zio_inject.c revision 297108
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 */
25
26/*
27 * ZFS fault injection
28 *
29 * To handle fault injection, we keep track of a series of zinject_record_t
30 * structures which describe which logical block(s) should be injected with a
31 * fault.  These are kept in a global list.  Each record corresponds to a given
32 * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
33 * or exported while the injection record exists.
34 *
35 * Device level injection is done using the 'zi_guid' field.  If this is set, it
36 * means that the error is destined for a particular device, not a piece of
37 * data.
38 *
39 * This is a rather poor data structure and algorithm, but we don't expect more
40 * than a few faults at any one time, so it should be sufficient for our needs.
41 */
42
43#include <sys/arc.h>
44#include <sys/zio_impl.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/vdev_impl.h>
47#include <sys/dmu_objset.h>
48#include <sys/fs/zfs.h>
49
50uint32_t zio_injection_enabled;
51
52/*
53 * Data describing each zinject handler registered on the system, and
54 * contains the list node linking the handler in the global zinject
55 * handler list.
56 */
57typedef struct inject_handler {
58	int			zi_id;
59	spa_t			*zi_spa;
60	zinject_record_t	zi_record;
61	uint64_t		*zi_lanes;
62	int			zi_next_lane;
63	list_node_t		zi_link;
64} inject_handler_t;
65
66/*
67 * List of all zinject handlers registered on the system, protected by
68 * the inject_lock defined below.
69 */
70static list_t inject_handlers;
71
72/*
73 * This protects insertion into, and traversal of, the inject handler
74 * list defined above; as well as the inject_delay_count. Any time a
75 * handler is inserted or removed from the list, this lock should be
76 * taken as a RW_WRITER; and any time traversal is done over the list
77 * (without modification to it) this lock should be taken as a RW_READER.
78 */
79static krwlock_t inject_lock;
80
81/*
82 * This holds the number of zinject delay handlers that have been
83 * registered on the system. It is protected by the inject_lock defined
84 * above. Thus modifications to this count must be a RW_WRITER of the
85 * inject_lock, and reads of this count must be (at least) a RW_READER
86 * of the lock.
87 */
88static int inject_delay_count = 0;
89
90/*
91 * This lock is used only in zio_handle_io_delay(), refer to the comment
92 * in that function for more details.
93 */
94static kmutex_t inject_delay_mtx;
95
96/*
97 * Used to assign unique identifying numbers to each new zinject handler.
98 */
99static int inject_next_id = 1;
100
101/*
102 * Returns true if the given record matches the I/O in progress.
103 */
104static boolean_t
105zio_match_handler(zbookmark_phys_t *zb, uint64_t type,
106    zinject_record_t *record, int error)
107{
108	/*
109	 * Check for a match against the MOS, which is based on type
110	 */
111	if (zb->zb_objset == DMU_META_OBJSET &&
112	    record->zi_objset == DMU_META_OBJSET &&
113	    record->zi_object == DMU_META_DNODE_OBJECT) {
114		if (record->zi_type == DMU_OT_NONE ||
115		    type == record->zi_type)
116			return (record->zi_freq == 0 ||
117			    spa_get_random(100) < record->zi_freq);
118		else
119			return (B_FALSE);
120	}
121
122	/*
123	 * Check for an exact match.
124	 */
125	if (zb->zb_objset == record->zi_objset &&
126	    zb->zb_object == record->zi_object &&
127	    zb->zb_level == record->zi_level &&
128	    zb->zb_blkid >= record->zi_start &&
129	    zb->zb_blkid <= record->zi_end &&
130	    error == record->zi_error)
131		return (record->zi_freq == 0 ||
132		    spa_get_random(100) < record->zi_freq);
133
134	return (B_FALSE);
135}
136
137/*
138 * Panic the system when a config change happens in the function
139 * specified by tag.
140 */
141void
142zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
143{
144	inject_handler_t *handler;
145
146	rw_enter(&inject_lock, RW_READER);
147
148	for (handler = list_head(&inject_handlers); handler != NULL;
149	    handler = list_next(&inject_handlers, handler)) {
150
151		if (spa != handler->zi_spa)
152			continue;
153
154		if (handler->zi_record.zi_type == type &&
155		    strcmp(tag, handler->zi_record.zi_func) == 0)
156			panic("Panic requested in function %s\n", tag);
157	}
158
159	rw_exit(&inject_lock);
160}
161
162/*
163 * Determine if the I/O in question should return failure.  Returns the errno
164 * to be returned to the caller.
165 */
166int
167zio_handle_fault_injection(zio_t *zio, int error)
168{
169	int ret = 0;
170	inject_handler_t *handler;
171
172	/*
173	 * Ignore I/O not associated with any logical data.
174	 */
175	if (zio->io_logical == NULL)
176		return (0);
177
178	/*
179	 * Currently, we only support fault injection on reads.
180	 */
181	if (zio->io_type != ZIO_TYPE_READ)
182		return (0);
183
184	rw_enter(&inject_lock, RW_READER);
185
186	for (handler = list_head(&inject_handlers); handler != NULL;
187	    handler = list_next(&inject_handlers, handler)) {
188
189		if (zio->io_spa != handler->zi_spa ||
190		    handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
191			continue;
192
193		/* If this handler matches, return EIO */
194		if (zio_match_handler(&zio->io_logical->io_bookmark,
195		    zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
196		    &handler->zi_record, error)) {
197			ret = error;
198			break;
199		}
200	}
201
202	rw_exit(&inject_lock);
203
204	return (ret);
205}
206
207/*
208 * Determine if the zio is part of a label update and has an injection
209 * handler associated with that portion of the label. Currently, we
210 * allow error injection in either the nvlist or the uberblock region of
211 * of the vdev label.
212 */
213int
214zio_handle_label_injection(zio_t *zio, int error)
215{
216	inject_handler_t *handler;
217	vdev_t *vd = zio->io_vd;
218	uint64_t offset = zio->io_offset;
219	int label;
220	int ret = 0;
221
222	if (offset >= VDEV_LABEL_START_SIZE &&
223	    offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
224		return (0);
225
226	rw_enter(&inject_lock, RW_READER);
227
228	for (handler = list_head(&inject_handlers); handler != NULL;
229	    handler = list_next(&inject_handlers, handler)) {
230		uint64_t start = handler->zi_record.zi_start;
231		uint64_t end = handler->zi_record.zi_end;
232
233		if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
234			continue;
235
236		/*
237		 * The injection region is the relative offsets within a
238		 * vdev label. We must determine the label which is being
239		 * updated and adjust our region accordingly.
240		 */
241		label = vdev_label_number(vd->vdev_psize, offset);
242		start = vdev_label_offset(vd->vdev_psize, label, start);
243		end = vdev_label_offset(vd->vdev_psize, label, end);
244
245		if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
246		    (offset >= start && offset <= end)) {
247			ret = error;
248			break;
249		}
250	}
251	rw_exit(&inject_lock);
252	return (ret);
253}
254
255
256int
257zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
258{
259	inject_handler_t *handler;
260	int ret = 0;
261
262	/*
263	 * We skip over faults in the labels unless it's during
264	 * device open (i.e. zio == NULL).
265	 */
266	if (zio != NULL) {
267		uint64_t offset = zio->io_offset;
268
269		if (offset < VDEV_LABEL_START_SIZE ||
270		    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
271			return (0);
272	}
273
274	rw_enter(&inject_lock, RW_READER);
275
276	for (handler = list_head(&inject_handlers); handler != NULL;
277	    handler = list_next(&inject_handlers, handler)) {
278
279		if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
280			continue;
281
282		if (vd->vdev_guid == handler->zi_record.zi_guid) {
283			if (handler->zi_record.zi_failfast &&
284			    (zio == NULL || (zio->io_flags &
285			    (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
286				continue;
287			}
288
289			/* Handle type specific I/O failures */
290			if (zio != NULL &&
291			    handler->zi_record.zi_iotype != ZIO_TYPES &&
292			    handler->zi_record.zi_iotype != zio->io_type)
293				continue;
294
295			if (handler->zi_record.zi_error == error) {
296				/*
297				 * For a failed open, pretend like the device
298				 * has gone away.
299				 */
300				if (error == ENXIO)
301					vd->vdev_stat.vs_aux =
302					    VDEV_AUX_OPEN_FAILED;
303
304				/*
305				 * Treat these errors as if they had been
306				 * retried so that all the appropriate stats
307				 * and FMA events are generated.
308				 */
309				if (!handler->zi_record.zi_failfast &&
310				    zio != NULL)
311					zio->io_flags |= ZIO_FLAG_IO_RETRY;
312
313				ret = error;
314				break;
315			}
316			if (handler->zi_record.zi_error == ENXIO) {
317				ret = SET_ERROR(EIO);
318				break;
319			}
320		}
321	}
322
323	rw_exit(&inject_lock);
324
325	return (ret);
326}
327
328/*
329 * Simulate hardware that ignores cache flushes.  For requested number
330 * of seconds nix the actual writing to disk.
331 */
332void
333zio_handle_ignored_writes(zio_t *zio)
334{
335	inject_handler_t *handler;
336
337	rw_enter(&inject_lock, RW_READER);
338
339	for (handler = list_head(&inject_handlers); handler != NULL;
340	    handler = list_next(&inject_handlers, handler)) {
341
342		/* Ignore errors not destined for this pool */
343		if (zio->io_spa != handler->zi_spa ||
344		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
345			continue;
346
347		/*
348		 * Positive duration implies # of seconds, negative
349		 * a number of txgs
350		 */
351		if (handler->zi_record.zi_timer == 0) {
352			if (handler->zi_record.zi_duration > 0)
353				handler->zi_record.zi_timer = ddi_get_lbolt64();
354			else
355				handler->zi_record.zi_timer = zio->io_txg;
356		}
357
358		/* Have a "problem" writing 60% of the time */
359		if (spa_get_random(100) < 60)
360			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
361		break;
362	}
363
364	rw_exit(&inject_lock);
365}
366
367void
368spa_handle_ignored_writes(spa_t *spa)
369{
370	inject_handler_t *handler;
371
372	if (zio_injection_enabled == 0)
373		return;
374
375	rw_enter(&inject_lock, RW_READER);
376
377	for (handler = list_head(&inject_handlers); handler != NULL;
378	    handler = list_next(&inject_handlers, handler)) {
379
380		if (spa != handler->zi_spa ||
381		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
382			continue;
383
384		if (handler->zi_record.zi_duration > 0) {
385			VERIFY(handler->zi_record.zi_timer == 0 ||
386			    handler->zi_record.zi_timer +
387			    handler->zi_record.zi_duration * hz >
388			    ddi_get_lbolt64());
389		} else {
390			/* duration is negative so the subtraction here adds */
391			VERIFY(handler->zi_record.zi_timer == 0 ||
392			    handler->zi_record.zi_timer -
393			    handler->zi_record.zi_duration >=
394			    spa_syncing_txg(spa));
395		}
396	}
397
398	rw_exit(&inject_lock);
399}
400
401hrtime_t
402zio_handle_io_delay(zio_t *zio)
403{
404	vdev_t *vd = zio->io_vd;
405	inject_handler_t *min_handler = NULL;
406	hrtime_t min_target = 0;
407
408	rw_enter(&inject_lock, RW_READER);
409
410	/*
411	 * inject_delay_count is a subset of zio_injection_enabled that
412	 * is only incremented for delay handlers. These checks are
413	 * mainly added to remind the reader why we're not explicitly
414	 * checking zio_injection_enabled like the other functions.
415	 */
416	IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
417	IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
418
419	/*
420	 * If there aren't any inject delay handlers registered, then we
421	 * can short circuit and simply return 0 here. A value of zero
422	 * informs zio_delay_interrupt() that this request should not be
423	 * delayed. This short circuit keeps us from acquiring the
424	 * inject_delay_mutex unnecessarily.
425	 */
426	if (inject_delay_count == 0) {
427		rw_exit(&inject_lock);
428		return (0);
429	}
430
431	/*
432	 * Each inject handler has a number of "lanes" associated with
433	 * it. Each lane is able to handle requests independently of one
434	 * another, and at a latency defined by the inject handler
435	 * record's zi_timer field. Thus if a handler in configured with
436	 * a single lane with a 10ms latency, it will delay requests
437	 * such that only a single request is completed every 10ms. So,
438	 * if more than one request is attempted per each 10ms interval,
439	 * the average latency of the requests will be greater than
440	 * 10ms; but if only a single request is submitted each 10ms
441	 * interval the average latency will be 10ms.
442	 *
443	 * We need to acquire this mutex to prevent multiple concurrent
444	 * threads being assigned to the same lane of a given inject
445	 * handler. The mutex allows us to perform the following two
446	 * operations atomically:
447	 *
448	 *	1. determine the minimum handler and minimum target
449	 *	   value of all the possible handlers
450	 *	2. update that minimum handler's lane array
451	 *
452	 * Without atomicity, two (or more) threads could pick the same
453	 * lane in step (1), and then conflict with each other in step
454	 * (2). This could allow a single lane handler to process
455	 * multiple requests simultaneously, which shouldn't be possible.
456	 */
457	mutex_enter(&inject_delay_mtx);
458
459	for (inject_handler_t *handler = list_head(&inject_handlers);
460	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
461		if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
462			continue;
463
464		if (vd->vdev_guid != handler->zi_record.zi_guid)
465			continue;
466
467		/*
468		 * Defensive; should never happen as the array allocation
469		 * occurs prior to inserting this handler on the list.
470		 */
471		ASSERT3P(handler->zi_lanes, !=, NULL);
472
473		/*
474		 * This should never happen, the zinject command should
475		 * prevent a user from setting an IO delay with zero lanes.
476		 */
477		ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
478
479		ASSERT3U(handler->zi_record.zi_nlanes, >,
480		    handler->zi_next_lane);
481
482		/*
483		 * We want to issue this IO to the lane that will become
484		 * idle the soonest, so we compare the soonest this
485		 * specific handler can complete the IO with all other
486		 * handlers, to find the lowest value of all possible
487		 * lanes. We then use this lane to submit the request.
488		 *
489		 * Since each handler has a constant value for its
490		 * delay, we can just use the "next" lane for that
491		 * handler; as it will always be the lane with the
492		 * lowest value for that particular handler (i.e. the
493		 * lane that will become idle the soonest). This saves a
494		 * scan of each handler's lanes array.
495		 *
496		 * There's two cases to consider when determining when
497		 * this specific IO request should complete. If this
498		 * lane is idle, we want to "submit" the request now so
499		 * it will complete after zi_timer milliseconds. Thus,
500		 * we set the target to now + zi_timer.
501		 *
502		 * If the lane is busy, we want this request to complete
503		 * zi_timer milliseconds after the lane becomes idle.
504		 * Since the 'zi_lanes' array holds the time at which
505		 * each lane will become idle, we use that value to
506		 * determine when this request should complete.
507		 */
508		hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
509		hrtime_t busy = handler->zi_record.zi_timer +
510		    handler->zi_lanes[handler->zi_next_lane];
511		hrtime_t target = MAX(idle, busy);
512
513		if (min_handler == NULL) {
514			min_handler = handler;
515			min_target = target;
516			continue;
517		}
518
519		ASSERT3P(min_handler, !=, NULL);
520		ASSERT3U(min_target, !=, 0);
521
522		/*
523		 * We don't yet increment the "next lane" variable since
524		 * we still might find a lower value lane in another
525		 * handler during any remaining iterations. Once we're
526		 * sure we've selected the absolute minimum, we'll claim
527		 * the lane and increment the handler's "next lane"
528		 * field below.
529		 */
530
531		if (target < min_target) {
532			min_handler = handler;
533			min_target = target;
534		}
535	}
536
537	/*
538	 * 'min_handler' will be NULL if no IO delays are registered for
539	 * this vdev, otherwise it will point to the handler containing
540	 * the lane that will become idle the soonest.
541	 */
542	if (min_handler != NULL) {
543		ASSERT3U(min_target, !=, 0);
544		min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
545
546		/*
547		 * If we've used all possible lanes for this handler,
548		 * loop back and start using the first lane again;
549		 * otherwise, just increment the lane index.
550		 */
551		min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
552		    min_handler->zi_record.zi_nlanes;
553	}
554
555	mutex_exit(&inject_delay_mtx);
556	rw_exit(&inject_lock);
557
558	return (min_target);
559}
560
561/*
562 * Create a new handler for the given record.  We add it to the list, adding
563 * a reference to the spa_t in the process.  We increment zio_injection_enabled,
564 * which is the switch to trigger all fault injection.
565 */
566int
567zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
568{
569	inject_handler_t *handler;
570	int error;
571	spa_t *spa;
572
573	/*
574	 * If this is pool-wide metadata, make sure we unload the corresponding
575	 * spa_t, so that the next attempt to load it will trigger the fault.
576	 * We call spa_reset() to unload the pool appropriately.
577	 */
578	if (flags & ZINJECT_UNLOAD_SPA)
579		if ((error = spa_reset(name)) != 0)
580			return (error);
581
582	if (record->zi_cmd == ZINJECT_DELAY_IO) {
583		/*
584		 * A value of zero for the number of lanes or for the
585		 * delay time doesn't make sense.
586		 */
587		if (record->zi_timer == 0 || record->zi_nlanes == 0)
588			return (SET_ERROR(EINVAL));
589
590		/*
591		 * The number of lanes is directly mapped to the size of
592		 * an array used by the handler. Thus, to ensure the
593		 * user doesn't trigger an allocation that's "too large"
594		 * we cap the number of lanes here.
595		 */
596		if (record->zi_nlanes >= UINT16_MAX)
597			return (SET_ERROR(EINVAL));
598	}
599
600	if (!(flags & ZINJECT_NULL)) {
601		/*
602		 * spa_inject_ref() will add an injection reference, which will
603		 * prevent the pool from being removed from the namespace while
604		 * still allowing it to be unloaded.
605		 */
606		if ((spa = spa_inject_addref(name)) == NULL)
607			return (SET_ERROR(ENOENT));
608
609		handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
610
611		handler->zi_spa = spa;
612		handler->zi_record = *record;
613
614		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
615			handler->zi_lanes = kmem_zalloc(
616			    sizeof (*handler->zi_lanes) *
617			    handler->zi_record.zi_nlanes, KM_SLEEP);
618			handler->zi_next_lane = 0;
619		} else {
620			handler->zi_lanes = NULL;
621			handler->zi_next_lane = 0;
622		}
623
624		rw_enter(&inject_lock, RW_WRITER);
625
626		/*
627		 * We can't move this increment into the conditional
628		 * above because we need to hold the RW_WRITER lock of
629		 * inject_lock, and we don't want to hold that while
630		 * allocating the handler's zi_lanes array.
631		 */
632		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
633			ASSERT3S(inject_delay_count, >=, 0);
634			inject_delay_count++;
635			ASSERT3S(inject_delay_count, >, 0);
636		}
637
638		*id = handler->zi_id = inject_next_id++;
639		list_insert_tail(&inject_handlers, handler);
640		atomic_inc_32(&zio_injection_enabled);
641
642		rw_exit(&inject_lock);
643	}
644
645	/*
646	 * Flush the ARC, so that any attempts to read this data will end up
647	 * going to the ZIO layer.  Note that this is a little overkill, but
648	 * we don't have the necessary ARC interfaces to do anything else, and
649	 * fault injection isn't a performance critical path.
650	 */
651	if (flags & ZINJECT_FLUSH_ARC)
652		/*
653		 * We must use FALSE to ensure arc_flush returns, since
654		 * we're not preventing concurrent ARC insertions.
655		 */
656		arc_flush(NULL, FALSE);
657
658	return (0);
659}
660
661/*
662 * Returns the next record with an ID greater than that supplied to the
663 * function.  Used to iterate over all handlers in the system.
664 */
665int
666zio_inject_list_next(int *id, char *name, size_t buflen,
667    zinject_record_t *record)
668{
669	inject_handler_t *handler;
670	int ret;
671
672	mutex_enter(&spa_namespace_lock);
673	rw_enter(&inject_lock, RW_READER);
674
675	for (handler = list_head(&inject_handlers); handler != NULL;
676	    handler = list_next(&inject_handlers, handler))
677		if (handler->zi_id > *id)
678			break;
679
680	if (handler) {
681		*record = handler->zi_record;
682		*id = handler->zi_id;
683		(void) strncpy(name, spa_name(handler->zi_spa), buflen);
684		ret = 0;
685	} else {
686		ret = SET_ERROR(ENOENT);
687	}
688
689	rw_exit(&inject_lock);
690	mutex_exit(&spa_namespace_lock);
691
692	return (ret);
693}
694
695/*
696 * Clear the fault handler with the given identifier, or return ENOENT if none
697 * exists.
698 */
699int
700zio_clear_fault(int id)
701{
702	inject_handler_t *handler;
703
704	rw_enter(&inject_lock, RW_WRITER);
705
706	for (handler = list_head(&inject_handlers); handler != NULL;
707	    handler = list_next(&inject_handlers, handler))
708		if (handler->zi_id == id)
709			break;
710
711	if (handler == NULL) {
712		rw_exit(&inject_lock);
713		return (SET_ERROR(ENOENT));
714	}
715
716	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
717		ASSERT3S(inject_delay_count, >, 0);
718		inject_delay_count--;
719		ASSERT3S(inject_delay_count, >=, 0);
720	}
721
722	list_remove(&inject_handlers, handler);
723	rw_exit(&inject_lock);
724
725	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
726		ASSERT3P(handler->zi_lanes, !=, NULL);
727		kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
728		    handler->zi_record.zi_nlanes);
729	} else {
730		ASSERT3P(handler->zi_lanes, ==, NULL);
731	}
732
733	spa_inject_delref(handler->zi_spa);
734	kmem_free(handler, sizeof (inject_handler_t));
735	atomic_dec_32(&zio_injection_enabled);
736
737	return (0);
738}
739
740void
741zio_inject_init(void)
742{
743	rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
744	mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
745	list_create(&inject_handlers, sizeof (inject_handler_t),
746	    offsetof(inject_handler_t, zi_link));
747}
748
749void
750zio_inject_fini(void)
751{
752	list_destroy(&inject_handlers);
753	mutex_destroy(&inject_delay_mtx);
754	rw_destroy(&inject_lock);
755}
756