
7691		it->ipt_uid = uid;
7692		it->ipt_type = type;
7693		it->ipt_ref = 1;
7694	} else {
7695		if (new != NULL) {
7696			KFREE(new);
7697			new = NULL;
7698		}
7699
7700		if (it->ipt_complete > 0)
7701			it = NULL;
7702		else
7703			ipf_token_unlink(softc, it);
7704	}
7705
7706	if (it != NULL) {
7707		it->ipt_pnext = softc->ipf_token_tail;
7708		*softc->ipf_token_tail = it;
7709		softc->ipf_token_tail = &it->ipt_next;
7710		it->ipt_next = NULL;
7711		it->ipt_ref++;
7712
7713		it->ipt_die = softc->ipf_ticks + 20;
7714	}
7715
7716	RWLOCK_EXIT(&softc->ipf_tokens);
7717
7718	return it;
7719}
7720
7721
7722/* ------------------------------------------------------------------------ */
7723/* Function:    ipf_token_unlink                                            */
7724/* Returns:     None.                                                       */
7725/* Parameters:  softc(I) - pointer to soft context main structure           */
7726/*              token(I) - pointer to token structure                       */
7727/* Write Locks: ipf_tokens                                                  */
7728/*                                                                          */
7729/* This function unlinks a token structure from the linked list of tokens   */
7730/* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7731/* but the tail does due to the linked list implementation.                 */
7732/* ------------------------------------------------------------------------ */
7733static void
7734ipf_token_unlink(softc, token)
7735	ipf_main_softc_t *softc;
7736	ipftoken_t *token;
7737{
7738
7739	if (softc->ipf_token_tail == &token->ipt_next)
7740		softc->ipf_token_tail = token->ipt_pnext;
7741
7742	*token->ipt_pnext = token->ipt_next;
7743	if (token->ipt_next != NULL)
7744		token->ipt_next->ipt_pnext = token->ipt_pnext;
7745	token->ipt_next = NULL;
7746	token->ipt_pnext = NULL;
7747}
7748
7749
7750/* ------------------------------------------------------------------------ */
7751/* Function:    ipf_token_deref                                             */
7752/* Returns:     int      - 0 == token freed, else reference count           */
7753/* Parameters:  softc(I) - pointer to soft context main structure           */
7754/*              token(I) - pointer to token structure                       */
7755/* Write Locks: ipf_tokens                                                  */
7756/*                                                                          */
7757/* Drop the reference count on the token structure and if it drops to zero, */
7758/* call the dereference function for the token type because it is then      */
7759/* possible to free the token data structure.                               */
7760/* ------------------------------------------------------------------------ */
7761int
7762ipf_token_deref(softc, token)
7763	ipf_main_softc_t *softc;
7764	ipftoken_t *token;
7765{
7766	void *data, **datap;
7767
7768	ASSERT(token->ipt_ref > 0);
7769	token->ipt_ref--;
7770	if (token->ipt_ref > 0)
7771		return token->ipt_ref;
7772
7773	data = token->ipt_data;
7774	datap = &data;
7775
7776	if ((data != NULL) && (data != (void *)-1)) {
7777		switch (token->ipt_type)
7778		{
7779		case IPFGENITER_IPF :
7780			(void) ipf_derefrule(softc, (frentry_t **)datap);
7781			break;
7782		case IPFGENITER_IPNAT :
7783			WRITE_ENTER(&softc->ipf_nat);
7784			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7785			RWLOCK_EXIT(&softc->ipf_nat);
7786			break;
7787		case IPFGENITER_NAT :
7788			ipf_nat_deref(softc, (nat_t **)datap);
7789			break;
7790		case IPFGENITER_STATE :
7791			ipf_state_deref(softc, (ipstate_t **)datap);
7792			break;
7793		case IPFGENITER_FRAG :
7794			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7795			break;
7796		case IPFGENITER_NATFRAG :
7797			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7798			break;
7799		case IPFGENITER_HOSTMAP :
7800			WRITE_ENTER(&softc->ipf_nat);
7801			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7802			RWLOCK_EXIT(&softc->ipf_nat);
7803			break;
7804		default :
7805			ipf_lookup_iterderef(softc, token->ipt_type, data);
7806			break;
7807		}
7808	}
7809
7810	ipf_token_unlink(softc, token);
7811	KFREE(token);
7812	return 0;
7813}
7814
7815
7816/* ------------------------------------------------------------------------ */
7817/* Function:    ipf_nextrule                                                */
7818/* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7819/* Parameters:  softc(I)    - pointer to soft context main structure        */
7820/*              fr(I)       - pointer to filter rule                        */
7821/*              out(I)      - 1 == out rules, 0 == input rules              */
7822/*                                                                          */
7823/* Starting with "fr", find the next rule to visit. This includes visiting  */
7824/* the list of rule groups if either fr is NULL (empty list) or it is the   */
7825/* last rule in the list. When walking rule lists, it is either input or    */
7826/* output rules that are returned, never both.                              */
7827/* ------------------------------------------------------------------------ */
7828static frentry_t *
7829ipf_nextrule(softc, active, unit, fr, out)
7830	ipf_main_softc_t *softc;
7831	int active, unit;
7832	frentry_t *fr;
7833	int out;
7834{
7835	frentry_t *next;
7836	frgroup_t *fg;
7837
7838	if (fr != NULL && fr->fr_group != -1) {
7839		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7840				   unit, active, NULL);
7841		if (fg != NULL)
7842			fg = fg->fg_next;
7843	} else {
7844		fg = softc->ipf_groups[unit][active];
7845	}
7846
7847	while (fg != NULL) {
7848		next = fg->fg_start;
7849		while (next != NULL) {
7850			if (out) {
7851				if (next->fr_flags & FR_OUTQUE)
7852					return next;
7853			} else if (next->fr_flags & FR_INQUE) {
7854				return next;
7855			}
7856			next = next->fr_next;
7857		}
7858		if (next == NULL)
7859			fg = fg->fg_next;
7860	}
7861
7862	return NULL;
7863}
7864
7865/* ------------------------------------------------------------------------ */
7866/* Function:    ipf_getnextrule                                             */
7867/* Returns:     int - 0 = success, else error                               */
7868/* Parameters:  softc(I)- pointer to soft context main structure            */
7869/*              t(I)   - pointer to destination information to resolve      */
7870/*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7871/*                                                                          */
7872/* This function's first job is to bring in the ipfruleiter_t structure via */
7873/* the ipfobj_t structure to determine what should be the next rule to      */
7874/* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7875/* find the 'next rule'.  This may include searching rule group lists or    */
7876/* just be as simple as looking at the 'next' field in the rule structure.  */
7877/* When we have found the rule to return, increase its reference count and  */
7878/* if we used an existing rule to get here, decrease its reference count.   */
7879/* ------------------------------------------------------------------------ */
7880int
7881ipf_getnextrule(softc, t, ptr)
7882	ipf_main_softc_t *softc;
7883	ipftoken_t *t;
7884	void *ptr;
7885{
7886	frentry_t *fr, *next, zero;
7887	ipfruleiter_t it;
7888	int error, out;
7889	frgroup_t *fg;
7890	ipfobj_t obj;
7891	int predict;
7892	char *dst;
7893	int unit;
7894
7895	if (t == NULL || ptr == NULL) {
7896		IPFERROR(84);
7897		return EFAULT;
7898	}
7899
7900	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7901	if (error != 0)
7902		return error;
7903
7904	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7905		IPFERROR(85);
7906		return EINVAL;
7907	}
7908	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7909		IPFERROR(86);
7910		return EINVAL;
7911	}
7912	if (it.iri_nrules == 0) {
7913		IPFERROR(87);
7914		return ENOSPC;
7915	}
7916	if (it.iri_rule == NULL) {
7917		IPFERROR(88);
7918		return EFAULT;
7919	}
7920
7921	fg = NULL;
7922	fr = t->ipt_data;
7923	if ((it.iri_inout & F_OUT) != 0)
7924		out = 1;
7925	else
7926		out = 0;
7927	if ((it.iri_inout & F_ACIN) != 0)
7928		unit = IPL_LOGCOUNT;
7929	else
7930		unit = IPL_LOGIPF;
7931
7932	READ_ENTER(&softc->ipf_mutex);
7933	if (fr == NULL) {
7934		if (*it.iri_group == '\0') {
7935			if (unit == IPL_LOGCOUNT) {
7936				next = softc->ipf_acct[out][it.iri_active];
7937			} else {
7938				next = softc->ipf_rules[out][it.iri_active];
7939			}
7940			if (next == NULL)
7941				next = ipf_nextrule(softc, it.iri_active,
7942						    unit, NULL, out);
7943		} else {
7944			fg = ipf_findgroup(softc, it.iri_group, unit,
7945					   it.iri_active, NULL);
7946			if (fg != NULL)
7947				next = fg->fg_start;
7948			else
7949				next = NULL;
7950		}
7951	} else {
7952		next = fr->fr_next;
7953		if (next == NULL)
7954			next = ipf_nextrule(softc, it.iri_active, unit,
7955					    fr, out);
7956	}
7957
7958	if (next != NULL && next->fr_next != NULL)
7959		predict = 1;
7960	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7961		predict = 1;
7962	else
7963		predict = 0;
7964
7965	if (fr != NULL)
7966		(void) ipf_derefrule(softc, &fr);
7967
7968	obj.ipfo_type = IPFOBJ_FRENTRY;
7969	dst = (char *)it.iri_rule;
7970
7971	if (next != NULL) {
7972		obj.ipfo_size = next->fr_size;
7973		MUTEX_ENTER(&next->fr_lock);
7974		next->fr_ref++;
7975		MUTEX_EXIT(&next->fr_lock);
7976		t->ipt_data = next;
7977	} else {
7978		obj.ipfo_size = sizeof(frentry_t);
7979		bzero(&zero, sizeof(zero));
7980		next = &zero;
7981		t->ipt_data = NULL;
7982	}
7983	it.iri_rule = predict ? next : NULL;
7984	if (predict == 0)
7985		ipf_token_mark_complete(t);
7986
7987	RWLOCK_EXIT(&softc->ipf_mutex);
7988
7989	obj.ipfo_ptr = dst;
7990	error = ipf_outobjk(softc, &obj, next);
7991	if (error == 0 && t->ipt_data != NULL) {
7992		dst += obj.ipfo_size;
7993		if (next->fr_data != NULL) {
7994			ipfobj_t dobj;
7995
7996			if (next->fr_type == FR_T_IPFEXPR)
7997				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7998			else
7999				dobj.ipfo_type = IPFOBJ_FRIPF;
8000			dobj.ipfo_size = next->fr_dsize;
8001			dobj.ipfo_rev = obj.ipfo_rev;
8002			dobj.ipfo_ptr = dst;
8003			error = ipf_outobjk(softc, &dobj, next->fr_data);
8004		}
8005	}
8006
8007	if ((fr != NULL) && (next == &zero))
8008		(void) ipf_derefrule(softc, &fr);
8009
8010	return error;
8011}
8012
8013
8014/* ------------------------------------------------------------------------ */
8015/* Function:    ipf_frruleiter                                              */
8016/* Returns:     int - 0 = success, else error                               */
8017/* Parameters:  softc(I)- pointer to soft context main structure            */
8018/*              data(I) - the token type to match                           */
8019/*              uid(I)  - uid owning the token                              */
8020/*              ptr(I)  - context pointer for the token                     */
8021/*                                                                          */
8022/* This function serves as a stepping stone between ipf_ipf_ioctl and       */
8023/* ipf_getnextrule.  It's role is to find the right token in the kernel for */
8024/* the process doing the ioctl and use that to ask for the next rule.       */
8025/* ------------------------------------------------------------------------ */
8026static int
8027ipf_frruleiter(softc, data, uid, ctx)
8028	ipf_main_softc_t *softc;
8029	void *data, *ctx;
8030	int uid;
8031{
8032	ipftoken_t *token;
8033	ipfruleiter_t it;
8034	ipfobj_t obj;
8035	int error;
8036
8037	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
8038	if (token != NULL) {
8039		error = ipf_getnextrule(softc, token, data);
8040		WRITE_ENTER(&softc->ipf_tokens);
8041		ipf_token_deref(softc, token);
8042		RWLOCK_EXIT(&softc->ipf_tokens);
8043	} else {
8044		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
8045		if (error != 0)
8046			return error;
8047		it.iri_rule = NULL;
8048		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
8049	}
8050
8051	return error;
8052}
8053
8054
8055/* ------------------------------------------------------------------------ */
8056/* Function:    ipf_geniter                                                 */
8057/* Returns:     int - 0 = success, else error                               */
8058/* Parameters:  softc(I) - pointer to soft context main structure           */
8059/*              token(I) - pointer to ipftoken_t structure                  */
8060/*              itp(I)   - pointer to iterator data                         */
8061/*                                                                          */
8062/* Decide which iterator function to call using information passed through  */
8063/* the ipfgeniter_t structure at itp.                                       */
8064/* ------------------------------------------------------------------------ */
8065static int
8066ipf_geniter(softc, token, itp)
8067	ipf_main_softc_t *softc;
8068	ipftoken_t *token;
8069	ipfgeniter_t *itp;
8070{
8071	int error;
8072
8073	switch (itp->igi_type)
8074	{
8075	case IPFGENITER_FRAG :
8076		error = ipf_frag_pkt_next(softc, token, itp);
8077		break;
8078	default :
8079		IPFERROR(92);
8080		error = EINVAL;
8081		break;
8082	}
8083
8084	return error;
8085}
8086
8087
8088/* ------------------------------------------------------------------------ */
8089/* Function:    ipf_genericiter                                             */
8090/* Returns:     int - 0 = success, else error                               */
8091/* Parameters:  softc(I)- pointer to soft context main structure            */
8092/*              data(I) - the token type to match                           */
8093/*              uid(I)  - uid owning the token                              */
8094/*              ptr(I)  - context pointer for the token                     */
8095/*                                                                          */
8096/* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
8097/* ------------------------------------------------------------------------ */
8098int
8099ipf_genericiter(softc, data, uid, ctx)
8100	ipf_main_softc_t *softc;
8101	void *data, *ctx;
8102	int uid;
8103{
8104	ipftoken_t *token;
8105	ipfgeniter_t iter;
8106	int error;
8107
8108	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
8109	if (error != 0)
8110		return error;
8111
8112	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
8113	if (token != NULL) {
8114		token->ipt_subtype = iter.igi_type;
8115		error = ipf_geniter(softc, token, &iter);
8116		WRITE_ENTER(&softc->ipf_tokens);
8117		ipf_token_deref(softc, token);
8118		RWLOCK_EXIT(&softc->ipf_tokens);
8119	} else {
8120		IPFERROR(93);
8121		error = 0;
8122	}
8123
8124	return error;
8125}
8126
8127
8128/* ------------------------------------------------------------------------ */
8129/* Function:    ipf_ipf_ioctl                                               */
8130/* Returns:     int - 0 = success, else error                               */
8131/* Parameters:  softc(I)- pointer to soft context main structure           */
8132/*              data(I) - the token type to match                           */
8133/*              cmd(I)  - the ioctl command number                          */
8134/*              mode(I) - mode flags for the ioctl                          */
8135/*              uid(I)  - uid owning the token                              */
8136/*              ptr(I)  - context pointer for the token                     */
8137/*                                                                          */
8138/* This function handles all of the ioctl command that are actually isssued */
8139/* to the /dev/ipl device.                                                  */
8140/* ------------------------------------------------------------------------ */
8141int
8142ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx)
8143	ipf_main_softc_t *softc;
8144	caddr_t data;
8145	ioctlcmd_t cmd;
8146	int mode, uid;
8147	void *ctx;
8148{
8149	friostat_t fio;
8150	int error, tmp;
8151	ipfobj_t obj;
8152	SPL_INT(s);
8153
8154	switch (cmd)
8155	{
8156	case SIOCFRENB :
8157		if (!(mode & FWRITE)) {
8158			IPFERROR(94);
8159			error = EPERM;
8160		} else {
8161			error = BCOPYIN(data, &tmp, sizeof(tmp));
8162			if (error != 0) {
8163				IPFERROR(95);
8164				error = EFAULT;
8165				break;
8166			}
8167
8168			WRITE_ENTER(&softc->ipf_global);
8169			if (tmp) {
8170				if (softc->ipf_running > 0)
8171					error = 0;
8172				else
8173					error = ipfattach(softc);
8174				if (error == 0)
8175					softc->ipf_running = 1;
8176				else
8177					(void) ipfdetach(softc);
8178			} else {
8179				if (softc->ipf_running == 1)
8180					error = ipfdetach(softc);
8181				else
8182					error = 0;
8183				if (error == 0)
8184					softc->ipf_running = -1;
8185			}
8186			RWLOCK_EXIT(&softc->ipf_global);
8187		}
8188		break;
8189
8190	case SIOCIPFSET :
8191		if (!(mode & FWRITE)) {
8192			IPFERROR(96);
8193			error = EPERM;
8194			break;
8195		}
8196		/* FALLTHRU */
8197	case SIOCIPFGETNEXT :
8198	case SIOCIPFGET :
8199		error = ipf_ipftune(softc, cmd, (void *)data);
8200		break;
8201
8202	case SIOCSETFF :
8203		if (!(mode & FWRITE)) {
8204			IPFERROR(97);
8205			error = EPERM;
8206		} else {
8207			error = BCOPYIN(data, &softc->ipf_flags,
8208					sizeof(softc->ipf_flags));
8209			if (error != 0) {
8210				IPFERROR(98);
8211				error = EFAULT;
8212			}
8213		}
8214		break;
8215
8216	case SIOCGETFF :
8217		error = BCOPYOUT(&softc->ipf_flags, data,
8218				 sizeof(softc->ipf_flags));
8219		if (error != 0) {
8220			IPFERROR(99);
8221			error = EFAULT;
8222		}
8223		break;
8224
8225	case SIOCFUNCL :
8226		error = ipf_resolvefunc(softc, (void *)data);
8227		break;
8228
8229	case SIOCINAFR :
8230	case SIOCRMAFR :
8231	case SIOCADAFR :
8232	case SIOCZRLST :
8233		if (!(mode & FWRITE)) {
8234			IPFERROR(100);
8235			error = EPERM;
8236		} else {
8237			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8238					  softc->ipf_active, 1);
8239		}
8240		break;
8241
8242	case SIOCINIFR :
8243	case SIOCRMIFR :
8244	case SIOCADIFR :
8245		if (!(mode & FWRITE)) {
8246			IPFERROR(101);
8247			error = EPERM;
8248		} else {
8249			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8250					  1 - softc->ipf_active, 1);
8251		}
8252		break;
8253
8254	case SIOCSWAPA :
8255		if (!(mode & FWRITE)) {
8256			IPFERROR(102);
8257			error = EPERM;
8258		} else {
8259			WRITE_ENTER(&softc->ipf_mutex);
8260			error = BCOPYOUT(&softc->ipf_active, data,
8261					 sizeof(softc->ipf_active));
8262			if (error != 0) {
8263				IPFERROR(103);
8264				error = EFAULT;
8265			} else {
8266				softc->ipf_active = 1 - softc->ipf_active;
8267			}
8268			RWLOCK_EXIT(&softc->ipf_mutex);
8269		}
8270		break;
8271
8272	case SIOCGETFS :
8273		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8274				  IPFOBJ_IPFSTAT);
8275		if (error != 0)
8276			break;
8277		ipf_getstat(softc, &fio, obj.ipfo_rev);
8278		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8279		break;
8280
8281	case SIOCFRZST :
8282		if (!(mode & FWRITE)) {
8283			IPFERROR(104);
8284			error = EPERM;
8285		} else
8286			error = ipf_zerostats(softc, (caddr_t)data);
8287		break;
8288
8289	case SIOCIPFFL :
8290		if (!(mode & FWRITE)) {
8291			IPFERROR(105);
8292			error = EPERM;
8293		} else {
8294			error = BCOPYIN(data, &tmp, sizeof(tmp));
8295			if (!error) {
8296				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8297				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8298				if (error != 0) {
8299					IPFERROR(106);
8300					error = EFAULT;
8301				}
8302			} else {
8303				IPFERROR(107);
8304				error = EFAULT;
8305			}
8306		}
8307		break;
8308
8309#ifdef USE_INET6
8310	case SIOCIPFL6 :
8311		if (!(mode & FWRITE)) {
8312			IPFERROR(108);
8313			error = EPERM;
8314		} else {
8315			error = BCOPYIN(data, &tmp, sizeof(tmp));
8316			if (!error) {
8317				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8318				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8319				if (error != 0) {
8320					IPFERROR(109);
8321					error = EFAULT;
8322				}
8323			} else {
8324				IPFERROR(110);
8325				error = EFAULT;
8326			}
8327		}
8328		break;
8329#endif
8330
8331	case SIOCSTLCK :
8332		if (!(mode & FWRITE)) {
8333			IPFERROR(122);
8334			error = EPERM;
8335		} else {
8336			error = BCOPYIN(data, &tmp, sizeof(tmp));
8337			if (error == 0) {
8338				ipf_state_setlock(softc->ipf_state_soft, tmp);
8339				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8340				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8341				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8342			} else {
8343				IPFERROR(111);
8344				error = EFAULT;
8345			}
8346		}
8347		break;
8348
8349#ifdef	IPFILTER_LOG
8350	case SIOCIPFFB :
8351		if (!(mode & FWRITE)) {
8352			IPFERROR(112);
8353			error = EPERM;
8354		} else {
8355			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8356			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8357			if (error) {
8358				IPFERROR(113);
8359				error = EFAULT;
8360			}
8361		}
8362		break;
8363#endif /* IPFILTER_LOG */
8364
8365	case SIOCFRSYN :
8366		if (!(mode & FWRITE)) {
8367			IPFERROR(114);
8368			error = EPERM;
8369		} else {
8370			WRITE_ENTER(&softc->ipf_global);
8371#if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8372			error = ipfsync();
8373#else
8374			ipf_sync(softc, NULL);
8375			error = 0;
8376#endif
8377			RWLOCK_EXIT(&softc->ipf_global);
8378
8379		}
8380		break;
8381
8382	case SIOCGFRST :
8383		error = ipf_outobj(softc, (void *)data,
8384				   ipf_frag_stats(softc->ipf_frag_soft),
8385				   IPFOBJ_FRAGSTAT);
8386		break;
8387
8388#ifdef	IPFILTER_LOG
8389	case FIONREAD :
8390		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8391		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8392		break;
8393#endif
8394
8395	case SIOCIPFITER :
8396		SPL_SCHED(s);
8397		error = ipf_frruleiter(softc, data, uid, ctx);
8398		SPL_X(s);
8399		break;
8400
8401	case SIOCGENITER :
8402		SPL_SCHED(s);
8403		error = ipf_genericiter(softc, data, uid, ctx);
8404		SPL_X(s);
8405		break;
8406
8407	case SIOCIPFDELTOK :
8408		error = BCOPYIN(data, &tmp, sizeof(tmp));
8409		if (error == 0) {
8410			SPL_SCHED(s);
8411			error = ipf_token_del(softc, tmp, uid, ctx);
8412			SPL_X(s);
8413		}
8414		break;
8415
8416	default :
8417		IPFERROR(115);
8418		error = EINVAL;
8419		break;
8420	}
8421
8422	return error;
8423}
8424
8425
8426/* ------------------------------------------------------------------------ */
8427/* Function:    ipf_decaps                                                  */
8428/* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8429/*                           flags indicating packet filtering decision.    */
8430/* Parameters:  fin(I)     - pointer to packet information                  */
8431/*              pass(I)    - IP protocol version to match                   */
8432/*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8433/*                                                                          */
8434/* This function is called for packets that are wrapt up in other packets,  */
8435/* for example, an IP packet that is the entire data segment for another IP */
8436/* packet.  If the basic constraints for this are satisfied, change the     */
8437/* buffer to point to the start of the inner packet and start processing    */
8438/* rules belonging to the head group this rule specifies.                   */
8439/* ------------------------------------------------------------------------ */
8440u_32_t
8441ipf_decaps(fin, pass, l5proto)
8442	fr_info_t *fin;
8443	u_32_t pass;
8444	int l5proto;
8445{
8446	fr_info_t fin2, *fino = NULL;
8447	int elen, hlen, nh;
8448	grehdr_t gre;
8449	ip_t *ip;
8450	mb_t *m;
8451
8452	if ((fin->fin_flx & FI_COALESCE) == 0)
8453		if (ipf_coalesce(fin) == -1)
8454			goto cantdecaps;
8455
8456	m = fin->fin_m;
8457	hlen = fin->fin_hlen;
8458
8459	switch (fin->fin_p)
8460	{
8461	case IPPROTO_UDP :
8462		/*
8463		 * In this case, the specific protocol being decapsulated
8464		 * inside UDP frames comes from the rule.
8465		 */
8466		nh = fin->fin_fr->fr_icode;
8467		break;
8468
8469	case IPPROTO_GRE :	/* 47 */
8470		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8471		hlen += sizeof(grehdr_t);
8472		if (gre.gr_R|gre.gr_s)
8473			goto cantdecaps;
8474		if (gre.gr_C)
8475			hlen += 4;
8476		if (gre.gr_K)
8477			hlen += 4;
8478		if (gre.gr_S)
8479			hlen += 4;
8480
8481		nh = IPPROTO_IP;
8482
8483		/*
8484		 * If the routing options flag is set, validate that it is
8485		 * there and bounce over it.
8486		 */
8487#if 0
8488		/* This is really heavy weight and lots of room for error, */
8489		/* so for now, put it off and get the simple stuff right.  */
8490		if (gre.gr_R) {
8491			u_char off, len, *s;
8492			u_short af;
8493			int end;
8494
8495			end = 0;
8496			s = fin->fin_dp;
8497			s += hlen;
8498			aplen = fin->fin_plen - hlen;
8499			while (aplen > 3) {
8500				af = (s[0] << 8) | s[1];
8501				off = s[2];
8502				len = s[3];
8503				aplen -= 4;
8504				s += 4;
8505				if (af == 0 && len == 0) {
8506					end = 1;
8507					break;
8508				}
8509				if (aplen < len)
8510					break;
8511				s += len;
8512				aplen -= len;
8513			}
8514			if (end != 1)
8515				goto cantdecaps;
8516			hlen = s - (u_char *)fin->fin_dp;
8517		}
8518#endif
8519		break;
8520
8521#ifdef IPPROTO_IPIP
8522	case IPPROTO_IPIP :	/* 4 */
8523#endif
8524		nh = IPPROTO_IP;
8525		break;
8526
8527	default :	/* Includes ESP, AH is special for IPv4 */
8528		goto cantdecaps;
8529	}
8530
8531	switch (nh)
8532	{
8533	case IPPROTO_IP :
8534	case IPPROTO_IPV6 :
8535		break;
8536	default :
8537		goto cantdecaps;
8538	}
8539
8540	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8541	fino = fin;
8542	fin = &fin2;
8543	elen = hlen;
8544#if defined(MENTAT) && defined(_KERNEL)
8545	m->b_rptr += elen;
8546#else
8547	m->m_data += elen;
8548	m->m_len -= elen;
8549#endif
8550	fin->fin_plen -= elen;
8551
8552	ip = (ip_t *)((char *)fin->fin_ip + elen);
8553
8554	/*
8555	 * Make sure we have at least enough data for the network layer
8556	 * header.
8557	 */
8558	if (IP_V(ip) == 4)
8559		hlen = IP_HL(ip) << 2;
8560#ifdef USE_INET6
8561	else if (IP_V(ip) == 6)
8562		hlen = sizeof(ip6_t);
8563#endif
8564	else
8565		goto cantdecaps2;
8566
8567	if (fin->fin_plen < hlen)
8568		goto cantdecaps2;
8569
8570	fin->fin_dp = (char *)ip + hlen;
8571
8572	if (IP_V(ip) == 4) {
8573		/*
8574		 * Perform IPv4 header checksum validation.
8575		 */
8576		if (ipf_cksum((u_short *)ip, hlen))
8577			goto cantdecaps2;
8578	}
8579
8580	if (ipf_makefrip(hlen, ip, fin) == -1) {
8581cantdecaps2:
8582		if (m != NULL) {
8583#if defined(MENTAT) && defined(_KERNEL)
8584			m->b_rptr -= elen;
8585#else
8586			m->m_data -= elen;
8587			m->m_len += elen;
8588#endif
8589		}
8590cantdecaps:
8591		DT1(frb_decapfrip, fr_info_t *, fin);
8592		pass &= ~FR_CMDMASK;
8593		pass |= FR_BLOCK|FR_QUICK;
8594		fin->fin_reason = FRB_DECAPFRIP;
8595		return -1;
8596	}
8597
8598	pass = ipf_scanlist(fin, pass);
8599
8600	/*
8601	 * Copy the packet filter "result" fields out of the fr_info_t struct
8602	 * that is local to the decapsulation processing and back into the
8603	 * one we were called with.
8604	 */
8605	fino->fin_flx = fin->fin_flx;
8606	fino->fin_rev = fin->fin_rev;
8607	fino->fin_icode = fin->fin_icode;
8608	fino->fin_rule = fin->fin_rule;
8609	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8610	fino->fin_fr = fin->fin_fr;
8611	fino->fin_error = fin->fin_error;
8612	fino->fin_mp = fin->fin_mp;
8613	fino->fin_m = fin->fin_m;
8614	m = fin->fin_m;
8615	if (m != NULL) {
8616#if defined(MENTAT) && defined(_KERNEL)
8617		m->b_rptr -= elen;
8618#else
8619		m->m_data -= elen;
8620		m->m_len += elen;
8621#endif
8622	}
8623	return pass;
8624}
8625
8626
8627/* ------------------------------------------------------------------------ */
8628/* Function:    ipf_matcharray_load                                         */
8629/* Returns:     int         - 0 = success, else error                       */
8630/* Parameters:  softc(I)    - pointer to soft context main structure        */
8631/*              data(I)     - pointer to ioctl data                         */
8632/*              objp(I)     - ipfobj_t structure to load data into          */
8633/*              arrayptr(I) - pointer to location to store array pointer    */
8634/*                                                                          */
8635/* This function loads in a mathing array through the ipfobj_t struct that  */
8636/* describes it.  Sanity checking and array size limitations are enforced   */
8637/* in this function to prevent userspace from trying to load in something   */
8638/* that is insanely big.  Once the size of the array is known, the memory   */
8639/* required is malloc'd and returned through changing *arrayptr.  The       */
8640/* contents of the array are verified before returning.  Only in the event  */
8641/* of a successful call is the caller required to free up the malloc area.  */
8642/* ------------------------------------------------------------------------ */
8643int
8644ipf_matcharray_load(softc, data, objp, arrayptr)
8645	ipf_main_softc_t *softc;
8646	caddr_t data;
8647	ipfobj_t *objp;
8648	int **arrayptr;
8649{
8650	int arraysize, *array, error;
8651
8652	*arrayptr = NULL;
8653
8654	error = BCOPYIN(data, objp, sizeof(*objp));
8655	if (error != 0) {
8656		IPFERROR(116);
8657		return EFAULT;
8658	}
8659
8660	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8661		IPFERROR(117);
8662		return EINVAL;
8663	}
8664
8665	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8666	    (objp->ipfo_size > 1024)) {
8667		IPFERROR(118);
8668		return EINVAL;
8669	}
8670
8671	arraysize = objp->ipfo_size * sizeof(*array);
8672	KMALLOCS(array, int *, arraysize);
8673	if (array == NULL) {
8674		IPFERROR(119);
8675		return ENOMEM;
8676	}
8677
8678	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8679	if (error != 0) {
8680		KFREES(array, arraysize);
8681		IPFERROR(120);
8682		return EFAULT;
8683	}
8684
8685	if (ipf_matcharray_verify(array, arraysize) != 0) {
8686		KFREES(array, arraysize);
8687		IPFERROR(121);
8688		return EINVAL;
8689	}
8690
8691	*arrayptr = array;
8692	return 0;
8693}
8694
8695
8696/* ------------------------------------------------------------------------ */
8697/* Function:    ipf_matcharray_verify                                       */
8698/* Returns:     Nil                                                         */
8699/* Parameters:  array(I)     - pointer to matching array                    */
8700/*              arraysize(I) - number of elements in the array              */
8701/*                                                                          */
8702/* Verify the contents of a matching array by stepping through each element */
8703/* in it.  The actual commands in the array are not verified for            */
8704/* correctness, only that all of the sizes are correctly within limits.     */
8705/* ------------------------------------------------------------------------ */
8706int
8707ipf_matcharray_verify(array, arraysize)
8708	int *array, arraysize;
8709{
8710	int i, nelem, maxidx;
8711	ipfexp_t *e;
8712
8713	nelem = arraysize / sizeof(*array);
8714
8715	/*
8716	 * Currently, it makes no sense to have an array less than 6
8717	 * elements long - the initial size at the from, a single operation
8718	 * (minimum 4 in length) and a trailer, for a total of 6.
8719	 */
8720	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8721		return -1;
8722	}
8723
8724	/*
8725	 * Verify the size of data pointed to by array with how long
8726	 * the array claims to be itself.
8727	 */
8728	if (array[0] * sizeof(*array) != arraysize) {
8729		return -1;
8730	}
8731
8732	maxidx = nelem - 1;
8733	/*
8734	 * The last opcode in this array should be an IPF_EXP_END.
8735	 */
8736	if (array[maxidx] != IPF_EXP_END) {
8737		return -1;
8738	}
8739
8740	for (i = 1; i < maxidx; ) {
8741		e = (ipfexp_t *)(array + i);
8742
8743		/*
8744		 * The length of the bits to check must be at least 1
8745		 * (or else there is nothing to comapre with!) and it
8746		 * cannot exceed the length of the data present.
8747		 */
8748		if ((e->ipfe_size < 1 ) ||
8749		    (e->ipfe_size + i > maxidx)) {
8750			return -1;
8751		}
8752		i += e->ipfe_size;
8753	}
8754	return 0;
8755}
8756
8757
8758/* ------------------------------------------------------------------------ */
8759/* Function:    ipf_fr_matcharray                                           */
8760/* Returns:     int      - 0 = match failed, else positive match            */
8761/* Parameters:  fin(I)   - pointer to packet information                    */
8762/*              array(I) - pointer to matching array                        */
8763/*                                                                          */
8764/* This function is used to apply a matching array against a packet and     */
8765/* return an indication of whether or not the packet successfully matches   */
8766/* all of the commands in it.                                               */
8767/* ------------------------------------------------------------------------ */
8768static int
8769ipf_fr_matcharray(fin, array)
8770	fr_info_t *fin;
8771	int *array;
8772{
8773	int i, n, *x, rv, p;
8774	ipfexp_t *e;
8775
8776	rv = 0;
8777	n = array[0];
8778	x = array + 1;
8779
8780	for (; n > 0; x += 3 + x[3], rv = 0) {
8781		e = (ipfexp_t *)x;
8782		if (e->ipfe_cmd == IPF_EXP_END)
8783			break;
8784		n -= e->ipfe_size;
8785
8786		/*
8787		 * The upper 16 bits currently store the protocol value.
8788		 * This is currently used with TCP and UDP port compares and
8789		 * allows "tcp.port = 80" without requiring an explicit
8790		 " "ip.pr = tcp" first.
8791		 */
8792		p = e->ipfe_cmd >> 16;
8793		if ((p != 0) && (p != fin->fin_p))
8794			break;
8795
8796		switch (e->ipfe_cmd)
8797		{
8798		case IPF_EXP_IP_PR :
8799			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8800				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8801			}
8802			break;
8803
8804		case IPF_EXP_IP_SRCADDR :
8805			if (fin->fin_v != 4)
8806				break;
8807			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8808				rv |= ((fin->fin_saddr &
8809					e->ipfe_arg0[i * 2 + 1]) ==
8810				       e->ipfe_arg0[i * 2]);
8811			}
8812			break;
8813
8814		case IPF_EXP_IP_DSTADDR :
8815			if (fin->fin_v != 4)
8816				break;
8817			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8818				rv |= ((fin->fin_daddr &
8819					e->ipfe_arg0[i * 2 + 1]) ==
8820				       e->ipfe_arg0[i * 2]);
8821			}
8822			break;
8823
8824		case IPF_EXP_IP_ADDR :
8825			if (fin->fin_v != 4)
8826				break;
8827			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8828				rv |= ((fin->fin_saddr &
8829					e->ipfe_arg0[i * 2 + 1]) ==
8830				       e->ipfe_arg0[i * 2]) ||
8831				      ((fin->fin_daddr &
8832					e->ipfe_arg0[i * 2 + 1]) ==
8833				       e->ipfe_arg0[i * 2]);
8834			}
8835			break;
8836
8837#ifdef USE_INET6
8838		case IPF_EXP_IP6_SRCADDR :
8839			if (fin->fin_v != 6)
8840				break;
8841			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8842				rv |= IP6_MASKEQ(&fin->fin_src6,
8843						 &e->ipfe_arg0[i * 8 + 4],
8844						 &e->ipfe_arg0[i * 8]);
8845			}
8846			break;
8847
8848		case IPF_EXP_IP6_DSTADDR :
8849			if (fin->fin_v != 6)
8850				break;
8851			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8852				rv |= IP6_MASKEQ(&fin->fin_dst6,
8853						 &e->ipfe_arg0[i * 8 + 4],
8854						 &e->ipfe_arg0[i * 8]);
8855			}
8856			break;
8857
8858		case IPF_EXP_IP6_ADDR :
8859			if (fin->fin_v != 6)
8860				break;
8861			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8862				rv |= IP6_MASKEQ(&fin->fin_src6,
8863						 &e->ipfe_arg0[i * 8 + 4],
8864						 &e->ipfe_arg0[i * 8]) ||
8865				      IP6_MASKEQ(&fin->fin_dst6,
8866						 &e->ipfe_arg0[i * 8 + 4],
8867						 &e->ipfe_arg0[i * 8]);
8868			}
8869			break;
8870#endif
8871
8872		case IPF_EXP_UDP_PORT :
8873		case IPF_EXP_TCP_PORT :
8874			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8875				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8876				      (fin->fin_dport == e->ipfe_arg0[i]);
8877			}
8878			break;
8879
8880		case IPF_EXP_UDP_SPORT :
8881		case IPF_EXP_TCP_SPORT :
8882			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8883				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8884			}
8885			break;
8886
8887		case IPF_EXP_UDP_DPORT :
8888		case IPF_EXP_TCP_DPORT :
8889			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8890				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8891			}
8892			break;
8893
8894		case IPF_EXP_TCP_FLAGS :
8895			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8896				rv |= ((fin->fin_tcpf &
8897					e->ipfe_arg0[i * 2 + 1]) ==
8898				       e->ipfe_arg0[i * 2]);
8899			}
8900			break;
8901		}
8902		rv ^= e->ipfe_not;
8903
8904		if (rv == 0)
8905			break;
8906	}
8907
8908	return rv;
8909}
8910
8911
8912/* ------------------------------------------------------------------------ */
8913/* Function:    ipf_queueflush                                              */
8914/* Returns:     int - number of entries flushed (0 = none)                  */
8915/* Parameters:  softc(I)    - pointer to soft context main structure        */
8916/*              deletefn(I) - function to call to delete entry              */
8917/*              ipfqs(I)    - top of the list of ipf internal queues        */
8918/*              userqs(I)   - top of the list of user defined timeouts      */
8919/*                                                                          */
8920/* This fucntion gets called when the state/NAT hash tables fill up and we  */
8921/* need to try a bit harder to free up some space.  The algorithm used here */
8922/* split into two parts but both halves have the same goal: to reduce the   */
8923/* number of connections considered to be "active" to the low watermark.    */
8924/* There are two steps in doing this:                                       */
8925/* 1) Remove any TCP connections that are already considered to be "closed" */
8926/*    but have not yet been removed from the state table.  The two states   */
8927/*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8928/*    candidates for this style of removal.  If freeing up entries in       */
8929/*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8930/*    we do not go on to step 2.                                            */
8931/*                                                                          */
8932/* 2) Look for the oldest entries on each timeout queue and free them if    */
8933/*    they are within the given window we are considering.  Where the       */
8934/*    window starts and the steps taken to increase its size depend upon    */
8935/*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8936/*    last 30 seconds is not touched.                                       */
8937/*                                              touched                     */
8938/*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8939/*           |          |        |           |     |     |                  */
8940/* future <--+----------+--------+-----------+-----+-----+-----------> past */
8941/*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8942/*                                                                          */
8943/* Points to note:                                                          */
8944/* - tqe_die is the time, in the future, when entries die.                  */
8945/* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8946/*   ticks.                                                                 */
8947/* - tqe_touched is when the entry was last used by NAT/state               */
8948/* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8949/*   ipf_ticks any given timeout queue and vice versa.                      */
8950/* - both tqe_die and tqe_touched increase over time                        */
8951/* - timeout queues are sorted with the highest value of tqe_die at the     */
8952/*   bottom and therefore the smallest values of each are at the top        */
8953/* - the pointer passed in as ipfqs should point to an array of timeout     */
8954/*   queues representing each of the TCP states                             */
8955/*                                                                          */
8956/* We start by setting up a maximum range to scan for things to move of     */
8957/* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8958/* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8959/* we start again with a new value for "iend" and "istart".  This is        */
8960/* continued until we either finish the scan of 30 second intervals or the  */
8961/* low water mark is reached.                                               */
8962/* ------------------------------------------------------------------------ */
8963int
8964ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low)
8965	ipf_main_softc_t *softc;
8966	ipftq_delete_fn_t deletefn;
8967	ipftq_t *ipfqs, *userqs;
8968	u_int *activep;
8969	int size, low;
8970{
8971	u_long interval, istart, iend;
8972	ipftq_t *ifq, *ifqnext;
8973	ipftqent_t *tqe, *tqn;
8974	int removed = 0;
8975
8976	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8977		tqn = tqe->tqe_next;
8978		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8979			removed++;
8980	}
8981	if ((*activep * 100 / size) > low) {
8982		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8983		     ((tqe = tqn) != NULL); ) {
8984			tqn = tqe->tqe_next;
8985			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8986				removed++;
8987		}
8988	}
8989
8990	if ((*activep * 100 / size) <= low) {
8991		return removed;
8992	}
8993
8994	/*
8995	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8996	 *       used then the operations are upgraded to floating point
8997	 *       and kernels don't like floating point...
8998	 */
8999	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
9000		istart = IPF_TTLVAL(86400 * 4);
9001		interval = IPF_TTLVAL(43200);
9002	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
9003		istart = IPF_TTLVAL(43200);
9004		interval = IPF_TTLVAL(1800);
9005	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
9006		istart = IPF_TTLVAL(1800);
9007		interval = IPF_TTLVAL(30);
9008	} else {
9009		return 0;
9010	}
9011	if (istart > softc->ipf_ticks) {
9012		if (softc->ipf_ticks - interval < interval)
9013			istart = interval;
9014		else
9015			istart = (softc->ipf_ticks / interval) * interval;
9016	}
9017
9018	iend = softc->ipf_ticks - interval;
9019
9020	while ((*activep * 100 / size) > low) {
9021		u_long try;
9022
9023		try = softc->ipf_ticks - istart;
9024
9025		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
9026			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9027				if (try < tqe->tqe_touched)
9028					break;
9029				tqn = tqe->tqe_next;
9030				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9031					removed++;
9032			}
9033		}
9034
9035		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
9036			ifqnext = ifq->ifq_next;
9037
9038			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9039				if (try < tqe->tqe_touched)
9040					break;
9041				tqn = tqe->tqe_next;
9042				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9043					removed++;
9044			}
9045		}
9046
9047		if (try >= iend) {
9048			if (interval == IPF_TTLVAL(43200)) {
9049				interval = IPF_TTLVAL(1800);
9050			} else if (interval == IPF_TTLVAL(1800)) {
9051				interval = IPF_TTLVAL(30);
9052			} else {
9053				break;
9054			}
9055			if (interval >= softc->ipf_ticks)
9056				break;
9057
9058			iend = softc->ipf_ticks - interval;
9059		}
9060		istart -= interval;
9061	}
9062
9063	return removed;
9064}
9065
9066
9067/* ------------------------------------------------------------------------ */
9068/* Function:    ipf_deliverlocal                                            */
9069/* Returns:     int - 1 = local address, 0 = non-local address              */
9070/* Parameters:  softc(I)     - pointer to soft context main structure       */
9071/*              ipversion(I) - IP protocol version (4 or 6)                 */
9072/*              ifp(I)       - network interface pointer                    */
9073/*              ipaddr(I)    - IPv4/6 destination address                   */
9074/*                                                                          */
9075/* This fucntion is used to determine in the address "ipaddr" belongs to    */
9076/* the network interface represented by ifp.                                */
9077/* ------------------------------------------------------------------------ */
9078int
9079ipf_deliverlocal(softc, ipversion, ifp, ipaddr)
9080	ipf_main_softc_t *softc;
9081	int ipversion;
9082	void *ifp;
9083	i6addr_t *ipaddr;
9084{
9085	i6addr_t addr;
9086	int islocal = 0;
9087
9088	if (ipversion == 4) {
9089		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9090			if (addr.in4.s_addr == ipaddr->in4.s_addr)
9091				islocal = 1;
9092		}
9093
9094#ifdef USE_INET6
9095	} else if (ipversion == 6) {
9096		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9097			if (IP6_EQ(&addr, ipaddr))
9098				islocal = 1;
9099		}
9100#endif
9101	}
9102
9103	return islocal;
9104}
9105
9106
9107/* ------------------------------------------------------------------------ */
9108/* Function:    ipf_settimeout                                              */
9109/* Returns:     int - 0 = success, -1 = failure                             */
9110/* Parameters:  softc(I) - pointer to soft context main structure           */
9111/*              t(I)     - pointer to tuneable array entry                  */
9112/*              p(I)     - pointer to values passed in to apply             */
9113/*                                                                          */
9114/* This function is called to set the timeout values for each distinct      */
9115/* queue timeout that is available.  When called, it calls into both the    */
9116/* state and NAT code, telling them to update their timeout queues.         */
9117/* ------------------------------------------------------------------------ */
9118static int
9119ipf_settimeout(softc, t, p)
9120	struct ipf_main_softc_s *softc;
9121	ipftuneable_t *t;
9122	ipftuneval_t *p;
9123{
9124
9125	/*
9126	 * ipf_interror should be set by the functions called here, not
9127	 * by this function - it's just a middle man.
9128	 */
9129	if (ipf_state_settimeout(softc, t, p) == -1)
9130		return -1;
9131	if (ipf_nat_settimeout(softc, t, p) == -1)
9132		return -1;
9133	return 0;
9134}
9135
9136
9137/* ------------------------------------------------------------------------ */
9138/* Function:    ipf_apply_timeout                                           */
9139/* Returns:     int - 0 = success, -1 = failure                             */
9140/* Parameters:  head(I)    - pointer to tuneable array entry                */
9141/*              seconds(I) - pointer to values passed in to apply           */
9142/*                                                                          */
9143/* This function applies a timeout of "seconds" to the timeout queue that   */
9144/* is pointed to by "head".  All entries on this list have an expiration    */
9145/* set to be the current tick value of ipf plus the ttl.  Given that this   */
9146/* function should only be called when the delta is non-zero, the task is   */
9147/* to walk the entire list and apply the change.  The sort order will not   */
9148/* change.  The only catch is that this is O(n) across the list, so if the  */
9149/* queue has lots of entries (10s of thousands or 100s of thousands), it    */
9150/* could take a relatively long time to work through them all.              */
9151/* ------------------------------------------------------------------------ */
9152void
9153ipf_apply_timeout(head, seconds)
9154	ipftq_t *head;
9155	u_int seconds;
9156{
9157	u_int oldtimeout, newtimeout;
9158	ipftqent_t *tqe;
9159	int delta;
9160
9161	MUTEX_ENTER(&head->ifq_lock);
9162	oldtimeout = head->ifq_ttl;
9163	newtimeout = IPF_TTLVAL(seconds);
9164	delta = oldtimeout - newtimeout;
9165
9166	head->ifq_ttl = newtimeout;
9167
9168	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
9169		tqe->tqe_die += delta;
9170	}
9171	MUTEX_EXIT(&head->ifq_lock);
9172}
9173
9174
9175/* ------------------------------------------------------------------------ */
9176/* Function:   ipf_settimeout_tcp                                           */
9177/* Returns:    int - 0 = successfully applied, -1 = failed                  */
9178/* Parameters: t(I)   - pointer to tuneable to change                       */
9179/*             p(I)   - pointer to new timeout information                  */
9180/*             tab(I) - pointer to table of TCP queues                      */
9181/*                                                                          */
9182/* This function applies the new timeout (p) to the TCP tunable (t) and     */
9183/* updates all of the entries on the relevant timeout queue by calling      */
9184/* ipf_apply_timeout().                                                     */
9185/* ------------------------------------------------------------------------ */
9186int
9187ipf_settimeout_tcp(t, p, tab)
9188	ipftuneable_t *t;
9189	ipftuneval_t *p;
9190	ipftq_t *tab;
9191{
9192	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
9193	    !strcmp(t->ipft_name, "tcp_established")) {
9194		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
9195	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
9196		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
9197	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
9198		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
9199	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
9200		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9201		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9202		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9203	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
9204		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9205	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
9206		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9207	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
9208		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9209	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
9210		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
9211	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9212		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9213	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
9214		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9215	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9216		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9217	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9218		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9219	} else {
9220		/*
9221		 * ipf_interror isn't set here because it should be set
9222		 * by whatever called this function.
9223		 */
9224		return -1;
9225	}
9226	return 0;
9227}
9228
9229
9230/* ------------------------------------------------------------------------ */
9231/* Function:   ipf_main_soft_create                                         */
9232/* Returns:    NULL = failure, else success                                 */
9233/* Parameters: arg(I) - pointer to soft context structure if already allocd */
9234/*                                                                          */
9235/* Create the foundation soft context structure. In circumstances where it  */
9236/* is not required to dynamically allocate the context, a pointer can be    */
9237/* passed in (rather than NULL) to a structure to be initialised.           */
9238/* The main thing of interest is that a number of locks are initialised     */
9239/* here instead of in the where might be expected - in the relevant create  */
9240/* function elsewhere.  This is done because the current locking design has */
9241/* some areas where these locks are used outside of their module.           */
9242/* Possibly the most important exercise that is done here is setting of all */
9243/* the timeout values, allowing them to be changed before init().           */
9244/* ------------------------------------------------------------------------ */
9245void *
9246ipf_main_soft_create(arg)
9247	void *arg;
9248{
9249	ipf_main_softc_t *softc;
9250
9251	if (arg == NULL) {
9252		KMALLOC(softc, ipf_main_softc_t *);
9253		if (softc == NULL)
9254			return NULL;
9255	} else {
9256		softc = arg;
9257	}
9258
9259	bzero((char *)softc, sizeof(*softc));
9260
9261	/*
9262	 * This serves as a flag as to whether or not the softc should be
9263	 * free'd when _destroy is called.
9264	 */
9265	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9266
9267	softc->ipf_tuners = ipf_tune_array_copy(softc,
9268						sizeof(ipf_main_tuneables),
9269						ipf_main_tuneables);
9270	if (softc->ipf_tuners == NULL) {
9271		ipf_main_soft_destroy(softc);
9272		return NULL;
9273	}
9274
9275	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9276	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9277	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9278	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9279	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9280	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9281	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9282	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9283	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9284
9285	softc->ipf_token_head = NULL;
9286	softc->ipf_token_tail = &softc->ipf_token_head;
9287
9288	softc->ipf_tcpidletimeout = FIVE_DAYS;
9289	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9290	softc->ipf_tcplastack = IPF_TTLVAL(30);
9291	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9292	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9293	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9294	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9295	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9296	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9297	softc->ipf_udptimeout = IPF_TTLVAL(120);
9298	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9299	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9300	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9301	softc->ipf_iptimeout = IPF_TTLVAL(60);
9302
9303#if defined(IPFILTER_DEFAULT_BLOCK)
9304	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9305#else
9306	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9307#endif
9308	softc->ipf_minttl = 4;
9309	softc->ipf_icmpminfragmtu = 68;
9310	softc->ipf_flags = IPF_LOGGING;
9311
9312	return softc;
9313}
9314
9315/* ------------------------------------------------------------------------ */
9316/* Function:   ipf_main_soft_init                                           */
9317/* Returns:    0 = success, -1 = failure                                    */
9318/* Parameters: softc(I) - pointer to soft context main structure            */
9319/*                                                                          */
9320/* A null-op function that exists as a placeholder so that the flow in      */
9321/* other functions is obvious.                                              */
9322/* ------------------------------------------------------------------------ */
9323/*ARGSUSED*/
9324int
9325ipf_main_soft_init(softc)
9326	ipf_main_softc_t *softc;
9327{
9328	return 0;
9329}
9330
9331
9332/* ------------------------------------------------------------------------ */
9333/* Function:   ipf_main_soft_destroy                                        */
9334/* Returns:    void                                                         */
9335/* Parameters: softc(I) - pointer to soft context main structure            */
9336/*                                                                          */
9337/* Undo everything that we did in ipf_main_soft_create.                     */
9338/*                                                                          */
9339/* The most important check that needs to be made here is whether or not    */
9340/* the structure was allocated by ipf_main_soft_create() by checking what   */
9341/* value is stored in ipf_dynamic_main.                                     */
9342/* ------------------------------------------------------------------------ */
9343/*ARGSUSED*/
9344void
9345ipf_main_soft_destroy(softc)
9346	ipf_main_softc_t *softc;
9347{
9348
9349	RW_DESTROY(&softc->ipf_frag);
9350	RW_DESTROY(&softc->ipf_poolrw);
9351	RW_DESTROY(&softc->ipf_nat);
9352	RW_DESTROY(&softc->ipf_state);
9353	RW_DESTROY(&softc->ipf_tokens);
9354	RW_DESTROY(&softc->ipf_mutex);
9355	RW_DESTROY(&softc->ipf_global);
9356	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9357	MUTEX_DESTROY(&softc->ipf_rw);
9358
9359	if (softc->ipf_tuners != NULL) {
9360		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9361	}
9362	if (softc->ipf_dynamic_softc == 1) {
9363		KFREE(softc);
9364	}
9365}
9366
9367
9368/* ------------------------------------------------------------------------ */
9369/* Function:   ipf_main_soft_fini                                           */
9370/* Returns:    0 = success, -1 = failure                                    */
9371/* Parameters: softc(I) - pointer to soft context main structure            */
9372/*                                                                          */
9373/* Clean out the rules which have been added since _init was last called,   */
9374/* the only dynamic part of the mainline.                                   */
9375/* ------------------------------------------------------------------------ */
9376int
9377ipf_main_soft_fini(softc)
9378	ipf_main_softc_t *softc;
9379{
9380	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9381	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9382	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9383	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9384
9385	return 0;
9386}
9387
9388
9389/* ------------------------------------------------------------------------ */
9390/* Function:   ipf_main_load                                                */
9391/* Returns:    0 = success, -1 = failure                                    */
9392/* Parameters: none                                                         */
9393/*                                                                          */
9394/* Handle global initialisation that needs to be done for the base part of  */
9395/* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9396/* arrays that get used by the state/NAT code.                              */
9397/* ------------------------------------------------------------------------ */
9398int
9399ipf_main_load()
9400{
9401	int i;
9402
9403	/* fill icmp reply type table */
9404	for (i = 0; i <= ICMP_MAXTYPE; i++)
9405		icmpreplytype4[i] = -1;
9406	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9407	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9408	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9409	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9410
9411#ifdef  USE_INET6
9412	/* fill icmp reply type table */
9413	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9414		icmpreplytype6[i] = -1;
9415	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9416	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9417	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9418	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9419	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9420#endif
9421
9422	return 0;
9423}
9424
9425
9426/* ------------------------------------------------------------------------ */
9427/* Function:   ipf_main_unload                                              */
9428/* Returns:    0 = success, -1 = failure                                    */
9429/* Parameters: none                                                         */
9430/*                                                                          */
9431/* A null-op function that exists as a placeholder so that the flow in      */
9432/* other functions is obvious.                                              */
9433/* ------------------------------------------------------------------------ */
9434int
9435ipf_main_unload()
9436{
9437	return 0;
9438}
9439
9440
9441/* ------------------------------------------------------------------------ */
9442/* Function:   ipf_load_all                                                 */
9443/* Returns:    0 = success, -1 = failure                                    */
9444/* Parameters: none                                                         */
9445/*                                                                          */
9446/* Work through all of the subsystems inside IPFilter and call the load     */
9447/* function for each in an order that won't lead to a crash :)              */
9448/* ------------------------------------------------------------------------ */
9449int
9450ipf_load_all()
9451{
9452	if (ipf_main_load() == -1)
9453		return -1;
9454
9455	if (ipf_state_main_load() == -1)
9456		return -1;
9457
9458	if (ipf_nat_main_load() == -1)
9459		return -1;
9460
9461	if (ipf_frag_main_load() == -1)
9462		return -1;
9463
9464	if (ipf_auth_main_load() == -1)
9465		return -1;
9466
9467	if (ipf_proxy_main_load() == -1)
9468		return -1;
9469
9470	return 0;
9471}
9472
9473
9474/* ------------------------------------------------------------------------ */
9475/* Function:   ipf_unload_all                                               */
9476/* Returns:    0 = success, -1 = failure                                    */
9477/* Parameters: none                                                         */
9478/*                                                                          */
9479/* Work through all of the subsystems inside IPFilter and call the unload   */
9480/* function for each in an order that won't lead to a crash :)              */
9481/* ------------------------------------------------------------------------ */
9482int
9483ipf_unload_all()
9484{
9485	if (ipf_proxy_main_unload() == -1)
9486		return -1;
9487
9488	if (ipf_auth_main_unload() == -1)
9489		return -1;
9490
9491	if (ipf_frag_main_unload() == -1)
9492		return -1;
9493
9494	if (ipf_nat_main_unload() == -1)
9495		return -1;
9496
9497	if (ipf_state_main_unload() == -1)
9498		return -1;
9499
9500	if (ipf_main_unload() == -1)
9501		return -1;
9502
9503	return 0;
9504}
9505
9506
9507/* ------------------------------------------------------------------------ */
9508/* Function:   ipf_create_all                                               */
9509/* Returns:    NULL = failure, else success                                 */
9510/* Parameters: arg(I) - pointer to soft context main structure              */
9511/*                                                                          */
9512/* Work through all of the subsystems inside IPFilter and call the create   */
9513/* function for each in an order that won't lead to a crash :)              */
9514/* ------------------------------------------------------------------------ */
9515ipf_main_softc_t *
9516ipf_create_all(arg)
9517	void *arg;
9518{
9519	ipf_main_softc_t *softc;
9520
9521	softc = ipf_main_soft_create(arg);
9522	if (softc == NULL)
9523		return NULL;
9524
9525#ifdef IPFILTER_LOG
9526	softc->ipf_log_soft = ipf_log_soft_create(softc);
9527	if (softc->ipf_log_soft == NULL) {
9528		ipf_destroy_all(softc);
9529		return NULL;
9530	}
9531#endif
9532
9533	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9534	if (softc->ipf_lookup_soft == NULL) {
9535		ipf_destroy_all(softc);
9536		return NULL;
9537	}
9538
9539	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9540	if (softc->ipf_sync_soft == NULL) {
9541		ipf_destroy_all(softc);
9542		return NULL;
9543	}
9544
9545	softc->ipf_state_soft = ipf_state_soft_create(softc);
9546	if (softc->ipf_state_soft == NULL) {
9547		ipf_destroy_all(softc);
9548		return NULL;
9549	}
9550
9551	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9552	if (softc->ipf_nat_soft == NULL) {
9553		ipf_destroy_all(softc);
9554		return NULL;
9555	}
9556
9557	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9558	if (softc->ipf_frag_soft == NULL) {
9559		ipf_destroy_all(softc);
9560		return NULL;
9561	}
9562
9563	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9564	if (softc->ipf_auth_soft == NULL) {
9565		ipf_destroy_all(softc);
9566		return NULL;
9567	}
9568
9569	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9570	if (softc->ipf_proxy_soft == NULL) {
9571		ipf_destroy_all(softc);
9572		return NULL;
9573	}
9574
9575	return softc;
9576}
9577
9578
9579/* ------------------------------------------------------------------------ */
9580/* Function:   ipf_destroy_all                                              */
9581/* Returns:    void                                                         */
9582/* Parameters: softc(I) - pointer to soft context main structure            */
9583/*                                                                          */
9584/* Work through all of the subsystems inside IPFilter and call the destroy  */
9585/* function for each in an order that won't lead to a crash :)              */
9586/*                                                                          */
9587/* Every one of these functions is expected to succeed, so there is no      */
9588/* checking of return values.                                               */
9589/* ------------------------------------------------------------------------ */
9590void
9591ipf_destroy_all(softc)
9592	ipf_main_softc_t *softc;
9593{
9594
9595	if (softc->ipf_state_soft != NULL) {
9596		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9597		softc->ipf_state_soft = NULL;
9598	}
9599
9600	if (softc->ipf_nat_soft != NULL) {
9601		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9602		softc->ipf_nat_soft = NULL;
9603	}
9604
9605	if (softc->ipf_frag_soft != NULL) {
9606		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9607		softc->ipf_frag_soft = NULL;
9608	}
9609
9610	if (softc->ipf_auth_soft != NULL) {
9611		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9612		softc->ipf_auth_soft = NULL;
9613	}
9614
9615	if (softc->ipf_proxy_soft != NULL) {
9616		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9617		softc->ipf_proxy_soft = NULL;
9618	}
9619
9620	if (softc->ipf_sync_soft != NULL) {
9621		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9622		softc->ipf_sync_soft = NULL;
9623	}
9624
9625	if (softc->ipf_lookup_soft != NULL) {
9626		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9627		softc->ipf_lookup_soft = NULL;
9628	}
9629
9630#ifdef IPFILTER_LOG
9631	if (softc->ipf_log_soft != NULL) {
9632		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9633		softc->ipf_log_soft = NULL;
9634	}
9635#endif
9636
9637	ipf_main_soft_destroy(softc);
9638}
9639
9640
9641/* ------------------------------------------------------------------------ */
9642/* Function:   ipf_init_all                                                 */
9643/* Returns:    0 = success, -1 = failure                                    */
9644/* Parameters: softc(I) - pointer to soft context main structure            */
9645/*                                                                          */
9646/* Work through all of the subsystems inside IPFilter and call the init     */
9647/* function for each in an order that won't lead to a crash :)              */
9648/* ------------------------------------------------------------------------ */
9649int
9650ipf_init_all(softc)
9651	ipf_main_softc_t *softc;
9652{
9653
9654	if (ipf_main_soft_init(softc) == -1)
9655		return -1;
9656
9657#ifdef IPFILTER_LOG
9658	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9659		return -1;
9660#endif
9661
9662	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9663		return -1;
9664
9665	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9666		return -1;
9667
9668	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9669		return -1;
9670
9671	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9672		return -1;
9673
9674	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9675		return -1;
9676
9677	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9678		return -1;
9679
9680	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9681		return -1;
9682
9683	return 0;
9684}
9685
9686
9687/* ------------------------------------------------------------------------ */
9688/* Function:   ipf_fini_all                                                 */
9689/* Returns:    0 = success, -1 = failure                                    */
9690/* Parameters: softc(I) - pointer to soft context main structure            */
9691/*                                                                          */
9692/* Work through all of the subsystems inside IPFilter and call the fini     */
9693/* function for each in an order that won't lead to a crash :)              */
9694/* ------------------------------------------------------------------------ */
9695int
9696ipf_fini_all(softc)
9697	ipf_main_softc_t *softc;
9698{
9699
9700	ipf_token_flush(softc);
9701
9702	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9703		return -1;
9704
9705	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9706		return -1;
9707
9708	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9709		return -1;
9710
9711	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9712		return -1;
9713
9714	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9715		return -1;
9716
9717	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9718		return -1;
9719
9720	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9721		return -1;
9722
9723#ifdef IPFILTER_LOG
9724	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9725		return -1;
9726#endif
9727
9728	if (ipf_main_soft_fini(softc) == -1)
9729		return -1;
9730
9731	return 0;
9732}
9733
9734
9735/* ------------------------------------------------------------------------ */
9736/* Function:    ipf_rule_expire                                             */
9737/* Returns:     Nil                                                         */
9738/* Parameters:  softc(I) - pointer to soft context main structure           */
9739/*                                                                          */
9740/* At present this function exists just to support temporary addition of    */
9741/* firewall rules. Both inactive and active lists are scanned for items to  */
9742/* purge, as by rights, the expiration is computed as soon as the rule is   */
9743/* loaded in.                                                               */
9744/* ------------------------------------------------------------------------ */
9745void
9746ipf_rule_expire(softc)
9747	ipf_main_softc_t *softc;
9748{
9749	frentry_t *fr;
9750
9751	if ((softc->ipf_rule_explist[0] == NULL) &&
9752	    (softc->ipf_rule_explist[1] == NULL))
9753		return;
9754
9755	WRITE_ENTER(&softc->ipf_mutex);
9756
9757	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9758		/*
9759		 * Because the list is kept sorted on insertion, the fist
9760		 * one that dies in the future means no more work to do.
9761		 */
9762		if (fr->fr_die > softc->ipf_ticks)
9763			break;
9764		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9765	}
9766
9767	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9768		/*
9769		 * Because the list is kept sorted on insertion, the fist
9770		 * one that dies in the future means no more work to do.
9771		 */
9772		if (fr->fr_die > softc->ipf_ticks)
9773			break;
9774		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9775	}
9776
9777	RWLOCK_EXIT(&softc->ipf_mutex);
9778}
9779
9780
9781static int ipf_ht_node_cmp __P((struct host_node_s *, struct host_node_s *));
9782static void ipf_ht_node_make_key __P((host_track_t *, host_node_t *, int,
9783				      i6addr_t *));
9784
9785host_node_t RBI_ZERO(ipf_rb);
9786RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9787
9788
9789/* ------------------------------------------------------------------------ */
9790/* Function:    ipf_ht_node_cmp                                             */
9791/* Returns:     int   - 0 == nodes are the same, ..                         */
9792/* Parameters:  k1(I) - pointer to first key to compare                     */
9793/*              k2(I) - pointer to second key to compare                    */
9794/*                                                                          */
9795/* The "key" for the node is a combination of two fields: the address       */
9796/* family and the address itself.                                           */
9797/*                                                                          */
9798/* Because we're not actually interpreting the address data, it isn't       */
9799/* necessary to convert them to/from network/host byte order. The mask is   */
9800/* just used to remove bits that aren't significant - it doesn't matter     */
9801/* where they are, as long as they're always in the same place.             */
9802/*                                                                          */
9803/* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9804/* this is where individual ones will differ the most - but not true for    */
9805/* for /48's, etc.                                                          */
9806/* ------------------------------------------------------------------------ */
9807static int
9808ipf_ht_node_cmp(k1, k2)
9809	struct host_node_s *k1, *k2;
9810{
9811	int i;
9812
9813	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9814	if (i != 0)
9815		return i;
9816
9817	if (k1->hn_addr.adf_family == AF_INET)
9818		return (k2->hn_addr.adf_addr.in4.s_addr -
9819			k1->hn_addr.adf_addr.in4.s_addr);
9820
9821	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9822	if (i != 0)
9823		return i;
9824	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9825	if (i != 0)
9826		return i;
9827	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9828	if (i != 0)
9829		return i;
9830	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9831	return i;
9832}
9833
9834
9835/* ------------------------------------------------------------------------ */
9836/* Function:    ipf_ht_node_make_key                                        */
9837/* Returns:     Nil                                                         */
9838/* parameters:  htp(I)    - pointer to address tracking structure           */
9839/*              key(I)    - where to store masked address for lookup        */
9840/*              family(I) - protocol family of address                      */
9841/*              addr(I)   - pointer to network address                      */
9842/*                                                                          */
9843/* Using the "netmask" (number of bits) stored parent host tracking struct, */
9844/* copy the address passed in into the key structure whilst masking out the */
9845/* bits that we don't want.                                                 */
9846/*                                                                          */
9847/* Because the parser will set ht_netmask to 128 if there is no protocol    */
9848/* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9849/* have to be wary of that and not allow 32-128 to happen.                  */
9850/* ------------------------------------------------------------------------ */
9851static void
9852ipf_ht_node_make_key(htp, key, family, addr)
9853	host_track_t *htp;
9854	host_node_t *key;
9855	int family;
9856	i6addr_t *addr;
9857{
9858	key->hn_addr.adf_family = family;
9859	if (family == AF_INET) {
9860		u_32_t mask;
9861		int bits;
9862
9863		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9864		bits = htp->ht_netmask;
9865		if (bits >= 32) {
9866			mask = 0xffffffff;
9867		} else {
9868			mask = htonl(0xffffffff << (32 - bits));
9869		}
9870		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9871#ifdef USE_INET6
9872	} else {
9873		int bits = htp->ht_netmask;
9874
9875		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9876		if (bits > 96) {
9877			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9878					     htonl(0xffffffff << (128 - bits));
9879			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9880			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9881			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9882		} else if (bits > 64) {
9883			key->hn_addr.adf_addr.i6[3] = 0;
9884			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9885					     htonl(0xffffffff << (96 - bits));
9886			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9887			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9888		} else if (bits > 32) {
9889			key->hn_addr.adf_addr.i6[3] = 0;
9890			key->hn_addr.adf_addr.i6[2] = 0;
9891			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9892					     htonl(0xffffffff << (64 - bits));
9893			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9894		} else {
9895			key->hn_addr.adf_addr.i6[3] = 0;
9896			key->hn_addr.adf_addr.i6[2] = 0;
9897			key->hn_addr.adf_addr.i6[1] = 0;
9898			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9899					     htonl(0xffffffff << (32 - bits));
9900		}
9901#endif
9902	}
9903}
9904
9905
9906/* ------------------------------------------------------------------------ */
9907/* Function:    ipf_ht_node_add                                             */
9908/* Returns:     int       - 0 == success,  -1 == failure                    */
9909/* Parameters:  softc(I)  - pointer to soft context main structure          */
9910/*              htp(I)    - pointer to address tracking structure           */
9911/*              family(I) - protocol family of address                      */
9912/*              addr(I)   - pointer to network address                      */
9913/*                                                                          */
9914/* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9915/*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9916/*                                                                          */
9917/* After preparing the key with the address information to find, look in    */
9918/* the red-black tree to see if the address is known. A successful call to  */
9919/* this function can mean one of two things: a new node was added to the    */
9920/* tree or a matching node exists and we're able to bump up its activity.   */
9921/* ------------------------------------------------------------------------ */
9922int
9923ipf_ht_node_add(softc, htp, family, addr)
9924	ipf_main_softc_t *softc;
9925	host_track_t *htp;
9926	int family;
9927	i6addr_t *addr;
9928{
9929	host_node_t *h;
9930	host_node_t k;
9931
9932	ipf_ht_node_make_key(htp, &k, family, addr);
9933
9934	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9935	if (h == NULL) {
9936		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9937			return -1;
9938		KMALLOC(h, host_node_t *);
9939		if (h == NULL) {
9940			DT(ipf_rb_no_mem);
9941			LBUMP(ipf_rb_no_mem);
9942			return -1;
9943		}
9944
9945		/*
9946		 * If there was a macro to initialise the RB node then that
9947		 * would get used here, but there isn't...
9948		 */
9949		bzero((char *)h, sizeof(*h));
9950		h->hn_addr = k.hn_addr;
9951		h->hn_addr.adf_family = k.hn_addr.adf_family;
9952		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9953		htp->ht_cur_nodes++;
9954	} else {
9955		if ((htp->ht_max_per_node != 0) &&
9956		    (h->hn_active >= htp->ht_max_per_node)) {
9957			DT(ipf_rb_node_max);
9958			LBUMP(ipf_rb_node_max);
9959			return -1;
9960		}
9961	}
9962
9963	h->hn_active++;
9964
9965	return 0;
9966}
9967
9968
9969/* ------------------------------------------------------------------------ */
9970/* Function:    ipf_ht_node_del                                             */
9971/* Returns:     int       - 0 == success,  -1 == failure                    */
9972/* parameters:  htp(I)    - pointer to address tracking structure           */
9973/*              family(I) - protocol family of address                      */
9974/*              addr(I)   - pointer to network address                      */
9975/*                                                                          */
9976/* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9977/*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9978/*                                                                          */
9979/* Try and find the address passed in amongst the leavese on this tree to   */
9980/* be friend. If found then drop the active account for that node drops by  */
9981/* one. If that count reaches 0, it is time to free it all up.              */
9982/* ------------------------------------------------------------------------ */
9983int
9984ipf_ht_node_del(htp, family, addr)
9985	host_track_t *htp;
9986	int family;
9987	i6addr_t *addr;
9988{
9989	host_node_t *h;
9990	host_node_t k;
9991
9992	ipf_ht_node_make_key(htp, &k, family, addr);
9993
9994	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9995	if (h == NULL) {
9996		return -1;
9997	} else {
9998		h->hn_active--;
9999		if (h->hn_active == 0) {
10000			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
10001			htp->ht_cur_nodes--;
10002			KFREE(h);
10003		}
10004	}
10005
10006	return 0;
10007}
10008
10009
10010/* ------------------------------------------------------------------------ */
10011/* Function:    ipf_rb_ht_init                                              */
10012/* Returns:     Nil                                                         */
10013/* Parameters:  head(I) - pointer to host tracking structure                */
10014/*                                                                          */
10015/* Initialise the host tracking structure to be ready for use above.        */
10016/* ------------------------------------------------------------------------ */
10017void
10018ipf_rb_ht_init(head)
10019	host_track_t *head;
10020{
10021	RBI_INIT(ipf_rb, &head->ht_root);
10022}
10023
10024
10025/* ------------------------------------------------------------------------ */
10026/* Function:    ipf_rb_ht_freenode                                          */
10027/* Returns:     Nil                                                         */
10028/* Parameters:  head(I) - pointer to host tracking structure                */
10029/*              arg(I)  - additional argument from walk caller              */
10030/*                                                                          */
10031/* Free an actual host_node_t structure.                                    */
10032/* ------------------------------------------------------------------------ */
10033void
10034ipf_rb_ht_freenode(node, arg)
10035	host_node_t *node;
10036	void *arg;
10037{
10038	KFREE(node);
10039}
10040
10041
10042/* ------------------------------------------------------------------------ */
10043/* Function:    ipf_rb_ht_flush                                             */
10044/* Returns:     Nil                                                         */
10045/* Parameters:  head(I) - pointer to host tracking structure                */
10046/*                                                                          */
10047/* Remove all of the nodes in the tree tracking hosts by calling a walker   */
10048/* and free'ing each one.                                                   */
10049/* ------------------------------------------------------------------------ */
10050void
10051ipf_rb_ht_flush(head)
10052	host_track_t *head;
10053{
10054	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
10055}
10056
10057
10058/* ------------------------------------------------------------------------ */
10059/* Function:    ipf_slowtimer                                               */
10060/* Returns:     Nil                                                         */
10061/* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
10062/*                                                                          */
10063/* Slowly expire held state for fragments.  Timeouts are set * in           */
10064/* expectation of this being called twice per second.                       */
10065/* ------------------------------------------------------------------------ */
10066void
10067ipf_slowtimer(softc)
10068	ipf_main_softc_t *softc;
10069{
10070
10071	ipf_token_expire(softc);
10072	ipf_frag_expire(softc);
10073	ipf_state_expire(softc);
10074	ipf_nat_expire(softc);
10075	ipf_auth_expire(softc);
10076	ipf_lookup_expire(softc);
10077	ipf_rule_expire(softc);
10078	ipf_sync_expire(softc);
10079	softc->ipf_ticks++;
10080#   if defined(__OpenBSD__)
10081	timeout_add(&ipf_slowtimer_ch, hz/2);
10082#   endif
10083}
10084
10085
10086/* ------------------------------------------------------------------------ */
10087/* Function:    ipf_inet_mask_add                                           */
10088/* Returns:     Nil                                                         */
10089/* Parameters:  bits(I) - pointer to nat context information                */
10090/*              mtab(I) - pointer to mask hash table structure              */
10091/*                                                                          */
10092/* When called, bits represents the mask of a new NAT rule that has just    */
10093/* been added. This function inserts a bitmask into the array of masks to   */
10094/* search when searching for a matching NAT rule for a packet.              */
10095/* Prevention of duplicate masks is achieved by checking the use count for  */
10096/* a given netmask.                                                         */
10097/* ------------------------------------------------------------------------ */
10098void
10099ipf_inet_mask_add(bits, mtab)
10100	int bits;
10101	ipf_v4_masktab_t *mtab;
10102{
10103	u_32_t mask;
10104	int i, j;
10105
10106	mtab->imt4_masks[bits]++;
10107	if (mtab->imt4_masks[bits] > 1)
10108		return;
10109
10110	if (bits == 0)
10111		mask = 0;
10112	else
10113		mask = 0xffffffff << (32 - bits);
10114
10115	for (i = 0; i < 33; i++) {
10116		if (ntohl(mtab->imt4_active[i]) < mask) {
10117			for (j = 32; j > i; j--)
10118				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
10119			mtab->imt4_active[i] = htonl(mask);
10120			break;
10121		}
10122	}
10123	mtab->imt4_max++;
10124}
10125
10126
10127/* ------------------------------------------------------------------------ */
10128/* Function:    ipf_inet_mask_del                                           */
10129/* Returns:     Nil                                                         */
10130/* Parameters:  bits(I) - number of bits set in the netmask                 */
10131/*              mtab(I) - pointer to mask hash table structure              */
10132/*                                                                          */
10133/* Remove the 32bit bitmask represented by "bits" from the collection of    */
10134/* netmasks stored inside of mtab.                                          */
10135/* ------------------------------------------------------------------------ */
10136void
10137ipf_inet_mask_del(bits, mtab)
10138	int bits;
10139	ipf_v4_masktab_t *mtab;
10140{
10141	u_32_t mask;
10142	int i, j;
10143
10144	mtab->imt4_masks[bits]--;
10145	if (mtab->imt4_masks[bits] > 0)
10146		return;
10147
10148	mask = htonl(0xffffffff << (32 - bits));
10149	for (i = 0; i < 33; i++) {
10150		if (mtab->imt4_active[i] == mask) {
10151			for (j = i + 1; j < 33; j++)
10152				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
10153			break;
10154		}
10155	}
10156	mtab->imt4_max--;
10157	ASSERT(mtab->imt4_max >= 0);
10158}
10159
10160
10161#ifdef USE_INET6
10162/* ------------------------------------------------------------------------ */
10163/* Function:    ipf_inet6_mask_add                                          */
10164/* Returns:     Nil                                                         */
10165/* Parameters:  bits(I) - number of bits set in mask                        */
10166/*              mask(I) - pointer to mask to add                            */
10167/*              mtab(I) - pointer to mask hash table structure              */
10168/*                                                                          */
10169/* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
10170/* has just been added. This function inserts a bitmask into the array of   */
10171/* masks to search when searching for a matching NAT rule for a packet.     */
10172/* Prevention of duplicate masks is achieved by checking the use count for  */
10173/* a given netmask.                                                         */
10174/* ------------------------------------------------------------------------ */
10175void
10176ipf_inet6_mask_add(bits, mask, mtab)
10177	int bits;
10178	i6addr_t *mask;
10179	ipf_v6_masktab_t *mtab;
10180{
10181	i6addr_t zero;
10182	int i, j;
10183
10184	mtab->imt6_masks[bits]++;
10185	if (mtab->imt6_masks[bits] > 1)
10186		return;
10187
10188	if (bits == 0) {
10189		mask = &zero;
10190		zero.i6[0] = 0;
10191		zero.i6[1] = 0;
10192		zero.i6[2] = 0;
10193		zero.i6[3] = 0;
10194	}
10195
10196	for (i = 0; i < 129; i++) {
10197		if (IP6_LT(&mtab->imt6_active[i], mask)) {
10198			for (j = 128; j > i; j--)
10199				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
10200			mtab->imt6_active[i] = *mask;
10201			break;
10202		}
10203	}
10204	mtab->imt6_max++;
10205}
10206
10207
10208/* ------------------------------------------------------------------------ */
10209/* Function:    ipf_inet6_mask_del                                          */
10210/* Returns:     Nil                                                         */
10211/* Parameters:  bits(I) - number of bits set in mask                        */
10212/*              mask(I) - pointer to mask to remove                         */
10213/*              mtab(I) - pointer to mask hash table structure              */
10214/*                                                                          */
10215/* Remove the 128bit bitmask represented by "bits" from the collection of   */
10216/* netmasks stored inside of mtab.                                          */
10217/* ------------------------------------------------------------------------ */
10218void
10219ipf_inet6_mask_del(bits, mask, mtab)
10220	int bits;
10221	i6addr_t *mask;
10222	ipf_v6_masktab_t *mtab;
10223{
10224	i6addr_t zero;
10225	int i, j;
10226
10227	mtab->imt6_masks[bits]--;
10228	if (mtab->imt6_masks[bits] > 0)
10229		return;
10230
10231	if (bits == 0)
10232		mask = &zero;
10233	zero.i6[0] = 0;
10234	zero.i6[1] = 0;
10235	zero.i6[2] = 0;
10236	zero.i6[3] = 0;
10237
10238	for (i = 0; i < 129; i++) {
10239		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
10240			for (j = i + 1; j < 129; j++) {
10241				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
10242				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10243					break;
10244			}
10245			break;
10246		}
10247	}
10248	mtab->imt6_max--;
10249	ASSERT(mtab->imt6_max >= 0);
10250}
10251#endif
10252