zio.c revision 307266
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/sysmacros.h>
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/txg.h>
33#include <sys/spa_impl.h>
34#include <sys/vdev_impl.h>
35#include <sys/zio_impl.h>
36#include <sys/zio_compress.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/ddt.h>
41#include <sys/trim_map.h>
42#include <sys/blkptr.h>
43#include <sys/zfeature.h>
44
45SYSCTL_DECL(_vfs_zfs);
46SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
47#if defined(__amd64__)
48static int zio_use_uma = 1;
49#else
50static int zio_use_uma = 0;
51#endif
52TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
53SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
54    "Use uma(9) for ZIO allocations");
55static int zio_exclude_metadata = 0;
56TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
57SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
58    "Exclude metadata buffers from dumps as well");
59
60zio_trim_stats_t zio_trim_stats = {
61	{ "bytes",		KSTAT_DATA_UINT64,
62	  "Number of bytes successfully TRIMmed" },
63	{ "success",		KSTAT_DATA_UINT64,
64	  "Number of successful TRIM requests" },
65	{ "unsupported",	KSTAT_DATA_UINT64,
66	  "Number of TRIM requests that failed because TRIM is not supported" },
67	{ "failed",		KSTAT_DATA_UINT64,
68	  "Number of TRIM requests that failed for reasons other than not supported" },
69};
70
71static kstat_t *zio_trim_ksp;
72
73/*
74 * ==========================================================================
75 * I/O type descriptions
76 * ==========================================================================
77 */
78const char *zio_type_name[ZIO_TYPES] = {
79	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
80	"zio_ioctl"
81};
82
83/*
84 * ==========================================================================
85 * I/O kmem caches
86 * ==========================================================================
87 */
88kmem_cache_t *zio_cache;
89kmem_cache_t *zio_link_cache;
90kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
92
93#ifdef _KERNEL
94extern vmem_t *zio_alloc_arena;
95#endif
96
97#define	ZIO_PIPELINE_CONTINUE		0x100
98#define	ZIO_PIPELINE_STOP		0x101
99
100#define	BP_SPANB(indblkshift, level) \
101	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
102#define	COMPARE_META_LEVEL	0x80000000ul
103/*
104 * The following actions directly effect the spa's sync-to-convergence logic.
105 * The values below define the sync pass when we start performing the action.
106 * Care should be taken when changing these values as they directly impact
107 * spa_sync() performance. Tuning these values may introduce subtle performance
108 * pathologies and should only be done in the context of performance analysis.
109 * These tunables will eventually be removed and replaced with #defines once
110 * enough analysis has been done to determine optimal values.
111 *
112 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
113 * regular blocks are not deferred.
114 */
115int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
116TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
117SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
118    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
119int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
120TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
121SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
122    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
123int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
124TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
125SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
126    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
127
128/*
129 * An allocating zio is one that either currently has the DVA allocate
130 * stage set or will have it later in its lifetime.
131 */
132#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133
134boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
135
136#ifdef illumos
137#ifdef ZFS_DEBUG
138int zio_buf_debug_limit = 16384;
139#else
140int zio_buf_debug_limit = 0;
141#endif
142#endif
143
144void
145zio_init(void)
146{
147	size_t c;
148	zio_cache = kmem_cache_create("zio_cache",
149	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
150	zio_link_cache = kmem_cache_create("zio_link_cache",
151	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152	if (!zio_use_uma)
153		goto out;
154
155	/*
156	 * For small buffers, we want a cache for each multiple of
157	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
158	 * for each quarter-power of 2.
159	 */
160	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
161		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
162		size_t p2 = size;
163		size_t align = 0;
164		int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0;
165
166		while (!ISP2(p2))
167			p2 &= p2 - 1;
168
169#ifdef illumos
170#ifndef _KERNEL
171		/*
172		 * If we are using watchpoints, put each buffer on its own page,
173		 * to eliminate the performance overhead of trapping to the
174		 * kernel when modifying a non-watched buffer that shares the
175		 * page with a watched buffer.
176		 */
177		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
178			continue;
179#endif
180#endif /* illumos */
181		if (size <= 4 * SPA_MINBLOCKSIZE) {
182			align = SPA_MINBLOCKSIZE;
183		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
184			align = MIN(p2 >> 2, PAGESIZE);
185		}
186
187		if (align != 0) {
188			char name[36];
189			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
190			zio_buf_cache[c] = kmem_cache_create(name, size,
191			    align, NULL, NULL, NULL, NULL, NULL, cflags);
192
193			/*
194			 * Since zio_data bufs do not appear in crash dumps, we
195			 * pass KMC_NOTOUCH so that no allocator metadata is
196			 * stored with the buffers.
197			 */
198			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
199			zio_data_buf_cache[c] = kmem_cache_create(name, size,
200			    align, NULL, NULL, NULL, NULL, NULL,
201			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
202		}
203	}
204
205	while (--c != 0) {
206		ASSERT(zio_buf_cache[c] != NULL);
207		if (zio_buf_cache[c - 1] == NULL)
208			zio_buf_cache[c - 1] = zio_buf_cache[c];
209
210		ASSERT(zio_data_buf_cache[c] != NULL);
211		if (zio_data_buf_cache[c - 1] == NULL)
212			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
213	}
214out:
215
216	zio_inject_init();
217
218	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
219	    KSTAT_TYPE_NAMED,
220	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
221	    KSTAT_FLAG_VIRTUAL);
222
223	if (zio_trim_ksp != NULL) {
224		zio_trim_ksp->ks_data = &zio_trim_stats;
225		kstat_install(zio_trim_ksp);
226	}
227}
228
229void
230zio_fini(void)
231{
232	size_t c;
233	kmem_cache_t *last_cache = NULL;
234	kmem_cache_t *last_data_cache = NULL;
235
236	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
237		if (zio_buf_cache[c] != last_cache) {
238			last_cache = zio_buf_cache[c];
239			kmem_cache_destroy(zio_buf_cache[c]);
240		}
241		zio_buf_cache[c] = NULL;
242
243		if (zio_data_buf_cache[c] != last_data_cache) {
244			last_data_cache = zio_data_buf_cache[c];
245			kmem_cache_destroy(zio_data_buf_cache[c]);
246		}
247		zio_data_buf_cache[c] = NULL;
248	}
249
250	kmem_cache_destroy(zio_link_cache);
251	kmem_cache_destroy(zio_cache);
252
253	zio_inject_fini();
254
255	if (zio_trim_ksp != NULL) {
256		kstat_delete(zio_trim_ksp);
257		zio_trim_ksp = NULL;
258	}
259}
260
261/*
262 * ==========================================================================
263 * Allocate and free I/O buffers
264 * ==========================================================================
265 */
266
267/*
268 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
269 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
270 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
271 * excess / transient data in-core during a crashdump.
272 */
273void *
274zio_buf_alloc(size_t size)
275{
276	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
277	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
278
279	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280
281	if (zio_use_uma)
282		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
283	else
284		return (kmem_alloc(size, KM_SLEEP|flags));
285}
286
287/*
288 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
289 * crashdump if the kernel panics.  This exists so that we will limit the amount
290 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
291 * of kernel heap dumped to disk when the kernel panics)
292 */
293void *
294zio_data_buf_alloc(size_t size)
295{
296	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
297
298	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
299
300	if (zio_use_uma)
301		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
302	else
303		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
304}
305
306void
307zio_buf_free(void *buf, size_t size)
308{
309	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
310
311	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
312
313	if (zio_use_uma)
314		kmem_cache_free(zio_buf_cache[c], buf);
315	else
316		kmem_free(buf, size);
317}
318
319void
320zio_data_buf_free(void *buf, size_t size)
321{
322	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
323
324	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
325
326	if (zio_use_uma)
327		kmem_cache_free(zio_data_buf_cache[c], buf);
328	else
329		kmem_free(buf, size);
330}
331
332/*
333 * ==========================================================================
334 * Push and pop I/O transform buffers
335 * ==========================================================================
336 */
337void
338zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
339    zio_transform_func_t *transform)
340{
341	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
342
343	zt->zt_orig_data = zio->io_data;
344	zt->zt_orig_size = zio->io_size;
345	zt->zt_bufsize = bufsize;
346	zt->zt_transform = transform;
347
348	zt->zt_next = zio->io_transform_stack;
349	zio->io_transform_stack = zt;
350
351	zio->io_data = data;
352	zio->io_size = size;
353}
354
355void
356zio_pop_transforms(zio_t *zio)
357{
358	zio_transform_t *zt;
359
360	while ((zt = zio->io_transform_stack) != NULL) {
361		if (zt->zt_transform != NULL)
362			zt->zt_transform(zio,
363			    zt->zt_orig_data, zt->zt_orig_size);
364
365		if (zt->zt_bufsize != 0)
366			zio_buf_free(zio->io_data, zt->zt_bufsize);
367
368		zio->io_data = zt->zt_orig_data;
369		zio->io_size = zt->zt_orig_size;
370		zio->io_transform_stack = zt->zt_next;
371
372		kmem_free(zt, sizeof (zio_transform_t));
373	}
374}
375
376/*
377 * ==========================================================================
378 * I/O transform callbacks for subblocks and decompression
379 * ==========================================================================
380 */
381static void
382zio_subblock(zio_t *zio, void *data, uint64_t size)
383{
384	ASSERT(zio->io_size > size);
385
386	if (zio->io_type == ZIO_TYPE_READ)
387		bcopy(zio->io_data, data, size);
388}
389
390static void
391zio_decompress(zio_t *zio, void *data, uint64_t size)
392{
393	if (zio->io_error == 0 &&
394	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
395	    zio->io_data, data, zio->io_size, size) != 0)
396		zio->io_error = SET_ERROR(EIO);
397}
398
399/*
400 * ==========================================================================
401 * I/O parent/child relationships and pipeline interlocks
402 * ==========================================================================
403 */
404/*
405 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
406 *        continue calling these functions until they return NULL.
407 *        Otherwise, the next caller will pick up the list walk in
408 *        some indeterminate state.  (Otherwise every caller would
409 *        have to pass in a cookie to keep the state represented by
410 *        io_walk_link, which gets annoying.)
411 */
412zio_t *
413zio_walk_parents(zio_t *cio)
414{
415	zio_link_t *zl = cio->io_walk_link;
416	list_t *pl = &cio->io_parent_list;
417
418	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
419	cio->io_walk_link = zl;
420
421	if (zl == NULL)
422		return (NULL);
423
424	ASSERT(zl->zl_child == cio);
425	return (zl->zl_parent);
426}
427
428zio_t *
429zio_walk_children(zio_t *pio)
430{
431	zio_link_t *zl = pio->io_walk_link;
432	list_t *cl = &pio->io_child_list;
433
434	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
435	pio->io_walk_link = zl;
436
437	if (zl == NULL)
438		return (NULL);
439
440	ASSERT(zl->zl_parent == pio);
441	return (zl->zl_child);
442}
443
444zio_t *
445zio_unique_parent(zio_t *cio)
446{
447	zio_t *pio = zio_walk_parents(cio);
448
449	VERIFY(zio_walk_parents(cio) == NULL);
450	return (pio);
451}
452
453void
454zio_add_child(zio_t *pio, zio_t *cio)
455{
456	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
457
458	/*
459	 * Logical I/Os can have logical, gang, or vdev children.
460	 * Gang I/Os can have gang or vdev children.
461	 * Vdev I/Os can only have vdev children.
462	 * The following ASSERT captures all of these constraints.
463	 */
464	ASSERT(cio->io_child_type <= pio->io_child_type);
465
466	zl->zl_parent = pio;
467	zl->zl_child = cio;
468
469	mutex_enter(&cio->io_lock);
470	mutex_enter(&pio->io_lock);
471
472	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
473
474	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
475		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
476
477	list_insert_head(&pio->io_child_list, zl);
478	list_insert_head(&cio->io_parent_list, zl);
479
480	pio->io_child_count++;
481	cio->io_parent_count++;
482
483	mutex_exit(&pio->io_lock);
484	mutex_exit(&cio->io_lock);
485}
486
487static void
488zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
489{
490	ASSERT(zl->zl_parent == pio);
491	ASSERT(zl->zl_child == cio);
492
493	mutex_enter(&cio->io_lock);
494	mutex_enter(&pio->io_lock);
495
496	list_remove(&pio->io_child_list, zl);
497	list_remove(&cio->io_parent_list, zl);
498
499	pio->io_child_count--;
500	cio->io_parent_count--;
501
502	mutex_exit(&pio->io_lock);
503	mutex_exit(&cio->io_lock);
504
505	kmem_cache_free(zio_link_cache, zl);
506}
507
508static boolean_t
509zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
510{
511	uint64_t *countp = &zio->io_children[child][wait];
512	boolean_t waiting = B_FALSE;
513
514	mutex_enter(&zio->io_lock);
515	ASSERT(zio->io_stall == NULL);
516	if (*countp != 0) {
517		zio->io_stage >>= 1;
518		zio->io_stall = countp;
519		waiting = B_TRUE;
520	}
521	mutex_exit(&zio->io_lock);
522
523	return (waiting);
524}
525
526static void
527zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
528{
529	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
530	int *errorp = &pio->io_child_error[zio->io_child_type];
531
532	mutex_enter(&pio->io_lock);
533	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
534		*errorp = zio_worst_error(*errorp, zio->io_error);
535	pio->io_reexecute |= zio->io_reexecute;
536	ASSERT3U(*countp, >, 0);
537
538	(*countp)--;
539
540	if (*countp == 0 && pio->io_stall == countp) {
541		pio->io_stall = NULL;
542		mutex_exit(&pio->io_lock);
543		zio_execute(pio);
544	} else {
545		mutex_exit(&pio->io_lock);
546	}
547}
548
549static void
550zio_inherit_child_errors(zio_t *zio, enum zio_child c)
551{
552	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
553		zio->io_error = zio->io_child_error[c];
554}
555
556/*
557 * ==========================================================================
558 * Create the various types of I/O (read, write, free, etc)
559 * ==========================================================================
560 */
561static zio_t *
562zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
563    void *data, uint64_t size, zio_done_func_t *done, void *private,
564    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
565    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
566    enum zio_stage stage, enum zio_stage pipeline)
567{
568	zio_t *zio;
569
570	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
571	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
572	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
573
574	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
575	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
576	ASSERT(vd || stage == ZIO_STAGE_OPEN);
577
578	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
579	bzero(zio, sizeof (zio_t));
580
581	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
582	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
583
584	list_create(&zio->io_parent_list, sizeof (zio_link_t),
585	    offsetof(zio_link_t, zl_parent_node));
586	list_create(&zio->io_child_list, sizeof (zio_link_t),
587	    offsetof(zio_link_t, zl_child_node));
588
589	if (vd != NULL)
590		zio->io_child_type = ZIO_CHILD_VDEV;
591	else if (flags & ZIO_FLAG_GANG_CHILD)
592		zio->io_child_type = ZIO_CHILD_GANG;
593	else if (flags & ZIO_FLAG_DDT_CHILD)
594		zio->io_child_type = ZIO_CHILD_DDT;
595	else
596		zio->io_child_type = ZIO_CHILD_LOGICAL;
597
598	if (bp != NULL) {
599		zio->io_bp = (blkptr_t *)bp;
600		zio->io_bp_copy = *bp;
601		zio->io_bp_orig = *bp;
602		if (type != ZIO_TYPE_WRITE ||
603		    zio->io_child_type == ZIO_CHILD_DDT)
604			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
605		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
606			zio->io_logical = zio;
607		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
608			pipeline |= ZIO_GANG_STAGES;
609	}
610
611	zio->io_spa = spa;
612	zio->io_txg = txg;
613	zio->io_done = done;
614	zio->io_private = private;
615	zio->io_type = type;
616	zio->io_priority = priority;
617	zio->io_vd = vd;
618	zio->io_offset = offset;
619	zio->io_orig_data = zio->io_data = data;
620	zio->io_orig_size = zio->io_size = size;
621	zio->io_orig_flags = zio->io_flags = flags;
622	zio->io_orig_stage = zio->io_stage = stage;
623	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
624
625	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
626	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
627
628	if (zb != NULL)
629		zio->io_bookmark = *zb;
630
631	if (pio != NULL) {
632		if (zio->io_logical == NULL)
633			zio->io_logical = pio->io_logical;
634		if (zio->io_child_type == ZIO_CHILD_GANG)
635			zio->io_gang_leader = pio->io_gang_leader;
636		zio_add_child(pio, zio);
637	}
638
639	return (zio);
640}
641
642static void
643zio_destroy(zio_t *zio)
644{
645	list_destroy(&zio->io_parent_list);
646	list_destroy(&zio->io_child_list);
647	mutex_destroy(&zio->io_lock);
648	cv_destroy(&zio->io_cv);
649	kmem_cache_free(zio_cache, zio);
650}
651
652zio_t *
653zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
654    void *private, enum zio_flag flags)
655{
656	zio_t *zio;
657
658	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
659	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
660	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
661
662	return (zio);
663}
664
665zio_t *
666zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
667{
668	return (zio_null(NULL, spa, NULL, done, private, flags));
669}
670
671void
672zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
673{
674	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
675		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
676		    bp, (longlong_t)BP_GET_TYPE(bp));
677	}
678	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
679	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
680		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
681		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
682	}
683	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
684	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
685		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
686		    bp, (longlong_t)BP_GET_COMPRESS(bp));
687	}
688	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
689		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
690		    bp, (longlong_t)BP_GET_LSIZE(bp));
691	}
692	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
693		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
694		    bp, (longlong_t)BP_GET_PSIZE(bp));
695	}
696
697	if (BP_IS_EMBEDDED(bp)) {
698		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
699			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
700			    bp, (longlong_t)BPE_GET_ETYPE(bp));
701		}
702	}
703
704	/*
705	 * Pool-specific checks.
706	 *
707	 * Note: it would be nice to verify that the blk_birth and
708	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
709	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
710	 * that are in the log) to be arbitrarily large.
711	 */
712	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
713		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
714		if (vdevid >= spa->spa_root_vdev->vdev_children) {
715			zfs_panic_recover("blkptr at %p DVA %u has invalid "
716			    "VDEV %llu",
717			    bp, i, (longlong_t)vdevid);
718			continue;
719		}
720		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
721		if (vd == NULL) {
722			zfs_panic_recover("blkptr at %p DVA %u has invalid "
723			    "VDEV %llu",
724			    bp, i, (longlong_t)vdevid);
725			continue;
726		}
727		if (vd->vdev_ops == &vdev_hole_ops) {
728			zfs_panic_recover("blkptr at %p DVA %u has hole "
729			    "VDEV %llu",
730			    bp, i, (longlong_t)vdevid);
731			continue;
732		}
733		if (vd->vdev_ops == &vdev_missing_ops) {
734			/*
735			 * "missing" vdevs are valid during import, but we
736			 * don't have their detailed info (e.g. asize), so
737			 * we can't perform any more checks on them.
738			 */
739			continue;
740		}
741		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
742		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
743		if (BP_IS_GANG(bp))
744			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
745		if (offset + asize > vd->vdev_asize) {
746			zfs_panic_recover("blkptr at %p DVA %u has invalid "
747			    "OFFSET %llu",
748			    bp, i, (longlong_t)offset);
749		}
750	}
751}
752
753zio_t *
754zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
755    void *data, uint64_t size, zio_done_func_t *done, void *private,
756    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
757{
758	zio_t *zio;
759
760	zfs_blkptr_verify(spa, bp);
761
762	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
763	    data, size, done, private,
764	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
765	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
766	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
767
768	return (zio);
769}
770
771zio_t *
772zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
773    void *data, uint64_t size, const zio_prop_t *zp,
774    zio_done_func_t *ready, zio_done_func_t *children_ready,
775    zio_done_func_t *physdone, zio_done_func_t *done,
776    void *private, zio_priority_t priority, enum zio_flag flags,
777    const zbookmark_phys_t *zb)
778{
779	zio_t *zio;
780
781	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
782	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
783	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
784	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
785	    DMU_OT_IS_VALID(zp->zp_type) &&
786	    zp->zp_level < 32 &&
787	    zp->zp_copies > 0 &&
788	    zp->zp_copies <= spa_max_replication(spa));
789
790	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
791	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
792	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
793	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
794
795	zio->io_ready = ready;
796	zio->io_children_ready = children_ready;
797	zio->io_physdone = physdone;
798	zio->io_prop = *zp;
799
800	/*
801	 * Data can be NULL if we are going to call zio_write_override() to
802	 * provide the already-allocated BP.  But we may need the data to
803	 * verify a dedup hit (if requested).  In this case, don't try to
804	 * dedup (just take the already-allocated BP verbatim).
805	 */
806	if (data == NULL && zio->io_prop.zp_dedup_verify) {
807		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
808	}
809
810	return (zio);
811}
812
813zio_t *
814zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
815    uint64_t size, zio_done_func_t *done, void *private,
816    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
817{
818	zio_t *zio;
819
820	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
821	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
822	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
823
824	return (zio);
825}
826
827void
828zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
829{
830	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
831	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
832	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
833	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
834
835	/*
836	 * We must reset the io_prop to match the values that existed
837	 * when the bp was first written by dmu_sync() keeping in mind
838	 * that nopwrite and dedup are mutually exclusive.
839	 */
840	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
841	zio->io_prop.zp_nopwrite = nopwrite;
842	zio->io_prop.zp_copies = copies;
843	zio->io_bp_override = bp;
844}
845
846void
847zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
848{
849
850	/*
851	 * The check for EMBEDDED is a performance optimization.  We
852	 * process the free here (by ignoring it) rather than
853	 * putting it on the list and then processing it in zio_free_sync().
854	 */
855	if (BP_IS_EMBEDDED(bp))
856		return;
857	metaslab_check_free(spa, bp);
858
859	/*
860	 * Frees that are for the currently-syncing txg, are not going to be
861	 * deferred, and which will not need to do a read (i.e. not GANG or
862	 * DEDUP), can be processed immediately.  Otherwise, put them on the
863	 * in-memory list for later processing.
864	 */
865	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
866	    txg != spa->spa_syncing_txg ||
867	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
868		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
869	} else {
870		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
871		    BP_GET_PSIZE(bp), 0)));
872	}
873}
874
875zio_t *
876zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
877    uint64_t size, enum zio_flag flags)
878{
879	zio_t *zio;
880	enum zio_stage stage = ZIO_FREE_PIPELINE;
881
882	ASSERT(!BP_IS_HOLE(bp));
883	ASSERT(spa_syncing_txg(spa) == txg);
884	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
885
886	if (BP_IS_EMBEDDED(bp))
887		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
888
889	metaslab_check_free(spa, bp);
890	arc_freed(spa, bp);
891
892	if (zfs_trim_enabled)
893		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
894		    ZIO_STAGE_VDEV_IO_ASSESS;
895	/*
896	 * GANG and DEDUP blocks can induce a read (for the gang block header,
897	 * or the DDT), so issue them asynchronously so that this thread is
898	 * not tied up.
899	 */
900	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
901		stage |= ZIO_STAGE_ISSUE_ASYNC;
902
903	flags |= ZIO_FLAG_DONT_QUEUE;
904
905	zio = zio_create(pio, spa, txg, bp, NULL, size,
906	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
907	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
908
909	return (zio);
910}
911
912zio_t *
913zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
914    zio_done_func_t *done, void *private, enum zio_flag flags)
915{
916	zio_t *zio;
917
918	dprintf_bp(bp, "claiming in txg %llu", txg);
919
920	if (BP_IS_EMBEDDED(bp))
921		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
922
923	/*
924	 * A claim is an allocation of a specific block.  Claims are needed
925	 * to support immediate writes in the intent log.  The issue is that
926	 * immediate writes contain committed data, but in a txg that was
927	 * *not* committed.  Upon opening the pool after an unclean shutdown,
928	 * the intent log claims all blocks that contain immediate write data
929	 * so that the SPA knows they're in use.
930	 *
931	 * All claims *must* be resolved in the first txg -- before the SPA
932	 * starts allocating blocks -- so that nothing is allocated twice.
933	 * If txg == 0 we just verify that the block is claimable.
934	 */
935	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
936	ASSERT(txg == spa_first_txg(spa) || txg == 0);
937	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
938
939	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
940	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
941	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
942
943	return (zio);
944}
945
946zio_t *
947zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
948    uint64_t size, zio_done_func_t *done, void *private,
949    zio_priority_t priority, enum zio_flag flags)
950{
951	zio_t *zio;
952	int c;
953
954	if (vd->vdev_children == 0) {
955		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
956		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
957		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
958
959		zio->io_cmd = cmd;
960	} else {
961		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
962
963		for (c = 0; c < vd->vdev_children; c++)
964			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
965			    offset, size, done, private, priority, flags));
966	}
967
968	return (zio);
969}
970
971zio_t *
972zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
973    void *data, int checksum, zio_done_func_t *done, void *private,
974    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
975{
976	zio_t *zio;
977
978	ASSERT(vd->vdev_children == 0);
979	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
980	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
981	ASSERT3U(offset + size, <=, vd->vdev_psize);
982
983	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
984	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
985	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
986
987	zio->io_prop.zp_checksum = checksum;
988
989	return (zio);
990}
991
992zio_t *
993zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
994    void *data, int checksum, zio_done_func_t *done, void *private,
995    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
996{
997	zio_t *zio;
998
999	ASSERT(vd->vdev_children == 0);
1000	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1001	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1002	ASSERT3U(offset + size, <=, vd->vdev_psize);
1003
1004	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1005	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1006	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1007
1008	zio->io_prop.zp_checksum = checksum;
1009
1010	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1011		/*
1012		 * zec checksums are necessarily destructive -- they modify
1013		 * the end of the write buffer to hold the verifier/checksum.
1014		 * Therefore, we must make a local copy in case the data is
1015		 * being written to multiple places in parallel.
1016		 */
1017		void *wbuf = zio_buf_alloc(size);
1018		bcopy(data, wbuf, size);
1019		zio_push_transform(zio, wbuf, size, size, NULL);
1020	}
1021
1022	return (zio);
1023}
1024
1025/*
1026 * Create a child I/O to do some work for us.
1027 */
1028zio_t *
1029zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1030    void *data, uint64_t size, int type, zio_priority_t priority,
1031    enum zio_flag flags, zio_done_func_t *done, void *private)
1032{
1033	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1034	zio_t *zio;
1035
1036	ASSERT(vd->vdev_parent ==
1037	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1038
1039	if (type == ZIO_TYPE_READ && bp != NULL) {
1040		/*
1041		 * If we have the bp, then the child should perform the
1042		 * checksum and the parent need not.  This pushes error
1043		 * detection as close to the leaves as possible and
1044		 * eliminates redundant checksums in the interior nodes.
1045		 */
1046		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1047		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1048	}
1049
1050	/* Not all IO types require vdev io done stage e.g. free */
1051	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1052		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1053
1054	if (vd->vdev_children == 0)
1055		offset += VDEV_LABEL_START_SIZE;
1056
1057	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1058
1059	/*
1060	 * If we've decided to do a repair, the write is not speculative --
1061	 * even if the original read was.
1062	 */
1063	if (flags & ZIO_FLAG_IO_REPAIR)
1064		flags &= ~ZIO_FLAG_SPECULATIVE;
1065
1066	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1067	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1068	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1069
1070	zio->io_physdone = pio->io_physdone;
1071	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1072		zio->io_logical->io_phys_children++;
1073
1074	return (zio);
1075}
1076
1077zio_t *
1078zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1079    int type, zio_priority_t priority, enum zio_flag flags,
1080    zio_done_func_t *done, void *private)
1081{
1082	zio_t *zio;
1083
1084	ASSERT(vd->vdev_ops->vdev_op_leaf);
1085
1086	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1087	    data, size, done, private, type, priority,
1088	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1089	    vd, offset, NULL,
1090	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1091
1092	return (zio);
1093}
1094
1095void
1096zio_flush(zio_t *zio, vdev_t *vd)
1097{
1098	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1099	    NULL, NULL, ZIO_PRIORITY_NOW,
1100	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1101}
1102
1103zio_t *
1104zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1105{
1106
1107	ASSERT(vd->vdev_ops->vdev_op_leaf);
1108
1109	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1110	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1111	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1112	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1113}
1114
1115void
1116zio_shrink(zio_t *zio, uint64_t size)
1117{
1118	ASSERT(zio->io_executor == NULL);
1119	ASSERT(zio->io_orig_size == zio->io_size);
1120	ASSERT(size <= zio->io_size);
1121
1122	/*
1123	 * We don't shrink for raidz because of problems with the
1124	 * reconstruction when reading back less than the block size.
1125	 * Note, BP_IS_RAIDZ() assumes no compression.
1126	 */
1127	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1128	if (!BP_IS_RAIDZ(zio->io_bp))
1129		zio->io_orig_size = zio->io_size = size;
1130}
1131
1132/*
1133 * ==========================================================================
1134 * Prepare to read and write logical blocks
1135 * ==========================================================================
1136 */
1137
1138static int
1139zio_read_bp_init(zio_t *zio)
1140{
1141	blkptr_t *bp = zio->io_bp;
1142
1143	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1144	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1145	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1146		uint64_t psize =
1147		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1148		void *cbuf = zio_buf_alloc(psize);
1149
1150		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1151	}
1152
1153	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1154		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1155		decode_embedded_bp_compressed(bp, zio->io_data);
1156	} else {
1157		ASSERT(!BP_IS_EMBEDDED(bp));
1158	}
1159
1160	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1161		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1162
1163	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1164		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1165
1166	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1167		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1168
1169	return (ZIO_PIPELINE_CONTINUE);
1170}
1171
1172static int
1173zio_write_bp_init(zio_t *zio)
1174{
1175	spa_t *spa = zio->io_spa;
1176	zio_prop_t *zp = &zio->io_prop;
1177	enum zio_compress compress = zp->zp_compress;
1178	blkptr_t *bp = zio->io_bp;
1179	uint64_t lsize = zio->io_size;
1180	uint64_t psize = lsize;
1181	int pass = 1;
1182
1183	/*
1184	 * If our children haven't all reached the ready stage,
1185	 * wait for them and then repeat this pipeline stage.
1186	 */
1187	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1188	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1189		return (ZIO_PIPELINE_STOP);
1190
1191	if (!IO_IS_ALLOCATING(zio))
1192		return (ZIO_PIPELINE_CONTINUE);
1193
1194	if (zio->io_children_ready != NULL) {
1195		/*
1196		 * Now that all our children are ready, run the callback
1197		 * associated with this zio in case it wants to modify the
1198		 * data to be written.
1199		 */
1200		ASSERT3U(zp->zp_level, >, 0);
1201		zio->io_children_ready(zio);
1202	}
1203
1204	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1205
1206	if (zio->io_bp_override) {
1207		ASSERT(bp->blk_birth != zio->io_txg);
1208		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1209
1210		*bp = *zio->io_bp_override;
1211		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1212
1213		if (BP_IS_EMBEDDED(bp))
1214			return (ZIO_PIPELINE_CONTINUE);
1215
1216		/*
1217		 * If we've been overridden and nopwrite is set then
1218		 * set the flag accordingly to indicate that a nopwrite
1219		 * has already occurred.
1220		 */
1221		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1222			ASSERT(!zp->zp_dedup);
1223			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1224			return (ZIO_PIPELINE_CONTINUE);
1225		}
1226
1227		ASSERT(!zp->zp_nopwrite);
1228
1229		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1230			return (ZIO_PIPELINE_CONTINUE);
1231
1232		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1233		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1234
1235		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1236			BP_SET_DEDUP(bp, 1);
1237			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1238			return (ZIO_PIPELINE_CONTINUE);
1239		}
1240		zio->io_bp_override = NULL;
1241		BP_ZERO(bp);
1242	}
1243
1244	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1245		/*
1246		 * We're rewriting an existing block, which means we're
1247		 * working on behalf of spa_sync().  For spa_sync() to
1248		 * converge, it must eventually be the case that we don't
1249		 * have to allocate new blocks.  But compression changes
1250		 * the blocksize, which forces a reallocate, and makes
1251		 * convergence take longer.  Therefore, after the first
1252		 * few passes, stop compressing to ensure convergence.
1253		 */
1254		pass = spa_sync_pass(spa);
1255
1256		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1257		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1258		ASSERT(!BP_GET_DEDUP(bp));
1259
1260		if (pass >= zfs_sync_pass_dont_compress)
1261			compress = ZIO_COMPRESS_OFF;
1262
1263		/* Make sure someone doesn't change their mind on overwrites */
1264		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1265		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1266	}
1267
1268	if (compress != ZIO_COMPRESS_OFF) {
1269		void *cbuf = zio_buf_alloc(lsize);
1270		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1271		if (psize == 0 || psize == lsize) {
1272			compress = ZIO_COMPRESS_OFF;
1273			zio_buf_free(cbuf, lsize);
1274		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1275		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1276		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1277			encode_embedded_bp_compressed(bp,
1278			    cbuf, compress, lsize, psize);
1279			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1280			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1281			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1282			zio_buf_free(cbuf, lsize);
1283			bp->blk_birth = zio->io_txg;
1284			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1285			ASSERT(spa_feature_is_active(spa,
1286			    SPA_FEATURE_EMBEDDED_DATA));
1287			return (ZIO_PIPELINE_CONTINUE);
1288		} else {
1289			/*
1290			 * Round up compressed size up to the ashift
1291			 * of the smallest-ashift device, and zero the tail.
1292			 * This ensures that the compressed size of the BP
1293			 * (and thus compressratio property) are correct,
1294			 * in that we charge for the padding used to fill out
1295			 * the last sector.
1296			 */
1297			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1298			size_t rounded = (size_t)P2ROUNDUP(psize,
1299			    1ULL << spa->spa_min_ashift);
1300			if (rounded >= lsize) {
1301				compress = ZIO_COMPRESS_OFF;
1302				zio_buf_free(cbuf, lsize);
1303				psize = lsize;
1304			} else {
1305				bzero((char *)cbuf + psize, rounded - psize);
1306				psize = rounded;
1307				zio_push_transform(zio, cbuf,
1308				    psize, lsize, NULL);
1309			}
1310		}
1311	}
1312
1313	/*
1314	 * The final pass of spa_sync() must be all rewrites, but the first
1315	 * few passes offer a trade-off: allocating blocks defers convergence,
1316	 * but newly allocated blocks are sequential, so they can be written
1317	 * to disk faster.  Therefore, we allow the first few passes of
1318	 * spa_sync() to allocate new blocks, but force rewrites after that.
1319	 * There should only be a handful of blocks after pass 1 in any case.
1320	 */
1321	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1322	    BP_GET_PSIZE(bp) == psize &&
1323	    pass >= zfs_sync_pass_rewrite) {
1324		ASSERT(psize != 0);
1325		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1326		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1327		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1328	} else {
1329		BP_ZERO(bp);
1330		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1331	}
1332
1333	if (psize == 0) {
1334		if (zio->io_bp_orig.blk_birth != 0 &&
1335		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1336			BP_SET_LSIZE(bp, lsize);
1337			BP_SET_TYPE(bp, zp->zp_type);
1338			BP_SET_LEVEL(bp, zp->zp_level);
1339			BP_SET_BIRTH(bp, zio->io_txg, 0);
1340		}
1341		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1342	} else {
1343		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1344		BP_SET_LSIZE(bp, lsize);
1345		BP_SET_TYPE(bp, zp->zp_type);
1346		BP_SET_LEVEL(bp, zp->zp_level);
1347		BP_SET_PSIZE(bp, psize);
1348		BP_SET_COMPRESS(bp, compress);
1349		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1350		BP_SET_DEDUP(bp, zp->zp_dedup);
1351		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1352		if (zp->zp_dedup) {
1353			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1354			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1355			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1356		}
1357		if (zp->zp_nopwrite) {
1358			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1359			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1360			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1361		}
1362	}
1363
1364	return (ZIO_PIPELINE_CONTINUE);
1365}
1366
1367static int
1368zio_free_bp_init(zio_t *zio)
1369{
1370	blkptr_t *bp = zio->io_bp;
1371
1372	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1373		if (BP_GET_DEDUP(bp))
1374			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1375	}
1376
1377	return (ZIO_PIPELINE_CONTINUE);
1378}
1379
1380/*
1381 * ==========================================================================
1382 * Execute the I/O pipeline
1383 * ==========================================================================
1384 */
1385
1386static void
1387zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1388{
1389	spa_t *spa = zio->io_spa;
1390	zio_type_t t = zio->io_type;
1391	int flags = (cutinline ? TQ_FRONT : 0);
1392
1393	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1394
1395	/*
1396	 * If we're a config writer or a probe, the normal issue and
1397	 * interrupt threads may all be blocked waiting for the config lock.
1398	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1399	 */
1400	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1401		t = ZIO_TYPE_NULL;
1402
1403	/*
1404	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1405	 */
1406	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1407		t = ZIO_TYPE_NULL;
1408
1409	/*
1410	 * If this is a high priority I/O, then use the high priority taskq if
1411	 * available.
1412	 */
1413	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1414	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1415		q++;
1416
1417	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1418
1419	/*
1420	 * NB: We are assuming that the zio can only be dispatched
1421	 * to a single taskq at a time.  It would be a grievous error
1422	 * to dispatch the zio to another taskq at the same time.
1423	 */
1424#if defined(illumos) || !defined(_KERNEL)
1425	ASSERT(zio->io_tqent.tqent_next == NULL);
1426#else
1427	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1428#endif
1429	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1430	    flags, &zio->io_tqent);
1431}
1432
1433static boolean_t
1434zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1435{
1436	kthread_t *executor = zio->io_executor;
1437	spa_t *spa = zio->io_spa;
1438
1439	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1440		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1441		uint_t i;
1442		for (i = 0; i < tqs->stqs_count; i++) {
1443			if (taskq_member(tqs->stqs_taskq[i], executor))
1444				return (B_TRUE);
1445		}
1446	}
1447
1448	return (B_FALSE);
1449}
1450
1451static int
1452zio_issue_async(zio_t *zio)
1453{
1454	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1455
1456	return (ZIO_PIPELINE_STOP);
1457}
1458
1459void
1460zio_interrupt(zio_t *zio)
1461{
1462	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1463}
1464
1465void
1466zio_delay_interrupt(zio_t *zio)
1467{
1468	/*
1469	 * The timeout_generic() function isn't defined in userspace, so
1470	 * rather than trying to implement the function, the zio delay
1471	 * functionality has been disabled for userspace builds.
1472	 */
1473
1474#ifdef _KERNEL
1475	/*
1476	 * If io_target_timestamp is zero, then no delay has been registered
1477	 * for this IO, thus jump to the end of this function and "skip" the
1478	 * delay; issuing it directly to the zio layer.
1479	 */
1480	if (zio->io_target_timestamp != 0) {
1481		hrtime_t now = gethrtime();
1482
1483		if (now >= zio->io_target_timestamp) {
1484			/*
1485			 * This IO has already taken longer than the target
1486			 * delay to complete, so we don't want to delay it
1487			 * any longer; we "miss" the delay and issue it
1488			 * directly to the zio layer. This is likely due to
1489			 * the target latency being set to a value less than
1490			 * the underlying hardware can satisfy (e.g. delay
1491			 * set to 1ms, but the disks take 10ms to complete an
1492			 * IO request).
1493			 */
1494
1495			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1496			    hrtime_t, now);
1497
1498			zio_interrupt(zio);
1499		} else {
1500			hrtime_t diff = zio->io_target_timestamp - now;
1501
1502			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1503			    hrtime_t, now, hrtime_t, diff);
1504
1505			(void) timeout_generic(CALLOUT_NORMAL,
1506			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1507		}
1508
1509		return;
1510	}
1511#endif
1512
1513	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1514	zio_interrupt(zio);
1515}
1516
1517/*
1518 * Execute the I/O pipeline until one of the following occurs:
1519 *
1520 *	(1) the I/O completes
1521 *	(2) the pipeline stalls waiting for dependent child I/Os
1522 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1523 *	(4) the I/O is delegated by vdev-level caching or aggregation
1524 *	(5) the I/O is deferred due to vdev-level queueing
1525 *	(6) the I/O is handed off to another thread.
1526 *
1527 * In all cases, the pipeline stops whenever there's no CPU work; it never
1528 * burns a thread in cv_wait().
1529 *
1530 * There's no locking on io_stage because there's no legitimate way
1531 * for multiple threads to be attempting to process the same I/O.
1532 */
1533static zio_pipe_stage_t *zio_pipeline[];
1534
1535void
1536zio_execute(zio_t *zio)
1537{
1538	zio->io_executor = curthread;
1539
1540	while (zio->io_stage < ZIO_STAGE_DONE) {
1541		enum zio_stage pipeline = zio->io_pipeline;
1542		enum zio_stage stage = zio->io_stage;
1543		int rv;
1544
1545		ASSERT(!MUTEX_HELD(&zio->io_lock));
1546		ASSERT(ISP2(stage));
1547		ASSERT(zio->io_stall == NULL);
1548
1549		do {
1550			stage <<= 1;
1551		} while ((stage & pipeline) == 0);
1552
1553		ASSERT(stage <= ZIO_STAGE_DONE);
1554
1555		/*
1556		 * If we are in interrupt context and this pipeline stage
1557		 * will grab a config lock that is held across I/O,
1558		 * or may wait for an I/O that needs an interrupt thread
1559		 * to complete, issue async to avoid deadlock.
1560		 *
1561		 * For VDEV_IO_START, we cut in line so that the io will
1562		 * be sent to disk promptly.
1563		 */
1564		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1565		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1566			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1567			    zio_requeue_io_start_cut_in_line : B_FALSE;
1568			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1569			return;
1570		}
1571
1572		zio->io_stage = stage;
1573		rv = zio_pipeline[highbit64(stage) - 1](zio);
1574
1575		if (rv == ZIO_PIPELINE_STOP)
1576			return;
1577
1578		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1579	}
1580}
1581
1582/*
1583 * ==========================================================================
1584 * Initiate I/O, either sync or async
1585 * ==========================================================================
1586 */
1587int
1588zio_wait(zio_t *zio)
1589{
1590	int error;
1591
1592	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1593	ASSERT(zio->io_executor == NULL);
1594
1595	zio->io_waiter = curthread;
1596
1597	zio_execute(zio);
1598
1599	mutex_enter(&zio->io_lock);
1600	while (zio->io_executor != NULL)
1601		cv_wait(&zio->io_cv, &zio->io_lock);
1602	mutex_exit(&zio->io_lock);
1603
1604	error = zio->io_error;
1605	zio_destroy(zio);
1606
1607	return (error);
1608}
1609
1610void
1611zio_nowait(zio_t *zio)
1612{
1613	ASSERT(zio->io_executor == NULL);
1614
1615	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1616	    zio_unique_parent(zio) == NULL) {
1617		/*
1618		 * This is a logical async I/O with no parent to wait for it.
1619		 * We add it to the spa_async_root_zio "Godfather" I/O which
1620		 * will ensure they complete prior to unloading the pool.
1621		 */
1622		spa_t *spa = zio->io_spa;
1623
1624		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1625	}
1626
1627	zio_execute(zio);
1628}
1629
1630/*
1631 * ==========================================================================
1632 * Reexecute or suspend/resume failed I/O
1633 * ==========================================================================
1634 */
1635
1636static void
1637zio_reexecute(zio_t *pio)
1638{
1639	zio_t *cio, *cio_next;
1640
1641	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1642	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1643	ASSERT(pio->io_gang_leader == NULL);
1644	ASSERT(pio->io_gang_tree == NULL);
1645
1646	pio->io_flags = pio->io_orig_flags;
1647	pio->io_stage = pio->io_orig_stage;
1648	pio->io_pipeline = pio->io_orig_pipeline;
1649	pio->io_reexecute = 0;
1650	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1651	pio->io_error = 0;
1652	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1653		pio->io_state[w] = 0;
1654	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1655		pio->io_child_error[c] = 0;
1656
1657	if (IO_IS_ALLOCATING(pio))
1658		BP_ZERO(pio->io_bp);
1659
1660	/*
1661	 * As we reexecute pio's children, new children could be created.
1662	 * New children go to the head of pio's io_child_list, however,
1663	 * so we will (correctly) not reexecute them.  The key is that
1664	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1665	 * cannot be affected by any side effects of reexecuting 'cio'.
1666	 */
1667	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1668		cio_next = zio_walk_children(pio);
1669		mutex_enter(&pio->io_lock);
1670		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1671			pio->io_children[cio->io_child_type][w]++;
1672		mutex_exit(&pio->io_lock);
1673		zio_reexecute(cio);
1674	}
1675
1676	/*
1677	 * Now that all children have been reexecuted, execute the parent.
1678	 * We don't reexecute "The Godfather" I/O here as it's the
1679	 * responsibility of the caller to wait on him.
1680	 */
1681	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1682		zio_execute(pio);
1683}
1684
1685void
1686zio_suspend(spa_t *spa, zio_t *zio)
1687{
1688	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1689		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1690		    "failure and the failure mode property for this pool "
1691		    "is set to panic.", spa_name(spa));
1692
1693	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1694
1695	mutex_enter(&spa->spa_suspend_lock);
1696
1697	if (spa->spa_suspend_zio_root == NULL)
1698		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1699		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1700		    ZIO_FLAG_GODFATHER);
1701
1702	spa->spa_suspended = B_TRUE;
1703
1704	if (zio != NULL) {
1705		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1706		ASSERT(zio != spa->spa_suspend_zio_root);
1707		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1708		ASSERT(zio_unique_parent(zio) == NULL);
1709		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1710		zio_add_child(spa->spa_suspend_zio_root, zio);
1711	}
1712
1713	mutex_exit(&spa->spa_suspend_lock);
1714}
1715
1716int
1717zio_resume(spa_t *spa)
1718{
1719	zio_t *pio;
1720
1721	/*
1722	 * Reexecute all previously suspended i/o.
1723	 */
1724	mutex_enter(&spa->spa_suspend_lock);
1725	spa->spa_suspended = B_FALSE;
1726	cv_broadcast(&spa->spa_suspend_cv);
1727	pio = spa->spa_suspend_zio_root;
1728	spa->spa_suspend_zio_root = NULL;
1729	mutex_exit(&spa->spa_suspend_lock);
1730
1731	if (pio == NULL)
1732		return (0);
1733
1734	zio_reexecute(pio);
1735	return (zio_wait(pio));
1736}
1737
1738void
1739zio_resume_wait(spa_t *spa)
1740{
1741	mutex_enter(&spa->spa_suspend_lock);
1742	while (spa_suspended(spa))
1743		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1744	mutex_exit(&spa->spa_suspend_lock);
1745}
1746
1747/*
1748 * ==========================================================================
1749 * Gang blocks.
1750 *
1751 * A gang block is a collection of small blocks that looks to the DMU
1752 * like one large block.  When zio_dva_allocate() cannot find a block
1753 * of the requested size, due to either severe fragmentation or the pool
1754 * being nearly full, it calls zio_write_gang_block() to construct the
1755 * block from smaller fragments.
1756 *
1757 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1758 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1759 * an indirect block: it's an array of block pointers.  It consumes
1760 * only one sector and hence is allocatable regardless of fragmentation.
1761 * The gang header's bps point to its gang members, which hold the data.
1762 *
1763 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1764 * as the verifier to ensure uniqueness of the SHA256 checksum.
1765 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1766 * not the gang header.  This ensures that data block signatures (needed for
1767 * deduplication) are independent of how the block is physically stored.
1768 *
1769 * Gang blocks can be nested: a gang member may itself be a gang block.
1770 * Thus every gang block is a tree in which root and all interior nodes are
1771 * gang headers, and the leaves are normal blocks that contain user data.
1772 * The root of the gang tree is called the gang leader.
1773 *
1774 * To perform any operation (read, rewrite, free, claim) on a gang block,
1775 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1776 * in the io_gang_tree field of the original logical i/o by recursively
1777 * reading the gang leader and all gang headers below it.  This yields
1778 * an in-core tree containing the contents of every gang header and the
1779 * bps for every constituent of the gang block.
1780 *
1781 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1782 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1783 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1784 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1785 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1786 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1787 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1788 * of the gang header plus zio_checksum_compute() of the data to update the
1789 * gang header's blk_cksum as described above.
1790 *
1791 * The two-phase assemble/issue model solves the problem of partial failure --
1792 * what if you'd freed part of a gang block but then couldn't read the
1793 * gang header for another part?  Assembling the entire gang tree first
1794 * ensures that all the necessary gang header I/O has succeeded before
1795 * starting the actual work of free, claim, or write.  Once the gang tree
1796 * is assembled, free and claim are in-memory operations that cannot fail.
1797 *
1798 * In the event that a gang write fails, zio_dva_unallocate() walks the
1799 * gang tree to immediately free (i.e. insert back into the space map)
1800 * everything we've allocated.  This ensures that we don't get ENOSPC
1801 * errors during repeated suspend/resume cycles due to a flaky device.
1802 *
1803 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1804 * the gang tree, we won't modify the block, so we can safely defer the free
1805 * (knowing that the block is still intact).  If we *can* assemble the gang
1806 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1807 * each constituent bp and we can allocate a new block on the next sync pass.
1808 *
1809 * In all cases, the gang tree allows complete recovery from partial failure.
1810 * ==========================================================================
1811 */
1812
1813static zio_t *
1814zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1815{
1816	if (gn != NULL)
1817		return (pio);
1818
1819	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1820	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1821	    &pio->io_bookmark));
1822}
1823
1824zio_t *
1825zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1826{
1827	zio_t *zio;
1828
1829	if (gn != NULL) {
1830		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1831		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1832		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1833		/*
1834		 * As we rewrite each gang header, the pipeline will compute
1835		 * a new gang block header checksum for it; but no one will
1836		 * compute a new data checksum, so we do that here.  The one
1837		 * exception is the gang leader: the pipeline already computed
1838		 * its data checksum because that stage precedes gang assembly.
1839		 * (Presently, nothing actually uses interior data checksums;
1840		 * this is just good hygiene.)
1841		 */
1842		if (gn != pio->io_gang_leader->io_gang_tree) {
1843			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1844			    data, BP_GET_PSIZE(bp));
1845		}
1846		/*
1847		 * If we are here to damage data for testing purposes,
1848		 * leave the GBH alone so that we can detect the damage.
1849		 */
1850		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1851			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1852	} else {
1853		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1854		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1855		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1856	}
1857
1858	return (zio);
1859}
1860
1861/* ARGSUSED */
1862zio_t *
1863zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1864{
1865	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1866	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1867	    ZIO_GANG_CHILD_FLAGS(pio)));
1868}
1869
1870/* ARGSUSED */
1871zio_t *
1872zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1873{
1874	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1875	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1876}
1877
1878static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1879	NULL,
1880	zio_read_gang,
1881	zio_rewrite_gang,
1882	zio_free_gang,
1883	zio_claim_gang,
1884	NULL
1885};
1886
1887static void zio_gang_tree_assemble_done(zio_t *zio);
1888
1889static zio_gang_node_t *
1890zio_gang_node_alloc(zio_gang_node_t **gnpp)
1891{
1892	zio_gang_node_t *gn;
1893
1894	ASSERT(*gnpp == NULL);
1895
1896	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1897	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1898	*gnpp = gn;
1899
1900	return (gn);
1901}
1902
1903static void
1904zio_gang_node_free(zio_gang_node_t **gnpp)
1905{
1906	zio_gang_node_t *gn = *gnpp;
1907
1908	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1909		ASSERT(gn->gn_child[g] == NULL);
1910
1911	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1912	kmem_free(gn, sizeof (*gn));
1913	*gnpp = NULL;
1914}
1915
1916static void
1917zio_gang_tree_free(zio_gang_node_t **gnpp)
1918{
1919	zio_gang_node_t *gn = *gnpp;
1920
1921	if (gn == NULL)
1922		return;
1923
1924	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1925		zio_gang_tree_free(&gn->gn_child[g]);
1926
1927	zio_gang_node_free(gnpp);
1928}
1929
1930static void
1931zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1932{
1933	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1934
1935	ASSERT(gio->io_gang_leader == gio);
1936	ASSERT(BP_IS_GANG(bp));
1937
1938	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1939	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1940	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1941}
1942
1943static void
1944zio_gang_tree_assemble_done(zio_t *zio)
1945{
1946	zio_t *gio = zio->io_gang_leader;
1947	zio_gang_node_t *gn = zio->io_private;
1948	blkptr_t *bp = zio->io_bp;
1949
1950	ASSERT(gio == zio_unique_parent(zio));
1951	ASSERT(zio->io_child_count == 0);
1952
1953	if (zio->io_error)
1954		return;
1955
1956	if (BP_SHOULD_BYTESWAP(bp))
1957		byteswap_uint64_array(zio->io_data, zio->io_size);
1958
1959	ASSERT(zio->io_data == gn->gn_gbh);
1960	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1961	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1962
1963	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1964		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1965		if (!BP_IS_GANG(gbp))
1966			continue;
1967		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1968	}
1969}
1970
1971static void
1972zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1973{
1974	zio_t *gio = pio->io_gang_leader;
1975	zio_t *zio;
1976
1977	ASSERT(BP_IS_GANG(bp) == !!gn);
1978	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1979	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1980
1981	/*
1982	 * If you're a gang header, your data is in gn->gn_gbh.
1983	 * If you're a gang member, your data is in 'data' and gn == NULL.
1984	 */
1985	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1986
1987	if (gn != NULL) {
1988		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1989
1990		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1991			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1992			if (BP_IS_HOLE(gbp))
1993				continue;
1994			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1995			data = (char *)data + BP_GET_PSIZE(gbp);
1996		}
1997	}
1998
1999	if (gn == gio->io_gang_tree && gio->io_data != NULL)
2000		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
2001
2002	if (zio != pio)
2003		zio_nowait(zio);
2004}
2005
2006static int
2007zio_gang_assemble(zio_t *zio)
2008{
2009	blkptr_t *bp = zio->io_bp;
2010
2011	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2012	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2013
2014	zio->io_gang_leader = zio;
2015
2016	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2017
2018	return (ZIO_PIPELINE_CONTINUE);
2019}
2020
2021static int
2022zio_gang_issue(zio_t *zio)
2023{
2024	blkptr_t *bp = zio->io_bp;
2025
2026	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2027		return (ZIO_PIPELINE_STOP);
2028
2029	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2030	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2031
2032	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2033		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
2034	else
2035		zio_gang_tree_free(&zio->io_gang_tree);
2036
2037	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2038
2039	return (ZIO_PIPELINE_CONTINUE);
2040}
2041
2042static void
2043zio_write_gang_member_ready(zio_t *zio)
2044{
2045	zio_t *pio = zio_unique_parent(zio);
2046	zio_t *gio = zio->io_gang_leader;
2047	dva_t *cdva = zio->io_bp->blk_dva;
2048	dva_t *pdva = pio->io_bp->blk_dva;
2049	uint64_t asize;
2050
2051	if (BP_IS_HOLE(zio->io_bp))
2052		return;
2053
2054	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2055
2056	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2057	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2058	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2059	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2060	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2061
2062	mutex_enter(&pio->io_lock);
2063	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2064		ASSERT(DVA_GET_GANG(&pdva[d]));
2065		asize = DVA_GET_ASIZE(&pdva[d]);
2066		asize += DVA_GET_ASIZE(&cdva[d]);
2067		DVA_SET_ASIZE(&pdva[d], asize);
2068	}
2069	mutex_exit(&pio->io_lock);
2070}
2071
2072static int
2073zio_write_gang_block(zio_t *pio)
2074{
2075	spa_t *spa = pio->io_spa;
2076	blkptr_t *bp = pio->io_bp;
2077	zio_t *gio = pio->io_gang_leader;
2078	zio_t *zio;
2079	zio_gang_node_t *gn, **gnpp;
2080	zio_gbh_phys_t *gbh;
2081	uint64_t txg = pio->io_txg;
2082	uint64_t resid = pio->io_size;
2083	uint64_t lsize;
2084	int copies = gio->io_prop.zp_copies;
2085	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2086	zio_prop_t zp;
2087	int error;
2088
2089	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2090	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2091	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2092	if (error) {
2093		pio->io_error = error;
2094		return (ZIO_PIPELINE_CONTINUE);
2095	}
2096
2097	if (pio == gio) {
2098		gnpp = &gio->io_gang_tree;
2099	} else {
2100		gnpp = pio->io_private;
2101		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2102	}
2103
2104	gn = zio_gang_node_alloc(gnpp);
2105	gbh = gn->gn_gbh;
2106	bzero(gbh, SPA_GANGBLOCKSIZE);
2107
2108	/*
2109	 * Create the gang header.
2110	 */
2111	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2112	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2113
2114	/*
2115	 * Create and nowait the gang children.
2116	 */
2117	for (int g = 0; resid != 0; resid -= lsize, g++) {
2118		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2119		    SPA_MINBLOCKSIZE);
2120		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2121
2122		zp.zp_checksum = gio->io_prop.zp_checksum;
2123		zp.zp_compress = ZIO_COMPRESS_OFF;
2124		zp.zp_type = DMU_OT_NONE;
2125		zp.zp_level = 0;
2126		zp.zp_copies = gio->io_prop.zp_copies;
2127		zp.zp_dedup = B_FALSE;
2128		zp.zp_dedup_verify = B_FALSE;
2129		zp.zp_nopwrite = B_FALSE;
2130
2131		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2132		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2133		    zio_write_gang_member_ready, NULL, NULL, NULL,
2134		    &gn->gn_child[g], pio->io_priority,
2135		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark));
2136	}
2137
2138	/*
2139	 * Set pio's pipeline to just wait for zio to finish.
2140	 */
2141	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2142
2143	zio_nowait(zio);
2144
2145	return (ZIO_PIPELINE_CONTINUE);
2146}
2147
2148/*
2149 * The zio_nop_write stage in the pipeline determines if allocating a
2150 * new bp is necessary.  The nopwrite feature can handle writes in
2151 * either syncing or open context (i.e. zil writes) and as a result is
2152 * mutually exclusive with dedup.
2153 *
2154 * By leveraging a cryptographically secure checksum, such as SHA256, we
2155 * can compare the checksums of the new data and the old to determine if
2156 * allocating a new block is required.  Note that our requirements for
2157 * cryptographic strength are fairly weak: there can't be any accidental
2158 * hash collisions, but we don't need to be secure against intentional
2159 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2160 * to write the file to begin with, and triggering an incorrect (hash
2161 * collision) nopwrite is no worse than simply writing to the file.
2162 * That said, there are no known attacks against the checksum algorithms
2163 * used for nopwrite, assuming that the salt and the checksums
2164 * themselves remain secret.
2165 */
2166static int
2167zio_nop_write(zio_t *zio)
2168{
2169	blkptr_t *bp = zio->io_bp;
2170	blkptr_t *bp_orig = &zio->io_bp_orig;
2171	zio_prop_t *zp = &zio->io_prop;
2172
2173	ASSERT(BP_GET_LEVEL(bp) == 0);
2174	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2175	ASSERT(zp->zp_nopwrite);
2176	ASSERT(!zp->zp_dedup);
2177	ASSERT(zio->io_bp_override == NULL);
2178	ASSERT(IO_IS_ALLOCATING(zio));
2179
2180	/*
2181	 * Check to see if the original bp and the new bp have matching
2182	 * characteristics (i.e. same checksum, compression algorithms, etc).
2183	 * If they don't then just continue with the pipeline which will
2184	 * allocate a new bp.
2185	 */
2186	if (BP_IS_HOLE(bp_orig) ||
2187	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2188	    ZCHECKSUM_FLAG_NOPWRITE) ||
2189	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2190	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2191	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2192	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2193		return (ZIO_PIPELINE_CONTINUE);
2194
2195	/*
2196	 * If the checksums match then reset the pipeline so that we
2197	 * avoid allocating a new bp and issuing any I/O.
2198	 */
2199	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2200		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2201		    ZCHECKSUM_FLAG_NOPWRITE);
2202		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2203		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2204		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2205		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2206		    sizeof (uint64_t)) == 0);
2207
2208		*bp = *bp_orig;
2209		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2210		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2211	}
2212
2213	return (ZIO_PIPELINE_CONTINUE);
2214}
2215
2216/*
2217 * ==========================================================================
2218 * Dedup
2219 * ==========================================================================
2220 */
2221static void
2222zio_ddt_child_read_done(zio_t *zio)
2223{
2224	blkptr_t *bp = zio->io_bp;
2225	ddt_entry_t *dde = zio->io_private;
2226	ddt_phys_t *ddp;
2227	zio_t *pio = zio_unique_parent(zio);
2228
2229	mutex_enter(&pio->io_lock);
2230	ddp = ddt_phys_select(dde, bp);
2231	if (zio->io_error == 0)
2232		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2233	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2234		dde->dde_repair_data = zio->io_data;
2235	else
2236		zio_buf_free(zio->io_data, zio->io_size);
2237	mutex_exit(&pio->io_lock);
2238}
2239
2240static int
2241zio_ddt_read_start(zio_t *zio)
2242{
2243	blkptr_t *bp = zio->io_bp;
2244
2245	ASSERT(BP_GET_DEDUP(bp));
2246	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2247	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2248
2249	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2250		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2251		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2252		ddt_phys_t *ddp = dde->dde_phys;
2253		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2254		blkptr_t blk;
2255
2256		ASSERT(zio->io_vsd == NULL);
2257		zio->io_vsd = dde;
2258
2259		if (ddp_self == NULL)
2260			return (ZIO_PIPELINE_CONTINUE);
2261
2262		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2263			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2264				continue;
2265			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2266			    &blk);
2267			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2268			    zio_buf_alloc(zio->io_size), zio->io_size,
2269			    zio_ddt_child_read_done, dde, zio->io_priority,
2270			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2271			    &zio->io_bookmark));
2272		}
2273		return (ZIO_PIPELINE_CONTINUE);
2274	}
2275
2276	zio_nowait(zio_read(zio, zio->io_spa, bp,
2277	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2278	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2279
2280	return (ZIO_PIPELINE_CONTINUE);
2281}
2282
2283static int
2284zio_ddt_read_done(zio_t *zio)
2285{
2286	blkptr_t *bp = zio->io_bp;
2287
2288	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2289		return (ZIO_PIPELINE_STOP);
2290
2291	ASSERT(BP_GET_DEDUP(bp));
2292	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2293	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2294
2295	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2296		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2297		ddt_entry_t *dde = zio->io_vsd;
2298		if (ddt == NULL) {
2299			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2300			return (ZIO_PIPELINE_CONTINUE);
2301		}
2302		if (dde == NULL) {
2303			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2304			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2305			return (ZIO_PIPELINE_STOP);
2306		}
2307		if (dde->dde_repair_data != NULL) {
2308			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2309			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2310		}
2311		ddt_repair_done(ddt, dde);
2312		zio->io_vsd = NULL;
2313	}
2314
2315	ASSERT(zio->io_vsd == NULL);
2316
2317	return (ZIO_PIPELINE_CONTINUE);
2318}
2319
2320static boolean_t
2321zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2322{
2323	spa_t *spa = zio->io_spa;
2324
2325	/*
2326	 * Note: we compare the original data, not the transformed data,
2327	 * because when zio->io_bp is an override bp, we will not have
2328	 * pushed the I/O transforms.  That's an important optimization
2329	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2330	 */
2331	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2332		zio_t *lio = dde->dde_lead_zio[p];
2333
2334		if (lio != NULL) {
2335			return (lio->io_orig_size != zio->io_orig_size ||
2336			    bcmp(zio->io_orig_data, lio->io_orig_data,
2337			    zio->io_orig_size) != 0);
2338		}
2339	}
2340
2341	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2342		ddt_phys_t *ddp = &dde->dde_phys[p];
2343
2344		if (ddp->ddp_phys_birth != 0) {
2345			arc_buf_t *abuf = NULL;
2346			arc_flags_t aflags = ARC_FLAG_WAIT;
2347			blkptr_t blk = *zio->io_bp;
2348			int error;
2349
2350			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2351
2352			ddt_exit(ddt);
2353
2354			error = arc_read(NULL, spa, &blk,
2355			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2356			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2357			    &aflags, &zio->io_bookmark);
2358
2359			if (error == 0) {
2360				if (arc_buf_size(abuf) != zio->io_orig_size ||
2361				    bcmp(abuf->b_data, zio->io_orig_data,
2362				    zio->io_orig_size) != 0)
2363					error = SET_ERROR(EEXIST);
2364				arc_buf_destroy(abuf, &abuf);
2365			}
2366
2367			ddt_enter(ddt);
2368			return (error != 0);
2369		}
2370	}
2371
2372	return (B_FALSE);
2373}
2374
2375static void
2376zio_ddt_child_write_ready(zio_t *zio)
2377{
2378	int p = zio->io_prop.zp_copies;
2379	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2380	ddt_entry_t *dde = zio->io_private;
2381	ddt_phys_t *ddp = &dde->dde_phys[p];
2382	zio_t *pio;
2383
2384	if (zio->io_error)
2385		return;
2386
2387	ddt_enter(ddt);
2388
2389	ASSERT(dde->dde_lead_zio[p] == zio);
2390
2391	ddt_phys_fill(ddp, zio->io_bp);
2392
2393	while ((pio = zio_walk_parents(zio)) != NULL)
2394		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2395
2396	ddt_exit(ddt);
2397}
2398
2399static void
2400zio_ddt_child_write_done(zio_t *zio)
2401{
2402	int p = zio->io_prop.zp_copies;
2403	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2404	ddt_entry_t *dde = zio->io_private;
2405	ddt_phys_t *ddp = &dde->dde_phys[p];
2406
2407	ddt_enter(ddt);
2408
2409	ASSERT(ddp->ddp_refcnt == 0);
2410	ASSERT(dde->dde_lead_zio[p] == zio);
2411	dde->dde_lead_zio[p] = NULL;
2412
2413	if (zio->io_error == 0) {
2414		while (zio_walk_parents(zio) != NULL)
2415			ddt_phys_addref(ddp);
2416	} else {
2417		ddt_phys_clear(ddp);
2418	}
2419
2420	ddt_exit(ddt);
2421}
2422
2423static void
2424zio_ddt_ditto_write_done(zio_t *zio)
2425{
2426	int p = DDT_PHYS_DITTO;
2427	zio_prop_t *zp = &zio->io_prop;
2428	blkptr_t *bp = zio->io_bp;
2429	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2430	ddt_entry_t *dde = zio->io_private;
2431	ddt_phys_t *ddp = &dde->dde_phys[p];
2432	ddt_key_t *ddk = &dde->dde_key;
2433
2434	ddt_enter(ddt);
2435
2436	ASSERT(ddp->ddp_refcnt == 0);
2437	ASSERT(dde->dde_lead_zio[p] == zio);
2438	dde->dde_lead_zio[p] = NULL;
2439
2440	if (zio->io_error == 0) {
2441		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2442		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2443		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2444		if (ddp->ddp_phys_birth != 0)
2445			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2446		ddt_phys_fill(ddp, bp);
2447	}
2448
2449	ddt_exit(ddt);
2450}
2451
2452static int
2453zio_ddt_write(zio_t *zio)
2454{
2455	spa_t *spa = zio->io_spa;
2456	blkptr_t *bp = zio->io_bp;
2457	uint64_t txg = zio->io_txg;
2458	zio_prop_t *zp = &zio->io_prop;
2459	int p = zp->zp_copies;
2460	int ditto_copies;
2461	zio_t *cio = NULL;
2462	zio_t *dio = NULL;
2463	ddt_t *ddt = ddt_select(spa, bp);
2464	ddt_entry_t *dde;
2465	ddt_phys_t *ddp;
2466
2467	ASSERT(BP_GET_DEDUP(bp));
2468	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2469	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2470
2471	ddt_enter(ddt);
2472	dde = ddt_lookup(ddt, bp, B_TRUE);
2473	ddp = &dde->dde_phys[p];
2474
2475	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2476		/*
2477		 * If we're using a weak checksum, upgrade to a strong checksum
2478		 * and try again.  If we're already using a strong checksum,
2479		 * we can't resolve it, so just convert to an ordinary write.
2480		 * (And automatically e-mail a paper to Nature?)
2481		 */
2482		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2483		    ZCHECKSUM_FLAG_DEDUP)) {
2484			zp->zp_checksum = spa_dedup_checksum(spa);
2485			zio_pop_transforms(zio);
2486			zio->io_stage = ZIO_STAGE_OPEN;
2487			BP_ZERO(bp);
2488		} else {
2489			zp->zp_dedup = B_FALSE;
2490		}
2491		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2492		ddt_exit(ddt);
2493		return (ZIO_PIPELINE_CONTINUE);
2494	}
2495
2496	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2497	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2498
2499	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2500	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2501		zio_prop_t czp = *zp;
2502
2503		czp.zp_copies = ditto_copies;
2504
2505		/*
2506		 * If we arrived here with an override bp, we won't have run
2507		 * the transform stack, so we won't have the data we need to
2508		 * generate a child i/o.  So, toss the override bp and restart.
2509		 * This is safe, because using the override bp is just an
2510		 * optimization; and it's rare, so the cost doesn't matter.
2511		 */
2512		if (zio->io_bp_override) {
2513			zio_pop_transforms(zio);
2514			zio->io_stage = ZIO_STAGE_OPEN;
2515			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2516			zio->io_bp_override = NULL;
2517			BP_ZERO(bp);
2518			ddt_exit(ddt);
2519			return (ZIO_PIPELINE_CONTINUE);
2520		}
2521
2522		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2523		    zio->io_orig_size, &czp, NULL, NULL,
2524		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2525		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2526
2527		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2528		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2529	}
2530
2531	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2532		if (ddp->ddp_phys_birth != 0)
2533			ddt_bp_fill(ddp, bp, txg);
2534		if (dde->dde_lead_zio[p] != NULL)
2535			zio_add_child(zio, dde->dde_lead_zio[p]);
2536		else
2537			ddt_phys_addref(ddp);
2538	} else if (zio->io_bp_override) {
2539		ASSERT(bp->blk_birth == txg);
2540		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2541		ddt_phys_fill(ddp, bp);
2542		ddt_phys_addref(ddp);
2543	} else {
2544		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2545		    zio->io_orig_size, zp,
2546		    zio_ddt_child_write_ready, NULL, NULL,
2547		    zio_ddt_child_write_done, dde, zio->io_priority,
2548		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2549
2550		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2551		dde->dde_lead_zio[p] = cio;
2552	}
2553
2554	ddt_exit(ddt);
2555
2556	if (cio)
2557		zio_nowait(cio);
2558	if (dio)
2559		zio_nowait(dio);
2560
2561	return (ZIO_PIPELINE_CONTINUE);
2562}
2563
2564ddt_entry_t *freedde; /* for debugging */
2565
2566static int
2567zio_ddt_free(zio_t *zio)
2568{
2569	spa_t *spa = zio->io_spa;
2570	blkptr_t *bp = zio->io_bp;
2571	ddt_t *ddt = ddt_select(spa, bp);
2572	ddt_entry_t *dde;
2573	ddt_phys_t *ddp;
2574
2575	ASSERT(BP_GET_DEDUP(bp));
2576	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2577
2578	ddt_enter(ddt);
2579	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2580	ddp = ddt_phys_select(dde, bp);
2581	ddt_phys_decref(ddp);
2582	ddt_exit(ddt);
2583
2584	return (ZIO_PIPELINE_CONTINUE);
2585}
2586
2587/*
2588 * ==========================================================================
2589 * Allocate and free blocks
2590 * ==========================================================================
2591 */
2592static int
2593zio_dva_allocate(zio_t *zio)
2594{
2595	spa_t *spa = zio->io_spa;
2596	metaslab_class_t *mc = spa_normal_class(spa);
2597	blkptr_t *bp = zio->io_bp;
2598	int error;
2599	int flags = 0;
2600
2601	if (zio->io_gang_leader == NULL) {
2602		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2603		zio->io_gang_leader = zio;
2604	}
2605
2606	ASSERT(BP_IS_HOLE(bp));
2607	ASSERT0(BP_GET_NDVAS(bp));
2608	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2609	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2610	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2611
2612	/*
2613	 * The dump device does not support gang blocks so allocation on
2614	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2615	 * the "fast" gang feature.
2616	 */
2617	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2618	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2619	    METASLAB_GANG_CHILD : 0;
2620	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2621	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2622
2623	if (error) {
2624		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2625		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2626		    error);
2627		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2628			return (zio_write_gang_block(zio));
2629		zio->io_error = error;
2630	}
2631
2632	return (ZIO_PIPELINE_CONTINUE);
2633}
2634
2635static int
2636zio_dva_free(zio_t *zio)
2637{
2638	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2639
2640	return (ZIO_PIPELINE_CONTINUE);
2641}
2642
2643static int
2644zio_dva_claim(zio_t *zio)
2645{
2646	int error;
2647
2648	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2649	if (error)
2650		zio->io_error = error;
2651
2652	return (ZIO_PIPELINE_CONTINUE);
2653}
2654
2655/*
2656 * Undo an allocation.  This is used by zio_done() when an I/O fails
2657 * and we want to give back the block we just allocated.
2658 * This handles both normal blocks and gang blocks.
2659 */
2660static void
2661zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2662{
2663	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2664	ASSERT(zio->io_bp_override == NULL);
2665
2666	if (!BP_IS_HOLE(bp))
2667		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2668
2669	if (gn != NULL) {
2670		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2671			zio_dva_unallocate(zio, gn->gn_child[g],
2672			    &gn->gn_gbh->zg_blkptr[g]);
2673		}
2674	}
2675}
2676
2677/*
2678 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2679 */
2680int
2681zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2682    uint64_t size, boolean_t use_slog)
2683{
2684	int error = 1;
2685
2686	ASSERT(txg > spa_syncing_txg(spa));
2687
2688	/*
2689	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2690	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2691	 * when allocating them.
2692	 */
2693	if (use_slog) {
2694		error = metaslab_alloc(spa, spa_log_class(spa), size,
2695		    new_bp, 1, txg, old_bp,
2696		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2697	}
2698
2699	if (error) {
2700		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2701		    new_bp, 1, txg, old_bp,
2702		    METASLAB_HINTBP_AVOID);
2703	}
2704
2705	if (error == 0) {
2706		BP_SET_LSIZE(new_bp, size);
2707		BP_SET_PSIZE(new_bp, size);
2708		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2709		BP_SET_CHECKSUM(new_bp,
2710		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2711		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2712		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2713		BP_SET_LEVEL(new_bp, 0);
2714		BP_SET_DEDUP(new_bp, 0);
2715		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2716	}
2717
2718	return (error);
2719}
2720
2721/*
2722 * Free an intent log block.
2723 */
2724void
2725zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2726{
2727	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2728	ASSERT(!BP_IS_GANG(bp));
2729
2730	zio_free(spa, txg, bp);
2731}
2732
2733/*
2734 * ==========================================================================
2735 * Read, write and delete to physical devices
2736 * ==========================================================================
2737 */
2738
2739
2740/*
2741 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2742 * stops after this stage and will resume upon I/O completion.
2743 * However, there are instances where the vdev layer may need to
2744 * continue the pipeline when an I/O was not issued. Since the I/O
2745 * that was sent to the vdev layer might be different than the one
2746 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2747 * force the underlying vdev layers to call either zio_execute() or
2748 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2749 */
2750static int
2751zio_vdev_io_start(zio_t *zio)
2752{
2753	vdev_t *vd = zio->io_vd;
2754	uint64_t align;
2755	spa_t *spa = zio->io_spa;
2756	int ret;
2757
2758	ASSERT(zio->io_error == 0);
2759	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2760
2761	if (vd == NULL) {
2762		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2763			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2764
2765		/*
2766		 * The mirror_ops handle multiple DVAs in a single BP.
2767		 */
2768		vdev_mirror_ops.vdev_op_io_start(zio);
2769		return (ZIO_PIPELINE_STOP);
2770	}
2771
2772	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2773	    zio->io_priority == ZIO_PRIORITY_NOW) {
2774		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2775		return (ZIO_PIPELINE_CONTINUE);
2776	}
2777
2778	/*
2779	 * We keep track of time-sensitive I/Os so that the scan thread
2780	 * can quickly react to certain workloads.  In particular, we care
2781	 * about non-scrubbing, top-level reads and writes with the following
2782	 * characteristics:
2783	 *	- synchronous writes of user data to non-slog devices
2784	 *	- any reads of user data
2785	 * When these conditions are met, adjust the timestamp of spa_last_io
2786	 * which allows the scan thread to adjust its workload accordingly.
2787	 */
2788	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2789	    vd == vd->vdev_top && !vd->vdev_islog &&
2790	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2791	    zio->io_txg != spa_syncing_txg(spa)) {
2792		uint64_t old = spa->spa_last_io;
2793		uint64_t new = ddi_get_lbolt64();
2794		if (old != new)
2795			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2796	}
2797
2798	align = 1ULL << vd->vdev_top->vdev_ashift;
2799
2800	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2801	    P2PHASE(zio->io_size, align) != 0) {
2802		/* Transform logical writes to be a full physical block size. */
2803		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2804		char *abuf = NULL;
2805		if (zio->io_type == ZIO_TYPE_READ ||
2806		    zio->io_type == ZIO_TYPE_WRITE)
2807			abuf = zio_buf_alloc(asize);
2808		ASSERT(vd == vd->vdev_top);
2809		if (zio->io_type == ZIO_TYPE_WRITE) {
2810			bcopy(zio->io_data, abuf, zio->io_size);
2811			bzero(abuf + zio->io_size, asize - zio->io_size);
2812		}
2813		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2814		    zio_subblock);
2815	}
2816
2817	/*
2818	 * If this is not a physical io, make sure that it is properly aligned
2819	 * before proceeding.
2820	 */
2821	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2822		ASSERT0(P2PHASE(zio->io_offset, align));
2823		ASSERT0(P2PHASE(zio->io_size, align));
2824	} else {
2825		/*
2826		 * For the physical io we allow alignment
2827		 * to a logical block size.
2828		 */
2829		uint64_t log_align =
2830		    1ULL << vd->vdev_top->vdev_logical_ashift;
2831		ASSERT0(P2PHASE(zio->io_offset, log_align));
2832		ASSERT0(P2PHASE(zio->io_size, log_align));
2833	}
2834
2835	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2836
2837	/*
2838	 * If this is a repair I/O, and there's no self-healing involved --
2839	 * that is, we're just resilvering what we expect to resilver --
2840	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2841	 * This prevents spurious resilvering with nested replication.
2842	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2843	 * A is out of date, we'll read from C+D, then use the data to
2844	 * resilver A+B -- but we don't actually want to resilver B, just A.
2845	 * The top-level mirror has no way to know this, so instead we just
2846	 * discard unnecessary repairs as we work our way down the vdev tree.
2847	 * The same logic applies to any form of nested replication:
2848	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2849	 */
2850	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2851	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2852	    zio->io_txg != 0 &&	/* not a delegated i/o */
2853	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2854		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2855		zio_vdev_io_bypass(zio);
2856		return (ZIO_PIPELINE_CONTINUE);
2857	}
2858
2859	if (vd->vdev_ops->vdev_op_leaf) {
2860		switch (zio->io_type) {
2861		case ZIO_TYPE_READ:
2862			if (vdev_cache_read(zio))
2863				return (ZIO_PIPELINE_CONTINUE);
2864			/* FALLTHROUGH */
2865		case ZIO_TYPE_WRITE:
2866		case ZIO_TYPE_FREE:
2867			if ((zio = vdev_queue_io(zio)) == NULL)
2868				return (ZIO_PIPELINE_STOP);
2869
2870			if (!vdev_accessible(vd, zio)) {
2871				zio->io_error = SET_ERROR(ENXIO);
2872				zio_interrupt(zio);
2873				return (ZIO_PIPELINE_STOP);
2874			}
2875			break;
2876		}
2877		/*
2878		 * Note that we ignore repair writes for TRIM because they can
2879		 * conflict with normal writes. This isn't an issue because, by
2880		 * definition, we only repair blocks that aren't freed.
2881		 */
2882		if (zio->io_type == ZIO_TYPE_WRITE &&
2883		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2884		    !trim_map_write_start(zio))
2885			return (ZIO_PIPELINE_STOP);
2886	}
2887
2888	vd->vdev_ops->vdev_op_io_start(zio);
2889	return (ZIO_PIPELINE_STOP);
2890}
2891
2892static int
2893zio_vdev_io_done(zio_t *zio)
2894{
2895	vdev_t *vd = zio->io_vd;
2896	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2897	boolean_t unexpected_error = B_FALSE;
2898
2899	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2900		return (ZIO_PIPELINE_STOP);
2901
2902	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2903	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2904
2905	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2906	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2907	    zio->io_type == ZIO_TYPE_FREE)) {
2908
2909		if (zio->io_type == ZIO_TYPE_WRITE &&
2910		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2911			trim_map_write_done(zio);
2912
2913		vdev_queue_io_done(zio);
2914
2915		if (zio->io_type == ZIO_TYPE_WRITE)
2916			vdev_cache_write(zio);
2917
2918		if (zio_injection_enabled && zio->io_error == 0)
2919			zio->io_error = zio_handle_device_injection(vd,
2920			    zio, EIO);
2921
2922		if (zio_injection_enabled && zio->io_error == 0)
2923			zio->io_error = zio_handle_label_injection(zio, EIO);
2924
2925		if (zio->io_error) {
2926			if (zio->io_error == ENOTSUP &&
2927			    zio->io_type == ZIO_TYPE_FREE) {
2928				/* Not all devices support TRIM. */
2929			} else if (!vdev_accessible(vd, zio)) {
2930				zio->io_error = SET_ERROR(ENXIO);
2931			} else {
2932				unexpected_error = B_TRUE;
2933			}
2934		}
2935	}
2936
2937	ops->vdev_op_io_done(zio);
2938
2939	if (unexpected_error)
2940		VERIFY(vdev_probe(vd, zio) == NULL);
2941
2942	return (ZIO_PIPELINE_CONTINUE);
2943}
2944
2945/*
2946 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2947 * disk, and use that to finish the checksum ereport later.
2948 */
2949static void
2950zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2951    const void *good_buf)
2952{
2953	/* no processing needed */
2954	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2955}
2956
2957/*ARGSUSED*/
2958void
2959zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2960{
2961	void *buf = zio_buf_alloc(zio->io_size);
2962
2963	bcopy(zio->io_data, buf, zio->io_size);
2964
2965	zcr->zcr_cbinfo = zio->io_size;
2966	zcr->zcr_cbdata = buf;
2967	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2968	zcr->zcr_free = zio_buf_free;
2969}
2970
2971static int
2972zio_vdev_io_assess(zio_t *zio)
2973{
2974	vdev_t *vd = zio->io_vd;
2975
2976	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2977		return (ZIO_PIPELINE_STOP);
2978
2979	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2980		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2981
2982	if (zio->io_vsd != NULL) {
2983		zio->io_vsd_ops->vsd_free(zio);
2984		zio->io_vsd = NULL;
2985	}
2986
2987	if (zio_injection_enabled && zio->io_error == 0)
2988		zio->io_error = zio_handle_fault_injection(zio, EIO);
2989
2990	if (zio->io_type == ZIO_TYPE_FREE &&
2991	    zio->io_priority != ZIO_PRIORITY_NOW) {
2992		switch (zio->io_error) {
2993		case 0:
2994			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2995			ZIO_TRIM_STAT_BUMP(success);
2996			break;
2997		case EOPNOTSUPP:
2998			ZIO_TRIM_STAT_BUMP(unsupported);
2999			break;
3000		default:
3001			ZIO_TRIM_STAT_BUMP(failed);
3002			break;
3003		}
3004	}
3005
3006	/*
3007	 * If the I/O failed, determine whether we should attempt to retry it.
3008	 *
3009	 * On retry, we cut in line in the issue queue, since we don't want
3010	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3011	 */
3012	if (zio->io_error && vd == NULL &&
3013	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3014		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3015		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3016		zio->io_error = 0;
3017		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3018		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3019		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3020		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3021		    zio_requeue_io_start_cut_in_line);
3022		return (ZIO_PIPELINE_STOP);
3023	}
3024
3025	/*
3026	 * If we got an error on a leaf device, convert it to ENXIO
3027	 * if the device is not accessible at all.
3028	 */
3029	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3030	    !vdev_accessible(vd, zio))
3031		zio->io_error = SET_ERROR(ENXIO);
3032
3033	/*
3034	 * If we can't write to an interior vdev (mirror or RAID-Z),
3035	 * set vdev_cant_write so that we stop trying to allocate from it.
3036	 */
3037	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3038	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3039		vd->vdev_cant_write = B_TRUE;
3040	}
3041
3042	if (zio->io_error)
3043		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3044
3045	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3046	    zio->io_physdone != NULL) {
3047		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3048		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3049		zio->io_physdone(zio->io_logical);
3050	}
3051
3052	return (ZIO_PIPELINE_CONTINUE);
3053}
3054
3055void
3056zio_vdev_io_reissue(zio_t *zio)
3057{
3058	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3059	ASSERT(zio->io_error == 0);
3060
3061	zio->io_stage >>= 1;
3062}
3063
3064void
3065zio_vdev_io_redone(zio_t *zio)
3066{
3067	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3068
3069	zio->io_stage >>= 1;
3070}
3071
3072void
3073zio_vdev_io_bypass(zio_t *zio)
3074{
3075	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3076	ASSERT(zio->io_error == 0);
3077
3078	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3079	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3080}
3081
3082/*
3083 * ==========================================================================
3084 * Generate and verify checksums
3085 * ==========================================================================
3086 */
3087static int
3088zio_checksum_generate(zio_t *zio)
3089{
3090	blkptr_t *bp = zio->io_bp;
3091	enum zio_checksum checksum;
3092
3093	if (bp == NULL) {
3094		/*
3095		 * This is zio_write_phys().
3096		 * We're either generating a label checksum, or none at all.
3097		 */
3098		checksum = zio->io_prop.zp_checksum;
3099
3100		if (checksum == ZIO_CHECKSUM_OFF)
3101			return (ZIO_PIPELINE_CONTINUE);
3102
3103		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3104	} else {
3105		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3106			ASSERT(!IO_IS_ALLOCATING(zio));
3107			checksum = ZIO_CHECKSUM_GANG_HEADER;
3108		} else {
3109			checksum = BP_GET_CHECKSUM(bp);
3110		}
3111	}
3112
3113	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3114
3115	return (ZIO_PIPELINE_CONTINUE);
3116}
3117
3118static int
3119zio_checksum_verify(zio_t *zio)
3120{
3121	zio_bad_cksum_t info;
3122	blkptr_t *bp = zio->io_bp;
3123	int error;
3124
3125	ASSERT(zio->io_vd != NULL);
3126
3127	if (bp == NULL) {
3128		/*
3129		 * This is zio_read_phys().
3130		 * We're either verifying a label checksum, or nothing at all.
3131		 */
3132		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3133			return (ZIO_PIPELINE_CONTINUE);
3134
3135		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3136	}
3137
3138	if ((error = zio_checksum_error(zio, &info)) != 0) {
3139		zio->io_error = error;
3140		if (error == ECKSUM &&
3141		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3142			zfs_ereport_start_checksum(zio->io_spa,
3143			    zio->io_vd, zio, zio->io_offset,
3144			    zio->io_size, NULL, &info);
3145		}
3146	}
3147
3148	return (ZIO_PIPELINE_CONTINUE);
3149}
3150
3151/*
3152 * Called by RAID-Z to ensure we don't compute the checksum twice.
3153 */
3154void
3155zio_checksum_verified(zio_t *zio)
3156{
3157	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3158}
3159
3160/*
3161 * ==========================================================================
3162 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3163 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3164 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3165 * indicate errors that are specific to one I/O, and most likely permanent.
3166 * Any other error is presumed to be worse because we weren't expecting it.
3167 * ==========================================================================
3168 */
3169int
3170zio_worst_error(int e1, int e2)
3171{
3172	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3173	int r1, r2;
3174
3175	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3176		if (e1 == zio_error_rank[r1])
3177			break;
3178
3179	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3180		if (e2 == zio_error_rank[r2])
3181			break;
3182
3183	return (r1 > r2 ? e1 : e2);
3184}
3185
3186/*
3187 * ==========================================================================
3188 * I/O completion
3189 * ==========================================================================
3190 */
3191static int
3192zio_ready(zio_t *zio)
3193{
3194	blkptr_t *bp = zio->io_bp;
3195	zio_t *pio, *pio_next;
3196
3197	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3198	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3199		return (ZIO_PIPELINE_STOP);
3200
3201	if (zio->io_ready) {
3202		ASSERT(IO_IS_ALLOCATING(zio));
3203		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3204		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3205		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3206
3207		zio->io_ready(zio);
3208	}
3209
3210	if (bp != NULL && bp != &zio->io_bp_copy)
3211		zio->io_bp_copy = *bp;
3212
3213	if (zio->io_error)
3214		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3215
3216	mutex_enter(&zio->io_lock);
3217	zio->io_state[ZIO_WAIT_READY] = 1;
3218	pio = zio_walk_parents(zio);
3219	mutex_exit(&zio->io_lock);
3220
3221	/*
3222	 * As we notify zio's parents, new parents could be added.
3223	 * New parents go to the head of zio's io_parent_list, however,
3224	 * so we will (correctly) not notify them.  The remainder of zio's
3225	 * io_parent_list, from 'pio_next' onward, cannot change because
3226	 * all parents must wait for us to be done before they can be done.
3227	 */
3228	for (; pio != NULL; pio = pio_next) {
3229		pio_next = zio_walk_parents(zio);
3230		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3231	}
3232
3233	if (zio->io_flags & ZIO_FLAG_NODATA) {
3234		if (BP_IS_GANG(bp)) {
3235			zio->io_flags &= ~ZIO_FLAG_NODATA;
3236		} else {
3237			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3238			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3239		}
3240	}
3241
3242	if (zio_injection_enabled &&
3243	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3244		zio_handle_ignored_writes(zio);
3245
3246	return (ZIO_PIPELINE_CONTINUE);
3247}
3248
3249static int
3250zio_done(zio_t *zio)
3251{
3252	spa_t *spa = zio->io_spa;
3253	zio_t *lio = zio->io_logical;
3254	blkptr_t *bp = zio->io_bp;
3255	vdev_t *vd = zio->io_vd;
3256	uint64_t psize = zio->io_size;
3257	zio_t *pio, *pio_next;
3258
3259	/*
3260	 * If our children haven't all completed,
3261	 * wait for them and then repeat this pipeline stage.
3262	 */
3263	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3264	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3265	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3266	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3267		return (ZIO_PIPELINE_STOP);
3268
3269	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3270		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3271			ASSERT(zio->io_children[c][w] == 0);
3272
3273	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3274		ASSERT(bp->blk_pad[0] == 0);
3275		ASSERT(bp->blk_pad[1] == 0);
3276		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3277		    (bp == zio_unique_parent(zio)->io_bp));
3278		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3279		    zio->io_bp_override == NULL &&
3280		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3281			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3282			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3283			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3284			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3285		}
3286		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3287			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3288	}
3289
3290	/*
3291	 * If there were child vdev/gang/ddt errors, they apply to us now.
3292	 */
3293	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3294	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3295	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3296
3297	/*
3298	 * If the I/O on the transformed data was successful, generate any
3299	 * checksum reports now while we still have the transformed data.
3300	 */
3301	if (zio->io_error == 0) {
3302		while (zio->io_cksum_report != NULL) {
3303			zio_cksum_report_t *zcr = zio->io_cksum_report;
3304			uint64_t align = zcr->zcr_align;
3305			uint64_t asize = P2ROUNDUP(psize, align);
3306			char *abuf = zio->io_data;
3307
3308			if (asize != psize) {
3309				abuf = zio_buf_alloc(asize);
3310				bcopy(zio->io_data, abuf, psize);
3311				bzero(abuf + psize, asize - psize);
3312			}
3313
3314			zio->io_cksum_report = zcr->zcr_next;
3315			zcr->zcr_next = NULL;
3316			zcr->zcr_finish(zcr, abuf);
3317			zfs_ereport_free_checksum(zcr);
3318
3319			if (asize != psize)
3320				zio_buf_free(abuf, asize);
3321		}
3322	}
3323
3324	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3325
3326	vdev_stat_update(zio, psize);
3327
3328	if (zio->io_error) {
3329		/*
3330		 * If this I/O is attached to a particular vdev,
3331		 * generate an error message describing the I/O failure
3332		 * at the block level.  We ignore these errors if the
3333		 * device is currently unavailable.
3334		 */
3335		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3336			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3337
3338		if ((zio->io_error == EIO || !(zio->io_flags &
3339		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3340		    zio == lio) {
3341			/*
3342			 * For logical I/O requests, tell the SPA to log the
3343			 * error and generate a logical data ereport.
3344			 */
3345			spa_log_error(spa, zio);
3346			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3347			    0, 0);
3348		}
3349	}
3350
3351	if (zio->io_error && zio == lio) {
3352		/*
3353		 * Determine whether zio should be reexecuted.  This will
3354		 * propagate all the way to the root via zio_notify_parent().
3355		 */
3356		ASSERT(vd == NULL && bp != NULL);
3357		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3358
3359		if (IO_IS_ALLOCATING(zio) &&
3360		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3361			if (zio->io_error != ENOSPC)
3362				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3363			else
3364				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3365		}
3366
3367		if ((zio->io_type == ZIO_TYPE_READ ||
3368		    zio->io_type == ZIO_TYPE_FREE) &&
3369		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3370		    zio->io_error == ENXIO &&
3371		    spa_load_state(spa) == SPA_LOAD_NONE &&
3372		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3373			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3374
3375		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3376			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3377
3378		/*
3379		 * Here is a possibly good place to attempt to do
3380		 * either combinatorial reconstruction or error correction
3381		 * based on checksums.  It also might be a good place
3382		 * to send out preliminary ereports before we suspend
3383		 * processing.
3384		 */
3385	}
3386
3387	/*
3388	 * If there were logical child errors, they apply to us now.
3389	 * We defer this until now to avoid conflating logical child
3390	 * errors with errors that happened to the zio itself when
3391	 * updating vdev stats and reporting FMA events above.
3392	 */
3393	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3394
3395	if ((zio->io_error || zio->io_reexecute) &&
3396	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3397	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3398		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3399
3400	zio_gang_tree_free(&zio->io_gang_tree);
3401
3402	/*
3403	 * Godfather I/Os should never suspend.
3404	 */
3405	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3406	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3407		zio->io_reexecute = 0;
3408
3409	if (zio->io_reexecute) {
3410		/*
3411		 * This is a logical I/O that wants to reexecute.
3412		 *
3413		 * Reexecute is top-down.  When an i/o fails, if it's not
3414		 * the root, it simply notifies its parent and sticks around.
3415		 * The parent, seeing that it still has children in zio_done(),
3416		 * does the same.  This percolates all the way up to the root.
3417		 * The root i/o will reexecute or suspend the entire tree.
3418		 *
3419		 * This approach ensures that zio_reexecute() honors
3420		 * all the original i/o dependency relationships, e.g.
3421		 * parents not executing until children are ready.
3422		 */
3423		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3424
3425		zio->io_gang_leader = NULL;
3426
3427		mutex_enter(&zio->io_lock);
3428		zio->io_state[ZIO_WAIT_DONE] = 1;
3429		mutex_exit(&zio->io_lock);
3430
3431		/*
3432		 * "The Godfather" I/O monitors its children but is
3433		 * not a true parent to them. It will track them through
3434		 * the pipeline but severs its ties whenever they get into
3435		 * trouble (e.g. suspended). This allows "The Godfather"
3436		 * I/O to return status without blocking.
3437		 */
3438		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3439			zio_link_t *zl = zio->io_walk_link;
3440			pio_next = zio_walk_parents(zio);
3441
3442			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3443			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3444				zio_remove_child(pio, zio, zl);
3445				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3446			}
3447		}
3448
3449		if ((pio = zio_unique_parent(zio)) != NULL) {
3450			/*
3451			 * We're not a root i/o, so there's nothing to do
3452			 * but notify our parent.  Don't propagate errors
3453			 * upward since we haven't permanently failed yet.
3454			 */
3455			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3456			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3457			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3458		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3459			/*
3460			 * We'd fail again if we reexecuted now, so suspend
3461			 * until conditions improve (e.g. device comes online).
3462			 */
3463			zio_suspend(spa, zio);
3464		} else {
3465			/*
3466			 * Reexecution is potentially a huge amount of work.
3467			 * Hand it off to the otherwise-unused claim taskq.
3468			 */
3469#if defined(illumos) || !defined(_KERNEL)
3470			ASSERT(zio->io_tqent.tqent_next == NULL);
3471#else
3472			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3473#endif
3474			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3475			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3476			    0, &zio->io_tqent);
3477		}
3478		return (ZIO_PIPELINE_STOP);
3479	}
3480
3481	ASSERT(zio->io_child_count == 0);
3482	ASSERT(zio->io_reexecute == 0);
3483	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3484
3485	/*
3486	 * Report any checksum errors, since the I/O is complete.
3487	 */
3488	while (zio->io_cksum_report != NULL) {
3489		zio_cksum_report_t *zcr = zio->io_cksum_report;
3490		zio->io_cksum_report = zcr->zcr_next;
3491		zcr->zcr_next = NULL;
3492		zcr->zcr_finish(zcr, NULL);
3493		zfs_ereport_free_checksum(zcr);
3494	}
3495
3496	/*
3497	 * It is the responsibility of the done callback to ensure that this
3498	 * particular zio is no longer discoverable for adoption, and as
3499	 * such, cannot acquire any new parents.
3500	 */
3501	if (zio->io_done)
3502		zio->io_done(zio);
3503
3504	mutex_enter(&zio->io_lock);
3505	zio->io_state[ZIO_WAIT_DONE] = 1;
3506	mutex_exit(&zio->io_lock);
3507
3508	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3509		zio_link_t *zl = zio->io_walk_link;
3510		pio_next = zio_walk_parents(zio);
3511		zio_remove_child(pio, zio, zl);
3512		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3513	}
3514
3515	if (zio->io_waiter != NULL) {
3516		mutex_enter(&zio->io_lock);
3517		zio->io_executor = NULL;
3518		cv_broadcast(&zio->io_cv);
3519		mutex_exit(&zio->io_lock);
3520	} else {
3521		zio_destroy(zio);
3522	}
3523
3524	return (ZIO_PIPELINE_STOP);
3525}
3526
3527/*
3528 * ==========================================================================
3529 * I/O pipeline definition
3530 * ==========================================================================
3531 */
3532static zio_pipe_stage_t *zio_pipeline[] = {
3533	NULL,
3534	zio_read_bp_init,
3535	zio_free_bp_init,
3536	zio_issue_async,
3537	zio_write_bp_init,
3538	zio_checksum_generate,
3539	zio_nop_write,
3540	zio_ddt_read_start,
3541	zio_ddt_read_done,
3542	zio_ddt_write,
3543	zio_ddt_free,
3544	zio_gang_assemble,
3545	zio_gang_issue,
3546	zio_dva_allocate,
3547	zio_dva_free,
3548	zio_dva_claim,
3549	zio_ready,
3550	zio_vdev_io_start,
3551	zio_vdev_io_done,
3552	zio_vdev_io_assess,
3553	zio_checksum_verify,
3554	zio_done
3555};
3556
3557
3558
3559
3560/*
3561 * Compare two zbookmark_phys_t's to see which we would reach first in a
3562 * pre-order traversal of the object tree.
3563 *
3564 * This is simple in every case aside from the meta-dnode object. For all other
3565 * objects, we traverse them in order (object 1 before object 2, and so on).
3566 * However, all of these objects are traversed while traversing object 0, since
3567 * the data it points to is the list of objects.  Thus, we need to convert to a
3568 * canonical representation so we can compare meta-dnode bookmarks to
3569 * non-meta-dnode bookmarks.
3570 *
3571 * We do this by calculating "equivalents" for each field of the zbookmark.
3572 * zbookmarks outside of the meta-dnode use their own object and level, and
3573 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3574 * blocks this bookmark refers to) by multiplying their blkid by their span
3575 * (the number of L0 blocks contained within one block at their level).
3576 * zbookmarks inside the meta-dnode calculate their object equivalent
3577 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3578 * level + 1<<31 (any value larger than a level could ever be) for their level.
3579 * This causes them to always compare before a bookmark in their object
3580 * equivalent, compare appropriately to bookmarks in other objects, and to
3581 * compare appropriately to other bookmarks in the meta-dnode.
3582 */
3583int
3584zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3585    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3586{
3587	/*
3588	 * These variables represent the "equivalent" values for the zbookmark,
3589	 * after converting zbookmarks inside the meta dnode to their
3590	 * normal-object equivalents.
3591	 */
3592	uint64_t zb1obj, zb2obj;
3593	uint64_t zb1L0, zb2L0;
3594	uint64_t zb1level, zb2level;
3595
3596	if (zb1->zb_object == zb2->zb_object &&
3597	    zb1->zb_level == zb2->zb_level &&
3598	    zb1->zb_blkid == zb2->zb_blkid)
3599		return (0);
3600
3601	/*
3602	 * BP_SPANB calculates the span in blocks.
3603	 */
3604	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3605	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3606
3607	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3608		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3609		zb1L0 = 0;
3610		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3611	} else {
3612		zb1obj = zb1->zb_object;
3613		zb1level = zb1->zb_level;
3614	}
3615
3616	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3617		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3618		zb2L0 = 0;
3619		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3620	} else {
3621		zb2obj = zb2->zb_object;
3622		zb2level = zb2->zb_level;
3623	}
3624
3625	/* Now that we have a canonical representation, do the comparison. */
3626	if (zb1obj != zb2obj)
3627		return (zb1obj < zb2obj ? -1 : 1);
3628	else if (zb1L0 != zb2L0)
3629		return (zb1L0 < zb2L0 ? -1 : 1);
3630	else if (zb1level != zb2level)
3631		return (zb1level > zb2level ? -1 : 1);
3632	/*
3633	 * This can (theoretically) happen if the bookmarks have the same object
3634	 * and level, but different blkids, if the block sizes are not the same.
3635	 * There is presently no way to change the indirect block sizes
3636	 */
3637	return (0);
3638}
3639
3640/*
3641 *  This function checks the following: given that last_block is the place that
3642 *  our traversal stopped last time, does that guarantee that we've visited
3643 *  every node under subtree_root?  Therefore, we can't just use the raw output
3644 *  of zbookmark_compare.  We have to pass in a modified version of
3645 *  subtree_root; by incrementing the block id, and then checking whether
3646 *  last_block is before or equal to that, we can tell whether or not having
3647 *  visited last_block implies that all of subtree_root's children have been
3648 *  visited.
3649 */
3650boolean_t
3651zbookmark_subtree_completed(const dnode_phys_t *dnp,
3652    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3653{
3654	zbookmark_phys_t mod_zb = *subtree_root;
3655	mod_zb.zb_blkid++;
3656	ASSERT(last_block->zb_level == 0);
3657
3658	/* The objset_phys_t isn't before anything. */
3659	if (dnp == NULL)
3660		return (B_FALSE);
3661
3662	/*
3663	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3664	 * data block size in sectors, because that variable is only used if
3665	 * the bookmark refers to a block in the meta-dnode.  Since we don't
3666	 * know without examining it what object it refers to, and there's no
3667	 * harm in passing in this value in other cases, we always pass it in.
3668	 *
3669	 * We pass in 0 for the indirect block size shift because zb2 must be
3670	 * level 0.  The indirect block size is only used to calculate the span
3671	 * of the bookmark, but since the bookmark must be level 0, the span is
3672	 * always 1, so the math works out.
3673	 *
3674	 * If you make changes to how the zbookmark_compare code works, be sure
3675	 * to make sure that this code still works afterwards.
3676	 */
3677	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3678	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3679	    last_block) <= 0);
3680}
3681