fasttrap_isa.c revision 265273
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * Portions Copyright 2010 The FreeBSD Foundation
22 *
23 * $FreeBSD$
24 */
25
26/*
27 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28 * Use is subject to license terms.
29 */
30
31#if defined(sun)
32#pragma ident	"%Z%%M%	%I%	%E% SMI"
33#endif
34
35#include <sys/fasttrap_isa.h>
36#include <sys/fasttrap_impl.h>
37#include <sys/dtrace.h>
38#include <sys/dtrace_impl.h>
39#include <sys/cmn_err.h>
40#if defined(sun)
41#include <sys/regset.h>
42#include <sys/privregs.h>
43#include <sys/segments.h>
44#include <sys/x86_archext.h>
45#else
46#include <cddl/dev/dtrace/dtrace_cddl.h>
47#include <sys/types.h>
48#include <sys/proc.h>
49#include <sys/dtrace_bsd.h>
50#include <cddl/dev/dtrace/x86/regset.h>
51#include <machine/segments.h>
52#include <machine/reg.h>
53#include <machine/pcb.h>
54#endif
55#include <sys/sysmacros.h>
56#if defined(sun)
57#include <sys/trap.h>
58#include <sys/archsystm.h>
59#else
60#include <sys/ptrace.h>
61
62static int
63proc_ops(int op, proc_t *p, void *kaddr, off_t uaddr, size_t len)
64{
65	struct iovec iov;
66	struct uio uio;
67
68	iov.iov_base = kaddr;
69	iov.iov_len = len;
70	uio.uio_offset = uaddr;
71	uio.uio_iov = &iov;
72	uio.uio_resid = len;
73	uio.uio_iovcnt = 1;
74	uio.uio_segflg = UIO_SYSSPACE;
75	uio.uio_td = curthread;
76	uio.uio_rw = op;
77	PHOLD(p);
78	if (proc_rwmem(p, &uio) < 0) {
79		PRELE(p);
80		return (-1);
81	}
82	PRELE(p);
83
84	return (0);
85}
86
87static int
88uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
89{
90
91	return (proc_ops(UIO_READ, p, kaddr, uaddr, len));
92}
93
94static int
95uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
96{
97
98	return (proc_ops(UIO_WRITE, p, kaddr, uaddr, len));
99}
100#endif /* sun */
101#ifdef __i386__
102#define	r_rax	r_eax
103#define	r_rbx	r_ebx
104#define	r_rip	r_eip
105#define	r_rflags r_eflags
106#define	r_rsp	r_esp
107#define	r_rbp	r_ebp
108#endif
109
110/*
111 * Lossless User-Land Tracing on x86
112 * ---------------------------------
113 *
114 * The execution of most instructions is not dependent on the address; for
115 * these instructions it is sufficient to copy them into the user process's
116 * address space and execute them. To effectively single-step an instruction
117 * in user-land, we copy out the following sequence of instructions to scratch
118 * space in the user thread's ulwp_t structure.
119 *
120 * We then set the program counter (%eip or %rip) to point to this scratch
121 * space. Once execution resumes, the original instruction is executed and
122 * then control flow is redirected to what was originally the subsequent
123 * instruction. If the kernel attemps to deliver a signal while single-
124 * stepping, the signal is deferred and the program counter is moved into the
125 * second sequence of instructions. The second sequence ends in a trap into
126 * the kernel where the deferred signal is then properly handled and delivered.
127 *
128 * For instructions whose execute is position dependent, we perform simple
129 * emulation. These instructions are limited to control transfer
130 * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
131 * of %rip-relative addressing that means that almost any instruction can be
132 * position dependent. For all the details on how we emulate generic
133 * instructions included %rip-relative instructions, see the code in
134 * fasttrap_pid_probe() below where we handle instructions of type
135 * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
136 */
137
138#define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
139#define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
140#define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
141#define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
142
143#define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
144#define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
145#define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
146
147#define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
148#define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
149#define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
150#define	FASTTRAP_REX_B(rex)		((rex) & 1)
151#define	FASTTRAP_REX(w, r, x, b)	\
152	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
153
154/*
155 * Single-byte op-codes.
156 */
157#define	FASTTRAP_PUSHL_EBP	0x55
158
159#define	FASTTRAP_JO		0x70
160#define	FASTTRAP_JNO		0x71
161#define	FASTTRAP_JB		0x72
162#define	FASTTRAP_JAE		0x73
163#define	FASTTRAP_JE		0x74
164#define	FASTTRAP_JNE		0x75
165#define	FASTTRAP_JBE		0x76
166#define	FASTTRAP_JA		0x77
167#define	FASTTRAP_JS		0x78
168#define	FASTTRAP_JNS		0x79
169#define	FASTTRAP_JP		0x7a
170#define	FASTTRAP_JNP		0x7b
171#define	FASTTRAP_JL		0x7c
172#define	FASTTRAP_JGE		0x7d
173#define	FASTTRAP_JLE		0x7e
174#define	FASTTRAP_JG		0x7f
175
176#define	FASTTRAP_NOP		0x90
177
178#define	FASTTRAP_MOV_EAX	0xb8
179#define	FASTTRAP_MOV_ECX	0xb9
180
181#define	FASTTRAP_RET16		0xc2
182#define	FASTTRAP_RET		0xc3
183
184#define	FASTTRAP_LOOPNZ		0xe0
185#define	FASTTRAP_LOOPZ		0xe1
186#define	FASTTRAP_LOOP		0xe2
187#define	FASTTRAP_JCXZ		0xe3
188
189#define	FASTTRAP_CALL		0xe8
190#define	FASTTRAP_JMP32		0xe9
191#define	FASTTRAP_JMP8		0xeb
192
193#define	FASTTRAP_INT3		0xcc
194#define	FASTTRAP_INT		0xcd
195
196#define	FASTTRAP_2_BYTE_OP	0x0f
197#define	FASTTRAP_GROUP5_OP	0xff
198
199/*
200 * Two-byte op-codes (second byte only).
201 */
202#define	FASTTRAP_0F_JO		0x80
203#define	FASTTRAP_0F_JNO		0x81
204#define	FASTTRAP_0F_JB		0x82
205#define	FASTTRAP_0F_JAE		0x83
206#define	FASTTRAP_0F_JE		0x84
207#define	FASTTRAP_0F_JNE		0x85
208#define	FASTTRAP_0F_JBE		0x86
209#define	FASTTRAP_0F_JA		0x87
210#define	FASTTRAP_0F_JS		0x88
211#define	FASTTRAP_0F_JNS		0x89
212#define	FASTTRAP_0F_JP		0x8a
213#define	FASTTRAP_0F_JNP		0x8b
214#define	FASTTRAP_0F_JL		0x8c
215#define	FASTTRAP_0F_JGE		0x8d
216#define	FASTTRAP_0F_JLE		0x8e
217#define	FASTTRAP_0F_JG		0x8f
218
219#define	FASTTRAP_EFLAGS_OF	0x800
220#define	FASTTRAP_EFLAGS_DF	0x400
221#define	FASTTRAP_EFLAGS_SF	0x080
222#define	FASTTRAP_EFLAGS_ZF	0x040
223#define	FASTTRAP_EFLAGS_AF	0x010
224#define	FASTTRAP_EFLAGS_PF	0x004
225#define	FASTTRAP_EFLAGS_CF	0x001
226
227/*
228 * Instruction prefixes.
229 */
230#define	FASTTRAP_PREFIX_OPERAND	0x66
231#define	FASTTRAP_PREFIX_ADDRESS	0x67
232#define	FASTTRAP_PREFIX_CS	0x2E
233#define	FASTTRAP_PREFIX_DS	0x3E
234#define	FASTTRAP_PREFIX_ES	0x26
235#define	FASTTRAP_PREFIX_FS	0x64
236#define	FASTTRAP_PREFIX_GS	0x65
237#define	FASTTRAP_PREFIX_SS	0x36
238#define	FASTTRAP_PREFIX_LOCK	0xF0
239#define	FASTTRAP_PREFIX_REP	0xF3
240#define	FASTTRAP_PREFIX_REPNE	0xF2
241
242#define	FASTTRAP_NOREG	0xff
243
244/*
245 * Map between instruction register encodings and the kernel constants which
246 * correspond to indicies into struct regs.
247 */
248#ifdef __amd64
249static const uint8_t regmap[16] = {
250	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
251	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
252};
253#else
254static const uint8_t regmap[8] = {
255	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
256};
257#endif
258
259static ulong_t fasttrap_getreg(struct reg *, uint_t);
260
261static uint64_t
262fasttrap_anarg(struct reg *rp, int function_entry, int argno)
263{
264	uint64_t value = 0;
265	int shift = function_entry ? 1 : 0;
266
267#ifdef __amd64
268	if (curproc->p_model == DATAMODEL_LP64) {
269		uintptr_t *stack;
270
271		/*
272		 * In 64-bit mode, the first six arguments are stored in
273		 * registers.
274		 */
275		if (argno < 6)
276			return ((&rp->r_rdi)[argno]);
277
278		stack = (uintptr_t *)rp->r_rsp;
279		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
280		value = dtrace_fulword(&stack[argno - 6 + shift]);
281		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
282	} else {
283#endif
284#ifdef __i386
285		uint32_t *stack = (uint32_t *)rp->r_esp;
286		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
287		value = dtrace_fuword32(&stack[argno + shift]);
288		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
289#endif
290#ifdef __amd64
291	}
292#endif
293
294	return (value);
295}
296
297/*ARGSUSED*/
298int
299fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
300    fasttrap_probe_type_t type)
301{
302	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
303	size_t len = FASTTRAP_MAX_INSTR_SIZE;
304	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
305	uint_t start = 0;
306	int rmindex, size;
307	uint8_t seg, rex = 0;
308
309	/*
310	 * Read the instruction at the given address out of the process's
311	 * address space. We don't have to worry about a debugger
312	 * changing this instruction before we overwrite it with our trap
313	 * instruction since P_PR_LOCK is set. Since instructions can span
314	 * pages, we potentially read the instruction in two parts. If the
315	 * second part fails, we just zero out that part of the instruction.
316	 */
317	if (uread(p, &instr[0], first, pc) != 0)
318		return (-1);
319	if (len > first &&
320	    uread(p, &instr[first], len - first, pc + first) != 0) {
321		bzero(&instr[first], len - first);
322		len = first;
323	}
324
325	/*
326	 * If the disassembly fails, then we have a malformed instruction.
327	 */
328	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
329		return (-1);
330
331	/*
332	 * Make sure the disassembler isn't completely broken.
333	 */
334	ASSERT(-1 <= rmindex && rmindex < size);
335
336	/*
337	 * If the computed size is greater than the number of bytes read,
338	 * then it was a malformed instruction possibly because it fell on a
339	 * page boundary and the subsequent page was missing or because of
340	 * some malicious user.
341	 */
342	if (size > len)
343		return (-1);
344
345	tp->ftt_size = (uint8_t)size;
346	tp->ftt_segment = FASTTRAP_SEG_NONE;
347
348	/*
349	 * Find the start of the instruction's opcode by processing any
350	 * legacy prefixes.
351	 */
352	for (;;) {
353		seg = 0;
354		switch (instr[start]) {
355		case FASTTRAP_PREFIX_SS:
356			seg++;
357			/*FALLTHRU*/
358		case FASTTRAP_PREFIX_GS:
359			seg++;
360			/*FALLTHRU*/
361		case FASTTRAP_PREFIX_FS:
362			seg++;
363			/*FALLTHRU*/
364		case FASTTRAP_PREFIX_ES:
365			seg++;
366			/*FALLTHRU*/
367		case FASTTRAP_PREFIX_DS:
368			seg++;
369			/*FALLTHRU*/
370		case FASTTRAP_PREFIX_CS:
371			seg++;
372			/*FALLTHRU*/
373		case FASTTRAP_PREFIX_OPERAND:
374		case FASTTRAP_PREFIX_ADDRESS:
375		case FASTTRAP_PREFIX_LOCK:
376		case FASTTRAP_PREFIX_REP:
377		case FASTTRAP_PREFIX_REPNE:
378			if (seg != 0) {
379				/*
380				 * It's illegal for an instruction to specify
381				 * two segment prefixes -- give up on this
382				 * illegal instruction.
383				 */
384				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
385					return (-1);
386
387				tp->ftt_segment = seg;
388			}
389			start++;
390			continue;
391		}
392		break;
393	}
394
395#ifdef __amd64
396	/*
397	 * Identify the REX prefix on 64-bit processes.
398	 */
399	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
400		rex = instr[start++];
401#endif
402
403	/*
404	 * Now that we're pretty sure that the instruction is okay, copy the
405	 * valid part to the tracepoint.
406	 */
407	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
408
409	tp->ftt_type = FASTTRAP_T_COMMON;
410	if (instr[start] == FASTTRAP_2_BYTE_OP) {
411		switch (instr[start + 1]) {
412		case FASTTRAP_0F_JO:
413		case FASTTRAP_0F_JNO:
414		case FASTTRAP_0F_JB:
415		case FASTTRAP_0F_JAE:
416		case FASTTRAP_0F_JE:
417		case FASTTRAP_0F_JNE:
418		case FASTTRAP_0F_JBE:
419		case FASTTRAP_0F_JA:
420		case FASTTRAP_0F_JS:
421		case FASTTRAP_0F_JNS:
422		case FASTTRAP_0F_JP:
423		case FASTTRAP_0F_JNP:
424		case FASTTRAP_0F_JL:
425		case FASTTRAP_0F_JGE:
426		case FASTTRAP_0F_JLE:
427		case FASTTRAP_0F_JG:
428			tp->ftt_type = FASTTRAP_T_JCC;
429			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
430			tp->ftt_dest = pc + tp->ftt_size +
431			    /* LINTED - alignment */
432			    *(int32_t *)&instr[start + 2];
433			break;
434		}
435	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
436		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
437		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
438		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
439
440		if (reg == 2 || reg == 4) {
441			uint_t i, sz;
442
443			if (reg == 2)
444				tp->ftt_type = FASTTRAP_T_CALL;
445			else
446				tp->ftt_type = FASTTRAP_T_JMP;
447
448			if (mod == 3)
449				tp->ftt_code = 2;
450			else
451				tp->ftt_code = 1;
452
453			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
454
455			/*
456			 * See AMD x86-64 Architecture Programmer's Manual
457			 * Volume 3, Section 1.2.7, Table 1-12, and
458			 * Appendix A.3.1, Table A-15.
459			 */
460			if (mod != 3 && rm == 4) {
461				uint8_t sib = instr[start + 2];
462				uint_t index = FASTTRAP_SIB_INDEX(sib);
463				uint_t base = FASTTRAP_SIB_BASE(sib);
464
465				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
466
467				tp->ftt_index = (index == 4) ?
468				    FASTTRAP_NOREG :
469				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
470				tp->ftt_base = (mod == 0 && base == 5) ?
471				    FASTTRAP_NOREG :
472				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
473
474				i = 3;
475				sz = mod == 1 ? 1 : 4;
476			} else {
477				/*
478				 * In 64-bit mode, mod == 0 and r/m == 5
479				 * denotes %rip-relative addressing; in 32-bit
480				 * mode, the base register isn't used. In both
481				 * modes, there is a 32-bit operand.
482				 */
483				if (mod == 0 && rm == 5) {
484#ifdef __amd64
485					if (p->p_model == DATAMODEL_LP64)
486						tp->ftt_base = REG_RIP;
487					else
488#endif
489						tp->ftt_base = FASTTRAP_NOREG;
490					sz = 4;
491				} else  {
492					uint8_t base = rm |
493					    (FASTTRAP_REX_B(rex) << 3);
494
495					tp->ftt_base = regmap[base];
496					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
497				}
498				tp->ftt_index = FASTTRAP_NOREG;
499				i = 2;
500			}
501
502			if (sz == 1) {
503				tp->ftt_dest = *(int8_t *)&instr[start + i];
504			} else if (sz == 4) {
505				/* LINTED - alignment */
506				tp->ftt_dest = *(int32_t *)&instr[start + i];
507			} else {
508				tp->ftt_dest = 0;
509			}
510		}
511	} else {
512		switch (instr[start]) {
513		case FASTTRAP_RET:
514			tp->ftt_type = FASTTRAP_T_RET;
515			break;
516
517		case FASTTRAP_RET16:
518			tp->ftt_type = FASTTRAP_T_RET16;
519			/* LINTED - alignment */
520			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
521			break;
522
523		case FASTTRAP_JO:
524		case FASTTRAP_JNO:
525		case FASTTRAP_JB:
526		case FASTTRAP_JAE:
527		case FASTTRAP_JE:
528		case FASTTRAP_JNE:
529		case FASTTRAP_JBE:
530		case FASTTRAP_JA:
531		case FASTTRAP_JS:
532		case FASTTRAP_JNS:
533		case FASTTRAP_JP:
534		case FASTTRAP_JNP:
535		case FASTTRAP_JL:
536		case FASTTRAP_JGE:
537		case FASTTRAP_JLE:
538		case FASTTRAP_JG:
539			tp->ftt_type = FASTTRAP_T_JCC;
540			tp->ftt_code = instr[start];
541			tp->ftt_dest = pc + tp->ftt_size +
542			    (int8_t)instr[start + 1];
543			break;
544
545		case FASTTRAP_LOOPNZ:
546		case FASTTRAP_LOOPZ:
547		case FASTTRAP_LOOP:
548			tp->ftt_type = FASTTRAP_T_LOOP;
549			tp->ftt_code = instr[start];
550			tp->ftt_dest = pc + tp->ftt_size +
551			    (int8_t)instr[start + 1];
552			break;
553
554		case FASTTRAP_JCXZ:
555			tp->ftt_type = FASTTRAP_T_JCXZ;
556			tp->ftt_dest = pc + tp->ftt_size +
557			    (int8_t)instr[start + 1];
558			break;
559
560		case FASTTRAP_CALL:
561			tp->ftt_type = FASTTRAP_T_CALL;
562			tp->ftt_dest = pc + tp->ftt_size +
563			    /* LINTED - alignment */
564			    *(int32_t *)&instr[start + 1];
565			tp->ftt_code = 0;
566			break;
567
568		case FASTTRAP_JMP32:
569			tp->ftt_type = FASTTRAP_T_JMP;
570			tp->ftt_dest = pc + tp->ftt_size +
571			    /* LINTED - alignment */
572			    *(int32_t *)&instr[start + 1];
573			break;
574		case FASTTRAP_JMP8:
575			tp->ftt_type = FASTTRAP_T_JMP;
576			tp->ftt_dest = pc + tp->ftt_size +
577			    (int8_t)instr[start + 1];
578			break;
579
580		case FASTTRAP_PUSHL_EBP:
581			if (start == 0)
582				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
583			break;
584
585		case FASTTRAP_NOP:
586#ifdef __amd64
587			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
588
589			/*
590			 * On amd64 we have to be careful not to confuse a nop
591			 * (actually xchgl %eax, %eax) with an instruction using
592			 * the same opcode, but that does something different
593			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
594			 */
595			if (FASTTRAP_REX_B(rex) == 0)
596#endif
597				tp->ftt_type = FASTTRAP_T_NOP;
598			break;
599
600		case FASTTRAP_INT3:
601			/*
602			 * The pid provider shares the int3 trap with debugger
603			 * breakpoints so we can't instrument them.
604			 */
605			ASSERT(instr[start] == FASTTRAP_INSTR);
606			return (-1);
607
608		case FASTTRAP_INT:
609			/*
610			 * Interrupts seem like they could be traced with
611			 * no negative implications, but it's possible that
612			 * a thread could be redirected by the trap handling
613			 * code which would eventually return to the
614			 * instruction after the interrupt. If the interrupt
615			 * were in our scratch space, the subsequent
616			 * instruction might be overwritten before we return.
617			 * Accordingly we refuse to instrument any interrupt.
618			 */
619			return (-1);
620		}
621	}
622
623#ifdef __amd64
624	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
625		/*
626		 * If the process is 64-bit and the instruction type is still
627		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
628		 * execute it -- we need to watch for %rip-relative
629		 * addressing mode. See the portion of fasttrap_pid_probe()
630		 * below where we handle tracepoints with type
631		 * FASTTRAP_T_COMMON for how we emulate instructions that
632		 * employ %rip-relative addressing.
633		 */
634		if (rmindex != -1) {
635			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
636			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
637			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
638
639			ASSERT(rmindex > start);
640
641			if (mod == 0 && rm == 5) {
642				/*
643				 * We need to be sure to avoid other
644				 * registers used by this instruction. While
645				 * the reg field may determine the op code
646				 * rather than denoting a register, assuming
647				 * that it denotes a register is always safe.
648				 * We leave the REX field intact and use
649				 * whatever value's there for simplicity.
650				 */
651				if (reg != 0) {
652					tp->ftt_ripmode = FASTTRAP_RIP_1 |
653					    (FASTTRAP_RIP_X *
654					    FASTTRAP_REX_B(rex));
655					rm = 0;
656				} else {
657					tp->ftt_ripmode = FASTTRAP_RIP_2 |
658					    (FASTTRAP_RIP_X *
659					    FASTTRAP_REX_B(rex));
660					rm = 1;
661				}
662
663				tp->ftt_modrm = tp->ftt_instr[rmindex];
664				tp->ftt_instr[rmindex] =
665				    FASTTRAP_MODRM(2, reg, rm);
666			}
667		}
668	}
669#endif
670
671	return (0);
672}
673
674int
675fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
676{
677	fasttrap_instr_t instr = FASTTRAP_INSTR;
678
679	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
680		return (-1);
681
682	return (0);
683}
684
685int
686fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
687{
688	uint8_t instr;
689
690	/*
691	 * Distinguish between read or write failures and a changed
692	 * instruction.
693	 */
694	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
695		return (0);
696	if (instr != FASTTRAP_INSTR)
697		return (0);
698	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
699		return (-1);
700
701	return (0);
702}
703
704#ifdef __amd64
705static uintptr_t
706fasttrap_fulword_noerr(const void *uaddr)
707{
708	uintptr_t ret;
709
710	if ((ret = fasttrap_fulword(uaddr)) != -1)
711		return (ret);
712
713	return (0);
714}
715#endif
716
717#ifdef __i386__
718static uint32_t
719fasttrap_fuword32_noerr(const void *uaddr)
720{
721	uint32_t ret;
722
723	if ((ret = fasttrap_fuword32(uaddr)) != -1)
724		return (ret);
725
726	return (0);
727}
728#endif
729
730static void
731fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
732    uintptr_t new_pc)
733{
734	fasttrap_tracepoint_t *tp;
735	fasttrap_bucket_t *bucket;
736	fasttrap_id_t *id;
737#if defined(sun)
738	kmutex_t *pid_mtx;
739#endif
740
741#if defined(sun)
742	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
743	mutex_enter(pid_mtx);
744#endif
745	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
746
747	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
748		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
749		    tp->ftt_proc->ftpc_acount != 0)
750			break;
751	}
752
753	/*
754	 * Don't sweat it if we can't find the tracepoint again; unlike
755	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
756	 * is not essential to the correct execution of the process.
757	 */
758	if (tp == NULL) {
759#if defined(sun)
760		mutex_exit(pid_mtx);
761#endif
762		return;
763	}
764
765	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
766		/*
767		 * If there's a branch that could act as a return site, we
768		 * need to trace it, and check here if the program counter is
769		 * external to the function.
770		 */
771		if (tp->ftt_type != FASTTRAP_T_RET &&
772		    tp->ftt_type != FASTTRAP_T_RET16 &&
773		    new_pc - id->fti_probe->ftp_faddr <
774		    id->fti_probe->ftp_fsize)
775			continue;
776
777		dtrace_probe(id->fti_probe->ftp_id,
778		    pc - id->fti_probe->ftp_faddr,
779		    rp->r_rax, rp->r_rbx, 0, 0);
780	}
781
782#if defined(sun)
783	mutex_exit(pid_mtx);
784#endif
785}
786
787static void
788fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
789{
790#if defined(sun)
791	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
792
793	sqp->sq_info.si_signo = SIGSEGV;
794	sqp->sq_info.si_code = SEGV_MAPERR;
795	sqp->sq_info.si_addr = (caddr_t)addr;
796
797	mutex_enter(&p->p_lock);
798	sigaddqa(p, t, sqp);
799	mutex_exit(&p->p_lock);
800
801	if (t != NULL)
802		aston(t);
803#else
804	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
805
806	ksiginfo_init(ksi);
807	ksi->ksi_signo = SIGSEGV;
808	ksi->ksi_code = SEGV_MAPERR;
809	ksi->ksi_addr = (caddr_t)addr;
810	(void) tdksignal(t, SIGSEGV, ksi);
811#endif
812}
813
814#ifdef __amd64
815static void
816fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
817    uintptr_t *argv)
818{
819	int i, x, cap = MIN(argc, probe->ftp_nargs);
820	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
821
822	for (i = 0; i < cap; i++) {
823		x = probe->ftp_argmap[i];
824
825		if (x < 6)
826			argv[i] = (&rp->r_rdi)[x];
827		else
828			argv[i] = fasttrap_fulword_noerr(&stack[x]);
829	}
830
831	for (; i < argc; i++) {
832		argv[i] = 0;
833	}
834}
835#endif
836
837#ifdef __i386__
838static void
839fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
840    uint32_t *argv)
841{
842	int i, x, cap = MIN(argc, probe->ftp_nargs);
843	uint32_t *stack = (uint32_t *)rp->r_rsp;
844
845	for (i = 0; i < cap; i++) {
846		x = probe->ftp_argmap[i];
847
848		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
849	}
850
851	for (; i < argc; i++) {
852		argv[i] = 0;
853	}
854}
855#endif
856
857static int
858fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
859{
860	proc_t *p = curproc;
861#ifdef __i386__
862	struct segment_descriptor *desc;
863#else
864	struct user_segment_descriptor *desc;
865#endif
866	uint16_t sel = 0, ndx, type;
867	uintptr_t limit;
868
869	switch (tp->ftt_segment) {
870	case FASTTRAP_SEG_CS:
871		sel = rp->r_cs;
872		break;
873	case FASTTRAP_SEG_DS:
874		sel = rp->r_ds;
875		break;
876	case FASTTRAP_SEG_ES:
877		sel = rp->r_es;
878		break;
879	case FASTTRAP_SEG_FS:
880		sel = rp->r_fs;
881		break;
882	case FASTTRAP_SEG_GS:
883		sel = rp->r_gs;
884		break;
885	case FASTTRAP_SEG_SS:
886		sel = rp->r_ss;
887		break;
888	}
889
890	/*
891	 * Make sure the given segment register specifies a user priority
892	 * selector rather than a kernel selector.
893	 */
894	if (ISPL(sel) != SEL_UPL)
895		return (-1);
896
897	ndx = IDXSEL(sel);
898
899	/*
900	 * Check the bounds and grab the descriptor out of the specified
901	 * descriptor table.
902	 */
903	if (ISLDT(sel)) {
904#ifdef __i386__
905		if (ndx > p->p_md.md_ldt->ldt_len)
906			return (-1);
907
908		desc = (struct segment_descriptor *)
909		    p->p_md.md_ldt[ndx].ldt_base;
910#else
911		if (ndx > max_ldt_segment)
912			return (-1);
913
914		desc = (struct user_segment_descriptor *)
915		    p->p_md.md_ldt[ndx].ldt_base;
916#endif
917
918	} else {
919		if (ndx >= NGDT)
920			return (-1);
921
922#ifdef __i386__
923		desc = &gdt[ndx].sd;
924#else
925		desc = &gdt[ndx];
926#endif
927	}
928
929	/*
930	 * The descriptor must have user privilege level and it must be
931	 * present in memory.
932	 */
933	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
934		return (-1);
935
936	type = desc->sd_type;
937
938	/*
939	 * If the S bit in the type field is not set, this descriptor can
940	 * only be used in system context.
941	 */
942	if ((type & 0x10) != 0x10)
943		return (-1);
944
945	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
946
947	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
948		/*
949		 * The code/data bit and readable bit must both be set.
950		 */
951		if ((type & 0xa) != 0xa)
952			return (-1);
953
954		if (*addr > limit)
955			return (-1);
956	} else {
957		/*
958		 * The code/data bit must be clear.
959		 */
960		if ((type & 0x8) != 0)
961			return (-1);
962
963		/*
964		 * If the expand-down bit is clear, we just check the limit as
965		 * it would naturally be applied. Otherwise, we need to check
966		 * that the address is the range [limit + 1 .. 0xffff] or
967		 * [limit + 1 ... 0xffffffff] depending on if the default
968		 * operand size bit is set.
969		 */
970		if ((type & 0x4) == 0) {
971			if (*addr > limit)
972				return (-1);
973		} else if (desc->sd_def32) {
974			if (*addr < limit + 1 || 0xffff < *addr)
975				return (-1);
976		} else {
977			if (*addr < limit + 1 || 0xffffffff < *addr)
978				return (-1);
979		}
980	}
981
982	*addr += USD_GETBASE(desc);
983
984	return (0);
985}
986
987int
988fasttrap_pid_probe(struct reg *rp)
989{
990	proc_t *p = curproc;
991#if !defined(sun)
992	proc_t *pp;
993#endif
994	uintptr_t pc = rp->r_rip - 1;
995	uintptr_t new_pc = 0;
996	fasttrap_bucket_t *bucket;
997#if defined(sun)
998	kmutex_t *pid_mtx;
999#endif
1000	fasttrap_tracepoint_t *tp, tp_local;
1001	pid_t pid;
1002	dtrace_icookie_t cookie;
1003	uint_t is_enabled = 0;
1004
1005	/*
1006	 * It's possible that a user (in a veritable orgy of bad planning)
1007	 * could redirect this thread's flow of control before it reached the
1008	 * return probe fasttrap. In this case we need to kill the process
1009	 * since it's in a unrecoverable state.
1010	 */
1011	if (curthread->t_dtrace_step) {
1012		ASSERT(curthread->t_dtrace_on);
1013		fasttrap_sigtrap(p, curthread, pc);
1014		return (0);
1015	}
1016
1017	/*
1018	 * Clear all user tracing flags.
1019	 */
1020	curthread->t_dtrace_ft = 0;
1021	curthread->t_dtrace_pc = 0;
1022	curthread->t_dtrace_npc = 0;
1023	curthread->t_dtrace_scrpc = 0;
1024	curthread->t_dtrace_astpc = 0;
1025#ifdef __amd64
1026	curthread->t_dtrace_regv = 0;
1027#endif
1028
1029	/*
1030	 * Treat a child created by a call to vfork(2) as if it were its
1031	 * parent. We know that there's only one thread of control in such a
1032	 * process: this one.
1033	 */
1034#if defined(sun)
1035	while (p->p_flag & SVFORK) {
1036		p = p->p_parent;
1037	}
1038
1039	pid = p->p_pid;
1040	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1041	mutex_enter(pid_mtx);
1042#else
1043	pp = p;
1044	sx_slock(&proctree_lock);
1045	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1046		pp = pp->p_pptr;
1047	pid = pp->p_pid;
1048	sx_sunlock(&proctree_lock);
1049	pp = NULL;
1050
1051	PROC_LOCK(p);
1052	_PHOLD(p);
1053#endif
1054
1055	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1056
1057	/*
1058	 * Lookup the tracepoint that the process just hit.
1059	 */
1060	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1061		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1062		    tp->ftt_proc->ftpc_acount != 0)
1063			break;
1064	}
1065
1066	/*
1067	 * If we couldn't find a matching tracepoint, either a tracepoint has
1068	 * been inserted without using the pid<pid> ioctl interface (see
1069	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1070	 */
1071	if (tp == NULL) {
1072#if defined(sun)
1073		mutex_exit(pid_mtx);
1074#else
1075		_PRELE(p);
1076		PROC_UNLOCK(p);
1077#endif
1078		return (-1);
1079	}
1080
1081	/*
1082	 * Set the program counter to the address of the traced instruction
1083	 * so that it looks right in ustack() output.
1084	 */
1085	rp->r_rip = pc;
1086
1087	if (tp->ftt_ids != NULL) {
1088		fasttrap_id_t *id;
1089
1090#ifdef __amd64
1091		if (p->p_model == DATAMODEL_LP64) {
1092			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1093				fasttrap_probe_t *probe = id->fti_probe;
1094
1095				if (id->fti_ptype == DTFTP_ENTRY) {
1096					/*
1097					 * We note that this was an entry
1098					 * probe to help ustack() find the
1099					 * first caller.
1100					 */
1101					cookie = dtrace_interrupt_disable();
1102					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1103					dtrace_probe(probe->ftp_id, rp->r_rdi,
1104					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1105					    rp->r_r8);
1106					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1107					dtrace_interrupt_enable(cookie);
1108				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1109					/*
1110					 * Note that in this case, we don't
1111					 * call dtrace_probe() since it's only
1112					 * an artificial probe meant to change
1113					 * the flow of control so that it
1114					 * encounters the true probe.
1115					 */
1116					is_enabled = 1;
1117				} else if (probe->ftp_argmap == NULL) {
1118					dtrace_probe(probe->ftp_id, rp->r_rdi,
1119					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1120					    rp->r_r8);
1121				} else {
1122					uintptr_t t[5];
1123
1124					fasttrap_usdt_args64(probe, rp,
1125					    sizeof (t) / sizeof (t[0]), t);
1126
1127					dtrace_probe(probe->ftp_id, t[0], t[1],
1128					    t[2], t[3], t[4]);
1129				}
1130			}
1131		} else {
1132#else /* __amd64 */
1133			uintptr_t s0, s1, s2, s3, s4, s5;
1134			uint32_t *stack = (uint32_t *)rp->r_esp;
1135
1136			/*
1137			 * In 32-bit mode, all arguments are passed on the
1138			 * stack. If this is a function entry probe, we need
1139			 * to skip the first entry on the stack as it
1140			 * represents the return address rather than a
1141			 * parameter to the function.
1142			 */
1143			s0 = fasttrap_fuword32_noerr(&stack[0]);
1144			s1 = fasttrap_fuword32_noerr(&stack[1]);
1145			s2 = fasttrap_fuword32_noerr(&stack[2]);
1146			s3 = fasttrap_fuword32_noerr(&stack[3]);
1147			s4 = fasttrap_fuword32_noerr(&stack[4]);
1148			s5 = fasttrap_fuword32_noerr(&stack[5]);
1149
1150			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1151				fasttrap_probe_t *probe = id->fti_probe;
1152
1153				if (id->fti_ptype == DTFTP_ENTRY) {
1154					/*
1155					 * We note that this was an entry
1156					 * probe to help ustack() find the
1157					 * first caller.
1158					 */
1159					cookie = dtrace_interrupt_disable();
1160					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1161					dtrace_probe(probe->ftp_id, s1, s2,
1162					    s3, s4, s5);
1163					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1164					dtrace_interrupt_enable(cookie);
1165				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1166					/*
1167					 * Note that in this case, we don't
1168					 * call dtrace_probe() since it's only
1169					 * an artificial probe meant to change
1170					 * the flow of control so that it
1171					 * encounters the true probe.
1172					 */
1173					is_enabled = 1;
1174				} else if (probe->ftp_argmap == NULL) {
1175					dtrace_probe(probe->ftp_id, s0, s1,
1176					    s2, s3, s4);
1177				} else {
1178					uint32_t t[5];
1179
1180					fasttrap_usdt_args32(probe, rp,
1181					    sizeof (t) / sizeof (t[0]), t);
1182
1183					dtrace_probe(probe->ftp_id, t[0], t[1],
1184					    t[2], t[3], t[4]);
1185				}
1186			}
1187#endif /* __amd64 */
1188#ifdef __amd64
1189		}
1190#endif
1191	}
1192
1193	/*
1194	 * We're about to do a bunch of work so we cache a local copy of
1195	 * the tracepoint to emulate the instruction, and then find the
1196	 * tracepoint again later if we need to light up any return probes.
1197	 */
1198	tp_local = *tp;
1199#if defined(sun)
1200	mutex_exit(pid_mtx);
1201#else
1202	PROC_UNLOCK(p);
1203#endif
1204	tp = &tp_local;
1205
1206	/*
1207	 * Set the program counter to appear as though the traced instruction
1208	 * had completely executed. This ensures that fasttrap_getreg() will
1209	 * report the expected value for REG_RIP.
1210	 */
1211	rp->r_rip = pc + tp->ftt_size;
1212
1213	/*
1214	 * If there's an is-enabled probe connected to this tracepoint it
1215	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1216	 * instruction that was placed there by DTrace when the binary was
1217	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1218	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1219	 * emulation logic since we know the inevitable result. It's possible
1220	 * that a user could construct a scenario where the 'is-enabled'
1221	 * probe was on some other instruction, but that would be a rather
1222	 * exotic way to shoot oneself in the foot.
1223	 */
1224	if (is_enabled) {
1225		rp->r_rax = 1;
1226		new_pc = rp->r_rip;
1227		goto done;
1228	}
1229
1230	/*
1231	 * We emulate certain types of instructions to ensure correctness
1232	 * (in the case of position dependent instructions) or optimize
1233	 * common cases. The rest we have the thread execute back in user-
1234	 * land.
1235	 */
1236	switch (tp->ftt_type) {
1237	case FASTTRAP_T_RET:
1238	case FASTTRAP_T_RET16:
1239	{
1240		uintptr_t dst = 0;
1241		uintptr_t addr = 0;
1242		int ret = 0;
1243
1244		/*
1245		 * We have to emulate _every_ facet of the behavior of a ret
1246		 * instruction including what happens if the load from %esp
1247		 * fails; in that case, we send a SIGSEGV.
1248		 */
1249#ifdef __amd64
1250		if (p->p_model == DATAMODEL_NATIVE) {
1251			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1252			addr = rp->r_rsp + sizeof (uintptr_t);
1253		} else {
1254#endif
1255#ifdef __i386__
1256			uint32_t dst32;
1257			ret = dst32 = fasttrap_fuword32((void *)rp->r_esp);
1258			dst = dst32;
1259			addr = rp->r_esp + sizeof (uint32_t);
1260#endif
1261#ifdef __amd64
1262		}
1263#endif
1264
1265		if (ret == -1) {
1266			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1267			new_pc = pc;
1268			break;
1269		}
1270
1271		if (tp->ftt_type == FASTTRAP_T_RET16)
1272			addr += tp->ftt_dest;
1273
1274		rp->r_rsp = addr;
1275		new_pc = dst;
1276		break;
1277	}
1278
1279	case FASTTRAP_T_JCC:
1280	{
1281		uint_t taken = 0;
1282
1283		switch (tp->ftt_code) {
1284		case FASTTRAP_JO:
1285			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1286			break;
1287		case FASTTRAP_JNO:
1288			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1289			break;
1290		case FASTTRAP_JB:
1291			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1292			break;
1293		case FASTTRAP_JAE:
1294			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1295			break;
1296		case FASTTRAP_JE:
1297			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1298			break;
1299		case FASTTRAP_JNE:
1300			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1301			break;
1302		case FASTTRAP_JBE:
1303			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1304			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1305			break;
1306		case FASTTRAP_JA:
1307			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1308			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1309			break;
1310		case FASTTRAP_JS:
1311			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1312			break;
1313		case FASTTRAP_JNS:
1314			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1315			break;
1316		case FASTTRAP_JP:
1317			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1318			break;
1319		case FASTTRAP_JNP:
1320			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1321			break;
1322		case FASTTRAP_JL:
1323			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1324			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1325			break;
1326		case FASTTRAP_JGE:
1327			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1328			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1329			break;
1330		case FASTTRAP_JLE:
1331			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1332			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1333			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1334			break;
1335		case FASTTRAP_JG:
1336			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1337			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1338			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1339			break;
1340
1341		}
1342
1343		if (taken)
1344			new_pc = tp->ftt_dest;
1345		else
1346			new_pc = pc + tp->ftt_size;
1347		break;
1348	}
1349
1350	case FASTTRAP_T_LOOP:
1351	{
1352		uint_t taken = 0;
1353#ifdef __amd64
1354		greg_t cx = rp->r_rcx--;
1355#else
1356		greg_t cx = rp->r_ecx--;
1357#endif
1358
1359		switch (tp->ftt_code) {
1360		case FASTTRAP_LOOPNZ:
1361			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1362			    cx != 0;
1363			break;
1364		case FASTTRAP_LOOPZ:
1365			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1366			    cx != 0;
1367			break;
1368		case FASTTRAP_LOOP:
1369			taken = (cx != 0);
1370			break;
1371		}
1372
1373		if (taken)
1374			new_pc = tp->ftt_dest;
1375		else
1376			new_pc = pc + tp->ftt_size;
1377		break;
1378	}
1379
1380	case FASTTRAP_T_JCXZ:
1381	{
1382#ifdef __amd64
1383		greg_t cx = rp->r_rcx;
1384#else
1385		greg_t cx = rp->r_ecx;
1386#endif
1387
1388		if (cx == 0)
1389			new_pc = tp->ftt_dest;
1390		else
1391			new_pc = pc + tp->ftt_size;
1392		break;
1393	}
1394
1395	case FASTTRAP_T_PUSHL_EBP:
1396	{
1397		int ret = 0;
1398
1399#ifdef __amd64
1400		if (p->p_model == DATAMODEL_NATIVE) {
1401			rp->r_rsp -= sizeof (uintptr_t);
1402			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1403		} else {
1404#endif
1405#ifdef __i386__
1406			rp->r_rsp -= sizeof (uint32_t);
1407			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1408#endif
1409#ifdef __amd64
1410		}
1411#endif
1412
1413		if (ret == -1) {
1414			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1415			new_pc = pc;
1416			break;
1417		}
1418
1419		new_pc = pc + tp->ftt_size;
1420		break;
1421	}
1422
1423	case FASTTRAP_T_NOP:
1424		new_pc = pc + tp->ftt_size;
1425		break;
1426
1427	case FASTTRAP_T_JMP:
1428	case FASTTRAP_T_CALL:
1429		if (tp->ftt_code == 0) {
1430			new_pc = tp->ftt_dest;
1431		} else {
1432#ifdef __amd64
1433			uintptr_t value;
1434#endif
1435			uintptr_t addr = tp->ftt_dest;
1436
1437			if (tp->ftt_base != FASTTRAP_NOREG)
1438				addr += fasttrap_getreg(rp, tp->ftt_base);
1439			if (tp->ftt_index != FASTTRAP_NOREG)
1440				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1441				    tp->ftt_scale;
1442
1443			if (tp->ftt_code == 1) {
1444				/*
1445				 * If there's a segment prefix for this
1446				 * instruction, we'll need to check permissions
1447				 * and bounds on the given selector, and adjust
1448				 * the address accordingly.
1449				 */
1450				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1451				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1452					fasttrap_sigsegv(p, curthread, addr);
1453					new_pc = pc;
1454					break;
1455				}
1456
1457#ifdef __amd64
1458				if (p->p_model == DATAMODEL_NATIVE) {
1459					if ((value = fasttrap_fulword((void *)addr))
1460					     == -1) {
1461						fasttrap_sigsegv(p, curthread,
1462						    addr);
1463						new_pc = pc;
1464						break;
1465					}
1466					new_pc = value;
1467				} else {
1468#endif
1469#ifdef __i386__
1470					uint32_t value32;
1471					addr = (uintptr_t)(uint32_t)addr;
1472					if ((value32 = fasttrap_fuword32((void *)addr))
1473					    == -1) {
1474						fasttrap_sigsegv(p, curthread,
1475						    addr);
1476						new_pc = pc;
1477						break;
1478					}
1479					new_pc = value32;
1480#endif
1481				}
1482#ifdef __amd64
1483			} else {
1484				new_pc = addr;
1485			}
1486#endif
1487		}
1488
1489		/*
1490		 * If this is a call instruction, we need to push the return
1491		 * address onto the stack. If this fails, we send the process
1492		 * a SIGSEGV and reset the pc to emulate what would happen if
1493		 * this instruction weren't traced.
1494		 */
1495		if (tp->ftt_type == FASTTRAP_T_CALL) {
1496			int ret = 0;
1497			uintptr_t addr = 0, pcps;
1498#ifdef __amd64
1499			if (p->p_model == DATAMODEL_NATIVE) {
1500				addr = rp->r_rsp - sizeof (uintptr_t);
1501				pcps = pc + tp->ftt_size;
1502				ret = fasttrap_sulword((void *)addr, pcps);
1503			} else {
1504#endif
1505#ifdef __i386__
1506				addr = rp->r_rsp - sizeof (uint32_t);
1507				pcps = (uint32_t)(pc + tp->ftt_size);
1508				ret = fasttrap_suword32((void *)addr, pcps);
1509#endif
1510#ifdef __amd64
1511			}
1512#endif
1513
1514			if (ret == -1) {
1515				fasttrap_sigsegv(p, curthread, addr);
1516				new_pc = pc;
1517				break;
1518			}
1519
1520			rp->r_rsp = addr;
1521		}
1522
1523		break;
1524
1525	case FASTTRAP_T_COMMON:
1526	{
1527		uintptr_t addr;
1528#if defined(__amd64)
1529		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1530#else
1531		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1532#endif
1533		uint_t i = 0;
1534#if defined(sun)
1535		klwp_t *lwp = ttolwp(curthread);
1536#endif
1537
1538		/*
1539		 * Compute the address of the ulwp_t and step over the
1540		 * ul_self pointer. The method used to store the user-land
1541		 * thread pointer is very different on 32- and 64-bit
1542		 * kernels.
1543		 */
1544#if defined(sun)
1545#if defined(__amd64)
1546		if (p->p_model == DATAMODEL_LP64) {
1547			addr = lwp->lwp_pcb.pcb_fsbase;
1548			addr += sizeof (void *);
1549		} else {
1550			addr = lwp->lwp_pcb.pcb_gsbase;
1551			addr += sizeof (caddr32_t);
1552		}
1553#else
1554		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1555		addr += sizeof (void *);
1556#endif
1557#endif /* sun */
1558#ifdef __i386__
1559		addr = USD_GETBASE(&curthread->td_pcb->pcb_gsd);
1560#else
1561		addr = curthread->td_pcb->pcb_gsbase;
1562#endif
1563		addr += sizeof (void *);
1564
1565		/*
1566		 * Generic Instruction Tracing
1567		 * ---------------------------
1568		 *
1569		 * This is the layout of the scratch space in the user-land
1570		 * thread structure for our generated instructions.
1571		 *
1572		 *	32-bit mode			bytes
1573		 *	------------------------	-----
1574		 * a:	<original instruction>		<= 15
1575		 *	jmp	<pc + tp->ftt_size>	    5
1576		 * b:	<original instruction>		<= 15
1577		 *	int	T_DTRACE_RET		    2
1578		 *					-----
1579		 *					<= 37
1580		 *
1581		 *	64-bit mode			bytes
1582		 *	------------------------	-----
1583		 * a:	<original instruction>		<= 15
1584		 *	jmp	0(%rip)			    6
1585		 *	<pc + tp->ftt_size>		    8
1586		 * b:	<original instruction>		<= 15
1587		 * 	int	T_DTRACE_RET		    2
1588		 * 					-----
1589		 * 					<= 46
1590		 *
1591		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1592		 * to b. If we encounter a signal on the way out of the
1593		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1594		 * so that we execute the original instruction and re-enter
1595		 * the kernel rather than redirecting to the next instruction.
1596		 *
1597		 * If there are return probes (so we know that we're going to
1598		 * need to reenter the kernel after executing the original
1599		 * instruction), the scratch space will just contain the
1600		 * original instruction followed by an interrupt -- the same
1601		 * data as at b.
1602		 *
1603		 * %rip-relative Addressing
1604		 * ------------------------
1605		 *
1606		 * There's a further complication in 64-bit mode due to %rip-
1607		 * relative addressing. While this is clearly a beneficial
1608		 * architectural decision for position independent code, it's
1609		 * hard not to see it as a personal attack against the pid
1610		 * provider since before there was a relatively small set of
1611		 * instructions to emulate; with %rip-relative addressing,
1612		 * almost every instruction can potentially depend on the
1613		 * address at which it's executed. Rather than emulating
1614		 * the broad spectrum of instructions that can now be
1615		 * position dependent, we emulate jumps and others as in
1616		 * 32-bit mode, and take a different tack for instructions
1617		 * using %rip-relative addressing.
1618		 *
1619		 * For every instruction that uses the ModRM byte, the
1620		 * in-kernel disassembler reports its location. We use the
1621		 * ModRM byte to identify that an instruction uses
1622		 * %rip-relative addressing and to see what other registers
1623		 * the instruction uses. To emulate those instructions,
1624		 * we modify the instruction to be %rax-relative rather than
1625		 * %rip-relative (or %rcx-relative if the instruction uses
1626		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1627		 * we don't have to rewrite the REX prefix). We then load
1628		 * the value that %rip would have been into the scratch
1629		 * register and generate an instruction to reset the scratch
1630		 * register back to its original value. The instruction
1631		 * sequence looks like this:
1632		 *
1633		 *	64-mode %rip-relative		bytes
1634		 *	------------------------	-----
1635		 * a:	<modified instruction>		<= 15
1636		 *	movq	$<value>, %<scratch>	    6
1637		 *	jmp	0(%rip)			    6
1638		 *	<pc + tp->ftt_size>		    8
1639		 * b:	<modified instruction>  	<= 15
1640		 * 	int	T_DTRACE_RET		    2
1641		 * 					-----
1642		 *					   52
1643		 *
1644		 * We set curthread->t_dtrace_regv so that upon receiving
1645		 * a signal we can reset the value of the scratch register.
1646		 */
1647
1648		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1649
1650		curthread->t_dtrace_scrpc = addr;
1651		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1652		i += tp->ftt_size;
1653
1654#ifdef __amd64
1655		if (tp->ftt_ripmode != 0) {
1656			greg_t *reg = NULL;
1657
1658			ASSERT(p->p_model == DATAMODEL_LP64);
1659			ASSERT(tp->ftt_ripmode &
1660			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1661
1662			/*
1663			 * If this was a %rip-relative instruction, we change
1664			 * it to be either a %rax- or %rcx-relative
1665			 * instruction (depending on whether those registers
1666			 * are used as another operand; or %r8- or %r9-
1667			 * relative depending on the value of REX.B). We then
1668			 * set that register and generate a movq instruction
1669			 * to reset the value.
1670			 */
1671			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1672				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1673			else
1674				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1675
1676			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1677				scratch[i++] = FASTTRAP_MOV_EAX;
1678			else
1679				scratch[i++] = FASTTRAP_MOV_ECX;
1680
1681			switch (tp->ftt_ripmode) {
1682			case FASTTRAP_RIP_1:
1683				reg = &rp->r_rax;
1684				curthread->t_dtrace_reg = REG_RAX;
1685				break;
1686			case FASTTRAP_RIP_2:
1687				reg = &rp->r_rcx;
1688				curthread->t_dtrace_reg = REG_RCX;
1689				break;
1690			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1691				reg = &rp->r_r8;
1692				curthread->t_dtrace_reg = REG_R8;
1693				break;
1694			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1695				reg = &rp->r_r9;
1696				curthread->t_dtrace_reg = REG_R9;
1697				break;
1698			}
1699
1700			/* LINTED - alignment */
1701			*(uint64_t *)&scratch[i] = *reg;
1702			curthread->t_dtrace_regv = *reg;
1703			*reg = pc + tp->ftt_size;
1704			i += sizeof (uint64_t);
1705		}
1706#endif
1707
1708		/*
1709		 * Generate the branch instruction to what would have
1710		 * normally been the subsequent instruction. In 32-bit mode,
1711		 * this is just a relative branch; in 64-bit mode this is a
1712		 * %rip-relative branch that loads the 64-bit pc value
1713		 * immediately after the jmp instruction.
1714		 */
1715#ifdef __amd64
1716		if (p->p_model == DATAMODEL_LP64) {
1717			scratch[i++] = FASTTRAP_GROUP5_OP;
1718			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1719			/* LINTED - alignment */
1720			*(uint32_t *)&scratch[i] = 0;
1721			i += sizeof (uint32_t);
1722			/* LINTED - alignment */
1723			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1724			i += sizeof (uint64_t);
1725		} else {
1726#endif
1727#ifdef __i386__
1728			/*
1729			 * Set up the jmp to the next instruction; note that
1730			 * the size of the traced instruction cancels out.
1731			 */
1732			scratch[i++] = FASTTRAP_JMP32;
1733			/* LINTED - alignment */
1734			*(uint32_t *)&scratch[i] = pc - addr - 5;
1735			i += sizeof (uint32_t);
1736#endif
1737#ifdef __amd64
1738		}
1739#endif
1740
1741		curthread->t_dtrace_astpc = addr + i;
1742		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1743		i += tp->ftt_size;
1744		scratch[i++] = FASTTRAP_INT;
1745		scratch[i++] = T_DTRACE_RET;
1746
1747		ASSERT(i <= sizeof (scratch));
1748
1749#if defined(sun)
1750		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1751#else
1752		if (uwrite(p, scratch, i, addr)) {
1753#endif
1754			fasttrap_sigtrap(p, curthread, pc);
1755			new_pc = pc;
1756			break;
1757		}
1758		if (tp->ftt_retids != NULL) {
1759			curthread->t_dtrace_step = 1;
1760			curthread->t_dtrace_ret = 1;
1761			new_pc = curthread->t_dtrace_astpc;
1762		} else {
1763			new_pc = curthread->t_dtrace_scrpc;
1764		}
1765
1766		curthread->t_dtrace_pc = pc;
1767		curthread->t_dtrace_npc = pc + tp->ftt_size;
1768		curthread->t_dtrace_on = 1;
1769		break;
1770	}
1771
1772	default:
1773		panic("fasttrap: mishandled an instruction");
1774	}
1775
1776done:
1777	/*
1778	 * If there were no return probes when we first found the tracepoint,
1779	 * we should feel no obligation to honor any return probes that were
1780	 * subsequently enabled -- they'll just have to wait until the next
1781	 * time around.
1782	 */
1783	if (tp->ftt_retids != NULL) {
1784		/*
1785		 * We need to wait until the results of the instruction are
1786		 * apparent before invoking any return probes. If this
1787		 * instruction was emulated we can just call
1788		 * fasttrap_return_common(); if it needs to be executed, we
1789		 * need to wait until the user thread returns to the kernel.
1790		 */
1791		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1792			/*
1793			 * Set the program counter to the address of the traced
1794			 * instruction so that it looks right in ustack()
1795			 * output. We had previously set it to the end of the
1796			 * instruction to simplify %rip-relative addressing.
1797			 */
1798			rp->r_rip = pc;
1799
1800			fasttrap_return_common(rp, pc, pid, new_pc);
1801		} else {
1802			ASSERT(curthread->t_dtrace_ret != 0);
1803			ASSERT(curthread->t_dtrace_pc == pc);
1804			ASSERT(curthread->t_dtrace_scrpc != 0);
1805			ASSERT(new_pc == curthread->t_dtrace_astpc);
1806		}
1807	}
1808
1809	rp->r_rip = new_pc;
1810
1811#if !defined(sun)
1812	PROC_LOCK(p);
1813	proc_write_regs(curthread, rp);
1814	_PRELE(p);
1815	PROC_UNLOCK(p);
1816#endif
1817
1818	return (0);
1819}
1820
1821int
1822fasttrap_return_probe(struct reg *rp)
1823{
1824	proc_t *p = curproc;
1825	uintptr_t pc = curthread->t_dtrace_pc;
1826	uintptr_t npc = curthread->t_dtrace_npc;
1827
1828	curthread->t_dtrace_pc = 0;
1829	curthread->t_dtrace_npc = 0;
1830	curthread->t_dtrace_scrpc = 0;
1831	curthread->t_dtrace_astpc = 0;
1832
1833#if defined(sun)
1834	/*
1835	 * Treat a child created by a call to vfork(2) as if it were its
1836	 * parent. We know that there's only one thread of control in such a
1837	 * process: this one.
1838	 */
1839	while (p->p_flag & SVFORK) {
1840		p = p->p_parent;
1841	}
1842#endif
1843
1844	/*
1845	 * We set rp->r_rip to the address of the traced instruction so
1846	 * that it appears to dtrace_probe() that we're on the original
1847	 * instruction, and so that the user can't easily detect our
1848	 * complex web of lies. dtrace_return_probe() (our caller)
1849	 * will correctly set %pc after we return.
1850	 */
1851	rp->r_rip = pc;
1852
1853	fasttrap_return_common(rp, pc, p->p_pid, npc);
1854
1855	return (0);
1856}
1857
1858/*ARGSUSED*/
1859uint64_t
1860fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1861    int aframes)
1862{
1863	struct reg r;
1864
1865	fill_regs(curthread, &r);
1866
1867	return (fasttrap_anarg(&r, 1, argno));
1868}
1869
1870/*ARGSUSED*/
1871uint64_t
1872fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1873    int aframes)
1874{
1875	struct reg r;
1876
1877	fill_regs(curthread, &r);
1878
1879	return (fasttrap_anarg(&r, 0, argno));
1880}
1881
1882static ulong_t
1883fasttrap_getreg(struct reg *rp, uint_t reg)
1884{
1885#ifdef __amd64
1886	switch (reg) {
1887	case REG_R15:		return (rp->r_r15);
1888	case REG_R14:		return (rp->r_r14);
1889	case REG_R13:		return (rp->r_r13);
1890	case REG_R12:		return (rp->r_r12);
1891	case REG_R11:		return (rp->r_r11);
1892	case REG_R10:		return (rp->r_r10);
1893	case REG_R9:		return (rp->r_r9);
1894	case REG_R8:		return (rp->r_r8);
1895	case REG_RDI:		return (rp->r_rdi);
1896	case REG_RSI:		return (rp->r_rsi);
1897	case REG_RBP:		return (rp->r_rbp);
1898	case REG_RBX:		return (rp->r_rbx);
1899	case REG_RDX:		return (rp->r_rdx);
1900	case REG_RCX:		return (rp->r_rcx);
1901	case REG_RAX:		return (rp->r_rax);
1902	case REG_TRAPNO:	return (rp->r_trapno);
1903	case REG_ERR:		return (rp->r_err);
1904	case REG_RIP:		return (rp->r_rip);
1905	case REG_CS:		return (rp->r_cs);
1906#if defined(sun)
1907	case REG_RFL:		return (rp->r_rfl);
1908#endif
1909	case REG_RSP:		return (rp->r_rsp);
1910	case REG_SS:		return (rp->r_ss);
1911	case REG_FS:		return (rp->r_fs);
1912	case REG_GS:		return (rp->r_gs);
1913	case REG_DS:		return (rp->r_ds);
1914	case REG_ES:		return (rp->r_es);
1915	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1916	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1917	}
1918
1919	panic("dtrace: illegal register constant");
1920	/*NOTREACHED*/
1921#else
1922#define _NGREG 19
1923	if (reg >= _NGREG)
1924		panic("dtrace: illegal register constant");
1925
1926	return (((greg_t *)&rp->r_gs)[reg]);
1927#endif
1928}
1929