zio_checksum.c revision 290765
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright 2013 Saso Kiselkov. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/spa_impl.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zil.h>
34#include <zfs_fletcher.h>
35
36/*
37 * Checksum vectors.
38 *
39 * In the SPA, everything is checksummed.  We support checksum vectors
40 * for three distinct reasons:
41 *
42 *   1. Different kinds of data need different levels of protection.
43 *	For SPA metadata, we always want a very strong checksum.
44 *	For user data, we let users make the trade-off between speed
45 *	and checksum strength.
46 *
47 *   2. Cryptographic hash and MAC algorithms are an area of active research.
48 *	It is likely that in future hash functions will be at least as strong
49 *	as current best-of-breed, and may be substantially faster as well.
50 *	We want the ability to take advantage of these new hashes as soon as
51 *	they become available.
52 *
53 *   3. If someone develops hardware that can compute a strong hash quickly,
54 *	we want the ability to take advantage of that hardware.
55 *
56 * Of course, we don't want a checksum upgrade to invalidate existing
57 * data, so we store the checksum *function* in eight bits of the bp.
58 * This gives us room for up to 256 different checksum functions.
59 *
60 * When writing a block, we always checksum it with the latest-and-greatest
61 * checksum function of the appropriate strength.  When reading a block,
62 * we compare the expected checksum against the actual checksum, which we
63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
64 *
65 * SALTED CHECKSUMS
66 *
67 * To enable the use of less secure hash algorithms with dedup, we
68 * introduce the notion of salted checksums (MACs, really).  A salted
69 * checksum is fed both a random 256-bit value (the salt) and the data
70 * to be checksummed.  This salt is kept secret (stored on the pool, but
71 * never shown to the user).  Thus even if an attacker knew of collision
72 * weaknesses in the hash algorithm, they won't be able to mount a known
73 * plaintext attack on the DDT, since the actual hash value cannot be
74 * known ahead of time.  How the salt is used is algorithm-specific
75 * (some might simply prefix it to the data block, others might need to
76 * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
77 * object in the MOS (DMU_POOL_CHECKSUM_SALT).
78 *
79 * CONTEXT TEMPLATES
80 *
81 * Some hashing algorithms need to perform a substantial amount of
82 * initialization work (e.g. salted checksums above may need to pre-hash
83 * the salt) before being able to process data.  Performing this
84 * redundant work for each block would be wasteful, so we instead allow
85 * a checksum algorithm to do the work once (the first time it's used)
86 * and then keep this pre-initialized context as a template inside the
87 * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
88 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
89 * construct and destruct the pre-initialized checksum context.  The
90 * pre-initialized context is then reused during each checksum
91 * invocation and passed to the checksum function.
92 */
93
94/*ARGSUSED*/
95static void
96zio_checksum_off(const void *buf, uint64_t size,
97    const void *ctx_template, zio_cksum_t *zcp)
98{
99	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
100}
101
102zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
103	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
104	{{NULL, NULL}, NULL, NULL, 0, "on"},
105	{{zio_checksum_off,		zio_checksum_off},
106	    NULL, NULL, 0, "off"},
107	{{zio_checksum_SHA256,		zio_checksum_SHA256},
108	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
109	    "label"},
110	{{zio_checksum_SHA256,		zio_checksum_SHA256},
111	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
112	    "gang_header"},
113	{{fletcher_2_native,		fletcher_2_byteswap},
114	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
115	{{fletcher_2_native,		fletcher_2_byteswap},
116	    NULL, NULL, 0, "fletcher2"},
117	{{fletcher_4_native,		fletcher_4_byteswap},
118	    NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
119	{{zio_checksum_SHA256,		zio_checksum_SHA256},
120	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
121	    ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
122	{{fletcher_4_native,		fletcher_4_byteswap},
123	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
124	{{zio_checksum_off,		zio_checksum_off},
125	    NULL, NULL, 0, "noparity"},
126#ifdef illumos
127	{{zio_checksum_SHA512_native,	zio_checksum_SHA512_byteswap},
128	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
129	    ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
130	{{zio_checksum_skein_native,	zio_checksum_skein_byteswap},
131	    zio_checksum_skein_tmpl_init, zio_checksum_skein_tmpl_free,
132	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
133	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
134	{{zio_checksum_edonr_native,	zio_checksum_edonr_byteswap},
135	    zio_checksum_edonr_tmpl_init, zio_checksum_edonr_tmpl_free,
136	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
137	    ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
138#endif
139};
140
141spa_feature_t
142zio_checksum_to_feature(enum zio_checksum cksum)
143{
144#ifdef illumos
145	switch (cksum) {
146	case ZIO_CHECKSUM_SHA512:
147		return (SPA_FEATURE_SHA512);
148	case ZIO_CHECKSUM_SKEIN:
149		return (SPA_FEATURE_SKEIN);
150	case ZIO_CHECKSUM_EDONR:
151		return (SPA_FEATURE_EDONR);
152	}
153#endif
154	return (SPA_FEATURE_NONE);
155}
156
157enum zio_checksum
158zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
159{
160	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
161	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
162	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
163
164	if (child == ZIO_CHECKSUM_INHERIT)
165		return (parent);
166
167	if (child == ZIO_CHECKSUM_ON)
168		return (ZIO_CHECKSUM_ON_VALUE);
169
170	return (child);
171}
172
173enum zio_checksum
174zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
175    enum zio_checksum parent)
176{
177	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
178	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
179	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
180
181	if (child == ZIO_CHECKSUM_INHERIT)
182		return (parent);
183
184	if (child == ZIO_CHECKSUM_ON)
185		return (spa_dedup_checksum(spa));
186
187	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
188		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
189
190	ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
191	    ZCHECKSUM_FLAG_DEDUP) ||
192	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
193
194	return (child);
195}
196
197/*
198 * Set the external verifier for a gang block based on <vdev, offset, txg>,
199 * a tuple which is guaranteed to be unique for the life of the pool.
200 */
201static void
202zio_checksum_gang_verifier(zio_cksum_t *zcp, blkptr_t *bp)
203{
204	dva_t *dva = BP_IDENTITY(bp);
205	uint64_t txg = BP_PHYSICAL_BIRTH(bp);
206
207	ASSERT(BP_IS_GANG(bp));
208
209	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
210}
211
212/*
213 * Set the external verifier for a label block based on its offset.
214 * The vdev is implicit, and the txg is unknowable at pool open time --
215 * hence the logic in vdev_uberblock_load() to find the most recent copy.
216 */
217static void
218zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
219{
220	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
221}
222
223/*
224 * Calls the template init function of a checksum which supports context
225 * templates and installs the template into the spa_t.
226 */
227static void
228zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
229{
230	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
231
232	if (ci->ci_tmpl_init == NULL)
233		return;
234	if (spa->spa_cksum_tmpls[checksum] != NULL)
235		return;
236
237	VERIFY(ci->ci_tmpl_free != NULL);
238	mutex_enter(&spa->spa_cksum_tmpls_lock);
239	if (spa->spa_cksum_tmpls[checksum] == NULL) {
240		spa->spa_cksum_tmpls[checksum] =
241		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
242		VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
243	}
244	mutex_exit(&spa->spa_cksum_tmpls_lock);
245}
246
247/*
248 * Generate the checksum.
249 */
250void
251zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
252    void *data, uint64_t size)
253{
254	blkptr_t *bp = zio->io_bp;
255	uint64_t offset = zio->io_offset;
256	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
257	zio_cksum_t cksum;
258	spa_t *spa = zio->io_spa;
259
260	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
261	ASSERT(ci->ci_func[0] != NULL);
262
263	zio_checksum_template_init(checksum, spa);
264
265	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
266		zio_eck_t *eck;
267
268		if (checksum == ZIO_CHECKSUM_ZILOG2) {
269			zil_chain_t *zilc = data;
270
271			size = P2ROUNDUP_TYPED(zilc->zc_nused, ZIL_MIN_BLKSZ,
272			    uint64_t);
273			eck = &zilc->zc_eck;
274		} else {
275			eck = (zio_eck_t *)((char *)data + size) - 1;
276		}
277		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
278			zio_checksum_gang_verifier(&eck->zec_cksum, bp);
279		else if (checksum == ZIO_CHECKSUM_LABEL)
280			zio_checksum_label_verifier(&eck->zec_cksum, offset);
281		else
282			bp->blk_cksum = eck->zec_cksum;
283		eck->zec_magic = ZEC_MAGIC;
284		ci->ci_func[0](data, size, spa->spa_cksum_tmpls[checksum],
285		    &cksum);
286		eck->zec_cksum = cksum;
287	} else {
288		ci->ci_func[0](data, size, spa->spa_cksum_tmpls[checksum],
289		    &bp->blk_cksum);
290	}
291}
292
293int
294zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
295{
296	blkptr_t *bp = zio->io_bp;
297	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
298	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
299	int byteswap;
300	int error;
301	uint64_t size = (bp == NULL ? zio->io_size :
302	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
303	uint64_t offset = zio->io_offset;
304	void *data = zio->io_data;
305	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
306	zio_cksum_t actual_cksum, expected_cksum, verifier;
307	spa_t *spa = zio->io_spa;
308
309	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
310		return (SET_ERROR(EINVAL));
311
312	zio_checksum_template_init(checksum, spa);
313
314	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
315		zio_eck_t *eck;
316
317		if (checksum == ZIO_CHECKSUM_ZILOG2) {
318			zil_chain_t *zilc = data;
319			uint64_t nused;
320
321			eck = &zilc->zc_eck;
322			if (eck->zec_magic == ZEC_MAGIC)
323				nused = zilc->zc_nused;
324			else if (eck->zec_magic == BSWAP_64(ZEC_MAGIC))
325				nused = BSWAP_64(zilc->zc_nused);
326			else
327				return (SET_ERROR(ECKSUM));
328
329			if (nused > size)
330				return (SET_ERROR(ECKSUM));
331
332			size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
333		} else {
334			eck = (zio_eck_t *)((char *)data + size) - 1;
335		}
336
337		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
338			zio_checksum_gang_verifier(&verifier, bp);
339		else if (checksum == ZIO_CHECKSUM_LABEL)
340			zio_checksum_label_verifier(&verifier, offset);
341		else
342			verifier = bp->blk_cksum;
343
344		byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
345
346		if (byteswap)
347			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
348
349		expected_cksum = eck->zec_cksum;
350		eck->zec_cksum = verifier;
351		ci->ci_func[byteswap](data, size,
352		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
353		eck->zec_cksum = expected_cksum;
354
355		if (byteswap)
356			byteswap_uint64_array(&expected_cksum,
357			    sizeof (zio_cksum_t));
358	} else {
359		ASSERT(!BP_IS_GANG(bp));
360		byteswap = BP_SHOULD_BYTESWAP(bp);
361		expected_cksum = bp->blk_cksum;
362		ci->ci_func[byteswap](data, size,
363		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
364	}
365
366	info->zbc_expected = expected_cksum;
367	info->zbc_actual = actual_cksum;
368	info->zbc_checksum_name = ci->ci_name;
369	info->zbc_byteswapped = byteswap;
370	info->zbc_injected = 0;
371	info->zbc_has_cksum = 1;
372
373	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
374		return (SET_ERROR(ECKSUM));
375
376	if (zio_injection_enabled && !zio->io_error &&
377	    (error = zio_handle_fault_injection(zio, ECKSUM)) != 0) {
378
379		info->zbc_injected = 1;
380		return (error);
381	}
382
383	return (0);
384}
385
386/*
387 * Called by a spa_t that's about to be deallocated. This steps through
388 * all of the checksum context templates and deallocates any that were
389 * initialized using the algorithm-specific template init function.
390 */
391void
392zio_checksum_templates_free(spa_t *spa)
393{
394	for (enum zio_checksum checksum = 0;
395	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
396		if (spa->spa_cksum_tmpls[checksum] != NULL) {
397			zio_checksum_info_t *ci = &zio_checksum_table[checksum];
398
399			VERIFY(ci->ci_tmpl_free != NULL);
400			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
401			spa->spa_cksum_tmpls[checksum] = NULL;
402		}
403	}
404}
405