zio.c revision 300039
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/sysmacros.h>
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/txg.h>
33#include <sys/spa_impl.h>
34#include <sys/vdev_impl.h>
35#include <sys/zio_impl.h>
36#include <sys/zio_compress.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu_objset.h>
39#include <sys/arc.h>
40#include <sys/ddt.h>
41#include <sys/trim_map.h>
42#include <sys/blkptr.h>
43#include <sys/zfeature.h>
44
45SYSCTL_DECL(_vfs_zfs);
46SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
47#if defined(__amd64__)
48static int zio_use_uma = 1;
49#else
50static int zio_use_uma = 0;
51#endif
52TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
53SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
54    "Use uma(9) for ZIO allocations");
55static int zio_exclude_metadata = 0;
56TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
57SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
58    "Exclude metadata buffers from dumps as well");
59
60zio_trim_stats_t zio_trim_stats = {
61	{ "bytes",		KSTAT_DATA_UINT64,
62	  "Number of bytes successfully TRIMmed" },
63	{ "success",		KSTAT_DATA_UINT64,
64	  "Number of successful TRIM requests" },
65	{ "unsupported",	KSTAT_DATA_UINT64,
66	  "Number of TRIM requests that failed because TRIM is not supported" },
67	{ "failed",		KSTAT_DATA_UINT64,
68	  "Number of TRIM requests that failed for reasons other than not supported" },
69};
70
71static kstat_t *zio_trim_ksp;
72
73/*
74 * ==========================================================================
75 * I/O type descriptions
76 * ==========================================================================
77 */
78const char *zio_type_name[ZIO_TYPES] = {
79	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
80	"zio_ioctl"
81};
82
83/*
84 * ==========================================================================
85 * I/O kmem caches
86 * ==========================================================================
87 */
88kmem_cache_t *zio_cache;
89kmem_cache_t *zio_link_cache;
90kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
92
93#ifdef _KERNEL
94extern vmem_t *zio_alloc_arena;
95#endif
96
97#define	ZIO_PIPELINE_CONTINUE		0x100
98#define	ZIO_PIPELINE_STOP		0x101
99
100#define	BP_SPANB(indblkshift, level) \
101	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
102#define	COMPARE_META_LEVEL	0x80000000ul
103/*
104 * The following actions directly effect the spa's sync-to-convergence logic.
105 * The values below define the sync pass when we start performing the action.
106 * Care should be taken when changing these values as they directly impact
107 * spa_sync() performance. Tuning these values may introduce subtle performance
108 * pathologies and should only be done in the context of performance analysis.
109 * These tunables will eventually be removed and replaced with #defines once
110 * enough analysis has been done to determine optimal values.
111 *
112 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
113 * regular blocks are not deferred.
114 */
115int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
116TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
117SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
118    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
119int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
120TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
121SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
122    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
123int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
124TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
125SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
126    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
127
128/*
129 * An allocating zio is one that either currently has the DVA allocate
130 * stage set or will have it later in its lifetime.
131 */
132#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133
134boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
135
136#ifdef illumos
137#ifdef ZFS_DEBUG
138int zio_buf_debug_limit = 16384;
139#else
140int zio_buf_debug_limit = 0;
141#endif
142#endif
143
144void
145zio_init(void)
146{
147	size_t c;
148	zio_cache = kmem_cache_create("zio_cache",
149	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
150	zio_link_cache = kmem_cache_create("zio_link_cache",
151	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
152	if (!zio_use_uma)
153		goto out;
154
155	/*
156	 * For small buffers, we want a cache for each multiple of
157	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
158	 * for each quarter-power of 2.
159	 */
160	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
161		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
162		size_t p2 = size;
163		size_t align = 0;
164		int cflags = zio_exclude_metadata ? KMC_NODEBUG : 0;
165
166		while (!ISP2(p2))
167			p2 &= p2 - 1;
168
169#ifdef illumos
170#ifndef _KERNEL
171		/*
172		 * If we are using watchpoints, put each buffer on its own page,
173		 * to eliminate the performance overhead of trapping to the
174		 * kernel when modifying a non-watched buffer that shares the
175		 * page with a watched buffer.
176		 */
177		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
178			continue;
179#endif
180#endif /* illumos */
181		if (size <= 4 * SPA_MINBLOCKSIZE) {
182			align = SPA_MINBLOCKSIZE;
183		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
184			align = MIN(p2 >> 2, PAGESIZE);
185		}
186
187		if (align != 0) {
188			char name[36];
189			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
190			zio_buf_cache[c] = kmem_cache_create(name, size,
191			    align, NULL, NULL, NULL, NULL, NULL, cflags);
192
193			/*
194			 * Since zio_data bufs do not appear in crash dumps, we
195			 * pass KMC_NOTOUCH so that no allocator metadata is
196			 * stored with the buffers.
197			 */
198			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
199			zio_data_buf_cache[c] = kmem_cache_create(name, size,
200			    align, NULL, NULL, NULL, NULL, NULL,
201			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
202		}
203	}
204
205	while (--c != 0) {
206		ASSERT(zio_buf_cache[c] != NULL);
207		if (zio_buf_cache[c - 1] == NULL)
208			zio_buf_cache[c - 1] = zio_buf_cache[c];
209
210		ASSERT(zio_data_buf_cache[c] != NULL);
211		if (zio_data_buf_cache[c - 1] == NULL)
212			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
213	}
214out:
215
216	zio_inject_init();
217
218	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
219	    KSTAT_TYPE_NAMED,
220	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
221	    KSTAT_FLAG_VIRTUAL);
222
223	if (zio_trim_ksp != NULL) {
224		zio_trim_ksp->ks_data = &zio_trim_stats;
225		kstat_install(zio_trim_ksp);
226	}
227}
228
229void
230zio_fini(void)
231{
232	size_t c;
233	kmem_cache_t *last_cache = NULL;
234	kmem_cache_t *last_data_cache = NULL;
235
236	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
237		if (zio_buf_cache[c] != last_cache) {
238			last_cache = zio_buf_cache[c];
239			kmem_cache_destroy(zio_buf_cache[c]);
240		}
241		zio_buf_cache[c] = NULL;
242
243		if (zio_data_buf_cache[c] != last_data_cache) {
244			last_data_cache = zio_data_buf_cache[c];
245			kmem_cache_destroy(zio_data_buf_cache[c]);
246		}
247		zio_data_buf_cache[c] = NULL;
248	}
249
250	kmem_cache_destroy(zio_link_cache);
251	kmem_cache_destroy(zio_cache);
252
253	zio_inject_fini();
254
255	if (zio_trim_ksp != NULL) {
256		kstat_delete(zio_trim_ksp);
257		zio_trim_ksp = NULL;
258	}
259}
260
261/*
262 * ==========================================================================
263 * Allocate and free I/O buffers
264 * ==========================================================================
265 */
266
267/*
268 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
269 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
270 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
271 * excess / transient data in-core during a crashdump.
272 */
273void *
274zio_buf_alloc(size_t size)
275{
276	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
277	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
278
279	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280
281	if (zio_use_uma)
282		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
283	else
284		return (kmem_alloc(size, KM_SLEEP|flags));
285}
286
287/*
288 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
289 * crashdump if the kernel panics.  This exists so that we will limit the amount
290 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
291 * of kernel heap dumped to disk when the kernel panics)
292 */
293void *
294zio_data_buf_alloc(size_t size)
295{
296	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
297
298	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
299
300	if (zio_use_uma)
301		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
302	else
303		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
304}
305
306void
307zio_buf_free(void *buf, size_t size)
308{
309	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
310
311	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
312
313	if (zio_use_uma)
314		kmem_cache_free(zio_buf_cache[c], buf);
315	else
316		kmem_free(buf, size);
317}
318
319void
320zio_data_buf_free(void *buf, size_t size)
321{
322	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
323
324	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
325
326	if (zio_use_uma)
327		kmem_cache_free(zio_data_buf_cache[c], buf);
328	else
329		kmem_free(buf, size);
330}
331
332/*
333 * ==========================================================================
334 * Push and pop I/O transform buffers
335 * ==========================================================================
336 */
337static void
338zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
339    zio_transform_func_t *transform)
340{
341	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
342
343	zt->zt_orig_data = zio->io_data;
344	zt->zt_orig_size = zio->io_size;
345	zt->zt_bufsize = bufsize;
346	zt->zt_transform = transform;
347
348	zt->zt_next = zio->io_transform_stack;
349	zio->io_transform_stack = zt;
350
351	zio->io_data = data;
352	zio->io_size = size;
353}
354
355static void
356zio_pop_transforms(zio_t *zio)
357{
358	zio_transform_t *zt;
359
360	while ((zt = zio->io_transform_stack) != NULL) {
361		if (zt->zt_transform != NULL)
362			zt->zt_transform(zio,
363			    zt->zt_orig_data, zt->zt_orig_size);
364
365		if (zt->zt_bufsize != 0)
366			zio_buf_free(zio->io_data, zt->zt_bufsize);
367
368		zio->io_data = zt->zt_orig_data;
369		zio->io_size = zt->zt_orig_size;
370		zio->io_transform_stack = zt->zt_next;
371
372		kmem_free(zt, sizeof (zio_transform_t));
373	}
374}
375
376/*
377 * ==========================================================================
378 * I/O transform callbacks for subblocks and decompression
379 * ==========================================================================
380 */
381static void
382zio_subblock(zio_t *zio, void *data, uint64_t size)
383{
384	ASSERT(zio->io_size > size);
385
386	if (zio->io_type == ZIO_TYPE_READ)
387		bcopy(zio->io_data, data, size);
388}
389
390static void
391zio_decompress(zio_t *zio, void *data, uint64_t size)
392{
393	if (zio->io_error == 0 &&
394	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
395	    zio->io_data, data, zio->io_size, size) != 0)
396		zio->io_error = SET_ERROR(EIO);
397}
398
399/*
400 * ==========================================================================
401 * I/O parent/child relationships and pipeline interlocks
402 * ==========================================================================
403 */
404/*
405 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
406 *        continue calling these functions until they return NULL.
407 *        Otherwise, the next caller will pick up the list walk in
408 *        some indeterminate state.  (Otherwise every caller would
409 *        have to pass in a cookie to keep the state represented by
410 *        io_walk_link, which gets annoying.)
411 */
412zio_t *
413zio_walk_parents(zio_t *cio)
414{
415	zio_link_t *zl = cio->io_walk_link;
416	list_t *pl = &cio->io_parent_list;
417
418	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
419	cio->io_walk_link = zl;
420
421	if (zl == NULL)
422		return (NULL);
423
424	ASSERT(zl->zl_child == cio);
425	return (zl->zl_parent);
426}
427
428zio_t *
429zio_walk_children(zio_t *pio)
430{
431	zio_link_t *zl = pio->io_walk_link;
432	list_t *cl = &pio->io_child_list;
433
434	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
435	pio->io_walk_link = zl;
436
437	if (zl == NULL)
438		return (NULL);
439
440	ASSERT(zl->zl_parent == pio);
441	return (zl->zl_child);
442}
443
444zio_t *
445zio_unique_parent(zio_t *cio)
446{
447	zio_t *pio = zio_walk_parents(cio);
448
449	VERIFY(zio_walk_parents(cio) == NULL);
450	return (pio);
451}
452
453void
454zio_add_child(zio_t *pio, zio_t *cio)
455{
456	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
457
458	/*
459	 * Logical I/Os can have logical, gang, or vdev children.
460	 * Gang I/Os can have gang or vdev children.
461	 * Vdev I/Os can only have vdev children.
462	 * The following ASSERT captures all of these constraints.
463	 */
464	ASSERT(cio->io_child_type <= pio->io_child_type);
465
466	zl->zl_parent = pio;
467	zl->zl_child = cio;
468
469	mutex_enter(&cio->io_lock);
470	mutex_enter(&pio->io_lock);
471
472	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
473
474	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
475		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
476
477	list_insert_head(&pio->io_child_list, zl);
478	list_insert_head(&cio->io_parent_list, zl);
479
480	pio->io_child_count++;
481	cio->io_parent_count++;
482
483	mutex_exit(&pio->io_lock);
484	mutex_exit(&cio->io_lock);
485}
486
487static void
488zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
489{
490	ASSERT(zl->zl_parent == pio);
491	ASSERT(zl->zl_child == cio);
492
493	mutex_enter(&cio->io_lock);
494	mutex_enter(&pio->io_lock);
495
496	list_remove(&pio->io_child_list, zl);
497	list_remove(&cio->io_parent_list, zl);
498
499	pio->io_child_count--;
500	cio->io_parent_count--;
501
502	mutex_exit(&pio->io_lock);
503	mutex_exit(&cio->io_lock);
504
505	kmem_cache_free(zio_link_cache, zl);
506}
507
508static boolean_t
509zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
510{
511	uint64_t *countp = &zio->io_children[child][wait];
512	boolean_t waiting = B_FALSE;
513
514	mutex_enter(&zio->io_lock);
515	ASSERT(zio->io_stall == NULL);
516	if (*countp != 0) {
517		zio->io_stage >>= 1;
518		zio->io_stall = countp;
519		waiting = B_TRUE;
520	}
521	mutex_exit(&zio->io_lock);
522
523	return (waiting);
524}
525
526static void
527zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
528{
529	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
530	int *errorp = &pio->io_child_error[zio->io_child_type];
531
532	mutex_enter(&pio->io_lock);
533	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
534		*errorp = zio_worst_error(*errorp, zio->io_error);
535	pio->io_reexecute |= zio->io_reexecute;
536	ASSERT3U(*countp, >, 0);
537
538	(*countp)--;
539
540	if (*countp == 0 && pio->io_stall == countp) {
541		pio->io_stall = NULL;
542		mutex_exit(&pio->io_lock);
543		zio_execute(pio);
544	} else {
545		mutex_exit(&pio->io_lock);
546	}
547}
548
549static void
550zio_inherit_child_errors(zio_t *zio, enum zio_child c)
551{
552	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
553		zio->io_error = zio->io_child_error[c];
554}
555
556/*
557 * ==========================================================================
558 * Create the various types of I/O (read, write, free, etc)
559 * ==========================================================================
560 */
561static zio_t *
562zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
563    void *data, uint64_t size, zio_done_func_t *done, void *private,
564    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
565    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
566    enum zio_stage stage, enum zio_stage pipeline)
567{
568	zio_t *zio;
569
570	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
571	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
572	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
573
574	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
575	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
576	ASSERT(vd || stage == ZIO_STAGE_OPEN);
577
578	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
579	bzero(zio, sizeof (zio_t));
580
581	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
582	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
583
584	list_create(&zio->io_parent_list, sizeof (zio_link_t),
585	    offsetof(zio_link_t, zl_parent_node));
586	list_create(&zio->io_child_list, sizeof (zio_link_t),
587	    offsetof(zio_link_t, zl_child_node));
588
589	if (vd != NULL)
590		zio->io_child_type = ZIO_CHILD_VDEV;
591	else if (flags & ZIO_FLAG_GANG_CHILD)
592		zio->io_child_type = ZIO_CHILD_GANG;
593	else if (flags & ZIO_FLAG_DDT_CHILD)
594		zio->io_child_type = ZIO_CHILD_DDT;
595	else
596		zio->io_child_type = ZIO_CHILD_LOGICAL;
597
598	if (bp != NULL) {
599		zio->io_bp = (blkptr_t *)bp;
600		zio->io_bp_copy = *bp;
601		zio->io_bp_orig = *bp;
602		if (type != ZIO_TYPE_WRITE ||
603		    zio->io_child_type == ZIO_CHILD_DDT)
604			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
605		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
606			zio->io_logical = zio;
607		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
608			pipeline |= ZIO_GANG_STAGES;
609	}
610
611	zio->io_spa = spa;
612	zio->io_txg = txg;
613	zio->io_done = done;
614	zio->io_private = private;
615	zio->io_type = type;
616	zio->io_priority = priority;
617	zio->io_vd = vd;
618	zio->io_offset = offset;
619	zio->io_orig_data = zio->io_data = data;
620	zio->io_orig_size = zio->io_size = size;
621	zio->io_orig_flags = zio->io_flags = flags;
622	zio->io_orig_stage = zio->io_stage = stage;
623	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
624
625	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
626	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
627
628	if (zb != NULL)
629		zio->io_bookmark = *zb;
630
631	if (pio != NULL) {
632		if (zio->io_logical == NULL)
633			zio->io_logical = pio->io_logical;
634		if (zio->io_child_type == ZIO_CHILD_GANG)
635			zio->io_gang_leader = pio->io_gang_leader;
636		zio_add_child(pio, zio);
637	}
638
639	return (zio);
640}
641
642static void
643zio_destroy(zio_t *zio)
644{
645	list_destroy(&zio->io_parent_list);
646	list_destroy(&zio->io_child_list);
647	mutex_destroy(&zio->io_lock);
648	cv_destroy(&zio->io_cv);
649	kmem_cache_free(zio_cache, zio);
650}
651
652zio_t *
653zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
654    void *private, enum zio_flag flags)
655{
656	zio_t *zio;
657
658	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
659	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
660	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
661
662	return (zio);
663}
664
665zio_t *
666zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
667{
668	return (zio_null(NULL, spa, NULL, done, private, flags));
669}
670
671void
672zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
673{
674	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
675		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
676		    bp, (longlong_t)BP_GET_TYPE(bp));
677	}
678	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
679	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
680		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
681		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
682	}
683	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
684	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
685		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
686		    bp, (longlong_t)BP_GET_COMPRESS(bp));
687	}
688	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
689		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
690		    bp, (longlong_t)BP_GET_LSIZE(bp));
691	}
692	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
693		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
694		    bp, (longlong_t)BP_GET_PSIZE(bp));
695	}
696
697	if (BP_IS_EMBEDDED(bp)) {
698		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
699			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
700			    bp, (longlong_t)BPE_GET_ETYPE(bp));
701		}
702	}
703
704	/*
705	 * Pool-specific checks.
706	 *
707	 * Note: it would be nice to verify that the blk_birth and
708	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
709	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
710	 * that are in the log) to be arbitrarily large.
711	 */
712	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
713		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
714		if (vdevid >= spa->spa_root_vdev->vdev_children) {
715			zfs_panic_recover("blkptr at %p DVA %u has invalid "
716			    "VDEV %llu",
717			    bp, i, (longlong_t)vdevid);
718			continue;
719		}
720		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
721		if (vd == NULL) {
722			zfs_panic_recover("blkptr at %p DVA %u has invalid "
723			    "VDEV %llu",
724			    bp, i, (longlong_t)vdevid);
725			continue;
726		}
727		if (vd->vdev_ops == &vdev_hole_ops) {
728			zfs_panic_recover("blkptr at %p DVA %u has hole "
729			    "VDEV %llu",
730			    bp, i, (longlong_t)vdevid);
731			continue;
732		}
733		if (vd->vdev_ops == &vdev_missing_ops) {
734			/*
735			 * "missing" vdevs are valid during import, but we
736			 * don't have their detailed info (e.g. asize), so
737			 * we can't perform any more checks on them.
738			 */
739			continue;
740		}
741		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
742		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
743		if (BP_IS_GANG(bp))
744			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
745		if (offset + asize > vd->vdev_asize) {
746			zfs_panic_recover("blkptr at %p DVA %u has invalid "
747			    "OFFSET %llu",
748			    bp, i, (longlong_t)offset);
749		}
750	}
751}
752
753zio_t *
754zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
755    void *data, uint64_t size, zio_done_func_t *done, void *private,
756    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
757{
758	zio_t *zio;
759
760	zfs_blkptr_verify(spa, bp);
761
762	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
763	    data, size, done, private,
764	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
765	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
766	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
767
768	return (zio);
769}
770
771zio_t *
772zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
773    void *data, uint64_t size, const zio_prop_t *zp,
774    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
775    void *private,
776    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
777{
778	zio_t *zio;
779
780	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
781	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
782	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
783	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
784	    DMU_OT_IS_VALID(zp->zp_type) &&
785	    zp->zp_level < 32 &&
786	    zp->zp_copies > 0 &&
787	    zp->zp_copies <= spa_max_replication(spa));
788
789	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
790	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
791	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
792	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
793
794	zio->io_ready = ready;
795	zio->io_physdone = physdone;
796	zio->io_prop = *zp;
797
798	/*
799	 * Data can be NULL if we are going to call zio_write_override() to
800	 * provide the already-allocated BP.  But we may need the data to
801	 * verify a dedup hit (if requested).  In this case, don't try to
802	 * dedup (just take the already-allocated BP verbatim).
803	 */
804	if (data == NULL && zio->io_prop.zp_dedup_verify) {
805		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
806	}
807
808	return (zio);
809}
810
811zio_t *
812zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
813    uint64_t size, zio_done_func_t *done, void *private,
814    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
815{
816	zio_t *zio;
817
818	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
819	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
820	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
821
822	return (zio);
823}
824
825void
826zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
827{
828	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
829	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
830	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
831	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
832
833	/*
834	 * We must reset the io_prop to match the values that existed
835	 * when the bp was first written by dmu_sync() keeping in mind
836	 * that nopwrite and dedup are mutually exclusive.
837	 */
838	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
839	zio->io_prop.zp_nopwrite = nopwrite;
840	zio->io_prop.zp_copies = copies;
841	zio->io_bp_override = bp;
842}
843
844void
845zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
846{
847
848	/*
849	 * The check for EMBEDDED is a performance optimization.  We
850	 * process the free here (by ignoring it) rather than
851	 * putting it on the list and then processing it in zio_free_sync().
852	 */
853	if (BP_IS_EMBEDDED(bp))
854		return;
855	metaslab_check_free(spa, bp);
856
857	/*
858	 * Frees that are for the currently-syncing txg, are not going to be
859	 * deferred, and which will not need to do a read (i.e. not GANG or
860	 * DEDUP), can be processed immediately.  Otherwise, put them on the
861	 * in-memory list for later processing.
862	 */
863	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
864	    txg != spa->spa_syncing_txg ||
865	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
866		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
867	} else {
868		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
869		    BP_GET_PSIZE(bp), 0)));
870	}
871}
872
873zio_t *
874zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
875    uint64_t size, enum zio_flag flags)
876{
877	zio_t *zio;
878	enum zio_stage stage = ZIO_FREE_PIPELINE;
879
880	ASSERT(!BP_IS_HOLE(bp));
881	ASSERT(spa_syncing_txg(spa) == txg);
882	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
883
884	if (BP_IS_EMBEDDED(bp))
885		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
886
887	metaslab_check_free(spa, bp);
888	arc_freed(spa, bp);
889
890	if (zfs_trim_enabled)
891		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
892		    ZIO_STAGE_VDEV_IO_ASSESS;
893	/*
894	 * GANG and DEDUP blocks can induce a read (for the gang block header,
895	 * or the DDT), so issue them asynchronously so that this thread is
896	 * not tied up.
897	 */
898	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
899		stage |= ZIO_STAGE_ISSUE_ASYNC;
900
901	flags |= ZIO_FLAG_DONT_QUEUE;
902
903	zio = zio_create(pio, spa, txg, bp, NULL, size,
904	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
905	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
906
907	return (zio);
908}
909
910zio_t *
911zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
912    zio_done_func_t *done, void *private, enum zio_flag flags)
913{
914	zio_t *zio;
915
916	dprintf_bp(bp, "claiming in txg %llu", txg);
917
918	if (BP_IS_EMBEDDED(bp))
919		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
920
921	/*
922	 * A claim is an allocation of a specific block.  Claims are needed
923	 * to support immediate writes in the intent log.  The issue is that
924	 * immediate writes contain committed data, but in a txg that was
925	 * *not* committed.  Upon opening the pool after an unclean shutdown,
926	 * the intent log claims all blocks that contain immediate write data
927	 * so that the SPA knows they're in use.
928	 *
929	 * All claims *must* be resolved in the first txg -- before the SPA
930	 * starts allocating blocks -- so that nothing is allocated twice.
931	 * If txg == 0 we just verify that the block is claimable.
932	 */
933	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
934	ASSERT(txg == spa_first_txg(spa) || txg == 0);
935	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
936
937	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
938	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
939	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
940
941	return (zio);
942}
943
944zio_t *
945zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
946    uint64_t size, zio_done_func_t *done, void *private,
947    zio_priority_t priority, enum zio_flag flags)
948{
949	zio_t *zio;
950	int c;
951
952	if (vd->vdev_children == 0) {
953		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
954		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
955		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
956
957		zio->io_cmd = cmd;
958	} else {
959		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
960
961		for (c = 0; c < vd->vdev_children; c++)
962			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
963			    offset, size, done, private, priority, flags));
964	}
965
966	return (zio);
967}
968
969zio_t *
970zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
971    void *data, int checksum, zio_done_func_t *done, void *private,
972    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
973{
974	zio_t *zio;
975
976	ASSERT(vd->vdev_children == 0);
977	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
978	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
979	ASSERT3U(offset + size, <=, vd->vdev_psize);
980
981	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
982	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
983	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
984
985	zio->io_prop.zp_checksum = checksum;
986
987	return (zio);
988}
989
990zio_t *
991zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
992    void *data, int checksum, zio_done_func_t *done, void *private,
993    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
994{
995	zio_t *zio;
996
997	ASSERT(vd->vdev_children == 0);
998	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
999	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1000	ASSERT3U(offset + size, <=, vd->vdev_psize);
1001
1002	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1003	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1004	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1005
1006	zio->io_prop.zp_checksum = checksum;
1007
1008	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1009		/*
1010		 * zec checksums are necessarily destructive -- they modify
1011		 * the end of the write buffer to hold the verifier/checksum.
1012		 * Therefore, we must make a local copy in case the data is
1013		 * being written to multiple places in parallel.
1014		 */
1015		void *wbuf = zio_buf_alloc(size);
1016		bcopy(data, wbuf, size);
1017		zio_push_transform(zio, wbuf, size, size, NULL);
1018	}
1019
1020	return (zio);
1021}
1022
1023/*
1024 * Create a child I/O to do some work for us.
1025 */
1026zio_t *
1027zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1028	void *data, uint64_t size, int type, zio_priority_t priority,
1029	enum zio_flag flags, zio_done_func_t *done, void *private)
1030{
1031	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1032	zio_t *zio;
1033
1034	ASSERT(vd->vdev_parent ==
1035	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1036
1037	if (type == ZIO_TYPE_READ && bp != NULL) {
1038		/*
1039		 * If we have the bp, then the child should perform the
1040		 * checksum and the parent need not.  This pushes error
1041		 * detection as close to the leaves as possible and
1042		 * eliminates redundant checksums in the interior nodes.
1043		 */
1044		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1045		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1046	}
1047
1048	/* Not all IO types require vdev io done stage e.g. free */
1049	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1050		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1051
1052	if (vd->vdev_children == 0)
1053		offset += VDEV_LABEL_START_SIZE;
1054
1055	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1056
1057	/*
1058	 * If we've decided to do a repair, the write is not speculative --
1059	 * even if the original read was.
1060	 */
1061	if (flags & ZIO_FLAG_IO_REPAIR)
1062		flags &= ~ZIO_FLAG_SPECULATIVE;
1063
1064	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1065	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1066	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1067
1068	zio->io_physdone = pio->io_physdone;
1069	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1070		zio->io_logical->io_phys_children++;
1071
1072	return (zio);
1073}
1074
1075zio_t *
1076zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1077    int type, zio_priority_t priority, enum zio_flag flags,
1078    zio_done_func_t *done, void *private)
1079{
1080	zio_t *zio;
1081
1082	ASSERT(vd->vdev_ops->vdev_op_leaf);
1083
1084	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1085	    data, size, done, private, type, priority,
1086	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1087	    vd, offset, NULL,
1088	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1089
1090	return (zio);
1091}
1092
1093void
1094zio_flush(zio_t *zio, vdev_t *vd)
1095{
1096	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1097	    NULL, NULL, ZIO_PRIORITY_NOW,
1098	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1099}
1100
1101zio_t *
1102zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1103{
1104
1105	ASSERT(vd->vdev_ops->vdev_op_leaf);
1106
1107	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1108	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1109	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1110	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1111}
1112
1113void
1114zio_shrink(zio_t *zio, uint64_t size)
1115{
1116	ASSERT(zio->io_executor == NULL);
1117	ASSERT(zio->io_orig_size == zio->io_size);
1118	ASSERT(size <= zio->io_size);
1119
1120	/*
1121	 * We don't shrink for raidz because of problems with the
1122	 * reconstruction when reading back less than the block size.
1123	 * Note, BP_IS_RAIDZ() assumes no compression.
1124	 */
1125	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1126	if (!BP_IS_RAIDZ(zio->io_bp))
1127		zio->io_orig_size = zio->io_size = size;
1128}
1129
1130/*
1131 * ==========================================================================
1132 * Prepare to read and write logical blocks
1133 * ==========================================================================
1134 */
1135
1136static int
1137zio_read_bp_init(zio_t *zio)
1138{
1139	blkptr_t *bp = zio->io_bp;
1140
1141	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1142	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1143	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1144		uint64_t psize =
1145		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1146		void *cbuf = zio_buf_alloc(psize);
1147
1148		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1149	}
1150
1151	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1152		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1153		decode_embedded_bp_compressed(bp, zio->io_data);
1154	} else {
1155		ASSERT(!BP_IS_EMBEDDED(bp));
1156	}
1157
1158	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1159		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1160
1161	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1162		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1163
1164	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1165		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1166
1167	return (ZIO_PIPELINE_CONTINUE);
1168}
1169
1170static int
1171zio_write_bp_init(zio_t *zio)
1172{
1173	spa_t *spa = zio->io_spa;
1174	zio_prop_t *zp = &zio->io_prop;
1175	enum zio_compress compress = zp->zp_compress;
1176	blkptr_t *bp = zio->io_bp;
1177	uint64_t lsize = zio->io_size;
1178	uint64_t psize = lsize;
1179	int pass = 1;
1180
1181	/*
1182	 * If our children haven't all reached the ready stage,
1183	 * wait for them and then repeat this pipeline stage.
1184	 */
1185	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1186	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1187		return (ZIO_PIPELINE_STOP);
1188
1189	if (!IO_IS_ALLOCATING(zio))
1190		return (ZIO_PIPELINE_CONTINUE);
1191
1192	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1193
1194	if (zio->io_bp_override) {
1195		ASSERT(bp->blk_birth != zio->io_txg);
1196		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1197
1198		*bp = *zio->io_bp_override;
1199		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1200
1201		if (BP_IS_EMBEDDED(bp))
1202			return (ZIO_PIPELINE_CONTINUE);
1203
1204		/*
1205		 * If we've been overridden and nopwrite is set then
1206		 * set the flag accordingly to indicate that a nopwrite
1207		 * has already occurred.
1208		 */
1209		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1210			ASSERT(!zp->zp_dedup);
1211			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1212			return (ZIO_PIPELINE_CONTINUE);
1213		}
1214
1215		ASSERT(!zp->zp_nopwrite);
1216
1217		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1218			return (ZIO_PIPELINE_CONTINUE);
1219
1220		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1221		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1222
1223		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1224			BP_SET_DEDUP(bp, 1);
1225			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1226			return (ZIO_PIPELINE_CONTINUE);
1227		}
1228		zio->io_bp_override = NULL;
1229		BP_ZERO(bp);
1230	}
1231
1232	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1233		/*
1234		 * We're rewriting an existing block, which means we're
1235		 * working on behalf of spa_sync().  For spa_sync() to
1236		 * converge, it must eventually be the case that we don't
1237		 * have to allocate new blocks.  But compression changes
1238		 * the blocksize, which forces a reallocate, and makes
1239		 * convergence take longer.  Therefore, after the first
1240		 * few passes, stop compressing to ensure convergence.
1241		 */
1242		pass = spa_sync_pass(spa);
1243
1244		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1245		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1246		ASSERT(!BP_GET_DEDUP(bp));
1247
1248		if (pass >= zfs_sync_pass_dont_compress)
1249			compress = ZIO_COMPRESS_OFF;
1250
1251		/* Make sure someone doesn't change their mind on overwrites */
1252		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1253		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1254	}
1255
1256	if (compress != ZIO_COMPRESS_OFF) {
1257		void *cbuf = zio_buf_alloc(lsize);
1258		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1259		if (psize == 0 || psize == lsize) {
1260			compress = ZIO_COMPRESS_OFF;
1261			zio_buf_free(cbuf, lsize);
1262		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1263		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1264		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1265			encode_embedded_bp_compressed(bp,
1266			    cbuf, compress, lsize, psize);
1267			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1268			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1269			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1270			zio_buf_free(cbuf, lsize);
1271			bp->blk_birth = zio->io_txg;
1272			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1273			ASSERT(spa_feature_is_active(spa,
1274			    SPA_FEATURE_EMBEDDED_DATA));
1275			return (ZIO_PIPELINE_CONTINUE);
1276		} else {
1277			/*
1278			 * Round up compressed size up to the ashift
1279			 * of the smallest-ashift device, and zero the tail.
1280			 * This ensures that the compressed size of the BP
1281			 * (and thus compressratio property) are correct,
1282			 * in that we charge for the padding used to fill out
1283			 * the last sector.
1284			 */
1285			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1286			size_t rounded = (size_t)P2ROUNDUP(psize,
1287			    1ULL << spa->spa_min_ashift);
1288			if (rounded >= lsize) {
1289				compress = ZIO_COMPRESS_OFF;
1290				zio_buf_free(cbuf, lsize);
1291				psize = lsize;
1292			} else {
1293				bzero((char *)cbuf + psize, rounded - psize);
1294				psize = rounded;
1295				zio_push_transform(zio, cbuf,
1296				    psize, lsize, NULL);
1297			}
1298		}
1299	}
1300
1301	/*
1302	 * The final pass of spa_sync() must be all rewrites, but the first
1303	 * few passes offer a trade-off: allocating blocks defers convergence,
1304	 * but newly allocated blocks are sequential, so they can be written
1305	 * to disk faster.  Therefore, we allow the first few passes of
1306	 * spa_sync() to allocate new blocks, but force rewrites after that.
1307	 * There should only be a handful of blocks after pass 1 in any case.
1308	 */
1309	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1310	    BP_GET_PSIZE(bp) == psize &&
1311	    pass >= zfs_sync_pass_rewrite) {
1312		ASSERT(psize != 0);
1313		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1314		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1315		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1316	} else {
1317		BP_ZERO(bp);
1318		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1319	}
1320
1321	if (psize == 0) {
1322		if (zio->io_bp_orig.blk_birth != 0 &&
1323		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1324			BP_SET_LSIZE(bp, lsize);
1325			BP_SET_TYPE(bp, zp->zp_type);
1326			BP_SET_LEVEL(bp, zp->zp_level);
1327			BP_SET_BIRTH(bp, zio->io_txg, 0);
1328		}
1329		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1330	} else {
1331		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1332		BP_SET_LSIZE(bp, lsize);
1333		BP_SET_TYPE(bp, zp->zp_type);
1334		BP_SET_LEVEL(bp, zp->zp_level);
1335		BP_SET_PSIZE(bp, psize);
1336		BP_SET_COMPRESS(bp, compress);
1337		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1338		BP_SET_DEDUP(bp, zp->zp_dedup);
1339		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1340		if (zp->zp_dedup) {
1341			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1342			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1343			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1344		}
1345		if (zp->zp_nopwrite) {
1346			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1347			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1348			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1349		}
1350	}
1351
1352	return (ZIO_PIPELINE_CONTINUE);
1353}
1354
1355static int
1356zio_free_bp_init(zio_t *zio)
1357{
1358	blkptr_t *bp = zio->io_bp;
1359
1360	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1361		if (BP_GET_DEDUP(bp))
1362			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1363	}
1364
1365	return (ZIO_PIPELINE_CONTINUE);
1366}
1367
1368/*
1369 * ==========================================================================
1370 * Execute the I/O pipeline
1371 * ==========================================================================
1372 */
1373
1374static void
1375zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1376{
1377	spa_t *spa = zio->io_spa;
1378	zio_type_t t = zio->io_type;
1379	int flags = (cutinline ? TQ_FRONT : 0);
1380
1381	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1382
1383	/*
1384	 * If we're a config writer or a probe, the normal issue and
1385	 * interrupt threads may all be blocked waiting for the config lock.
1386	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1387	 */
1388	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1389		t = ZIO_TYPE_NULL;
1390
1391	/*
1392	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1393	 */
1394	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1395		t = ZIO_TYPE_NULL;
1396
1397	/*
1398	 * If this is a high priority I/O, then use the high priority taskq if
1399	 * available.
1400	 */
1401	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1402	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1403		q++;
1404
1405	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1406
1407	/*
1408	 * NB: We are assuming that the zio can only be dispatched
1409	 * to a single taskq at a time.  It would be a grievous error
1410	 * to dispatch the zio to another taskq at the same time.
1411	 */
1412#if defined(illumos) || !defined(_KERNEL)
1413	ASSERT(zio->io_tqent.tqent_next == NULL);
1414#else
1415	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1416#endif
1417	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1418	    flags, &zio->io_tqent);
1419}
1420
1421static boolean_t
1422zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1423{
1424	kthread_t *executor = zio->io_executor;
1425	spa_t *spa = zio->io_spa;
1426
1427	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1428		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1429		uint_t i;
1430		for (i = 0; i < tqs->stqs_count; i++) {
1431			if (taskq_member(tqs->stqs_taskq[i], executor))
1432				return (B_TRUE);
1433		}
1434	}
1435
1436	return (B_FALSE);
1437}
1438
1439static int
1440zio_issue_async(zio_t *zio)
1441{
1442	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1443
1444	return (ZIO_PIPELINE_STOP);
1445}
1446
1447void
1448zio_interrupt(zio_t *zio)
1449{
1450	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1451}
1452
1453void
1454zio_delay_interrupt(zio_t *zio)
1455{
1456	/*
1457	 * The timeout_generic() function isn't defined in userspace, so
1458	 * rather than trying to implement the function, the zio delay
1459	 * functionality has been disabled for userspace builds.
1460	 */
1461
1462#ifdef _KERNEL
1463	/*
1464	 * If io_target_timestamp is zero, then no delay has been registered
1465	 * for this IO, thus jump to the end of this function and "skip" the
1466	 * delay; issuing it directly to the zio layer.
1467	 */
1468	if (zio->io_target_timestamp != 0) {
1469		hrtime_t now = gethrtime();
1470
1471		if (now >= zio->io_target_timestamp) {
1472			/*
1473			 * This IO has already taken longer than the target
1474			 * delay to complete, so we don't want to delay it
1475			 * any longer; we "miss" the delay and issue it
1476			 * directly to the zio layer. This is likely due to
1477			 * the target latency being set to a value less than
1478			 * the underlying hardware can satisfy (e.g. delay
1479			 * set to 1ms, but the disks take 10ms to complete an
1480			 * IO request).
1481			 */
1482
1483			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1484			    hrtime_t, now);
1485
1486			zio_interrupt(zio);
1487		} else {
1488			hrtime_t diff = zio->io_target_timestamp - now;
1489
1490			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1491			    hrtime_t, now, hrtime_t, diff);
1492
1493			(void) timeout_generic(CALLOUT_NORMAL,
1494			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1495		}
1496
1497		return;
1498	}
1499#endif
1500
1501	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1502	zio_interrupt(zio);
1503}
1504
1505/*
1506 * Execute the I/O pipeline until one of the following occurs:
1507 *
1508 *	(1) the I/O completes
1509 *	(2) the pipeline stalls waiting for dependent child I/Os
1510 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1511 *	(4) the I/O is delegated by vdev-level caching or aggregation
1512 *	(5) the I/O is deferred due to vdev-level queueing
1513 *	(6) the I/O is handed off to another thread.
1514 *
1515 * In all cases, the pipeline stops whenever there's no CPU work; it never
1516 * burns a thread in cv_wait().
1517 *
1518 * There's no locking on io_stage because there's no legitimate way
1519 * for multiple threads to be attempting to process the same I/O.
1520 */
1521static zio_pipe_stage_t *zio_pipeline[];
1522
1523void
1524zio_execute(zio_t *zio)
1525{
1526	zio->io_executor = curthread;
1527
1528	while (zio->io_stage < ZIO_STAGE_DONE) {
1529		enum zio_stage pipeline = zio->io_pipeline;
1530		enum zio_stage stage = zio->io_stage;
1531		int rv;
1532
1533		ASSERT(!MUTEX_HELD(&zio->io_lock));
1534		ASSERT(ISP2(stage));
1535		ASSERT(zio->io_stall == NULL);
1536
1537		do {
1538			stage <<= 1;
1539		} while ((stage & pipeline) == 0);
1540
1541		ASSERT(stage <= ZIO_STAGE_DONE);
1542
1543		/*
1544		 * If we are in interrupt context and this pipeline stage
1545		 * will grab a config lock that is held across I/O,
1546		 * or may wait for an I/O that needs an interrupt thread
1547		 * to complete, issue async to avoid deadlock.
1548		 *
1549		 * For VDEV_IO_START, we cut in line so that the io will
1550		 * be sent to disk promptly.
1551		 */
1552		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1553		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1554			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1555			    zio_requeue_io_start_cut_in_line : B_FALSE;
1556			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1557			return;
1558		}
1559
1560		zio->io_stage = stage;
1561		rv = zio_pipeline[highbit64(stage) - 1](zio);
1562
1563		if (rv == ZIO_PIPELINE_STOP)
1564			return;
1565
1566		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1567	}
1568}
1569
1570/*
1571 * ==========================================================================
1572 * Initiate I/O, either sync or async
1573 * ==========================================================================
1574 */
1575int
1576zio_wait(zio_t *zio)
1577{
1578	int error;
1579
1580	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1581	ASSERT(zio->io_executor == NULL);
1582
1583	zio->io_waiter = curthread;
1584
1585	zio_execute(zio);
1586
1587	mutex_enter(&zio->io_lock);
1588	while (zio->io_executor != NULL)
1589		cv_wait(&zio->io_cv, &zio->io_lock);
1590	mutex_exit(&zio->io_lock);
1591
1592	error = zio->io_error;
1593	zio_destroy(zio);
1594
1595	return (error);
1596}
1597
1598void
1599zio_nowait(zio_t *zio)
1600{
1601	ASSERT(zio->io_executor == NULL);
1602
1603	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1604	    zio_unique_parent(zio) == NULL) {
1605		/*
1606		 * This is a logical async I/O with no parent to wait for it.
1607		 * We add it to the spa_async_root_zio "Godfather" I/O which
1608		 * will ensure they complete prior to unloading the pool.
1609		 */
1610		spa_t *spa = zio->io_spa;
1611
1612		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1613	}
1614
1615	zio_execute(zio);
1616}
1617
1618/*
1619 * ==========================================================================
1620 * Reexecute or suspend/resume failed I/O
1621 * ==========================================================================
1622 */
1623
1624static void
1625zio_reexecute(zio_t *pio)
1626{
1627	zio_t *cio, *cio_next;
1628
1629	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1630	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1631	ASSERT(pio->io_gang_leader == NULL);
1632	ASSERT(pio->io_gang_tree == NULL);
1633
1634	pio->io_flags = pio->io_orig_flags;
1635	pio->io_stage = pio->io_orig_stage;
1636	pio->io_pipeline = pio->io_orig_pipeline;
1637	pio->io_reexecute = 0;
1638	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1639	pio->io_error = 0;
1640	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1641		pio->io_state[w] = 0;
1642	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1643		pio->io_child_error[c] = 0;
1644
1645	if (IO_IS_ALLOCATING(pio))
1646		BP_ZERO(pio->io_bp);
1647
1648	/*
1649	 * As we reexecute pio's children, new children could be created.
1650	 * New children go to the head of pio's io_child_list, however,
1651	 * so we will (correctly) not reexecute them.  The key is that
1652	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1653	 * cannot be affected by any side effects of reexecuting 'cio'.
1654	 */
1655	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1656		cio_next = zio_walk_children(pio);
1657		mutex_enter(&pio->io_lock);
1658		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1659			pio->io_children[cio->io_child_type][w]++;
1660		mutex_exit(&pio->io_lock);
1661		zio_reexecute(cio);
1662	}
1663
1664	/*
1665	 * Now that all children have been reexecuted, execute the parent.
1666	 * We don't reexecute "The Godfather" I/O here as it's the
1667	 * responsibility of the caller to wait on him.
1668	 */
1669	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1670		zio_execute(pio);
1671}
1672
1673void
1674zio_suspend(spa_t *spa, zio_t *zio)
1675{
1676	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1677		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1678		    "failure and the failure mode property for this pool "
1679		    "is set to panic.", spa_name(spa));
1680
1681	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1682
1683	mutex_enter(&spa->spa_suspend_lock);
1684
1685	if (spa->spa_suspend_zio_root == NULL)
1686		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1687		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1688		    ZIO_FLAG_GODFATHER);
1689
1690	spa->spa_suspended = B_TRUE;
1691
1692	if (zio != NULL) {
1693		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1694		ASSERT(zio != spa->spa_suspend_zio_root);
1695		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1696		ASSERT(zio_unique_parent(zio) == NULL);
1697		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1698		zio_add_child(spa->spa_suspend_zio_root, zio);
1699	}
1700
1701	mutex_exit(&spa->spa_suspend_lock);
1702}
1703
1704int
1705zio_resume(spa_t *spa)
1706{
1707	zio_t *pio;
1708
1709	/*
1710	 * Reexecute all previously suspended i/o.
1711	 */
1712	mutex_enter(&spa->spa_suspend_lock);
1713	spa->spa_suspended = B_FALSE;
1714	cv_broadcast(&spa->spa_suspend_cv);
1715	pio = spa->spa_suspend_zio_root;
1716	spa->spa_suspend_zio_root = NULL;
1717	mutex_exit(&spa->spa_suspend_lock);
1718
1719	if (pio == NULL)
1720		return (0);
1721
1722	zio_reexecute(pio);
1723	return (zio_wait(pio));
1724}
1725
1726void
1727zio_resume_wait(spa_t *spa)
1728{
1729	mutex_enter(&spa->spa_suspend_lock);
1730	while (spa_suspended(spa))
1731		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1732	mutex_exit(&spa->spa_suspend_lock);
1733}
1734
1735/*
1736 * ==========================================================================
1737 * Gang blocks.
1738 *
1739 * A gang block is a collection of small blocks that looks to the DMU
1740 * like one large block.  When zio_dva_allocate() cannot find a block
1741 * of the requested size, due to either severe fragmentation or the pool
1742 * being nearly full, it calls zio_write_gang_block() to construct the
1743 * block from smaller fragments.
1744 *
1745 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1746 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1747 * an indirect block: it's an array of block pointers.  It consumes
1748 * only one sector and hence is allocatable regardless of fragmentation.
1749 * The gang header's bps point to its gang members, which hold the data.
1750 *
1751 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1752 * as the verifier to ensure uniqueness of the SHA256 checksum.
1753 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1754 * not the gang header.  This ensures that data block signatures (needed for
1755 * deduplication) are independent of how the block is physically stored.
1756 *
1757 * Gang blocks can be nested: a gang member may itself be a gang block.
1758 * Thus every gang block is a tree in which root and all interior nodes are
1759 * gang headers, and the leaves are normal blocks that contain user data.
1760 * The root of the gang tree is called the gang leader.
1761 *
1762 * To perform any operation (read, rewrite, free, claim) on a gang block,
1763 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1764 * in the io_gang_tree field of the original logical i/o by recursively
1765 * reading the gang leader and all gang headers below it.  This yields
1766 * an in-core tree containing the contents of every gang header and the
1767 * bps for every constituent of the gang block.
1768 *
1769 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1770 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1771 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1772 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1773 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1774 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1775 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1776 * of the gang header plus zio_checksum_compute() of the data to update the
1777 * gang header's blk_cksum as described above.
1778 *
1779 * The two-phase assemble/issue model solves the problem of partial failure --
1780 * what if you'd freed part of a gang block but then couldn't read the
1781 * gang header for another part?  Assembling the entire gang tree first
1782 * ensures that all the necessary gang header I/O has succeeded before
1783 * starting the actual work of free, claim, or write.  Once the gang tree
1784 * is assembled, free and claim are in-memory operations that cannot fail.
1785 *
1786 * In the event that a gang write fails, zio_dva_unallocate() walks the
1787 * gang tree to immediately free (i.e. insert back into the space map)
1788 * everything we've allocated.  This ensures that we don't get ENOSPC
1789 * errors during repeated suspend/resume cycles due to a flaky device.
1790 *
1791 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1792 * the gang tree, we won't modify the block, so we can safely defer the free
1793 * (knowing that the block is still intact).  If we *can* assemble the gang
1794 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1795 * each constituent bp and we can allocate a new block on the next sync pass.
1796 *
1797 * In all cases, the gang tree allows complete recovery from partial failure.
1798 * ==========================================================================
1799 */
1800
1801static zio_t *
1802zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1803{
1804	if (gn != NULL)
1805		return (pio);
1806
1807	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1808	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1809	    &pio->io_bookmark));
1810}
1811
1812zio_t *
1813zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1814{
1815	zio_t *zio;
1816
1817	if (gn != NULL) {
1818		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1819		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1820		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1821		/*
1822		 * As we rewrite each gang header, the pipeline will compute
1823		 * a new gang block header checksum for it; but no one will
1824		 * compute a new data checksum, so we do that here.  The one
1825		 * exception is the gang leader: the pipeline already computed
1826		 * its data checksum because that stage precedes gang assembly.
1827		 * (Presently, nothing actually uses interior data checksums;
1828		 * this is just good hygiene.)
1829		 */
1830		if (gn != pio->io_gang_leader->io_gang_tree) {
1831			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1832			    data, BP_GET_PSIZE(bp));
1833		}
1834		/*
1835		 * If we are here to damage data for testing purposes,
1836		 * leave the GBH alone so that we can detect the damage.
1837		 */
1838		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1839			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1840	} else {
1841		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1842		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1843		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1844	}
1845
1846	return (zio);
1847}
1848
1849/* ARGSUSED */
1850zio_t *
1851zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1852{
1853	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1854	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1855	    ZIO_GANG_CHILD_FLAGS(pio)));
1856}
1857
1858/* ARGSUSED */
1859zio_t *
1860zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1861{
1862	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1863	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1864}
1865
1866static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1867	NULL,
1868	zio_read_gang,
1869	zio_rewrite_gang,
1870	zio_free_gang,
1871	zio_claim_gang,
1872	NULL
1873};
1874
1875static void zio_gang_tree_assemble_done(zio_t *zio);
1876
1877static zio_gang_node_t *
1878zio_gang_node_alloc(zio_gang_node_t **gnpp)
1879{
1880	zio_gang_node_t *gn;
1881
1882	ASSERT(*gnpp == NULL);
1883
1884	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1885	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1886	*gnpp = gn;
1887
1888	return (gn);
1889}
1890
1891static void
1892zio_gang_node_free(zio_gang_node_t **gnpp)
1893{
1894	zio_gang_node_t *gn = *gnpp;
1895
1896	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1897		ASSERT(gn->gn_child[g] == NULL);
1898
1899	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1900	kmem_free(gn, sizeof (*gn));
1901	*gnpp = NULL;
1902}
1903
1904static void
1905zio_gang_tree_free(zio_gang_node_t **gnpp)
1906{
1907	zio_gang_node_t *gn = *gnpp;
1908
1909	if (gn == NULL)
1910		return;
1911
1912	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1913		zio_gang_tree_free(&gn->gn_child[g]);
1914
1915	zio_gang_node_free(gnpp);
1916}
1917
1918static void
1919zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1920{
1921	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1922
1923	ASSERT(gio->io_gang_leader == gio);
1924	ASSERT(BP_IS_GANG(bp));
1925
1926	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1927	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1928	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1929}
1930
1931static void
1932zio_gang_tree_assemble_done(zio_t *zio)
1933{
1934	zio_t *gio = zio->io_gang_leader;
1935	zio_gang_node_t *gn = zio->io_private;
1936	blkptr_t *bp = zio->io_bp;
1937
1938	ASSERT(gio == zio_unique_parent(zio));
1939	ASSERT(zio->io_child_count == 0);
1940
1941	if (zio->io_error)
1942		return;
1943
1944	if (BP_SHOULD_BYTESWAP(bp))
1945		byteswap_uint64_array(zio->io_data, zio->io_size);
1946
1947	ASSERT(zio->io_data == gn->gn_gbh);
1948	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1949	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1950
1951	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1952		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1953		if (!BP_IS_GANG(gbp))
1954			continue;
1955		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1956	}
1957}
1958
1959static void
1960zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1961{
1962	zio_t *gio = pio->io_gang_leader;
1963	zio_t *zio;
1964
1965	ASSERT(BP_IS_GANG(bp) == !!gn);
1966	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1967	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1968
1969	/*
1970	 * If you're a gang header, your data is in gn->gn_gbh.
1971	 * If you're a gang member, your data is in 'data' and gn == NULL.
1972	 */
1973	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1974
1975	if (gn != NULL) {
1976		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1977
1978		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1979			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1980			if (BP_IS_HOLE(gbp))
1981				continue;
1982			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1983			data = (char *)data + BP_GET_PSIZE(gbp);
1984		}
1985	}
1986
1987	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1988		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1989
1990	if (zio != pio)
1991		zio_nowait(zio);
1992}
1993
1994static int
1995zio_gang_assemble(zio_t *zio)
1996{
1997	blkptr_t *bp = zio->io_bp;
1998
1999	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2000	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2001
2002	zio->io_gang_leader = zio;
2003
2004	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2005
2006	return (ZIO_PIPELINE_CONTINUE);
2007}
2008
2009static int
2010zio_gang_issue(zio_t *zio)
2011{
2012	blkptr_t *bp = zio->io_bp;
2013
2014	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2015		return (ZIO_PIPELINE_STOP);
2016
2017	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2018	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2019
2020	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2021		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
2022	else
2023		zio_gang_tree_free(&zio->io_gang_tree);
2024
2025	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2026
2027	return (ZIO_PIPELINE_CONTINUE);
2028}
2029
2030static void
2031zio_write_gang_member_ready(zio_t *zio)
2032{
2033	zio_t *pio = zio_unique_parent(zio);
2034	zio_t *gio = zio->io_gang_leader;
2035	dva_t *cdva = zio->io_bp->blk_dva;
2036	dva_t *pdva = pio->io_bp->blk_dva;
2037	uint64_t asize;
2038
2039	if (BP_IS_HOLE(zio->io_bp))
2040		return;
2041
2042	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2043
2044	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2045	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2046	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2047	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2048	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2049
2050	mutex_enter(&pio->io_lock);
2051	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2052		ASSERT(DVA_GET_GANG(&pdva[d]));
2053		asize = DVA_GET_ASIZE(&pdva[d]);
2054		asize += DVA_GET_ASIZE(&cdva[d]);
2055		DVA_SET_ASIZE(&pdva[d], asize);
2056	}
2057	mutex_exit(&pio->io_lock);
2058}
2059
2060static int
2061zio_write_gang_block(zio_t *pio)
2062{
2063	spa_t *spa = pio->io_spa;
2064	blkptr_t *bp = pio->io_bp;
2065	zio_t *gio = pio->io_gang_leader;
2066	zio_t *zio;
2067	zio_gang_node_t *gn, **gnpp;
2068	zio_gbh_phys_t *gbh;
2069	uint64_t txg = pio->io_txg;
2070	uint64_t resid = pio->io_size;
2071	uint64_t lsize;
2072	int copies = gio->io_prop.zp_copies;
2073	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2074	zio_prop_t zp;
2075	int error;
2076
2077	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2078	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2079	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2080	if (error) {
2081		pio->io_error = error;
2082		return (ZIO_PIPELINE_CONTINUE);
2083	}
2084
2085	if (pio == gio) {
2086		gnpp = &gio->io_gang_tree;
2087	} else {
2088		gnpp = pio->io_private;
2089		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2090	}
2091
2092	gn = zio_gang_node_alloc(gnpp);
2093	gbh = gn->gn_gbh;
2094	bzero(gbh, SPA_GANGBLOCKSIZE);
2095
2096	/*
2097	 * Create the gang header.
2098	 */
2099	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2100	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2101
2102	/*
2103	 * Create and nowait the gang children.
2104	 */
2105	for (int g = 0; resid != 0; resid -= lsize, g++) {
2106		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2107		    SPA_MINBLOCKSIZE);
2108		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2109
2110		zp.zp_checksum = gio->io_prop.zp_checksum;
2111		zp.zp_compress = ZIO_COMPRESS_OFF;
2112		zp.zp_type = DMU_OT_NONE;
2113		zp.zp_level = 0;
2114		zp.zp_copies = gio->io_prop.zp_copies;
2115		zp.zp_dedup = B_FALSE;
2116		zp.zp_dedup_verify = B_FALSE;
2117		zp.zp_nopwrite = B_FALSE;
2118
2119		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2120		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2121		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2122		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2123		    &pio->io_bookmark));
2124	}
2125
2126	/*
2127	 * Set pio's pipeline to just wait for zio to finish.
2128	 */
2129	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2130
2131	zio_nowait(zio);
2132
2133	return (ZIO_PIPELINE_CONTINUE);
2134}
2135
2136/*
2137 * The zio_nop_write stage in the pipeline determines if allocating a
2138 * new bp is necessary.  The nopwrite feature can handle writes in
2139 * either syncing or open context (i.e. zil writes) and as a result is
2140 * mutually exclusive with dedup.
2141 *
2142 * By leveraging a cryptographically secure checksum, such as SHA256, we
2143 * can compare the checksums of the new data and the old to determine if
2144 * allocating a new block is required.  Note that our requirements for
2145 * cryptographic strength are fairly weak: there can't be any accidental
2146 * hash collisions, but we don't need to be secure against intentional
2147 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2148 * to write the file to begin with, and triggering an incorrect (hash
2149 * collision) nopwrite is no worse than simply writing to the file.
2150 * That said, there are no known attacks against the checksum algorithms
2151 * used for nopwrite, assuming that the salt and the checksums
2152 * themselves remain secret.
2153 */
2154static int
2155zio_nop_write(zio_t *zio)
2156{
2157	blkptr_t *bp = zio->io_bp;
2158	blkptr_t *bp_orig = &zio->io_bp_orig;
2159	zio_prop_t *zp = &zio->io_prop;
2160
2161	ASSERT(BP_GET_LEVEL(bp) == 0);
2162	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2163	ASSERT(zp->zp_nopwrite);
2164	ASSERT(!zp->zp_dedup);
2165	ASSERT(zio->io_bp_override == NULL);
2166	ASSERT(IO_IS_ALLOCATING(zio));
2167
2168	/*
2169	 * Check to see if the original bp and the new bp have matching
2170	 * characteristics (i.e. same checksum, compression algorithms, etc).
2171	 * If they don't then just continue with the pipeline which will
2172	 * allocate a new bp.
2173	 */
2174	if (BP_IS_HOLE(bp_orig) ||
2175	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2176	    ZCHECKSUM_FLAG_NOPWRITE) ||
2177	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2178	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2179	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2180	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2181		return (ZIO_PIPELINE_CONTINUE);
2182
2183	/*
2184	 * If the checksums match then reset the pipeline so that we
2185	 * avoid allocating a new bp and issuing any I/O.
2186	 */
2187	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2188		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2189		    ZCHECKSUM_FLAG_NOPWRITE);
2190		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2191		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2192		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2193		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2194		    sizeof (uint64_t)) == 0);
2195
2196		*bp = *bp_orig;
2197		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2198		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2199	}
2200
2201	return (ZIO_PIPELINE_CONTINUE);
2202}
2203
2204/*
2205 * ==========================================================================
2206 * Dedup
2207 * ==========================================================================
2208 */
2209static void
2210zio_ddt_child_read_done(zio_t *zio)
2211{
2212	blkptr_t *bp = zio->io_bp;
2213	ddt_entry_t *dde = zio->io_private;
2214	ddt_phys_t *ddp;
2215	zio_t *pio = zio_unique_parent(zio);
2216
2217	mutex_enter(&pio->io_lock);
2218	ddp = ddt_phys_select(dde, bp);
2219	if (zio->io_error == 0)
2220		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2221	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2222		dde->dde_repair_data = zio->io_data;
2223	else
2224		zio_buf_free(zio->io_data, zio->io_size);
2225	mutex_exit(&pio->io_lock);
2226}
2227
2228static int
2229zio_ddt_read_start(zio_t *zio)
2230{
2231	blkptr_t *bp = zio->io_bp;
2232
2233	ASSERT(BP_GET_DEDUP(bp));
2234	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2235	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2236
2237	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2238		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2239		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2240		ddt_phys_t *ddp = dde->dde_phys;
2241		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2242		blkptr_t blk;
2243
2244		ASSERT(zio->io_vsd == NULL);
2245		zio->io_vsd = dde;
2246
2247		if (ddp_self == NULL)
2248			return (ZIO_PIPELINE_CONTINUE);
2249
2250		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2251			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2252				continue;
2253			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2254			    &blk);
2255			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2256			    zio_buf_alloc(zio->io_size), zio->io_size,
2257			    zio_ddt_child_read_done, dde, zio->io_priority,
2258			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2259			    &zio->io_bookmark));
2260		}
2261		return (ZIO_PIPELINE_CONTINUE);
2262	}
2263
2264	zio_nowait(zio_read(zio, zio->io_spa, bp,
2265	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2266	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2267
2268	return (ZIO_PIPELINE_CONTINUE);
2269}
2270
2271static int
2272zio_ddt_read_done(zio_t *zio)
2273{
2274	blkptr_t *bp = zio->io_bp;
2275
2276	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2277		return (ZIO_PIPELINE_STOP);
2278
2279	ASSERT(BP_GET_DEDUP(bp));
2280	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2281	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2282
2283	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2284		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2285		ddt_entry_t *dde = zio->io_vsd;
2286		if (ddt == NULL) {
2287			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2288			return (ZIO_PIPELINE_CONTINUE);
2289		}
2290		if (dde == NULL) {
2291			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2292			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2293			return (ZIO_PIPELINE_STOP);
2294		}
2295		if (dde->dde_repair_data != NULL) {
2296			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2297			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2298		}
2299		ddt_repair_done(ddt, dde);
2300		zio->io_vsd = NULL;
2301	}
2302
2303	ASSERT(zio->io_vsd == NULL);
2304
2305	return (ZIO_PIPELINE_CONTINUE);
2306}
2307
2308static boolean_t
2309zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2310{
2311	spa_t *spa = zio->io_spa;
2312
2313	/*
2314	 * Note: we compare the original data, not the transformed data,
2315	 * because when zio->io_bp is an override bp, we will not have
2316	 * pushed the I/O transforms.  That's an important optimization
2317	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2318	 */
2319	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2320		zio_t *lio = dde->dde_lead_zio[p];
2321
2322		if (lio != NULL) {
2323			return (lio->io_orig_size != zio->io_orig_size ||
2324			    bcmp(zio->io_orig_data, lio->io_orig_data,
2325			    zio->io_orig_size) != 0);
2326		}
2327	}
2328
2329	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2330		ddt_phys_t *ddp = &dde->dde_phys[p];
2331
2332		if (ddp->ddp_phys_birth != 0) {
2333			arc_buf_t *abuf = NULL;
2334			arc_flags_t aflags = ARC_FLAG_WAIT;
2335			blkptr_t blk = *zio->io_bp;
2336			int error;
2337
2338			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2339
2340			ddt_exit(ddt);
2341
2342			error = arc_read(NULL, spa, &blk,
2343			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2344			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2345			    &aflags, &zio->io_bookmark);
2346
2347			if (error == 0) {
2348				if (arc_buf_size(abuf) != zio->io_orig_size ||
2349				    bcmp(abuf->b_data, zio->io_orig_data,
2350				    zio->io_orig_size) != 0)
2351					error = SET_ERROR(EEXIST);
2352				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2353			}
2354
2355			ddt_enter(ddt);
2356			return (error != 0);
2357		}
2358	}
2359
2360	return (B_FALSE);
2361}
2362
2363static void
2364zio_ddt_child_write_ready(zio_t *zio)
2365{
2366	int p = zio->io_prop.zp_copies;
2367	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2368	ddt_entry_t *dde = zio->io_private;
2369	ddt_phys_t *ddp = &dde->dde_phys[p];
2370	zio_t *pio;
2371
2372	if (zio->io_error)
2373		return;
2374
2375	ddt_enter(ddt);
2376
2377	ASSERT(dde->dde_lead_zio[p] == zio);
2378
2379	ddt_phys_fill(ddp, zio->io_bp);
2380
2381	while ((pio = zio_walk_parents(zio)) != NULL)
2382		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2383
2384	ddt_exit(ddt);
2385}
2386
2387static void
2388zio_ddt_child_write_done(zio_t *zio)
2389{
2390	int p = zio->io_prop.zp_copies;
2391	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2392	ddt_entry_t *dde = zio->io_private;
2393	ddt_phys_t *ddp = &dde->dde_phys[p];
2394
2395	ddt_enter(ddt);
2396
2397	ASSERT(ddp->ddp_refcnt == 0);
2398	ASSERT(dde->dde_lead_zio[p] == zio);
2399	dde->dde_lead_zio[p] = NULL;
2400
2401	if (zio->io_error == 0) {
2402		while (zio_walk_parents(zio) != NULL)
2403			ddt_phys_addref(ddp);
2404	} else {
2405		ddt_phys_clear(ddp);
2406	}
2407
2408	ddt_exit(ddt);
2409}
2410
2411static void
2412zio_ddt_ditto_write_done(zio_t *zio)
2413{
2414	int p = DDT_PHYS_DITTO;
2415	zio_prop_t *zp = &zio->io_prop;
2416	blkptr_t *bp = zio->io_bp;
2417	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2418	ddt_entry_t *dde = zio->io_private;
2419	ddt_phys_t *ddp = &dde->dde_phys[p];
2420	ddt_key_t *ddk = &dde->dde_key;
2421
2422	ddt_enter(ddt);
2423
2424	ASSERT(ddp->ddp_refcnt == 0);
2425	ASSERT(dde->dde_lead_zio[p] == zio);
2426	dde->dde_lead_zio[p] = NULL;
2427
2428	if (zio->io_error == 0) {
2429		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2430		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2431		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2432		if (ddp->ddp_phys_birth != 0)
2433			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2434		ddt_phys_fill(ddp, bp);
2435	}
2436
2437	ddt_exit(ddt);
2438}
2439
2440static int
2441zio_ddt_write(zio_t *zio)
2442{
2443	spa_t *spa = zio->io_spa;
2444	blkptr_t *bp = zio->io_bp;
2445	uint64_t txg = zio->io_txg;
2446	zio_prop_t *zp = &zio->io_prop;
2447	int p = zp->zp_copies;
2448	int ditto_copies;
2449	zio_t *cio = NULL;
2450	zio_t *dio = NULL;
2451	ddt_t *ddt = ddt_select(spa, bp);
2452	ddt_entry_t *dde;
2453	ddt_phys_t *ddp;
2454
2455	ASSERT(BP_GET_DEDUP(bp));
2456	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2457	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2458
2459	ddt_enter(ddt);
2460	dde = ddt_lookup(ddt, bp, B_TRUE);
2461	ddp = &dde->dde_phys[p];
2462
2463	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2464		/*
2465		 * If we're using a weak checksum, upgrade to a strong checksum
2466		 * and try again.  If we're already using a strong checksum,
2467		 * we can't resolve it, so just convert to an ordinary write.
2468		 * (And automatically e-mail a paper to Nature?)
2469		 */
2470		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2471		    ZCHECKSUM_FLAG_DEDUP)) {
2472			zp->zp_checksum = spa_dedup_checksum(spa);
2473			zio_pop_transforms(zio);
2474			zio->io_stage = ZIO_STAGE_OPEN;
2475			BP_ZERO(bp);
2476		} else {
2477			zp->zp_dedup = B_FALSE;
2478		}
2479		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2480		ddt_exit(ddt);
2481		return (ZIO_PIPELINE_CONTINUE);
2482	}
2483
2484	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2485	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2486
2487	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2488	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2489		zio_prop_t czp = *zp;
2490
2491		czp.zp_copies = ditto_copies;
2492
2493		/*
2494		 * If we arrived here with an override bp, we won't have run
2495		 * the transform stack, so we won't have the data we need to
2496		 * generate a child i/o.  So, toss the override bp and restart.
2497		 * This is safe, because using the override bp is just an
2498		 * optimization; and it's rare, so the cost doesn't matter.
2499		 */
2500		if (zio->io_bp_override) {
2501			zio_pop_transforms(zio);
2502			zio->io_stage = ZIO_STAGE_OPEN;
2503			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2504			zio->io_bp_override = NULL;
2505			BP_ZERO(bp);
2506			ddt_exit(ddt);
2507			return (ZIO_PIPELINE_CONTINUE);
2508		}
2509
2510		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2511		    zio->io_orig_size, &czp, NULL, NULL,
2512		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2513		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2514
2515		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2516		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2517	}
2518
2519	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2520		if (ddp->ddp_phys_birth != 0)
2521			ddt_bp_fill(ddp, bp, txg);
2522		if (dde->dde_lead_zio[p] != NULL)
2523			zio_add_child(zio, dde->dde_lead_zio[p]);
2524		else
2525			ddt_phys_addref(ddp);
2526	} else if (zio->io_bp_override) {
2527		ASSERT(bp->blk_birth == txg);
2528		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2529		ddt_phys_fill(ddp, bp);
2530		ddt_phys_addref(ddp);
2531	} else {
2532		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2533		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2534		    zio_ddt_child_write_done, dde, zio->io_priority,
2535		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2536
2537		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2538		dde->dde_lead_zio[p] = cio;
2539	}
2540
2541	ddt_exit(ddt);
2542
2543	if (cio)
2544		zio_nowait(cio);
2545	if (dio)
2546		zio_nowait(dio);
2547
2548	return (ZIO_PIPELINE_CONTINUE);
2549}
2550
2551ddt_entry_t *freedde; /* for debugging */
2552
2553static int
2554zio_ddt_free(zio_t *zio)
2555{
2556	spa_t *spa = zio->io_spa;
2557	blkptr_t *bp = zio->io_bp;
2558	ddt_t *ddt = ddt_select(spa, bp);
2559	ddt_entry_t *dde;
2560	ddt_phys_t *ddp;
2561
2562	ASSERT(BP_GET_DEDUP(bp));
2563	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2564
2565	ddt_enter(ddt);
2566	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2567	ddp = ddt_phys_select(dde, bp);
2568	ddt_phys_decref(ddp);
2569	ddt_exit(ddt);
2570
2571	return (ZIO_PIPELINE_CONTINUE);
2572}
2573
2574/*
2575 * ==========================================================================
2576 * Allocate and free blocks
2577 * ==========================================================================
2578 */
2579static int
2580zio_dva_allocate(zio_t *zio)
2581{
2582	spa_t *spa = zio->io_spa;
2583	metaslab_class_t *mc = spa_normal_class(spa);
2584	blkptr_t *bp = zio->io_bp;
2585	int error;
2586	int flags = 0;
2587
2588	if (zio->io_gang_leader == NULL) {
2589		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2590		zio->io_gang_leader = zio;
2591	}
2592
2593	ASSERT(BP_IS_HOLE(bp));
2594	ASSERT0(BP_GET_NDVAS(bp));
2595	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2596	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2597	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2598
2599	/*
2600	 * The dump device does not support gang blocks so allocation on
2601	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2602	 * the "fast" gang feature.
2603	 */
2604	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2605	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2606	    METASLAB_GANG_CHILD : 0;
2607	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2608	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2609
2610	if (error) {
2611		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2612		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2613		    error);
2614		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2615			return (zio_write_gang_block(zio));
2616		zio->io_error = error;
2617	}
2618
2619	return (ZIO_PIPELINE_CONTINUE);
2620}
2621
2622static int
2623zio_dva_free(zio_t *zio)
2624{
2625	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2626
2627	return (ZIO_PIPELINE_CONTINUE);
2628}
2629
2630static int
2631zio_dva_claim(zio_t *zio)
2632{
2633	int error;
2634
2635	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2636	if (error)
2637		zio->io_error = error;
2638
2639	return (ZIO_PIPELINE_CONTINUE);
2640}
2641
2642/*
2643 * Undo an allocation.  This is used by zio_done() when an I/O fails
2644 * and we want to give back the block we just allocated.
2645 * This handles both normal blocks and gang blocks.
2646 */
2647static void
2648zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2649{
2650	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2651	ASSERT(zio->io_bp_override == NULL);
2652
2653	if (!BP_IS_HOLE(bp))
2654		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2655
2656	if (gn != NULL) {
2657		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2658			zio_dva_unallocate(zio, gn->gn_child[g],
2659			    &gn->gn_gbh->zg_blkptr[g]);
2660		}
2661	}
2662}
2663
2664/*
2665 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2666 */
2667int
2668zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2669    uint64_t size, boolean_t use_slog)
2670{
2671	int error = 1;
2672
2673	ASSERT(txg > spa_syncing_txg(spa));
2674
2675	/*
2676	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2677	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2678	 * when allocating them.
2679	 */
2680	if (use_slog) {
2681		error = metaslab_alloc(spa, spa_log_class(spa), size,
2682		    new_bp, 1, txg, old_bp,
2683		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2684	}
2685
2686	if (error) {
2687		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2688		    new_bp, 1, txg, old_bp,
2689		    METASLAB_HINTBP_AVOID);
2690	}
2691
2692	if (error == 0) {
2693		BP_SET_LSIZE(new_bp, size);
2694		BP_SET_PSIZE(new_bp, size);
2695		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2696		BP_SET_CHECKSUM(new_bp,
2697		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2698		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2699		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2700		BP_SET_LEVEL(new_bp, 0);
2701		BP_SET_DEDUP(new_bp, 0);
2702		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2703	}
2704
2705	return (error);
2706}
2707
2708/*
2709 * Free an intent log block.
2710 */
2711void
2712zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2713{
2714	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2715	ASSERT(!BP_IS_GANG(bp));
2716
2717	zio_free(spa, txg, bp);
2718}
2719
2720/*
2721 * ==========================================================================
2722 * Read, write and delete to physical devices
2723 * ==========================================================================
2724 */
2725
2726
2727/*
2728 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2729 * stops after this stage and will resume upon I/O completion.
2730 * However, there are instances where the vdev layer may need to
2731 * continue the pipeline when an I/O was not issued. Since the I/O
2732 * that was sent to the vdev layer might be different than the one
2733 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2734 * force the underlying vdev layers to call either zio_execute() or
2735 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2736 */
2737static int
2738zio_vdev_io_start(zio_t *zio)
2739{
2740	vdev_t *vd = zio->io_vd;
2741	uint64_t align;
2742	spa_t *spa = zio->io_spa;
2743	int ret;
2744
2745	ASSERT(zio->io_error == 0);
2746	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2747
2748	if (vd == NULL) {
2749		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2750			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2751
2752		/*
2753		 * The mirror_ops handle multiple DVAs in a single BP.
2754		 */
2755		vdev_mirror_ops.vdev_op_io_start(zio);
2756		return (ZIO_PIPELINE_STOP);
2757	}
2758
2759	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2760	    zio->io_priority == ZIO_PRIORITY_NOW) {
2761		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2762		return (ZIO_PIPELINE_CONTINUE);
2763	}
2764
2765	/*
2766	 * We keep track of time-sensitive I/Os so that the scan thread
2767	 * can quickly react to certain workloads.  In particular, we care
2768	 * about non-scrubbing, top-level reads and writes with the following
2769	 * characteristics:
2770	 *	- synchronous writes of user data to non-slog devices
2771	 *	- any reads of user data
2772	 * When these conditions are met, adjust the timestamp of spa_last_io
2773	 * which allows the scan thread to adjust its workload accordingly.
2774	 */
2775	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2776	    vd == vd->vdev_top && !vd->vdev_islog &&
2777	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2778	    zio->io_txg != spa_syncing_txg(spa)) {
2779		uint64_t old = spa->spa_last_io;
2780		uint64_t new = ddi_get_lbolt64();
2781		if (old != new)
2782			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2783	}
2784
2785	align = 1ULL << vd->vdev_top->vdev_ashift;
2786
2787	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
2788	    P2PHASE(zio->io_size, align) != 0) {
2789		/* Transform logical writes to be a full physical block size. */
2790		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2791		char *abuf = NULL;
2792		if (zio->io_type == ZIO_TYPE_READ ||
2793		    zio->io_type == ZIO_TYPE_WRITE)
2794			abuf = zio_buf_alloc(asize);
2795		ASSERT(vd == vd->vdev_top);
2796		if (zio->io_type == ZIO_TYPE_WRITE) {
2797			bcopy(zio->io_data, abuf, zio->io_size);
2798			bzero(abuf + zio->io_size, asize - zio->io_size);
2799		}
2800		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2801		    zio_subblock);
2802	}
2803
2804	/*
2805	 * If this is not a physical io, make sure that it is properly aligned
2806	 * before proceeding.
2807	 */
2808	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2809		ASSERT0(P2PHASE(zio->io_offset, align));
2810		ASSERT0(P2PHASE(zio->io_size, align));
2811	} else {
2812		/*
2813		 * For the physical io we allow alignment
2814		 * to a logical block size.
2815		 */
2816		uint64_t log_align =
2817		    1ULL << vd->vdev_top->vdev_logical_ashift;
2818		ASSERT0(P2PHASE(zio->io_offset, log_align));
2819		ASSERT0(P2PHASE(zio->io_size, log_align));
2820	}
2821
2822	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2823
2824	/*
2825	 * If this is a repair I/O, and there's no self-healing involved --
2826	 * that is, we're just resilvering what we expect to resilver --
2827	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2828	 * This prevents spurious resilvering with nested replication.
2829	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2830	 * A is out of date, we'll read from C+D, then use the data to
2831	 * resilver A+B -- but we don't actually want to resilver B, just A.
2832	 * The top-level mirror has no way to know this, so instead we just
2833	 * discard unnecessary repairs as we work our way down the vdev tree.
2834	 * The same logic applies to any form of nested replication:
2835	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2836	 */
2837	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2838	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2839	    zio->io_txg != 0 &&	/* not a delegated i/o */
2840	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2841		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2842		zio_vdev_io_bypass(zio);
2843		return (ZIO_PIPELINE_CONTINUE);
2844	}
2845
2846	if (vd->vdev_ops->vdev_op_leaf) {
2847		switch (zio->io_type) {
2848		case ZIO_TYPE_READ:
2849			if (vdev_cache_read(zio))
2850				return (ZIO_PIPELINE_CONTINUE);
2851			/* FALLTHROUGH */
2852		case ZIO_TYPE_WRITE:
2853		case ZIO_TYPE_FREE:
2854			if ((zio = vdev_queue_io(zio)) == NULL)
2855				return (ZIO_PIPELINE_STOP);
2856
2857			if (!vdev_accessible(vd, zio)) {
2858				zio->io_error = SET_ERROR(ENXIO);
2859				zio_interrupt(zio);
2860				return (ZIO_PIPELINE_STOP);
2861			}
2862			break;
2863		}
2864		/*
2865		 * Note that we ignore repair writes for TRIM because they can
2866		 * conflict with normal writes. This isn't an issue because, by
2867		 * definition, we only repair blocks that aren't freed.
2868		 */
2869		if (zio->io_type == ZIO_TYPE_WRITE &&
2870		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2871		    !trim_map_write_start(zio))
2872			return (ZIO_PIPELINE_STOP);
2873	}
2874
2875	vd->vdev_ops->vdev_op_io_start(zio);
2876	return (ZIO_PIPELINE_STOP);
2877}
2878
2879static int
2880zio_vdev_io_done(zio_t *zio)
2881{
2882	vdev_t *vd = zio->io_vd;
2883	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2884	boolean_t unexpected_error = B_FALSE;
2885
2886	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2887		return (ZIO_PIPELINE_STOP);
2888
2889	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2890	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2891
2892	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2893	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2894	    zio->io_type == ZIO_TYPE_FREE)) {
2895
2896		if (zio->io_type == ZIO_TYPE_WRITE &&
2897		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2898			trim_map_write_done(zio);
2899
2900		vdev_queue_io_done(zio);
2901
2902		if (zio->io_type == ZIO_TYPE_WRITE)
2903			vdev_cache_write(zio);
2904
2905		if (zio_injection_enabled && zio->io_error == 0)
2906			zio->io_error = zio_handle_device_injection(vd,
2907			    zio, EIO);
2908
2909		if (zio_injection_enabled && zio->io_error == 0)
2910			zio->io_error = zio_handle_label_injection(zio, EIO);
2911
2912		if (zio->io_error) {
2913			if (zio->io_error == ENOTSUP &&
2914			    zio->io_type == ZIO_TYPE_FREE) {
2915				/* Not all devices support TRIM. */
2916			} else if (!vdev_accessible(vd, zio)) {
2917				zio->io_error = SET_ERROR(ENXIO);
2918			} else {
2919				unexpected_error = B_TRUE;
2920			}
2921		}
2922	}
2923
2924	ops->vdev_op_io_done(zio);
2925
2926	if (unexpected_error)
2927		VERIFY(vdev_probe(vd, zio) == NULL);
2928
2929	return (ZIO_PIPELINE_CONTINUE);
2930}
2931
2932/*
2933 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2934 * disk, and use that to finish the checksum ereport later.
2935 */
2936static void
2937zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2938    const void *good_buf)
2939{
2940	/* no processing needed */
2941	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2942}
2943
2944/*ARGSUSED*/
2945void
2946zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2947{
2948	void *buf = zio_buf_alloc(zio->io_size);
2949
2950	bcopy(zio->io_data, buf, zio->io_size);
2951
2952	zcr->zcr_cbinfo = zio->io_size;
2953	zcr->zcr_cbdata = buf;
2954	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2955	zcr->zcr_free = zio_buf_free;
2956}
2957
2958static int
2959zio_vdev_io_assess(zio_t *zio)
2960{
2961	vdev_t *vd = zio->io_vd;
2962
2963	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2964		return (ZIO_PIPELINE_STOP);
2965
2966	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2967		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2968
2969	if (zio->io_vsd != NULL) {
2970		zio->io_vsd_ops->vsd_free(zio);
2971		zio->io_vsd = NULL;
2972	}
2973
2974	if (zio_injection_enabled && zio->io_error == 0)
2975		zio->io_error = zio_handle_fault_injection(zio, EIO);
2976
2977	if (zio->io_type == ZIO_TYPE_FREE &&
2978	    zio->io_priority != ZIO_PRIORITY_NOW) {
2979		switch (zio->io_error) {
2980		case 0:
2981			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2982			ZIO_TRIM_STAT_BUMP(success);
2983			break;
2984		case EOPNOTSUPP:
2985			ZIO_TRIM_STAT_BUMP(unsupported);
2986			break;
2987		default:
2988			ZIO_TRIM_STAT_BUMP(failed);
2989			break;
2990		}
2991	}
2992
2993	/*
2994	 * If the I/O failed, determine whether we should attempt to retry it.
2995	 *
2996	 * On retry, we cut in line in the issue queue, since we don't want
2997	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2998	 */
2999	if (zio->io_error && vd == NULL &&
3000	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3001		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3002		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3003		zio->io_error = 0;
3004		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3005		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3006		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3007		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3008		    zio_requeue_io_start_cut_in_line);
3009		return (ZIO_PIPELINE_STOP);
3010	}
3011
3012	/*
3013	 * If we got an error on a leaf device, convert it to ENXIO
3014	 * if the device is not accessible at all.
3015	 */
3016	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3017	    !vdev_accessible(vd, zio))
3018		zio->io_error = SET_ERROR(ENXIO);
3019
3020	/*
3021	 * If we can't write to an interior vdev (mirror or RAID-Z),
3022	 * set vdev_cant_write so that we stop trying to allocate from it.
3023	 */
3024	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3025	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3026		vd->vdev_cant_write = B_TRUE;
3027	}
3028
3029	if (zio->io_error)
3030		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3031
3032	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3033	    zio->io_physdone != NULL) {
3034		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3035		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3036		zio->io_physdone(zio->io_logical);
3037	}
3038
3039	return (ZIO_PIPELINE_CONTINUE);
3040}
3041
3042void
3043zio_vdev_io_reissue(zio_t *zio)
3044{
3045	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3046	ASSERT(zio->io_error == 0);
3047
3048	zio->io_stage >>= 1;
3049}
3050
3051void
3052zio_vdev_io_redone(zio_t *zio)
3053{
3054	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3055
3056	zio->io_stage >>= 1;
3057}
3058
3059void
3060zio_vdev_io_bypass(zio_t *zio)
3061{
3062	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3063	ASSERT(zio->io_error == 0);
3064
3065	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3066	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3067}
3068
3069/*
3070 * ==========================================================================
3071 * Generate and verify checksums
3072 * ==========================================================================
3073 */
3074static int
3075zio_checksum_generate(zio_t *zio)
3076{
3077	blkptr_t *bp = zio->io_bp;
3078	enum zio_checksum checksum;
3079
3080	if (bp == NULL) {
3081		/*
3082		 * This is zio_write_phys().
3083		 * We're either generating a label checksum, or none at all.
3084		 */
3085		checksum = zio->io_prop.zp_checksum;
3086
3087		if (checksum == ZIO_CHECKSUM_OFF)
3088			return (ZIO_PIPELINE_CONTINUE);
3089
3090		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3091	} else {
3092		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3093			ASSERT(!IO_IS_ALLOCATING(zio));
3094			checksum = ZIO_CHECKSUM_GANG_HEADER;
3095		} else {
3096			checksum = BP_GET_CHECKSUM(bp);
3097		}
3098	}
3099
3100	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3101
3102	return (ZIO_PIPELINE_CONTINUE);
3103}
3104
3105static int
3106zio_checksum_verify(zio_t *zio)
3107{
3108	zio_bad_cksum_t info;
3109	blkptr_t *bp = zio->io_bp;
3110	int error;
3111
3112	ASSERT(zio->io_vd != NULL);
3113
3114	if (bp == NULL) {
3115		/*
3116		 * This is zio_read_phys().
3117		 * We're either verifying a label checksum, or nothing at all.
3118		 */
3119		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3120			return (ZIO_PIPELINE_CONTINUE);
3121
3122		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3123	}
3124
3125	if ((error = zio_checksum_error(zio, &info)) != 0) {
3126		zio->io_error = error;
3127		if (error == ECKSUM &&
3128		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3129			zfs_ereport_start_checksum(zio->io_spa,
3130			    zio->io_vd, zio, zio->io_offset,
3131			    zio->io_size, NULL, &info);
3132		}
3133	}
3134
3135	return (ZIO_PIPELINE_CONTINUE);
3136}
3137
3138/*
3139 * Called by RAID-Z to ensure we don't compute the checksum twice.
3140 */
3141void
3142zio_checksum_verified(zio_t *zio)
3143{
3144	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3145}
3146
3147/*
3148 * ==========================================================================
3149 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3150 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3151 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3152 * indicate errors that are specific to one I/O, and most likely permanent.
3153 * Any other error is presumed to be worse because we weren't expecting it.
3154 * ==========================================================================
3155 */
3156int
3157zio_worst_error(int e1, int e2)
3158{
3159	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3160	int r1, r2;
3161
3162	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3163		if (e1 == zio_error_rank[r1])
3164			break;
3165
3166	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3167		if (e2 == zio_error_rank[r2])
3168			break;
3169
3170	return (r1 > r2 ? e1 : e2);
3171}
3172
3173/*
3174 * ==========================================================================
3175 * I/O completion
3176 * ==========================================================================
3177 */
3178static int
3179zio_ready(zio_t *zio)
3180{
3181	blkptr_t *bp = zio->io_bp;
3182	zio_t *pio, *pio_next;
3183
3184	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3185	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3186		return (ZIO_PIPELINE_STOP);
3187
3188	if (zio->io_ready) {
3189		ASSERT(IO_IS_ALLOCATING(zio));
3190		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3191		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3192		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3193
3194		zio->io_ready(zio);
3195	}
3196
3197	if (bp != NULL && bp != &zio->io_bp_copy)
3198		zio->io_bp_copy = *bp;
3199
3200	if (zio->io_error)
3201		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3202
3203	mutex_enter(&zio->io_lock);
3204	zio->io_state[ZIO_WAIT_READY] = 1;
3205	pio = zio_walk_parents(zio);
3206	mutex_exit(&zio->io_lock);
3207
3208	/*
3209	 * As we notify zio's parents, new parents could be added.
3210	 * New parents go to the head of zio's io_parent_list, however,
3211	 * so we will (correctly) not notify them.  The remainder of zio's
3212	 * io_parent_list, from 'pio_next' onward, cannot change because
3213	 * all parents must wait for us to be done before they can be done.
3214	 */
3215	for (; pio != NULL; pio = pio_next) {
3216		pio_next = zio_walk_parents(zio);
3217		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3218	}
3219
3220	if (zio->io_flags & ZIO_FLAG_NODATA) {
3221		if (BP_IS_GANG(bp)) {
3222			zio->io_flags &= ~ZIO_FLAG_NODATA;
3223		} else {
3224			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3225			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3226		}
3227	}
3228
3229	if (zio_injection_enabled &&
3230	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3231		zio_handle_ignored_writes(zio);
3232
3233	return (ZIO_PIPELINE_CONTINUE);
3234}
3235
3236static int
3237zio_done(zio_t *zio)
3238{
3239	spa_t *spa = zio->io_spa;
3240	zio_t *lio = zio->io_logical;
3241	blkptr_t *bp = zio->io_bp;
3242	vdev_t *vd = zio->io_vd;
3243	uint64_t psize = zio->io_size;
3244	zio_t *pio, *pio_next;
3245
3246	/*
3247	 * If our children haven't all completed,
3248	 * wait for them and then repeat this pipeline stage.
3249	 */
3250	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3251	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3252	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3253	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3254		return (ZIO_PIPELINE_STOP);
3255
3256	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3257		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3258			ASSERT(zio->io_children[c][w] == 0);
3259
3260	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3261		ASSERT(bp->blk_pad[0] == 0);
3262		ASSERT(bp->blk_pad[1] == 0);
3263		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3264		    (bp == zio_unique_parent(zio)->io_bp));
3265		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3266		    zio->io_bp_override == NULL &&
3267		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3268			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3269			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3270			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3271			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3272		}
3273		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3274			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3275	}
3276
3277	/*
3278	 * If there were child vdev/gang/ddt errors, they apply to us now.
3279	 */
3280	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3281	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3282	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3283
3284	/*
3285	 * If the I/O on the transformed data was successful, generate any
3286	 * checksum reports now while we still have the transformed data.
3287	 */
3288	if (zio->io_error == 0) {
3289		while (zio->io_cksum_report != NULL) {
3290			zio_cksum_report_t *zcr = zio->io_cksum_report;
3291			uint64_t align = zcr->zcr_align;
3292			uint64_t asize = P2ROUNDUP(psize, align);
3293			char *abuf = zio->io_data;
3294
3295			if (asize != psize) {
3296				abuf = zio_buf_alloc(asize);
3297				bcopy(zio->io_data, abuf, psize);
3298				bzero(abuf + psize, asize - psize);
3299			}
3300
3301			zio->io_cksum_report = zcr->zcr_next;
3302			zcr->zcr_next = NULL;
3303			zcr->zcr_finish(zcr, abuf);
3304			zfs_ereport_free_checksum(zcr);
3305
3306			if (asize != psize)
3307				zio_buf_free(abuf, asize);
3308		}
3309	}
3310
3311	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3312
3313	vdev_stat_update(zio, psize);
3314
3315	if (zio->io_error) {
3316		/*
3317		 * If this I/O is attached to a particular vdev,
3318		 * generate an error message describing the I/O failure
3319		 * at the block level.  We ignore these errors if the
3320		 * device is currently unavailable.
3321		 */
3322		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3323			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3324
3325		if ((zio->io_error == EIO || !(zio->io_flags &
3326		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3327		    zio == lio) {
3328			/*
3329			 * For logical I/O requests, tell the SPA to log the
3330			 * error and generate a logical data ereport.
3331			 */
3332			spa_log_error(spa, zio);
3333			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3334			    0, 0);
3335		}
3336	}
3337
3338	if (zio->io_error && zio == lio) {
3339		/*
3340		 * Determine whether zio should be reexecuted.  This will
3341		 * propagate all the way to the root via zio_notify_parent().
3342		 */
3343		ASSERT(vd == NULL && bp != NULL);
3344		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3345
3346		if (IO_IS_ALLOCATING(zio) &&
3347		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3348			if (zio->io_error != ENOSPC)
3349				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3350			else
3351				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3352		}
3353
3354		if ((zio->io_type == ZIO_TYPE_READ ||
3355		    zio->io_type == ZIO_TYPE_FREE) &&
3356		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3357		    zio->io_error == ENXIO &&
3358		    spa_load_state(spa) == SPA_LOAD_NONE &&
3359		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3360			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3361
3362		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3363			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3364
3365		/*
3366		 * Here is a possibly good place to attempt to do
3367		 * either combinatorial reconstruction or error correction
3368		 * based on checksums.  It also might be a good place
3369		 * to send out preliminary ereports before we suspend
3370		 * processing.
3371		 */
3372	}
3373
3374	/*
3375	 * If there were logical child errors, they apply to us now.
3376	 * We defer this until now to avoid conflating logical child
3377	 * errors with errors that happened to the zio itself when
3378	 * updating vdev stats and reporting FMA events above.
3379	 */
3380	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3381
3382	if ((zio->io_error || zio->io_reexecute) &&
3383	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3384	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3385		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3386
3387	zio_gang_tree_free(&zio->io_gang_tree);
3388
3389	/*
3390	 * Godfather I/Os should never suspend.
3391	 */
3392	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3393	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3394		zio->io_reexecute = 0;
3395
3396	if (zio->io_reexecute) {
3397		/*
3398		 * This is a logical I/O that wants to reexecute.
3399		 *
3400		 * Reexecute is top-down.  When an i/o fails, if it's not
3401		 * the root, it simply notifies its parent and sticks around.
3402		 * The parent, seeing that it still has children in zio_done(),
3403		 * does the same.  This percolates all the way up to the root.
3404		 * The root i/o will reexecute or suspend the entire tree.
3405		 *
3406		 * This approach ensures that zio_reexecute() honors
3407		 * all the original i/o dependency relationships, e.g.
3408		 * parents not executing until children are ready.
3409		 */
3410		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3411
3412		zio->io_gang_leader = NULL;
3413
3414		mutex_enter(&zio->io_lock);
3415		zio->io_state[ZIO_WAIT_DONE] = 1;
3416		mutex_exit(&zio->io_lock);
3417
3418		/*
3419		 * "The Godfather" I/O monitors its children but is
3420		 * not a true parent to them. It will track them through
3421		 * the pipeline but severs its ties whenever they get into
3422		 * trouble (e.g. suspended). This allows "The Godfather"
3423		 * I/O to return status without blocking.
3424		 */
3425		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3426			zio_link_t *zl = zio->io_walk_link;
3427			pio_next = zio_walk_parents(zio);
3428
3429			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3430			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3431				zio_remove_child(pio, zio, zl);
3432				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3433			}
3434		}
3435
3436		if ((pio = zio_unique_parent(zio)) != NULL) {
3437			/*
3438			 * We're not a root i/o, so there's nothing to do
3439			 * but notify our parent.  Don't propagate errors
3440			 * upward since we haven't permanently failed yet.
3441			 */
3442			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3443			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3444			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3445		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3446			/*
3447			 * We'd fail again if we reexecuted now, so suspend
3448			 * until conditions improve (e.g. device comes online).
3449			 */
3450			zio_suspend(spa, zio);
3451		} else {
3452			/*
3453			 * Reexecution is potentially a huge amount of work.
3454			 * Hand it off to the otherwise-unused claim taskq.
3455			 */
3456#if defined(illumos) || !defined(_KERNEL)
3457			ASSERT(zio->io_tqent.tqent_next == NULL);
3458#else
3459			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3460#endif
3461			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3462			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3463			    0, &zio->io_tqent);
3464		}
3465		return (ZIO_PIPELINE_STOP);
3466	}
3467
3468	ASSERT(zio->io_child_count == 0);
3469	ASSERT(zio->io_reexecute == 0);
3470	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3471
3472	/*
3473	 * Report any checksum errors, since the I/O is complete.
3474	 */
3475	while (zio->io_cksum_report != NULL) {
3476		zio_cksum_report_t *zcr = zio->io_cksum_report;
3477		zio->io_cksum_report = zcr->zcr_next;
3478		zcr->zcr_next = NULL;
3479		zcr->zcr_finish(zcr, NULL);
3480		zfs_ereport_free_checksum(zcr);
3481	}
3482
3483	/*
3484	 * It is the responsibility of the done callback to ensure that this
3485	 * particular zio is no longer discoverable for adoption, and as
3486	 * such, cannot acquire any new parents.
3487	 */
3488	if (zio->io_done)
3489		zio->io_done(zio);
3490
3491	mutex_enter(&zio->io_lock);
3492	zio->io_state[ZIO_WAIT_DONE] = 1;
3493	mutex_exit(&zio->io_lock);
3494
3495	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3496		zio_link_t *zl = zio->io_walk_link;
3497		pio_next = zio_walk_parents(zio);
3498		zio_remove_child(pio, zio, zl);
3499		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3500	}
3501
3502	if (zio->io_waiter != NULL) {
3503		mutex_enter(&zio->io_lock);
3504		zio->io_executor = NULL;
3505		cv_broadcast(&zio->io_cv);
3506		mutex_exit(&zio->io_lock);
3507	} else {
3508		zio_destroy(zio);
3509	}
3510
3511	return (ZIO_PIPELINE_STOP);
3512}
3513
3514/*
3515 * ==========================================================================
3516 * I/O pipeline definition
3517 * ==========================================================================
3518 */
3519static zio_pipe_stage_t *zio_pipeline[] = {
3520	NULL,
3521	zio_read_bp_init,
3522	zio_free_bp_init,
3523	zio_issue_async,
3524	zio_write_bp_init,
3525	zio_checksum_generate,
3526	zio_nop_write,
3527	zio_ddt_read_start,
3528	zio_ddt_read_done,
3529	zio_ddt_write,
3530	zio_ddt_free,
3531	zio_gang_assemble,
3532	zio_gang_issue,
3533	zio_dva_allocate,
3534	zio_dva_free,
3535	zio_dva_claim,
3536	zio_ready,
3537	zio_vdev_io_start,
3538	zio_vdev_io_done,
3539	zio_vdev_io_assess,
3540	zio_checksum_verify,
3541	zio_done
3542};
3543
3544
3545
3546
3547/*
3548 * Compare two zbookmark_phys_t's to see which we would reach first in a
3549 * pre-order traversal of the object tree.
3550 *
3551 * This is simple in every case aside from the meta-dnode object. For all other
3552 * objects, we traverse them in order (object 1 before object 2, and so on).
3553 * However, all of these objects are traversed while traversing object 0, since
3554 * the data it points to is the list of objects.  Thus, we need to convert to a
3555 * canonical representation so we can compare meta-dnode bookmarks to
3556 * non-meta-dnode bookmarks.
3557 *
3558 * We do this by calculating "equivalents" for each field of the zbookmark.
3559 * zbookmarks outside of the meta-dnode use their own object and level, and
3560 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3561 * blocks this bookmark refers to) by multiplying their blkid by their span
3562 * (the number of L0 blocks contained within one block at their level).
3563 * zbookmarks inside the meta-dnode calculate their object equivalent
3564 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3565 * level + 1<<31 (any value larger than a level could ever be) for their level.
3566 * This causes them to always compare before a bookmark in their object
3567 * equivalent, compare appropriately to bookmarks in other objects, and to
3568 * compare appropriately to other bookmarks in the meta-dnode.
3569 */
3570int
3571zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3572    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3573{
3574	/*
3575	 * These variables represent the "equivalent" values for the zbookmark,
3576	 * after converting zbookmarks inside the meta dnode to their
3577	 * normal-object equivalents.
3578	 */
3579	uint64_t zb1obj, zb2obj;
3580	uint64_t zb1L0, zb2L0;
3581	uint64_t zb1level, zb2level;
3582
3583	if (zb1->zb_object == zb2->zb_object &&
3584	    zb1->zb_level == zb2->zb_level &&
3585	    zb1->zb_blkid == zb2->zb_blkid)
3586		return (0);
3587
3588	/*
3589	 * BP_SPANB calculates the span in blocks.
3590	 */
3591	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3592	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3593
3594	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3595		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3596		zb1L0 = 0;
3597		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3598	} else {
3599		zb1obj = zb1->zb_object;
3600		zb1level = zb1->zb_level;
3601	}
3602
3603	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3604		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3605		zb2L0 = 0;
3606		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3607	} else {
3608		zb2obj = zb2->zb_object;
3609		zb2level = zb2->zb_level;
3610	}
3611
3612	/* Now that we have a canonical representation, do the comparison. */
3613	if (zb1obj != zb2obj)
3614		return (zb1obj < zb2obj ? -1 : 1);
3615	else if (zb1L0 != zb2L0)
3616		return (zb1L0 < zb2L0 ? -1 : 1);
3617	else if (zb1level != zb2level)
3618		return (zb1level > zb2level ? -1 : 1);
3619	/*
3620	 * This can (theoretically) happen if the bookmarks have the same object
3621	 * and level, but different blkids, if the block sizes are not the same.
3622	 * There is presently no way to change the indirect block sizes
3623	 */
3624	return (0);
3625}
3626
3627/*
3628 *  This function checks the following: given that last_block is the place that
3629 *  our traversal stopped last time, does that guarantee that we've visited
3630 *  every node under subtree_root?  Therefore, we can't just use the raw output
3631 *  of zbookmark_compare.  We have to pass in a modified version of
3632 *  subtree_root; by incrementing the block id, and then checking whether
3633 *  last_block is before or equal to that, we can tell whether or not having
3634 *  visited last_block implies that all of subtree_root's children have been
3635 *  visited.
3636 */
3637boolean_t
3638zbookmark_subtree_completed(const dnode_phys_t *dnp,
3639    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3640{
3641	zbookmark_phys_t mod_zb = *subtree_root;
3642	mod_zb.zb_blkid++;
3643	ASSERT(last_block->zb_level == 0);
3644
3645	/* The objset_phys_t isn't before anything. */
3646	if (dnp == NULL)
3647		return (B_FALSE);
3648
3649	/*
3650	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3651	 * data block size in sectors, because that variable is only used if
3652	 * the bookmark refers to a block in the meta-dnode.  Since we don't
3653	 * know without examining it what object it refers to, and there's no
3654	 * harm in passing in this value in other cases, we always pass it in.
3655	 *
3656	 * We pass in 0 for the indirect block size shift because zb2 must be
3657	 * level 0.  The indirect block size is only used to calculate the span
3658	 * of the bookmark, but since the bookmark must be level 0, the span is
3659	 * always 1, so the math works out.
3660	 *
3661	 * If you make changes to how the zbookmark_compare code works, be sure
3662	 * to make sure that this code still works afterwards.
3663	 */
3664	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3665	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3666	    last_block) <= 0);
3667}
3668