altq_subr.c revision 263086
1/*	$FreeBSD: stable/10/sys/contrib/altq/altq/altq_subr.c 263086 2014-03-12 10:45:58Z glebius $	*/
2/*	$KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $	*/
3
4/*
5 * Copyright (C) 1997-2003
6 *	Sony Computer Science Laboratories Inc.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#if defined(__FreeBSD__) || defined(__NetBSD__)
31#include "opt_altq.h"
32#include "opt_inet.h"
33#ifdef __FreeBSD__
34#include "opt_inet6.h"
35#endif
36#endif /* __FreeBSD__ || __NetBSD__ */
37
38#include <sys/param.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/kernel.h>
46#include <sys/errno.h>
47#include <sys/syslog.h>
48#include <sys/sysctl.h>
49#include <sys/queue.h>
50
51#include <net/if.h>
52#include <net/if_var.h>
53#include <net/if_dl.h>
54#include <net/if_types.h>
55#ifdef __FreeBSD__
56#include <net/vnet.h>
57#endif
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/ip.h>
62#ifdef INET6
63#include <netinet/ip6.h>
64#endif
65#include <netinet/tcp.h>
66#include <netinet/udp.h>
67
68#include <netpfil/pf/pf.h>
69#include <netpfil/pf/pf_altq.h>
70#include <altq/altq.h>
71#ifdef ALTQ3_COMPAT
72#include <altq/altq_conf.h>
73#endif
74
75/* machine dependent clock related includes */
76#ifdef __FreeBSD__
77#include <sys/bus.h>
78#include <sys/cpu.h>
79#include <sys/eventhandler.h>
80#include <machine/clock.h>
81#endif
82#if defined(__amd64__) || defined(__i386__)
83#include <machine/cpufunc.h>		/* for pentium tsc */
84#include <machine/specialreg.h>		/* for CPUID_TSC */
85#ifdef __FreeBSD__
86#include <machine/md_var.h>		/* for cpu_feature */
87#elif defined(__NetBSD__) || defined(__OpenBSD__)
88#include <machine/cpu.h>		/* for cpu_feature */
89#endif
90#endif /* __amd64 || __i386__ */
91
92/*
93 * internal function prototypes
94 */
95static void	tbr_timeout(void *);
96int (*altq_input)(struct mbuf *, int) = NULL;
97static struct mbuf *tbr_dequeue(struct ifaltq *, int);
98static int tbr_timer = 0;	/* token bucket regulator timer */
99#if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
100static struct callout tbr_callout = CALLOUT_INITIALIZER;
101#else
102static struct callout tbr_callout;
103#endif
104
105#ifdef ALTQ3_CLFIER_COMPAT
106static int 	extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
107#ifdef INET6
108static int 	extract_ports6(struct mbuf *, struct ip6_hdr *,
109			       struct flowinfo_in6 *);
110#endif
111static int	apply_filter4(u_int32_t, struct flow_filter *,
112			      struct flowinfo_in *);
113static int	apply_ppfilter4(u_int32_t, struct flow_filter *,
114				struct flowinfo_in *);
115#ifdef INET6
116static int	apply_filter6(u_int32_t, struct flow_filter6 *,
117			      struct flowinfo_in6 *);
118#endif
119static int	apply_tosfilter4(u_int32_t, struct flow_filter *,
120				 struct flowinfo_in *);
121static u_long	get_filt_handle(struct acc_classifier *, int);
122static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
123static u_int32_t filt2fibmask(struct flow_filter *);
124
125static void 	ip4f_cache(struct ip *, struct flowinfo_in *);
126static int 	ip4f_lookup(struct ip *, struct flowinfo_in *);
127static int 	ip4f_init(void);
128static struct ip4_frag	*ip4f_alloc(void);
129static void 	ip4f_free(struct ip4_frag *);
130#endif /* ALTQ3_CLFIER_COMPAT */
131
132/*
133 * alternate queueing support routines
134 */
135
136/* look up the queue state by the interface name and the queueing type. */
137void *
138altq_lookup(name, type)
139	char *name;
140	int type;
141{
142	struct ifnet *ifp;
143
144	if ((ifp = ifunit(name)) != NULL) {
145		/* read if_snd unlocked */
146		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
147			return (ifp->if_snd.altq_disc);
148	}
149
150	return NULL;
151}
152
153int
154altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
155	struct ifaltq *ifq;
156	int type;
157	void *discipline;
158	int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
159	struct mbuf *(*dequeue)(struct ifaltq *, int);
160	int (*request)(struct ifaltq *, int, void *);
161	void *clfier;
162	void *(*classify)(void *, struct mbuf *, int);
163{
164	IFQ_LOCK(ifq);
165	if (!ALTQ_IS_READY(ifq)) {
166		IFQ_UNLOCK(ifq);
167		return ENXIO;
168	}
169
170#ifdef ALTQ3_COMPAT
171	/*
172	 * pfaltq can override the existing discipline, but altq3 cannot.
173	 * check these if clfier is not NULL (which implies altq3).
174	 */
175	if (clfier != NULL) {
176		if (ALTQ_IS_ENABLED(ifq)) {
177			IFQ_UNLOCK(ifq);
178			return EBUSY;
179		}
180		if (ALTQ_IS_ATTACHED(ifq)) {
181			IFQ_UNLOCK(ifq);
182			return EEXIST;
183		}
184	}
185#endif
186	ifq->altq_type     = type;
187	ifq->altq_disc     = discipline;
188	ifq->altq_enqueue  = enqueue;
189	ifq->altq_dequeue  = dequeue;
190	ifq->altq_request  = request;
191	ifq->altq_clfier   = clfier;
192	ifq->altq_classify = classify;
193	ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
194#ifdef ALTQ3_COMPAT
195#ifdef ALTQ_KLD
196	altq_module_incref(type);
197#endif
198#endif
199	IFQ_UNLOCK(ifq);
200	return 0;
201}
202
203int
204altq_detach(ifq)
205	struct ifaltq *ifq;
206{
207	IFQ_LOCK(ifq);
208
209	if (!ALTQ_IS_READY(ifq)) {
210		IFQ_UNLOCK(ifq);
211		return ENXIO;
212	}
213	if (ALTQ_IS_ENABLED(ifq)) {
214		IFQ_UNLOCK(ifq);
215		return EBUSY;
216	}
217	if (!ALTQ_IS_ATTACHED(ifq)) {
218		IFQ_UNLOCK(ifq);
219		return (0);
220	}
221#ifdef ALTQ3_COMPAT
222#ifdef ALTQ_KLD
223	altq_module_declref(ifq->altq_type);
224#endif
225#endif
226
227	ifq->altq_type     = ALTQT_NONE;
228	ifq->altq_disc     = NULL;
229	ifq->altq_enqueue  = NULL;
230	ifq->altq_dequeue  = NULL;
231	ifq->altq_request  = NULL;
232	ifq->altq_clfier   = NULL;
233	ifq->altq_classify = NULL;
234	ifq->altq_flags &= ALTQF_CANTCHANGE;
235
236	IFQ_UNLOCK(ifq);
237	return 0;
238}
239
240int
241altq_enable(ifq)
242	struct ifaltq *ifq;
243{
244	int s;
245
246	IFQ_LOCK(ifq);
247
248	if (!ALTQ_IS_READY(ifq)) {
249		IFQ_UNLOCK(ifq);
250		return ENXIO;
251	}
252	if (ALTQ_IS_ENABLED(ifq)) {
253		IFQ_UNLOCK(ifq);
254		return 0;
255	}
256
257#ifdef __NetBSD__
258	s = splnet();
259#else
260	s = splimp();
261#endif
262	IFQ_PURGE_NOLOCK(ifq);
263	ASSERT(ifq->ifq_len == 0);
264	ifq->ifq_drv_maxlen = 0;		/* disable bulk dequeue */
265	ifq->altq_flags |= ALTQF_ENABLED;
266	if (ifq->altq_clfier != NULL)
267		ifq->altq_flags |= ALTQF_CLASSIFY;
268	splx(s);
269
270	IFQ_UNLOCK(ifq);
271	return 0;
272}
273
274int
275altq_disable(ifq)
276	struct ifaltq *ifq;
277{
278	int s;
279
280	IFQ_LOCK(ifq);
281	if (!ALTQ_IS_ENABLED(ifq)) {
282		IFQ_UNLOCK(ifq);
283		return 0;
284	}
285
286#ifdef __NetBSD__
287	s = splnet();
288#else
289	s = splimp();
290#endif
291	IFQ_PURGE_NOLOCK(ifq);
292	ASSERT(ifq->ifq_len == 0);
293	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
294	splx(s);
295
296	IFQ_UNLOCK(ifq);
297	return 0;
298}
299
300#ifdef ALTQ_DEBUG
301void
302altq_assert(file, line, failedexpr)
303	const char *file, *failedexpr;
304	int line;
305{
306	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
307		     failedexpr, file, line);
308	panic("altq assertion");
309	/* NOTREACHED */
310}
311#endif
312
313/*
314 * internal representation of token bucket parameters
315 *	rate:	byte_per_unittime << 32
316 *		(((bits_per_sec) / 8) << 32) / machclk_freq
317 *	depth:	byte << 32
318 *
319 */
320#define	TBR_SHIFT	32
321#define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
322#define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
323
324static struct mbuf *
325tbr_dequeue(ifq, op)
326	struct ifaltq *ifq;
327	int op;
328{
329	struct tb_regulator *tbr;
330	struct mbuf *m;
331	int64_t interval;
332	u_int64_t now;
333
334	IFQ_LOCK_ASSERT(ifq);
335	tbr = ifq->altq_tbr;
336	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
337		/* if this is a remove after poll, bypass tbr check */
338	} else {
339		/* update token only when it is negative */
340		if (tbr->tbr_token <= 0) {
341			now = read_machclk();
342			interval = now - tbr->tbr_last;
343			if (interval >= tbr->tbr_filluptime)
344				tbr->tbr_token = tbr->tbr_depth;
345			else {
346				tbr->tbr_token += interval * tbr->tbr_rate;
347				if (tbr->tbr_token > tbr->tbr_depth)
348					tbr->tbr_token = tbr->tbr_depth;
349			}
350			tbr->tbr_last = now;
351		}
352		/* if token is still negative, don't allow dequeue */
353		if (tbr->tbr_token <= 0)
354			return (NULL);
355	}
356
357	if (ALTQ_IS_ENABLED(ifq))
358		m = (*ifq->altq_dequeue)(ifq, op);
359	else {
360		if (op == ALTDQ_POLL)
361			_IF_POLL(ifq, m);
362		else
363			_IF_DEQUEUE(ifq, m);
364	}
365
366	if (m != NULL && op == ALTDQ_REMOVE)
367		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
368	tbr->tbr_lastop = op;
369	return (m);
370}
371
372/*
373 * set a token bucket regulator.
374 * if the specified rate is zero, the token bucket regulator is deleted.
375 */
376int
377tbr_set(ifq, profile)
378	struct ifaltq *ifq;
379	struct tb_profile *profile;
380{
381	struct tb_regulator *tbr, *otbr;
382
383	if (tbr_dequeue_ptr == NULL)
384		tbr_dequeue_ptr = tbr_dequeue;
385
386	if (machclk_freq == 0)
387		init_machclk();
388	if (machclk_freq == 0) {
389		printf("tbr_set: no cpu clock available!\n");
390		return (ENXIO);
391	}
392
393	IFQ_LOCK(ifq);
394	if (profile->rate == 0) {
395		/* delete this tbr */
396		if ((tbr = ifq->altq_tbr) == NULL) {
397			IFQ_UNLOCK(ifq);
398			return (ENOENT);
399		}
400		ifq->altq_tbr = NULL;
401		free(tbr, M_DEVBUF);
402		IFQ_UNLOCK(ifq);
403		return (0);
404	}
405
406	tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
407	if (tbr == NULL) {
408		IFQ_UNLOCK(ifq);
409		return (ENOMEM);
410	}
411
412	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
413	tbr->tbr_depth = TBR_SCALE(profile->depth);
414	if (tbr->tbr_rate > 0)
415		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
416	else
417		tbr->tbr_filluptime = 0xffffffffffffffffLL;
418	tbr->tbr_token = tbr->tbr_depth;
419	tbr->tbr_last = read_machclk();
420	tbr->tbr_lastop = ALTDQ_REMOVE;
421
422	otbr = ifq->altq_tbr;
423	ifq->altq_tbr = tbr;	/* set the new tbr */
424
425	if (otbr != NULL)
426		free(otbr, M_DEVBUF);
427	else {
428		if (tbr_timer == 0) {
429			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
430			tbr_timer = 1;
431		}
432	}
433	IFQ_UNLOCK(ifq);
434	return (0);
435}
436
437/*
438 * tbr_timeout goes through the interface list, and kicks the drivers
439 * if necessary.
440 *
441 * MPSAFE
442 */
443static void
444tbr_timeout(arg)
445	void *arg;
446{
447#ifdef __FreeBSD__
448	VNET_ITERATOR_DECL(vnet_iter);
449#endif
450	struct ifnet *ifp;
451	int active, s;
452
453	active = 0;
454#ifdef __NetBSD__
455	s = splnet();
456#else
457	s = splimp();
458#endif
459#ifdef __FreeBSD__
460	IFNET_RLOCK_NOSLEEP();
461	VNET_LIST_RLOCK_NOSLEEP();
462	VNET_FOREACH(vnet_iter) {
463		CURVNET_SET(vnet_iter);
464#endif
465		for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
466		    ifp = TAILQ_NEXT(ifp, if_list)) {
467			/* read from if_snd unlocked */
468			if (!TBR_IS_ENABLED(&ifp->if_snd))
469				continue;
470			active++;
471			if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
472			    ifp->if_start != NULL)
473				(*ifp->if_start)(ifp);
474		}
475#ifdef __FreeBSD__
476		CURVNET_RESTORE();
477	}
478	VNET_LIST_RUNLOCK_NOSLEEP();
479	IFNET_RUNLOCK_NOSLEEP();
480#endif
481	splx(s);
482	if (active > 0)
483		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
484	else
485		tbr_timer = 0;	/* don't need tbr_timer anymore */
486}
487
488/*
489 * get token bucket regulator profile
490 */
491int
492tbr_get(ifq, profile)
493	struct ifaltq *ifq;
494	struct tb_profile *profile;
495{
496	struct tb_regulator *tbr;
497
498	IFQ_LOCK(ifq);
499	if ((tbr = ifq->altq_tbr) == NULL) {
500		profile->rate = 0;
501		profile->depth = 0;
502	} else {
503		profile->rate =
504		    (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
505		profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
506	}
507	IFQ_UNLOCK(ifq);
508	return (0);
509}
510
511/*
512 * attach a discipline to the interface.  if one already exists, it is
513 * overridden.
514 * Locking is done in the discipline specific attach functions. Basically
515 * they call back to altq_attach which takes care of the attach and locking.
516 */
517int
518altq_pfattach(struct pf_altq *a)
519{
520	int error = 0;
521
522	switch (a->scheduler) {
523	case ALTQT_NONE:
524		break;
525#ifdef ALTQ_CBQ
526	case ALTQT_CBQ:
527		error = cbq_pfattach(a);
528		break;
529#endif
530#ifdef ALTQ_PRIQ
531	case ALTQT_PRIQ:
532		error = priq_pfattach(a);
533		break;
534#endif
535#ifdef ALTQ_HFSC
536	case ALTQT_HFSC:
537		error = hfsc_pfattach(a);
538		break;
539#endif
540	default:
541		error = ENXIO;
542	}
543
544	return (error);
545}
546
547/*
548 * detach a discipline from the interface.
549 * it is possible that the discipline was already overridden by another
550 * discipline.
551 */
552int
553altq_pfdetach(struct pf_altq *a)
554{
555	struct ifnet *ifp;
556	int s, error = 0;
557
558	if ((ifp = ifunit(a->ifname)) == NULL)
559		return (EINVAL);
560
561	/* if this discipline is no longer referenced, just return */
562	/* read unlocked from if_snd */
563	if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
564		return (0);
565
566#ifdef __NetBSD__
567	s = splnet();
568#else
569	s = splimp();
570#endif
571	/* read unlocked from if_snd, _disable and _detach take care */
572	if (ALTQ_IS_ENABLED(&ifp->if_snd))
573		error = altq_disable(&ifp->if_snd);
574	if (error == 0)
575		error = altq_detach(&ifp->if_snd);
576	splx(s);
577
578	return (error);
579}
580
581/*
582 * add a discipline or a queue
583 * Locking is done in the discipline specific functions with regards to
584 * malloc with WAITOK, also it is not yet clear which lock to use.
585 */
586int
587altq_add(struct pf_altq *a)
588{
589	int error = 0;
590
591	if (a->qname[0] != 0)
592		return (altq_add_queue(a));
593
594	if (machclk_freq == 0)
595		init_machclk();
596	if (machclk_freq == 0)
597		panic("altq_add: no cpu clock");
598
599	switch (a->scheduler) {
600#ifdef ALTQ_CBQ
601	case ALTQT_CBQ:
602		error = cbq_add_altq(a);
603		break;
604#endif
605#ifdef ALTQ_PRIQ
606	case ALTQT_PRIQ:
607		error = priq_add_altq(a);
608		break;
609#endif
610#ifdef ALTQ_HFSC
611	case ALTQT_HFSC:
612		error = hfsc_add_altq(a);
613		break;
614#endif
615	default:
616		error = ENXIO;
617	}
618
619	return (error);
620}
621
622/*
623 * remove a discipline or a queue
624 * It is yet unclear what lock to use to protect this operation, the
625 * discipline specific functions will determine and grab it
626 */
627int
628altq_remove(struct pf_altq *a)
629{
630	int error = 0;
631
632	if (a->qname[0] != 0)
633		return (altq_remove_queue(a));
634
635	switch (a->scheduler) {
636#ifdef ALTQ_CBQ
637	case ALTQT_CBQ:
638		error = cbq_remove_altq(a);
639		break;
640#endif
641#ifdef ALTQ_PRIQ
642	case ALTQT_PRIQ:
643		error = priq_remove_altq(a);
644		break;
645#endif
646#ifdef ALTQ_HFSC
647	case ALTQT_HFSC:
648		error = hfsc_remove_altq(a);
649		break;
650#endif
651	default:
652		error = ENXIO;
653	}
654
655	return (error);
656}
657
658/*
659 * add a queue to the discipline
660 * It is yet unclear what lock to use to protect this operation, the
661 * discipline specific functions will determine and grab it
662 */
663int
664altq_add_queue(struct pf_altq *a)
665{
666	int error = 0;
667
668	switch (a->scheduler) {
669#ifdef ALTQ_CBQ
670	case ALTQT_CBQ:
671		error = cbq_add_queue(a);
672		break;
673#endif
674#ifdef ALTQ_PRIQ
675	case ALTQT_PRIQ:
676		error = priq_add_queue(a);
677		break;
678#endif
679#ifdef ALTQ_HFSC
680	case ALTQT_HFSC:
681		error = hfsc_add_queue(a);
682		break;
683#endif
684	default:
685		error = ENXIO;
686	}
687
688	return (error);
689}
690
691/*
692 * remove a queue from the discipline
693 * It is yet unclear what lock to use to protect this operation, the
694 * discipline specific functions will determine and grab it
695 */
696int
697altq_remove_queue(struct pf_altq *a)
698{
699	int error = 0;
700
701	switch (a->scheduler) {
702#ifdef ALTQ_CBQ
703	case ALTQT_CBQ:
704		error = cbq_remove_queue(a);
705		break;
706#endif
707#ifdef ALTQ_PRIQ
708	case ALTQT_PRIQ:
709		error = priq_remove_queue(a);
710		break;
711#endif
712#ifdef ALTQ_HFSC
713	case ALTQT_HFSC:
714		error = hfsc_remove_queue(a);
715		break;
716#endif
717	default:
718		error = ENXIO;
719	}
720
721	return (error);
722}
723
724/*
725 * get queue statistics
726 * Locking is done in the discipline specific functions with regards to
727 * copyout operations, also it is not yet clear which lock to use.
728 */
729int
730altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
731{
732	int error = 0;
733
734	switch (a->scheduler) {
735#ifdef ALTQ_CBQ
736	case ALTQT_CBQ:
737		error = cbq_getqstats(a, ubuf, nbytes);
738		break;
739#endif
740#ifdef ALTQ_PRIQ
741	case ALTQT_PRIQ:
742		error = priq_getqstats(a, ubuf, nbytes);
743		break;
744#endif
745#ifdef ALTQ_HFSC
746	case ALTQT_HFSC:
747		error = hfsc_getqstats(a, ubuf, nbytes);
748		break;
749#endif
750	default:
751		error = ENXIO;
752	}
753
754	return (error);
755}
756
757/*
758 * read and write diffserv field in IPv4 or IPv6 header
759 */
760u_int8_t
761read_dsfield(m, pktattr)
762	struct mbuf *m;
763	struct altq_pktattr *pktattr;
764{
765	struct mbuf *m0;
766	u_int8_t ds_field = 0;
767
768	if (pktattr == NULL ||
769	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
770		return ((u_int8_t)0);
771
772	/* verify that pattr_hdr is within the mbuf data */
773	for (m0 = m; m0 != NULL; m0 = m0->m_next)
774		if ((pktattr->pattr_hdr >= m0->m_data) &&
775		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
776			break;
777	if (m0 == NULL) {
778		/* ick, pattr_hdr is stale */
779		pktattr->pattr_af = AF_UNSPEC;
780#ifdef ALTQ_DEBUG
781		printf("read_dsfield: can't locate header!\n");
782#endif
783		return ((u_int8_t)0);
784	}
785
786	if (pktattr->pattr_af == AF_INET) {
787		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
788
789		if (ip->ip_v != 4)
790			return ((u_int8_t)0);	/* version mismatch! */
791		ds_field = ip->ip_tos;
792	}
793#ifdef INET6
794	else if (pktattr->pattr_af == AF_INET6) {
795		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
796		u_int32_t flowlabel;
797
798		flowlabel = ntohl(ip6->ip6_flow);
799		if ((flowlabel >> 28) != 6)
800			return ((u_int8_t)0);	/* version mismatch! */
801		ds_field = (flowlabel >> 20) & 0xff;
802	}
803#endif
804	return (ds_field);
805}
806
807void
808write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
809{
810	struct mbuf *m0;
811
812	if (pktattr == NULL ||
813	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
814		return;
815
816	/* verify that pattr_hdr is within the mbuf data */
817	for (m0 = m; m0 != NULL; m0 = m0->m_next)
818		if ((pktattr->pattr_hdr >= m0->m_data) &&
819		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
820			break;
821	if (m0 == NULL) {
822		/* ick, pattr_hdr is stale */
823		pktattr->pattr_af = AF_UNSPEC;
824#ifdef ALTQ_DEBUG
825		printf("write_dsfield: can't locate header!\n");
826#endif
827		return;
828	}
829
830	if (pktattr->pattr_af == AF_INET) {
831		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
832		u_int8_t old;
833		int32_t sum;
834
835		if (ip->ip_v != 4)
836			return;		/* version mismatch! */
837		old = ip->ip_tos;
838		dsfield |= old & 3;	/* leave CU bits */
839		if (old == dsfield)
840			return;
841		ip->ip_tos = dsfield;
842		/*
843		 * update checksum (from RFC1624)
844		 *	   HC' = ~(~HC + ~m + m')
845		 */
846		sum = ~ntohs(ip->ip_sum) & 0xffff;
847		sum += 0xff00 + (~old & 0xff) + dsfield;
848		sum = (sum >> 16) + (sum & 0xffff);
849		sum += (sum >> 16);  /* add carry */
850
851		ip->ip_sum = htons(~sum & 0xffff);
852	}
853#ifdef INET6
854	else if (pktattr->pattr_af == AF_INET6) {
855		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
856		u_int32_t flowlabel;
857
858		flowlabel = ntohl(ip6->ip6_flow);
859		if ((flowlabel >> 28) != 6)
860			return;		/* version mismatch! */
861		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
862		ip6->ip6_flow = htonl(flowlabel);
863	}
864#endif
865	return;
866}
867
868
869/*
870 * high resolution clock support taking advantage of a machine dependent
871 * high resolution time counter (e.g., timestamp counter of intel pentium).
872 * we assume
873 *  - 64-bit-long monotonically-increasing counter
874 *  - frequency range is 100M-4GHz (CPU speed)
875 */
876/* if pcc is not available or disabled, emulate 256MHz using microtime() */
877#define	MACHCLK_SHIFT	8
878
879int machclk_usepcc;
880u_int32_t machclk_freq;
881u_int32_t machclk_per_tick;
882
883#if defined(__i386__) && defined(__NetBSD__)
884extern u_int64_t cpu_tsc_freq;
885#endif
886
887#if (__FreeBSD_version >= 700035)
888/* Update TSC freq with the value indicated by the caller. */
889static void
890tsc_freq_changed(void *arg, const struct cf_level *level, int status)
891{
892	/* If there was an error during the transition, don't do anything. */
893	if (status != 0)
894		return;
895
896#if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
897	/* If TSC is P-state invariant, don't do anything. */
898	if (tsc_is_invariant)
899		return;
900#endif
901
902	/* Total setting for this level gives the new frequency in MHz. */
903	init_machclk();
904}
905EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
906    EVENTHANDLER_PRI_LAST);
907#endif /* __FreeBSD_version >= 700035 */
908
909static void
910init_machclk_setup(void)
911{
912#if (__FreeBSD_version >= 600000)
913	callout_init(&tbr_callout, 0);
914#endif
915
916	machclk_usepcc = 1;
917
918#if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
919	machclk_usepcc = 0;
920#endif
921#if defined(__FreeBSD__) && defined(SMP)
922	machclk_usepcc = 0;
923#endif
924#if defined(__NetBSD__) && defined(MULTIPROCESSOR)
925	machclk_usepcc = 0;
926#endif
927#if defined(__amd64__) || defined(__i386__)
928	/* check if TSC is available */
929#ifdef __FreeBSD__
930	if ((cpu_feature & CPUID_TSC) == 0 ||
931	    atomic_load_acq_64(&tsc_freq) == 0)
932#else
933	if ((cpu_feature & CPUID_TSC) == 0)
934#endif
935		machclk_usepcc = 0;
936#endif
937}
938
939void
940init_machclk(void)
941{
942	static int called;
943
944	/* Call one-time initialization function. */
945	if (!called) {
946		init_machclk_setup();
947		called = 1;
948	}
949
950	if (machclk_usepcc == 0) {
951		/* emulate 256MHz using microtime() */
952		machclk_freq = 1000000 << MACHCLK_SHIFT;
953		machclk_per_tick = machclk_freq / hz;
954#ifdef ALTQ_DEBUG
955		printf("altq: emulate %uHz cpu clock\n", machclk_freq);
956#endif
957		return;
958	}
959
960	/*
961	 * if the clock frequency (of Pentium TSC or Alpha PCC) is
962	 * accessible, just use it.
963	 */
964#if defined(__amd64__) || defined(__i386__)
965#ifdef __FreeBSD__
966	machclk_freq = atomic_load_acq_64(&tsc_freq);
967#elif defined(__NetBSD__)
968	machclk_freq = (u_int32_t)cpu_tsc_freq;
969#elif defined(__OpenBSD__) && (defined(I586_CPU) || defined(I686_CPU))
970	machclk_freq = pentium_mhz * 1000000;
971#endif
972#endif
973
974	/*
975	 * if we don't know the clock frequency, measure it.
976	 */
977	if (machclk_freq == 0) {
978		static int	wait;
979		struct timeval	tv_start, tv_end;
980		u_int64_t	start, end, diff;
981		int		timo;
982
983		microtime(&tv_start);
984		start = read_machclk();
985		timo = hz;	/* 1 sec */
986		(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
987		microtime(&tv_end);
988		end = read_machclk();
989		diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
990		    + tv_end.tv_usec - tv_start.tv_usec;
991		if (diff != 0)
992			machclk_freq = (u_int)((end - start) * 1000000 / diff);
993	}
994
995	machclk_per_tick = machclk_freq / hz;
996
997#ifdef ALTQ_DEBUG
998	printf("altq: CPU clock: %uHz\n", machclk_freq);
999#endif
1000}
1001
1002#if defined(__OpenBSD__) && defined(__i386__)
1003static __inline u_int64_t
1004rdtsc(void)
1005{
1006	u_int64_t rv;
1007	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
1008	return (rv);
1009}
1010#endif /* __OpenBSD__ && __i386__ */
1011
1012u_int64_t
1013read_machclk(void)
1014{
1015	u_int64_t val;
1016
1017	if (machclk_usepcc) {
1018#if defined(__amd64__) || defined(__i386__)
1019		val = rdtsc();
1020#else
1021		panic("read_machclk");
1022#endif
1023	} else {
1024		struct timeval tv;
1025
1026		microtime(&tv);
1027		val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
1028		    + tv.tv_usec) << MACHCLK_SHIFT);
1029	}
1030	return (val);
1031}
1032
1033#ifdef ALTQ3_CLFIER_COMPAT
1034
1035#ifndef IPPROTO_ESP
1036#define	IPPROTO_ESP	50		/* encapsulating security payload */
1037#endif
1038#ifndef IPPROTO_AH
1039#define	IPPROTO_AH	51		/* authentication header */
1040#endif
1041
1042/*
1043 * extract flow information from a given packet.
1044 * filt_mask shows flowinfo fields required.
1045 * we assume the ip header is in one mbuf, and addresses and ports are
1046 * in network byte order.
1047 */
1048int
1049altq_extractflow(m, af, flow, filt_bmask)
1050	struct mbuf *m;
1051	int af;
1052	struct flowinfo *flow;
1053	u_int32_t	filt_bmask;
1054{
1055
1056	switch (af) {
1057	case PF_INET: {
1058		struct flowinfo_in *fin;
1059		struct ip *ip;
1060
1061		ip = mtod(m, struct ip *);
1062
1063		if (ip->ip_v != 4)
1064			break;
1065
1066		fin = (struct flowinfo_in *)flow;
1067		fin->fi_len = sizeof(struct flowinfo_in);
1068		fin->fi_family = AF_INET;
1069
1070		fin->fi_proto = ip->ip_p;
1071		fin->fi_tos = ip->ip_tos;
1072
1073		fin->fi_src.s_addr = ip->ip_src.s_addr;
1074		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
1075
1076		if (filt_bmask & FIMB4_PORTS)
1077			/* if port info is required, extract port numbers */
1078			extract_ports4(m, ip, fin);
1079		else {
1080			fin->fi_sport = 0;
1081			fin->fi_dport = 0;
1082			fin->fi_gpi = 0;
1083		}
1084		return (1);
1085	}
1086
1087#ifdef INET6
1088	case PF_INET6: {
1089		struct flowinfo_in6 *fin6;
1090		struct ip6_hdr *ip6;
1091
1092		ip6 = mtod(m, struct ip6_hdr *);
1093		/* should we check the ip version? */
1094
1095		fin6 = (struct flowinfo_in6 *)flow;
1096		fin6->fi6_len = sizeof(struct flowinfo_in6);
1097		fin6->fi6_family = AF_INET6;
1098
1099		fin6->fi6_proto = ip6->ip6_nxt;
1100		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1101
1102		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
1103		fin6->fi6_src = ip6->ip6_src;
1104		fin6->fi6_dst = ip6->ip6_dst;
1105
1106		if ((filt_bmask & FIMB6_PORTS) ||
1107		    ((filt_bmask & FIMB6_PROTO)
1108		     && ip6->ip6_nxt > IPPROTO_IPV6))
1109			/*
1110			 * if port info is required, or proto is required
1111			 * but there are option headers, extract port
1112			 * and protocol numbers.
1113			 */
1114			extract_ports6(m, ip6, fin6);
1115		else {
1116			fin6->fi6_sport = 0;
1117			fin6->fi6_dport = 0;
1118			fin6->fi6_gpi = 0;
1119		}
1120		return (1);
1121	}
1122#endif /* INET6 */
1123
1124	default:
1125		break;
1126	}
1127
1128	/* failed */
1129	flow->fi_len = sizeof(struct flowinfo);
1130	flow->fi_family = AF_UNSPEC;
1131	return (0);
1132}
1133
1134/*
1135 * helper routine to extract port numbers
1136 */
1137/* structure for ipsec and ipv6 option header template */
1138struct _opt6 {
1139	u_int8_t	opt6_nxt;	/* next header */
1140	u_int8_t	opt6_hlen;	/* header extension length */
1141	u_int16_t	_pad;
1142	u_int32_t	ah_spi;		/* security parameter index
1143					   for authentication header */
1144};
1145
1146/*
1147 * extract port numbers from a ipv4 packet.
1148 */
1149static int
1150extract_ports4(m, ip, fin)
1151	struct mbuf *m;
1152	struct ip *ip;
1153	struct flowinfo_in *fin;
1154{
1155	struct mbuf *m0;
1156	u_short ip_off;
1157	u_int8_t proto;
1158	int 	off;
1159
1160	fin->fi_sport = 0;
1161	fin->fi_dport = 0;
1162	fin->fi_gpi = 0;
1163
1164	ip_off = ntohs(ip->ip_off);
1165	/* if it is a fragment, try cached fragment info */
1166	if (ip_off & IP_OFFMASK) {
1167		ip4f_lookup(ip, fin);
1168		return (1);
1169	}
1170
1171	/* locate the mbuf containing the protocol header */
1172	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1173		if (((caddr_t)ip >= m0->m_data) &&
1174		    ((caddr_t)ip < m0->m_data + m0->m_len))
1175			break;
1176	if (m0 == NULL) {
1177#ifdef ALTQ_DEBUG
1178		printf("extract_ports4: can't locate header! ip=%p\n", ip);
1179#endif
1180		return (0);
1181	}
1182	off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
1183	proto = ip->ip_p;
1184
1185#ifdef ALTQ_IPSEC
1186 again:
1187#endif
1188	while (off >= m0->m_len) {
1189		off -= m0->m_len;
1190		m0 = m0->m_next;
1191		if (m0 == NULL)
1192			return (0);  /* bogus ip_hl! */
1193	}
1194	if (m0->m_len < off + 4)
1195		return (0);
1196
1197	switch (proto) {
1198	case IPPROTO_TCP:
1199	case IPPROTO_UDP: {
1200		struct udphdr *udp;
1201
1202		udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1203		fin->fi_sport = udp->uh_sport;
1204		fin->fi_dport = udp->uh_dport;
1205		fin->fi_proto = proto;
1206		}
1207		break;
1208
1209#ifdef ALTQ_IPSEC
1210	case IPPROTO_ESP:
1211		if (fin->fi_gpi == 0){
1212			u_int32_t *gpi;
1213
1214			gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1215			fin->fi_gpi   = *gpi;
1216		}
1217		fin->fi_proto = proto;
1218		break;
1219
1220	case IPPROTO_AH: {
1221			/* get next header and header length */
1222			struct _opt6 *opt6;
1223
1224			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1225			proto = opt6->opt6_nxt;
1226			off += 8 + (opt6->opt6_hlen * 4);
1227			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1228				fin->fi_gpi = opt6->ah_spi;
1229		}
1230		/* goto the next header */
1231		goto again;
1232#endif  /* ALTQ_IPSEC */
1233
1234	default:
1235		fin->fi_proto = proto;
1236		return (0);
1237	}
1238
1239	/* if this is a first fragment, cache it. */
1240	if (ip_off & IP_MF)
1241		ip4f_cache(ip, fin);
1242
1243	return (1);
1244}
1245
1246#ifdef INET6
1247static int
1248extract_ports6(m, ip6, fin6)
1249	struct mbuf *m;
1250	struct ip6_hdr *ip6;
1251	struct flowinfo_in6 *fin6;
1252{
1253	struct mbuf *m0;
1254	int	off;
1255	u_int8_t proto;
1256
1257	fin6->fi6_gpi   = 0;
1258	fin6->fi6_sport = 0;
1259	fin6->fi6_dport = 0;
1260
1261	/* locate the mbuf containing the protocol header */
1262	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1263		if (((caddr_t)ip6 >= m0->m_data) &&
1264		    ((caddr_t)ip6 < m0->m_data + m0->m_len))
1265			break;
1266	if (m0 == NULL) {
1267#ifdef ALTQ_DEBUG
1268		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1269#endif
1270		return (0);
1271	}
1272	off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1273
1274	proto = ip6->ip6_nxt;
1275	do {
1276		while (off >= m0->m_len) {
1277			off -= m0->m_len;
1278			m0 = m0->m_next;
1279			if (m0 == NULL)
1280				return (0);
1281		}
1282		if (m0->m_len < off + 4)
1283			return (0);
1284
1285		switch (proto) {
1286		case IPPROTO_TCP:
1287		case IPPROTO_UDP: {
1288			struct udphdr *udp;
1289
1290			udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1291			fin6->fi6_sport = udp->uh_sport;
1292			fin6->fi6_dport = udp->uh_dport;
1293			fin6->fi6_proto = proto;
1294			}
1295			return (1);
1296
1297		case IPPROTO_ESP:
1298			if (fin6->fi6_gpi == 0) {
1299				u_int32_t *gpi;
1300
1301				gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1302				fin6->fi6_gpi   = *gpi;
1303			}
1304			fin6->fi6_proto = proto;
1305			return (1);
1306
1307		case IPPROTO_AH: {
1308			/* get next header and header length */
1309			struct _opt6 *opt6;
1310
1311			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1312			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1313				fin6->fi6_gpi = opt6->ah_spi;
1314			proto = opt6->opt6_nxt;
1315			off += 8 + (opt6->opt6_hlen * 4);
1316			/* goto the next header */
1317			break;
1318			}
1319
1320		case IPPROTO_HOPOPTS:
1321		case IPPROTO_ROUTING:
1322		case IPPROTO_DSTOPTS: {
1323			/* get next header and header length */
1324			struct _opt6 *opt6;
1325
1326			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1327			proto = opt6->opt6_nxt;
1328			off += (opt6->opt6_hlen + 1) * 8;
1329			/* goto the next header */
1330			break;
1331			}
1332
1333		case IPPROTO_FRAGMENT:
1334			/* ipv6 fragmentations are not supported yet */
1335		default:
1336			fin6->fi6_proto = proto;
1337			return (0);
1338		}
1339	} while (1);
1340	/*NOTREACHED*/
1341}
1342#endif /* INET6 */
1343
1344/*
1345 * altq common classifier
1346 */
1347int
1348acc_add_filter(classifier, filter, class, phandle)
1349	struct acc_classifier *classifier;
1350	struct flow_filter *filter;
1351	void	*class;
1352	u_long	*phandle;
1353{
1354	struct acc_filter *afp, *prev, *tmp;
1355	int	i, s;
1356
1357#ifdef INET6
1358	if (filter->ff_flow.fi_family != AF_INET &&
1359	    filter->ff_flow.fi_family != AF_INET6)
1360		return (EINVAL);
1361#else
1362	if (filter->ff_flow.fi_family != AF_INET)
1363		return (EINVAL);
1364#endif
1365
1366	afp = malloc(sizeof(struct acc_filter),
1367	       M_DEVBUF, M_WAITOK);
1368	if (afp == NULL)
1369		return (ENOMEM);
1370	bzero(afp, sizeof(struct acc_filter));
1371
1372	afp->f_filter = *filter;
1373	afp->f_class = class;
1374
1375	i = ACC_WILDCARD_INDEX;
1376	if (filter->ff_flow.fi_family == AF_INET) {
1377		struct flow_filter *filter4 = &afp->f_filter;
1378
1379		/*
1380		 * if address is 0, it's a wildcard.  if address mask
1381		 * isn't set, use full mask.
1382		 */
1383		if (filter4->ff_flow.fi_dst.s_addr == 0)
1384			filter4->ff_mask.mask_dst.s_addr = 0;
1385		else if (filter4->ff_mask.mask_dst.s_addr == 0)
1386			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1387		if (filter4->ff_flow.fi_src.s_addr == 0)
1388			filter4->ff_mask.mask_src.s_addr = 0;
1389		else if (filter4->ff_mask.mask_src.s_addr == 0)
1390			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1391
1392		/* clear extra bits in addresses  */
1393		   filter4->ff_flow.fi_dst.s_addr &=
1394		       filter4->ff_mask.mask_dst.s_addr;
1395		   filter4->ff_flow.fi_src.s_addr &=
1396		       filter4->ff_mask.mask_src.s_addr;
1397
1398		/*
1399		 * if dst address is a wildcard, use hash-entry
1400		 * ACC_WILDCARD_INDEX.
1401		 */
1402		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1403			i = ACC_WILDCARD_INDEX;
1404		else
1405			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1406	}
1407#ifdef INET6
1408	else if (filter->ff_flow.fi_family == AF_INET6) {
1409		struct flow_filter6 *filter6 =
1410			(struct flow_filter6 *)&afp->f_filter;
1411#ifndef IN6MASK0 /* taken from kame ipv6 */
1412#define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
1413#define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1414		const struct in6_addr in6mask0 = IN6MASK0;
1415		const struct in6_addr in6mask128 = IN6MASK128;
1416#endif
1417
1418		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1419			filter6->ff_mask6.mask6_dst = in6mask0;
1420		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1421			filter6->ff_mask6.mask6_dst = in6mask128;
1422		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1423			filter6->ff_mask6.mask6_src = in6mask0;
1424		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1425			filter6->ff_mask6.mask6_src = in6mask128;
1426
1427		/* clear extra bits in addresses  */
1428		for (i = 0; i < 16; i++)
1429			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1430			    filter6->ff_mask6.mask6_dst.s6_addr[i];
1431		for (i = 0; i < 16; i++)
1432			filter6->ff_flow6.fi6_src.s6_addr[i] &=
1433			    filter6->ff_mask6.mask6_src.s6_addr[i];
1434
1435		if (filter6->ff_flow6.fi6_flowlabel == 0)
1436			i = ACC_WILDCARD_INDEX;
1437		else
1438			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1439	}
1440#endif /* INET6 */
1441
1442	afp->f_handle = get_filt_handle(classifier, i);
1443
1444	/* update filter bitmask */
1445	afp->f_fbmask = filt2fibmask(filter);
1446	classifier->acc_fbmask |= afp->f_fbmask;
1447
1448	/*
1449	 * add this filter to the filter list.
1450	 * filters are ordered from the highest rule number.
1451	 */
1452#ifdef __NetBSD__
1453	s = splnet();
1454#else
1455	s = splimp();
1456#endif
1457	prev = NULL;
1458	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1459		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1460			prev = tmp;
1461		else
1462			break;
1463	}
1464	if (prev == NULL)
1465		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1466	else
1467		LIST_INSERT_AFTER(prev, afp, f_chain);
1468	splx(s);
1469
1470	*phandle = afp->f_handle;
1471	return (0);
1472}
1473
1474int
1475acc_delete_filter(classifier, handle)
1476	struct acc_classifier *classifier;
1477	u_long handle;
1478{
1479	struct acc_filter *afp;
1480	int	s;
1481
1482	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1483		return (EINVAL);
1484
1485#ifdef __NetBSD__
1486	s = splnet();
1487#else
1488	s = splimp();
1489#endif
1490	LIST_REMOVE(afp, f_chain);
1491	splx(s);
1492
1493	free(afp, M_DEVBUF);
1494
1495	/* todo: update filt_bmask */
1496
1497	return (0);
1498}
1499
1500/*
1501 * delete filters referencing to the specified class.
1502 * if the all flag is not 0, delete all the filters.
1503 */
1504int
1505acc_discard_filters(classifier, class, all)
1506	struct acc_classifier *classifier;
1507	void	*class;
1508	int	all;
1509{
1510	struct acc_filter *afp;
1511	int	i, s;
1512
1513#ifdef __NetBSD__
1514	s = splnet();
1515#else
1516	s = splimp();
1517#endif
1518	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1519		do {
1520			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1521				if (all || afp->f_class == class) {
1522					LIST_REMOVE(afp, f_chain);
1523					free(afp, M_DEVBUF);
1524					/* start again from the head */
1525					break;
1526				}
1527		} while (afp != NULL);
1528	}
1529	splx(s);
1530
1531	if (all)
1532		classifier->acc_fbmask = 0;
1533
1534	return (0);
1535}
1536
1537void *
1538acc_classify(clfier, m, af)
1539	void *clfier;
1540	struct mbuf *m;
1541	int af;
1542{
1543	struct acc_classifier *classifier;
1544	struct flowinfo flow;
1545	struct acc_filter *afp;
1546	int	i;
1547
1548	classifier = (struct acc_classifier *)clfier;
1549	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1550
1551	if (flow.fi_family == AF_INET) {
1552		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1553
1554		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1555			/* only tos is used */
1556			LIST_FOREACH(afp,
1557				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1558				 f_chain)
1559				if (apply_tosfilter4(afp->f_fbmask,
1560						     &afp->f_filter, fp))
1561					/* filter matched */
1562					return (afp->f_class);
1563		} else if ((classifier->acc_fbmask &
1564			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1565		    == 0) {
1566			/* only proto and ports are used */
1567			LIST_FOREACH(afp,
1568				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1569				 f_chain)
1570				if (apply_ppfilter4(afp->f_fbmask,
1571						    &afp->f_filter, fp))
1572					/* filter matched */
1573					return (afp->f_class);
1574		} else {
1575			/* get the filter hash entry from its dest address */
1576			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1577			do {
1578				/*
1579				 * go through this loop twice.  first for dst
1580				 * hash, second for wildcards.
1581				 */
1582				LIST_FOREACH(afp, &classifier->acc_filters[i],
1583					     f_chain)
1584					if (apply_filter4(afp->f_fbmask,
1585							  &afp->f_filter, fp))
1586						/* filter matched */
1587						return (afp->f_class);
1588
1589				/*
1590				 * check again for filters with a dst addr
1591				 * wildcard.
1592				 * (daddr == 0 || dmask != 0xffffffff).
1593				 */
1594				if (i != ACC_WILDCARD_INDEX)
1595					i = ACC_WILDCARD_INDEX;
1596				else
1597					break;
1598			} while (1);
1599		}
1600	}
1601#ifdef INET6
1602	else if (flow.fi_family == AF_INET6) {
1603		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1604
1605		/* get the filter hash entry from its flow ID */
1606		if (fp6->fi6_flowlabel != 0)
1607			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1608		else
1609			/* flowlable can be zero */
1610			i = ACC_WILDCARD_INDEX;
1611
1612		/* go through this loop twice.  first for flow hash, second
1613		   for wildcards. */
1614		do {
1615			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1616				if (apply_filter6(afp->f_fbmask,
1617					(struct flow_filter6 *)&afp->f_filter,
1618					fp6))
1619					/* filter matched */
1620					return (afp->f_class);
1621
1622			/*
1623			 * check again for filters with a wildcard.
1624			 */
1625			if (i != ACC_WILDCARD_INDEX)
1626				i = ACC_WILDCARD_INDEX;
1627			else
1628				break;
1629		} while (1);
1630	}
1631#endif /* INET6 */
1632
1633	/* no filter matched */
1634	return (NULL);
1635}
1636
1637static int
1638apply_filter4(fbmask, filt, pkt)
1639	u_int32_t	fbmask;
1640	struct flow_filter *filt;
1641	struct flowinfo_in *pkt;
1642{
1643	if (filt->ff_flow.fi_family != AF_INET)
1644		return (0);
1645	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1646		return (0);
1647	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1648		return (0);
1649	if ((fbmask & FIMB4_DADDR) &&
1650	    filt->ff_flow.fi_dst.s_addr !=
1651	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1652		return (0);
1653	if ((fbmask & FIMB4_SADDR) &&
1654	    filt->ff_flow.fi_src.s_addr !=
1655	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1656		return (0);
1657	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1658		return (0);
1659	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1660	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1661		return (0);
1662	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1663		return (0);
1664	/* match */
1665	return (1);
1666}
1667
1668/*
1669 * filter matching function optimized for a common case that checks
1670 * only protocol and port numbers
1671 */
1672static int
1673apply_ppfilter4(fbmask, filt, pkt)
1674	u_int32_t	fbmask;
1675	struct flow_filter *filt;
1676	struct flowinfo_in *pkt;
1677{
1678	if (filt->ff_flow.fi_family != AF_INET)
1679		return (0);
1680	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1681		return (0);
1682	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1683		return (0);
1684	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1685		return (0);
1686	/* match */
1687	return (1);
1688}
1689
1690/*
1691 * filter matching function only for tos field.
1692 */
1693static int
1694apply_tosfilter4(fbmask, filt, pkt)
1695	u_int32_t	fbmask;
1696	struct flow_filter *filt;
1697	struct flowinfo_in *pkt;
1698{
1699	if (filt->ff_flow.fi_family != AF_INET)
1700		return (0);
1701	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1702	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1703		return (0);
1704	/* match */
1705	return (1);
1706}
1707
1708#ifdef INET6
1709static int
1710apply_filter6(fbmask, filt, pkt)
1711	u_int32_t	fbmask;
1712	struct flow_filter6 *filt;
1713	struct flowinfo_in6 *pkt;
1714{
1715	int i;
1716
1717	if (filt->ff_flow6.fi6_family != AF_INET6)
1718		return (0);
1719	if ((fbmask & FIMB6_FLABEL) &&
1720	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1721		return (0);
1722	if ((fbmask & FIMB6_PROTO) &&
1723	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1724		return (0);
1725	if ((fbmask & FIMB6_SPORT) &&
1726	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1727		return (0);
1728	if ((fbmask & FIMB6_DPORT) &&
1729	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1730		return (0);
1731	if (fbmask & FIMB6_SADDR) {
1732		for (i = 0; i < 4; i++)
1733			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1734			    (pkt->fi6_src.s6_addr32[i] &
1735			     filt->ff_mask6.mask6_src.s6_addr32[i]))
1736				return (0);
1737	}
1738	if (fbmask & FIMB6_DADDR) {
1739		for (i = 0; i < 4; i++)
1740			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1741			    (pkt->fi6_dst.s6_addr32[i] &
1742			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
1743				return (0);
1744	}
1745	if ((fbmask & FIMB6_TCLASS) &&
1746	    filt->ff_flow6.fi6_tclass !=
1747	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1748		return (0);
1749	if ((fbmask & FIMB6_GPI) &&
1750	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1751		return (0);
1752	/* match */
1753	return (1);
1754}
1755#endif /* INET6 */
1756
1757/*
1758 *  filter handle:
1759 *	bit 20-28: index to the filter hash table
1760 *	bit  0-19: unique id in the hash bucket.
1761 */
1762static u_long
1763get_filt_handle(classifier, i)
1764	struct acc_classifier *classifier;
1765	int	i;
1766{
1767	static u_long handle_number = 1;
1768	u_long 	handle;
1769	struct acc_filter *afp;
1770
1771	while (1) {
1772		handle = handle_number++ & 0x000fffff;
1773
1774		if (LIST_EMPTY(&classifier->acc_filters[i]))
1775			break;
1776
1777		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1778			if ((afp->f_handle & 0x000fffff) == handle)
1779				break;
1780		if (afp == NULL)
1781			break;
1782		/* this handle is already used, try again */
1783	}
1784
1785	return ((i << 20) | handle);
1786}
1787
1788/* convert filter handle to filter pointer */
1789static struct acc_filter *
1790filth_to_filtp(classifier, handle)
1791	struct acc_classifier *classifier;
1792	u_long handle;
1793{
1794	struct acc_filter *afp;
1795	int	i;
1796
1797	i = ACC_GET_HINDEX(handle);
1798
1799	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1800		if (afp->f_handle == handle)
1801			return (afp);
1802
1803	return (NULL);
1804}
1805
1806/* create flowinfo bitmask */
1807static u_int32_t
1808filt2fibmask(filt)
1809	struct flow_filter *filt;
1810{
1811	u_int32_t mask = 0;
1812#ifdef INET6
1813	struct flow_filter6 *filt6;
1814#endif
1815
1816	switch (filt->ff_flow.fi_family) {
1817	case AF_INET:
1818		if (filt->ff_flow.fi_proto != 0)
1819			mask |= FIMB4_PROTO;
1820		if (filt->ff_flow.fi_tos != 0)
1821			mask |= FIMB4_TOS;
1822		if (filt->ff_flow.fi_dst.s_addr != 0)
1823			mask |= FIMB4_DADDR;
1824		if (filt->ff_flow.fi_src.s_addr != 0)
1825			mask |= FIMB4_SADDR;
1826		if (filt->ff_flow.fi_sport != 0)
1827			mask |= FIMB4_SPORT;
1828		if (filt->ff_flow.fi_dport != 0)
1829			mask |= FIMB4_DPORT;
1830		if (filt->ff_flow.fi_gpi != 0)
1831			mask |= FIMB4_GPI;
1832		break;
1833#ifdef INET6
1834	case AF_INET6:
1835		filt6 = (struct flow_filter6 *)filt;
1836
1837		if (filt6->ff_flow6.fi6_proto != 0)
1838			mask |= FIMB6_PROTO;
1839		if (filt6->ff_flow6.fi6_tclass != 0)
1840			mask |= FIMB6_TCLASS;
1841		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1842			mask |= FIMB6_DADDR;
1843		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1844			mask |= FIMB6_SADDR;
1845		if (filt6->ff_flow6.fi6_sport != 0)
1846			mask |= FIMB6_SPORT;
1847		if (filt6->ff_flow6.fi6_dport != 0)
1848			mask |= FIMB6_DPORT;
1849		if (filt6->ff_flow6.fi6_gpi != 0)
1850			mask |= FIMB6_GPI;
1851		if (filt6->ff_flow6.fi6_flowlabel != 0)
1852			mask |= FIMB6_FLABEL;
1853		break;
1854#endif /* INET6 */
1855	}
1856	return (mask);
1857}
1858
1859
1860/*
1861 * helper functions to handle IPv4 fragments.
1862 * currently only in-sequence fragments are handled.
1863 *	- fragment info is cached in a LRU list.
1864 *	- when a first fragment is found, cache its flow info.
1865 *	- when a non-first fragment is found, lookup the cache.
1866 */
1867
1868struct ip4_frag {
1869    TAILQ_ENTRY(ip4_frag) ip4f_chain;
1870    char    ip4f_valid;
1871    u_short ip4f_id;
1872    struct flowinfo_in ip4f_info;
1873};
1874
1875static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1876
1877#define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
1878
1879
1880static void
1881ip4f_cache(ip, fin)
1882	struct ip *ip;
1883	struct flowinfo_in *fin;
1884{
1885	struct ip4_frag *fp;
1886
1887	if (TAILQ_EMPTY(&ip4f_list)) {
1888		/* first time call, allocate fragment cache entries. */
1889		if (ip4f_init() < 0)
1890			/* allocation failed! */
1891			return;
1892	}
1893
1894	fp = ip4f_alloc();
1895	fp->ip4f_id = ip->ip_id;
1896	fp->ip4f_info.fi_proto = ip->ip_p;
1897	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1898	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1899
1900	/* save port numbers */
1901	fp->ip4f_info.fi_sport = fin->fi_sport;
1902	fp->ip4f_info.fi_dport = fin->fi_dport;
1903	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
1904}
1905
1906static int
1907ip4f_lookup(ip, fin)
1908	struct ip *ip;
1909	struct flowinfo_in *fin;
1910{
1911	struct ip4_frag *fp;
1912
1913	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1914	     fp = TAILQ_NEXT(fp, ip4f_chain))
1915		if (ip->ip_id == fp->ip4f_id &&
1916		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1917		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1918		    ip->ip_p == fp->ip4f_info.fi_proto) {
1919
1920			/* found the matching entry */
1921			fin->fi_sport = fp->ip4f_info.fi_sport;
1922			fin->fi_dport = fp->ip4f_info.fi_dport;
1923			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
1924
1925			if ((ntohs(ip->ip_off) & IP_MF) == 0)
1926				/* this is the last fragment,
1927				   release the entry. */
1928				ip4f_free(fp);
1929
1930			return (1);
1931		}
1932
1933	/* no matching entry found */
1934	return (0);
1935}
1936
1937static int
1938ip4f_init(void)
1939{
1940	struct ip4_frag *fp;
1941	int i;
1942
1943	TAILQ_INIT(&ip4f_list);
1944	for (i=0; i<IP4F_TABSIZE; i++) {
1945		fp = malloc(sizeof(struct ip4_frag),
1946		       M_DEVBUF, M_NOWAIT);
1947		if (fp == NULL) {
1948			printf("ip4f_init: can't alloc %dth entry!\n", i);
1949			if (i == 0)
1950				return (-1);
1951			return (0);
1952		}
1953		fp->ip4f_valid = 0;
1954		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1955	}
1956	return (0);
1957}
1958
1959static struct ip4_frag *
1960ip4f_alloc(void)
1961{
1962	struct ip4_frag *fp;
1963
1964	/* reclaim an entry at the tail, put it at the head */
1965	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1966	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1967	fp->ip4f_valid = 1;
1968	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1969	return (fp);
1970}
1971
1972static void
1973ip4f_free(fp)
1974	struct ip4_frag *fp;
1975{
1976	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1977	fp->ip4f_valid = 0;
1978	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1979}
1980
1981#endif /* ALTQ3_CLFIER_COMPAT */
1982