zio.c revision 320496
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/sysmacros.h>
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/txg.h>
33#include <sys/spa_impl.h>
34#include <sys/vdev_impl.h>
35#include <sys/zio_impl.h>
36#include <sys/zio_compress.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/ddt.h>
41#include <sys/trim_map.h>
42#include <sys/blkptr.h>
43#include <sys/zfeature.h>
44#include <sys/metaslab_impl.h>
45
46SYSCTL_DECL(_vfs_zfs);
47SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
48#if defined(__amd64__)
49static int zio_use_uma = 1;
50#else
51static int zio_use_uma = 0;
52#endif
53TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
54SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
55    "Use uma(9) for ZIO allocations");
56static int zio_exclude_metadata = 0;
57TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
58SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
59    "Exclude metadata buffers from dumps as well");
60
61zio_trim_stats_t zio_trim_stats = {
62	{ "bytes",		KSTAT_DATA_UINT64,
63	  "Number of bytes successfully TRIMmed" },
64	{ "success",		KSTAT_DATA_UINT64,
65	  "Number of successful TRIM requests" },
66	{ "unsupported",	KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed because TRIM is not supported" },
68	{ "failed",		KSTAT_DATA_UINT64,
69	  "Number of TRIM requests that failed for reasons other than not supported" },
70};
71
72static kstat_t *zio_trim_ksp;
73
74/*
75 * ==========================================================================
76 * I/O type descriptions
77 * ==========================================================================
78 */
79const char *zio_type_name[ZIO_TYPES] = {
80	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
81	"zio_ioctl"
82};
83
84boolean_t zio_dva_throttle_enabled = B_TRUE;
85SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, dva_throttle_enabled, CTLFLAG_RDTUN,
86    &zio_dva_throttle_enabled, 0, "");
87
88/*
89 * ==========================================================================
90 * I/O kmem caches
91 * ==========================================================================
92 */
93kmem_cache_t *zio_cache;
94kmem_cache_t *zio_link_cache;
95kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
96kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
97
98#ifdef _KERNEL
99extern vmem_t *zio_alloc_arena;
100#endif
101
102#define	ZIO_PIPELINE_CONTINUE		0x100
103#define	ZIO_PIPELINE_STOP		0x101
104
105#define	BP_SPANB(indblkshift, level) \
106	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
107#define	COMPARE_META_LEVEL	0x80000000ul
108/*
109 * The following actions directly effect the spa's sync-to-convergence logic.
110 * The values below define the sync pass when we start performing the action.
111 * Care should be taken when changing these values as they directly impact
112 * spa_sync() performance. Tuning these values may introduce subtle performance
113 * pathologies and should only be done in the context of performance analysis.
114 * These tunables will eventually be removed and replaced with #defines once
115 * enough analysis has been done to determine optimal values.
116 *
117 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
118 * regular blocks are not deferred.
119 */
120int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
121TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
122SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
123    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
124int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
125TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
126SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
127    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
128int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
129TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
130SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
131    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
132
133/*
134 * An allocating zio is one that either currently has the DVA allocate
135 * stage set or will have it later in its lifetime.
136 */
137#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
138
139boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
140
141#ifdef illumos
142#ifdef ZFS_DEBUG
143int zio_buf_debug_limit = 16384;
144#else
145int zio_buf_debug_limit = 0;
146#endif
147#endif
148
149static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150
151void
152zio_init(void)
153{
154	size_t c;
155	zio_cache = kmem_cache_create("zio_cache",
156	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	zio_link_cache = kmem_cache_create("zio_link_cache",
158	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159	if (!zio_use_uma)
160		goto out;
161
162	/*
163	 * For small buffers, we want a cache for each multiple of
164	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
165	 * for each quarter-power of 2.
166	 */
167	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
168		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
169		size_t p2 = size;
170		size_t align = 0;
171		int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0;
172
173		while (!ISP2(p2))
174			p2 &= p2 - 1;
175
176#ifdef illumos
177#ifndef _KERNEL
178		/*
179		 * If we are using watchpoints, put each buffer on its own page,
180		 * to eliminate the performance overhead of trapping to the
181		 * kernel when modifying a non-watched buffer that shares the
182		 * page with a watched buffer.
183		 */
184		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
185			continue;
186#endif
187#endif /* illumos */
188		if (size <= 4 * SPA_MINBLOCKSIZE) {
189			align = SPA_MINBLOCKSIZE;
190		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
191			align = MIN(p2 >> 2, PAGESIZE);
192		}
193
194		if (align != 0) {
195			char name[36];
196			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
197			zio_buf_cache[c] = kmem_cache_create(name, size,
198			    align, NULL, NULL, NULL, NULL, NULL, cflags);
199
200			/*
201			 * Since zio_data bufs do not appear in crash dumps, we
202			 * pass KMC_NOTOUCH so that no allocator metadata is
203			 * stored with the buffers.
204			 */
205			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
206			zio_data_buf_cache[c] = kmem_cache_create(name, size,
207			    align, NULL, NULL, NULL, NULL, NULL,
208			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
209		}
210	}
211
212	while (--c != 0) {
213		ASSERT(zio_buf_cache[c] != NULL);
214		if (zio_buf_cache[c - 1] == NULL)
215			zio_buf_cache[c - 1] = zio_buf_cache[c];
216
217		ASSERT(zio_data_buf_cache[c] != NULL);
218		if (zio_data_buf_cache[c - 1] == NULL)
219			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
220	}
221out:
222
223	zio_inject_init();
224
225	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
226	    KSTAT_TYPE_NAMED,
227	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
228	    KSTAT_FLAG_VIRTUAL);
229
230	if (zio_trim_ksp != NULL) {
231		zio_trim_ksp->ks_data = &zio_trim_stats;
232		kstat_install(zio_trim_ksp);
233	}
234}
235
236void
237zio_fini(void)
238{
239	size_t c;
240	kmem_cache_t *last_cache = NULL;
241	kmem_cache_t *last_data_cache = NULL;
242
243	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
244		if (zio_buf_cache[c] != last_cache) {
245			last_cache = zio_buf_cache[c];
246			kmem_cache_destroy(zio_buf_cache[c]);
247		}
248		zio_buf_cache[c] = NULL;
249
250		if (zio_data_buf_cache[c] != last_data_cache) {
251			last_data_cache = zio_data_buf_cache[c];
252			kmem_cache_destroy(zio_data_buf_cache[c]);
253		}
254		zio_data_buf_cache[c] = NULL;
255	}
256
257	kmem_cache_destroy(zio_link_cache);
258	kmem_cache_destroy(zio_cache);
259
260	zio_inject_fini();
261
262	if (zio_trim_ksp != NULL) {
263		kstat_delete(zio_trim_ksp);
264		zio_trim_ksp = NULL;
265	}
266}
267
268/*
269 * ==========================================================================
270 * Allocate and free I/O buffers
271 * ==========================================================================
272 */
273
274/*
275 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
276 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
277 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
278 * excess / transient data in-core during a crashdump.
279 */
280static void *
281zio_buf_alloc_impl(size_t size, boolean_t canwait)
282{
283	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
284	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
285
286	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
287
288	if (zio_use_uma) {
289		return (kmem_cache_alloc(zio_buf_cache[c],
290		    canwait ? KM_PUSHPAGE : KM_NOSLEEP));
291	} else {
292		return (kmem_alloc(size,
293		    (canwait ? KM_SLEEP : KM_NOSLEEP) | flags));
294	}
295}
296
297void *
298zio_buf_alloc(size_t size)
299{
300	return (zio_buf_alloc_impl(size, B_TRUE));
301}
302
303void *
304zio_buf_alloc_nowait(size_t size)
305{
306	return (zio_buf_alloc_impl(size, B_FALSE));
307}
308
309/*
310 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
311 * crashdump if the kernel panics.  This exists so that we will limit the amount
312 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
313 * of kernel heap dumped to disk when the kernel panics)
314 */
315void *
316zio_data_buf_alloc(size_t size)
317{
318	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319
320	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321
322	if (zio_use_uma)
323		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
324	else
325		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
326}
327
328void
329zio_buf_free(void *buf, size_t size)
330{
331	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
332
333	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
334
335	if (zio_use_uma)
336		kmem_cache_free(zio_buf_cache[c], buf);
337	else
338		kmem_free(buf, size);
339}
340
341void
342zio_data_buf_free(void *buf, size_t size)
343{
344	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
345
346	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
347
348	if (zio_use_uma)
349		kmem_cache_free(zio_data_buf_cache[c], buf);
350	else
351		kmem_free(buf, size);
352}
353
354/*
355 * ==========================================================================
356 * Push and pop I/O transform buffers
357 * ==========================================================================
358 */
359void
360zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
361    zio_transform_func_t *transform)
362{
363	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
364
365	zt->zt_orig_data = zio->io_data;
366	zt->zt_orig_size = zio->io_size;
367	zt->zt_bufsize = bufsize;
368	zt->zt_transform = transform;
369
370	zt->zt_next = zio->io_transform_stack;
371	zio->io_transform_stack = zt;
372
373	zio->io_data = data;
374	zio->io_size = size;
375}
376
377void
378zio_pop_transforms(zio_t *zio)
379{
380	zio_transform_t *zt;
381
382	while ((zt = zio->io_transform_stack) != NULL) {
383		if (zt->zt_transform != NULL)
384			zt->zt_transform(zio,
385			    zt->zt_orig_data, zt->zt_orig_size);
386
387		if (zt->zt_bufsize != 0)
388			zio_buf_free(zio->io_data, zt->zt_bufsize);
389
390		zio->io_data = zt->zt_orig_data;
391		zio->io_size = zt->zt_orig_size;
392		zio->io_transform_stack = zt->zt_next;
393
394		kmem_free(zt, sizeof (zio_transform_t));
395	}
396}
397
398/*
399 * ==========================================================================
400 * I/O transform callbacks for subblocks and decompression
401 * ==========================================================================
402 */
403static void
404zio_subblock(zio_t *zio, void *data, uint64_t size)
405{
406	ASSERT(zio->io_size > size);
407
408	if (zio->io_type == ZIO_TYPE_READ)
409		bcopy(zio->io_data, data, size);
410}
411
412static void
413zio_decompress(zio_t *zio, void *data, uint64_t size)
414{
415	if (zio->io_error == 0 &&
416	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
417	    zio->io_data, data, zio->io_size, size) != 0)
418		zio->io_error = SET_ERROR(EIO);
419}
420
421/*
422 * ==========================================================================
423 * I/O parent/child relationships and pipeline interlocks
424 * ==========================================================================
425 */
426zio_t *
427zio_walk_parents(zio_t *cio, zio_link_t **zl)
428{
429	list_t *pl = &cio->io_parent_list;
430
431	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
432	if (*zl == NULL)
433		return (NULL);
434
435	ASSERT((*zl)->zl_child == cio);
436	return ((*zl)->zl_parent);
437}
438
439zio_t *
440zio_walk_children(zio_t *pio, zio_link_t **zl)
441{
442	list_t *cl = &pio->io_child_list;
443
444	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
445	if (*zl == NULL)
446		return (NULL);
447
448	ASSERT((*zl)->zl_parent == pio);
449	return ((*zl)->zl_child);
450}
451
452zio_t *
453zio_unique_parent(zio_t *cio)
454{
455	zio_link_t *zl = NULL;
456	zio_t *pio = zio_walk_parents(cio, &zl);
457
458	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
459	return (pio);
460}
461
462void
463zio_add_child(zio_t *pio, zio_t *cio)
464{
465	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
466
467	/*
468	 * Logical I/Os can have logical, gang, or vdev children.
469	 * Gang I/Os can have gang or vdev children.
470	 * Vdev I/Os can only have vdev children.
471	 * The following ASSERT captures all of these constraints.
472	 */
473	ASSERT(cio->io_child_type <= pio->io_child_type);
474
475	zl->zl_parent = pio;
476	zl->zl_child = cio;
477
478	mutex_enter(&cio->io_lock);
479	mutex_enter(&pio->io_lock);
480
481	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
482
483	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
484		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
485
486	list_insert_head(&pio->io_child_list, zl);
487	list_insert_head(&cio->io_parent_list, zl);
488
489	pio->io_child_count++;
490	cio->io_parent_count++;
491
492	mutex_exit(&pio->io_lock);
493	mutex_exit(&cio->io_lock);
494}
495
496static void
497zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
498{
499	ASSERT(zl->zl_parent == pio);
500	ASSERT(zl->zl_child == cio);
501
502	mutex_enter(&cio->io_lock);
503	mutex_enter(&pio->io_lock);
504
505	list_remove(&pio->io_child_list, zl);
506	list_remove(&cio->io_parent_list, zl);
507
508	pio->io_child_count--;
509	cio->io_parent_count--;
510
511	mutex_exit(&pio->io_lock);
512	mutex_exit(&cio->io_lock);
513
514	kmem_cache_free(zio_link_cache, zl);
515}
516
517static boolean_t
518zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
519{
520	uint64_t *countp = &zio->io_children[child][wait];
521	boolean_t waiting = B_FALSE;
522
523	mutex_enter(&zio->io_lock);
524	ASSERT(zio->io_stall == NULL);
525	if (*countp != 0) {
526		zio->io_stage >>= 1;
527		ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
528		zio->io_stall = countp;
529		waiting = B_TRUE;
530	}
531	mutex_exit(&zio->io_lock);
532
533	return (waiting);
534}
535
536static void
537zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
538{
539	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
540	int *errorp = &pio->io_child_error[zio->io_child_type];
541
542	mutex_enter(&pio->io_lock);
543	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
544		*errorp = zio_worst_error(*errorp, zio->io_error);
545	pio->io_reexecute |= zio->io_reexecute;
546	ASSERT3U(*countp, >, 0);
547
548	(*countp)--;
549
550	if (*countp == 0 && pio->io_stall == countp) {
551		zio_taskq_type_t type =
552		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
553		    ZIO_TASKQ_INTERRUPT;
554		pio->io_stall = NULL;
555		mutex_exit(&pio->io_lock);
556		/*
557		 * Dispatch the parent zio in its own taskq so that
558		 * the child can continue to make progress. This also
559		 * prevents overflowing the stack when we have deeply nested
560		 * parent-child relationships.
561		 */
562		zio_taskq_dispatch(pio, type, B_FALSE);
563	} else {
564		mutex_exit(&pio->io_lock);
565	}
566}
567
568static void
569zio_inherit_child_errors(zio_t *zio, enum zio_child c)
570{
571	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
572		zio->io_error = zio->io_child_error[c];
573}
574
575int
576zio_timestamp_compare(const void *x1, const void *x2)
577{
578	const zio_t *z1 = x1;
579	const zio_t *z2 = x2;
580
581	if (z1->io_queued_timestamp < z2->io_queued_timestamp)
582		return (-1);
583	if (z1->io_queued_timestamp > z2->io_queued_timestamp)
584		return (1);
585
586	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
587		return (-1);
588	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
589		return (1);
590
591	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
592		return (-1);
593	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
594		return (1);
595
596	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
597		return (-1);
598	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
599		return (1);
600
601	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
602		return (-1);
603	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
604		return (1);
605
606	if (z1 < z2)
607		return (-1);
608	if (z1 > z2)
609		return (1);
610
611	return (0);
612}
613
614/*
615 * ==========================================================================
616 * Create the various types of I/O (read, write, free, etc)
617 * ==========================================================================
618 */
619static zio_t *
620zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
621    void *data, uint64_t size, zio_done_func_t *done, void *private,
622    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
623    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
624    enum zio_stage stage, enum zio_stage pipeline)
625{
626	zio_t *zio;
627
628	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
629	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
630	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
631
632	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
633	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
634	ASSERT(vd || stage == ZIO_STAGE_OPEN);
635
636	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
637	bzero(zio, sizeof (zio_t));
638
639	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
640	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
641
642	list_create(&zio->io_parent_list, sizeof (zio_link_t),
643	    offsetof(zio_link_t, zl_parent_node));
644	list_create(&zio->io_child_list, sizeof (zio_link_t),
645	    offsetof(zio_link_t, zl_child_node));
646
647	if (vd != NULL)
648		zio->io_child_type = ZIO_CHILD_VDEV;
649	else if (flags & ZIO_FLAG_GANG_CHILD)
650		zio->io_child_type = ZIO_CHILD_GANG;
651	else if (flags & ZIO_FLAG_DDT_CHILD)
652		zio->io_child_type = ZIO_CHILD_DDT;
653	else
654		zio->io_child_type = ZIO_CHILD_LOGICAL;
655
656	if (bp != NULL) {
657		zio->io_bp = (blkptr_t *)bp;
658		zio->io_bp_copy = *bp;
659		zio->io_bp_orig = *bp;
660		if (type != ZIO_TYPE_WRITE ||
661		    zio->io_child_type == ZIO_CHILD_DDT)
662			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
663		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
664			zio->io_logical = zio;
665		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
666			pipeline |= ZIO_GANG_STAGES;
667	}
668
669	zio->io_spa = spa;
670	zio->io_txg = txg;
671	zio->io_done = done;
672	zio->io_private = private;
673	zio->io_type = type;
674	zio->io_priority = priority;
675	zio->io_vd = vd;
676	zio->io_offset = offset;
677	zio->io_orig_data = zio->io_data = data;
678	zio->io_orig_size = zio->io_size = size;
679	zio->io_orig_flags = zio->io_flags = flags;
680	zio->io_orig_stage = zio->io_stage = stage;
681	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
682	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
683
684	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
685	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
686
687	if (zb != NULL)
688		zio->io_bookmark = *zb;
689
690	if (pio != NULL) {
691		if (zio->io_logical == NULL)
692			zio->io_logical = pio->io_logical;
693		if (zio->io_child_type == ZIO_CHILD_GANG)
694			zio->io_gang_leader = pio->io_gang_leader;
695		zio_add_child(pio, zio);
696	}
697
698	return (zio);
699}
700
701static void
702zio_destroy(zio_t *zio)
703{
704	list_destroy(&zio->io_parent_list);
705	list_destroy(&zio->io_child_list);
706	mutex_destroy(&zio->io_lock);
707	cv_destroy(&zio->io_cv);
708	kmem_cache_free(zio_cache, zio);
709}
710
711zio_t *
712zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
713    void *private, enum zio_flag flags)
714{
715	zio_t *zio;
716
717	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
718	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
719	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
720
721	return (zio);
722}
723
724zio_t *
725zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
726{
727	return (zio_null(NULL, spa, NULL, done, private, flags));
728}
729
730void
731zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
732{
733	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
734		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
735		    bp, (longlong_t)BP_GET_TYPE(bp));
736	}
737	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
738	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
739		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
740		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
741	}
742	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
743	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
744		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
745		    bp, (longlong_t)BP_GET_COMPRESS(bp));
746	}
747	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
748		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
749		    bp, (longlong_t)BP_GET_LSIZE(bp));
750	}
751	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
752		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
753		    bp, (longlong_t)BP_GET_PSIZE(bp));
754	}
755
756	if (BP_IS_EMBEDDED(bp)) {
757		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
758			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
759			    bp, (longlong_t)BPE_GET_ETYPE(bp));
760		}
761	}
762
763	/*
764	 * Pool-specific checks.
765	 *
766	 * Note: it would be nice to verify that the blk_birth and
767	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
768	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
769	 * that are in the log) to be arbitrarily large.
770	 */
771	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
772		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
773		if (vdevid >= spa->spa_root_vdev->vdev_children) {
774			zfs_panic_recover("blkptr at %p DVA %u has invalid "
775			    "VDEV %llu",
776			    bp, i, (longlong_t)vdevid);
777			continue;
778		}
779		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
780		if (vd == NULL) {
781			zfs_panic_recover("blkptr at %p DVA %u has invalid "
782			    "VDEV %llu",
783			    bp, i, (longlong_t)vdevid);
784			continue;
785		}
786		if (vd->vdev_ops == &vdev_hole_ops) {
787			zfs_panic_recover("blkptr at %p DVA %u has hole "
788			    "VDEV %llu",
789			    bp, i, (longlong_t)vdevid);
790			continue;
791		}
792		if (vd->vdev_ops == &vdev_missing_ops) {
793			/*
794			 * "missing" vdevs are valid during import, but we
795			 * don't have their detailed info (e.g. asize), so
796			 * we can't perform any more checks on them.
797			 */
798			continue;
799		}
800		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
801		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
802		if (BP_IS_GANG(bp))
803			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
804		if (offset + asize > vd->vdev_asize) {
805			zfs_panic_recover("blkptr at %p DVA %u has invalid "
806			    "OFFSET %llu",
807			    bp, i, (longlong_t)offset);
808		}
809	}
810}
811
812zio_t *
813zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
814    void *data, uint64_t size, zio_done_func_t *done, void *private,
815    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
816{
817	zio_t *zio;
818
819	zfs_blkptr_verify(spa, bp);
820
821	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
822	    data, size, done, private,
823	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
824	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
825	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
826
827	return (zio);
828}
829
830zio_t *
831zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
832    void *data, uint64_t size, const zio_prop_t *zp,
833    zio_done_func_t *ready, zio_done_func_t *children_ready,
834    zio_done_func_t *physdone, zio_done_func_t *done,
835    void *private, zio_priority_t priority, enum zio_flag flags,
836    const zbookmark_phys_t *zb)
837{
838	zio_t *zio;
839
840	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
841	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
842	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
843	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
844	    DMU_OT_IS_VALID(zp->zp_type) &&
845	    zp->zp_level < 32 &&
846	    zp->zp_copies > 0 &&
847	    zp->zp_copies <= spa_max_replication(spa));
848
849	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
850	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
851	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
852	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
853
854	zio->io_ready = ready;
855	zio->io_children_ready = children_ready;
856	zio->io_physdone = physdone;
857	zio->io_prop = *zp;
858
859	/*
860	 * Data can be NULL if we are going to call zio_write_override() to
861	 * provide the already-allocated BP.  But we may need the data to
862	 * verify a dedup hit (if requested).  In this case, don't try to
863	 * dedup (just take the already-allocated BP verbatim).
864	 */
865	if (data == NULL && zio->io_prop.zp_dedup_verify) {
866		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
867	}
868
869	return (zio);
870}
871
872zio_t *
873zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
874    uint64_t size, zio_done_func_t *done, void *private,
875    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
876{
877	zio_t *zio;
878
879	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
880	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
881	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
882
883	return (zio);
884}
885
886void
887zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
888{
889	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
890	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
891	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
892	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
893
894	/*
895	 * We must reset the io_prop to match the values that existed
896	 * when the bp was first written by dmu_sync() keeping in mind
897	 * that nopwrite and dedup are mutually exclusive.
898	 */
899	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
900	zio->io_prop.zp_nopwrite = nopwrite;
901	zio->io_prop.zp_copies = copies;
902	zio->io_bp_override = bp;
903}
904
905void
906zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
907{
908
909	/*
910	 * The check for EMBEDDED is a performance optimization.  We
911	 * process the free here (by ignoring it) rather than
912	 * putting it on the list and then processing it in zio_free_sync().
913	 */
914	if (BP_IS_EMBEDDED(bp))
915		return;
916	metaslab_check_free(spa, bp);
917
918	/*
919	 * Frees that are for the currently-syncing txg, are not going to be
920	 * deferred, and which will not need to do a read (i.e. not GANG or
921	 * DEDUP), can be processed immediately.  Otherwise, put them on the
922	 * in-memory list for later processing.
923	 */
924	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
925	    txg != spa->spa_syncing_txg ||
926	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
927		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
928	} else {
929		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
930		    BP_GET_PSIZE(bp), 0)));
931	}
932}
933
934zio_t *
935zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
936    uint64_t size, enum zio_flag flags)
937{
938	zio_t *zio;
939	enum zio_stage stage = ZIO_FREE_PIPELINE;
940
941	ASSERT(!BP_IS_HOLE(bp));
942	ASSERT(spa_syncing_txg(spa) == txg);
943	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
944
945	if (BP_IS_EMBEDDED(bp))
946		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
947
948	metaslab_check_free(spa, bp);
949	arc_freed(spa, bp);
950
951	if (zfs_trim_enabled)
952		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
953		    ZIO_STAGE_VDEV_IO_ASSESS;
954	/*
955	 * GANG and DEDUP blocks can induce a read (for the gang block header,
956	 * or the DDT), so issue them asynchronously so that this thread is
957	 * not tied up.
958	 */
959	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
960		stage |= ZIO_STAGE_ISSUE_ASYNC;
961
962	flags |= ZIO_FLAG_DONT_QUEUE;
963
964	zio = zio_create(pio, spa, txg, bp, NULL, size,
965	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
966	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
967
968	return (zio);
969}
970
971zio_t *
972zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
973    zio_done_func_t *done, void *private, enum zio_flag flags)
974{
975	zio_t *zio;
976
977	dprintf_bp(bp, "claiming in txg %llu", txg);
978
979	if (BP_IS_EMBEDDED(bp))
980		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
981
982	/*
983	 * A claim is an allocation of a specific block.  Claims are needed
984	 * to support immediate writes in the intent log.  The issue is that
985	 * immediate writes contain committed data, but in a txg that was
986	 * *not* committed.  Upon opening the pool after an unclean shutdown,
987	 * the intent log claims all blocks that contain immediate write data
988	 * so that the SPA knows they're in use.
989	 *
990	 * All claims *must* be resolved in the first txg -- before the SPA
991	 * starts allocating blocks -- so that nothing is allocated twice.
992	 * If txg == 0 we just verify that the block is claimable.
993	 */
994	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
995	ASSERT(txg == spa_first_txg(spa) || txg == 0);
996	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
997
998	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
999	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
1000	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1001	ASSERT0(zio->io_queued_timestamp);
1002
1003	return (zio);
1004}
1005
1006zio_t *
1007zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
1008    uint64_t size, zio_done_func_t *done, void *private,
1009    zio_priority_t priority, enum zio_flag flags)
1010{
1011	zio_t *zio;
1012	int c;
1013
1014	if (vd->vdev_children == 0) {
1015		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
1016		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
1017		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1018
1019		zio->io_cmd = cmd;
1020	} else {
1021		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1022
1023		for (c = 0; c < vd->vdev_children; c++)
1024			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1025			    offset, size, done, private, priority, flags));
1026	}
1027
1028	return (zio);
1029}
1030
1031zio_t *
1032zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1033    void *data, int checksum, zio_done_func_t *done, void *private,
1034    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1035{
1036	zio_t *zio;
1037
1038	ASSERT(vd->vdev_children == 0);
1039	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1040	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1041	ASSERT3U(offset + size, <=, vd->vdev_psize);
1042
1043	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1044	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1045	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1046
1047	zio->io_prop.zp_checksum = checksum;
1048
1049	return (zio);
1050}
1051
1052zio_t *
1053zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1054    void *data, int checksum, zio_done_func_t *done, void *private,
1055    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1056{
1057	zio_t *zio;
1058
1059	ASSERT(vd->vdev_children == 0);
1060	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1061	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1062	ASSERT3U(offset + size, <=, vd->vdev_psize);
1063
1064	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1065	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1066	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1067
1068	zio->io_prop.zp_checksum = checksum;
1069
1070	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1071		/*
1072		 * zec checksums are necessarily destructive -- they modify
1073		 * the end of the write buffer to hold the verifier/checksum.
1074		 * Therefore, we must make a local copy in case the data is
1075		 * being written to multiple places in parallel.
1076		 */
1077		void *wbuf = zio_buf_alloc(size);
1078		bcopy(data, wbuf, size);
1079		zio_push_transform(zio, wbuf, size, size, NULL);
1080	}
1081
1082	return (zio);
1083}
1084
1085/*
1086 * Create a child I/O to do some work for us.
1087 */
1088zio_t *
1089zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1090    void *data, uint64_t size, int type, zio_priority_t priority,
1091    enum zio_flag flags, zio_done_func_t *done, void *private)
1092{
1093	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1094	zio_t *zio;
1095
1096	ASSERT(vd->vdev_parent ==
1097	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1098
1099	if (type == ZIO_TYPE_READ && bp != NULL) {
1100		/*
1101		 * If we have the bp, then the child should perform the
1102		 * checksum and the parent need not.  This pushes error
1103		 * detection as close to the leaves as possible and
1104		 * eliminates redundant checksums in the interior nodes.
1105		 */
1106		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1107		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1108	}
1109
1110	/* Not all IO types require vdev io done stage e.g. free */
1111	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1112		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1113
1114	if (vd->vdev_children == 0)
1115		offset += VDEV_LABEL_START_SIZE;
1116
1117	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1118
1119	/*
1120	 * If we've decided to do a repair, the write is not speculative --
1121	 * even if the original read was.
1122	 */
1123	if (flags & ZIO_FLAG_IO_REPAIR)
1124		flags &= ~ZIO_FLAG_SPECULATIVE;
1125
1126	/*
1127	 * If we're creating a child I/O that is not associated with a
1128	 * top-level vdev, then the child zio is not an allocating I/O.
1129	 * If this is a retried I/O then we ignore it since we will
1130	 * have already processed the original allocating I/O.
1131	 */
1132	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1133	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1134		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1135
1136		ASSERT(mc->mc_alloc_throttle_enabled);
1137		ASSERT(type == ZIO_TYPE_WRITE);
1138		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1139		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1140		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1141		    pio->io_child_type == ZIO_CHILD_GANG);
1142
1143		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1144	}
1145
1146	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1147	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1148	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1149	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1150
1151	zio->io_physdone = pio->io_physdone;
1152	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1153		zio->io_logical->io_phys_children++;
1154
1155	return (zio);
1156}
1157
1158zio_t *
1159zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1160    int type, zio_priority_t priority, enum zio_flag flags,
1161    zio_done_func_t *done, void *private)
1162{
1163	zio_t *zio;
1164
1165	ASSERT(vd->vdev_ops->vdev_op_leaf);
1166
1167	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1168	    data, size, done, private, type, priority,
1169	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1170	    vd, offset, NULL,
1171	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1172
1173	return (zio);
1174}
1175
1176void
1177zio_flush(zio_t *zio, vdev_t *vd)
1178{
1179	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1180	    NULL, NULL, ZIO_PRIORITY_NOW,
1181	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1182}
1183
1184zio_t *
1185zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1186{
1187
1188	ASSERT(vd->vdev_ops->vdev_op_leaf);
1189
1190	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1191	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1192	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1193	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1194}
1195
1196void
1197zio_shrink(zio_t *zio, uint64_t size)
1198{
1199	ASSERT(zio->io_executor == NULL);
1200	ASSERT(zio->io_orig_size == zio->io_size);
1201	ASSERT(size <= zio->io_size);
1202
1203	/*
1204	 * We don't shrink for raidz because of problems with the
1205	 * reconstruction when reading back less than the block size.
1206	 * Note, BP_IS_RAIDZ() assumes no compression.
1207	 */
1208	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1209	if (!BP_IS_RAIDZ(zio->io_bp))
1210		zio->io_orig_size = zio->io_size = size;
1211}
1212
1213/*
1214 * ==========================================================================
1215 * Prepare to read and write logical blocks
1216 * ==========================================================================
1217 */
1218
1219static int
1220zio_read_bp_init(zio_t *zio)
1221{
1222	blkptr_t *bp = zio->io_bp;
1223
1224	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1225	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1226	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1227		uint64_t psize =
1228		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1229		void *cbuf = zio_buf_alloc(psize);
1230
1231		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1232	}
1233
1234	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1235		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1236		decode_embedded_bp_compressed(bp, zio->io_data);
1237	} else {
1238		ASSERT(!BP_IS_EMBEDDED(bp));
1239	}
1240
1241	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1242		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1243
1244	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1245		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1246
1247	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1248		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1249
1250	return (ZIO_PIPELINE_CONTINUE);
1251}
1252
1253static int
1254zio_write_bp_init(zio_t *zio)
1255{
1256	if (!IO_IS_ALLOCATING(zio))
1257		return (ZIO_PIPELINE_CONTINUE);
1258
1259	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1260
1261	if (zio->io_bp_override) {
1262		blkptr_t *bp = zio->io_bp;
1263		zio_prop_t *zp = &zio->io_prop;
1264
1265		ASSERT(bp->blk_birth != zio->io_txg);
1266		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1267
1268		*bp = *zio->io_bp_override;
1269		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1270
1271		if (BP_IS_EMBEDDED(bp))
1272			return (ZIO_PIPELINE_CONTINUE);
1273
1274		/*
1275		 * If we've been overridden and nopwrite is set then
1276		 * set the flag accordingly to indicate that a nopwrite
1277		 * has already occurred.
1278		 */
1279		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1280			ASSERT(!zp->zp_dedup);
1281			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1282			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1283			return (ZIO_PIPELINE_CONTINUE);
1284		}
1285
1286		ASSERT(!zp->zp_nopwrite);
1287
1288		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1289			return (ZIO_PIPELINE_CONTINUE);
1290
1291		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1292		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1293
1294		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1295			BP_SET_DEDUP(bp, 1);
1296			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1297			return (ZIO_PIPELINE_CONTINUE);
1298		}
1299
1300		/*
1301		 * We were unable to handle this as an override bp, treat
1302		 * it as a regular write I/O.
1303		 */
1304		zio->io_bp_override = NULL;
1305		*bp = zio->io_bp_orig;
1306		zio->io_pipeline = zio->io_orig_pipeline;
1307	}
1308
1309	return (ZIO_PIPELINE_CONTINUE);
1310}
1311
1312static int
1313zio_write_compress(zio_t *zio)
1314{
1315	spa_t *spa = zio->io_spa;
1316	zio_prop_t *zp = &zio->io_prop;
1317	enum zio_compress compress = zp->zp_compress;
1318	blkptr_t *bp = zio->io_bp;
1319	uint64_t lsize = zio->io_size;
1320	uint64_t psize = lsize;
1321	int pass = 1;
1322
1323	/*
1324	 * If our children haven't all reached the ready stage,
1325	 * wait for them and then repeat this pipeline stage.
1326	 */
1327	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1328	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1329		return (ZIO_PIPELINE_STOP);
1330
1331	if (!IO_IS_ALLOCATING(zio))
1332		return (ZIO_PIPELINE_CONTINUE);
1333
1334	if (zio->io_children_ready != NULL) {
1335		/*
1336		 * Now that all our children are ready, run the callback
1337		 * associated with this zio in case it wants to modify the
1338		 * data to be written.
1339		 */
1340		ASSERT3U(zp->zp_level, >, 0);
1341		zio->io_children_ready(zio);
1342	}
1343
1344	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1345	ASSERT(zio->io_bp_override == NULL);
1346
1347	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1348		/*
1349		 * We're rewriting an existing block, which means we're
1350		 * working on behalf of spa_sync().  For spa_sync() to
1351		 * converge, it must eventually be the case that we don't
1352		 * have to allocate new blocks.  But compression changes
1353		 * the blocksize, which forces a reallocate, and makes
1354		 * convergence take longer.  Therefore, after the first
1355		 * few passes, stop compressing to ensure convergence.
1356		 */
1357		pass = spa_sync_pass(spa);
1358
1359		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1360		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1361		ASSERT(!BP_GET_DEDUP(bp));
1362
1363		if (pass >= zfs_sync_pass_dont_compress)
1364			compress = ZIO_COMPRESS_OFF;
1365
1366		/* Make sure someone doesn't change their mind on overwrites */
1367		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1368		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1369	}
1370
1371	if (compress != ZIO_COMPRESS_OFF) {
1372		void *cbuf = zio_buf_alloc(lsize);
1373		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1374		if (psize == 0 || psize == lsize) {
1375			compress = ZIO_COMPRESS_OFF;
1376			zio_buf_free(cbuf, lsize);
1377		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1378		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1379		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1380			encode_embedded_bp_compressed(bp,
1381			    cbuf, compress, lsize, psize);
1382			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1383			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1384			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1385			zio_buf_free(cbuf, lsize);
1386			bp->blk_birth = zio->io_txg;
1387			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1388			ASSERT(spa_feature_is_active(spa,
1389			    SPA_FEATURE_EMBEDDED_DATA));
1390			return (ZIO_PIPELINE_CONTINUE);
1391		} else {
1392			/*
1393			 * Round up compressed size up to the ashift
1394			 * of the smallest-ashift device, and zero the tail.
1395			 * This ensures that the compressed size of the BP
1396			 * (and thus compressratio property) are correct,
1397			 * in that we charge for the padding used to fill out
1398			 * the last sector.
1399			 */
1400			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1401			size_t rounded = (size_t)P2ROUNDUP(psize,
1402			    1ULL << spa->spa_min_ashift);
1403			if (rounded >= lsize) {
1404				compress = ZIO_COMPRESS_OFF;
1405				zio_buf_free(cbuf, lsize);
1406				psize = lsize;
1407			} else {
1408				bzero((char *)cbuf + psize, rounded - psize);
1409				psize = rounded;
1410				zio_push_transform(zio, cbuf,
1411				    psize, lsize, NULL);
1412			}
1413		}
1414
1415		/*
1416		 * We were unable to handle this as an override bp, treat
1417		 * it as a regular write I/O.
1418		 */
1419		zio->io_bp_override = NULL;
1420		*bp = zio->io_bp_orig;
1421		zio->io_pipeline = zio->io_orig_pipeline;
1422	}
1423
1424	/*
1425	 * The final pass of spa_sync() must be all rewrites, but the first
1426	 * few passes offer a trade-off: allocating blocks defers convergence,
1427	 * but newly allocated blocks are sequential, so they can be written
1428	 * to disk faster.  Therefore, we allow the first few passes of
1429	 * spa_sync() to allocate new blocks, but force rewrites after that.
1430	 * There should only be a handful of blocks after pass 1 in any case.
1431	 */
1432	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1433	    BP_GET_PSIZE(bp) == psize &&
1434	    pass >= zfs_sync_pass_rewrite) {
1435		ASSERT(psize != 0);
1436		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1437		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1438		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1439	} else {
1440		BP_ZERO(bp);
1441		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1442	}
1443
1444	if (psize == 0) {
1445		if (zio->io_bp_orig.blk_birth != 0 &&
1446		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1447			BP_SET_LSIZE(bp, lsize);
1448			BP_SET_TYPE(bp, zp->zp_type);
1449			BP_SET_LEVEL(bp, zp->zp_level);
1450			BP_SET_BIRTH(bp, zio->io_txg, 0);
1451		}
1452		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1453	} else {
1454		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1455		BP_SET_LSIZE(bp, lsize);
1456		BP_SET_TYPE(bp, zp->zp_type);
1457		BP_SET_LEVEL(bp, zp->zp_level);
1458		BP_SET_PSIZE(bp, psize);
1459		BP_SET_COMPRESS(bp, compress);
1460		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1461		BP_SET_DEDUP(bp, zp->zp_dedup);
1462		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1463		if (zp->zp_dedup) {
1464			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1465			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1466			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1467		}
1468		if (zp->zp_nopwrite) {
1469			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1470			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1471			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1472		}
1473	}
1474	return (ZIO_PIPELINE_CONTINUE);
1475}
1476
1477static int
1478zio_free_bp_init(zio_t *zio)
1479{
1480	blkptr_t *bp = zio->io_bp;
1481
1482	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1483		if (BP_GET_DEDUP(bp))
1484			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1485	}
1486
1487	return (ZIO_PIPELINE_CONTINUE);
1488}
1489
1490/*
1491 * ==========================================================================
1492 * Execute the I/O pipeline
1493 * ==========================================================================
1494 */
1495
1496static void
1497zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1498{
1499	spa_t *spa = zio->io_spa;
1500	zio_type_t t = zio->io_type;
1501	int flags = (cutinline ? TQ_FRONT : 0);
1502
1503	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1504
1505	/*
1506	 * If we're a config writer or a probe, the normal issue and
1507	 * interrupt threads may all be blocked waiting for the config lock.
1508	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1509	 */
1510	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1511		t = ZIO_TYPE_NULL;
1512
1513	/*
1514	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1515	 */
1516	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1517		t = ZIO_TYPE_NULL;
1518
1519	/*
1520	 * If this is a high priority I/O, then use the high priority taskq if
1521	 * available.
1522	 */
1523	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1524	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1525		q++;
1526
1527	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1528
1529	/*
1530	 * NB: We are assuming that the zio can only be dispatched
1531	 * to a single taskq at a time.  It would be a grievous error
1532	 * to dispatch the zio to another taskq at the same time.
1533	 */
1534#if defined(illumos) || !defined(_KERNEL)
1535	ASSERT(zio->io_tqent.tqent_next == NULL);
1536#else
1537	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1538#endif
1539	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1540	    flags, &zio->io_tqent);
1541}
1542
1543static boolean_t
1544zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1545{
1546	kthread_t *executor = zio->io_executor;
1547	spa_t *spa = zio->io_spa;
1548
1549	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1550		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1551		uint_t i;
1552		for (i = 0; i < tqs->stqs_count; i++) {
1553			if (taskq_member(tqs->stqs_taskq[i], executor))
1554				return (B_TRUE);
1555		}
1556	}
1557
1558	return (B_FALSE);
1559}
1560
1561static int
1562zio_issue_async(zio_t *zio)
1563{
1564	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1565
1566	return (ZIO_PIPELINE_STOP);
1567}
1568
1569void
1570zio_interrupt(zio_t *zio)
1571{
1572	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1573}
1574
1575void
1576zio_delay_interrupt(zio_t *zio)
1577{
1578	/*
1579	 * The timeout_generic() function isn't defined in userspace, so
1580	 * rather than trying to implement the function, the zio delay
1581	 * functionality has been disabled for userspace builds.
1582	 */
1583
1584#ifdef _KERNEL
1585	/*
1586	 * If io_target_timestamp is zero, then no delay has been registered
1587	 * for this IO, thus jump to the end of this function and "skip" the
1588	 * delay; issuing it directly to the zio layer.
1589	 */
1590	if (zio->io_target_timestamp != 0) {
1591		hrtime_t now = gethrtime();
1592
1593		if (now >= zio->io_target_timestamp) {
1594			/*
1595			 * This IO has already taken longer than the target
1596			 * delay to complete, so we don't want to delay it
1597			 * any longer; we "miss" the delay and issue it
1598			 * directly to the zio layer. This is likely due to
1599			 * the target latency being set to a value less than
1600			 * the underlying hardware can satisfy (e.g. delay
1601			 * set to 1ms, but the disks take 10ms to complete an
1602			 * IO request).
1603			 */
1604
1605			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1606			    hrtime_t, now);
1607
1608			zio_interrupt(zio);
1609		} else {
1610			hrtime_t diff = zio->io_target_timestamp - now;
1611
1612			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1613			    hrtime_t, now, hrtime_t, diff);
1614
1615			(void) timeout_generic(CALLOUT_NORMAL,
1616			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1617		}
1618
1619		return;
1620	}
1621#endif
1622
1623	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1624	zio_interrupt(zio);
1625}
1626
1627/*
1628 * Execute the I/O pipeline until one of the following occurs:
1629 *
1630 *	(1) the I/O completes
1631 *	(2) the pipeline stalls waiting for dependent child I/Os
1632 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1633 *	(4) the I/O is delegated by vdev-level caching or aggregation
1634 *	(5) the I/O is deferred due to vdev-level queueing
1635 *	(6) the I/O is handed off to another thread.
1636 *
1637 * In all cases, the pipeline stops whenever there's no CPU work; it never
1638 * burns a thread in cv_wait().
1639 *
1640 * There's no locking on io_stage because there's no legitimate way
1641 * for multiple threads to be attempting to process the same I/O.
1642 */
1643static zio_pipe_stage_t *zio_pipeline[];
1644
1645void
1646zio_execute(zio_t *zio)
1647{
1648	zio->io_executor = curthread;
1649
1650	ASSERT3U(zio->io_queued_timestamp, >, 0);
1651
1652	while (zio->io_stage < ZIO_STAGE_DONE) {
1653		enum zio_stage pipeline = zio->io_pipeline;
1654		enum zio_stage stage = zio->io_stage;
1655		int rv;
1656
1657		ASSERT(!MUTEX_HELD(&zio->io_lock));
1658		ASSERT(ISP2(stage));
1659		ASSERT(zio->io_stall == NULL);
1660
1661		do {
1662			stage <<= 1;
1663		} while ((stage & pipeline) == 0);
1664
1665		ASSERT(stage <= ZIO_STAGE_DONE);
1666
1667		/*
1668		 * If we are in interrupt context and this pipeline stage
1669		 * will grab a config lock that is held across I/O,
1670		 * or may wait for an I/O that needs an interrupt thread
1671		 * to complete, issue async to avoid deadlock.
1672		 *
1673		 * For VDEV_IO_START, we cut in line so that the io will
1674		 * be sent to disk promptly.
1675		 */
1676		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1677		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1678			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1679			    zio_requeue_io_start_cut_in_line : B_FALSE;
1680			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1681			return;
1682		}
1683
1684		zio->io_stage = stage;
1685		zio->io_pipeline_trace |= zio->io_stage;
1686		rv = zio_pipeline[highbit64(stage) - 1](zio);
1687
1688		if (rv == ZIO_PIPELINE_STOP)
1689			return;
1690
1691		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1692	}
1693}
1694
1695/*
1696 * ==========================================================================
1697 * Initiate I/O, either sync or async
1698 * ==========================================================================
1699 */
1700int
1701zio_wait(zio_t *zio)
1702{
1703	int error;
1704
1705	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1706	ASSERT(zio->io_executor == NULL);
1707
1708	zio->io_waiter = curthread;
1709	ASSERT0(zio->io_queued_timestamp);
1710	zio->io_queued_timestamp = gethrtime();
1711
1712	zio_execute(zio);
1713
1714	mutex_enter(&zio->io_lock);
1715	while (zio->io_executor != NULL)
1716		cv_wait(&zio->io_cv, &zio->io_lock);
1717	mutex_exit(&zio->io_lock);
1718
1719	error = zio->io_error;
1720	zio_destroy(zio);
1721
1722	return (error);
1723}
1724
1725void
1726zio_nowait(zio_t *zio)
1727{
1728	ASSERT(zio->io_executor == NULL);
1729
1730	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1731	    zio_unique_parent(zio) == NULL) {
1732		/*
1733		 * This is a logical async I/O with no parent to wait for it.
1734		 * We add it to the spa_async_root_zio "Godfather" I/O which
1735		 * will ensure they complete prior to unloading the pool.
1736		 */
1737		spa_t *spa = zio->io_spa;
1738
1739		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1740	}
1741
1742	ASSERT0(zio->io_queued_timestamp);
1743	zio->io_queued_timestamp = gethrtime();
1744	zio_execute(zio);
1745}
1746
1747/*
1748 * ==========================================================================
1749 * Reexecute or suspend/resume failed I/O
1750 * ==========================================================================
1751 */
1752
1753static void
1754zio_reexecute(zio_t *pio)
1755{
1756	zio_t *cio, *cio_next;
1757
1758	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1759	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1760	ASSERT(pio->io_gang_leader == NULL);
1761	ASSERT(pio->io_gang_tree == NULL);
1762
1763	pio->io_flags = pio->io_orig_flags;
1764	pio->io_stage = pio->io_orig_stage;
1765	pio->io_pipeline = pio->io_orig_pipeline;
1766	pio->io_reexecute = 0;
1767	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1768	pio->io_pipeline_trace = 0;
1769	pio->io_error = 0;
1770	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1771		pio->io_state[w] = 0;
1772	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1773		pio->io_child_error[c] = 0;
1774
1775	if (IO_IS_ALLOCATING(pio))
1776		BP_ZERO(pio->io_bp);
1777
1778	/*
1779	 * As we reexecute pio's children, new children could be created.
1780	 * New children go to the head of pio's io_child_list, however,
1781	 * so we will (correctly) not reexecute them.  The key is that
1782	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1783	 * cannot be affected by any side effects of reexecuting 'cio'.
1784	 */
1785	zio_link_t *zl = NULL;
1786	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1787		cio_next = zio_walk_children(pio, &zl);
1788		mutex_enter(&pio->io_lock);
1789		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1790			pio->io_children[cio->io_child_type][w]++;
1791		mutex_exit(&pio->io_lock);
1792		zio_reexecute(cio);
1793	}
1794
1795	/*
1796	 * Now that all children have been reexecuted, execute the parent.
1797	 * We don't reexecute "The Godfather" I/O here as it's the
1798	 * responsibility of the caller to wait on him.
1799	 */
1800	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1801		pio->io_queued_timestamp = gethrtime();
1802		zio_execute(pio);
1803	}
1804}
1805
1806void
1807zio_suspend(spa_t *spa, zio_t *zio)
1808{
1809	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1810		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1811		    "failure and the failure mode property for this pool "
1812		    "is set to panic.", spa_name(spa));
1813
1814	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1815
1816	mutex_enter(&spa->spa_suspend_lock);
1817
1818	if (spa->spa_suspend_zio_root == NULL)
1819		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1820		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1821		    ZIO_FLAG_GODFATHER);
1822
1823	spa->spa_suspended = B_TRUE;
1824
1825	if (zio != NULL) {
1826		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1827		ASSERT(zio != spa->spa_suspend_zio_root);
1828		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1829		ASSERT(zio_unique_parent(zio) == NULL);
1830		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1831		zio_add_child(spa->spa_suspend_zio_root, zio);
1832	}
1833
1834	mutex_exit(&spa->spa_suspend_lock);
1835}
1836
1837int
1838zio_resume(spa_t *spa)
1839{
1840	zio_t *pio;
1841
1842	/*
1843	 * Reexecute all previously suspended i/o.
1844	 */
1845	mutex_enter(&spa->spa_suspend_lock);
1846	spa->spa_suspended = B_FALSE;
1847	cv_broadcast(&spa->spa_suspend_cv);
1848	pio = spa->spa_suspend_zio_root;
1849	spa->spa_suspend_zio_root = NULL;
1850	mutex_exit(&spa->spa_suspend_lock);
1851
1852	if (pio == NULL)
1853		return (0);
1854
1855	zio_reexecute(pio);
1856	return (zio_wait(pio));
1857}
1858
1859void
1860zio_resume_wait(spa_t *spa)
1861{
1862	mutex_enter(&spa->spa_suspend_lock);
1863	while (spa_suspended(spa))
1864		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1865	mutex_exit(&spa->spa_suspend_lock);
1866}
1867
1868/*
1869 * ==========================================================================
1870 * Gang blocks.
1871 *
1872 * A gang block is a collection of small blocks that looks to the DMU
1873 * like one large block.  When zio_dva_allocate() cannot find a block
1874 * of the requested size, due to either severe fragmentation or the pool
1875 * being nearly full, it calls zio_write_gang_block() to construct the
1876 * block from smaller fragments.
1877 *
1878 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1879 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1880 * an indirect block: it's an array of block pointers.  It consumes
1881 * only one sector and hence is allocatable regardless of fragmentation.
1882 * The gang header's bps point to its gang members, which hold the data.
1883 *
1884 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1885 * as the verifier to ensure uniqueness of the SHA256 checksum.
1886 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1887 * not the gang header.  This ensures that data block signatures (needed for
1888 * deduplication) are independent of how the block is physically stored.
1889 *
1890 * Gang blocks can be nested: a gang member may itself be a gang block.
1891 * Thus every gang block is a tree in which root and all interior nodes are
1892 * gang headers, and the leaves are normal blocks that contain user data.
1893 * The root of the gang tree is called the gang leader.
1894 *
1895 * To perform any operation (read, rewrite, free, claim) on a gang block,
1896 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1897 * in the io_gang_tree field of the original logical i/o by recursively
1898 * reading the gang leader and all gang headers below it.  This yields
1899 * an in-core tree containing the contents of every gang header and the
1900 * bps for every constituent of the gang block.
1901 *
1902 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1903 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1904 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1905 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1906 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1907 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1908 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1909 * of the gang header plus zio_checksum_compute() of the data to update the
1910 * gang header's blk_cksum as described above.
1911 *
1912 * The two-phase assemble/issue model solves the problem of partial failure --
1913 * what if you'd freed part of a gang block but then couldn't read the
1914 * gang header for another part?  Assembling the entire gang tree first
1915 * ensures that all the necessary gang header I/O has succeeded before
1916 * starting the actual work of free, claim, or write.  Once the gang tree
1917 * is assembled, free and claim are in-memory operations that cannot fail.
1918 *
1919 * In the event that a gang write fails, zio_dva_unallocate() walks the
1920 * gang tree to immediately free (i.e. insert back into the space map)
1921 * everything we've allocated.  This ensures that we don't get ENOSPC
1922 * errors during repeated suspend/resume cycles due to a flaky device.
1923 *
1924 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1925 * the gang tree, we won't modify the block, so we can safely defer the free
1926 * (knowing that the block is still intact).  If we *can* assemble the gang
1927 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1928 * each constituent bp and we can allocate a new block on the next sync pass.
1929 *
1930 * In all cases, the gang tree allows complete recovery from partial failure.
1931 * ==========================================================================
1932 */
1933
1934static zio_t *
1935zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1936{
1937	if (gn != NULL)
1938		return (pio);
1939
1940	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1941	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1942	    &pio->io_bookmark));
1943}
1944
1945zio_t *
1946zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1947{
1948	zio_t *zio;
1949
1950	if (gn != NULL) {
1951		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1952		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1953		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1954		/*
1955		 * As we rewrite each gang header, the pipeline will compute
1956		 * a new gang block header checksum for it; but no one will
1957		 * compute a new data checksum, so we do that here.  The one
1958		 * exception is the gang leader: the pipeline already computed
1959		 * its data checksum because that stage precedes gang assembly.
1960		 * (Presently, nothing actually uses interior data checksums;
1961		 * this is just good hygiene.)
1962		 */
1963		if (gn != pio->io_gang_leader->io_gang_tree) {
1964			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1965			    data, BP_GET_PSIZE(bp));
1966		}
1967		/*
1968		 * If we are here to damage data for testing purposes,
1969		 * leave the GBH alone so that we can detect the damage.
1970		 */
1971		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1972			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1973	} else {
1974		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1975		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1976		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1977	}
1978
1979	return (zio);
1980}
1981
1982/* ARGSUSED */
1983zio_t *
1984zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1985{
1986	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1987	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1988	    ZIO_GANG_CHILD_FLAGS(pio)));
1989}
1990
1991/* ARGSUSED */
1992zio_t *
1993zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1994{
1995	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1996	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1997}
1998
1999static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2000	NULL,
2001	zio_read_gang,
2002	zio_rewrite_gang,
2003	zio_free_gang,
2004	zio_claim_gang,
2005	NULL
2006};
2007
2008static void zio_gang_tree_assemble_done(zio_t *zio);
2009
2010static zio_gang_node_t *
2011zio_gang_node_alloc(zio_gang_node_t **gnpp)
2012{
2013	zio_gang_node_t *gn;
2014
2015	ASSERT(*gnpp == NULL);
2016
2017	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2018	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2019	*gnpp = gn;
2020
2021	return (gn);
2022}
2023
2024static void
2025zio_gang_node_free(zio_gang_node_t **gnpp)
2026{
2027	zio_gang_node_t *gn = *gnpp;
2028
2029	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2030		ASSERT(gn->gn_child[g] == NULL);
2031
2032	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2033	kmem_free(gn, sizeof (*gn));
2034	*gnpp = NULL;
2035}
2036
2037static void
2038zio_gang_tree_free(zio_gang_node_t **gnpp)
2039{
2040	zio_gang_node_t *gn = *gnpp;
2041
2042	if (gn == NULL)
2043		return;
2044
2045	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2046		zio_gang_tree_free(&gn->gn_child[g]);
2047
2048	zio_gang_node_free(gnpp);
2049}
2050
2051static void
2052zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2053{
2054	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2055
2056	ASSERT(gio->io_gang_leader == gio);
2057	ASSERT(BP_IS_GANG(bp));
2058
2059	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
2060	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
2061	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2062}
2063
2064static void
2065zio_gang_tree_assemble_done(zio_t *zio)
2066{
2067	zio_t *gio = zio->io_gang_leader;
2068	zio_gang_node_t *gn = zio->io_private;
2069	blkptr_t *bp = zio->io_bp;
2070
2071	ASSERT(gio == zio_unique_parent(zio));
2072	ASSERT(zio->io_child_count == 0);
2073
2074	if (zio->io_error)
2075		return;
2076
2077	if (BP_SHOULD_BYTESWAP(bp))
2078		byteswap_uint64_array(zio->io_data, zio->io_size);
2079
2080	ASSERT(zio->io_data == gn->gn_gbh);
2081	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2082	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2083
2084	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2085		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2086		if (!BP_IS_GANG(gbp))
2087			continue;
2088		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2089	}
2090}
2091
2092static void
2093zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
2094{
2095	zio_t *gio = pio->io_gang_leader;
2096	zio_t *zio;
2097
2098	ASSERT(BP_IS_GANG(bp) == !!gn);
2099	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2100	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2101
2102	/*
2103	 * If you're a gang header, your data is in gn->gn_gbh.
2104	 * If you're a gang member, your data is in 'data' and gn == NULL.
2105	 */
2106	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
2107
2108	if (gn != NULL) {
2109		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2110
2111		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2112			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2113			if (BP_IS_HOLE(gbp))
2114				continue;
2115			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
2116			data = (char *)data + BP_GET_PSIZE(gbp);
2117		}
2118	}
2119
2120	if (gn == gio->io_gang_tree && gio->io_data != NULL)
2121		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
2122
2123	if (zio != pio)
2124		zio_nowait(zio);
2125}
2126
2127static int
2128zio_gang_assemble(zio_t *zio)
2129{
2130	blkptr_t *bp = zio->io_bp;
2131
2132	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2133	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2134
2135	zio->io_gang_leader = zio;
2136
2137	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2138
2139	return (ZIO_PIPELINE_CONTINUE);
2140}
2141
2142static int
2143zio_gang_issue(zio_t *zio)
2144{
2145	blkptr_t *bp = zio->io_bp;
2146
2147	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2148		return (ZIO_PIPELINE_STOP);
2149
2150	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2151	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2152
2153	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2154		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
2155	else
2156		zio_gang_tree_free(&zio->io_gang_tree);
2157
2158	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2159
2160	return (ZIO_PIPELINE_CONTINUE);
2161}
2162
2163static void
2164zio_write_gang_member_ready(zio_t *zio)
2165{
2166	zio_t *pio = zio_unique_parent(zio);
2167	zio_t *gio = zio->io_gang_leader;
2168	dva_t *cdva = zio->io_bp->blk_dva;
2169	dva_t *pdva = pio->io_bp->blk_dva;
2170	uint64_t asize;
2171
2172	if (BP_IS_HOLE(zio->io_bp))
2173		return;
2174
2175	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2176
2177	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2178	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2179	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2180	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2181	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2182
2183	mutex_enter(&pio->io_lock);
2184	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2185		ASSERT(DVA_GET_GANG(&pdva[d]));
2186		asize = DVA_GET_ASIZE(&pdva[d]);
2187		asize += DVA_GET_ASIZE(&cdva[d]);
2188		DVA_SET_ASIZE(&pdva[d], asize);
2189	}
2190	mutex_exit(&pio->io_lock);
2191}
2192
2193static int
2194zio_write_gang_block(zio_t *pio)
2195{
2196	spa_t *spa = pio->io_spa;
2197	metaslab_class_t *mc = spa_normal_class(spa);
2198	blkptr_t *bp = pio->io_bp;
2199	zio_t *gio = pio->io_gang_leader;
2200	zio_t *zio;
2201	zio_gang_node_t *gn, **gnpp;
2202	zio_gbh_phys_t *gbh;
2203	uint64_t txg = pio->io_txg;
2204	uint64_t resid = pio->io_size;
2205	uint64_t lsize;
2206	int copies = gio->io_prop.zp_copies;
2207	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2208	zio_prop_t zp;
2209	int error;
2210
2211	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2212	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2213		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2214		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2215
2216		flags |= METASLAB_ASYNC_ALLOC;
2217		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2218
2219		/*
2220		 * The logical zio has already placed a reservation for
2221		 * 'copies' allocation slots but gang blocks may require
2222		 * additional copies. These additional copies
2223		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2224		 * since metaslab_class_throttle_reserve() always allows
2225		 * additional reservations for gang blocks.
2226		 */
2227		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2228		    pio, flags));
2229	}
2230
2231	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2232	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, pio);
2233	if (error) {
2234		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2235			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2236			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2237
2238			/*
2239			 * If we failed to allocate the gang block header then
2240			 * we remove any additional allocation reservations that
2241			 * we placed here. The original reservation will
2242			 * be removed when the logical I/O goes to the ready
2243			 * stage.
2244			 */
2245			metaslab_class_throttle_unreserve(mc,
2246			    gbh_copies - copies, pio);
2247		}
2248		pio->io_error = error;
2249		return (ZIO_PIPELINE_CONTINUE);
2250	}
2251
2252	if (pio == gio) {
2253		gnpp = &gio->io_gang_tree;
2254	} else {
2255		gnpp = pio->io_private;
2256		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2257	}
2258
2259	gn = zio_gang_node_alloc(gnpp);
2260	gbh = gn->gn_gbh;
2261	bzero(gbh, SPA_GANGBLOCKSIZE);
2262
2263	/*
2264	 * Create the gang header.
2265	 */
2266	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2267	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2268
2269	/*
2270	 * Create and nowait the gang children.
2271	 */
2272	for (int g = 0; resid != 0; resid -= lsize, g++) {
2273		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2274		    SPA_MINBLOCKSIZE);
2275		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2276
2277		zp.zp_checksum = gio->io_prop.zp_checksum;
2278		zp.zp_compress = ZIO_COMPRESS_OFF;
2279		zp.zp_type = DMU_OT_NONE;
2280		zp.zp_level = 0;
2281		zp.zp_copies = gio->io_prop.zp_copies;
2282		zp.zp_dedup = B_FALSE;
2283		zp.zp_dedup_verify = B_FALSE;
2284		zp.zp_nopwrite = B_FALSE;
2285
2286		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2287		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2288		    zio_write_gang_member_ready, NULL, NULL, NULL,
2289		    &gn->gn_child[g], pio->io_priority,
2290		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2291
2292		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2293			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2294			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2295
2296			/*
2297			 * Gang children won't throttle but we should
2298			 * account for their work, so reserve an allocation
2299			 * slot for them here.
2300			 */
2301			VERIFY(metaslab_class_throttle_reserve(mc,
2302			    zp.zp_copies, cio, flags));
2303		}
2304		zio_nowait(cio);
2305	}
2306
2307	/*
2308	 * Set pio's pipeline to just wait for zio to finish.
2309	 */
2310	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2311
2312	zio_nowait(zio);
2313
2314	return (ZIO_PIPELINE_CONTINUE);
2315}
2316
2317/*
2318 * The zio_nop_write stage in the pipeline determines if allocating a
2319 * new bp is necessary.  The nopwrite feature can handle writes in
2320 * either syncing or open context (i.e. zil writes) and as a result is
2321 * mutually exclusive with dedup.
2322 *
2323 * By leveraging a cryptographically secure checksum, such as SHA256, we
2324 * can compare the checksums of the new data and the old to determine if
2325 * allocating a new block is required.  Note that our requirements for
2326 * cryptographic strength are fairly weak: there can't be any accidental
2327 * hash collisions, but we don't need to be secure against intentional
2328 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2329 * to write the file to begin with, and triggering an incorrect (hash
2330 * collision) nopwrite is no worse than simply writing to the file.
2331 * That said, there are no known attacks against the checksum algorithms
2332 * used for nopwrite, assuming that the salt and the checksums
2333 * themselves remain secret.
2334 */
2335static int
2336zio_nop_write(zio_t *zio)
2337{
2338	blkptr_t *bp = zio->io_bp;
2339	blkptr_t *bp_orig = &zio->io_bp_orig;
2340	zio_prop_t *zp = &zio->io_prop;
2341
2342	ASSERT(BP_GET_LEVEL(bp) == 0);
2343	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2344	ASSERT(zp->zp_nopwrite);
2345	ASSERT(!zp->zp_dedup);
2346	ASSERT(zio->io_bp_override == NULL);
2347	ASSERT(IO_IS_ALLOCATING(zio));
2348
2349	/*
2350	 * Check to see if the original bp and the new bp have matching
2351	 * characteristics (i.e. same checksum, compression algorithms, etc).
2352	 * If they don't then just continue with the pipeline which will
2353	 * allocate a new bp.
2354	 */
2355	if (BP_IS_HOLE(bp_orig) ||
2356	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2357	    ZCHECKSUM_FLAG_NOPWRITE) ||
2358	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2359	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2360	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2361	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2362		return (ZIO_PIPELINE_CONTINUE);
2363
2364	/*
2365	 * If the checksums match then reset the pipeline so that we
2366	 * avoid allocating a new bp and issuing any I/O.
2367	 */
2368	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2369		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2370		    ZCHECKSUM_FLAG_NOPWRITE);
2371		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2372		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2373		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2374		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2375		    sizeof (uint64_t)) == 0);
2376
2377		*bp = *bp_orig;
2378		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2379		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2380	}
2381
2382	return (ZIO_PIPELINE_CONTINUE);
2383}
2384
2385/*
2386 * ==========================================================================
2387 * Dedup
2388 * ==========================================================================
2389 */
2390static void
2391zio_ddt_child_read_done(zio_t *zio)
2392{
2393	blkptr_t *bp = zio->io_bp;
2394	ddt_entry_t *dde = zio->io_private;
2395	ddt_phys_t *ddp;
2396	zio_t *pio = zio_unique_parent(zio);
2397
2398	mutex_enter(&pio->io_lock);
2399	ddp = ddt_phys_select(dde, bp);
2400	if (zio->io_error == 0)
2401		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2402	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2403		dde->dde_repair_data = zio->io_data;
2404	else
2405		zio_buf_free(zio->io_data, zio->io_size);
2406	mutex_exit(&pio->io_lock);
2407}
2408
2409static int
2410zio_ddt_read_start(zio_t *zio)
2411{
2412	blkptr_t *bp = zio->io_bp;
2413
2414	ASSERT(BP_GET_DEDUP(bp));
2415	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2416	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2417
2418	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2419		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2420		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2421		ddt_phys_t *ddp = dde->dde_phys;
2422		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2423		blkptr_t blk;
2424
2425		ASSERT(zio->io_vsd == NULL);
2426		zio->io_vsd = dde;
2427
2428		if (ddp_self == NULL)
2429			return (ZIO_PIPELINE_CONTINUE);
2430
2431		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2432			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2433				continue;
2434			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2435			    &blk);
2436			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2437			    zio_buf_alloc(zio->io_size), zio->io_size,
2438			    zio_ddt_child_read_done, dde, zio->io_priority,
2439			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2440			    &zio->io_bookmark));
2441		}
2442		return (ZIO_PIPELINE_CONTINUE);
2443	}
2444
2445	zio_nowait(zio_read(zio, zio->io_spa, bp,
2446	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2447	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2448
2449	return (ZIO_PIPELINE_CONTINUE);
2450}
2451
2452static int
2453zio_ddt_read_done(zio_t *zio)
2454{
2455	blkptr_t *bp = zio->io_bp;
2456
2457	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2458		return (ZIO_PIPELINE_STOP);
2459
2460	ASSERT(BP_GET_DEDUP(bp));
2461	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2462	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2463
2464	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2465		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2466		ddt_entry_t *dde = zio->io_vsd;
2467		if (ddt == NULL) {
2468			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2469			return (ZIO_PIPELINE_CONTINUE);
2470		}
2471		if (dde == NULL) {
2472			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2473			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2474			return (ZIO_PIPELINE_STOP);
2475		}
2476		if (dde->dde_repair_data != NULL) {
2477			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2478			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2479		}
2480		ddt_repair_done(ddt, dde);
2481		zio->io_vsd = NULL;
2482	}
2483
2484	ASSERT(zio->io_vsd == NULL);
2485
2486	return (ZIO_PIPELINE_CONTINUE);
2487}
2488
2489static boolean_t
2490zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2491{
2492	spa_t *spa = zio->io_spa;
2493
2494	/*
2495	 * Note: we compare the original data, not the transformed data,
2496	 * because when zio->io_bp is an override bp, we will not have
2497	 * pushed the I/O transforms.  That's an important optimization
2498	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2499	 */
2500	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2501		zio_t *lio = dde->dde_lead_zio[p];
2502
2503		if (lio != NULL) {
2504			return (lio->io_orig_size != zio->io_orig_size ||
2505			    bcmp(zio->io_orig_data, lio->io_orig_data,
2506			    zio->io_orig_size) != 0);
2507		}
2508	}
2509
2510	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2511		ddt_phys_t *ddp = &dde->dde_phys[p];
2512
2513		if (ddp->ddp_phys_birth != 0) {
2514			arc_buf_t *abuf = NULL;
2515			arc_flags_t aflags = ARC_FLAG_WAIT;
2516			blkptr_t blk = *zio->io_bp;
2517			int error;
2518
2519			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2520
2521			ddt_exit(ddt);
2522
2523			error = arc_read(NULL, spa, &blk,
2524			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2525			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2526			    &aflags, &zio->io_bookmark);
2527
2528			if (error == 0) {
2529				if (arc_buf_size(abuf) != zio->io_orig_size ||
2530				    bcmp(abuf->b_data, zio->io_orig_data,
2531				    zio->io_orig_size) != 0)
2532					error = SET_ERROR(EEXIST);
2533				arc_buf_destroy(abuf, &abuf);
2534			}
2535
2536			ddt_enter(ddt);
2537			return (error != 0);
2538		}
2539	}
2540
2541	return (B_FALSE);
2542}
2543
2544static void
2545zio_ddt_child_write_ready(zio_t *zio)
2546{
2547	int p = zio->io_prop.zp_copies;
2548	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2549	ddt_entry_t *dde = zio->io_private;
2550	ddt_phys_t *ddp = &dde->dde_phys[p];
2551	zio_t *pio;
2552
2553	if (zio->io_error)
2554		return;
2555
2556	ddt_enter(ddt);
2557
2558	ASSERT(dde->dde_lead_zio[p] == zio);
2559
2560	ddt_phys_fill(ddp, zio->io_bp);
2561
2562	zio_link_t *zl = NULL;
2563	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2564		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2565
2566	ddt_exit(ddt);
2567}
2568
2569static void
2570zio_ddt_child_write_done(zio_t *zio)
2571{
2572	int p = zio->io_prop.zp_copies;
2573	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2574	ddt_entry_t *dde = zio->io_private;
2575	ddt_phys_t *ddp = &dde->dde_phys[p];
2576
2577	ddt_enter(ddt);
2578
2579	ASSERT(ddp->ddp_refcnt == 0);
2580	ASSERT(dde->dde_lead_zio[p] == zio);
2581	dde->dde_lead_zio[p] = NULL;
2582
2583	if (zio->io_error == 0) {
2584		zio_link_t *zl = NULL;
2585		while (zio_walk_parents(zio, &zl) != NULL)
2586			ddt_phys_addref(ddp);
2587	} else {
2588		ddt_phys_clear(ddp);
2589	}
2590
2591	ddt_exit(ddt);
2592}
2593
2594static void
2595zio_ddt_ditto_write_done(zio_t *zio)
2596{
2597	int p = DDT_PHYS_DITTO;
2598	zio_prop_t *zp = &zio->io_prop;
2599	blkptr_t *bp = zio->io_bp;
2600	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2601	ddt_entry_t *dde = zio->io_private;
2602	ddt_phys_t *ddp = &dde->dde_phys[p];
2603	ddt_key_t *ddk = &dde->dde_key;
2604
2605	ddt_enter(ddt);
2606
2607	ASSERT(ddp->ddp_refcnt == 0);
2608	ASSERT(dde->dde_lead_zio[p] == zio);
2609	dde->dde_lead_zio[p] = NULL;
2610
2611	if (zio->io_error == 0) {
2612		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2613		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2614		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2615		if (ddp->ddp_phys_birth != 0)
2616			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2617		ddt_phys_fill(ddp, bp);
2618	}
2619
2620	ddt_exit(ddt);
2621}
2622
2623static int
2624zio_ddt_write(zio_t *zio)
2625{
2626	spa_t *spa = zio->io_spa;
2627	blkptr_t *bp = zio->io_bp;
2628	uint64_t txg = zio->io_txg;
2629	zio_prop_t *zp = &zio->io_prop;
2630	int p = zp->zp_copies;
2631	int ditto_copies;
2632	zio_t *cio = NULL;
2633	zio_t *dio = NULL;
2634	ddt_t *ddt = ddt_select(spa, bp);
2635	ddt_entry_t *dde;
2636	ddt_phys_t *ddp;
2637
2638	ASSERT(BP_GET_DEDUP(bp));
2639	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2640	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2641
2642	ddt_enter(ddt);
2643	dde = ddt_lookup(ddt, bp, B_TRUE);
2644	ddp = &dde->dde_phys[p];
2645
2646	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2647		/*
2648		 * If we're using a weak checksum, upgrade to a strong checksum
2649		 * and try again.  If we're already using a strong checksum,
2650		 * we can't resolve it, so just convert to an ordinary write.
2651		 * (And automatically e-mail a paper to Nature?)
2652		 */
2653		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2654		    ZCHECKSUM_FLAG_DEDUP)) {
2655			zp->zp_checksum = spa_dedup_checksum(spa);
2656			zio_pop_transforms(zio);
2657			zio->io_stage = ZIO_STAGE_OPEN;
2658			BP_ZERO(bp);
2659		} else {
2660			zp->zp_dedup = B_FALSE;
2661		}
2662		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2663		ddt_exit(ddt);
2664		return (ZIO_PIPELINE_CONTINUE);
2665	}
2666
2667	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2668	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2669
2670	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2671	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2672		zio_prop_t czp = *zp;
2673
2674		czp.zp_copies = ditto_copies;
2675
2676		/*
2677		 * If we arrived here with an override bp, we won't have run
2678		 * the transform stack, so we won't have the data we need to
2679		 * generate a child i/o.  So, toss the override bp and restart.
2680		 * This is safe, because using the override bp is just an
2681		 * optimization; and it's rare, so the cost doesn't matter.
2682		 */
2683		if (zio->io_bp_override) {
2684			zio_pop_transforms(zio);
2685			zio->io_stage = ZIO_STAGE_OPEN;
2686			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2687			zio->io_bp_override = NULL;
2688			BP_ZERO(bp);
2689			ddt_exit(ddt);
2690			return (ZIO_PIPELINE_CONTINUE);
2691		}
2692
2693		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2694		    zio->io_orig_size, &czp, NULL, NULL,
2695		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2696		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2697
2698		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2699		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2700	}
2701
2702	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2703		if (ddp->ddp_phys_birth != 0)
2704			ddt_bp_fill(ddp, bp, txg);
2705		if (dde->dde_lead_zio[p] != NULL)
2706			zio_add_child(zio, dde->dde_lead_zio[p]);
2707		else
2708			ddt_phys_addref(ddp);
2709	} else if (zio->io_bp_override) {
2710		ASSERT(bp->blk_birth == txg);
2711		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2712		ddt_phys_fill(ddp, bp);
2713		ddt_phys_addref(ddp);
2714	} else {
2715		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2716		    zio->io_orig_size, zp,
2717		    zio_ddt_child_write_ready, NULL, NULL,
2718		    zio_ddt_child_write_done, dde, zio->io_priority,
2719		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2720
2721		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2722		dde->dde_lead_zio[p] = cio;
2723	}
2724
2725	ddt_exit(ddt);
2726
2727	if (cio)
2728		zio_nowait(cio);
2729	if (dio)
2730		zio_nowait(dio);
2731
2732	return (ZIO_PIPELINE_CONTINUE);
2733}
2734
2735ddt_entry_t *freedde; /* for debugging */
2736
2737static int
2738zio_ddt_free(zio_t *zio)
2739{
2740	spa_t *spa = zio->io_spa;
2741	blkptr_t *bp = zio->io_bp;
2742	ddt_t *ddt = ddt_select(spa, bp);
2743	ddt_entry_t *dde;
2744	ddt_phys_t *ddp;
2745
2746	ASSERT(BP_GET_DEDUP(bp));
2747	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2748
2749	ddt_enter(ddt);
2750	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2751	ddp = ddt_phys_select(dde, bp);
2752	ddt_phys_decref(ddp);
2753	ddt_exit(ddt);
2754
2755	return (ZIO_PIPELINE_CONTINUE);
2756}
2757
2758/*
2759 * ==========================================================================
2760 * Allocate and free blocks
2761 * ==========================================================================
2762 */
2763
2764static zio_t *
2765zio_io_to_allocate(spa_t *spa)
2766{
2767	zio_t *zio;
2768
2769	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2770
2771	zio = avl_first(&spa->spa_alloc_tree);
2772	if (zio == NULL)
2773		return (NULL);
2774
2775	ASSERT(IO_IS_ALLOCATING(zio));
2776
2777	/*
2778	 * Try to place a reservation for this zio. If we're unable to
2779	 * reserve then we throttle.
2780	 */
2781	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2782	    zio->io_prop.zp_copies, zio, 0)) {
2783		return (NULL);
2784	}
2785
2786	avl_remove(&spa->spa_alloc_tree, zio);
2787	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2788
2789	return (zio);
2790}
2791
2792static int
2793zio_dva_throttle(zio_t *zio)
2794{
2795	spa_t *spa = zio->io_spa;
2796	zio_t *nio;
2797
2798	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2799	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2800	    zio->io_child_type == ZIO_CHILD_GANG ||
2801	    zio->io_flags & ZIO_FLAG_NODATA) {
2802		return (ZIO_PIPELINE_CONTINUE);
2803	}
2804
2805	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2806
2807	ASSERT3U(zio->io_queued_timestamp, >, 0);
2808	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2809
2810	mutex_enter(&spa->spa_alloc_lock);
2811
2812	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2813	avl_add(&spa->spa_alloc_tree, zio);
2814
2815	nio = zio_io_to_allocate(zio->io_spa);
2816	mutex_exit(&spa->spa_alloc_lock);
2817
2818	if (nio == zio)
2819		return (ZIO_PIPELINE_CONTINUE);
2820
2821	if (nio != NULL) {
2822		ASSERT3U(nio->io_queued_timestamp, <=,
2823		    zio->io_queued_timestamp);
2824		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2825		/*
2826		 * We are passing control to a new zio so make sure that
2827		 * it is processed by a different thread. We do this to
2828		 * avoid stack overflows that can occur when parents are
2829		 * throttled and children are making progress. We allow
2830		 * it to go to the head of the taskq since it's already
2831		 * been waiting.
2832		 */
2833		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2834	}
2835	return (ZIO_PIPELINE_STOP);
2836}
2837
2838void
2839zio_allocate_dispatch(spa_t *spa)
2840{
2841	zio_t *zio;
2842
2843	mutex_enter(&spa->spa_alloc_lock);
2844	zio = zio_io_to_allocate(spa);
2845	mutex_exit(&spa->spa_alloc_lock);
2846	if (zio == NULL)
2847		return;
2848
2849	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2850	ASSERT0(zio->io_error);
2851	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2852}
2853
2854static int
2855zio_dva_allocate(zio_t *zio)
2856{
2857	spa_t *spa = zio->io_spa;
2858	metaslab_class_t *mc = spa_normal_class(spa);
2859	blkptr_t *bp = zio->io_bp;
2860	int error;
2861	int flags = 0;
2862
2863	if (zio->io_gang_leader == NULL) {
2864		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2865		zio->io_gang_leader = zio;
2866	}
2867
2868	ASSERT(BP_IS_HOLE(bp));
2869	ASSERT0(BP_GET_NDVAS(bp));
2870	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2871	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2872	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2873
2874	if (zio->io_flags & ZIO_FLAG_NODATA) {
2875		flags |= METASLAB_DONT_THROTTLE;
2876	}
2877	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2878		flags |= METASLAB_GANG_CHILD;
2879	}
2880	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2881		flags |= METASLAB_ASYNC_ALLOC;
2882	}
2883
2884	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2885	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags, zio);
2886
2887	if (error != 0) {
2888		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2889		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2890		    error);
2891		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2892			return (zio_write_gang_block(zio));
2893		zio->io_error = error;
2894	}
2895
2896	return (ZIO_PIPELINE_CONTINUE);
2897}
2898
2899static int
2900zio_dva_free(zio_t *zio)
2901{
2902	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2903
2904	return (ZIO_PIPELINE_CONTINUE);
2905}
2906
2907static int
2908zio_dva_claim(zio_t *zio)
2909{
2910	int error;
2911
2912	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2913	if (error)
2914		zio->io_error = error;
2915
2916	return (ZIO_PIPELINE_CONTINUE);
2917}
2918
2919/*
2920 * Undo an allocation.  This is used by zio_done() when an I/O fails
2921 * and we want to give back the block we just allocated.
2922 * This handles both normal blocks and gang blocks.
2923 */
2924static void
2925zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2926{
2927	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2928	ASSERT(zio->io_bp_override == NULL);
2929
2930	if (!BP_IS_HOLE(bp))
2931		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2932
2933	if (gn != NULL) {
2934		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2935			zio_dva_unallocate(zio, gn->gn_child[g],
2936			    &gn->gn_gbh->zg_blkptr[g]);
2937		}
2938	}
2939}
2940
2941/*
2942 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2943 */
2944int
2945zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2946    uint64_t size, boolean_t *slog)
2947{
2948	int error = 1;
2949
2950	ASSERT(txg > spa_syncing_txg(spa));
2951
2952	error = metaslab_alloc(spa, spa_log_class(spa), size,
2953	    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, NULL);
2954	if (error == 0) {
2955		*slog = TRUE;
2956	} else {
2957		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2958		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID, NULL);
2959		if (error == 0)
2960			*slog = FALSE;
2961	}
2962
2963	if (error == 0) {
2964		BP_SET_LSIZE(new_bp, size);
2965		BP_SET_PSIZE(new_bp, size);
2966		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2967		BP_SET_CHECKSUM(new_bp,
2968		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2969		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2970		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2971		BP_SET_LEVEL(new_bp, 0);
2972		BP_SET_DEDUP(new_bp, 0);
2973		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2974	}
2975
2976	return (error);
2977}
2978
2979/*
2980 * Free an intent log block.
2981 */
2982void
2983zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2984{
2985	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2986	ASSERT(!BP_IS_GANG(bp));
2987
2988	zio_free(spa, txg, bp);
2989}
2990
2991/*
2992 * ==========================================================================
2993 * Read, write and delete to physical devices
2994 * ==========================================================================
2995 */
2996
2997
2998/*
2999 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3000 * stops after this stage and will resume upon I/O completion.
3001 * However, there are instances where the vdev layer may need to
3002 * continue the pipeline when an I/O was not issued. Since the I/O
3003 * that was sent to the vdev layer might be different than the one
3004 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3005 * force the underlying vdev layers to call either zio_execute() or
3006 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3007 */
3008static int
3009zio_vdev_io_start(zio_t *zio)
3010{
3011	vdev_t *vd = zio->io_vd;
3012	uint64_t align;
3013	spa_t *spa = zio->io_spa;
3014	int ret;
3015
3016	ASSERT(zio->io_error == 0);
3017	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3018
3019	if (vd == NULL) {
3020		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3021			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3022
3023		/*
3024		 * The mirror_ops handle multiple DVAs in a single BP.
3025		 */
3026		vdev_mirror_ops.vdev_op_io_start(zio);
3027		return (ZIO_PIPELINE_STOP);
3028	}
3029
3030	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
3031	    zio->io_priority == ZIO_PRIORITY_NOW) {
3032		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
3033		return (ZIO_PIPELINE_CONTINUE);
3034	}
3035
3036	ASSERT3P(zio->io_logical, !=, zio);
3037
3038	/*
3039	 * We keep track of time-sensitive I/Os so that the scan thread
3040	 * can quickly react to certain workloads.  In particular, we care
3041	 * about non-scrubbing, top-level reads and writes with the following
3042	 * characteristics:
3043	 *	- synchronous writes of user data to non-slog devices
3044	 *	- any reads of user data
3045	 * When these conditions are met, adjust the timestamp of spa_last_io
3046	 * which allows the scan thread to adjust its workload accordingly.
3047	 */
3048	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3049	    vd == vd->vdev_top && !vd->vdev_islog &&
3050	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3051	    zio->io_txg != spa_syncing_txg(spa)) {
3052		uint64_t old = spa->spa_last_io;
3053		uint64_t new = ddi_get_lbolt64();
3054		if (old != new)
3055			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3056	}
3057
3058	align = 1ULL << vd->vdev_top->vdev_ashift;
3059
3060	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3061	    P2PHASE(zio->io_size, align) != 0) {
3062		/* Transform logical writes to be a full physical block size. */
3063		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3064		char *abuf = NULL;
3065		if (zio->io_type == ZIO_TYPE_READ ||
3066		    zio->io_type == ZIO_TYPE_WRITE)
3067			abuf = zio_buf_alloc(asize);
3068		ASSERT(vd == vd->vdev_top);
3069		if (zio->io_type == ZIO_TYPE_WRITE) {
3070			bcopy(zio->io_data, abuf, zio->io_size);
3071			bzero(abuf + zio->io_size, asize - zio->io_size);
3072		}
3073		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
3074		    zio_subblock);
3075	}
3076
3077	/*
3078	 * If this is not a physical io, make sure that it is properly aligned
3079	 * before proceeding.
3080	 */
3081	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3082		ASSERT0(P2PHASE(zio->io_offset, align));
3083		ASSERT0(P2PHASE(zio->io_size, align));
3084	} else {
3085		/*
3086		 * For the physical io we allow alignment
3087		 * to a logical block size.
3088		 */
3089		uint64_t log_align =
3090		    1ULL << vd->vdev_top->vdev_logical_ashift;
3091		ASSERT0(P2PHASE(zio->io_offset, log_align));
3092		ASSERT0(P2PHASE(zio->io_size, log_align));
3093	}
3094
3095	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
3096
3097	/*
3098	 * If this is a repair I/O, and there's no self-healing involved --
3099	 * that is, we're just resilvering what we expect to resilver --
3100	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3101	 * This prevents spurious resilvering with nested replication.
3102	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3103	 * A is out of date, we'll read from C+D, then use the data to
3104	 * resilver A+B -- but we don't actually want to resilver B, just A.
3105	 * The top-level mirror has no way to know this, so instead we just
3106	 * discard unnecessary repairs as we work our way down the vdev tree.
3107	 * The same logic applies to any form of nested replication:
3108	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3109	 */
3110	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3111	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3112	    zio->io_txg != 0 &&	/* not a delegated i/o */
3113	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3114		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3115		zio_vdev_io_bypass(zio);
3116		return (ZIO_PIPELINE_CONTINUE);
3117	}
3118
3119	if (vd->vdev_ops->vdev_op_leaf) {
3120		switch (zio->io_type) {
3121		case ZIO_TYPE_READ:
3122			if (vdev_cache_read(zio))
3123				return (ZIO_PIPELINE_CONTINUE);
3124			/* FALLTHROUGH */
3125		case ZIO_TYPE_WRITE:
3126		case ZIO_TYPE_FREE:
3127			if ((zio = vdev_queue_io(zio)) == NULL)
3128				return (ZIO_PIPELINE_STOP);
3129
3130			if (!vdev_accessible(vd, zio)) {
3131				zio->io_error = SET_ERROR(ENXIO);
3132				zio_interrupt(zio);
3133				return (ZIO_PIPELINE_STOP);
3134			}
3135			break;
3136		}
3137		/*
3138		 * Note that we ignore repair writes for TRIM because they can
3139		 * conflict with normal writes. This isn't an issue because, by
3140		 * definition, we only repair blocks that aren't freed.
3141		 */
3142		if (zio->io_type == ZIO_TYPE_WRITE &&
3143		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3144		    !trim_map_write_start(zio))
3145			return (ZIO_PIPELINE_STOP);
3146	}
3147
3148	vd->vdev_ops->vdev_op_io_start(zio);
3149	return (ZIO_PIPELINE_STOP);
3150}
3151
3152static int
3153zio_vdev_io_done(zio_t *zio)
3154{
3155	vdev_t *vd = zio->io_vd;
3156	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3157	boolean_t unexpected_error = B_FALSE;
3158
3159	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3160		return (ZIO_PIPELINE_STOP);
3161
3162	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3163	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
3164
3165	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3166	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
3167	    zio->io_type == ZIO_TYPE_FREE)) {
3168
3169		if (zio->io_type == ZIO_TYPE_WRITE &&
3170		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
3171			trim_map_write_done(zio);
3172
3173		vdev_queue_io_done(zio);
3174
3175		if (zio->io_type == ZIO_TYPE_WRITE)
3176			vdev_cache_write(zio);
3177
3178		if (zio_injection_enabled && zio->io_error == 0)
3179			zio->io_error = zio_handle_device_injection(vd,
3180			    zio, EIO);
3181
3182		if (zio_injection_enabled && zio->io_error == 0)
3183			zio->io_error = zio_handle_label_injection(zio, EIO);
3184
3185		if (zio->io_error) {
3186			if (zio->io_error == ENOTSUP &&
3187			    zio->io_type == ZIO_TYPE_FREE) {
3188				/* Not all devices support TRIM. */
3189			} else if (!vdev_accessible(vd, zio)) {
3190				zio->io_error = SET_ERROR(ENXIO);
3191			} else {
3192				unexpected_error = B_TRUE;
3193			}
3194		}
3195	}
3196
3197	ops->vdev_op_io_done(zio);
3198
3199	if (unexpected_error)
3200		VERIFY(vdev_probe(vd, zio) == NULL);
3201
3202	return (ZIO_PIPELINE_CONTINUE);
3203}
3204
3205/*
3206 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3207 * disk, and use that to finish the checksum ereport later.
3208 */
3209static void
3210zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3211    const void *good_buf)
3212{
3213	/* no processing needed */
3214	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3215}
3216
3217/*ARGSUSED*/
3218void
3219zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3220{
3221	void *buf = zio_buf_alloc(zio->io_size);
3222
3223	bcopy(zio->io_data, buf, zio->io_size);
3224
3225	zcr->zcr_cbinfo = zio->io_size;
3226	zcr->zcr_cbdata = buf;
3227	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3228	zcr->zcr_free = zio_buf_free;
3229}
3230
3231static int
3232zio_vdev_io_assess(zio_t *zio)
3233{
3234	vdev_t *vd = zio->io_vd;
3235
3236	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3237		return (ZIO_PIPELINE_STOP);
3238
3239	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3240		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3241
3242	if (zio->io_vsd != NULL) {
3243		zio->io_vsd_ops->vsd_free(zio);
3244		zio->io_vsd = NULL;
3245	}
3246
3247	if (zio_injection_enabled && zio->io_error == 0)
3248		zio->io_error = zio_handle_fault_injection(zio, EIO);
3249
3250	if (zio->io_type == ZIO_TYPE_FREE &&
3251	    zio->io_priority != ZIO_PRIORITY_NOW) {
3252		switch (zio->io_error) {
3253		case 0:
3254			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
3255			ZIO_TRIM_STAT_BUMP(success);
3256			break;
3257		case EOPNOTSUPP:
3258			ZIO_TRIM_STAT_BUMP(unsupported);
3259			break;
3260		default:
3261			ZIO_TRIM_STAT_BUMP(failed);
3262			break;
3263		}
3264	}
3265
3266	/*
3267	 * If the I/O failed, determine whether we should attempt to retry it.
3268	 *
3269	 * On retry, we cut in line in the issue queue, since we don't want
3270	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3271	 */
3272	if (zio->io_error && vd == NULL &&
3273	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3274		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3275		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3276		zio->io_error = 0;
3277		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3278		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3279		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3280		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3281		    zio_requeue_io_start_cut_in_line);
3282		return (ZIO_PIPELINE_STOP);
3283	}
3284
3285	/*
3286	 * If we got an error on a leaf device, convert it to ENXIO
3287	 * if the device is not accessible at all.
3288	 */
3289	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3290	    !vdev_accessible(vd, zio))
3291		zio->io_error = SET_ERROR(ENXIO);
3292
3293	/*
3294	 * If we can't write to an interior vdev (mirror or RAID-Z),
3295	 * set vdev_cant_write so that we stop trying to allocate from it.
3296	 */
3297	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3298	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3299		vd->vdev_cant_write = B_TRUE;
3300	}
3301
3302	if (zio->io_error)
3303		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3304
3305	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3306	    zio->io_physdone != NULL) {
3307		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3308		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3309		zio->io_physdone(zio->io_logical);
3310	}
3311
3312	return (ZIO_PIPELINE_CONTINUE);
3313}
3314
3315void
3316zio_vdev_io_reissue(zio_t *zio)
3317{
3318	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3319	ASSERT(zio->io_error == 0);
3320
3321	zio->io_stage >>= 1;
3322}
3323
3324void
3325zio_vdev_io_redone(zio_t *zio)
3326{
3327	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3328
3329	zio->io_stage >>= 1;
3330}
3331
3332void
3333zio_vdev_io_bypass(zio_t *zio)
3334{
3335	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3336	ASSERT(zio->io_error == 0);
3337
3338	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3339	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3340}
3341
3342/*
3343 * ==========================================================================
3344 * Generate and verify checksums
3345 * ==========================================================================
3346 */
3347static int
3348zio_checksum_generate(zio_t *zio)
3349{
3350	blkptr_t *bp = zio->io_bp;
3351	enum zio_checksum checksum;
3352
3353	if (bp == NULL) {
3354		/*
3355		 * This is zio_write_phys().
3356		 * We're either generating a label checksum, or none at all.
3357		 */
3358		checksum = zio->io_prop.zp_checksum;
3359
3360		if (checksum == ZIO_CHECKSUM_OFF)
3361			return (ZIO_PIPELINE_CONTINUE);
3362
3363		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3364	} else {
3365		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3366			ASSERT(!IO_IS_ALLOCATING(zio));
3367			checksum = ZIO_CHECKSUM_GANG_HEADER;
3368		} else {
3369			checksum = BP_GET_CHECKSUM(bp);
3370		}
3371	}
3372
3373	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3374
3375	return (ZIO_PIPELINE_CONTINUE);
3376}
3377
3378static int
3379zio_checksum_verify(zio_t *zio)
3380{
3381	zio_bad_cksum_t info;
3382	blkptr_t *bp = zio->io_bp;
3383	int error;
3384
3385	ASSERT(zio->io_vd != NULL);
3386
3387	if (bp == NULL) {
3388		/*
3389		 * This is zio_read_phys().
3390		 * We're either verifying a label checksum, or nothing at all.
3391		 */
3392		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3393			return (ZIO_PIPELINE_CONTINUE);
3394
3395		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3396	}
3397
3398	if ((error = zio_checksum_error(zio, &info)) != 0) {
3399		zio->io_error = error;
3400		if (error == ECKSUM &&
3401		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3402			zfs_ereport_start_checksum(zio->io_spa,
3403			    zio->io_vd, zio, zio->io_offset,
3404			    zio->io_size, NULL, &info);
3405		}
3406	}
3407
3408	return (ZIO_PIPELINE_CONTINUE);
3409}
3410
3411/*
3412 * Called by RAID-Z to ensure we don't compute the checksum twice.
3413 */
3414void
3415zio_checksum_verified(zio_t *zio)
3416{
3417	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3418}
3419
3420/*
3421 * ==========================================================================
3422 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3423 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3424 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3425 * indicate errors that are specific to one I/O, and most likely permanent.
3426 * Any other error is presumed to be worse because we weren't expecting it.
3427 * ==========================================================================
3428 */
3429int
3430zio_worst_error(int e1, int e2)
3431{
3432	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3433	int r1, r2;
3434
3435	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3436		if (e1 == zio_error_rank[r1])
3437			break;
3438
3439	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3440		if (e2 == zio_error_rank[r2])
3441			break;
3442
3443	return (r1 > r2 ? e1 : e2);
3444}
3445
3446/*
3447 * ==========================================================================
3448 * I/O completion
3449 * ==========================================================================
3450 */
3451static int
3452zio_ready(zio_t *zio)
3453{
3454	blkptr_t *bp = zio->io_bp;
3455	zio_t *pio, *pio_next;
3456	zio_link_t *zl = NULL;
3457
3458	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3459	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3460		return (ZIO_PIPELINE_STOP);
3461
3462	if (zio->io_ready) {
3463		ASSERT(IO_IS_ALLOCATING(zio));
3464		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3465		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3466		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3467
3468		zio->io_ready(zio);
3469	}
3470
3471	if (bp != NULL && bp != &zio->io_bp_copy)
3472		zio->io_bp_copy = *bp;
3473
3474	if (zio->io_error != 0) {
3475		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3476
3477		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3478			ASSERT(IO_IS_ALLOCATING(zio));
3479			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3480			/*
3481			 * We were unable to allocate anything, unreserve and
3482			 * issue the next I/O to allocate.
3483			 */
3484			metaslab_class_throttle_unreserve(
3485			    spa_normal_class(zio->io_spa),
3486			    zio->io_prop.zp_copies, zio);
3487			zio_allocate_dispatch(zio->io_spa);
3488		}
3489	}
3490
3491	mutex_enter(&zio->io_lock);
3492	zio->io_state[ZIO_WAIT_READY] = 1;
3493	pio = zio_walk_parents(zio, &zl);
3494	mutex_exit(&zio->io_lock);
3495
3496	/*
3497	 * As we notify zio's parents, new parents could be added.
3498	 * New parents go to the head of zio's io_parent_list, however,
3499	 * so we will (correctly) not notify them.  The remainder of zio's
3500	 * io_parent_list, from 'pio_next' onward, cannot change because
3501	 * all parents must wait for us to be done before they can be done.
3502	 */
3503	for (; pio != NULL; pio = pio_next) {
3504		pio_next = zio_walk_parents(zio, &zl);
3505		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3506	}
3507
3508	if (zio->io_flags & ZIO_FLAG_NODATA) {
3509		if (BP_IS_GANG(bp)) {
3510			zio->io_flags &= ~ZIO_FLAG_NODATA;
3511		} else {
3512			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3513			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3514		}
3515	}
3516
3517	if (zio_injection_enabled &&
3518	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3519		zio_handle_ignored_writes(zio);
3520
3521	return (ZIO_PIPELINE_CONTINUE);
3522}
3523
3524/*
3525 * Update the allocation throttle accounting.
3526 */
3527static void
3528zio_dva_throttle_done(zio_t *zio)
3529{
3530	zio_t *lio = zio->io_logical;
3531	zio_t *pio = zio_unique_parent(zio);
3532	vdev_t *vd = zio->io_vd;
3533	int flags = METASLAB_ASYNC_ALLOC;
3534
3535	ASSERT3P(zio->io_bp, !=, NULL);
3536	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3537	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3538	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3539	ASSERT(vd != NULL);
3540	ASSERT3P(vd, ==, vd->vdev_top);
3541	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3542	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3543	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3544	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3545
3546	/*
3547	 * Parents of gang children can have two flavors -- ones that
3548	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3549	 * and ones that allocated the constituent blocks. The allocation
3550	 * throttle needs to know the allocating parent zio so we must find
3551	 * it here.
3552	 */
3553	if (pio->io_child_type == ZIO_CHILD_GANG) {
3554		/*
3555		 * If our parent is a rewrite gang child then our grandparent
3556		 * would have been the one that performed the allocation.
3557		 */
3558		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3559			pio = zio_unique_parent(pio);
3560		flags |= METASLAB_GANG_CHILD;
3561	}
3562
3563	ASSERT(IO_IS_ALLOCATING(pio));
3564	ASSERT3P(zio, !=, zio->io_logical);
3565	ASSERT(zio->io_logical != NULL);
3566	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3567	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3568
3569	mutex_enter(&pio->io_lock);
3570	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3571	mutex_exit(&pio->io_lock);
3572
3573	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3574	    1, pio);
3575
3576	/*
3577	 * Call into the pipeline to see if there is more work that
3578	 * needs to be done. If there is work to be done it will be
3579	 * dispatched to another taskq thread.
3580	 */
3581	zio_allocate_dispatch(zio->io_spa);
3582}
3583
3584static int
3585zio_done(zio_t *zio)
3586{
3587	spa_t *spa = zio->io_spa;
3588	zio_t *lio = zio->io_logical;
3589	blkptr_t *bp = zio->io_bp;
3590	vdev_t *vd = zio->io_vd;
3591	uint64_t psize = zio->io_size;
3592	zio_t *pio, *pio_next;
3593	metaslab_class_t *mc = spa_normal_class(spa);
3594	zio_link_t *zl = NULL;
3595
3596	/*
3597	 * If our children haven't all completed,
3598	 * wait for them and then repeat this pipeline stage.
3599	 */
3600	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3601	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3602	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3603	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3604		return (ZIO_PIPELINE_STOP);
3605
3606	/*
3607	 * If the allocation throttle is enabled, then update the accounting.
3608	 * We only track child I/Os that are part of an allocating async
3609	 * write. We must do this since the allocation is performed
3610	 * by the logical I/O but the actual write is done by child I/Os.
3611	 */
3612	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3613	    zio->io_child_type == ZIO_CHILD_VDEV) {
3614		ASSERT(mc->mc_alloc_throttle_enabled);
3615		zio_dva_throttle_done(zio);
3616	}
3617
3618	/*
3619	 * If the allocation throttle is enabled, verify that
3620	 * we have decremented the refcounts for every I/O that was throttled.
3621	 */
3622	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3623		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3624		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3625		ASSERT(bp != NULL);
3626		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3627		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3628	}
3629
3630	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3631		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3632			ASSERT(zio->io_children[c][w] == 0);
3633
3634	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3635		ASSERT(bp->blk_pad[0] == 0);
3636		ASSERT(bp->blk_pad[1] == 0);
3637		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3638		    (bp == zio_unique_parent(zio)->io_bp));
3639		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3640		    zio->io_bp_override == NULL &&
3641		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3642			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3643			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3644			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3645			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3646		}
3647		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3648			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3649	}
3650
3651	/*
3652	 * If there were child vdev/gang/ddt errors, they apply to us now.
3653	 */
3654	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3655	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3656	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3657
3658	/*
3659	 * If the I/O on the transformed data was successful, generate any
3660	 * checksum reports now while we still have the transformed data.
3661	 */
3662	if (zio->io_error == 0) {
3663		while (zio->io_cksum_report != NULL) {
3664			zio_cksum_report_t *zcr = zio->io_cksum_report;
3665			uint64_t align = zcr->zcr_align;
3666			uint64_t asize = P2ROUNDUP(psize, align);
3667			char *abuf = zio->io_data;
3668
3669			if (asize != psize) {
3670				abuf = zio_buf_alloc(asize);
3671				bcopy(zio->io_data, abuf, psize);
3672				bzero(abuf + psize, asize - psize);
3673			}
3674
3675			zio->io_cksum_report = zcr->zcr_next;
3676			zcr->zcr_next = NULL;
3677			zcr->zcr_finish(zcr, abuf);
3678			zfs_ereport_free_checksum(zcr);
3679
3680			if (asize != psize)
3681				zio_buf_free(abuf, asize);
3682		}
3683	}
3684
3685	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3686
3687	vdev_stat_update(zio, psize);
3688
3689	if (zio->io_error) {
3690		/*
3691		 * If this I/O is attached to a particular vdev,
3692		 * generate an error message describing the I/O failure
3693		 * at the block level.  We ignore these errors if the
3694		 * device is currently unavailable.
3695		 */
3696		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3697			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3698
3699		if ((zio->io_error == EIO || !(zio->io_flags &
3700		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3701		    zio == lio) {
3702			/*
3703			 * For logical I/O requests, tell the SPA to log the
3704			 * error and generate a logical data ereport.
3705			 */
3706			spa_log_error(spa, zio);
3707			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3708			    0, 0);
3709		}
3710	}
3711
3712	if (zio->io_error && zio == lio) {
3713		/*
3714		 * Determine whether zio should be reexecuted.  This will
3715		 * propagate all the way to the root via zio_notify_parent().
3716		 */
3717		ASSERT(vd == NULL && bp != NULL);
3718		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3719
3720		if (IO_IS_ALLOCATING(zio) &&
3721		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3722			if (zio->io_error != ENOSPC)
3723				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3724			else
3725				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3726		}
3727
3728		if ((zio->io_type == ZIO_TYPE_READ ||
3729		    zio->io_type == ZIO_TYPE_FREE) &&
3730		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3731		    zio->io_error == ENXIO &&
3732		    spa_load_state(spa) == SPA_LOAD_NONE &&
3733		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3734			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3735
3736		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3737			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3738
3739		/*
3740		 * Here is a possibly good place to attempt to do
3741		 * either combinatorial reconstruction or error correction
3742		 * based on checksums.  It also might be a good place
3743		 * to send out preliminary ereports before we suspend
3744		 * processing.
3745		 */
3746	}
3747
3748	/*
3749	 * If there were logical child errors, they apply to us now.
3750	 * We defer this until now to avoid conflating logical child
3751	 * errors with errors that happened to the zio itself when
3752	 * updating vdev stats and reporting FMA events above.
3753	 */
3754	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3755
3756	if ((zio->io_error || zio->io_reexecute) &&
3757	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3758	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3759		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3760
3761	zio_gang_tree_free(&zio->io_gang_tree);
3762
3763	/*
3764	 * Godfather I/Os should never suspend.
3765	 */
3766	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3767	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3768		zio->io_reexecute = 0;
3769
3770	if (zio->io_reexecute) {
3771		/*
3772		 * This is a logical I/O that wants to reexecute.
3773		 *
3774		 * Reexecute is top-down.  When an i/o fails, if it's not
3775		 * the root, it simply notifies its parent and sticks around.
3776		 * The parent, seeing that it still has children in zio_done(),
3777		 * does the same.  This percolates all the way up to the root.
3778		 * The root i/o will reexecute or suspend the entire tree.
3779		 *
3780		 * This approach ensures that zio_reexecute() honors
3781		 * all the original i/o dependency relationships, e.g.
3782		 * parents not executing until children are ready.
3783		 */
3784		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3785
3786		zio->io_gang_leader = NULL;
3787
3788		mutex_enter(&zio->io_lock);
3789		zio->io_state[ZIO_WAIT_DONE] = 1;
3790		mutex_exit(&zio->io_lock);
3791
3792		/*
3793		 * "The Godfather" I/O monitors its children but is
3794		 * not a true parent to them. It will track them through
3795		 * the pipeline but severs its ties whenever they get into
3796		 * trouble (e.g. suspended). This allows "The Godfather"
3797		 * I/O to return status without blocking.
3798		 */
3799		zl = NULL;
3800		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3801		    pio = pio_next) {
3802			zio_link_t *remove_zl = zl;
3803			pio_next = zio_walk_parents(zio, &zl);
3804
3805			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3806			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3807				zio_remove_child(pio, zio, remove_zl);
3808				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3809			}
3810		}
3811
3812		if ((pio = zio_unique_parent(zio)) != NULL) {
3813			/*
3814			 * We're not a root i/o, so there's nothing to do
3815			 * but notify our parent.  Don't propagate errors
3816			 * upward since we haven't permanently failed yet.
3817			 */
3818			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3819			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3820			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3821		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3822			/*
3823			 * We'd fail again if we reexecuted now, so suspend
3824			 * until conditions improve (e.g. device comes online).
3825			 */
3826			zio_suspend(spa, zio);
3827		} else {
3828			/*
3829			 * Reexecution is potentially a huge amount of work.
3830			 * Hand it off to the otherwise-unused claim taskq.
3831			 */
3832#if defined(illumos) || !defined(_KERNEL)
3833			ASSERT(zio->io_tqent.tqent_next == NULL);
3834#else
3835			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3836#endif
3837			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3838			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3839			    0, &zio->io_tqent);
3840		}
3841		return (ZIO_PIPELINE_STOP);
3842	}
3843
3844	ASSERT(zio->io_child_count == 0);
3845	ASSERT(zio->io_reexecute == 0);
3846	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3847
3848	/*
3849	 * Report any checksum errors, since the I/O is complete.
3850	 */
3851	while (zio->io_cksum_report != NULL) {
3852		zio_cksum_report_t *zcr = zio->io_cksum_report;
3853		zio->io_cksum_report = zcr->zcr_next;
3854		zcr->zcr_next = NULL;
3855		zcr->zcr_finish(zcr, NULL);
3856		zfs_ereport_free_checksum(zcr);
3857	}
3858
3859	/*
3860	 * It is the responsibility of the done callback to ensure that this
3861	 * particular zio is no longer discoverable for adoption, and as
3862	 * such, cannot acquire any new parents.
3863	 */
3864	if (zio->io_done)
3865		zio->io_done(zio);
3866
3867	mutex_enter(&zio->io_lock);
3868	zio->io_state[ZIO_WAIT_DONE] = 1;
3869	mutex_exit(&zio->io_lock);
3870
3871	zl = NULL;
3872	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3873		zio_link_t *remove_zl = zl;
3874		pio_next = zio_walk_parents(zio, &zl);
3875		zio_remove_child(pio, zio, remove_zl);
3876		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3877	}
3878
3879	if (zio->io_waiter != NULL) {
3880		mutex_enter(&zio->io_lock);
3881		zio->io_executor = NULL;
3882		cv_broadcast(&zio->io_cv);
3883		mutex_exit(&zio->io_lock);
3884	} else {
3885		zio_destroy(zio);
3886	}
3887
3888	return (ZIO_PIPELINE_STOP);
3889}
3890
3891/*
3892 * ==========================================================================
3893 * I/O pipeline definition
3894 * ==========================================================================
3895 */
3896static zio_pipe_stage_t *zio_pipeline[] = {
3897	NULL,
3898	zio_read_bp_init,
3899	zio_write_bp_init,
3900	zio_free_bp_init,
3901	zio_issue_async,
3902	zio_write_compress,
3903	zio_checksum_generate,
3904	zio_nop_write,
3905	zio_ddt_read_start,
3906	zio_ddt_read_done,
3907	zio_ddt_write,
3908	zio_ddt_free,
3909	zio_gang_assemble,
3910	zio_gang_issue,
3911	zio_dva_throttle,
3912	zio_dva_allocate,
3913	zio_dva_free,
3914	zio_dva_claim,
3915	zio_ready,
3916	zio_vdev_io_start,
3917	zio_vdev_io_done,
3918	zio_vdev_io_assess,
3919	zio_checksum_verify,
3920	zio_done
3921};
3922
3923
3924
3925
3926/*
3927 * Compare two zbookmark_phys_t's to see which we would reach first in a
3928 * pre-order traversal of the object tree.
3929 *
3930 * This is simple in every case aside from the meta-dnode object. For all other
3931 * objects, we traverse them in order (object 1 before object 2, and so on).
3932 * However, all of these objects are traversed while traversing object 0, since
3933 * the data it points to is the list of objects.  Thus, we need to convert to a
3934 * canonical representation so we can compare meta-dnode bookmarks to
3935 * non-meta-dnode bookmarks.
3936 *
3937 * We do this by calculating "equivalents" for each field of the zbookmark.
3938 * zbookmarks outside of the meta-dnode use their own object and level, and
3939 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3940 * blocks this bookmark refers to) by multiplying their blkid by their span
3941 * (the number of L0 blocks contained within one block at their level).
3942 * zbookmarks inside the meta-dnode calculate their object equivalent
3943 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3944 * level + 1<<31 (any value larger than a level could ever be) for their level.
3945 * This causes them to always compare before a bookmark in their object
3946 * equivalent, compare appropriately to bookmarks in other objects, and to
3947 * compare appropriately to other bookmarks in the meta-dnode.
3948 */
3949int
3950zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3951    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3952{
3953	/*
3954	 * These variables represent the "equivalent" values for the zbookmark,
3955	 * after converting zbookmarks inside the meta dnode to their
3956	 * normal-object equivalents.
3957	 */
3958	uint64_t zb1obj, zb2obj;
3959	uint64_t zb1L0, zb2L0;
3960	uint64_t zb1level, zb2level;
3961
3962	if (zb1->zb_object == zb2->zb_object &&
3963	    zb1->zb_level == zb2->zb_level &&
3964	    zb1->zb_blkid == zb2->zb_blkid)
3965		return (0);
3966
3967	/*
3968	 * BP_SPANB calculates the span in blocks.
3969	 */
3970	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3971	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3972
3973	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3974		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3975		zb1L0 = 0;
3976		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3977	} else {
3978		zb1obj = zb1->zb_object;
3979		zb1level = zb1->zb_level;
3980	}
3981
3982	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3983		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3984		zb2L0 = 0;
3985		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3986	} else {
3987		zb2obj = zb2->zb_object;
3988		zb2level = zb2->zb_level;
3989	}
3990
3991	/* Now that we have a canonical representation, do the comparison. */
3992	if (zb1obj != zb2obj)
3993		return (zb1obj < zb2obj ? -1 : 1);
3994	else if (zb1L0 != zb2L0)
3995		return (zb1L0 < zb2L0 ? -1 : 1);
3996	else if (zb1level != zb2level)
3997		return (zb1level > zb2level ? -1 : 1);
3998	/*
3999	 * This can (theoretically) happen if the bookmarks have the same object
4000	 * and level, but different blkids, if the block sizes are not the same.
4001	 * There is presently no way to change the indirect block sizes
4002	 */
4003	return (0);
4004}
4005
4006/*
4007 *  This function checks the following: given that last_block is the place that
4008 *  our traversal stopped last time, does that guarantee that we've visited
4009 *  every node under subtree_root?  Therefore, we can't just use the raw output
4010 *  of zbookmark_compare.  We have to pass in a modified version of
4011 *  subtree_root; by incrementing the block id, and then checking whether
4012 *  last_block is before or equal to that, we can tell whether or not having
4013 *  visited last_block implies that all of subtree_root's children have been
4014 *  visited.
4015 */
4016boolean_t
4017zbookmark_subtree_completed(const dnode_phys_t *dnp,
4018    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4019{
4020	zbookmark_phys_t mod_zb = *subtree_root;
4021	mod_zb.zb_blkid++;
4022	ASSERT(last_block->zb_level == 0);
4023
4024	/* The objset_phys_t isn't before anything. */
4025	if (dnp == NULL)
4026		return (B_FALSE);
4027
4028	/*
4029	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4030	 * data block size in sectors, because that variable is only used if
4031	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4032	 * know without examining it what object it refers to, and there's no
4033	 * harm in passing in this value in other cases, we always pass it in.
4034	 *
4035	 * We pass in 0 for the indirect block size shift because zb2 must be
4036	 * level 0.  The indirect block size is only used to calculate the span
4037	 * of the bookmark, but since the bookmark must be level 0, the span is
4038	 * always 1, so the math works out.
4039	 *
4040	 * If you make changes to how the zbookmark_compare code works, be sure
4041	 * to make sure that this code still works afterwards.
4042	 */
4043	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4044	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4045	    last_block) <= 0);
4046}
4047