zio.c revision 330238
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/sysmacros.h>
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/txg.h>
33#include <sys/spa_impl.h>
34#include <sys/vdev_impl.h>
35#include <sys/zio_impl.h>
36#include <sys/zio_compress.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/ddt.h>
41#include <sys/trim_map.h>
42#include <sys/blkptr.h>
43#include <sys/zfeature.h>
44#include <sys/metaslab_impl.h>
45
46SYSCTL_DECL(_vfs_zfs);
47SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
48#if defined(__amd64__)
49static int zio_use_uma = 1;
50#else
51static int zio_use_uma = 0;
52#endif
53TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
54SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
55    "Use uma(9) for ZIO allocations");
56static int zio_exclude_metadata = 0;
57TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
58SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
59    "Exclude metadata buffers from dumps as well");
60
61zio_trim_stats_t zio_trim_stats = {
62	{ "bytes",		KSTAT_DATA_UINT64,
63	  "Number of bytes successfully TRIMmed" },
64	{ "success",		KSTAT_DATA_UINT64,
65	  "Number of successful TRIM requests" },
66	{ "unsupported",	KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed because TRIM is not supported" },
68	{ "failed",		KSTAT_DATA_UINT64,
69	  "Number of TRIM requests that failed for reasons other than not supported" },
70};
71
72static kstat_t *zio_trim_ksp;
73
74/*
75 * ==========================================================================
76 * I/O type descriptions
77 * ==========================================================================
78 */
79const char *zio_type_name[ZIO_TYPES] = {
80	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
81	"zio_ioctl"
82};
83
84boolean_t zio_dva_throttle_enabled = B_TRUE;
85SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, dva_throttle_enabled, CTLFLAG_RDTUN,
86    &zio_dva_throttle_enabled, 0, "");
87
88/*
89 * ==========================================================================
90 * I/O kmem caches
91 * ==========================================================================
92 */
93kmem_cache_t *zio_cache;
94kmem_cache_t *zio_link_cache;
95kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
96kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
97
98#ifdef _KERNEL
99extern vmem_t *zio_alloc_arena;
100#endif
101
102#define	ZIO_PIPELINE_CONTINUE		0x100
103#define	ZIO_PIPELINE_STOP		0x101
104
105#define	BP_SPANB(indblkshift, level) \
106	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
107#define	COMPARE_META_LEVEL	0x80000000ul
108/*
109 * The following actions directly effect the spa's sync-to-convergence logic.
110 * The values below define the sync pass when we start performing the action.
111 * Care should be taken when changing these values as they directly impact
112 * spa_sync() performance. Tuning these values may introduce subtle performance
113 * pathologies and should only be done in the context of performance analysis.
114 * These tunables will eventually be removed and replaced with #defines once
115 * enough analysis has been done to determine optimal values.
116 *
117 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
118 * regular blocks are not deferred.
119 */
120int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
121TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
122SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
123    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
124int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
125TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
126SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
127    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
128int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
129TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
130SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
131    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
132
133/*
134 * An allocating zio is one that either currently has the DVA allocate
135 * stage set or will have it later in its lifetime.
136 */
137#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
138
139boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
140
141#ifdef illumos
142#ifdef ZFS_DEBUG
143int zio_buf_debug_limit = 16384;
144#else
145int zio_buf_debug_limit = 0;
146#endif
147#endif
148
149static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150
151void
152zio_init(void)
153{
154	size_t c;
155	zio_cache = kmem_cache_create("zio_cache",
156	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	zio_link_cache = kmem_cache_create("zio_link_cache",
158	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159	if (!zio_use_uma)
160		goto out;
161
162	/*
163	 * For small buffers, we want a cache for each multiple of
164	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
165	 * for each quarter-power of 2.
166	 */
167	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
168		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
169		size_t p2 = size;
170		size_t align = 0;
171		int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0;
172
173		while (!ISP2(p2))
174			p2 &= p2 - 1;
175
176#ifdef illumos
177#ifndef _KERNEL
178		/*
179		 * If we are using watchpoints, put each buffer on its own page,
180		 * to eliminate the performance overhead of trapping to the
181		 * kernel when modifying a non-watched buffer that shares the
182		 * page with a watched buffer.
183		 */
184		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
185			continue;
186#endif
187#endif /* illumos */
188		if (size <= 4 * SPA_MINBLOCKSIZE) {
189			align = SPA_MINBLOCKSIZE;
190		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
191			align = MIN(p2 >> 2, PAGESIZE);
192		}
193
194		if (align != 0) {
195			char name[36];
196			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
197			zio_buf_cache[c] = kmem_cache_create(name, size,
198			    align, NULL, NULL, NULL, NULL, NULL, cflags);
199
200			/*
201			 * Since zio_data bufs do not appear in crash dumps, we
202			 * pass KMC_NOTOUCH so that no allocator metadata is
203			 * stored with the buffers.
204			 */
205			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
206			zio_data_buf_cache[c] = kmem_cache_create(name, size,
207			    align, NULL, NULL, NULL, NULL, NULL,
208			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
209		}
210	}
211
212	while (--c != 0) {
213		ASSERT(zio_buf_cache[c] != NULL);
214		if (zio_buf_cache[c - 1] == NULL)
215			zio_buf_cache[c - 1] = zio_buf_cache[c];
216
217		ASSERT(zio_data_buf_cache[c] != NULL);
218		if (zio_data_buf_cache[c - 1] == NULL)
219			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
220	}
221out:
222
223	zio_inject_init();
224
225	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
226	    KSTAT_TYPE_NAMED,
227	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
228	    KSTAT_FLAG_VIRTUAL);
229
230	if (zio_trim_ksp != NULL) {
231		zio_trim_ksp->ks_data = &zio_trim_stats;
232		kstat_install(zio_trim_ksp);
233	}
234}
235
236void
237zio_fini(void)
238{
239	size_t c;
240	kmem_cache_t *last_cache = NULL;
241	kmem_cache_t *last_data_cache = NULL;
242
243	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
244		if (zio_buf_cache[c] != last_cache) {
245			last_cache = zio_buf_cache[c];
246			kmem_cache_destroy(zio_buf_cache[c]);
247		}
248		zio_buf_cache[c] = NULL;
249
250		if (zio_data_buf_cache[c] != last_data_cache) {
251			last_data_cache = zio_data_buf_cache[c];
252			kmem_cache_destroy(zio_data_buf_cache[c]);
253		}
254		zio_data_buf_cache[c] = NULL;
255	}
256
257	kmem_cache_destroy(zio_link_cache);
258	kmem_cache_destroy(zio_cache);
259
260	zio_inject_fini();
261
262	if (zio_trim_ksp != NULL) {
263		kstat_delete(zio_trim_ksp);
264		zio_trim_ksp = NULL;
265	}
266}
267
268/*
269 * ==========================================================================
270 * Allocate and free I/O buffers
271 * ==========================================================================
272 */
273
274/*
275 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
276 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
277 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
278 * excess / transient data in-core during a crashdump.
279 */
280static void *
281zio_buf_alloc_impl(size_t size, boolean_t canwait)
282{
283	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
284	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
285
286	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
287
288	if (zio_use_uma) {
289		return (kmem_cache_alloc(zio_buf_cache[c],
290		    canwait ? KM_PUSHPAGE : KM_NOSLEEP));
291	} else {
292		return (kmem_alloc(size,
293		    (canwait ? KM_SLEEP : KM_NOSLEEP) | flags));
294	}
295}
296
297void *
298zio_buf_alloc(size_t size)
299{
300	return (zio_buf_alloc_impl(size, B_TRUE));
301}
302
303void *
304zio_buf_alloc_nowait(size_t size)
305{
306	return (zio_buf_alloc_impl(size, B_FALSE));
307}
308
309/*
310 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
311 * crashdump if the kernel panics.  This exists so that we will limit the amount
312 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
313 * of kernel heap dumped to disk when the kernel panics)
314 */
315void *
316zio_data_buf_alloc(size_t size)
317{
318	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319
320	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321
322	if (zio_use_uma)
323		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
324	else
325		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
326}
327
328void
329zio_buf_free(void *buf, size_t size)
330{
331	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
332
333	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
334
335	if (zio_use_uma)
336		kmem_cache_free(zio_buf_cache[c], buf);
337	else
338		kmem_free(buf, size);
339}
340
341void
342zio_data_buf_free(void *buf, size_t size)
343{
344	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
345
346	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
347
348	if (zio_use_uma)
349		kmem_cache_free(zio_data_buf_cache[c], buf);
350	else
351		kmem_free(buf, size);
352}
353
354/*
355 * ==========================================================================
356 * Push and pop I/O transform buffers
357 * ==========================================================================
358 */
359void
360zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
361    zio_transform_func_t *transform)
362{
363	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
364
365	zt->zt_orig_data = zio->io_data;
366	zt->zt_orig_size = zio->io_size;
367	zt->zt_bufsize = bufsize;
368	zt->zt_transform = transform;
369
370	zt->zt_next = zio->io_transform_stack;
371	zio->io_transform_stack = zt;
372
373	zio->io_data = data;
374	zio->io_size = size;
375}
376
377void
378zio_pop_transforms(zio_t *zio)
379{
380	zio_transform_t *zt;
381
382	while ((zt = zio->io_transform_stack) != NULL) {
383		if (zt->zt_transform != NULL)
384			zt->zt_transform(zio,
385			    zt->zt_orig_data, zt->zt_orig_size);
386
387		if (zt->zt_bufsize != 0)
388			zio_buf_free(zio->io_data, zt->zt_bufsize);
389
390		zio->io_data = zt->zt_orig_data;
391		zio->io_size = zt->zt_orig_size;
392		zio->io_transform_stack = zt->zt_next;
393
394		kmem_free(zt, sizeof (zio_transform_t));
395	}
396}
397
398/*
399 * ==========================================================================
400 * I/O transform callbacks for subblocks and decompression
401 * ==========================================================================
402 */
403static void
404zio_subblock(zio_t *zio, void *data, uint64_t size)
405{
406	ASSERT(zio->io_size > size);
407
408	if (zio->io_type == ZIO_TYPE_READ)
409		bcopy(zio->io_data, data, size);
410}
411
412static void
413zio_decompress(zio_t *zio, void *data, uint64_t size)
414{
415	if (zio->io_error == 0 &&
416	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
417	    zio->io_data, data, zio->io_size, size) != 0)
418		zio->io_error = SET_ERROR(EIO);
419}
420
421/*
422 * ==========================================================================
423 * I/O parent/child relationships and pipeline interlocks
424 * ==========================================================================
425 */
426zio_t *
427zio_walk_parents(zio_t *cio, zio_link_t **zl)
428{
429	list_t *pl = &cio->io_parent_list;
430
431	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
432	if (*zl == NULL)
433		return (NULL);
434
435	ASSERT((*zl)->zl_child == cio);
436	return ((*zl)->zl_parent);
437}
438
439zio_t *
440zio_walk_children(zio_t *pio, zio_link_t **zl)
441{
442	list_t *cl = &pio->io_child_list;
443
444	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
445	if (*zl == NULL)
446		return (NULL);
447
448	ASSERT((*zl)->zl_parent == pio);
449	return ((*zl)->zl_child);
450}
451
452zio_t *
453zio_unique_parent(zio_t *cio)
454{
455	zio_link_t *zl = NULL;
456	zio_t *pio = zio_walk_parents(cio, &zl);
457
458	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
459	return (pio);
460}
461
462void
463zio_add_child(zio_t *pio, zio_t *cio)
464{
465	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
466
467	/*
468	 * Logical I/Os can have logical, gang, or vdev children.
469	 * Gang I/Os can have gang or vdev children.
470	 * Vdev I/Os can only have vdev children.
471	 * The following ASSERT captures all of these constraints.
472	 */
473	ASSERT(cio->io_child_type <= pio->io_child_type);
474
475	zl->zl_parent = pio;
476	zl->zl_child = cio;
477
478	mutex_enter(&cio->io_lock);
479	mutex_enter(&pio->io_lock);
480
481	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
482
483	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
484		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
485
486	list_insert_head(&pio->io_child_list, zl);
487	list_insert_head(&cio->io_parent_list, zl);
488
489	pio->io_child_count++;
490	cio->io_parent_count++;
491
492	mutex_exit(&pio->io_lock);
493	mutex_exit(&cio->io_lock);
494}
495
496static void
497zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
498{
499	ASSERT(zl->zl_parent == pio);
500	ASSERT(zl->zl_child == cio);
501
502	mutex_enter(&cio->io_lock);
503	mutex_enter(&pio->io_lock);
504
505	list_remove(&pio->io_child_list, zl);
506	list_remove(&cio->io_parent_list, zl);
507
508	pio->io_child_count--;
509	cio->io_parent_count--;
510
511	mutex_exit(&pio->io_lock);
512	mutex_exit(&cio->io_lock);
513
514	kmem_cache_free(zio_link_cache, zl);
515}
516
517static boolean_t
518zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
519{
520	boolean_t waiting = B_FALSE;
521
522	mutex_enter(&zio->io_lock);
523	ASSERT(zio->io_stall == NULL);
524	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
525		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
526			continue;
527
528		uint64_t *countp = &zio->io_children[c][wait];
529		if (*countp != 0) {
530			zio->io_stage >>= 1;
531			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
532			zio->io_stall = countp;
533			waiting = B_TRUE;
534			break;
535		}
536	}
537	mutex_exit(&zio->io_lock);
538	return (waiting);
539}
540
541static void
542zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
543{
544	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
545	int *errorp = &pio->io_child_error[zio->io_child_type];
546
547	mutex_enter(&pio->io_lock);
548	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
549		*errorp = zio_worst_error(*errorp, zio->io_error);
550	pio->io_reexecute |= zio->io_reexecute;
551	ASSERT3U(*countp, >, 0);
552
553	(*countp)--;
554
555	if (*countp == 0 && pio->io_stall == countp) {
556		zio_taskq_type_t type =
557		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
558		    ZIO_TASKQ_INTERRUPT;
559		pio->io_stall = NULL;
560		mutex_exit(&pio->io_lock);
561		/*
562		 * Dispatch the parent zio in its own taskq so that
563		 * the child can continue to make progress. This also
564		 * prevents overflowing the stack when we have deeply nested
565		 * parent-child relationships.
566		 */
567		zio_taskq_dispatch(pio, type, B_FALSE);
568	} else {
569		mutex_exit(&pio->io_lock);
570	}
571}
572
573static void
574zio_inherit_child_errors(zio_t *zio, enum zio_child c)
575{
576	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
577		zio->io_error = zio->io_child_error[c];
578}
579
580int
581zio_timestamp_compare(const void *x1, const void *x2)
582{
583	const zio_t *z1 = x1;
584	const zio_t *z2 = x2;
585
586	if (z1->io_queued_timestamp < z2->io_queued_timestamp)
587		return (-1);
588	if (z1->io_queued_timestamp > z2->io_queued_timestamp)
589		return (1);
590
591	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
592		return (-1);
593	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
594		return (1);
595
596	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
597		return (-1);
598	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
599		return (1);
600
601	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
602		return (-1);
603	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
604		return (1);
605
606	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
607		return (-1);
608	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
609		return (1);
610
611	if (z1 < z2)
612		return (-1);
613	if (z1 > z2)
614		return (1);
615
616	return (0);
617}
618
619/*
620 * ==========================================================================
621 * Create the various types of I/O (read, write, free, etc)
622 * ==========================================================================
623 */
624static zio_t *
625zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
626    void *data, uint64_t size, zio_done_func_t *done, void *private,
627    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
628    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
629    enum zio_stage stage, enum zio_stage pipeline)
630{
631	zio_t *zio;
632
633	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
634	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
635	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
636
637	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
638	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
639	ASSERT(vd || stage == ZIO_STAGE_OPEN);
640
641	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
642	bzero(zio, sizeof (zio_t));
643
644	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
645	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
646
647	list_create(&zio->io_parent_list, sizeof (zio_link_t),
648	    offsetof(zio_link_t, zl_parent_node));
649	list_create(&zio->io_child_list, sizeof (zio_link_t),
650	    offsetof(zio_link_t, zl_child_node));
651
652	if (vd != NULL)
653		zio->io_child_type = ZIO_CHILD_VDEV;
654	else if (flags & ZIO_FLAG_GANG_CHILD)
655		zio->io_child_type = ZIO_CHILD_GANG;
656	else if (flags & ZIO_FLAG_DDT_CHILD)
657		zio->io_child_type = ZIO_CHILD_DDT;
658	else
659		zio->io_child_type = ZIO_CHILD_LOGICAL;
660
661	if (bp != NULL) {
662		zio->io_bp = (blkptr_t *)bp;
663		zio->io_bp_copy = *bp;
664		zio->io_bp_orig = *bp;
665		if (type != ZIO_TYPE_WRITE ||
666		    zio->io_child_type == ZIO_CHILD_DDT)
667			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
668		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
669			zio->io_logical = zio;
670		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
671			pipeline |= ZIO_GANG_STAGES;
672	}
673
674	zio->io_spa = spa;
675	zio->io_txg = txg;
676	zio->io_done = done;
677	zio->io_private = private;
678	zio->io_type = type;
679	zio->io_priority = priority;
680	zio->io_vd = vd;
681	zio->io_offset = offset;
682	zio->io_orig_data = zio->io_data = data;
683	zio->io_orig_size = zio->io_size = size;
684	zio->io_orig_flags = zio->io_flags = flags;
685	zio->io_orig_stage = zio->io_stage = stage;
686	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
687	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
688
689	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
690	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
691
692	if (zb != NULL)
693		zio->io_bookmark = *zb;
694
695	if (pio != NULL) {
696		if (zio->io_logical == NULL)
697			zio->io_logical = pio->io_logical;
698		if (zio->io_child_type == ZIO_CHILD_GANG)
699			zio->io_gang_leader = pio->io_gang_leader;
700		zio_add_child(pio, zio);
701	}
702
703	return (zio);
704}
705
706static void
707zio_destroy(zio_t *zio)
708{
709	list_destroy(&zio->io_parent_list);
710	list_destroy(&zio->io_child_list);
711	mutex_destroy(&zio->io_lock);
712	cv_destroy(&zio->io_cv);
713	kmem_cache_free(zio_cache, zio);
714}
715
716zio_t *
717zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
718    void *private, enum zio_flag flags)
719{
720	zio_t *zio;
721
722	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
723	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
724	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
725
726	return (zio);
727}
728
729zio_t *
730zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
731{
732	return (zio_null(NULL, spa, NULL, done, private, flags));
733}
734
735void
736zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
737{
738	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
739		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
740		    bp, (longlong_t)BP_GET_TYPE(bp));
741	}
742	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
743	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
744		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
745		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
746	}
747	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
748	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
749		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
750		    bp, (longlong_t)BP_GET_COMPRESS(bp));
751	}
752	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
753		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
754		    bp, (longlong_t)BP_GET_LSIZE(bp));
755	}
756	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
757		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
758		    bp, (longlong_t)BP_GET_PSIZE(bp));
759	}
760
761	if (BP_IS_EMBEDDED(bp)) {
762		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
763			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
764			    bp, (longlong_t)BPE_GET_ETYPE(bp));
765		}
766	}
767
768	/*
769	 * Pool-specific checks.
770	 *
771	 * Note: it would be nice to verify that the blk_birth and
772	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
773	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
774	 * that are in the log) to be arbitrarily large.
775	 */
776	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
777		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
778		if (vdevid >= spa->spa_root_vdev->vdev_children) {
779			zfs_panic_recover("blkptr at %p DVA %u has invalid "
780			    "VDEV %llu",
781			    bp, i, (longlong_t)vdevid);
782			continue;
783		}
784		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
785		if (vd == NULL) {
786			zfs_panic_recover("blkptr at %p DVA %u has invalid "
787			    "VDEV %llu",
788			    bp, i, (longlong_t)vdevid);
789			continue;
790		}
791		if (vd->vdev_ops == &vdev_hole_ops) {
792			zfs_panic_recover("blkptr at %p DVA %u has hole "
793			    "VDEV %llu",
794			    bp, i, (longlong_t)vdevid);
795			continue;
796		}
797		if (vd->vdev_ops == &vdev_missing_ops) {
798			/*
799			 * "missing" vdevs are valid during import, but we
800			 * don't have their detailed info (e.g. asize), so
801			 * we can't perform any more checks on them.
802			 */
803			continue;
804		}
805		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
806		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
807		if (BP_IS_GANG(bp))
808			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
809		if (offset + asize > vd->vdev_asize) {
810			zfs_panic_recover("blkptr at %p DVA %u has invalid "
811			    "OFFSET %llu",
812			    bp, i, (longlong_t)offset);
813		}
814	}
815}
816
817zio_t *
818zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
819    void *data, uint64_t size, zio_done_func_t *done, void *private,
820    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
821{
822	zio_t *zio;
823
824	zfs_blkptr_verify(spa, bp);
825
826	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
827	    data, size, done, private,
828	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
829	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
830	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
831
832	return (zio);
833}
834
835zio_t *
836zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
837    void *data, uint64_t size, const zio_prop_t *zp,
838    zio_done_func_t *ready, zio_done_func_t *children_ready,
839    zio_done_func_t *physdone, zio_done_func_t *done,
840    void *private, zio_priority_t priority, enum zio_flag flags,
841    const zbookmark_phys_t *zb)
842{
843	zio_t *zio;
844
845	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
846	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
847	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
848	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
849	    DMU_OT_IS_VALID(zp->zp_type) &&
850	    zp->zp_level < 32 &&
851	    zp->zp_copies > 0 &&
852	    zp->zp_copies <= spa_max_replication(spa));
853
854	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
855	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
856	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
857	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
858
859	zio->io_ready = ready;
860	zio->io_children_ready = children_ready;
861	zio->io_physdone = physdone;
862	zio->io_prop = *zp;
863
864	/*
865	 * Data can be NULL if we are going to call zio_write_override() to
866	 * provide the already-allocated BP.  But we may need the data to
867	 * verify a dedup hit (if requested).  In this case, don't try to
868	 * dedup (just take the already-allocated BP verbatim).
869	 */
870	if (data == NULL && zio->io_prop.zp_dedup_verify) {
871		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
872	}
873
874	return (zio);
875}
876
877zio_t *
878zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
879    uint64_t size, zio_done_func_t *done, void *private,
880    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
881{
882	zio_t *zio;
883
884	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
885	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
886	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
887
888	return (zio);
889}
890
891void
892zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
893{
894	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
895	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
896	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
897	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
898
899	/*
900	 * We must reset the io_prop to match the values that existed
901	 * when the bp was first written by dmu_sync() keeping in mind
902	 * that nopwrite and dedup are mutually exclusive.
903	 */
904	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
905	zio->io_prop.zp_nopwrite = nopwrite;
906	zio->io_prop.zp_copies = copies;
907	zio->io_bp_override = bp;
908}
909
910void
911zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
912{
913
914	/*
915	 * The check for EMBEDDED is a performance optimization.  We
916	 * process the free here (by ignoring it) rather than
917	 * putting it on the list and then processing it in zio_free_sync().
918	 */
919	if (BP_IS_EMBEDDED(bp))
920		return;
921	metaslab_check_free(spa, bp);
922
923	/*
924	 * Frees that are for the currently-syncing txg, are not going to be
925	 * deferred, and which will not need to do a read (i.e. not GANG or
926	 * DEDUP), can be processed immediately.  Otherwise, put them on the
927	 * in-memory list for later processing.
928	 */
929	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
930	    txg != spa->spa_syncing_txg ||
931	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
932		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
933	} else {
934		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
935		    BP_GET_PSIZE(bp), 0)));
936	}
937}
938
939zio_t *
940zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
941    uint64_t size, enum zio_flag flags)
942{
943	zio_t *zio;
944	enum zio_stage stage = ZIO_FREE_PIPELINE;
945
946	ASSERT(!BP_IS_HOLE(bp));
947	ASSERT(spa_syncing_txg(spa) == txg);
948	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
949
950	if (BP_IS_EMBEDDED(bp))
951		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
952
953	metaslab_check_free(spa, bp);
954	arc_freed(spa, bp);
955
956	if (zfs_trim_enabled)
957		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
958		    ZIO_STAGE_VDEV_IO_ASSESS;
959	/*
960	 * GANG and DEDUP blocks can induce a read (for the gang block header,
961	 * or the DDT), so issue them asynchronously so that this thread is
962	 * not tied up.
963	 */
964	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
965		stage |= ZIO_STAGE_ISSUE_ASYNC;
966
967	flags |= ZIO_FLAG_DONT_QUEUE;
968
969	zio = zio_create(pio, spa, txg, bp, NULL, size,
970	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
971	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
972
973	return (zio);
974}
975
976zio_t *
977zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
978    zio_done_func_t *done, void *private, enum zio_flag flags)
979{
980	zio_t *zio;
981
982	dprintf_bp(bp, "claiming in txg %llu", txg);
983
984	if (BP_IS_EMBEDDED(bp))
985		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
986
987	/*
988	 * A claim is an allocation of a specific block.  Claims are needed
989	 * to support immediate writes in the intent log.  The issue is that
990	 * immediate writes contain committed data, but in a txg that was
991	 * *not* committed.  Upon opening the pool after an unclean shutdown,
992	 * the intent log claims all blocks that contain immediate write data
993	 * so that the SPA knows they're in use.
994	 *
995	 * All claims *must* be resolved in the first txg -- before the SPA
996	 * starts allocating blocks -- so that nothing is allocated twice.
997	 * If txg == 0 we just verify that the block is claimable.
998	 */
999	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
1000	ASSERT(txg == spa_first_txg(spa) || txg == 0);
1001	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1002
1003	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1004	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
1005	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1006	ASSERT0(zio->io_queued_timestamp);
1007
1008	return (zio);
1009}
1010
1011zio_t *
1012zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
1013    uint64_t size, zio_done_func_t *done, void *private,
1014    zio_priority_t priority, enum zio_flag flags)
1015{
1016	zio_t *zio;
1017	int c;
1018
1019	if (vd->vdev_children == 0) {
1020		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
1021		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
1022		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1023
1024		zio->io_cmd = cmd;
1025	} else {
1026		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1027
1028		for (c = 0; c < vd->vdev_children; c++)
1029			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1030			    offset, size, done, private, priority, flags));
1031	}
1032
1033	return (zio);
1034}
1035
1036zio_t *
1037zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1038    void *data, int checksum, zio_done_func_t *done, void *private,
1039    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1040{
1041	zio_t *zio;
1042
1043	ASSERT(vd->vdev_children == 0);
1044	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1045	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1046	ASSERT3U(offset + size, <=, vd->vdev_psize);
1047
1048	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1049	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1050	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1051
1052	zio->io_prop.zp_checksum = checksum;
1053
1054	return (zio);
1055}
1056
1057zio_t *
1058zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1059    void *data, int checksum, zio_done_func_t *done, void *private,
1060    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1061{
1062	zio_t *zio;
1063
1064	ASSERT(vd->vdev_children == 0);
1065	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1066	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1067	ASSERT3U(offset + size, <=, vd->vdev_psize);
1068
1069	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1070	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1071	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1072
1073	zio->io_prop.zp_checksum = checksum;
1074
1075	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1076		/*
1077		 * zec checksums are necessarily destructive -- they modify
1078		 * the end of the write buffer to hold the verifier/checksum.
1079		 * Therefore, we must make a local copy in case the data is
1080		 * being written to multiple places in parallel.
1081		 */
1082		void *wbuf = zio_buf_alloc(size);
1083		bcopy(data, wbuf, size);
1084		zio_push_transform(zio, wbuf, size, size, NULL);
1085	}
1086
1087	return (zio);
1088}
1089
1090/*
1091 * Create a child I/O to do some work for us.
1092 */
1093zio_t *
1094zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1095    void *data, uint64_t size, int type, zio_priority_t priority,
1096    enum zio_flag flags, zio_done_func_t *done, void *private)
1097{
1098	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1099	zio_t *zio;
1100
1101	ASSERT(vd->vdev_parent ==
1102	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1103
1104	if (type == ZIO_TYPE_READ && bp != NULL) {
1105		/*
1106		 * If we have the bp, then the child should perform the
1107		 * checksum and the parent need not.  This pushes error
1108		 * detection as close to the leaves as possible and
1109		 * eliminates redundant checksums in the interior nodes.
1110		 */
1111		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1112		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1113	}
1114
1115	/* Not all IO types require vdev io done stage e.g. free */
1116	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1117		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1118
1119	if (vd->vdev_children == 0)
1120		offset += VDEV_LABEL_START_SIZE;
1121
1122	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1123
1124	/*
1125	 * If we've decided to do a repair, the write is not speculative --
1126	 * even if the original read was.
1127	 */
1128	if (flags & ZIO_FLAG_IO_REPAIR)
1129		flags &= ~ZIO_FLAG_SPECULATIVE;
1130
1131	/*
1132	 * If we're creating a child I/O that is not associated with a
1133	 * top-level vdev, then the child zio is not an allocating I/O.
1134	 * If this is a retried I/O then we ignore it since we will
1135	 * have already processed the original allocating I/O.
1136	 */
1137	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1138	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1139		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1140
1141		ASSERT(mc->mc_alloc_throttle_enabled);
1142		ASSERT(type == ZIO_TYPE_WRITE);
1143		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1144		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1145		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1146		    pio->io_child_type == ZIO_CHILD_GANG);
1147
1148		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1149	}
1150
1151	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1152	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1153	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1154	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1155
1156	zio->io_physdone = pio->io_physdone;
1157	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1158		zio->io_logical->io_phys_children++;
1159
1160	return (zio);
1161}
1162
1163zio_t *
1164zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1165    int type, zio_priority_t priority, enum zio_flag flags,
1166    zio_done_func_t *done, void *private)
1167{
1168	zio_t *zio;
1169
1170	ASSERT(vd->vdev_ops->vdev_op_leaf);
1171
1172	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1173	    data, size, done, private, type, priority,
1174	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1175	    vd, offset, NULL,
1176	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1177
1178	return (zio);
1179}
1180
1181void
1182zio_flush(zio_t *zio, vdev_t *vd)
1183{
1184	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1185	    NULL, NULL, ZIO_PRIORITY_NOW,
1186	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1187}
1188
1189zio_t *
1190zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1191{
1192
1193	ASSERT(vd->vdev_ops->vdev_op_leaf);
1194
1195	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1196	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1197	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1198	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1199}
1200
1201void
1202zio_shrink(zio_t *zio, uint64_t size)
1203{
1204	ASSERT(zio->io_executor == NULL);
1205	ASSERT(zio->io_orig_size == zio->io_size);
1206	ASSERT(size <= zio->io_size);
1207
1208	/*
1209	 * We don't shrink for raidz because of problems with the
1210	 * reconstruction when reading back less than the block size.
1211	 * Note, BP_IS_RAIDZ() assumes no compression.
1212	 */
1213	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1214	if (!BP_IS_RAIDZ(zio->io_bp))
1215		zio->io_orig_size = zio->io_size = size;
1216}
1217
1218/*
1219 * ==========================================================================
1220 * Prepare to read and write logical blocks
1221 * ==========================================================================
1222 */
1223
1224static int
1225zio_read_bp_init(zio_t *zio)
1226{
1227	blkptr_t *bp = zio->io_bp;
1228
1229	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1230	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1231	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1232		uint64_t psize =
1233		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1234		void *cbuf = zio_buf_alloc(psize);
1235
1236		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1237	}
1238
1239	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1240		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1241		decode_embedded_bp_compressed(bp, zio->io_data);
1242	} else {
1243		ASSERT(!BP_IS_EMBEDDED(bp));
1244	}
1245
1246	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1247		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1248
1249	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1250		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1251
1252	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1253		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1254
1255	return (ZIO_PIPELINE_CONTINUE);
1256}
1257
1258static int
1259zio_write_bp_init(zio_t *zio)
1260{
1261	if (!IO_IS_ALLOCATING(zio))
1262		return (ZIO_PIPELINE_CONTINUE);
1263
1264	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1265
1266	if (zio->io_bp_override) {
1267		blkptr_t *bp = zio->io_bp;
1268		zio_prop_t *zp = &zio->io_prop;
1269
1270		ASSERT(bp->blk_birth != zio->io_txg);
1271		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1272
1273		*bp = *zio->io_bp_override;
1274		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1275
1276		if (BP_IS_EMBEDDED(bp))
1277			return (ZIO_PIPELINE_CONTINUE);
1278
1279		/*
1280		 * If we've been overridden and nopwrite is set then
1281		 * set the flag accordingly to indicate that a nopwrite
1282		 * has already occurred.
1283		 */
1284		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1285			ASSERT(!zp->zp_dedup);
1286			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1287			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1288			return (ZIO_PIPELINE_CONTINUE);
1289		}
1290
1291		ASSERT(!zp->zp_nopwrite);
1292
1293		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1294			return (ZIO_PIPELINE_CONTINUE);
1295
1296		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1297		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1298
1299		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1300			BP_SET_DEDUP(bp, 1);
1301			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1302			return (ZIO_PIPELINE_CONTINUE);
1303		}
1304
1305		/*
1306		 * We were unable to handle this as an override bp, treat
1307		 * it as a regular write I/O.
1308		 */
1309		zio->io_bp_override = NULL;
1310		*bp = zio->io_bp_orig;
1311		zio->io_pipeline = zio->io_orig_pipeline;
1312	}
1313
1314	return (ZIO_PIPELINE_CONTINUE);
1315}
1316
1317static int
1318zio_write_compress(zio_t *zio)
1319{
1320	spa_t *spa = zio->io_spa;
1321	zio_prop_t *zp = &zio->io_prop;
1322	enum zio_compress compress = zp->zp_compress;
1323	blkptr_t *bp = zio->io_bp;
1324	uint64_t lsize = zio->io_size;
1325	uint64_t psize = lsize;
1326	int pass = 1;
1327
1328	/*
1329	 * If our children haven't all reached the ready stage,
1330	 * wait for them and then repeat this pipeline stage.
1331	 */
1332	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1333	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1334		return (ZIO_PIPELINE_STOP);
1335	}
1336
1337	if (!IO_IS_ALLOCATING(zio))
1338		return (ZIO_PIPELINE_CONTINUE);
1339
1340	if (zio->io_children_ready != NULL) {
1341		/*
1342		 * Now that all our children are ready, run the callback
1343		 * associated with this zio in case it wants to modify the
1344		 * data to be written.
1345		 */
1346		ASSERT3U(zp->zp_level, >, 0);
1347		zio->io_children_ready(zio);
1348	}
1349
1350	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1351	ASSERT(zio->io_bp_override == NULL);
1352
1353	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1354		/*
1355		 * We're rewriting an existing block, which means we're
1356		 * working on behalf of spa_sync().  For spa_sync() to
1357		 * converge, it must eventually be the case that we don't
1358		 * have to allocate new blocks.  But compression changes
1359		 * the blocksize, which forces a reallocate, and makes
1360		 * convergence take longer.  Therefore, after the first
1361		 * few passes, stop compressing to ensure convergence.
1362		 */
1363		pass = spa_sync_pass(spa);
1364
1365		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1366		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1367		ASSERT(!BP_GET_DEDUP(bp));
1368
1369		if (pass >= zfs_sync_pass_dont_compress)
1370			compress = ZIO_COMPRESS_OFF;
1371
1372		/* Make sure someone doesn't change their mind on overwrites */
1373		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1374		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1375	}
1376
1377	if (compress != ZIO_COMPRESS_OFF) {
1378		void *cbuf = zio_buf_alloc(lsize);
1379		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1380		if (psize == 0 || psize == lsize) {
1381			compress = ZIO_COMPRESS_OFF;
1382			zio_buf_free(cbuf, lsize);
1383		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1384		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1385		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1386			encode_embedded_bp_compressed(bp,
1387			    cbuf, compress, lsize, psize);
1388			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1389			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1390			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1391			zio_buf_free(cbuf, lsize);
1392			bp->blk_birth = zio->io_txg;
1393			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1394			ASSERT(spa_feature_is_active(spa,
1395			    SPA_FEATURE_EMBEDDED_DATA));
1396			return (ZIO_PIPELINE_CONTINUE);
1397		} else {
1398			/*
1399			 * Round up compressed size up to the ashift
1400			 * of the smallest-ashift device, and zero the tail.
1401			 * This ensures that the compressed size of the BP
1402			 * (and thus compressratio property) are correct,
1403			 * in that we charge for the padding used to fill out
1404			 * the last sector.
1405			 */
1406			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1407			size_t rounded = (size_t)P2ROUNDUP(psize,
1408			    1ULL << spa->spa_min_ashift);
1409			if (rounded >= lsize) {
1410				compress = ZIO_COMPRESS_OFF;
1411				zio_buf_free(cbuf, lsize);
1412				psize = lsize;
1413			} else {
1414				bzero((char *)cbuf + psize, rounded - psize);
1415				psize = rounded;
1416				zio_push_transform(zio, cbuf,
1417				    psize, lsize, NULL);
1418			}
1419		}
1420
1421		/*
1422		 * We were unable to handle this as an override bp, treat
1423		 * it as a regular write I/O.
1424		 */
1425		zio->io_bp_override = NULL;
1426		*bp = zio->io_bp_orig;
1427		zio->io_pipeline = zio->io_orig_pipeline;
1428	}
1429
1430	/*
1431	 * The final pass of spa_sync() must be all rewrites, but the first
1432	 * few passes offer a trade-off: allocating blocks defers convergence,
1433	 * but newly allocated blocks are sequential, so they can be written
1434	 * to disk faster.  Therefore, we allow the first few passes of
1435	 * spa_sync() to allocate new blocks, but force rewrites after that.
1436	 * There should only be a handful of blocks after pass 1 in any case.
1437	 */
1438	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1439	    BP_GET_PSIZE(bp) == psize &&
1440	    pass >= zfs_sync_pass_rewrite) {
1441		ASSERT(psize != 0);
1442		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1443		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1444		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1445	} else {
1446		BP_ZERO(bp);
1447		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1448	}
1449
1450	if (psize == 0) {
1451		if (zio->io_bp_orig.blk_birth != 0 &&
1452		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1453			BP_SET_LSIZE(bp, lsize);
1454			BP_SET_TYPE(bp, zp->zp_type);
1455			BP_SET_LEVEL(bp, zp->zp_level);
1456			BP_SET_BIRTH(bp, zio->io_txg, 0);
1457		}
1458		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1459	} else {
1460		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1461		BP_SET_LSIZE(bp, lsize);
1462		BP_SET_TYPE(bp, zp->zp_type);
1463		BP_SET_LEVEL(bp, zp->zp_level);
1464		BP_SET_PSIZE(bp, psize);
1465		BP_SET_COMPRESS(bp, compress);
1466		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1467		BP_SET_DEDUP(bp, zp->zp_dedup);
1468		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1469		if (zp->zp_dedup) {
1470			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1471			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1472			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1473		}
1474		if (zp->zp_nopwrite) {
1475			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1476			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1477			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1478		}
1479	}
1480	return (ZIO_PIPELINE_CONTINUE);
1481}
1482
1483static int
1484zio_free_bp_init(zio_t *zio)
1485{
1486	blkptr_t *bp = zio->io_bp;
1487
1488	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1489		if (BP_GET_DEDUP(bp))
1490			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1491	}
1492
1493	return (ZIO_PIPELINE_CONTINUE);
1494}
1495
1496/*
1497 * ==========================================================================
1498 * Execute the I/O pipeline
1499 * ==========================================================================
1500 */
1501
1502static void
1503zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1504{
1505	spa_t *spa = zio->io_spa;
1506	zio_type_t t = zio->io_type;
1507	int flags = (cutinline ? TQ_FRONT : 0);
1508
1509	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1510
1511	/*
1512	 * If we're a config writer or a probe, the normal issue and
1513	 * interrupt threads may all be blocked waiting for the config lock.
1514	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1515	 */
1516	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1517		t = ZIO_TYPE_NULL;
1518
1519	/*
1520	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1521	 */
1522	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1523		t = ZIO_TYPE_NULL;
1524
1525	/*
1526	 * If this is a high priority I/O, then use the high priority taskq if
1527	 * available.
1528	 */
1529	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1530	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1531		q++;
1532
1533	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1534
1535	/*
1536	 * NB: We are assuming that the zio can only be dispatched
1537	 * to a single taskq at a time.  It would be a grievous error
1538	 * to dispatch the zio to another taskq at the same time.
1539	 */
1540#if defined(illumos) || !defined(_KERNEL)
1541	ASSERT(zio->io_tqent.tqent_next == NULL);
1542#else
1543	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1544#endif
1545	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1546	    flags, &zio->io_tqent);
1547}
1548
1549static boolean_t
1550zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1551{
1552	kthread_t *executor = zio->io_executor;
1553	spa_t *spa = zio->io_spa;
1554
1555	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1556		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1557		uint_t i;
1558		for (i = 0; i < tqs->stqs_count; i++) {
1559			if (taskq_member(tqs->stqs_taskq[i], executor))
1560				return (B_TRUE);
1561		}
1562	}
1563
1564	return (B_FALSE);
1565}
1566
1567static int
1568zio_issue_async(zio_t *zio)
1569{
1570	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1571
1572	return (ZIO_PIPELINE_STOP);
1573}
1574
1575void
1576zio_interrupt(zio_t *zio)
1577{
1578	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1579}
1580
1581void
1582zio_delay_interrupt(zio_t *zio)
1583{
1584	/*
1585	 * The timeout_generic() function isn't defined in userspace, so
1586	 * rather than trying to implement the function, the zio delay
1587	 * functionality has been disabled for userspace builds.
1588	 */
1589
1590#ifdef _KERNEL
1591	/*
1592	 * If io_target_timestamp is zero, then no delay has been registered
1593	 * for this IO, thus jump to the end of this function and "skip" the
1594	 * delay; issuing it directly to the zio layer.
1595	 */
1596	if (zio->io_target_timestamp != 0) {
1597		hrtime_t now = gethrtime();
1598
1599		if (now >= zio->io_target_timestamp) {
1600			/*
1601			 * This IO has already taken longer than the target
1602			 * delay to complete, so we don't want to delay it
1603			 * any longer; we "miss" the delay and issue it
1604			 * directly to the zio layer. This is likely due to
1605			 * the target latency being set to a value less than
1606			 * the underlying hardware can satisfy (e.g. delay
1607			 * set to 1ms, but the disks take 10ms to complete an
1608			 * IO request).
1609			 */
1610
1611			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1612			    hrtime_t, now);
1613
1614			zio_interrupt(zio);
1615		} else {
1616			hrtime_t diff = zio->io_target_timestamp - now;
1617
1618			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1619			    hrtime_t, now, hrtime_t, diff);
1620
1621			(void) timeout_generic(CALLOUT_NORMAL,
1622			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1623		}
1624
1625		return;
1626	}
1627#endif
1628
1629	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1630	zio_interrupt(zio);
1631}
1632
1633/*
1634 * Execute the I/O pipeline until one of the following occurs:
1635 *
1636 *	(1) the I/O completes
1637 *	(2) the pipeline stalls waiting for dependent child I/Os
1638 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1639 *	(4) the I/O is delegated by vdev-level caching or aggregation
1640 *	(5) the I/O is deferred due to vdev-level queueing
1641 *	(6) the I/O is handed off to another thread.
1642 *
1643 * In all cases, the pipeline stops whenever there's no CPU work; it never
1644 * burns a thread in cv_wait().
1645 *
1646 * There's no locking on io_stage because there's no legitimate way
1647 * for multiple threads to be attempting to process the same I/O.
1648 */
1649static zio_pipe_stage_t *zio_pipeline[];
1650
1651void
1652zio_execute(zio_t *zio)
1653{
1654	zio->io_executor = curthread;
1655
1656	ASSERT3U(zio->io_queued_timestamp, >, 0);
1657
1658	while (zio->io_stage < ZIO_STAGE_DONE) {
1659		enum zio_stage pipeline = zio->io_pipeline;
1660		enum zio_stage stage = zio->io_stage;
1661		int rv;
1662
1663		ASSERT(!MUTEX_HELD(&zio->io_lock));
1664		ASSERT(ISP2(stage));
1665		ASSERT(zio->io_stall == NULL);
1666
1667		do {
1668			stage <<= 1;
1669		} while ((stage & pipeline) == 0);
1670
1671		ASSERT(stage <= ZIO_STAGE_DONE);
1672
1673		/*
1674		 * If we are in interrupt context and this pipeline stage
1675		 * will grab a config lock that is held across I/O,
1676		 * or may wait for an I/O that needs an interrupt thread
1677		 * to complete, issue async to avoid deadlock.
1678		 *
1679		 * For VDEV_IO_START, we cut in line so that the io will
1680		 * be sent to disk promptly.
1681		 */
1682		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1683		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1684			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1685			    zio_requeue_io_start_cut_in_line : B_FALSE;
1686			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1687			return;
1688		}
1689
1690		zio->io_stage = stage;
1691		zio->io_pipeline_trace |= zio->io_stage;
1692		rv = zio_pipeline[highbit64(stage) - 1](zio);
1693
1694		if (rv == ZIO_PIPELINE_STOP)
1695			return;
1696
1697		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1698	}
1699}
1700
1701/*
1702 * ==========================================================================
1703 * Initiate I/O, either sync or async
1704 * ==========================================================================
1705 */
1706int
1707zio_wait(zio_t *zio)
1708{
1709	int error;
1710
1711	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1712	ASSERT(zio->io_executor == NULL);
1713
1714	zio->io_waiter = curthread;
1715	ASSERT0(zio->io_queued_timestamp);
1716	zio->io_queued_timestamp = gethrtime();
1717
1718	zio_execute(zio);
1719
1720	mutex_enter(&zio->io_lock);
1721	while (zio->io_executor != NULL)
1722		cv_wait(&zio->io_cv, &zio->io_lock);
1723	mutex_exit(&zio->io_lock);
1724
1725	error = zio->io_error;
1726	zio_destroy(zio);
1727
1728	return (error);
1729}
1730
1731void
1732zio_nowait(zio_t *zio)
1733{
1734	ASSERT(zio->io_executor == NULL);
1735
1736	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1737	    zio_unique_parent(zio) == NULL) {
1738		/*
1739		 * This is a logical async I/O with no parent to wait for it.
1740		 * We add it to the spa_async_root_zio "Godfather" I/O which
1741		 * will ensure they complete prior to unloading the pool.
1742		 */
1743		spa_t *spa = zio->io_spa;
1744
1745		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1746	}
1747
1748	ASSERT0(zio->io_queued_timestamp);
1749	zio->io_queued_timestamp = gethrtime();
1750	zio_execute(zio);
1751}
1752
1753/*
1754 * ==========================================================================
1755 * Reexecute or suspend/resume failed I/O
1756 * ==========================================================================
1757 */
1758
1759static void
1760zio_reexecute(zio_t *pio)
1761{
1762	zio_t *cio, *cio_next;
1763
1764	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1765	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1766	ASSERT(pio->io_gang_leader == NULL);
1767	ASSERT(pio->io_gang_tree == NULL);
1768
1769	pio->io_flags = pio->io_orig_flags;
1770	pio->io_stage = pio->io_orig_stage;
1771	pio->io_pipeline = pio->io_orig_pipeline;
1772	pio->io_reexecute = 0;
1773	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1774	pio->io_pipeline_trace = 0;
1775	pio->io_error = 0;
1776	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1777		pio->io_state[w] = 0;
1778	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1779		pio->io_child_error[c] = 0;
1780
1781	if (IO_IS_ALLOCATING(pio))
1782		BP_ZERO(pio->io_bp);
1783
1784	/*
1785	 * As we reexecute pio's children, new children could be created.
1786	 * New children go to the head of pio's io_child_list, however,
1787	 * so we will (correctly) not reexecute them.  The key is that
1788	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1789	 * cannot be affected by any side effects of reexecuting 'cio'.
1790	 */
1791	zio_link_t *zl = NULL;
1792	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1793		cio_next = zio_walk_children(pio, &zl);
1794		mutex_enter(&pio->io_lock);
1795		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1796			pio->io_children[cio->io_child_type][w]++;
1797		mutex_exit(&pio->io_lock);
1798		zio_reexecute(cio);
1799	}
1800
1801	/*
1802	 * Now that all children have been reexecuted, execute the parent.
1803	 * We don't reexecute "The Godfather" I/O here as it's the
1804	 * responsibility of the caller to wait on him.
1805	 */
1806	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1807		pio->io_queued_timestamp = gethrtime();
1808		zio_execute(pio);
1809	}
1810}
1811
1812void
1813zio_suspend(spa_t *spa, zio_t *zio)
1814{
1815	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1816		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1817		    "failure and the failure mode property for this pool "
1818		    "is set to panic.", spa_name(spa));
1819
1820	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1821
1822	mutex_enter(&spa->spa_suspend_lock);
1823
1824	if (spa->spa_suspend_zio_root == NULL)
1825		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1826		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1827		    ZIO_FLAG_GODFATHER);
1828
1829	spa->spa_suspended = B_TRUE;
1830
1831	if (zio != NULL) {
1832		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1833		ASSERT(zio != spa->spa_suspend_zio_root);
1834		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1835		ASSERT(zio_unique_parent(zio) == NULL);
1836		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1837		zio_add_child(spa->spa_suspend_zio_root, zio);
1838	}
1839
1840	mutex_exit(&spa->spa_suspend_lock);
1841}
1842
1843int
1844zio_resume(spa_t *spa)
1845{
1846	zio_t *pio;
1847
1848	/*
1849	 * Reexecute all previously suspended i/o.
1850	 */
1851	mutex_enter(&spa->spa_suspend_lock);
1852	spa->spa_suspended = B_FALSE;
1853	cv_broadcast(&spa->spa_suspend_cv);
1854	pio = spa->spa_suspend_zio_root;
1855	spa->spa_suspend_zio_root = NULL;
1856	mutex_exit(&spa->spa_suspend_lock);
1857
1858	if (pio == NULL)
1859		return (0);
1860
1861	zio_reexecute(pio);
1862	return (zio_wait(pio));
1863}
1864
1865void
1866zio_resume_wait(spa_t *spa)
1867{
1868	mutex_enter(&spa->spa_suspend_lock);
1869	while (spa_suspended(spa))
1870		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1871	mutex_exit(&spa->spa_suspend_lock);
1872}
1873
1874/*
1875 * ==========================================================================
1876 * Gang blocks.
1877 *
1878 * A gang block is a collection of small blocks that looks to the DMU
1879 * like one large block.  When zio_dva_allocate() cannot find a block
1880 * of the requested size, due to either severe fragmentation or the pool
1881 * being nearly full, it calls zio_write_gang_block() to construct the
1882 * block from smaller fragments.
1883 *
1884 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1885 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1886 * an indirect block: it's an array of block pointers.  It consumes
1887 * only one sector and hence is allocatable regardless of fragmentation.
1888 * The gang header's bps point to its gang members, which hold the data.
1889 *
1890 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1891 * as the verifier to ensure uniqueness of the SHA256 checksum.
1892 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1893 * not the gang header.  This ensures that data block signatures (needed for
1894 * deduplication) are independent of how the block is physically stored.
1895 *
1896 * Gang blocks can be nested: a gang member may itself be a gang block.
1897 * Thus every gang block is a tree in which root and all interior nodes are
1898 * gang headers, and the leaves are normal blocks that contain user data.
1899 * The root of the gang tree is called the gang leader.
1900 *
1901 * To perform any operation (read, rewrite, free, claim) on a gang block,
1902 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1903 * in the io_gang_tree field of the original logical i/o by recursively
1904 * reading the gang leader and all gang headers below it.  This yields
1905 * an in-core tree containing the contents of every gang header and the
1906 * bps for every constituent of the gang block.
1907 *
1908 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1909 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1910 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1911 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1912 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1913 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1914 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1915 * of the gang header plus zio_checksum_compute() of the data to update the
1916 * gang header's blk_cksum as described above.
1917 *
1918 * The two-phase assemble/issue model solves the problem of partial failure --
1919 * what if you'd freed part of a gang block but then couldn't read the
1920 * gang header for another part?  Assembling the entire gang tree first
1921 * ensures that all the necessary gang header I/O has succeeded before
1922 * starting the actual work of free, claim, or write.  Once the gang tree
1923 * is assembled, free and claim are in-memory operations that cannot fail.
1924 *
1925 * In the event that a gang write fails, zio_dva_unallocate() walks the
1926 * gang tree to immediately free (i.e. insert back into the space map)
1927 * everything we've allocated.  This ensures that we don't get ENOSPC
1928 * errors during repeated suspend/resume cycles due to a flaky device.
1929 *
1930 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1931 * the gang tree, we won't modify the block, so we can safely defer the free
1932 * (knowing that the block is still intact).  If we *can* assemble the gang
1933 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1934 * each constituent bp and we can allocate a new block on the next sync pass.
1935 *
1936 * In all cases, the gang tree allows complete recovery from partial failure.
1937 * ==========================================================================
1938 */
1939
1940static zio_t *
1941zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1942{
1943	if (gn != NULL)
1944		return (pio);
1945
1946	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1947	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1948	    &pio->io_bookmark));
1949}
1950
1951zio_t *
1952zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1953{
1954	zio_t *zio;
1955
1956	if (gn != NULL) {
1957		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1958		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1959		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1960		/*
1961		 * As we rewrite each gang header, the pipeline will compute
1962		 * a new gang block header checksum for it; but no one will
1963		 * compute a new data checksum, so we do that here.  The one
1964		 * exception is the gang leader: the pipeline already computed
1965		 * its data checksum because that stage precedes gang assembly.
1966		 * (Presently, nothing actually uses interior data checksums;
1967		 * this is just good hygiene.)
1968		 */
1969		if (gn != pio->io_gang_leader->io_gang_tree) {
1970			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1971			    data, BP_GET_PSIZE(bp));
1972		}
1973		/*
1974		 * If we are here to damage data for testing purposes,
1975		 * leave the GBH alone so that we can detect the damage.
1976		 */
1977		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1978			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1979	} else {
1980		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1981		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1982		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1983	}
1984
1985	return (zio);
1986}
1987
1988/* ARGSUSED */
1989zio_t *
1990zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1991{
1992	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1993	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1994	    ZIO_GANG_CHILD_FLAGS(pio)));
1995}
1996
1997/* ARGSUSED */
1998zio_t *
1999zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
2000{
2001	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2002	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2003}
2004
2005static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2006	NULL,
2007	zio_read_gang,
2008	zio_rewrite_gang,
2009	zio_free_gang,
2010	zio_claim_gang,
2011	NULL
2012};
2013
2014static void zio_gang_tree_assemble_done(zio_t *zio);
2015
2016static zio_gang_node_t *
2017zio_gang_node_alloc(zio_gang_node_t **gnpp)
2018{
2019	zio_gang_node_t *gn;
2020
2021	ASSERT(*gnpp == NULL);
2022
2023	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2024	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2025	*gnpp = gn;
2026
2027	return (gn);
2028}
2029
2030static void
2031zio_gang_node_free(zio_gang_node_t **gnpp)
2032{
2033	zio_gang_node_t *gn = *gnpp;
2034
2035	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2036		ASSERT(gn->gn_child[g] == NULL);
2037
2038	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2039	kmem_free(gn, sizeof (*gn));
2040	*gnpp = NULL;
2041}
2042
2043static void
2044zio_gang_tree_free(zio_gang_node_t **gnpp)
2045{
2046	zio_gang_node_t *gn = *gnpp;
2047
2048	if (gn == NULL)
2049		return;
2050
2051	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2052		zio_gang_tree_free(&gn->gn_child[g]);
2053
2054	zio_gang_node_free(gnpp);
2055}
2056
2057static void
2058zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2059{
2060	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2061
2062	ASSERT(gio->io_gang_leader == gio);
2063	ASSERT(BP_IS_GANG(bp));
2064
2065	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
2066	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
2067	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2068}
2069
2070static void
2071zio_gang_tree_assemble_done(zio_t *zio)
2072{
2073	zio_t *gio = zio->io_gang_leader;
2074	zio_gang_node_t *gn = zio->io_private;
2075	blkptr_t *bp = zio->io_bp;
2076
2077	ASSERT(gio == zio_unique_parent(zio));
2078	ASSERT(zio->io_child_count == 0);
2079
2080	if (zio->io_error)
2081		return;
2082
2083	if (BP_SHOULD_BYTESWAP(bp))
2084		byteswap_uint64_array(zio->io_data, zio->io_size);
2085
2086	ASSERT(zio->io_data == gn->gn_gbh);
2087	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2088	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2089
2090	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2091		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2092		if (!BP_IS_GANG(gbp))
2093			continue;
2094		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2095	}
2096}
2097
2098static void
2099zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
2100{
2101	zio_t *gio = pio->io_gang_leader;
2102	zio_t *zio;
2103
2104	ASSERT(BP_IS_GANG(bp) == !!gn);
2105	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2106	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2107
2108	/*
2109	 * If you're a gang header, your data is in gn->gn_gbh.
2110	 * If you're a gang member, your data is in 'data' and gn == NULL.
2111	 */
2112	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
2113
2114	if (gn != NULL) {
2115		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2116
2117		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2118			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2119			if (BP_IS_HOLE(gbp))
2120				continue;
2121			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
2122			data = (char *)data + BP_GET_PSIZE(gbp);
2123		}
2124	}
2125
2126	if (gn == gio->io_gang_tree && gio->io_data != NULL)
2127		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
2128
2129	if (zio != pio)
2130		zio_nowait(zio);
2131}
2132
2133static int
2134zio_gang_assemble(zio_t *zio)
2135{
2136	blkptr_t *bp = zio->io_bp;
2137
2138	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2139	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2140
2141	zio->io_gang_leader = zio;
2142
2143	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2144
2145	return (ZIO_PIPELINE_CONTINUE);
2146}
2147
2148static int
2149zio_gang_issue(zio_t *zio)
2150{
2151	blkptr_t *bp = zio->io_bp;
2152
2153	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2154		return (ZIO_PIPELINE_STOP);
2155	}
2156
2157	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2158	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2159
2160	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2161		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
2162	else
2163		zio_gang_tree_free(&zio->io_gang_tree);
2164
2165	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2166
2167	return (ZIO_PIPELINE_CONTINUE);
2168}
2169
2170static void
2171zio_write_gang_member_ready(zio_t *zio)
2172{
2173	zio_t *pio = zio_unique_parent(zio);
2174	zio_t *gio = zio->io_gang_leader;
2175	dva_t *cdva = zio->io_bp->blk_dva;
2176	dva_t *pdva = pio->io_bp->blk_dva;
2177	uint64_t asize;
2178
2179	if (BP_IS_HOLE(zio->io_bp))
2180		return;
2181
2182	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2183
2184	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2185	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2186	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2187	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2188	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2189
2190	mutex_enter(&pio->io_lock);
2191	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2192		ASSERT(DVA_GET_GANG(&pdva[d]));
2193		asize = DVA_GET_ASIZE(&pdva[d]);
2194		asize += DVA_GET_ASIZE(&cdva[d]);
2195		DVA_SET_ASIZE(&pdva[d], asize);
2196	}
2197	mutex_exit(&pio->io_lock);
2198}
2199
2200static int
2201zio_write_gang_block(zio_t *pio)
2202{
2203	spa_t *spa = pio->io_spa;
2204	metaslab_class_t *mc = spa_normal_class(spa);
2205	blkptr_t *bp = pio->io_bp;
2206	zio_t *gio = pio->io_gang_leader;
2207	zio_t *zio;
2208	zio_gang_node_t *gn, **gnpp;
2209	zio_gbh_phys_t *gbh;
2210	uint64_t txg = pio->io_txg;
2211	uint64_t resid = pio->io_size;
2212	uint64_t lsize;
2213	int copies = gio->io_prop.zp_copies;
2214	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2215	zio_prop_t zp;
2216	int error;
2217
2218	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2219	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2220		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2221		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2222
2223		flags |= METASLAB_ASYNC_ALLOC;
2224		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2225
2226		/*
2227		 * The logical zio has already placed a reservation for
2228		 * 'copies' allocation slots but gang blocks may require
2229		 * additional copies. These additional copies
2230		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2231		 * since metaslab_class_throttle_reserve() always allows
2232		 * additional reservations for gang blocks.
2233		 */
2234		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2235		    pio, flags));
2236	}
2237
2238	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2239	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, pio);
2240	if (error) {
2241		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2242			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2243			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2244
2245			/*
2246			 * If we failed to allocate the gang block header then
2247			 * we remove any additional allocation reservations that
2248			 * we placed here. The original reservation will
2249			 * be removed when the logical I/O goes to the ready
2250			 * stage.
2251			 */
2252			metaslab_class_throttle_unreserve(mc,
2253			    gbh_copies - copies, pio);
2254		}
2255		pio->io_error = error;
2256		return (ZIO_PIPELINE_CONTINUE);
2257	}
2258
2259	if (pio == gio) {
2260		gnpp = &gio->io_gang_tree;
2261	} else {
2262		gnpp = pio->io_private;
2263		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2264	}
2265
2266	gn = zio_gang_node_alloc(gnpp);
2267	gbh = gn->gn_gbh;
2268	bzero(gbh, SPA_GANGBLOCKSIZE);
2269
2270	/*
2271	 * Create the gang header.
2272	 */
2273	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2274	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2275
2276	/*
2277	 * Create and nowait the gang children.
2278	 */
2279	for (int g = 0; resid != 0; resid -= lsize, g++) {
2280		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2281		    SPA_MINBLOCKSIZE);
2282		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2283
2284		zp.zp_checksum = gio->io_prop.zp_checksum;
2285		zp.zp_compress = ZIO_COMPRESS_OFF;
2286		zp.zp_type = DMU_OT_NONE;
2287		zp.zp_level = 0;
2288		zp.zp_copies = gio->io_prop.zp_copies;
2289		zp.zp_dedup = B_FALSE;
2290		zp.zp_dedup_verify = B_FALSE;
2291		zp.zp_nopwrite = B_FALSE;
2292
2293		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2294		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2295		    zio_write_gang_member_ready, NULL, NULL, NULL,
2296		    &gn->gn_child[g], pio->io_priority,
2297		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2298
2299		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2300			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2301			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2302
2303			/*
2304			 * Gang children won't throttle but we should
2305			 * account for their work, so reserve an allocation
2306			 * slot for them here.
2307			 */
2308			VERIFY(metaslab_class_throttle_reserve(mc,
2309			    zp.zp_copies, cio, flags));
2310		}
2311		zio_nowait(cio);
2312	}
2313
2314	/*
2315	 * Set pio's pipeline to just wait for zio to finish.
2316	 */
2317	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2318
2319	zio_nowait(zio);
2320
2321	return (ZIO_PIPELINE_CONTINUE);
2322}
2323
2324/*
2325 * The zio_nop_write stage in the pipeline determines if allocating a
2326 * new bp is necessary.  The nopwrite feature can handle writes in
2327 * either syncing or open context (i.e. zil writes) and as a result is
2328 * mutually exclusive with dedup.
2329 *
2330 * By leveraging a cryptographically secure checksum, such as SHA256, we
2331 * can compare the checksums of the new data and the old to determine if
2332 * allocating a new block is required.  Note that our requirements for
2333 * cryptographic strength are fairly weak: there can't be any accidental
2334 * hash collisions, but we don't need to be secure against intentional
2335 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2336 * to write the file to begin with, and triggering an incorrect (hash
2337 * collision) nopwrite is no worse than simply writing to the file.
2338 * That said, there are no known attacks against the checksum algorithms
2339 * used for nopwrite, assuming that the salt and the checksums
2340 * themselves remain secret.
2341 */
2342static int
2343zio_nop_write(zio_t *zio)
2344{
2345	blkptr_t *bp = zio->io_bp;
2346	blkptr_t *bp_orig = &zio->io_bp_orig;
2347	zio_prop_t *zp = &zio->io_prop;
2348
2349	ASSERT(BP_GET_LEVEL(bp) == 0);
2350	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2351	ASSERT(zp->zp_nopwrite);
2352	ASSERT(!zp->zp_dedup);
2353	ASSERT(zio->io_bp_override == NULL);
2354	ASSERT(IO_IS_ALLOCATING(zio));
2355
2356	/*
2357	 * Check to see if the original bp and the new bp have matching
2358	 * characteristics (i.e. same checksum, compression algorithms, etc).
2359	 * If they don't then just continue with the pipeline which will
2360	 * allocate a new bp.
2361	 */
2362	if (BP_IS_HOLE(bp_orig) ||
2363	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2364	    ZCHECKSUM_FLAG_NOPWRITE) ||
2365	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2366	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2367	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2368	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2369		return (ZIO_PIPELINE_CONTINUE);
2370
2371	/*
2372	 * If the checksums match then reset the pipeline so that we
2373	 * avoid allocating a new bp and issuing any I/O.
2374	 */
2375	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2376		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2377		    ZCHECKSUM_FLAG_NOPWRITE);
2378		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2379		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2380		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2381		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2382		    sizeof (uint64_t)) == 0);
2383
2384		*bp = *bp_orig;
2385		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2386		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2387	}
2388
2389	return (ZIO_PIPELINE_CONTINUE);
2390}
2391
2392/*
2393 * ==========================================================================
2394 * Dedup
2395 * ==========================================================================
2396 */
2397static void
2398zio_ddt_child_read_done(zio_t *zio)
2399{
2400	blkptr_t *bp = zio->io_bp;
2401	ddt_entry_t *dde = zio->io_private;
2402	ddt_phys_t *ddp;
2403	zio_t *pio = zio_unique_parent(zio);
2404
2405	mutex_enter(&pio->io_lock);
2406	ddp = ddt_phys_select(dde, bp);
2407	if (zio->io_error == 0)
2408		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2409	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2410		dde->dde_repair_data = zio->io_data;
2411	else
2412		zio_buf_free(zio->io_data, zio->io_size);
2413	mutex_exit(&pio->io_lock);
2414}
2415
2416static int
2417zio_ddt_read_start(zio_t *zio)
2418{
2419	blkptr_t *bp = zio->io_bp;
2420
2421	ASSERT(BP_GET_DEDUP(bp));
2422	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2423	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2424
2425	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2426		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2427		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2428		ddt_phys_t *ddp = dde->dde_phys;
2429		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2430		blkptr_t blk;
2431
2432		ASSERT(zio->io_vsd == NULL);
2433		zio->io_vsd = dde;
2434
2435		if (ddp_self == NULL)
2436			return (ZIO_PIPELINE_CONTINUE);
2437
2438		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2439			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2440				continue;
2441			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2442			    &blk);
2443			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2444			    zio_buf_alloc(zio->io_size), zio->io_size,
2445			    zio_ddt_child_read_done, dde, zio->io_priority,
2446			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2447			    &zio->io_bookmark));
2448		}
2449		return (ZIO_PIPELINE_CONTINUE);
2450	}
2451
2452	zio_nowait(zio_read(zio, zio->io_spa, bp,
2453	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2454	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2455
2456	return (ZIO_PIPELINE_CONTINUE);
2457}
2458
2459static int
2460zio_ddt_read_done(zio_t *zio)
2461{
2462	blkptr_t *bp = zio->io_bp;
2463
2464	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2465		return (ZIO_PIPELINE_STOP);
2466	}
2467
2468	ASSERT(BP_GET_DEDUP(bp));
2469	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2470	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2471
2472	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2473		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2474		ddt_entry_t *dde = zio->io_vsd;
2475		if (ddt == NULL) {
2476			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2477			return (ZIO_PIPELINE_CONTINUE);
2478		}
2479		if (dde == NULL) {
2480			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2481			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2482			return (ZIO_PIPELINE_STOP);
2483		}
2484		if (dde->dde_repair_data != NULL) {
2485			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2486			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2487		}
2488		ddt_repair_done(ddt, dde);
2489		zio->io_vsd = NULL;
2490	}
2491
2492	ASSERT(zio->io_vsd == NULL);
2493
2494	return (ZIO_PIPELINE_CONTINUE);
2495}
2496
2497static boolean_t
2498zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2499{
2500	spa_t *spa = zio->io_spa;
2501
2502	/*
2503	 * Note: we compare the original data, not the transformed data,
2504	 * because when zio->io_bp is an override bp, we will not have
2505	 * pushed the I/O transforms.  That's an important optimization
2506	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2507	 */
2508	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2509		zio_t *lio = dde->dde_lead_zio[p];
2510
2511		if (lio != NULL) {
2512			return (lio->io_orig_size != zio->io_orig_size ||
2513			    bcmp(zio->io_orig_data, lio->io_orig_data,
2514			    zio->io_orig_size) != 0);
2515		}
2516	}
2517
2518	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2519		ddt_phys_t *ddp = &dde->dde_phys[p];
2520
2521		if (ddp->ddp_phys_birth != 0) {
2522			arc_buf_t *abuf = NULL;
2523			arc_flags_t aflags = ARC_FLAG_WAIT;
2524			blkptr_t blk = *zio->io_bp;
2525			int error;
2526
2527			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2528
2529			ddt_exit(ddt);
2530
2531			error = arc_read(NULL, spa, &blk,
2532			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2533			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2534			    &aflags, &zio->io_bookmark);
2535
2536			if (error == 0) {
2537				if (arc_buf_size(abuf) != zio->io_orig_size ||
2538				    bcmp(abuf->b_data, zio->io_orig_data,
2539				    zio->io_orig_size) != 0)
2540					error = SET_ERROR(EEXIST);
2541				arc_buf_destroy(abuf, &abuf);
2542			}
2543
2544			ddt_enter(ddt);
2545			return (error != 0);
2546		}
2547	}
2548
2549	return (B_FALSE);
2550}
2551
2552static void
2553zio_ddt_child_write_ready(zio_t *zio)
2554{
2555	int p = zio->io_prop.zp_copies;
2556	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2557	ddt_entry_t *dde = zio->io_private;
2558	ddt_phys_t *ddp = &dde->dde_phys[p];
2559	zio_t *pio;
2560
2561	if (zio->io_error)
2562		return;
2563
2564	ddt_enter(ddt);
2565
2566	ASSERT(dde->dde_lead_zio[p] == zio);
2567
2568	ddt_phys_fill(ddp, zio->io_bp);
2569
2570	zio_link_t *zl = NULL;
2571	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2572		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2573
2574	ddt_exit(ddt);
2575}
2576
2577static void
2578zio_ddt_child_write_done(zio_t *zio)
2579{
2580	int p = zio->io_prop.zp_copies;
2581	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2582	ddt_entry_t *dde = zio->io_private;
2583	ddt_phys_t *ddp = &dde->dde_phys[p];
2584
2585	ddt_enter(ddt);
2586
2587	ASSERT(ddp->ddp_refcnt == 0);
2588	ASSERT(dde->dde_lead_zio[p] == zio);
2589	dde->dde_lead_zio[p] = NULL;
2590
2591	if (zio->io_error == 0) {
2592		zio_link_t *zl = NULL;
2593		while (zio_walk_parents(zio, &zl) != NULL)
2594			ddt_phys_addref(ddp);
2595	} else {
2596		ddt_phys_clear(ddp);
2597	}
2598
2599	ddt_exit(ddt);
2600}
2601
2602static void
2603zio_ddt_ditto_write_done(zio_t *zio)
2604{
2605	int p = DDT_PHYS_DITTO;
2606	zio_prop_t *zp = &zio->io_prop;
2607	blkptr_t *bp = zio->io_bp;
2608	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2609	ddt_entry_t *dde = zio->io_private;
2610	ddt_phys_t *ddp = &dde->dde_phys[p];
2611	ddt_key_t *ddk = &dde->dde_key;
2612
2613	ddt_enter(ddt);
2614
2615	ASSERT(ddp->ddp_refcnt == 0);
2616	ASSERT(dde->dde_lead_zio[p] == zio);
2617	dde->dde_lead_zio[p] = NULL;
2618
2619	if (zio->io_error == 0) {
2620		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2621		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2622		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2623		if (ddp->ddp_phys_birth != 0)
2624			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2625		ddt_phys_fill(ddp, bp);
2626	}
2627
2628	ddt_exit(ddt);
2629}
2630
2631static int
2632zio_ddt_write(zio_t *zio)
2633{
2634	spa_t *spa = zio->io_spa;
2635	blkptr_t *bp = zio->io_bp;
2636	uint64_t txg = zio->io_txg;
2637	zio_prop_t *zp = &zio->io_prop;
2638	int p = zp->zp_copies;
2639	int ditto_copies;
2640	zio_t *cio = NULL;
2641	zio_t *dio = NULL;
2642	ddt_t *ddt = ddt_select(spa, bp);
2643	ddt_entry_t *dde;
2644	ddt_phys_t *ddp;
2645
2646	ASSERT(BP_GET_DEDUP(bp));
2647	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2648	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2649
2650	ddt_enter(ddt);
2651	dde = ddt_lookup(ddt, bp, B_TRUE);
2652	ddp = &dde->dde_phys[p];
2653
2654	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2655		/*
2656		 * If we're using a weak checksum, upgrade to a strong checksum
2657		 * and try again.  If we're already using a strong checksum,
2658		 * we can't resolve it, so just convert to an ordinary write.
2659		 * (And automatically e-mail a paper to Nature?)
2660		 */
2661		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2662		    ZCHECKSUM_FLAG_DEDUP)) {
2663			zp->zp_checksum = spa_dedup_checksum(spa);
2664			zio_pop_transforms(zio);
2665			zio->io_stage = ZIO_STAGE_OPEN;
2666			BP_ZERO(bp);
2667		} else {
2668			zp->zp_dedup = B_FALSE;
2669		}
2670		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2671		ddt_exit(ddt);
2672		return (ZIO_PIPELINE_CONTINUE);
2673	}
2674
2675	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2676	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2677
2678	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2679	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2680		zio_prop_t czp = *zp;
2681
2682		czp.zp_copies = ditto_copies;
2683
2684		/*
2685		 * If we arrived here with an override bp, we won't have run
2686		 * the transform stack, so we won't have the data we need to
2687		 * generate a child i/o.  So, toss the override bp and restart.
2688		 * This is safe, because using the override bp is just an
2689		 * optimization; and it's rare, so the cost doesn't matter.
2690		 */
2691		if (zio->io_bp_override) {
2692			zio_pop_transforms(zio);
2693			zio->io_stage = ZIO_STAGE_OPEN;
2694			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2695			zio->io_bp_override = NULL;
2696			BP_ZERO(bp);
2697			ddt_exit(ddt);
2698			return (ZIO_PIPELINE_CONTINUE);
2699		}
2700
2701		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2702		    zio->io_orig_size, &czp, NULL, NULL,
2703		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2704		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2705
2706		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2707		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2708	}
2709
2710	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2711		if (ddp->ddp_phys_birth != 0)
2712			ddt_bp_fill(ddp, bp, txg);
2713		if (dde->dde_lead_zio[p] != NULL)
2714			zio_add_child(zio, dde->dde_lead_zio[p]);
2715		else
2716			ddt_phys_addref(ddp);
2717	} else if (zio->io_bp_override) {
2718		ASSERT(bp->blk_birth == txg);
2719		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2720		ddt_phys_fill(ddp, bp);
2721		ddt_phys_addref(ddp);
2722	} else {
2723		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2724		    zio->io_orig_size, zp,
2725		    zio_ddt_child_write_ready, NULL, NULL,
2726		    zio_ddt_child_write_done, dde, zio->io_priority,
2727		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2728
2729		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2730		dde->dde_lead_zio[p] = cio;
2731	}
2732
2733	ddt_exit(ddt);
2734
2735	if (cio)
2736		zio_nowait(cio);
2737	if (dio)
2738		zio_nowait(dio);
2739
2740	return (ZIO_PIPELINE_CONTINUE);
2741}
2742
2743ddt_entry_t *freedde; /* for debugging */
2744
2745static int
2746zio_ddt_free(zio_t *zio)
2747{
2748	spa_t *spa = zio->io_spa;
2749	blkptr_t *bp = zio->io_bp;
2750	ddt_t *ddt = ddt_select(spa, bp);
2751	ddt_entry_t *dde;
2752	ddt_phys_t *ddp;
2753
2754	ASSERT(BP_GET_DEDUP(bp));
2755	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2756
2757	ddt_enter(ddt);
2758	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2759	ddp = ddt_phys_select(dde, bp);
2760	ddt_phys_decref(ddp);
2761	ddt_exit(ddt);
2762
2763	return (ZIO_PIPELINE_CONTINUE);
2764}
2765
2766/*
2767 * ==========================================================================
2768 * Allocate and free blocks
2769 * ==========================================================================
2770 */
2771
2772static zio_t *
2773zio_io_to_allocate(spa_t *spa)
2774{
2775	zio_t *zio;
2776
2777	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2778
2779	zio = avl_first(&spa->spa_alloc_tree);
2780	if (zio == NULL)
2781		return (NULL);
2782
2783	ASSERT(IO_IS_ALLOCATING(zio));
2784
2785	/*
2786	 * Try to place a reservation for this zio. If we're unable to
2787	 * reserve then we throttle.
2788	 */
2789	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2790	    zio->io_prop.zp_copies, zio, 0)) {
2791		return (NULL);
2792	}
2793
2794	avl_remove(&spa->spa_alloc_tree, zio);
2795	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2796
2797	return (zio);
2798}
2799
2800static int
2801zio_dva_throttle(zio_t *zio)
2802{
2803	spa_t *spa = zio->io_spa;
2804	zio_t *nio;
2805
2806	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2807	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2808	    zio->io_child_type == ZIO_CHILD_GANG ||
2809	    zio->io_flags & ZIO_FLAG_NODATA) {
2810		return (ZIO_PIPELINE_CONTINUE);
2811	}
2812
2813	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2814
2815	ASSERT3U(zio->io_queued_timestamp, >, 0);
2816	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2817
2818	mutex_enter(&spa->spa_alloc_lock);
2819
2820	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2821	avl_add(&spa->spa_alloc_tree, zio);
2822
2823	nio = zio_io_to_allocate(zio->io_spa);
2824	mutex_exit(&spa->spa_alloc_lock);
2825
2826	if (nio == zio)
2827		return (ZIO_PIPELINE_CONTINUE);
2828
2829	if (nio != NULL) {
2830		ASSERT3U(nio->io_queued_timestamp, <=,
2831		    zio->io_queued_timestamp);
2832		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2833		/*
2834		 * We are passing control to a new zio so make sure that
2835		 * it is processed by a different thread. We do this to
2836		 * avoid stack overflows that can occur when parents are
2837		 * throttled and children are making progress. We allow
2838		 * it to go to the head of the taskq since it's already
2839		 * been waiting.
2840		 */
2841		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2842	}
2843	return (ZIO_PIPELINE_STOP);
2844}
2845
2846void
2847zio_allocate_dispatch(spa_t *spa)
2848{
2849	zio_t *zio;
2850
2851	mutex_enter(&spa->spa_alloc_lock);
2852	zio = zio_io_to_allocate(spa);
2853	mutex_exit(&spa->spa_alloc_lock);
2854	if (zio == NULL)
2855		return;
2856
2857	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2858	ASSERT0(zio->io_error);
2859	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2860}
2861
2862static int
2863zio_dva_allocate(zio_t *zio)
2864{
2865	spa_t *spa = zio->io_spa;
2866	metaslab_class_t *mc = spa_normal_class(spa);
2867	blkptr_t *bp = zio->io_bp;
2868	int error;
2869	int flags = 0;
2870
2871	if (zio->io_gang_leader == NULL) {
2872		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2873		zio->io_gang_leader = zio;
2874	}
2875
2876	ASSERT(BP_IS_HOLE(bp));
2877	ASSERT0(BP_GET_NDVAS(bp));
2878	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2879	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2880	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2881
2882	if (zio->io_flags & ZIO_FLAG_NODATA) {
2883		flags |= METASLAB_DONT_THROTTLE;
2884	}
2885	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2886		flags |= METASLAB_GANG_CHILD;
2887	}
2888	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2889		flags |= METASLAB_ASYNC_ALLOC;
2890	}
2891
2892	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2893	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags, zio);
2894
2895	if (error != 0) {
2896		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2897		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2898		    error);
2899		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2900			return (zio_write_gang_block(zio));
2901		zio->io_error = error;
2902	}
2903
2904	return (ZIO_PIPELINE_CONTINUE);
2905}
2906
2907static int
2908zio_dva_free(zio_t *zio)
2909{
2910	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2911
2912	return (ZIO_PIPELINE_CONTINUE);
2913}
2914
2915static int
2916zio_dva_claim(zio_t *zio)
2917{
2918	int error;
2919
2920	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2921	if (error)
2922		zio->io_error = error;
2923
2924	return (ZIO_PIPELINE_CONTINUE);
2925}
2926
2927/*
2928 * Undo an allocation.  This is used by zio_done() when an I/O fails
2929 * and we want to give back the block we just allocated.
2930 * This handles both normal blocks and gang blocks.
2931 */
2932static void
2933zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2934{
2935	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2936	ASSERT(zio->io_bp_override == NULL);
2937
2938	if (!BP_IS_HOLE(bp))
2939		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2940
2941	if (gn != NULL) {
2942		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2943			zio_dva_unallocate(zio, gn->gn_child[g],
2944			    &gn->gn_gbh->zg_blkptr[g]);
2945		}
2946	}
2947}
2948
2949/*
2950 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2951 */
2952int
2953zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2954    uint64_t size, boolean_t *slog)
2955{
2956	int error = 1;
2957
2958	ASSERT(txg > spa_syncing_txg(spa));
2959
2960	error = metaslab_alloc(spa, spa_log_class(spa), size,
2961	    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, NULL);
2962	if (error == 0) {
2963		*slog = TRUE;
2964	} else {
2965		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2966		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, NULL);
2967		if (error == 0)
2968			*slog = FALSE;
2969	}
2970
2971	if (error == 0) {
2972		BP_SET_LSIZE(new_bp, size);
2973		BP_SET_PSIZE(new_bp, size);
2974		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2975		BP_SET_CHECKSUM(new_bp,
2976		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2977		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2978		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2979		BP_SET_LEVEL(new_bp, 0);
2980		BP_SET_DEDUP(new_bp, 0);
2981		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2982	}
2983
2984	return (error);
2985}
2986
2987/*
2988 * Free an intent log block.
2989 */
2990void
2991zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2992{
2993	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2994	ASSERT(!BP_IS_GANG(bp));
2995
2996	zio_free(spa, txg, bp);
2997}
2998
2999/*
3000 * ==========================================================================
3001 * Read, write and delete to physical devices
3002 * ==========================================================================
3003 */
3004
3005
3006/*
3007 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3008 * stops after this stage and will resume upon I/O completion.
3009 * However, there are instances where the vdev layer may need to
3010 * continue the pipeline when an I/O was not issued. Since the I/O
3011 * that was sent to the vdev layer might be different than the one
3012 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3013 * force the underlying vdev layers to call either zio_execute() or
3014 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3015 */
3016static int
3017zio_vdev_io_start(zio_t *zio)
3018{
3019	vdev_t *vd = zio->io_vd;
3020	uint64_t align;
3021	spa_t *spa = zio->io_spa;
3022	int ret;
3023
3024	ASSERT(zio->io_error == 0);
3025	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3026
3027	if (vd == NULL) {
3028		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3029			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3030
3031		/*
3032		 * The mirror_ops handle multiple DVAs in a single BP.
3033		 */
3034		vdev_mirror_ops.vdev_op_io_start(zio);
3035		return (ZIO_PIPELINE_STOP);
3036	}
3037
3038	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
3039	    zio->io_priority == ZIO_PRIORITY_NOW) {
3040		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
3041		return (ZIO_PIPELINE_CONTINUE);
3042	}
3043
3044	ASSERT3P(zio->io_logical, !=, zio);
3045
3046	/*
3047	 * We keep track of time-sensitive I/Os so that the scan thread
3048	 * can quickly react to certain workloads.  In particular, we care
3049	 * about non-scrubbing, top-level reads and writes with the following
3050	 * characteristics:
3051	 *	- synchronous writes of user data to non-slog devices
3052	 *	- any reads of user data
3053	 * When these conditions are met, adjust the timestamp of spa_last_io
3054	 * which allows the scan thread to adjust its workload accordingly.
3055	 */
3056	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3057	    vd == vd->vdev_top && !vd->vdev_islog &&
3058	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3059	    zio->io_txg != spa_syncing_txg(spa)) {
3060		uint64_t old = spa->spa_last_io;
3061		uint64_t new = ddi_get_lbolt64();
3062		if (old != new)
3063			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3064	}
3065
3066	align = 1ULL << vd->vdev_top->vdev_ashift;
3067
3068	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3069	    P2PHASE(zio->io_size, align) != 0) {
3070		/* Transform logical writes to be a full physical block size. */
3071		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3072		char *abuf = NULL;
3073		if (zio->io_type == ZIO_TYPE_READ ||
3074		    zio->io_type == ZIO_TYPE_WRITE)
3075			abuf = zio_buf_alloc(asize);
3076		ASSERT(vd == vd->vdev_top);
3077		if (zio->io_type == ZIO_TYPE_WRITE) {
3078			bcopy(zio->io_data, abuf, zio->io_size);
3079			bzero(abuf + zio->io_size, asize - zio->io_size);
3080		}
3081		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
3082		    zio_subblock);
3083	}
3084
3085	/*
3086	 * If this is not a physical io, make sure that it is properly aligned
3087	 * before proceeding.
3088	 */
3089	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3090		ASSERT0(P2PHASE(zio->io_offset, align));
3091		ASSERT0(P2PHASE(zio->io_size, align));
3092	} else {
3093		/*
3094		 * For the physical io we allow alignment
3095		 * to a logical block size.
3096		 */
3097		uint64_t log_align =
3098		    1ULL << vd->vdev_top->vdev_logical_ashift;
3099		ASSERT0(P2PHASE(zio->io_offset, log_align));
3100		ASSERT0(P2PHASE(zio->io_size, log_align));
3101	}
3102
3103	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
3104
3105	/*
3106	 * If this is a repair I/O, and there's no self-healing involved --
3107	 * that is, we're just resilvering what we expect to resilver --
3108	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3109	 * This prevents spurious resilvering with nested replication.
3110	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3111	 * A is out of date, we'll read from C+D, then use the data to
3112	 * resilver A+B -- but we don't actually want to resilver B, just A.
3113	 * The top-level mirror has no way to know this, so instead we just
3114	 * discard unnecessary repairs as we work our way down the vdev tree.
3115	 * The same logic applies to any form of nested replication:
3116	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3117	 */
3118	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3119	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3120	    zio->io_txg != 0 &&	/* not a delegated i/o */
3121	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3122		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3123		zio_vdev_io_bypass(zio);
3124		return (ZIO_PIPELINE_CONTINUE);
3125	}
3126
3127	if (vd->vdev_ops->vdev_op_leaf) {
3128		switch (zio->io_type) {
3129		case ZIO_TYPE_READ:
3130			if (vdev_cache_read(zio))
3131				return (ZIO_PIPELINE_CONTINUE);
3132			/* FALLTHROUGH */
3133		case ZIO_TYPE_WRITE:
3134		case ZIO_TYPE_FREE:
3135			if ((zio = vdev_queue_io(zio)) == NULL)
3136				return (ZIO_PIPELINE_STOP);
3137
3138			if (!vdev_accessible(vd, zio)) {
3139				zio->io_error = SET_ERROR(ENXIO);
3140				zio_interrupt(zio);
3141				return (ZIO_PIPELINE_STOP);
3142			}
3143			break;
3144		}
3145		/*
3146		 * Note that we ignore repair writes for TRIM because they can
3147		 * conflict with normal writes. This isn't an issue because, by
3148		 * definition, we only repair blocks that aren't freed.
3149		 */
3150		if (zio->io_type == ZIO_TYPE_WRITE &&
3151		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3152		    !trim_map_write_start(zio))
3153			return (ZIO_PIPELINE_STOP);
3154	}
3155
3156	vd->vdev_ops->vdev_op_io_start(zio);
3157	return (ZIO_PIPELINE_STOP);
3158}
3159
3160static int
3161zio_vdev_io_done(zio_t *zio)
3162{
3163	vdev_t *vd = zio->io_vd;
3164	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3165	boolean_t unexpected_error = B_FALSE;
3166
3167	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3168		return (ZIO_PIPELINE_STOP);
3169	}
3170
3171	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3172	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
3173
3174	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3175	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
3176	    zio->io_type == ZIO_TYPE_FREE)) {
3177
3178		if (zio->io_type == ZIO_TYPE_WRITE &&
3179		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
3180			trim_map_write_done(zio);
3181
3182		vdev_queue_io_done(zio);
3183
3184		if (zio->io_type == ZIO_TYPE_WRITE)
3185			vdev_cache_write(zio);
3186
3187		if (zio_injection_enabled && zio->io_error == 0)
3188			zio->io_error = zio_handle_device_injection(vd,
3189			    zio, EIO);
3190
3191		if (zio_injection_enabled && zio->io_error == 0)
3192			zio->io_error = zio_handle_label_injection(zio, EIO);
3193
3194		if (zio->io_error) {
3195			if (zio->io_error == ENOTSUP &&
3196			    zio->io_type == ZIO_TYPE_FREE) {
3197				/* Not all devices support TRIM. */
3198			} else if (!vdev_accessible(vd, zio)) {
3199				zio->io_error = SET_ERROR(ENXIO);
3200			} else {
3201				unexpected_error = B_TRUE;
3202			}
3203		}
3204	}
3205
3206	ops->vdev_op_io_done(zio);
3207
3208	if (unexpected_error)
3209		VERIFY(vdev_probe(vd, zio) == NULL);
3210
3211	return (ZIO_PIPELINE_CONTINUE);
3212}
3213
3214/*
3215 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3216 * disk, and use that to finish the checksum ereport later.
3217 */
3218static void
3219zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3220    const void *good_buf)
3221{
3222	/* no processing needed */
3223	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3224}
3225
3226/*ARGSUSED*/
3227void
3228zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3229{
3230	void *buf = zio_buf_alloc(zio->io_size);
3231
3232	bcopy(zio->io_data, buf, zio->io_size);
3233
3234	zcr->zcr_cbinfo = zio->io_size;
3235	zcr->zcr_cbdata = buf;
3236	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3237	zcr->zcr_free = zio_buf_free;
3238}
3239
3240static int
3241zio_vdev_io_assess(zio_t *zio)
3242{
3243	vdev_t *vd = zio->io_vd;
3244
3245	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3246		return (ZIO_PIPELINE_STOP);
3247	}
3248
3249	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3250		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3251
3252	if (zio->io_vsd != NULL) {
3253		zio->io_vsd_ops->vsd_free(zio);
3254		zio->io_vsd = NULL;
3255	}
3256
3257	if (zio_injection_enabled && zio->io_error == 0)
3258		zio->io_error = zio_handle_fault_injection(zio, EIO);
3259
3260	if (zio->io_type == ZIO_TYPE_FREE &&
3261	    zio->io_priority != ZIO_PRIORITY_NOW) {
3262		switch (zio->io_error) {
3263		case 0:
3264			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
3265			ZIO_TRIM_STAT_BUMP(success);
3266			break;
3267		case EOPNOTSUPP:
3268			ZIO_TRIM_STAT_BUMP(unsupported);
3269			break;
3270		default:
3271			ZIO_TRIM_STAT_BUMP(failed);
3272			break;
3273		}
3274	}
3275
3276	/*
3277	 * If the I/O failed, determine whether we should attempt to retry it.
3278	 *
3279	 * On retry, we cut in line in the issue queue, since we don't want
3280	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3281	 */
3282	if (zio->io_error && vd == NULL &&
3283	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3284		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3285		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3286		zio->io_error = 0;
3287		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3288		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3289		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3290		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3291		    zio_requeue_io_start_cut_in_line);
3292		return (ZIO_PIPELINE_STOP);
3293	}
3294
3295	/*
3296	 * If we got an error on a leaf device, convert it to ENXIO
3297	 * if the device is not accessible at all.
3298	 */
3299	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3300	    !vdev_accessible(vd, zio))
3301		zio->io_error = SET_ERROR(ENXIO);
3302
3303	/*
3304	 * If we can't write to an interior vdev (mirror or RAID-Z),
3305	 * set vdev_cant_write so that we stop trying to allocate from it.
3306	 */
3307	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3308	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3309		vd->vdev_cant_write = B_TRUE;
3310	}
3311
3312	if (zio->io_error)
3313		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3314
3315	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3316	    zio->io_physdone != NULL) {
3317		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3318		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3319		zio->io_physdone(zio->io_logical);
3320	}
3321
3322	return (ZIO_PIPELINE_CONTINUE);
3323}
3324
3325void
3326zio_vdev_io_reissue(zio_t *zio)
3327{
3328	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3329	ASSERT(zio->io_error == 0);
3330
3331	zio->io_stage >>= 1;
3332}
3333
3334void
3335zio_vdev_io_redone(zio_t *zio)
3336{
3337	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3338
3339	zio->io_stage >>= 1;
3340}
3341
3342void
3343zio_vdev_io_bypass(zio_t *zio)
3344{
3345	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3346	ASSERT(zio->io_error == 0);
3347
3348	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3349	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3350}
3351
3352/*
3353 * ==========================================================================
3354 * Generate and verify checksums
3355 * ==========================================================================
3356 */
3357static int
3358zio_checksum_generate(zio_t *zio)
3359{
3360	blkptr_t *bp = zio->io_bp;
3361	enum zio_checksum checksum;
3362
3363	if (bp == NULL) {
3364		/*
3365		 * This is zio_write_phys().
3366		 * We're either generating a label checksum, or none at all.
3367		 */
3368		checksum = zio->io_prop.zp_checksum;
3369
3370		if (checksum == ZIO_CHECKSUM_OFF)
3371			return (ZIO_PIPELINE_CONTINUE);
3372
3373		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3374	} else {
3375		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3376			ASSERT(!IO_IS_ALLOCATING(zio));
3377			checksum = ZIO_CHECKSUM_GANG_HEADER;
3378		} else {
3379			checksum = BP_GET_CHECKSUM(bp);
3380		}
3381	}
3382
3383	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3384
3385	return (ZIO_PIPELINE_CONTINUE);
3386}
3387
3388static int
3389zio_checksum_verify(zio_t *zio)
3390{
3391	zio_bad_cksum_t info;
3392	blkptr_t *bp = zio->io_bp;
3393	int error;
3394
3395	ASSERT(zio->io_vd != NULL);
3396
3397	if (bp == NULL) {
3398		/*
3399		 * This is zio_read_phys().
3400		 * We're either verifying a label checksum, or nothing at all.
3401		 */
3402		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3403			return (ZIO_PIPELINE_CONTINUE);
3404
3405		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3406	}
3407
3408	if ((error = zio_checksum_error(zio, &info)) != 0) {
3409		zio->io_error = error;
3410		if (error == ECKSUM &&
3411		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3412			zfs_ereport_start_checksum(zio->io_spa,
3413			    zio->io_vd, zio, zio->io_offset,
3414			    zio->io_size, NULL, &info);
3415		}
3416	}
3417
3418	return (ZIO_PIPELINE_CONTINUE);
3419}
3420
3421/*
3422 * Called by RAID-Z to ensure we don't compute the checksum twice.
3423 */
3424void
3425zio_checksum_verified(zio_t *zio)
3426{
3427	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3428}
3429
3430/*
3431 * ==========================================================================
3432 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3433 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3434 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3435 * indicate errors that are specific to one I/O, and most likely permanent.
3436 * Any other error is presumed to be worse because we weren't expecting it.
3437 * ==========================================================================
3438 */
3439int
3440zio_worst_error(int e1, int e2)
3441{
3442	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3443	int r1, r2;
3444
3445	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3446		if (e1 == zio_error_rank[r1])
3447			break;
3448
3449	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3450		if (e2 == zio_error_rank[r2])
3451			break;
3452
3453	return (r1 > r2 ? e1 : e2);
3454}
3455
3456/*
3457 * ==========================================================================
3458 * I/O completion
3459 * ==========================================================================
3460 */
3461static int
3462zio_ready(zio_t *zio)
3463{
3464	blkptr_t *bp = zio->io_bp;
3465	zio_t *pio, *pio_next;
3466	zio_link_t *zl = NULL;
3467
3468	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3469	    ZIO_WAIT_READY)) {
3470		return (ZIO_PIPELINE_STOP);
3471	}
3472
3473	if (zio->io_ready) {
3474		ASSERT(IO_IS_ALLOCATING(zio));
3475		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3476		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3477		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3478
3479		zio->io_ready(zio);
3480	}
3481
3482	if (bp != NULL && bp != &zio->io_bp_copy)
3483		zio->io_bp_copy = *bp;
3484
3485	if (zio->io_error != 0) {
3486		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3487
3488		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3489			ASSERT(IO_IS_ALLOCATING(zio));
3490			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3491			/*
3492			 * We were unable to allocate anything, unreserve and
3493			 * issue the next I/O to allocate.
3494			 */
3495			metaslab_class_throttle_unreserve(
3496			    spa_normal_class(zio->io_spa),
3497			    zio->io_prop.zp_copies, zio);
3498			zio_allocate_dispatch(zio->io_spa);
3499		}
3500	}
3501
3502	mutex_enter(&zio->io_lock);
3503	zio->io_state[ZIO_WAIT_READY] = 1;
3504	pio = zio_walk_parents(zio, &zl);
3505	mutex_exit(&zio->io_lock);
3506
3507	/*
3508	 * As we notify zio's parents, new parents could be added.
3509	 * New parents go to the head of zio's io_parent_list, however,
3510	 * so we will (correctly) not notify them.  The remainder of zio's
3511	 * io_parent_list, from 'pio_next' onward, cannot change because
3512	 * all parents must wait for us to be done before they can be done.
3513	 */
3514	for (; pio != NULL; pio = pio_next) {
3515		pio_next = zio_walk_parents(zio, &zl);
3516		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3517	}
3518
3519	if (zio->io_flags & ZIO_FLAG_NODATA) {
3520		if (BP_IS_GANG(bp)) {
3521			zio->io_flags &= ~ZIO_FLAG_NODATA;
3522		} else {
3523			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3524			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3525		}
3526	}
3527
3528	if (zio_injection_enabled &&
3529	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3530		zio_handle_ignored_writes(zio);
3531
3532	return (ZIO_PIPELINE_CONTINUE);
3533}
3534
3535/*
3536 * Update the allocation throttle accounting.
3537 */
3538static void
3539zio_dva_throttle_done(zio_t *zio)
3540{
3541	zio_t *lio = zio->io_logical;
3542	zio_t *pio = zio_unique_parent(zio);
3543	vdev_t *vd = zio->io_vd;
3544	int flags = METASLAB_ASYNC_ALLOC;
3545
3546	ASSERT3P(zio->io_bp, !=, NULL);
3547	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3548	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3549	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3550	ASSERT(vd != NULL);
3551	ASSERT3P(vd, ==, vd->vdev_top);
3552	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3553	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3554	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3555	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3556
3557	/*
3558	 * Parents of gang children can have two flavors -- ones that
3559	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3560	 * and ones that allocated the constituent blocks. The allocation
3561	 * throttle needs to know the allocating parent zio so we must find
3562	 * it here.
3563	 */
3564	if (pio->io_child_type == ZIO_CHILD_GANG) {
3565		/*
3566		 * If our parent is a rewrite gang child then our grandparent
3567		 * would have been the one that performed the allocation.
3568		 */
3569		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3570			pio = zio_unique_parent(pio);
3571		flags |= METASLAB_GANG_CHILD;
3572	}
3573
3574	ASSERT(IO_IS_ALLOCATING(pio));
3575	ASSERT3P(zio, !=, zio->io_logical);
3576	ASSERT(zio->io_logical != NULL);
3577	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3578	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3579
3580	mutex_enter(&pio->io_lock);
3581	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3582	mutex_exit(&pio->io_lock);
3583
3584	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3585	    1, pio);
3586
3587	/*
3588	 * Call into the pipeline to see if there is more work that
3589	 * needs to be done. If there is work to be done it will be
3590	 * dispatched to another taskq thread.
3591	 */
3592	zio_allocate_dispatch(zio->io_spa);
3593}
3594
3595static int
3596zio_done(zio_t *zio)
3597{
3598	spa_t *spa = zio->io_spa;
3599	zio_t *lio = zio->io_logical;
3600	blkptr_t *bp = zio->io_bp;
3601	vdev_t *vd = zio->io_vd;
3602	uint64_t psize = zio->io_size;
3603	zio_t *pio, *pio_next;
3604	metaslab_class_t *mc = spa_normal_class(spa);
3605	zio_link_t *zl = NULL;
3606
3607	/*
3608	 * If our children haven't all completed,
3609	 * wait for them and then repeat this pipeline stage.
3610	 */
3611	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3612		return (ZIO_PIPELINE_STOP);
3613	}
3614
3615	/*
3616	 * If the allocation throttle is enabled, then update the accounting.
3617	 * We only track child I/Os that are part of an allocating async
3618	 * write. We must do this since the allocation is performed
3619	 * by the logical I/O but the actual write is done by child I/Os.
3620	 */
3621	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3622	    zio->io_child_type == ZIO_CHILD_VDEV) {
3623		ASSERT(mc->mc_alloc_throttle_enabled);
3624		zio_dva_throttle_done(zio);
3625	}
3626
3627	/*
3628	 * If the allocation throttle is enabled, verify that
3629	 * we have decremented the refcounts for every I/O that was throttled.
3630	 */
3631	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3632		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3633		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3634		ASSERT(bp != NULL);
3635		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3636		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3637	}
3638
3639	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3640		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3641			ASSERT(zio->io_children[c][w] == 0);
3642
3643	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3644		ASSERT(bp->blk_pad[0] == 0);
3645		ASSERT(bp->blk_pad[1] == 0);
3646		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3647		    (bp == zio_unique_parent(zio)->io_bp));
3648		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3649		    zio->io_bp_override == NULL &&
3650		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3651			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3652			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3653			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3654			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3655		}
3656		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3657			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3658	}
3659
3660	/*
3661	 * If there were child vdev/gang/ddt errors, they apply to us now.
3662	 */
3663	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3664	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3665	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3666
3667	/*
3668	 * If the I/O on the transformed data was successful, generate any
3669	 * checksum reports now while we still have the transformed data.
3670	 */
3671	if (zio->io_error == 0) {
3672		while (zio->io_cksum_report != NULL) {
3673			zio_cksum_report_t *zcr = zio->io_cksum_report;
3674			uint64_t align = zcr->zcr_align;
3675			uint64_t asize = P2ROUNDUP(psize, align);
3676			char *abuf = zio->io_data;
3677
3678			if (asize != psize) {
3679				abuf = zio_buf_alloc(asize);
3680				bcopy(zio->io_data, abuf, psize);
3681				bzero(abuf + psize, asize - psize);
3682			}
3683
3684			zio->io_cksum_report = zcr->zcr_next;
3685			zcr->zcr_next = NULL;
3686			zcr->zcr_finish(zcr, abuf);
3687			zfs_ereport_free_checksum(zcr);
3688
3689			if (asize != psize)
3690				zio_buf_free(abuf, asize);
3691		}
3692	}
3693
3694	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3695
3696	vdev_stat_update(zio, psize);
3697
3698	if (zio->io_error) {
3699		/*
3700		 * If this I/O is attached to a particular vdev,
3701		 * generate an error message describing the I/O failure
3702		 * at the block level.  We ignore these errors if the
3703		 * device is currently unavailable.
3704		 */
3705		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3706			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3707
3708		if ((zio->io_error == EIO || !(zio->io_flags &
3709		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3710		    zio == lio) {
3711			/*
3712			 * For logical I/O requests, tell the SPA to log the
3713			 * error and generate a logical data ereport.
3714			 */
3715			spa_log_error(spa, zio);
3716			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3717			    0, 0);
3718		}
3719	}
3720
3721	if (zio->io_error && zio == lio) {
3722		/*
3723		 * Determine whether zio should be reexecuted.  This will
3724		 * propagate all the way to the root via zio_notify_parent().
3725		 */
3726		ASSERT(vd == NULL && bp != NULL);
3727		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3728
3729		if (IO_IS_ALLOCATING(zio) &&
3730		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3731			if (zio->io_error != ENOSPC)
3732				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3733			else
3734				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3735		}
3736
3737		if ((zio->io_type == ZIO_TYPE_READ ||
3738		    zio->io_type == ZIO_TYPE_FREE) &&
3739		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3740		    zio->io_error == ENXIO &&
3741		    spa_load_state(spa) == SPA_LOAD_NONE &&
3742		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3743			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3744
3745		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3746			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3747
3748		/*
3749		 * Here is a possibly good place to attempt to do
3750		 * either combinatorial reconstruction or error correction
3751		 * based on checksums.  It also might be a good place
3752		 * to send out preliminary ereports before we suspend
3753		 * processing.
3754		 */
3755	}
3756
3757	/*
3758	 * If there were logical child errors, they apply to us now.
3759	 * We defer this until now to avoid conflating logical child
3760	 * errors with errors that happened to the zio itself when
3761	 * updating vdev stats and reporting FMA events above.
3762	 */
3763	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3764
3765	if ((zio->io_error || zio->io_reexecute) &&
3766	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3767	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3768		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3769
3770	zio_gang_tree_free(&zio->io_gang_tree);
3771
3772	/*
3773	 * Godfather I/Os should never suspend.
3774	 */
3775	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3776	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3777		zio->io_reexecute = 0;
3778
3779	if (zio->io_reexecute) {
3780		/*
3781		 * This is a logical I/O that wants to reexecute.
3782		 *
3783		 * Reexecute is top-down.  When an i/o fails, if it's not
3784		 * the root, it simply notifies its parent and sticks around.
3785		 * The parent, seeing that it still has children in zio_done(),
3786		 * does the same.  This percolates all the way up to the root.
3787		 * The root i/o will reexecute or suspend the entire tree.
3788		 *
3789		 * This approach ensures that zio_reexecute() honors
3790		 * all the original i/o dependency relationships, e.g.
3791		 * parents not executing until children are ready.
3792		 */
3793		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3794
3795		zio->io_gang_leader = NULL;
3796
3797		mutex_enter(&zio->io_lock);
3798		zio->io_state[ZIO_WAIT_DONE] = 1;
3799		mutex_exit(&zio->io_lock);
3800
3801		/*
3802		 * "The Godfather" I/O monitors its children but is
3803		 * not a true parent to them. It will track them through
3804		 * the pipeline but severs its ties whenever they get into
3805		 * trouble (e.g. suspended). This allows "The Godfather"
3806		 * I/O to return status without blocking.
3807		 */
3808		zl = NULL;
3809		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3810		    pio = pio_next) {
3811			zio_link_t *remove_zl = zl;
3812			pio_next = zio_walk_parents(zio, &zl);
3813
3814			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3815			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3816				zio_remove_child(pio, zio, remove_zl);
3817				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3818			}
3819		}
3820
3821		if ((pio = zio_unique_parent(zio)) != NULL) {
3822			/*
3823			 * We're not a root i/o, so there's nothing to do
3824			 * but notify our parent.  Don't propagate errors
3825			 * upward since we haven't permanently failed yet.
3826			 */
3827			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3828			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3829			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3830		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3831			/*
3832			 * We'd fail again if we reexecuted now, so suspend
3833			 * until conditions improve (e.g. device comes online).
3834			 */
3835			zio_suspend(spa, zio);
3836		} else {
3837			/*
3838			 * Reexecution is potentially a huge amount of work.
3839			 * Hand it off to the otherwise-unused claim taskq.
3840			 */
3841#if defined(illumos) || !defined(_KERNEL)
3842			ASSERT(zio->io_tqent.tqent_next == NULL);
3843#else
3844			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3845#endif
3846			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3847			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3848			    0, &zio->io_tqent);
3849		}
3850		return (ZIO_PIPELINE_STOP);
3851	}
3852
3853	ASSERT(zio->io_child_count == 0);
3854	ASSERT(zio->io_reexecute == 0);
3855	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3856
3857	/*
3858	 * Report any checksum errors, since the I/O is complete.
3859	 */
3860	while (zio->io_cksum_report != NULL) {
3861		zio_cksum_report_t *zcr = zio->io_cksum_report;
3862		zio->io_cksum_report = zcr->zcr_next;
3863		zcr->zcr_next = NULL;
3864		zcr->zcr_finish(zcr, NULL);
3865		zfs_ereport_free_checksum(zcr);
3866	}
3867
3868	/*
3869	 * It is the responsibility of the done callback to ensure that this
3870	 * particular zio is no longer discoverable for adoption, and as
3871	 * such, cannot acquire any new parents.
3872	 */
3873	if (zio->io_done)
3874		zio->io_done(zio);
3875
3876	mutex_enter(&zio->io_lock);
3877	zio->io_state[ZIO_WAIT_DONE] = 1;
3878	mutex_exit(&zio->io_lock);
3879
3880	zl = NULL;
3881	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3882		zio_link_t *remove_zl = zl;
3883		pio_next = zio_walk_parents(zio, &zl);
3884		zio_remove_child(pio, zio, remove_zl);
3885		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3886	}
3887
3888	if (zio->io_waiter != NULL) {
3889		mutex_enter(&zio->io_lock);
3890		zio->io_executor = NULL;
3891		cv_broadcast(&zio->io_cv);
3892		mutex_exit(&zio->io_lock);
3893	} else {
3894		zio_destroy(zio);
3895	}
3896
3897	return (ZIO_PIPELINE_STOP);
3898}
3899
3900/*
3901 * ==========================================================================
3902 * I/O pipeline definition
3903 * ==========================================================================
3904 */
3905static zio_pipe_stage_t *zio_pipeline[] = {
3906	NULL,
3907	zio_read_bp_init,
3908	zio_write_bp_init,
3909	zio_free_bp_init,
3910	zio_issue_async,
3911	zio_write_compress,
3912	zio_checksum_generate,
3913	zio_nop_write,
3914	zio_ddt_read_start,
3915	zio_ddt_read_done,
3916	zio_ddt_write,
3917	zio_ddt_free,
3918	zio_gang_assemble,
3919	zio_gang_issue,
3920	zio_dva_throttle,
3921	zio_dva_allocate,
3922	zio_dva_free,
3923	zio_dva_claim,
3924	zio_ready,
3925	zio_vdev_io_start,
3926	zio_vdev_io_done,
3927	zio_vdev_io_assess,
3928	zio_checksum_verify,
3929	zio_done
3930};
3931
3932
3933
3934
3935/*
3936 * Compare two zbookmark_phys_t's to see which we would reach first in a
3937 * pre-order traversal of the object tree.
3938 *
3939 * This is simple in every case aside from the meta-dnode object. For all other
3940 * objects, we traverse them in order (object 1 before object 2, and so on).
3941 * However, all of these objects are traversed while traversing object 0, since
3942 * the data it points to is the list of objects.  Thus, we need to convert to a
3943 * canonical representation so we can compare meta-dnode bookmarks to
3944 * non-meta-dnode bookmarks.
3945 *
3946 * We do this by calculating "equivalents" for each field of the zbookmark.
3947 * zbookmarks outside of the meta-dnode use their own object and level, and
3948 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3949 * blocks this bookmark refers to) by multiplying their blkid by their span
3950 * (the number of L0 blocks contained within one block at their level).
3951 * zbookmarks inside the meta-dnode calculate their object equivalent
3952 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3953 * level + 1<<31 (any value larger than a level could ever be) for their level.
3954 * This causes them to always compare before a bookmark in their object
3955 * equivalent, compare appropriately to bookmarks in other objects, and to
3956 * compare appropriately to other bookmarks in the meta-dnode.
3957 */
3958int
3959zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3960    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3961{
3962	/*
3963	 * These variables represent the "equivalent" values for the zbookmark,
3964	 * after converting zbookmarks inside the meta dnode to their
3965	 * normal-object equivalents.
3966	 */
3967	uint64_t zb1obj, zb2obj;
3968	uint64_t zb1L0, zb2L0;
3969	uint64_t zb1level, zb2level;
3970
3971	if (zb1->zb_object == zb2->zb_object &&
3972	    zb1->zb_level == zb2->zb_level &&
3973	    zb1->zb_blkid == zb2->zb_blkid)
3974		return (0);
3975
3976	/*
3977	 * BP_SPANB calculates the span in blocks.
3978	 */
3979	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3980	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3981
3982	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3983		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3984		zb1L0 = 0;
3985		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3986	} else {
3987		zb1obj = zb1->zb_object;
3988		zb1level = zb1->zb_level;
3989	}
3990
3991	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3992		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3993		zb2L0 = 0;
3994		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3995	} else {
3996		zb2obj = zb2->zb_object;
3997		zb2level = zb2->zb_level;
3998	}
3999
4000	/* Now that we have a canonical representation, do the comparison. */
4001	if (zb1obj != zb2obj)
4002		return (zb1obj < zb2obj ? -1 : 1);
4003	else if (zb1L0 != zb2L0)
4004		return (zb1L0 < zb2L0 ? -1 : 1);
4005	else if (zb1level != zb2level)
4006		return (zb1level > zb2level ? -1 : 1);
4007	/*
4008	 * This can (theoretically) happen if the bookmarks have the same object
4009	 * and level, but different blkids, if the block sizes are not the same.
4010	 * There is presently no way to change the indirect block sizes
4011	 */
4012	return (0);
4013}
4014
4015/*
4016 *  This function checks the following: given that last_block is the place that
4017 *  our traversal stopped last time, does that guarantee that we've visited
4018 *  every node under subtree_root?  Therefore, we can't just use the raw output
4019 *  of zbookmark_compare.  We have to pass in a modified version of
4020 *  subtree_root; by incrementing the block id, and then checking whether
4021 *  last_block is before or equal to that, we can tell whether or not having
4022 *  visited last_block implies that all of subtree_root's children have been
4023 *  visited.
4024 */
4025boolean_t
4026zbookmark_subtree_completed(const dnode_phys_t *dnp,
4027    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4028{
4029	zbookmark_phys_t mod_zb = *subtree_root;
4030	mod_zb.zb_blkid++;
4031	ASSERT(last_block->zb_level == 0);
4032
4033	/* The objset_phys_t isn't before anything. */
4034	if (dnp == NULL)
4035		return (B_FALSE);
4036
4037	/*
4038	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4039	 * data block size in sectors, because that variable is only used if
4040	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4041	 * know without examining it what object it refers to, and there's no
4042	 * harm in passing in this value in other cases, we always pass it in.
4043	 *
4044	 * We pass in 0 for the indirect block size shift because zb2 must be
4045	 * level 0.  The indirect block size is only used to calculate the span
4046	 * of the bookmark, but since the bookmark must be level 0, the span is
4047	 * always 1, so the math works out.
4048	 *
4049	 * If you make changes to how the zbookmark_compare code works, be sure
4050	 * to make sure that this code still works afterwards.
4051	 */
4052	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4053	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4054	    last_block) <= 0);
4055}
4056