dtrace_subr.c revision 345869
187628Sdwmalone/*
287302Sdwmalone * CDDL HEADER START
31590Srgrimes *
41590Srgrimes * The contents of this file are subject to the terms of the
51590Srgrimes * Common Development and Distribution License, Version 1.0 only
61590Srgrimes * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 *
22 * $FreeBSD: stable/10/sys/cddl/dev/dtrace/amd64/dtrace_subr.c 345869 2019-04-04 02:08:36Z markj $
23 *
24 */
25/*
26 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30/*
31 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32 */
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/kmem.h>
40#include <sys/smp.h>
41#include <sys/dtrace_impl.h>
42#include <sys/dtrace_bsd.h>
43#include <machine/clock.h>
44#include <machine/cpufunc.h>
45#include <machine/frame.h>
46#include <machine/psl.h>
47#include <vm/pmap.h>
48
49extern uintptr_t 	dtrace_in_probe_addr;
50extern int		dtrace_in_probe;
51
52extern void dtrace_getnanotime(struct timespec *tsp);
53
54int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
55
56typedef struct dtrace_invop_hdlr {
57	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
58	struct dtrace_invop_hdlr *dtih_next;
59} dtrace_invop_hdlr_t;
60
61dtrace_invop_hdlr_t *dtrace_invop_hdlr;
62
63int
64dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
65{
66	dtrace_invop_hdlr_t *hdlr;
67	int rval;
68
69	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
70		if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
71			return (rval);
72
73	return (0);
74}
75
76void
77dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
78{
79	dtrace_invop_hdlr_t *hdlr;
80
81	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
82	hdlr->dtih_func = func;
83	hdlr->dtih_next = dtrace_invop_hdlr;
84	dtrace_invop_hdlr = hdlr;
85}
86
87void
88dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
89{
90	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
91
92	for (;;) {
93		if (hdlr == NULL)
94			panic("attempt to remove non-existent invop handler");
95
96		if (hdlr->dtih_func == func)
97			break;
98
99		prev = hdlr;
100		hdlr = hdlr->dtih_next;
101	}
102
103	if (prev == NULL) {
104		ASSERT(dtrace_invop_hdlr == hdlr);
105		dtrace_invop_hdlr = hdlr->dtih_next;
106	} else {
107		ASSERT(dtrace_invop_hdlr != hdlr);
108		prev->dtih_next = hdlr->dtih_next;
109	}
110
111	kmem_free(hdlr, 0);
112}
113
114/*ARGSUSED*/
115void
116dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
117{
118	(*func)(0, (uintptr_t) addr_PTmap);
119}
120
121void
122dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
123{
124	cpuset_t cpus;
125
126	if (cpu == DTRACE_CPUALL)
127		cpus = all_cpus;
128	else
129		CPU_SETOF(cpu, &cpus);
130
131	smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
132	    smp_no_rendevous_barrier, arg);
133}
134
135static void
136dtrace_sync_func(void)
137{
138}
139
140void
141dtrace_sync(void)
142{
143        dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
144}
145
146#ifdef notyet
147int (*dtrace_pid_probe_ptr)(struct regs *);
148int (*dtrace_return_probe_ptr)(struct regs *);
149
150void
151dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
152{
153	krwlock_t *rwp;
154	proc_t *p = curproc;
155	extern void trap(struct regs *, caddr_t, processorid_t);
156
157	if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
158		if (curthread->t_cred != p->p_cred) {
159			cred_t *oldcred = curthread->t_cred;
160			/*
161			 * DTrace accesses t_cred in probe context.  t_cred
162			 * must always be either NULL, or point to a valid,
163			 * allocated cred structure.
164			 */
165			curthread->t_cred = crgetcred();
166			crfree(oldcred);
167		}
168	}
169
170	if (rp->r_trapno == T_DTRACE_RET) {
171		uint8_t step = curthread->t_dtrace_step;
172		uint8_t ret = curthread->t_dtrace_ret;
173		uintptr_t npc = curthread->t_dtrace_npc;
174
175		if (curthread->t_dtrace_ast) {
176			aston(curthread);
177			curthread->t_sig_check = 1;
178		}
179
180		/*
181		 * Clear all user tracing flags.
182		 */
183		curthread->t_dtrace_ft = 0;
184
185		/*
186		 * If we weren't expecting to take a return probe trap, kill
187		 * the process as though it had just executed an unassigned
188		 * trap instruction.
189		 */
190		if (step == 0) {
191			tsignal(curthread, SIGILL);
192			return;
193		}
194
195		/*
196		 * If we hit this trap unrelated to a return probe, we're
197		 * just here to reset the AST flag since we deferred a signal
198		 * until after we logically single-stepped the instruction we
199		 * copied out.
200		 */
201		if (ret == 0) {
202			rp->r_pc = npc;
203			return;
204		}
205
206		/*
207		 * We need to wait until after we've called the
208		 * dtrace_return_probe_ptr function pointer to set %pc.
209		 */
210		rwp = &CPU->cpu_ft_lock;
211		rw_enter(rwp, RW_READER);
212		if (dtrace_return_probe_ptr != NULL)
213			(void) (*dtrace_return_probe_ptr)(rp);
214		rw_exit(rwp);
215		rp->r_pc = npc;
216
217	} else if (rp->r_trapno == T_BPTFLT) {
218		uint8_t instr;
219		rwp = &CPU->cpu_ft_lock;
220
221		/*
222		 * The DTrace fasttrap provider uses the breakpoint trap
223		 * (int 3). We let DTrace take the first crack at handling
224		 * this trap; if it's not a probe that DTrace knowns about,
225		 * we call into the trap() routine to handle it like a
226		 * breakpoint placed by a conventional debugger.
227		 */
228		rw_enter(rwp, RW_READER);
229		if (dtrace_pid_probe_ptr != NULL &&
230		    (*dtrace_pid_probe_ptr)(rp) == 0) {
231			rw_exit(rwp);
232			return;
233		}
234		rw_exit(rwp);
235
236		/*
237		 * If the instruction that caused the breakpoint trap doesn't
238		 * look like an int 3 anymore, it may be that this tracepoint
239		 * was removed just after the user thread executed it. In
240		 * that case, return to user land to retry the instuction.
241		 */
242		if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 &&
243		    instr != FASTTRAP_INSTR) {
244			rp->r_pc--;
245			return;
246		}
247
248		trap(rp, addr, cpuid);
249
250	} else {
251		trap(rp, addr, cpuid);
252	}
253}
254
255void
256dtrace_safe_synchronous_signal(void)
257{
258	kthread_t *t = curthread;
259	struct regs *rp = lwptoregs(ttolwp(t));
260	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
261
262	ASSERT(t->t_dtrace_on);
263
264	/*
265	 * If we're not in the range of scratch addresses, we're not actually
266	 * tracing user instructions so turn off the flags. If the instruction
267	 * we copied out caused a synchonous trap, reset the pc back to its
268	 * original value and turn off the flags.
269	 */
270	if (rp->r_pc < t->t_dtrace_scrpc ||
271	    rp->r_pc > t->t_dtrace_astpc + isz) {
272		t->t_dtrace_ft = 0;
273	} else if (rp->r_pc == t->t_dtrace_scrpc ||
274	    rp->r_pc == t->t_dtrace_astpc) {
275		rp->r_pc = t->t_dtrace_pc;
276		t->t_dtrace_ft = 0;
277	}
278}
279
280int
281dtrace_safe_defer_signal(void)
282{
283	kthread_t *t = curthread;
284	struct regs *rp = lwptoregs(ttolwp(t));
285	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
286
287	ASSERT(t->t_dtrace_on);
288
289	/*
290	 * If we're not in the range of scratch addresses, we're not actually
291	 * tracing user instructions so turn off the flags.
292	 */
293	if (rp->r_pc < t->t_dtrace_scrpc ||
294	    rp->r_pc > t->t_dtrace_astpc + isz) {
295		t->t_dtrace_ft = 0;
296		return (0);
297	}
298
299	/*
300	 * If we have executed the original instruction, but we have performed
301	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
302	 * registers used to emulate %rip-relative instructions in 64-bit mode,
303	 * we'll save ourselves some effort by doing that here and taking the
304	 * signal right away.  We detect this condition by seeing if the program
305	 * counter is the range [scrpc + isz, astpc).
306	 */
307	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
308	    rp->r_pc < t->t_dtrace_astpc) {
309#ifdef __amd64
310		/*
311		 * If there is a scratch register and we're on the
312		 * instruction immediately after the modified instruction,
313		 * restore the value of that scratch register.
314		 */
315		if (t->t_dtrace_reg != 0 &&
316		    rp->r_pc == t->t_dtrace_scrpc + isz) {
317			switch (t->t_dtrace_reg) {
318			case REG_RAX:
319				rp->r_rax = t->t_dtrace_regv;
320				break;
321			case REG_RCX:
322				rp->r_rcx = t->t_dtrace_regv;
323				break;
324			case REG_R8:
325				rp->r_r8 = t->t_dtrace_regv;
326				break;
327			case REG_R9:
328				rp->r_r9 = t->t_dtrace_regv;
329				break;
330			}
331		}
332#endif
333		rp->r_pc = t->t_dtrace_npc;
334		t->t_dtrace_ft = 0;
335		return (0);
336	}
337
338	/*
339	 * Otherwise, make sure we'll return to the kernel after executing
340	 * the copied out instruction and defer the signal.
341	 */
342	if (!t->t_dtrace_step) {
343		ASSERT(rp->r_pc < t->t_dtrace_astpc);
344		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
345		t->t_dtrace_step = 1;
346	}
347
348	t->t_dtrace_ast = 1;
349
350	return (1);
351}
352#endif
353
354static int64_t	tgt_cpu_tsc;
355static int64_t	hst_cpu_tsc;
356static int64_t	tsc_skew[MAXCPU];
357static uint64_t	nsec_scale;
358
359/* See below for the explanation of this macro. */
360#define SCALE_SHIFT	28
361
362static void
363dtrace_gethrtime_init_cpu(void *arg)
364{
365	uintptr_t cpu = (uintptr_t) arg;
366
367	if (cpu == curcpu)
368		tgt_cpu_tsc = rdtsc();
369	else
370		hst_cpu_tsc = rdtsc();
371}
372
373static void
374dtrace_gethrtime_init(void *arg)
375{
376	struct pcpu *pc;
377	uint64_t tsc_f;
378	cpuset_t map;
379	int i;
380
381	/*
382	 * Get TSC frequency known at this moment.
383	 * This should be constant if TSC is invariant.
384	 * Otherwise tick->time conversion will be inaccurate, but
385	 * will preserve monotonic property of TSC.
386	 */
387	tsc_f = atomic_load_acq_64(&tsc_freq);
388
389	/*
390	 * The following line checks that nsec_scale calculated below
391	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
392	 * another 32-bit integer without overflowing 64-bit.
393	 * Thus minimum supported TSC frequency is 62.5MHz.
394	 */
395	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low"));
396
397	/*
398	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
399	 * as possible.
400	 * 2^28 factor was chosen quite arbitrarily from practical
401	 * considerations:
402	 * - it supports TSC frequencies as low as 62.5MHz (see above);
403	 * - it provides quite good precision (e < 0.01%) up to THz
404	 *   (terahertz) values;
405	 */
406	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
407
408	if (vm_guest != VM_GUEST_NO)
409		return;
410
411	/* The current CPU is the reference one. */
412	sched_pin();
413	tsc_skew[curcpu] = 0;
414	CPU_FOREACH(i) {
415		if (i == curcpu)
416			continue;
417
418		pc = pcpu_find(i);
419		CPU_SETOF(PCPU_GET(cpuid), &map);
420		CPU_SET(pc->pc_cpuid, &map);
421
422		smp_rendezvous_cpus(map, NULL,
423		    dtrace_gethrtime_init_cpu,
424		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
425
426		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
427	}
428	sched_unpin();
429}
430
431SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
432
433/*
434 * DTrace needs a high resolution time function which can
435 * be called from a probe context and guaranteed not to have
436 * instrumented with probes itself.
437 *
438 * Returns nanoseconds since boot.
439 */
440uint64_t
441dtrace_gethrtime()
442{
443	uint64_t tsc;
444	uint32_t lo;
445	uint32_t hi;
446
447	/*
448	 * We split TSC value into lower and higher 32-bit halves and separately
449	 * scale them with nsec_scale, then we scale them down by 2^28
450	 * (see nsec_scale calculations) taking into account 32-bit shift of
451	 * the higher half and finally add.
452	 */
453	tsc = rdtsc() - tsc_skew[curcpu];
454	lo = tsc;
455	hi = tsc >> 32;
456	return (((lo * nsec_scale) >> SCALE_SHIFT) +
457	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
458}
459
460uint64_t
461dtrace_gethrestime(void)
462{
463	struct timespec current_time;
464
465	dtrace_getnanotime(&current_time);
466
467	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
468}
469
470/* Function to handle DTrace traps during probes. See amd64/amd64/trap.c */
471int
472dtrace_trap(struct trapframe *frame, u_int type)
473{
474	uint16_t nofault;
475
476	/*
477	 * A trap can occur while DTrace executes a probe. Before
478	 * executing the probe, DTrace blocks re-scheduling and sets
479	 * a flag in it's per-cpu flags to indicate that it doesn't
480	 * want to fault. On returning from the probe, the no-fault
481	 * flag is cleared and finally re-scheduling is enabled.
482	 *
483	 * Check if DTrace has enabled 'no-fault' mode:
484	 *
485	 */
486	sched_pin();
487	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
488	sched_unpin();
489	if (nofault) {
490		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
491
492		/*
493		 * There are only a couple of trap types that are expected.
494		 * All the rest will be handled in the usual way.
495		 */
496		switch (type) {
497		/* Privilieged instruction fault. */
498		case T_PRIVINFLT:
499			break;
500		/* General protection fault. */
501		case T_PROTFLT:
502			/* Flag an illegal operation. */
503			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
504
505			/*
506			 * Offset the instruction pointer to the instruction
507			 * following the one causing the fault.
508			 */
509			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
510			return (1);
511		/* Page fault. */
512		case T_PAGEFLT:
513			/* Flag a bad address. */
514			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
515			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
516
517			/*
518			 * Offset the instruction pointer to the instruction
519			 * following the one causing the fault.
520			 */
521			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
522			return (1);
523		default:
524			/* Handle all other traps in the usual way. */
525			break;
526		}
527	}
528
529	/* Handle the trap in the usual way. */
530	return (0);
531}
532