fasttrap_isa.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * Portions Copyright 2010 The FreeBSD Foundation
22 *
23 * $FreeBSD$
24 */
25
26/*
27 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28 * Use is subject to license terms.
29 */
30
31#ifdef illumos
32#pragma ident	"%Z%%M%	%I%	%E% SMI"
33#endif
34
35#include <sys/fasttrap_isa.h>
36#include <sys/fasttrap_impl.h>
37#include <sys/dtrace.h>
38#include <sys/dtrace_impl.h>
39#include <sys/cmn_err.h>
40#ifdef illumos
41#include <sys/regset.h>
42#include <sys/privregs.h>
43#include <sys/segments.h>
44#include <sys/x86_archext.h>
45#else
46#include <cddl/dev/dtrace/dtrace_cddl.h>
47#include <sys/types.h>
48#include <sys/proc.h>
49#include <sys/dtrace_bsd.h>
50#include <cddl/dev/dtrace/x86/regset.h>
51#include <machine/segments.h>
52#include <machine/reg.h>
53#include <machine/pcb.h>
54#endif
55#include <sys/sysmacros.h>
56#ifdef illumos
57#include <sys/trap.h>
58#include <sys/archsystm.h>
59#else
60#include <sys/ptrace.h>
61
62static int
63proc_ops(int op, proc_t *p, void *kaddr, off_t uaddr, size_t len)
64{
65	struct iovec iov;
66	struct uio uio;
67
68	iov.iov_base = kaddr;
69	iov.iov_len = len;
70	uio.uio_offset = uaddr;
71	uio.uio_iov = &iov;
72	uio.uio_resid = len;
73	uio.uio_iovcnt = 1;
74	uio.uio_segflg = UIO_SYSSPACE;
75	uio.uio_td = curthread;
76	uio.uio_rw = op;
77	PHOLD(p);
78	if (proc_rwmem(p, &uio) != 0) {
79		PRELE(p);
80		return (-1);
81	}
82	PRELE(p);
83
84	return (0);
85}
86
87static int
88uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
89{
90
91	return (proc_ops(UIO_READ, p, kaddr, uaddr, len));
92}
93
94static int
95uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
96{
97
98	return (proc_ops(UIO_WRITE, p, kaddr, uaddr, len));
99}
100#endif /* illumos */
101#ifdef __i386__
102#define	r_rax	r_eax
103#define	r_rbx	r_ebx
104#define	r_rip	r_eip
105#define	r_rflags r_eflags
106#define	r_rsp	r_esp
107#define	r_rbp	r_ebp
108#endif
109
110/*
111 * Lossless User-Land Tracing on x86
112 * ---------------------------------
113 *
114 * The execution of most instructions is not dependent on the address; for
115 * these instructions it is sufficient to copy them into the user process's
116 * address space and execute them. To effectively single-step an instruction
117 * in user-land, we copy out the following sequence of instructions to scratch
118 * space in the user thread's ulwp_t structure.
119 *
120 * We then set the program counter (%eip or %rip) to point to this scratch
121 * space. Once execution resumes, the original instruction is executed and
122 * then control flow is redirected to what was originally the subsequent
123 * instruction. If the kernel attemps to deliver a signal while single-
124 * stepping, the signal is deferred and the program counter is moved into the
125 * second sequence of instructions. The second sequence ends in a trap into
126 * the kernel where the deferred signal is then properly handled and delivered.
127 *
128 * For instructions whose execute is position dependent, we perform simple
129 * emulation. These instructions are limited to control transfer
130 * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
131 * of %rip-relative addressing that means that almost any instruction can be
132 * position dependent. For all the details on how we emulate generic
133 * instructions included %rip-relative instructions, see the code in
134 * fasttrap_pid_probe() below where we handle instructions of type
135 * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
136 */
137
138#define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
139#define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
140#define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
141#define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
142
143#define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
144#define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
145#define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
146
147#define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
148#define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
149#define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
150#define	FASTTRAP_REX_B(rex)		((rex) & 1)
151#define	FASTTRAP_REX(w, r, x, b)	\
152	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
153
154/*
155 * Single-byte op-codes.
156 */
157#define	FASTTRAP_PUSHL_EBP	0x55
158
159#define	FASTTRAP_JO		0x70
160#define	FASTTRAP_JNO		0x71
161#define	FASTTRAP_JB		0x72
162#define	FASTTRAP_JAE		0x73
163#define	FASTTRAP_JE		0x74
164#define	FASTTRAP_JNE		0x75
165#define	FASTTRAP_JBE		0x76
166#define	FASTTRAP_JA		0x77
167#define	FASTTRAP_JS		0x78
168#define	FASTTRAP_JNS		0x79
169#define	FASTTRAP_JP		0x7a
170#define	FASTTRAP_JNP		0x7b
171#define	FASTTRAP_JL		0x7c
172#define	FASTTRAP_JGE		0x7d
173#define	FASTTRAP_JLE		0x7e
174#define	FASTTRAP_JG		0x7f
175
176#define	FASTTRAP_NOP		0x90
177
178#define	FASTTRAP_MOV_EAX	0xb8
179#define	FASTTRAP_MOV_ECX	0xb9
180
181#define	FASTTRAP_RET16		0xc2
182#define	FASTTRAP_RET		0xc3
183
184#define	FASTTRAP_LOOPNZ		0xe0
185#define	FASTTRAP_LOOPZ		0xe1
186#define	FASTTRAP_LOOP		0xe2
187#define	FASTTRAP_JCXZ		0xe3
188
189#define	FASTTRAP_CALL		0xe8
190#define	FASTTRAP_JMP32		0xe9
191#define	FASTTRAP_JMP8		0xeb
192
193#define	FASTTRAP_INT3		0xcc
194#define	FASTTRAP_INT		0xcd
195
196#define	FASTTRAP_2_BYTE_OP	0x0f
197#define	FASTTRAP_GROUP5_OP	0xff
198
199/*
200 * Two-byte op-codes (second byte only).
201 */
202#define	FASTTRAP_0F_JO		0x80
203#define	FASTTRAP_0F_JNO		0x81
204#define	FASTTRAP_0F_JB		0x82
205#define	FASTTRAP_0F_JAE		0x83
206#define	FASTTRAP_0F_JE		0x84
207#define	FASTTRAP_0F_JNE		0x85
208#define	FASTTRAP_0F_JBE		0x86
209#define	FASTTRAP_0F_JA		0x87
210#define	FASTTRAP_0F_JS		0x88
211#define	FASTTRAP_0F_JNS		0x89
212#define	FASTTRAP_0F_JP		0x8a
213#define	FASTTRAP_0F_JNP		0x8b
214#define	FASTTRAP_0F_JL		0x8c
215#define	FASTTRAP_0F_JGE		0x8d
216#define	FASTTRAP_0F_JLE		0x8e
217#define	FASTTRAP_0F_JG		0x8f
218
219#define	FASTTRAP_EFLAGS_OF	0x800
220#define	FASTTRAP_EFLAGS_DF	0x400
221#define	FASTTRAP_EFLAGS_SF	0x080
222#define	FASTTRAP_EFLAGS_ZF	0x040
223#define	FASTTRAP_EFLAGS_AF	0x010
224#define	FASTTRAP_EFLAGS_PF	0x004
225#define	FASTTRAP_EFLAGS_CF	0x001
226
227/*
228 * Instruction prefixes.
229 */
230#define	FASTTRAP_PREFIX_OPERAND	0x66
231#define	FASTTRAP_PREFIX_ADDRESS	0x67
232#define	FASTTRAP_PREFIX_CS	0x2E
233#define	FASTTRAP_PREFIX_DS	0x3E
234#define	FASTTRAP_PREFIX_ES	0x26
235#define	FASTTRAP_PREFIX_FS	0x64
236#define	FASTTRAP_PREFIX_GS	0x65
237#define	FASTTRAP_PREFIX_SS	0x36
238#define	FASTTRAP_PREFIX_LOCK	0xF0
239#define	FASTTRAP_PREFIX_REP	0xF3
240#define	FASTTRAP_PREFIX_REPNE	0xF2
241
242#define	FASTTRAP_NOREG	0xff
243
244/*
245 * Map between instruction register encodings and the kernel constants which
246 * correspond to indicies into struct regs.
247 */
248#ifdef __amd64
249static const uint8_t regmap[16] = {
250	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
251	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
252};
253#else
254static const uint8_t regmap[8] = {
255	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
256};
257#endif
258
259static ulong_t fasttrap_getreg(struct reg *, uint_t);
260
261static uint64_t
262fasttrap_anarg(struct reg *rp, int function_entry, int argno)
263{
264	uint64_t value = 0;
265	int shift = function_entry ? 1 : 0;
266
267#ifdef __amd64
268	if (curproc->p_model == DATAMODEL_LP64) {
269		uintptr_t *stack;
270
271		/*
272		 * In 64-bit mode, the first six arguments are stored in
273		 * registers.
274		 */
275		if (argno < 6)
276			switch (argno) {
277			case 0:
278				return (rp->r_rdi);
279			case 1:
280				return (rp->r_rsi);
281			case 2:
282				return (rp->r_rdx);
283			case 3:
284				return (rp->r_rcx);
285			case 4:
286				return (rp->r_r8);
287			case 5:
288				return (rp->r_r9);
289			}
290
291		stack = (uintptr_t *)rp->r_rsp;
292		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
293		value = dtrace_fulword(&stack[argno - 6 + shift]);
294		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
295	} else {
296#endif
297#ifdef __i386
298		uint32_t *stack = (uint32_t *)rp->r_esp;
299		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
300		value = dtrace_fuword32(&stack[argno + shift]);
301		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
302#endif
303#ifdef __amd64
304	}
305#endif
306
307	return (value);
308}
309
310/*ARGSUSED*/
311int
312fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
313    fasttrap_probe_type_t type)
314{
315	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
316	size_t len = FASTTRAP_MAX_INSTR_SIZE;
317	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
318	uint_t start = 0;
319	int rmindex, size;
320	uint8_t seg, rex = 0;
321
322	/*
323	 * Read the instruction at the given address out of the process's
324	 * address space. We don't have to worry about a debugger
325	 * changing this instruction before we overwrite it with our trap
326	 * instruction since P_PR_LOCK is set. Since instructions can span
327	 * pages, we potentially read the instruction in two parts. If the
328	 * second part fails, we just zero out that part of the instruction.
329	 */
330	if (uread(p, &instr[0], first, pc) != 0)
331		return (-1);
332	if (len > first &&
333	    uread(p, &instr[first], len - first, pc + first) != 0) {
334		bzero(&instr[first], len - first);
335		len = first;
336	}
337
338	/*
339	 * If the disassembly fails, then we have a malformed instruction.
340	 */
341	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
342		return (-1);
343
344	/*
345	 * Make sure the disassembler isn't completely broken.
346	 */
347	ASSERT(-1 <= rmindex && rmindex < size);
348
349	/*
350	 * If the computed size is greater than the number of bytes read,
351	 * then it was a malformed instruction possibly because it fell on a
352	 * page boundary and the subsequent page was missing or because of
353	 * some malicious user.
354	 */
355	if (size > len)
356		return (-1);
357
358	tp->ftt_size = (uint8_t)size;
359	tp->ftt_segment = FASTTRAP_SEG_NONE;
360
361	/*
362	 * Find the start of the instruction's opcode by processing any
363	 * legacy prefixes.
364	 */
365	for (;;) {
366		seg = 0;
367		switch (instr[start]) {
368		case FASTTRAP_PREFIX_SS:
369			seg++;
370			/*FALLTHRU*/
371		case FASTTRAP_PREFIX_GS:
372			seg++;
373			/*FALLTHRU*/
374		case FASTTRAP_PREFIX_FS:
375			seg++;
376			/*FALLTHRU*/
377		case FASTTRAP_PREFIX_ES:
378			seg++;
379			/*FALLTHRU*/
380		case FASTTRAP_PREFIX_DS:
381			seg++;
382			/*FALLTHRU*/
383		case FASTTRAP_PREFIX_CS:
384			seg++;
385			/*FALLTHRU*/
386		case FASTTRAP_PREFIX_OPERAND:
387		case FASTTRAP_PREFIX_ADDRESS:
388		case FASTTRAP_PREFIX_LOCK:
389		case FASTTRAP_PREFIX_REP:
390		case FASTTRAP_PREFIX_REPNE:
391			if (seg != 0) {
392				/*
393				 * It's illegal for an instruction to specify
394				 * two segment prefixes -- give up on this
395				 * illegal instruction.
396				 */
397				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
398					return (-1);
399
400				tp->ftt_segment = seg;
401			}
402			start++;
403			continue;
404		}
405		break;
406	}
407
408#ifdef __amd64
409	/*
410	 * Identify the REX prefix on 64-bit processes.
411	 */
412	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
413		rex = instr[start++];
414#endif
415
416	/*
417	 * Now that we're pretty sure that the instruction is okay, copy the
418	 * valid part to the tracepoint.
419	 */
420	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
421
422	tp->ftt_type = FASTTRAP_T_COMMON;
423	if (instr[start] == FASTTRAP_2_BYTE_OP) {
424		switch (instr[start + 1]) {
425		case FASTTRAP_0F_JO:
426		case FASTTRAP_0F_JNO:
427		case FASTTRAP_0F_JB:
428		case FASTTRAP_0F_JAE:
429		case FASTTRAP_0F_JE:
430		case FASTTRAP_0F_JNE:
431		case FASTTRAP_0F_JBE:
432		case FASTTRAP_0F_JA:
433		case FASTTRAP_0F_JS:
434		case FASTTRAP_0F_JNS:
435		case FASTTRAP_0F_JP:
436		case FASTTRAP_0F_JNP:
437		case FASTTRAP_0F_JL:
438		case FASTTRAP_0F_JGE:
439		case FASTTRAP_0F_JLE:
440		case FASTTRAP_0F_JG:
441			tp->ftt_type = FASTTRAP_T_JCC;
442			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
443			tp->ftt_dest = pc + tp->ftt_size +
444			    /* LINTED - alignment */
445			    *(int32_t *)&instr[start + 2];
446			break;
447		}
448	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
449		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
450		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
451		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
452
453		if (reg == 2 || reg == 4) {
454			uint_t i, sz;
455
456			if (reg == 2)
457				tp->ftt_type = FASTTRAP_T_CALL;
458			else
459				tp->ftt_type = FASTTRAP_T_JMP;
460
461			if (mod == 3)
462				tp->ftt_code = 2;
463			else
464				tp->ftt_code = 1;
465
466			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
467
468			/*
469			 * See AMD x86-64 Architecture Programmer's Manual
470			 * Volume 3, Section 1.2.7, Table 1-12, and
471			 * Appendix A.3.1, Table A-15.
472			 */
473			if (mod != 3 && rm == 4) {
474				uint8_t sib = instr[start + 2];
475				uint_t index = FASTTRAP_SIB_INDEX(sib);
476				uint_t base = FASTTRAP_SIB_BASE(sib);
477
478				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
479
480				tp->ftt_index = (index == 4) ?
481				    FASTTRAP_NOREG :
482				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
483				tp->ftt_base = (mod == 0 && base == 5) ?
484				    FASTTRAP_NOREG :
485				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
486
487				i = 3;
488				sz = mod == 1 ? 1 : 4;
489			} else {
490				/*
491				 * In 64-bit mode, mod == 0 and r/m == 5
492				 * denotes %rip-relative addressing; in 32-bit
493				 * mode, the base register isn't used. In both
494				 * modes, there is a 32-bit operand.
495				 */
496				if (mod == 0 && rm == 5) {
497#ifdef __amd64
498					if (p->p_model == DATAMODEL_LP64)
499						tp->ftt_base = REG_RIP;
500					else
501#endif
502						tp->ftt_base = FASTTRAP_NOREG;
503					sz = 4;
504				} else  {
505					uint8_t base = rm |
506					    (FASTTRAP_REX_B(rex) << 3);
507
508					tp->ftt_base = regmap[base];
509					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
510				}
511				tp->ftt_index = FASTTRAP_NOREG;
512				i = 2;
513			}
514
515			if (sz == 1) {
516				tp->ftt_dest = *(int8_t *)&instr[start + i];
517			} else if (sz == 4) {
518				/* LINTED - alignment */
519				tp->ftt_dest = *(int32_t *)&instr[start + i];
520			} else {
521				tp->ftt_dest = 0;
522			}
523		}
524	} else {
525		switch (instr[start]) {
526		case FASTTRAP_RET:
527			tp->ftt_type = FASTTRAP_T_RET;
528			break;
529
530		case FASTTRAP_RET16:
531			tp->ftt_type = FASTTRAP_T_RET16;
532			/* LINTED - alignment */
533			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
534			break;
535
536		case FASTTRAP_JO:
537		case FASTTRAP_JNO:
538		case FASTTRAP_JB:
539		case FASTTRAP_JAE:
540		case FASTTRAP_JE:
541		case FASTTRAP_JNE:
542		case FASTTRAP_JBE:
543		case FASTTRAP_JA:
544		case FASTTRAP_JS:
545		case FASTTRAP_JNS:
546		case FASTTRAP_JP:
547		case FASTTRAP_JNP:
548		case FASTTRAP_JL:
549		case FASTTRAP_JGE:
550		case FASTTRAP_JLE:
551		case FASTTRAP_JG:
552			tp->ftt_type = FASTTRAP_T_JCC;
553			tp->ftt_code = instr[start];
554			tp->ftt_dest = pc + tp->ftt_size +
555			    (int8_t)instr[start + 1];
556			break;
557
558		case FASTTRAP_LOOPNZ:
559		case FASTTRAP_LOOPZ:
560		case FASTTRAP_LOOP:
561			tp->ftt_type = FASTTRAP_T_LOOP;
562			tp->ftt_code = instr[start];
563			tp->ftt_dest = pc + tp->ftt_size +
564			    (int8_t)instr[start + 1];
565			break;
566
567		case FASTTRAP_JCXZ:
568			tp->ftt_type = FASTTRAP_T_JCXZ;
569			tp->ftt_dest = pc + tp->ftt_size +
570			    (int8_t)instr[start + 1];
571			break;
572
573		case FASTTRAP_CALL:
574			tp->ftt_type = FASTTRAP_T_CALL;
575			tp->ftt_dest = pc + tp->ftt_size +
576			    /* LINTED - alignment */
577			    *(int32_t *)&instr[start + 1];
578			tp->ftt_code = 0;
579			break;
580
581		case FASTTRAP_JMP32:
582			tp->ftt_type = FASTTRAP_T_JMP;
583			tp->ftt_dest = pc + tp->ftt_size +
584			    /* LINTED - alignment */
585			    *(int32_t *)&instr[start + 1];
586			break;
587		case FASTTRAP_JMP8:
588			tp->ftt_type = FASTTRAP_T_JMP;
589			tp->ftt_dest = pc + tp->ftt_size +
590			    (int8_t)instr[start + 1];
591			break;
592
593		case FASTTRAP_PUSHL_EBP:
594			if (start == 0)
595				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
596			break;
597
598		case FASTTRAP_NOP:
599#ifdef __amd64
600			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
601
602			/*
603			 * On amd64 we have to be careful not to confuse a nop
604			 * (actually xchgl %eax, %eax) with an instruction using
605			 * the same opcode, but that does something different
606			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
607			 */
608			if (FASTTRAP_REX_B(rex) == 0)
609#endif
610				tp->ftt_type = FASTTRAP_T_NOP;
611			break;
612
613		case FASTTRAP_INT3:
614			/*
615			 * The pid provider shares the int3 trap with debugger
616			 * breakpoints so we can't instrument them.
617			 */
618			ASSERT(instr[start] == FASTTRAP_INSTR);
619			return (-1);
620
621		case FASTTRAP_INT:
622			/*
623			 * Interrupts seem like they could be traced with
624			 * no negative implications, but it's possible that
625			 * a thread could be redirected by the trap handling
626			 * code which would eventually return to the
627			 * instruction after the interrupt. If the interrupt
628			 * were in our scratch space, the subsequent
629			 * instruction might be overwritten before we return.
630			 * Accordingly we refuse to instrument any interrupt.
631			 */
632			return (-1);
633		}
634	}
635
636#ifdef __amd64
637	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
638		/*
639		 * If the process is 64-bit and the instruction type is still
640		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
641		 * execute it -- we need to watch for %rip-relative
642		 * addressing mode. See the portion of fasttrap_pid_probe()
643		 * below where we handle tracepoints with type
644		 * FASTTRAP_T_COMMON for how we emulate instructions that
645		 * employ %rip-relative addressing.
646		 */
647		if (rmindex != -1) {
648			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
649			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
650			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
651
652			ASSERT(rmindex > start);
653
654			if (mod == 0 && rm == 5) {
655				/*
656				 * We need to be sure to avoid other
657				 * registers used by this instruction. While
658				 * the reg field may determine the op code
659				 * rather than denoting a register, assuming
660				 * that it denotes a register is always safe.
661				 * We leave the REX field intact and use
662				 * whatever value's there for simplicity.
663				 */
664				if (reg != 0) {
665					tp->ftt_ripmode = FASTTRAP_RIP_1 |
666					    (FASTTRAP_RIP_X *
667					    FASTTRAP_REX_B(rex));
668					rm = 0;
669				} else {
670					tp->ftt_ripmode = FASTTRAP_RIP_2 |
671					    (FASTTRAP_RIP_X *
672					    FASTTRAP_REX_B(rex));
673					rm = 1;
674				}
675
676				tp->ftt_modrm = tp->ftt_instr[rmindex];
677				tp->ftt_instr[rmindex] =
678				    FASTTRAP_MODRM(2, reg, rm);
679			}
680		}
681	}
682#endif
683
684	return (0);
685}
686
687int
688fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
689{
690	fasttrap_instr_t instr = FASTTRAP_INSTR;
691
692	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
693		return (-1);
694
695	return (0);
696}
697
698int
699fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
700{
701	uint8_t instr;
702
703	/*
704	 * Distinguish between read or write failures and a changed
705	 * instruction.
706	 */
707	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
708		return (0);
709	if (instr != FASTTRAP_INSTR)
710		return (0);
711	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
712		return (-1);
713
714	return (0);
715}
716
717#ifdef __amd64
718static uintptr_t
719fasttrap_fulword_noerr(const void *uaddr)
720{
721	uintptr_t ret;
722
723	if ((ret = fasttrap_fulword(uaddr)) != -1)
724		return (ret);
725
726	return (0);
727}
728#endif
729
730#ifdef __i386__
731static uint32_t
732fasttrap_fuword32_noerr(const void *uaddr)
733{
734	uint32_t ret;
735
736	if ((ret = fasttrap_fuword32(uaddr)) != -1)
737		return (ret);
738
739	return (0);
740}
741#endif
742
743static void
744fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
745    uintptr_t new_pc)
746{
747	fasttrap_tracepoint_t *tp;
748	fasttrap_bucket_t *bucket;
749	fasttrap_id_t *id;
750#ifdef illumos
751	kmutex_t *pid_mtx;
752#endif
753
754#ifdef illumos
755	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
756	mutex_enter(pid_mtx);
757#endif
758	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
759
760	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
761		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
762		    tp->ftt_proc->ftpc_acount != 0)
763			break;
764	}
765
766	/*
767	 * Don't sweat it if we can't find the tracepoint again; unlike
768	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
769	 * is not essential to the correct execution of the process.
770	 */
771	if (tp == NULL) {
772#ifdef illumos
773		mutex_exit(pid_mtx);
774#endif
775		return;
776	}
777
778	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
779		/*
780		 * If there's a branch that could act as a return site, we
781		 * need to trace it, and check here if the program counter is
782		 * external to the function.
783		 */
784		if (tp->ftt_type != FASTTRAP_T_RET &&
785		    tp->ftt_type != FASTTRAP_T_RET16 &&
786		    new_pc - id->fti_probe->ftp_faddr <
787		    id->fti_probe->ftp_fsize)
788			continue;
789
790		dtrace_probe(id->fti_probe->ftp_id,
791		    pc - id->fti_probe->ftp_faddr,
792		    rp->r_rax, rp->r_rbx, 0, 0);
793	}
794
795#ifdef illumos
796	mutex_exit(pid_mtx);
797#endif
798}
799
800static void
801fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
802{
803#ifdef illumos
804	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
805
806	sqp->sq_info.si_signo = SIGSEGV;
807	sqp->sq_info.si_code = SEGV_MAPERR;
808	sqp->sq_info.si_addr = (caddr_t)addr;
809
810	mutex_enter(&p->p_lock);
811	sigaddqa(p, t, sqp);
812	mutex_exit(&p->p_lock);
813
814	if (t != NULL)
815		aston(t);
816#else
817	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
818
819	ksiginfo_init(ksi);
820	ksi->ksi_signo = SIGSEGV;
821	ksi->ksi_code = SEGV_MAPERR;
822	ksi->ksi_addr = (caddr_t)addr;
823	(void) tdksignal(t, SIGSEGV, ksi);
824#endif
825}
826
827#ifdef __amd64
828static void
829fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
830    uintptr_t *argv)
831{
832	int i, x, cap = MIN(argc, probe->ftp_nargs);
833	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
834
835	for (i = 0; i < cap; i++) {
836		x = probe->ftp_argmap[i];
837
838		if (x < 6)
839			argv[i] = (&rp->r_rdi)[x];
840		else
841			argv[i] = fasttrap_fulword_noerr(&stack[x]);
842	}
843
844	for (; i < argc; i++) {
845		argv[i] = 0;
846	}
847}
848#endif
849
850#ifdef __i386__
851static void
852fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
853    uint32_t *argv)
854{
855	int i, x, cap = MIN(argc, probe->ftp_nargs);
856	uint32_t *stack = (uint32_t *)rp->r_rsp;
857
858	for (i = 0; i < cap; i++) {
859		x = probe->ftp_argmap[i];
860
861		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
862	}
863
864	for (; i < argc; i++) {
865		argv[i] = 0;
866	}
867}
868#endif
869
870static int
871fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
872{
873	proc_t *p = curproc;
874#ifdef __i386__
875	struct segment_descriptor *desc;
876#else
877	struct user_segment_descriptor *desc;
878#endif
879	uint16_t sel = 0, ndx, type;
880	uintptr_t limit;
881
882	switch (tp->ftt_segment) {
883	case FASTTRAP_SEG_CS:
884		sel = rp->r_cs;
885		break;
886	case FASTTRAP_SEG_DS:
887		sel = rp->r_ds;
888		break;
889	case FASTTRAP_SEG_ES:
890		sel = rp->r_es;
891		break;
892	case FASTTRAP_SEG_FS:
893		sel = rp->r_fs;
894		break;
895	case FASTTRAP_SEG_GS:
896		sel = rp->r_gs;
897		break;
898	case FASTTRAP_SEG_SS:
899		sel = rp->r_ss;
900		break;
901	}
902
903	/*
904	 * Make sure the given segment register specifies a user priority
905	 * selector rather than a kernel selector.
906	 */
907	if (ISPL(sel) != SEL_UPL)
908		return (-1);
909
910	ndx = IDXSEL(sel);
911
912	/*
913	 * Check the bounds and grab the descriptor out of the specified
914	 * descriptor table.
915	 */
916	if (ISLDT(sel)) {
917#ifdef __i386__
918		if (ndx > p->p_md.md_ldt->ldt_len)
919			return (-1);
920
921		desc = (struct segment_descriptor *)
922		    p->p_md.md_ldt[ndx].ldt_base;
923#else
924		if (ndx > max_ldt_segment)
925			return (-1);
926
927		desc = (struct user_segment_descriptor *)
928		    p->p_md.md_ldt[ndx].ldt_base;
929#endif
930
931	} else {
932		if (ndx >= NGDT)
933			return (-1);
934
935#ifdef __i386__
936		desc = &gdt[ndx].sd;
937#else
938		desc = &gdt[ndx];
939#endif
940	}
941
942	/*
943	 * The descriptor must have user privilege level and it must be
944	 * present in memory.
945	 */
946	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
947		return (-1);
948
949	type = desc->sd_type;
950
951	/*
952	 * If the S bit in the type field is not set, this descriptor can
953	 * only be used in system context.
954	 */
955	if ((type & 0x10) != 0x10)
956		return (-1);
957
958	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
959
960	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
961		/*
962		 * The code/data bit and readable bit must both be set.
963		 */
964		if ((type & 0xa) != 0xa)
965			return (-1);
966
967		if (*addr > limit)
968			return (-1);
969	} else {
970		/*
971		 * The code/data bit must be clear.
972		 */
973		if ((type & 0x8) != 0)
974			return (-1);
975
976		/*
977		 * If the expand-down bit is clear, we just check the limit as
978		 * it would naturally be applied. Otherwise, we need to check
979		 * that the address is the range [limit + 1 .. 0xffff] or
980		 * [limit + 1 ... 0xffffffff] depending on if the default
981		 * operand size bit is set.
982		 */
983		if ((type & 0x4) == 0) {
984			if (*addr > limit)
985				return (-1);
986		} else if (desc->sd_def32) {
987			if (*addr < limit + 1 || 0xffff < *addr)
988				return (-1);
989		} else {
990			if (*addr < limit + 1 || 0xffffffff < *addr)
991				return (-1);
992		}
993	}
994
995	*addr += USD_GETBASE(desc);
996
997	return (0);
998}
999
1000int
1001fasttrap_pid_probe(struct reg *rp)
1002{
1003	proc_t *p = curproc;
1004#ifndef illumos
1005	proc_t *pp;
1006#endif
1007	uintptr_t pc = rp->r_rip - 1;
1008	uintptr_t new_pc = 0;
1009	fasttrap_bucket_t *bucket;
1010#ifdef illumos
1011	kmutex_t *pid_mtx;
1012#endif
1013	fasttrap_tracepoint_t *tp, tp_local;
1014	pid_t pid;
1015	dtrace_icookie_t cookie;
1016	uint_t is_enabled = 0;
1017
1018	/*
1019	 * It's possible that a user (in a veritable orgy of bad planning)
1020	 * could redirect this thread's flow of control before it reached the
1021	 * return probe fasttrap. In this case we need to kill the process
1022	 * since it's in a unrecoverable state.
1023	 */
1024	if (curthread->t_dtrace_step) {
1025		ASSERT(curthread->t_dtrace_on);
1026		fasttrap_sigtrap(p, curthread, pc);
1027		return (0);
1028	}
1029
1030	/*
1031	 * Clear all user tracing flags.
1032	 */
1033	curthread->t_dtrace_ft = 0;
1034	curthread->t_dtrace_pc = 0;
1035	curthread->t_dtrace_npc = 0;
1036	curthread->t_dtrace_scrpc = 0;
1037	curthread->t_dtrace_astpc = 0;
1038#ifdef __amd64
1039	curthread->t_dtrace_regv = 0;
1040#endif
1041
1042	/*
1043	 * Treat a child created by a call to vfork(2) as if it were its
1044	 * parent. We know that there's only one thread of control in such a
1045	 * process: this one.
1046	 */
1047#ifdef illumos
1048	while (p->p_flag & SVFORK) {
1049		p = p->p_parent;
1050	}
1051
1052	pid = p->p_pid;
1053	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1054	mutex_enter(pid_mtx);
1055#else
1056	pp = p;
1057	sx_slock(&proctree_lock);
1058	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1059		pp = pp->p_pptr;
1060	pid = pp->p_pid;
1061	sx_sunlock(&proctree_lock);
1062	pp = NULL;
1063
1064	PROC_LOCK(p);
1065	_PHOLD(p);
1066#endif
1067
1068	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1069
1070	/*
1071	 * Lookup the tracepoint that the process just hit.
1072	 */
1073	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1074		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1075		    tp->ftt_proc->ftpc_acount != 0)
1076			break;
1077	}
1078
1079	/*
1080	 * If we couldn't find a matching tracepoint, either a tracepoint has
1081	 * been inserted without using the pid<pid> ioctl interface (see
1082	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1083	 */
1084	if (tp == NULL) {
1085#ifdef illumos
1086		mutex_exit(pid_mtx);
1087#else
1088		_PRELE(p);
1089		PROC_UNLOCK(p);
1090#endif
1091		return (-1);
1092	}
1093
1094	/*
1095	 * Set the program counter to the address of the traced instruction
1096	 * so that it looks right in ustack() output.
1097	 */
1098	rp->r_rip = pc;
1099
1100	if (tp->ftt_ids != NULL) {
1101		fasttrap_id_t *id;
1102
1103#ifdef __amd64
1104		if (p->p_model == DATAMODEL_LP64) {
1105			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1106				fasttrap_probe_t *probe = id->fti_probe;
1107
1108				if (id->fti_ptype == DTFTP_ENTRY) {
1109					/*
1110					 * We note that this was an entry
1111					 * probe to help ustack() find the
1112					 * first caller.
1113					 */
1114					cookie = dtrace_interrupt_disable();
1115					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1116					dtrace_probe(probe->ftp_id, rp->r_rdi,
1117					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1118					    rp->r_r8);
1119					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1120					dtrace_interrupt_enable(cookie);
1121				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1122					/*
1123					 * Note that in this case, we don't
1124					 * call dtrace_probe() since it's only
1125					 * an artificial probe meant to change
1126					 * the flow of control so that it
1127					 * encounters the true probe.
1128					 */
1129					is_enabled = 1;
1130				} else if (probe->ftp_argmap == NULL) {
1131					dtrace_probe(probe->ftp_id, rp->r_rdi,
1132					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1133					    rp->r_r8);
1134				} else {
1135					uintptr_t t[5];
1136
1137					fasttrap_usdt_args64(probe, rp,
1138					    sizeof (t) / sizeof (t[0]), t);
1139
1140					dtrace_probe(probe->ftp_id, t[0], t[1],
1141					    t[2], t[3], t[4]);
1142				}
1143			}
1144		} else {
1145#else /* __amd64 */
1146			uintptr_t s0, s1, s2, s3, s4, s5;
1147			uint32_t *stack = (uint32_t *)rp->r_esp;
1148
1149			/*
1150			 * In 32-bit mode, all arguments are passed on the
1151			 * stack. If this is a function entry probe, we need
1152			 * to skip the first entry on the stack as it
1153			 * represents the return address rather than a
1154			 * parameter to the function.
1155			 */
1156			s0 = fasttrap_fuword32_noerr(&stack[0]);
1157			s1 = fasttrap_fuword32_noerr(&stack[1]);
1158			s2 = fasttrap_fuword32_noerr(&stack[2]);
1159			s3 = fasttrap_fuword32_noerr(&stack[3]);
1160			s4 = fasttrap_fuword32_noerr(&stack[4]);
1161			s5 = fasttrap_fuword32_noerr(&stack[5]);
1162
1163			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1164				fasttrap_probe_t *probe = id->fti_probe;
1165
1166				if (id->fti_ptype == DTFTP_ENTRY) {
1167					/*
1168					 * We note that this was an entry
1169					 * probe to help ustack() find the
1170					 * first caller.
1171					 */
1172					cookie = dtrace_interrupt_disable();
1173					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1174					dtrace_probe(probe->ftp_id, s1, s2,
1175					    s3, s4, s5);
1176					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1177					dtrace_interrupt_enable(cookie);
1178				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1179					/*
1180					 * Note that in this case, we don't
1181					 * call dtrace_probe() since it's only
1182					 * an artificial probe meant to change
1183					 * the flow of control so that it
1184					 * encounters the true probe.
1185					 */
1186					is_enabled = 1;
1187				} else if (probe->ftp_argmap == NULL) {
1188					dtrace_probe(probe->ftp_id, s0, s1,
1189					    s2, s3, s4);
1190				} else {
1191					uint32_t t[5];
1192
1193					fasttrap_usdt_args32(probe, rp,
1194					    sizeof (t) / sizeof (t[0]), t);
1195
1196					dtrace_probe(probe->ftp_id, t[0], t[1],
1197					    t[2], t[3], t[4]);
1198				}
1199			}
1200#endif /* __amd64 */
1201#ifdef __amd64
1202		}
1203#endif
1204	}
1205
1206	/*
1207	 * We're about to do a bunch of work so we cache a local copy of
1208	 * the tracepoint to emulate the instruction, and then find the
1209	 * tracepoint again later if we need to light up any return probes.
1210	 */
1211	tp_local = *tp;
1212#ifdef illumos
1213	mutex_exit(pid_mtx);
1214#else
1215	PROC_UNLOCK(p);
1216#endif
1217	tp = &tp_local;
1218
1219	/*
1220	 * Set the program counter to appear as though the traced instruction
1221	 * had completely executed. This ensures that fasttrap_getreg() will
1222	 * report the expected value for REG_RIP.
1223	 */
1224	rp->r_rip = pc + tp->ftt_size;
1225
1226	/*
1227	 * If there's an is-enabled probe connected to this tracepoint it
1228	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1229	 * instruction that was placed there by DTrace when the binary was
1230	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1231	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1232	 * emulation logic since we know the inevitable result. It's possible
1233	 * that a user could construct a scenario where the 'is-enabled'
1234	 * probe was on some other instruction, but that would be a rather
1235	 * exotic way to shoot oneself in the foot.
1236	 */
1237	if (is_enabled) {
1238		rp->r_rax = 1;
1239		new_pc = rp->r_rip;
1240		goto done;
1241	}
1242
1243	/*
1244	 * We emulate certain types of instructions to ensure correctness
1245	 * (in the case of position dependent instructions) or optimize
1246	 * common cases. The rest we have the thread execute back in user-
1247	 * land.
1248	 */
1249	switch (tp->ftt_type) {
1250	case FASTTRAP_T_RET:
1251	case FASTTRAP_T_RET16:
1252	{
1253		uintptr_t dst = 0;
1254		uintptr_t addr = 0;
1255		int ret = 0;
1256
1257		/*
1258		 * We have to emulate _every_ facet of the behavior of a ret
1259		 * instruction including what happens if the load from %esp
1260		 * fails; in that case, we send a SIGSEGV.
1261		 */
1262#ifdef __amd64
1263		if (p->p_model == DATAMODEL_NATIVE) {
1264			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1265			addr = rp->r_rsp + sizeof (uintptr_t);
1266		} else {
1267#endif
1268#ifdef __i386__
1269			uint32_t dst32;
1270			ret = dst32 = fasttrap_fuword32((void *)rp->r_esp);
1271			dst = dst32;
1272			addr = rp->r_esp + sizeof (uint32_t);
1273#endif
1274#ifdef __amd64
1275		}
1276#endif
1277
1278		if (ret == -1) {
1279			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1280			new_pc = pc;
1281			break;
1282		}
1283
1284		if (tp->ftt_type == FASTTRAP_T_RET16)
1285			addr += tp->ftt_dest;
1286
1287		rp->r_rsp = addr;
1288		new_pc = dst;
1289		break;
1290	}
1291
1292	case FASTTRAP_T_JCC:
1293	{
1294		uint_t taken = 0;
1295
1296		switch (tp->ftt_code) {
1297		case FASTTRAP_JO:
1298			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1299			break;
1300		case FASTTRAP_JNO:
1301			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1302			break;
1303		case FASTTRAP_JB:
1304			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1305			break;
1306		case FASTTRAP_JAE:
1307			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1308			break;
1309		case FASTTRAP_JE:
1310			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1311			break;
1312		case FASTTRAP_JNE:
1313			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1314			break;
1315		case FASTTRAP_JBE:
1316			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1317			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1318			break;
1319		case FASTTRAP_JA:
1320			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1321			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1322			break;
1323		case FASTTRAP_JS:
1324			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1325			break;
1326		case FASTTRAP_JNS:
1327			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1328			break;
1329		case FASTTRAP_JP:
1330			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1331			break;
1332		case FASTTRAP_JNP:
1333			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1334			break;
1335		case FASTTRAP_JL:
1336			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1337			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1338			break;
1339		case FASTTRAP_JGE:
1340			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1341			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1342			break;
1343		case FASTTRAP_JLE:
1344			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1345			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1346			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1347			break;
1348		case FASTTRAP_JG:
1349			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1350			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1351			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1352			break;
1353
1354		}
1355
1356		if (taken)
1357			new_pc = tp->ftt_dest;
1358		else
1359			new_pc = pc + tp->ftt_size;
1360		break;
1361	}
1362
1363	case FASTTRAP_T_LOOP:
1364	{
1365		uint_t taken = 0;
1366#ifdef __amd64
1367		greg_t cx = rp->r_rcx--;
1368#else
1369		greg_t cx = rp->r_ecx--;
1370#endif
1371
1372		switch (tp->ftt_code) {
1373		case FASTTRAP_LOOPNZ:
1374			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1375			    cx != 0;
1376			break;
1377		case FASTTRAP_LOOPZ:
1378			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1379			    cx != 0;
1380			break;
1381		case FASTTRAP_LOOP:
1382			taken = (cx != 0);
1383			break;
1384		}
1385
1386		if (taken)
1387			new_pc = tp->ftt_dest;
1388		else
1389			new_pc = pc + tp->ftt_size;
1390		break;
1391	}
1392
1393	case FASTTRAP_T_JCXZ:
1394	{
1395#ifdef __amd64
1396		greg_t cx = rp->r_rcx;
1397#else
1398		greg_t cx = rp->r_ecx;
1399#endif
1400
1401		if (cx == 0)
1402			new_pc = tp->ftt_dest;
1403		else
1404			new_pc = pc + tp->ftt_size;
1405		break;
1406	}
1407
1408	case FASTTRAP_T_PUSHL_EBP:
1409	{
1410		int ret = 0;
1411
1412#ifdef __amd64
1413		if (p->p_model == DATAMODEL_NATIVE) {
1414			rp->r_rsp -= sizeof (uintptr_t);
1415			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1416		} else {
1417#endif
1418#ifdef __i386__
1419			rp->r_rsp -= sizeof (uint32_t);
1420			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1421#endif
1422#ifdef __amd64
1423		}
1424#endif
1425
1426		if (ret == -1) {
1427			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1428			new_pc = pc;
1429			break;
1430		}
1431
1432		new_pc = pc + tp->ftt_size;
1433		break;
1434	}
1435
1436	case FASTTRAP_T_NOP:
1437		new_pc = pc + tp->ftt_size;
1438		break;
1439
1440	case FASTTRAP_T_JMP:
1441	case FASTTRAP_T_CALL:
1442		if (tp->ftt_code == 0) {
1443			new_pc = tp->ftt_dest;
1444		} else {
1445			uintptr_t value, addr = tp->ftt_dest;
1446
1447			if (tp->ftt_base != FASTTRAP_NOREG)
1448				addr += fasttrap_getreg(rp, tp->ftt_base);
1449			if (tp->ftt_index != FASTTRAP_NOREG)
1450				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1451				    tp->ftt_scale;
1452
1453			if (tp->ftt_code == 1) {
1454				/*
1455				 * If there's a segment prefix for this
1456				 * instruction, we'll need to check permissions
1457				 * and bounds on the given selector, and adjust
1458				 * the address accordingly.
1459				 */
1460				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1461				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1462					fasttrap_sigsegv(p, curthread, addr);
1463					new_pc = pc;
1464					break;
1465				}
1466
1467#ifdef __amd64
1468				if (p->p_model == DATAMODEL_NATIVE) {
1469#endif
1470					if ((value = fasttrap_fulword((void *)addr))
1471					     == -1) {
1472						fasttrap_sigsegv(p, curthread,
1473						    addr);
1474						new_pc = pc;
1475						break;
1476					}
1477					new_pc = value;
1478#ifdef __amd64
1479				} else {
1480					uint32_t value32;
1481					addr = (uintptr_t)(uint32_t)addr;
1482					if ((value32 = fasttrap_fuword32((void *)addr))
1483					    == -1) {
1484						fasttrap_sigsegv(p, curthread,
1485						    addr);
1486						new_pc = pc;
1487						break;
1488					}
1489					new_pc = value32;
1490				}
1491#endif
1492			} else {
1493				new_pc = addr;
1494			}
1495		}
1496
1497		/*
1498		 * If this is a call instruction, we need to push the return
1499		 * address onto the stack. If this fails, we send the process
1500		 * a SIGSEGV and reset the pc to emulate what would happen if
1501		 * this instruction weren't traced.
1502		 */
1503		if (tp->ftt_type == FASTTRAP_T_CALL) {
1504			int ret = 0;
1505			uintptr_t addr = 0, pcps;
1506#ifdef __amd64
1507			if (p->p_model == DATAMODEL_NATIVE) {
1508				addr = rp->r_rsp - sizeof (uintptr_t);
1509				pcps = pc + tp->ftt_size;
1510				ret = fasttrap_sulword((void *)addr, pcps);
1511			} else {
1512#endif
1513				addr = rp->r_rsp - sizeof (uint32_t);
1514				pcps = (uint32_t)(pc + tp->ftt_size);
1515				ret = fasttrap_suword32((void *)addr, pcps);
1516#ifdef __amd64
1517			}
1518#endif
1519
1520			if (ret == -1) {
1521				fasttrap_sigsegv(p, curthread, addr);
1522				new_pc = pc;
1523				break;
1524			}
1525
1526			rp->r_rsp = addr;
1527		}
1528
1529		break;
1530
1531	case FASTTRAP_T_COMMON:
1532	{
1533		uintptr_t addr;
1534#if defined(__amd64)
1535		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1536#else
1537		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1538#endif
1539		uint_t i = 0;
1540#ifdef illumos
1541		klwp_t *lwp = ttolwp(curthread);
1542
1543		/*
1544		 * Compute the address of the ulwp_t and step over the
1545		 * ul_self pointer. The method used to store the user-land
1546		 * thread pointer is very different on 32- and 64-bit
1547		 * kernels.
1548		 */
1549#if defined(__amd64)
1550		if (p->p_model == DATAMODEL_LP64) {
1551			addr = lwp->lwp_pcb.pcb_fsbase;
1552			addr += sizeof (void *);
1553		} else {
1554			addr = lwp->lwp_pcb.pcb_gsbase;
1555			addr += sizeof (caddr32_t);
1556		}
1557#else
1558		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1559		addr += sizeof (void *);
1560#endif
1561#else	/* !illumos */
1562		fasttrap_scrspace_t *scrspace;
1563		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1564		if (scrspace == NULL) {
1565			/*
1566			 * We failed to allocate scratch space for this thread.
1567			 * Try to write the original instruction back out and
1568			 * reset the pc.
1569			 */
1570			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1571			    tp->ftt_size))
1572				fasttrap_sigtrap(p, curthread, pc);
1573			new_pc = pc;
1574			break;
1575		}
1576		addr = scrspace->ftss_addr;
1577#endif /* illumos */
1578
1579		/*
1580		 * Generic Instruction Tracing
1581		 * ---------------------------
1582		 *
1583		 * This is the layout of the scratch space in the user-land
1584		 * thread structure for our generated instructions.
1585		 *
1586		 *	32-bit mode			bytes
1587		 *	------------------------	-----
1588		 * a:	<original instruction>		<= 15
1589		 *	jmp	<pc + tp->ftt_size>	    5
1590		 * b:	<original instruction>		<= 15
1591		 *	int	T_DTRACE_RET		    2
1592		 *					-----
1593		 *					<= 37
1594		 *
1595		 *	64-bit mode			bytes
1596		 *	------------------------	-----
1597		 * a:	<original instruction>		<= 15
1598		 *	jmp	0(%rip)			    6
1599		 *	<pc + tp->ftt_size>		    8
1600		 * b:	<original instruction>		<= 15
1601		 * 	int	T_DTRACE_RET		    2
1602		 * 					-----
1603		 * 					<= 46
1604		 *
1605		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1606		 * to b. If we encounter a signal on the way out of the
1607		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1608		 * so that we execute the original instruction and re-enter
1609		 * the kernel rather than redirecting to the next instruction.
1610		 *
1611		 * If there are return probes (so we know that we're going to
1612		 * need to reenter the kernel after executing the original
1613		 * instruction), the scratch space will just contain the
1614		 * original instruction followed by an interrupt -- the same
1615		 * data as at b.
1616		 *
1617		 * %rip-relative Addressing
1618		 * ------------------------
1619		 *
1620		 * There's a further complication in 64-bit mode due to %rip-
1621		 * relative addressing. While this is clearly a beneficial
1622		 * architectural decision for position independent code, it's
1623		 * hard not to see it as a personal attack against the pid
1624		 * provider since before there was a relatively small set of
1625		 * instructions to emulate; with %rip-relative addressing,
1626		 * almost every instruction can potentially depend on the
1627		 * address at which it's executed. Rather than emulating
1628		 * the broad spectrum of instructions that can now be
1629		 * position dependent, we emulate jumps and others as in
1630		 * 32-bit mode, and take a different tack for instructions
1631		 * using %rip-relative addressing.
1632		 *
1633		 * For every instruction that uses the ModRM byte, the
1634		 * in-kernel disassembler reports its location. We use the
1635		 * ModRM byte to identify that an instruction uses
1636		 * %rip-relative addressing and to see what other registers
1637		 * the instruction uses. To emulate those instructions,
1638		 * we modify the instruction to be %rax-relative rather than
1639		 * %rip-relative (or %rcx-relative if the instruction uses
1640		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1641		 * we don't have to rewrite the REX prefix). We then load
1642		 * the value that %rip would have been into the scratch
1643		 * register and generate an instruction to reset the scratch
1644		 * register back to its original value. The instruction
1645		 * sequence looks like this:
1646		 *
1647		 *	64-mode %rip-relative		bytes
1648		 *	------------------------	-----
1649		 * a:	<modified instruction>		<= 15
1650		 *	movq	$<value>, %<scratch>	    6
1651		 *	jmp	0(%rip)			    6
1652		 *	<pc + tp->ftt_size>		    8
1653		 * b:	<modified instruction>  	<= 15
1654		 * 	int	T_DTRACE_RET		    2
1655		 * 					-----
1656		 *					   52
1657		 *
1658		 * We set curthread->t_dtrace_regv so that upon receiving
1659		 * a signal we can reset the value of the scratch register.
1660		 */
1661
1662		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1663
1664		curthread->t_dtrace_scrpc = addr;
1665		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1666		i += tp->ftt_size;
1667
1668#ifdef __amd64
1669		if (tp->ftt_ripmode != 0) {
1670			greg_t *reg = NULL;
1671
1672			ASSERT(p->p_model == DATAMODEL_LP64);
1673			ASSERT(tp->ftt_ripmode &
1674			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1675
1676			/*
1677			 * If this was a %rip-relative instruction, we change
1678			 * it to be either a %rax- or %rcx-relative
1679			 * instruction (depending on whether those registers
1680			 * are used as another operand; or %r8- or %r9-
1681			 * relative depending on the value of REX.B). We then
1682			 * set that register and generate a movq instruction
1683			 * to reset the value.
1684			 */
1685			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1686				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1687			else
1688				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1689
1690			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1691				scratch[i++] = FASTTRAP_MOV_EAX;
1692			else
1693				scratch[i++] = FASTTRAP_MOV_ECX;
1694
1695			switch (tp->ftt_ripmode) {
1696			case FASTTRAP_RIP_1:
1697				reg = &rp->r_rax;
1698				curthread->t_dtrace_reg = REG_RAX;
1699				break;
1700			case FASTTRAP_RIP_2:
1701				reg = &rp->r_rcx;
1702				curthread->t_dtrace_reg = REG_RCX;
1703				break;
1704			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1705				reg = &rp->r_r8;
1706				curthread->t_dtrace_reg = REG_R8;
1707				break;
1708			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1709				reg = &rp->r_r9;
1710				curthread->t_dtrace_reg = REG_R9;
1711				break;
1712			}
1713
1714			/* LINTED - alignment */
1715			*(uint64_t *)&scratch[i] = *reg;
1716			curthread->t_dtrace_regv = *reg;
1717			*reg = pc + tp->ftt_size;
1718			i += sizeof (uint64_t);
1719		}
1720#endif
1721
1722		/*
1723		 * Generate the branch instruction to what would have
1724		 * normally been the subsequent instruction. In 32-bit mode,
1725		 * this is just a relative branch; in 64-bit mode this is a
1726		 * %rip-relative branch that loads the 64-bit pc value
1727		 * immediately after the jmp instruction.
1728		 */
1729#ifdef __amd64
1730		if (p->p_model == DATAMODEL_LP64) {
1731			scratch[i++] = FASTTRAP_GROUP5_OP;
1732			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1733			/* LINTED - alignment */
1734			*(uint32_t *)&scratch[i] = 0;
1735			i += sizeof (uint32_t);
1736			/* LINTED - alignment */
1737			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1738			i += sizeof (uint64_t);
1739		} else {
1740#endif
1741#ifdef __i386__
1742			/*
1743			 * Set up the jmp to the next instruction; note that
1744			 * the size of the traced instruction cancels out.
1745			 */
1746			scratch[i++] = FASTTRAP_JMP32;
1747			/* LINTED - alignment */
1748			*(uint32_t *)&scratch[i] = pc - addr - 5;
1749			i += sizeof (uint32_t);
1750#endif
1751#ifdef __amd64
1752		}
1753#endif
1754
1755		curthread->t_dtrace_astpc = addr + i;
1756		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1757		i += tp->ftt_size;
1758		scratch[i++] = FASTTRAP_INT;
1759		scratch[i++] = T_DTRACE_RET;
1760
1761		ASSERT(i <= sizeof (scratch));
1762
1763#ifdef illumos
1764		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1765#else
1766		if (uwrite(p, scratch, i, addr)) {
1767#endif
1768			fasttrap_sigtrap(p, curthread, pc);
1769			new_pc = pc;
1770			break;
1771		}
1772		if (tp->ftt_retids != NULL) {
1773			curthread->t_dtrace_step = 1;
1774			curthread->t_dtrace_ret = 1;
1775			new_pc = curthread->t_dtrace_astpc;
1776		} else {
1777			new_pc = curthread->t_dtrace_scrpc;
1778		}
1779
1780		curthread->t_dtrace_pc = pc;
1781		curthread->t_dtrace_npc = pc + tp->ftt_size;
1782		curthread->t_dtrace_on = 1;
1783		break;
1784	}
1785
1786	default:
1787		panic("fasttrap: mishandled an instruction");
1788	}
1789
1790done:
1791	/*
1792	 * If there were no return probes when we first found the tracepoint,
1793	 * we should feel no obligation to honor any return probes that were
1794	 * subsequently enabled -- they'll just have to wait until the next
1795	 * time around.
1796	 */
1797	if (tp->ftt_retids != NULL) {
1798		/*
1799		 * We need to wait until the results of the instruction are
1800		 * apparent before invoking any return probes. If this
1801		 * instruction was emulated we can just call
1802		 * fasttrap_return_common(); if it needs to be executed, we
1803		 * need to wait until the user thread returns to the kernel.
1804		 */
1805		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1806			/*
1807			 * Set the program counter to the address of the traced
1808			 * instruction so that it looks right in ustack()
1809			 * output. We had previously set it to the end of the
1810			 * instruction to simplify %rip-relative addressing.
1811			 */
1812			rp->r_rip = pc;
1813
1814			fasttrap_return_common(rp, pc, pid, new_pc);
1815		} else {
1816			ASSERT(curthread->t_dtrace_ret != 0);
1817			ASSERT(curthread->t_dtrace_pc == pc);
1818			ASSERT(curthread->t_dtrace_scrpc != 0);
1819			ASSERT(new_pc == curthread->t_dtrace_astpc);
1820		}
1821	}
1822
1823	rp->r_rip = new_pc;
1824
1825#ifndef illumos
1826	PROC_LOCK(p);
1827	proc_write_regs(curthread, rp);
1828	_PRELE(p);
1829	PROC_UNLOCK(p);
1830#endif
1831
1832	return (0);
1833}
1834
1835int
1836fasttrap_return_probe(struct reg *rp)
1837{
1838	proc_t *p = curproc;
1839	uintptr_t pc = curthread->t_dtrace_pc;
1840	uintptr_t npc = curthread->t_dtrace_npc;
1841
1842	curthread->t_dtrace_pc = 0;
1843	curthread->t_dtrace_npc = 0;
1844	curthread->t_dtrace_scrpc = 0;
1845	curthread->t_dtrace_astpc = 0;
1846
1847#ifdef illumos
1848	/*
1849	 * Treat a child created by a call to vfork(2) as if it were its
1850	 * parent. We know that there's only one thread of control in such a
1851	 * process: this one.
1852	 */
1853	while (p->p_flag & SVFORK) {
1854		p = p->p_parent;
1855	}
1856#endif
1857
1858	/*
1859	 * We set rp->r_rip to the address of the traced instruction so
1860	 * that it appears to dtrace_probe() that we're on the original
1861	 * instruction, and so that the user can't easily detect our
1862	 * complex web of lies. dtrace_return_probe() (our caller)
1863	 * will correctly set %pc after we return.
1864	 */
1865	rp->r_rip = pc;
1866
1867	fasttrap_return_common(rp, pc, p->p_pid, npc);
1868
1869	return (0);
1870}
1871
1872/*ARGSUSED*/
1873uint64_t
1874fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1875    int aframes)
1876{
1877	struct reg r;
1878
1879	fill_regs(curthread, &r);
1880
1881	return (fasttrap_anarg(&r, 1, argno));
1882}
1883
1884/*ARGSUSED*/
1885uint64_t
1886fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1887    int aframes)
1888{
1889	struct reg r;
1890
1891	fill_regs(curthread, &r);
1892
1893	return (fasttrap_anarg(&r, 0, argno));
1894}
1895
1896static ulong_t
1897fasttrap_getreg(struct reg *rp, uint_t reg)
1898{
1899#ifdef __amd64
1900	switch (reg) {
1901	case REG_R15:		return (rp->r_r15);
1902	case REG_R14:		return (rp->r_r14);
1903	case REG_R13:		return (rp->r_r13);
1904	case REG_R12:		return (rp->r_r12);
1905	case REG_R11:		return (rp->r_r11);
1906	case REG_R10:		return (rp->r_r10);
1907	case REG_R9:		return (rp->r_r9);
1908	case REG_R8:		return (rp->r_r8);
1909	case REG_RDI:		return (rp->r_rdi);
1910	case REG_RSI:		return (rp->r_rsi);
1911	case REG_RBP:		return (rp->r_rbp);
1912	case REG_RBX:		return (rp->r_rbx);
1913	case REG_RDX:		return (rp->r_rdx);
1914	case REG_RCX:		return (rp->r_rcx);
1915	case REG_RAX:		return (rp->r_rax);
1916	case REG_TRAPNO:	return (rp->r_trapno);
1917	case REG_ERR:		return (rp->r_err);
1918	case REG_RIP:		return (rp->r_rip);
1919	case REG_CS:		return (rp->r_cs);
1920#ifdef illumos
1921	case REG_RFL:		return (rp->r_rfl);
1922#endif
1923	case REG_RSP:		return (rp->r_rsp);
1924	case REG_SS:		return (rp->r_ss);
1925	case REG_FS:		return (rp->r_fs);
1926	case REG_GS:		return (rp->r_gs);
1927	case REG_DS:		return (rp->r_ds);
1928	case REG_ES:		return (rp->r_es);
1929	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1930	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1931	}
1932
1933	panic("dtrace: illegal register constant");
1934	/*NOTREACHED*/
1935#else
1936#define _NGREG 19
1937	if (reg >= _NGREG)
1938		panic("dtrace: illegal register constant");
1939
1940	return (((greg_t *)&rp->r_gs)[reg]);
1941#endif
1942}
1943