avl.h revision 265745
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#ifndef	_AVL_H
27#define	_AVL_H
28
29/*
30 * This is a private header file.  Applications should not directly include
31 * this file.
32 */
33
34#ifdef	__cplusplus
35extern "C" {
36#endif
37
38#include <sys/types.h>
39#include <sys/avl_impl.h>
40
41/*
42 * This is a generic implementation of AVL trees for use in the Solaris kernel.
43 * The interfaces provide an efficient way of implementing an ordered set of
44 * data structures.
45 *
46 * AVL trees provide an alternative to using an ordered linked list. Using AVL
47 * trees will usually be faster, however they requires more storage. An ordered
48 * linked list in general requires 2 pointers in each data structure. The
49 * AVL tree implementation uses 3 pointers. The following chart gives the
50 * approximate performance of operations with the different approaches:
51 *
52 *	Operation	 Link List	AVL tree
53 *	---------	 --------	--------
54 *	lookup		   O(n)		O(log(n))
55 *
56 *	insert 1 node	 constant	constant
57 *
58 *	delete 1 node	 constant	between constant and O(log(n))
59 *
60 *	delete all nodes   O(n)		O(n)
61 *
62 *	visit the next
63 *	or prev node	 constant	between constant and O(log(n))
64 *
65 *
66 * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
67 * of a list header) and the individual nodes will have a field of
68 * type "avl_node_t" (corresponding to list pointers).
69 *
70 * The type "avl_index_t" is used to indicate a position in the list for
71 * certain calls.
72 *
73 * The usage scenario is generally:
74 *
75 * 1. Create the list/tree with: avl_create()
76 *
77 * followed by any mixture of:
78 *
79 * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
80 *
81 * 2b. Visited elements with:
82 *	 avl_first() - returns the lowest valued node
83 *	 avl_last() - returns the highest valued node
84 *	 AVL_NEXT() - given a node go to next higher one
85 *	 AVL_PREV() - given a node go to previous lower one
86 *
87 * 2c.  Find the node with the closest value either less than or greater
88 *	than a given value with avl_nearest().
89 *
90 * 2d. Remove individual nodes from the list/tree with avl_remove().
91 *
92 * and finally when the list is being destroyed
93 *
94 * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
95 *    Note that once you use avl_destroy_nodes(), you can no longer
96 *    use any routine except avl_destroy_nodes() and avl_destoy().
97 *
98 * 4. Use avl_destroy() to destroy the AVL tree itself.
99 *
100 * Any locking for multiple thread access is up to the user to provide, just
101 * as is needed for any linked list implementation.
102 */
103
104
105/*
106 * Type used for the root of the AVL tree.
107 */
108typedef struct avl_tree avl_tree_t;
109
110/*
111 * The data nodes in the AVL tree must have a field of this type.
112 */
113typedef struct avl_node avl_node_t;
114
115/*
116 * An opaque type used to locate a position in the tree where a node
117 * would be inserted.
118 */
119typedef uintptr_t avl_index_t;
120
121
122/*
123 * Direction constants used for avl_nearest().
124 */
125#define	AVL_BEFORE	(0)
126#define	AVL_AFTER	(1)
127
128
129/*
130 * Prototypes
131 *
132 * Where not otherwise mentioned, "void *" arguments are a pointer to the
133 * user data structure which must contain a field of type avl_node_t.
134 *
135 * Also assume the user data structures looks like:
136 *	stuct my_type {
137 *		...
138 *		avl_node_t	my_link;
139 *		...
140 *	};
141 */
142
143/*
144 * Initialize an AVL tree. Arguments are:
145 *
146 * tree   - the tree to be initialized
147 * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
148 *          -1 for <, 0 for ==, and +1 for >
149 * size   - the value of sizeof(struct my_type)
150 * offset - the value of OFFSETOF(struct my_type, my_link)
151 */
152extern void avl_create(avl_tree_t *tree,
153	int (*compar) (const void *, const void *), size_t size, size_t offset);
154
155
156/*
157 * Find a node with a matching value in the tree. Returns the matching node
158 * found. If not found, it returns NULL and then if "where" is not NULL it sets
159 * "where" for use with avl_insert() or avl_nearest().
160 *
161 * node   - node that has the value being looked for
162 * where  - position for use with avl_nearest() or avl_insert(), may be NULL
163 */
164extern void *avl_find(avl_tree_t *tree, const void *node, avl_index_t *where);
165
166/*
167 * Insert a node into the tree.
168 *
169 * node   - the node to insert
170 * where  - position as returned from avl_find()
171 */
172extern void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
173
174/*
175 * Insert "new_data" in "tree" in the given "direction" either after
176 * or before the data "here".
177 *
178 * This might be useful for avl clients caching recently accessed
179 * data to avoid doing avl_find() again for insertion.
180 *
181 * new_data	- new data to insert
182 * here		- existing node in "tree"
183 * direction	- either AVL_AFTER or AVL_BEFORE the data "here".
184 */
185extern void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
186    int direction);
187
188
189/*
190 * Return the first or last valued node in the tree. Will return NULL
191 * if the tree is empty.
192 *
193 */
194extern void *avl_first(avl_tree_t *tree);
195extern void *avl_last(avl_tree_t *tree);
196
197
198/*
199 * Return the next or previous valued node in the tree.
200 * AVL_NEXT() will return NULL if at the last node.
201 * AVL_PREV() will return NULL if at the first node.
202 *
203 * node   - the node from which the next or previous node is found
204 */
205#define	AVL_NEXT(tree, node)	avl_walk(tree, node, AVL_AFTER)
206#define	AVL_PREV(tree, node)	avl_walk(tree, node, AVL_BEFORE)
207
208
209/*
210 * Find the node with the nearest value either greater or less than
211 * the value from a previous avl_find(). Returns the node or NULL if
212 * there isn't a matching one.
213 *
214 * where     - position as returned from avl_find()
215 * direction - either AVL_BEFORE or AVL_AFTER
216 *
217 * EXAMPLE get the greatest node that is less than a given value:
218 *
219 *	avl_tree_t *tree;
220 *	struct my_data look_for_value = {....};
221 *	struct my_data *node;
222 *	struct my_data *less;
223 *	avl_index_t where;
224 *
225 *	node = avl_find(tree, &look_for_value, &where);
226 *	if (node != NULL)
227 *		less = AVL_PREV(tree, node);
228 *	else
229 *		less = avl_nearest(tree, where, AVL_BEFORE);
230 */
231extern void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
232
233
234/*
235 * Add a single node to the tree.
236 * The node must not be in the tree, and it must not
237 * compare equal to any other node already in the tree.
238 *
239 * node   - the node to add
240 */
241extern void avl_add(avl_tree_t *tree, void *node);
242
243
244/*
245 * Remove a single node from the tree.  The node must be in the tree.
246 *
247 * node   - the node to remove
248 */
249extern void avl_remove(avl_tree_t *tree, void *node);
250
251/*
252 * Reinsert a node only if its order has changed relative to its nearest
253 * neighbors. To optimize performance avl_update_lt() checks only the previous
254 * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
255 * avl_update_gt() only if you know the direction in which the order of the
256 * node may change.
257 */
258extern boolean_t avl_update(avl_tree_t *, void *);
259extern boolean_t avl_update_lt(avl_tree_t *, void *);
260extern boolean_t avl_update_gt(avl_tree_t *, void *);
261
262/*
263 * Return the number of nodes in the tree
264 */
265extern ulong_t avl_numnodes(avl_tree_t *tree);
266
267/*
268 * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
269 */
270extern boolean_t avl_is_empty(avl_tree_t *tree);
271
272/*
273 * Used to destroy any remaining nodes in a tree. The cookie argument should
274 * be initialized to NULL before the first call. Returns a node that has been
275 * removed from the tree and may be free()'d. Returns NULL when the tree is
276 * empty.
277 *
278 * Once you call avl_destroy_nodes(), you can only continuing calling it and
279 * finally avl_destroy(). No other AVL routines will be valid.
280 *
281 * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
282 *
283 * EXAMPLE:
284 *	avl_tree_t *tree;
285 *	struct my_data *node;
286 *	void *cookie;
287 *
288 *	cookie = NULL;
289 *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
290 *		free(node);
291 *	avl_destroy(tree);
292 */
293extern void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
294
295
296/*
297 * Final destroy of an AVL tree. Arguments are:
298 *
299 * tree   - the empty tree to destroy
300 */
301extern void avl_destroy(avl_tree_t *tree);
302
303
304
305#ifdef	__cplusplus
306}
307#endif
308
309#endif	/* _AVL_H */
310