zio.c revision 297078
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/sysmacros.h>
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/txg.h>
32#include <sys/spa_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio_impl.h>
35#include <sys/zio_compress.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/ddt.h>
40#include <sys/trim_map.h>
41#include <sys/blkptr.h>
42#include <sys/zfeature.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
46#if defined(__amd64__)
47static int zio_use_uma = 1;
48#else
49static int zio_use_uma = 0;
50#endif
51TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
52SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
53    "Use uma(9) for ZIO allocations");
54static int zio_exclude_metadata = 0;
55TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82/*
83 * ==========================================================================
84 * I/O kmem caches
85 * ==========================================================================
86 */
87kmem_cache_t *zio_cache;
88kmem_cache_t *zio_link_cache;
89kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91
92#ifdef _KERNEL
93extern vmem_t *zio_alloc_arena;
94#endif
95
96#define	ZIO_PIPELINE_CONTINUE		0x100
97#define	ZIO_PIPELINE_STOP		0x101
98
99#define	BP_SPANB(indblkshift, level) \
100	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
101#define	COMPARE_META_LEVEL	0x80000000ul
102/*
103 * The following actions directly effect the spa's sync-to-convergence logic.
104 * The values below define the sync pass when we start performing the action.
105 * Care should be taken when changing these values as they directly impact
106 * spa_sync() performance. Tuning these values may introduce subtle performance
107 * pathologies and should only be done in the context of performance analysis.
108 * These tunables will eventually be removed and replaced with #defines once
109 * enough analysis has been done to determine optimal values.
110 *
111 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
112 * regular blocks are not deferred.
113 */
114int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
115TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
116SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
117    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
118int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
119TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
120SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
121    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
122int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
123TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
124SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
125    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
126
127/*
128 * An allocating zio is one that either currently has the DVA allocate
129 * stage set or will have it later in its lifetime.
130 */
131#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
132
133boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
134
135#ifdef ZFS_DEBUG
136int zio_buf_debug_limit = 16384;
137#else
138int zio_buf_debug_limit = 0;
139#endif
140
141void
142zio_init(void)
143{
144	size_t c;
145	zio_cache = kmem_cache_create("zio_cache",
146	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
147	zio_link_cache = kmem_cache_create("zio_link_cache",
148	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
149	if (!zio_use_uma)
150		goto out;
151
152	/*
153	 * For small buffers, we want a cache for each multiple of
154	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
155	 * for each quarter-power of 2.
156	 */
157	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
158		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
159		size_t p2 = size;
160		size_t align = 0;
161		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
162
163		while (!ISP2(p2))
164			p2 &= p2 - 1;
165
166#ifdef illumos
167#ifndef _KERNEL
168		/*
169		 * If we are using watchpoints, put each buffer on its own page,
170		 * to eliminate the performance overhead of trapping to the
171		 * kernel when modifying a non-watched buffer that shares the
172		 * page with a watched buffer.
173		 */
174		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
175			continue;
176#endif
177#endif /* illumos */
178		if (size <= 4 * SPA_MINBLOCKSIZE) {
179			align = SPA_MINBLOCKSIZE;
180		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
181			align = MIN(p2 >> 2, PAGESIZE);
182		}
183
184		if (align != 0) {
185			char name[36];
186			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
187			zio_buf_cache[c] = kmem_cache_create(name, size,
188			    align, NULL, NULL, NULL, NULL, NULL, cflags);
189
190			/*
191			 * Since zio_data bufs do not appear in crash dumps, we
192			 * pass KMC_NOTOUCH so that no allocator metadata is
193			 * stored with the buffers.
194			 */
195			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
196			zio_data_buf_cache[c] = kmem_cache_create(name, size,
197			    align, NULL, NULL, NULL, NULL, NULL,
198			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
199		}
200	}
201
202	while (--c != 0) {
203		ASSERT(zio_buf_cache[c] != NULL);
204		if (zio_buf_cache[c - 1] == NULL)
205			zio_buf_cache[c - 1] = zio_buf_cache[c];
206
207		ASSERT(zio_data_buf_cache[c] != NULL);
208		if (zio_data_buf_cache[c - 1] == NULL)
209			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
210	}
211out:
212
213	zio_inject_init();
214
215	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
216	    KSTAT_TYPE_NAMED,
217	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
218	    KSTAT_FLAG_VIRTUAL);
219
220	if (zio_trim_ksp != NULL) {
221		zio_trim_ksp->ks_data = &zio_trim_stats;
222		kstat_install(zio_trim_ksp);
223	}
224}
225
226void
227zio_fini(void)
228{
229	size_t c;
230	kmem_cache_t *last_cache = NULL;
231	kmem_cache_t *last_data_cache = NULL;
232
233	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
234		if (zio_buf_cache[c] != last_cache) {
235			last_cache = zio_buf_cache[c];
236			kmem_cache_destroy(zio_buf_cache[c]);
237		}
238		zio_buf_cache[c] = NULL;
239
240		if (zio_data_buf_cache[c] != last_data_cache) {
241			last_data_cache = zio_data_buf_cache[c];
242			kmem_cache_destroy(zio_data_buf_cache[c]);
243		}
244		zio_data_buf_cache[c] = NULL;
245	}
246
247	kmem_cache_destroy(zio_link_cache);
248	kmem_cache_destroy(zio_cache);
249
250	zio_inject_fini();
251
252	if (zio_trim_ksp != NULL) {
253		kstat_delete(zio_trim_ksp);
254		zio_trim_ksp = NULL;
255	}
256}
257
258/*
259 * ==========================================================================
260 * Allocate and free I/O buffers
261 * ==========================================================================
262 */
263
264/*
265 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
266 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
267 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
268 * excess / transient data in-core during a crashdump.
269 */
270void *
271zio_buf_alloc(size_t size)
272{
273	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
274	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
275
276	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
277
278	if (zio_use_uma)
279		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
280	else
281		return (kmem_alloc(size, KM_SLEEP|flags));
282}
283
284/*
285 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
286 * crashdump if the kernel panics.  This exists so that we will limit the amount
287 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
288 * of kernel heap dumped to disk when the kernel panics)
289 */
290void *
291zio_data_buf_alloc(size_t size)
292{
293	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
294
295	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
296
297	if (zio_use_uma)
298		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
299	else
300		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
301}
302
303void
304zio_buf_free(void *buf, size_t size)
305{
306	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
307
308	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
309
310	if (zio_use_uma)
311		kmem_cache_free(zio_buf_cache[c], buf);
312	else
313		kmem_free(buf, size);
314}
315
316void
317zio_data_buf_free(void *buf, size_t size)
318{
319	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
320
321	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
322
323	if (zio_use_uma)
324		kmem_cache_free(zio_data_buf_cache[c], buf);
325	else
326		kmem_free(buf, size);
327}
328
329/*
330 * ==========================================================================
331 * Push and pop I/O transform buffers
332 * ==========================================================================
333 */
334static void
335zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
336    zio_transform_func_t *transform)
337{
338	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
339
340	zt->zt_orig_data = zio->io_data;
341	zt->zt_orig_size = zio->io_size;
342	zt->zt_bufsize = bufsize;
343	zt->zt_transform = transform;
344
345	zt->zt_next = zio->io_transform_stack;
346	zio->io_transform_stack = zt;
347
348	zio->io_data = data;
349	zio->io_size = size;
350}
351
352static void
353zio_pop_transforms(zio_t *zio)
354{
355	zio_transform_t *zt;
356
357	while ((zt = zio->io_transform_stack) != NULL) {
358		if (zt->zt_transform != NULL)
359			zt->zt_transform(zio,
360			    zt->zt_orig_data, zt->zt_orig_size);
361
362		if (zt->zt_bufsize != 0)
363			zio_buf_free(zio->io_data, zt->zt_bufsize);
364
365		zio->io_data = zt->zt_orig_data;
366		zio->io_size = zt->zt_orig_size;
367		zio->io_transform_stack = zt->zt_next;
368
369		kmem_free(zt, sizeof (zio_transform_t));
370	}
371}
372
373/*
374 * ==========================================================================
375 * I/O transform callbacks for subblocks and decompression
376 * ==========================================================================
377 */
378static void
379zio_subblock(zio_t *zio, void *data, uint64_t size)
380{
381	ASSERT(zio->io_size > size);
382
383	if (zio->io_type == ZIO_TYPE_READ)
384		bcopy(zio->io_data, data, size);
385}
386
387static void
388zio_decompress(zio_t *zio, void *data, uint64_t size)
389{
390	if (zio->io_error == 0 &&
391	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
392	    zio->io_data, data, zio->io_size, size) != 0)
393		zio->io_error = SET_ERROR(EIO);
394}
395
396/*
397 * ==========================================================================
398 * I/O parent/child relationships and pipeline interlocks
399 * ==========================================================================
400 */
401/*
402 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
403 *        continue calling these functions until they return NULL.
404 *        Otherwise, the next caller will pick up the list walk in
405 *        some indeterminate state.  (Otherwise every caller would
406 *        have to pass in a cookie to keep the state represented by
407 *        io_walk_link, which gets annoying.)
408 */
409zio_t *
410zio_walk_parents(zio_t *cio)
411{
412	zio_link_t *zl = cio->io_walk_link;
413	list_t *pl = &cio->io_parent_list;
414
415	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
416	cio->io_walk_link = zl;
417
418	if (zl == NULL)
419		return (NULL);
420
421	ASSERT(zl->zl_child == cio);
422	return (zl->zl_parent);
423}
424
425zio_t *
426zio_walk_children(zio_t *pio)
427{
428	zio_link_t *zl = pio->io_walk_link;
429	list_t *cl = &pio->io_child_list;
430
431	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
432	pio->io_walk_link = zl;
433
434	if (zl == NULL)
435		return (NULL);
436
437	ASSERT(zl->zl_parent == pio);
438	return (zl->zl_child);
439}
440
441zio_t *
442zio_unique_parent(zio_t *cio)
443{
444	zio_t *pio = zio_walk_parents(cio);
445
446	VERIFY(zio_walk_parents(cio) == NULL);
447	return (pio);
448}
449
450void
451zio_add_child(zio_t *pio, zio_t *cio)
452{
453	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
454
455	/*
456	 * Logical I/Os can have logical, gang, or vdev children.
457	 * Gang I/Os can have gang or vdev children.
458	 * Vdev I/Os can only have vdev children.
459	 * The following ASSERT captures all of these constraints.
460	 */
461	ASSERT(cio->io_child_type <= pio->io_child_type);
462
463	zl->zl_parent = pio;
464	zl->zl_child = cio;
465
466	mutex_enter(&cio->io_lock);
467	mutex_enter(&pio->io_lock);
468
469	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
470
471	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
472		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
473
474	list_insert_head(&pio->io_child_list, zl);
475	list_insert_head(&cio->io_parent_list, zl);
476
477	pio->io_child_count++;
478	cio->io_parent_count++;
479
480	mutex_exit(&pio->io_lock);
481	mutex_exit(&cio->io_lock);
482}
483
484static void
485zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
486{
487	ASSERT(zl->zl_parent == pio);
488	ASSERT(zl->zl_child == cio);
489
490	mutex_enter(&cio->io_lock);
491	mutex_enter(&pio->io_lock);
492
493	list_remove(&pio->io_child_list, zl);
494	list_remove(&cio->io_parent_list, zl);
495
496	pio->io_child_count--;
497	cio->io_parent_count--;
498
499	mutex_exit(&pio->io_lock);
500	mutex_exit(&cio->io_lock);
501
502	kmem_cache_free(zio_link_cache, zl);
503}
504
505static boolean_t
506zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
507{
508	uint64_t *countp = &zio->io_children[child][wait];
509	boolean_t waiting = B_FALSE;
510
511	mutex_enter(&zio->io_lock);
512	ASSERT(zio->io_stall == NULL);
513	if (*countp != 0) {
514		zio->io_stage >>= 1;
515		zio->io_stall = countp;
516		waiting = B_TRUE;
517	}
518	mutex_exit(&zio->io_lock);
519
520	return (waiting);
521}
522
523static void
524zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
525{
526	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
527	int *errorp = &pio->io_child_error[zio->io_child_type];
528
529	mutex_enter(&pio->io_lock);
530	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
531		*errorp = zio_worst_error(*errorp, zio->io_error);
532	pio->io_reexecute |= zio->io_reexecute;
533	ASSERT3U(*countp, >, 0);
534
535	(*countp)--;
536
537	if (*countp == 0 && pio->io_stall == countp) {
538		pio->io_stall = NULL;
539		mutex_exit(&pio->io_lock);
540		zio_execute(pio);
541	} else {
542		mutex_exit(&pio->io_lock);
543	}
544}
545
546static void
547zio_inherit_child_errors(zio_t *zio, enum zio_child c)
548{
549	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
550		zio->io_error = zio->io_child_error[c];
551}
552
553/*
554 * ==========================================================================
555 * Create the various types of I/O (read, write, free, etc)
556 * ==========================================================================
557 */
558static zio_t *
559zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
560    void *data, uint64_t size, zio_done_func_t *done, void *private,
561    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
562    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
563    enum zio_stage stage, enum zio_stage pipeline)
564{
565	zio_t *zio;
566
567	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
568	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
569	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
570
571	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
572	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
573	ASSERT(vd || stage == ZIO_STAGE_OPEN);
574
575	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
576	bzero(zio, sizeof (zio_t));
577
578	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
579	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
580
581	list_create(&zio->io_parent_list, sizeof (zio_link_t),
582	    offsetof(zio_link_t, zl_parent_node));
583	list_create(&zio->io_child_list, sizeof (zio_link_t),
584	    offsetof(zio_link_t, zl_child_node));
585
586	if (vd != NULL)
587		zio->io_child_type = ZIO_CHILD_VDEV;
588	else if (flags & ZIO_FLAG_GANG_CHILD)
589		zio->io_child_type = ZIO_CHILD_GANG;
590	else if (flags & ZIO_FLAG_DDT_CHILD)
591		zio->io_child_type = ZIO_CHILD_DDT;
592	else
593		zio->io_child_type = ZIO_CHILD_LOGICAL;
594
595	if (bp != NULL) {
596		zio->io_bp = (blkptr_t *)bp;
597		zio->io_bp_copy = *bp;
598		zio->io_bp_orig = *bp;
599		if (type != ZIO_TYPE_WRITE ||
600		    zio->io_child_type == ZIO_CHILD_DDT)
601			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
602		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
603			zio->io_logical = zio;
604		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
605			pipeline |= ZIO_GANG_STAGES;
606	}
607
608	zio->io_spa = spa;
609	zio->io_txg = txg;
610	zio->io_done = done;
611	zio->io_private = private;
612	zio->io_type = type;
613	zio->io_priority = priority;
614	zio->io_vd = vd;
615	zio->io_offset = offset;
616	zio->io_orig_data = zio->io_data = data;
617	zio->io_orig_size = zio->io_size = size;
618	zio->io_orig_flags = zio->io_flags = flags;
619	zio->io_orig_stage = zio->io_stage = stage;
620	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
621
622	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
623	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
624
625	if (zb != NULL)
626		zio->io_bookmark = *zb;
627
628	if (pio != NULL) {
629		if (zio->io_logical == NULL)
630			zio->io_logical = pio->io_logical;
631		if (zio->io_child_type == ZIO_CHILD_GANG)
632			zio->io_gang_leader = pio->io_gang_leader;
633		zio_add_child(pio, zio);
634	}
635
636	return (zio);
637}
638
639static void
640zio_destroy(zio_t *zio)
641{
642	list_destroy(&zio->io_parent_list);
643	list_destroy(&zio->io_child_list);
644	mutex_destroy(&zio->io_lock);
645	cv_destroy(&zio->io_cv);
646	kmem_cache_free(zio_cache, zio);
647}
648
649zio_t *
650zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
651    void *private, enum zio_flag flags)
652{
653	zio_t *zio;
654
655	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
656	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
657	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
658
659	return (zio);
660}
661
662zio_t *
663zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
664{
665	return (zio_null(NULL, spa, NULL, done, private, flags));
666}
667
668void
669zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
670{
671	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
672		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
673		    bp, (longlong_t)BP_GET_TYPE(bp));
674	}
675	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
676	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
677		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
678		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
679	}
680	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
681	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
682		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
683		    bp, (longlong_t)BP_GET_COMPRESS(bp));
684	}
685	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
686		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
687		    bp, (longlong_t)BP_GET_LSIZE(bp));
688	}
689	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
690		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
691		    bp, (longlong_t)BP_GET_PSIZE(bp));
692	}
693
694	if (BP_IS_EMBEDDED(bp)) {
695		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
696			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
697			    bp, (longlong_t)BPE_GET_ETYPE(bp));
698		}
699	}
700
701	/*
702	 * Pool-specific checks.
703	 *
704	 * Note: it would be nice to verify that the blk_birth and
705	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
706	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
707	 * that are in the log) to be arbitrarily large.
708	 */
709	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
710		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
711		if (vdevid >= spa->spa_root_vdev->vdev_children) {
712			zfs_panic_recover("blkptr at %p DVA %u has invalid "
713			    "VDEV %llu",
714			    bp, i, (longlong_t)vdevid);
715			continue;
716		}
717		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
718		if (vd == NULL) {
719			zfs_panic_recover("blkptr at %p DVA %u has invalid "
720			    "VDEV %llu",
721			    bp, i, (longlong_t)vdevid);
722			continue;
723		}
724		if (vd->vdev_ops == &vdev_hole_ops) {
725			zfs_panic_recover("blkptr at %p DVA %u has hole "
726			    "VDEV %llu",
727			    bp, i, (longlong_t)vdevid);
728			continue;
729		}
730		if (vd->vdev_ops == &vdev_missing_ops) {
731			/*
732			 * "missing" vdevs are valid during import, but we
733			 * don't have their detailed info (e.g. asize), so
734			 * we can't perform any more checks on them.
735			 */
736			continue;
737		}
738		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
739		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
740		if (BP_IS_GANG(bp))
741			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
742		if (offset + asize > vd->vdev_asize) {
743			zfs_panic_recover("blkptr at %p DVA %u has invalid "
744			    "OFFSET %llu",
745			    bp, i, (longlong_t)offset);
746		}
747	}
748}
749
750zio_t *
751zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
752    void *data, uint64_t size, zio_done_func_t *done, void *private,
753    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
754{
755	zio_t *zio;
756
757	zfs_blkptr_verify(spa, bp);
758
759	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
760	    data, size, done, private,
761	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
762	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
763	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
764
765	return (zio);
766}
767
768zio_t *
769zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
770    void *data, uint64_t size, const zio_prop_t *zp,
771    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
772    void *private,
773    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
774{
775	zio_t *zio;
776
777	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
778	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
779	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
780	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
781	    DMU_OT_IS_VALID(zp->zp_type) &&
782	    zp->zp_level < 32 &&
783	    zp->zp_copies > 0 &&
784	    zp->zp_copies <= spa_max_replication(spa));
785
786	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
787	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
788	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
789	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
790
791	zio->io_ready = ready;
792	zio->io_physdone = physdone;
793	zio->io_prop = *zp;
794
795	/*
796	 * Data can be NULL if we are going to call zio_write_override() to
797	 * provide the already-allocated BP.  But we may need the data to
798	 * verify a dedup hit (if requested).  In this case, don't try to
799	 * dedup (just take the already-allocated BP verbatim).
800	 */
801	if (data == NULL && zio->io_prop.zp_dedup_verify) {
802		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
803	}
804
805	return (zio);
806}
807
808zio_t *
809zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
810    uint64_t size, zio_done_func_t *done, void *private,
811    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
812{
813	zio_t *zio;
814
815	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
816	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
817	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
818
819	return (zio);
820}
821
822void
823zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
824{
825	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
826	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
827	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
828	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
829
830	/*
831	 * We must reset the io_prop to match the values that existed
832	 * when the bp was first written by dmu_sync() keeping in mind
833	 * that nopwrite and dedup are mutually exclusive.
834	 */
835	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
836	zio->io_prop.zp_nopwrite = nopwrite;
837	zio->io_prop.zp_copies = copies;
838	zio->io_bp_override = bp;
839}
840
841void
842zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
843{
844
845	/*
846	 * The check for EMBEDDED is a performance optimization.  We
847	 * process the free here (by ignoring it) rather than
848	 * putting it on the list and then processing it in zio_free_sync().
849	 */
850	if (BP_IS_EMBEDDED(bp))
851		return;
852	metaslab_check_free(spa, bp);
853
854	/*
855	 * Frees that are for the currently-syncing txg, are not going to be
856	 * deferred, and which will not need to do a read (i.e. not GANG or
857	 * DEDUP), can be processed immediately.  Otherwise, put them on the
858	 * in-memory list for later processing.
859	 */
860	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
861	    txg != spa->spa_syncing_txg ||
862	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
863		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
864	} else {
865		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
866		    BP_GET_PSIZE(bp), 0)));
867	}
868}
869
870zio_t *
871zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
872    uint64_t size, enum zio_flag flags)
873{
874	zio_t *zio;
875	enum zio_stage stage = ZIO_FREE_PIPELINE;
876
877	ASSERT(!BP_IS_HOLE(bp));
878	ASSERT(spa_syncing_txg(spa) == txg);
879	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
880
881	if (BP_IS_EMBEDDED(bp))
882		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
883
884	metaslab_check_free(spa, bp);
885	arc_freed(spa, bp);
886
887	if (zfs_trim_enabled)
888		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
889		    ZIO_STAGE_VDEV_IO_ASSESS;
890	/*
891	 * GANG and DEDUP blocks can induce a read (for the gang block header,
892	 * or the DDT), so issue them asynchronously so that this thread is
893	 * not tied up.
894	 */
895	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
896		stage |= ZIO_STAGE_ISSUE_ASYNC;
897
898	flags |= ZIO_FLAG_DONT_QUEUE;
899
900	zio = zio_create(pio, spa, txg, bp, NULL, size,
901	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
902	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
903
904	return (zio);
905}
906
907zio_t *
908zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
909    zio_done_func_t *done, void *private, enum zio_flag flags)
910{
911	zio_t *zio;
912
913	dprintf_bp(bp, "claiming in txg %llu", txg);
914
915	if (BP_IS_EMBEDDED(bp))
916		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
917
918	/*
919	 * A claim is an allocation of a specific block.  Claims are needed
920	 * to support immediate writes in the intent log.  The issue is that
921	 * immediate writes contain committed data, but in a txg that was
922	 * *not* committed.  Upon opening the pool after an unclean shutdown,
923	 * the intent log claims all blocks that contain immediate write data
924	 * so that the SPA knows they're in use.
925	 *
926	 * All claims *must* be resolved in the first txg -- before the SPA
927	 * starts allocating blocks -- so that nothing is allocated twice.
928	 * If txg == 0 we just verify that the block is claimable.
929	 */
930	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
931	ASSERT(txg == spa_first_txg(spa) || txg == 0);
932	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
933
934	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
935	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
936	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
937
938	return (zio);
939}
940
941zio_t *
942zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
943    uint64_t size, zio_done_func_t *done, void *private,
944    zio_priority_t priority, enum zio_flag flags)
945{
946	zio_t *zio;
947	int c;
948
949	if (vd->vdev_children == 0) {
950		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
951		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
952		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
953
954		zio->io_cmd = cmd;
955	} else {
956		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
957
958		for (c = 0; c < vd->vdev_children; c++)
959			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
960			    offset, size, done, private, priority, flags));
961	}
962
963	return (zio);
964}
965
966zio_t *
967zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
968    void *data, int checksum, zio_done_func_t *done, void *private,
969    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
970{
971	zio_t *zio;
972
973	ASSERT(vd->vdev_children == 0);
974	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
975	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
976	ASSERT3U(offset + size, <=, vd->vdev_psize);
977
978	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
979	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
980	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
981
982	zio->io_prop.zp_checksum = checksum;
983
984	return (zio);
985}
986
987zio_t *
988zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
989    void *data, int checksum, zio_done_func_t *done, void *private,
990    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
991{
992	zio_t *zio;
993
994	ASSERT(vd->vdev_children == 0);
995	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
996	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
997	ASSERT3U(offset + size, <=, vd->vdev_psize);
998
999	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
1000	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
1001	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1002
1003	zio->io_prop.zp_checksum = checksum;
1004
1005	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1006		/*
1007		 * zec checksums are necessarily destructive -- they modify
1008		 * the end of the write buffer to hold the verifier/checksum.
1009		 * Therefore, we must make a local copy in case the data is
1010		 * being written to multiple places in parallel.
1011		 */
1012		void *wbuf = zio_buf_alloc(size);
1013		bcopy(data, wbuf, size);
1014		zio_push_transform(zio, wbuf, size, size, NULL);
1015	}
1016
1017	return (zio);
1018}
1019
1020/*
1021 * Create a child I/O to do some work for us.
1022 */
1023zio_t *
1024zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1025	void *data, uint64_t size, int type, zio_priority_t priority,
1026	enum zio_flag flags, zio_done_func_t *done, void *private)
1027{
1028	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1029	zio_t *zio;
1030
1031	ASSERT(vd->vdev_parent ==
1032	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1033
1034	if (type == ZIO_TYPE_READ && bp != NULL) {
1035		/*
1036		 * If we have the bp, then the child should perform the
1037		 * checksum and the parent need not.  This pushes error
1038		 * detection as close to the leaves as possible and
1039		 * eliminates redundant checksums in the interior nodes.
1040		 */
1041		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1042		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1043	}
1044
1045	/* Not all IO types require vdev io done stage e.g. free */
1046	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1047		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1048
1049	if (vd->vdev_children == 0)
1050		offset += VDEV_LABEL_START_SIZE;
1051
1052	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1053
1054	/*
1055	 * If we've decided to do a repair, the write is not speculative --
1056	 * even if the original read was.
1057	 */
1058	if (flags & ZIO_FLAG_IO_REPAIR)
1059		flags &= ~ZIO_FLAG_SPECULATIVE;
1060
1061	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1062	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1063	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1064
1065	zio->io_physdone = pio->io_physdone;
1066	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1067		zio->io_logical->io_phys_children++;
1068
1069	return (zio);
1070}
1071
1072zio_t *
1073zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1074    int type, zio_priority_t priority, enum zio_flag flags,
1075    zio_done_func_t *done, void *private)
1076{
1077	zio_t *zio;
1078
1079	ASSERT(vd->vdev_ops->vdev_op_leaf);
1080
1081	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1082	    data, size, done, private, type, priority,
1083	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1084	    vd, offset, NULL,
1085	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1086
1087	return (zio);
1088}
1089
1090void
1091zio_flush(zio_t *zio, vdev_t *vd)
1092{
1093	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1094	    NULL, NULL, ZIO_PRIORITY_NOW,
1095	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1096}
1097
1098zio_t *
1099zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1100{
1101
1102	ASSERT(vd->vdev_ops->vdev_op_leaf);
1103
1104	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1105	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1106	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1107	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1108}
1109
1110void
1111zio_shrink(zio_t *zio, uint64_t size)
1112{
1113	ASSERT(zio->io_executor == NULL);
1114	ASSERT(zio->io_orig_size == zio->io_size);
1115	ASSERT(size <= zio->io_size);
1116
1117	/*
1118	 * We don't shrink for raidz because of problems with the
1119	 * reconstruction when reading back less than the block size.
1120	 * Note, BP_IS_RAIDZ() assumes no compression.
1121	 */
1122	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1123	if (!BP_IS_RAIDZ(zio->io_bp))
1124		zio->io_orig_size = zio->io_size = size;
1125}
1126
1127/*
1128 * ==========================================================================
1129 * Prepare to read and write logical blocks
1130 * ==========================================================================
1131 */
1132
1133static int
1134zio_read_bp_init(zio_t *zio)
1135{
1136	blkptr_t *bp = zio->io_bp;
1137
1138	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1139	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1140	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1141		uint64_t psize =
1142		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1143		void *cbuf = zio_buf_alloc(psize);
1144
1145		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1146	}
1147
1148	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1149		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1150		decode_embedded_bp_compressed(bp, zio->io_data);
1151	} else {
1152		ASSERT(!BP_IS_EMBEDDED(bp));
1153	}
1154
1155	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1156		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1157
1158	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1159		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1160
1161	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1162		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1163
1164	return (ZIO_PIPELINE_CONTINUE);
1165}
1166
1167static int
1168zio_write_bp_init(zio_t *zio)
1169{
1170	spa_t *spa = zio->io_spa;
1171	zio_prop_t *zp = &zio->io_prop;
1172	enum zio_compress compress = zp->zp_compress;
1173	blkptr_t *bp = zio->io_bp;
1174	uint64_t lsize = zio->io_size;
1175	uint64_t psize = lsize;
1176	int pass = 1;
1177
1178	/*
1179	 * If our children haven't all reached the ready stage,
1180	 * wait for them and then repeat this pipeline stage.
1181	 */
1182	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1183	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1184		return (ZIO_PIPELINE_STOP);
1185
1186	if (!IO_IS_ALLOCATING(zio))
1187		return (ZIO_PIPELINE_CONTINUE);
1188
1189	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1190
1191	if (zio->io_bp_override) {
1192		ASSERT(bp->blk_birth != zio->io_txg);
1193		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1194
1195		*bp = *zio->io_bp_override;
1196		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1197
1198		if (BP_IS_EMBEDDED(bp))
1199			return (ZIO_PIPELINE_CONTINUE);
1200
1201		/*
1202		 * If we've been overridden and nopwrite is set then
1203		 * set the flag accordingly to indicate that a nopwrite
1204		 * has already occurred.
1205		 */
1206		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1207			ASSERT(!zp->zp_dedup);
1208			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1209			return (ZIO_PIPELINE_CONTINUE);
1210		}
1211
1212		ASSERT(!zp->zp_nopwrite);
1213
1214		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1215			return (ZIO_PIPELINE_CONTINUE);
1216
1217		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1218		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1219
1220		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1221			BP_SET_DEDUP(bp, 1);
1222			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1223			return (ZIO_PIPELINE_CONTINUE);
1224		}
1225	}
1226
1227	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1228		/*
1229		 * We're rewriting an existing block, which means we're
1230		 * working on behalf of spa_sync().  For spa_sync() to
1231		 * converge, it must eventually be the case that we don't
1232		 * have to allocate new blocks.  But compression changes
1233		 * the blocksize, which forces a reallocate, and makes
1234		 * convergence take longer.  Therefore, after the first
1235		 * few passes, stop compressing to ensure convergence.
1236		 */
1237		pass = spa_sync_pass(spa);
1238
1239		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1240		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1241		ASSERT(!BP_GET_DEDUP(bp));
1242
1243		if (pass >= zfs_sync_pass_dont_compress)
1244			compress = ZIO_COMPRESS_OFF;
1245
1246		/* Make sure someone doesn't change their mind on overwrites */
1247		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1248		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1249	}
1250
1251	if (compress != ZIO_COMPRESS_OFF) {
1252		void *cbuf = zio_buf_alloc(lsize);
1253		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1254		if (psize == 0 || psize == lsize) {
1255			compress = ZIO_COMPRESS_OFF;
1256			zio_buf_free(cbuf, lsize);
1257		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1258		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1259		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1260			encode_embedded_bp_compressed(bp,
1261			    cbuf, compress, lsize, psize);
1262			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1263			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1264			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1265			zio_buf_free(cbuf, lsize);
1266			bp->blk_birth = zio->io_txg;
1267			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1268			ASSERT(spa_feature_is_active(spa,
1269			    SPA_FEATURE_EMBEDDED_DATA));
1270			return (ZIO_PIPELINE_CONTINUE);
1271		} else {
1272			/*
1273			 * Round up compressed size up to the ashift
1274			 * of the smallest-ashift device, and zero the tail.
1275			 * This ensures that the compressed size of the BP
1276			 * (and thus compressratio property) are correct,
1277			 * in that we charge for the padding used to fill out
1278			 * the last sector.
1279			 */
1280			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1281			size_t rounded = (size_t)P2ROUNDUP(psize,
1282			    1ULL << spa->spa_min_ashift);
1283			if (rounded >= lsize) {
1284				compress = ZIO_COMPRESS_OFF;
1285				zio_buf_free(cbuf, lsize);
1286				psize = lsize;
1287			} else {
1288				bzero((char *)cbuf + psize, rounded - psize);
1289				psize = rounded;
1290				zio_push_transform(zio, cbuf,
1291				    psize, lsize, NULL);
1292			}
1293		}
1294	}
1295
1296	/*
1297	 * The final pass of spa_sync() must be all rewrites, but the first
1298	 * few passes offer a trade-off: allocating blocks defers convergence,
1299	 * but newly allocated blocks are sequential, so they can be written
1300	 * to disk faster.  Therefore, we allow the first few passes of
1301	 * spa_sync() to allocate new blocks, but force rewrites after that.
1302	 * There should only be a handful of blocks after pass 1 in any case.
1303	 */
1304	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1305	    BP_GET_PSIZE(bp) == psize &&
1306	    pass >= zfs_sync_pass_rewrite) {
1307		ASSERT(psize != 0);
1308		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1309		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1310		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1311	} else {
1312		BP_ZERO(bp);
1313		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1314	}
1315
1316	if (psize == 0) {
1317		if (zio->io_bp_orig.blk_birth != 0 &&
1318		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1319			BP_SET_LSIZE(bp, lsize);
1320			BP_SET_TYPE(bp, zp->zp_type);
1321			BP_SET_LEVEL(bp, zp->zp_level);
1322			BP_SET_BIRTH(bp, zio->io_txg, 0);
1323		}
1324		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1325	} else {
1326		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1327		BP_SET_LSIZE(bp, lsize);
1328		BP_SET_TYPE(bp, zp->zp_type);
1329		BP_SET_LEVEL(bp, zp->zp_level);
1330		BP_SET_PSIZE(bp, psize);
1331		BP_SET_COMPRESS(bp, compress);
1332		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1333		BP_SET_DEDUP(bp, zp->zp_dedup);
1334		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1335		if (zp->zp_dedup) {
1336			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1337			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1338			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1339		}
1340		if (zp->zp_nopwrite) {
1341			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1342			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1343			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1344		}
1345	}
1346
1347	return (ZIO_PIPELINE_CONTINUE);
1348}
1349
1350static int
1351zio_free_bp_init(zio_t *zio)
1352{
1353	blkptr_t *bp = zio->io_bp;
1354
1355	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1356		if (BP_GET_DEDUP(bp))
1357			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1358	}
1359
1360	return (ZIO_PIPELINE_CONTINUE);
1361}
1362
1363/*
1364 * ==========================================================================
1365 * Execute the I/O pipeline
1366 * ==========================================================================
1367 */
1368
1369static void
1370zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1371{
1372	spa_t *spa = zio->io_spa;
1373	zio_type_t t = zio->io_type;
1374	int flags = (cutinline ? TQ_FRONT : 0);
1375
1376	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1377
1378	/*
1379	 * If we're a config writer or a probe, the normal issue and
1380	 * interrupt threads may all be blocked waiting for the config lock.
1381	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1382	 */
1383	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1384		t = ZIO_TYPE_NULL;
1385
1386	/*
1387	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1388	 */
1389	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1390		t = ZIO_TYPE_NULL;
1391
1392	/*
1393	 * If this is a high priority I/O, then use the high priority taskq if
1394	 * available.
1395	 */
1396	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1397	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1398		q++;
1399
1400	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1401
1402	/*
1403	 * NB: We are assuming that the zio can only be dispatched
1404	 * to a single taskq at a time.  It would be a grievous error
1405	 * to dispatch the zio to another taskq at the same time.
1406	 */
1407#if defined(illumos) || !defined(_KERNEL)
1408	ASSERT(zio->io_tqent.tqent_next == NULL);
1409#else
1410	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1411#endif
1412	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1413	    flags, &zio->io_tqent);
1414}
1415
1416static boolean_t
1417zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1418{
1419	kthread_t *executor = zio->io_executor;
1420	spa_t *spa = zio->io_spa;
1421
1422	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1423		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1424		uint_t i;
1425		for (i = 0; i < tqs->stqs_count; i++) {
1426			if (taskq_member(tqs->stqs_taskq[i], executor))
1427				return (B_TRUE);
1428		}
1429	}
1430
1431	return (B_FALSE);
1432}
1433
1434static int
1435zio_issue_async(zio_t *zio)
1436{
1437	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1438
1439	return (ZIO_PIPELINE_STOP);
1440}
1441
1442void
1443zio_interrupt(zio_t *zio)
1444{
1445	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1446}
1447
1448/*
1449 * Execute the I/O pipeline until one of the following occurs:
1450 *
1451 *	(1) the I/O completes
1452 *	(2) the pipeline stalls waiting for dependent child I/Os
1453 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1454 *	(4) the I/O is delegated by vdev-level caching or aggregation
1455 *	(5) the I/O is deferred due to vdev-level queueing
1456 *	(6) the I/O is handed off to another thread.
1457 *
1458 * In all cases, the pipeline stops whenever there's no CPU work; it never
1459 * burns a thread in cv_wait().
1460 *
1461 * There's no locking on io_stage because there's no legitimate way
1462 * for multiple threads to be attempting to process the same I/O.
1463 */
1464static zio_pipe_stage_t *zio_pipeline[];
1465
1466void
1467zio_execute(zio_t *zio)
1468{
1469	zio->io_executor = curthread;
1470
1471	while (zio->io_stage < ZIO_STAGE_DONE) {
1472		enum zio_stage pipeline = zio->io_pipeline;
1473		enum zio_stage stage = zio->io_stage;
1474		int rv;
1475
1476		ASSERT(!MUTEX_HELD(&zio->io_lock));
1477		ASSERT(ISP2(stage));
1478		ASSERT(zio->io_stall == NULL);
1479
1480		do {
1481			stage <<= 1;
1482		} while ((stage & pipeline) == 0);
1483
1484		ASSERT(stage <= ZIO_STAGE_DONE);
1485
1486		/*
1487		 * If we are in interrupt context and this pipeline stage
1488		 * will grab a config lock that is held across I/O,
1489		 * or may wait for an I/O that needs an interrupt thread
1490		 * to complete, issue async to avoid deadlock.
1491		 *
1492		 * For VDEV_IO_START, we cut in line so that the io will
1493		 * be sent to disk promptly.
1494		 */
1495		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1496		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1497			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1498			    zio_requeue_io_start_cut_in_line : B_FALSE;
1499			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1500			return;
1501		}
1502
1503		zio->io_stage = stage;
1504		rv = zio_pipeline[highbit64(stage) - 1](zio);
1505
1506		if (rv == ZIO_PIPELINE_STOP)
1507			return;
1508
1509		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1510	}
1511}
1512
1513/*
1514 * ==========================================================================
1515 * Initiate I/O, either sync or async
1516 * ==========================================================================
1517 */
1518int
1519zio_wait(zio_t *zio)
1520{
1521	int error;
1522
1523	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1524	ASSERT(zio->io_executor == NULL);
1525
1526	zio->io_waiter = curthread;
1527
1528	zio_execute(zio);
1529
1530	mutex_enter(&zio->io_lock);
1531	while (zio->io_executor != NULL)
1532		cv_wait(&zio->io_cv, &zio->io_lock);
1533	mutex_exit(&zio->io_lock);
1534
1535	error = zio->io_error;
1536	zio_destroy(zio);
1537
1538	return (error);
1539}
1540
1541void
1542zio_nowait(zio_t *zio)
1543{
1544	ASSERT(zio->io_executor == NULL);
1545
1546	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1547	    zio_unique_parent(zio) == NULL) {
1548		/*
1549		 * This is a logical async I/O with no parent to wait for it.
1550		 * We add it to the spa_async_root_zio "Godfather" I/O which
1551		 * will ensure they complete prior to unloading the pool.
1552		 */
1553		spa_t *spa = zio->io_spa;
1554
1555		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1556	}
1557
1558	zio_execute(zio);
1559}
1560
1561/*
1562 * ==========================================================================
1563 * Reexecute or suspend/resume failed I/O
1564 * ==========================================================================
1565 */
1566
1567static void
1568zio_reexecute(zio_t *pio)
1569{
1570	zio_t *cio, *cio_next;
1571
1572	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1573	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1574	ASSERT(pio->io_gang_leader == NULL);
1575	ASSERT(pio->io_gang_tree == NULL);
1576
1577	pio->io_flags = pio->io_orig_flags;
1578	pio->io_stage = pio->io_orig_stage;
1579	pio->io_pipeline = pio->io_orig_pipeline;
1580	pio->io_reexecute = 0;
1581	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1582	pio->io_error = 0;
1583	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1584		pio->io_state[w] = 0;
1585	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1586		pio->io_child_error[c] = 0;
1587
1588	if (IO_IS_ALLOCATING(pio))
1589		BP_ZERO(pio->io_bp);
1590
1591	/*
1592	 * As we reexecute pio's children, new children could be created.
1593	 * New children go to the head of pio's io_child_list, however,
1594	 * so we will (correctly) not reexecute them.  The key is that
1595	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1596	 * cannot be affected by any side effects of reexecuting 'cio'.
1597	 */
1598	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1599		cio_next = zio_walk_children(pio);
1600		mutex_enter(&pio->io_lock);
1601		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1602			pio->io_children[cio->io_child_type][w]++;
1603		mutex_exit(&pio->io_lock);
1604		zio_reexecute(cio);
1605	}
1606
1607	/*
1608	 * Now that all children have been reexecuted, execute the parent.
1609	 * We don't reexecute "The Godfather" I/O here as it's the
1610	 * responsibility of the caller to wait on him.
1611	 */
1612	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1613		zio_execute(pio);
1614}
1615
1616void
1617zio_suspend(spa_t *spa, zio_t *zio)
1618{
1619	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1620		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1621		    "failure and the failure mode property for this pool "
1622		    "is set to panic.", spa_name(spa));
1623
1624	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1625
1626	mutex_enter(&spa->spa_suspend_lock);
1627
1628	if (spa->spa_suspend_zio_root == NULL)
1629		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1630		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1631		    ZIO_FLAG_GODFATHER);
1632
1633	spa->spa_suspended = B_TRUE;
1634
1635	if (zio != NULL) {
1636		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1637		ASSERT(zio != spa->spa_suspend_zio_root);
1638		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1639		ASSERT(zio_unique_parent(zio) == NULL);
1640		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1641		zio_add_child(spa->spa_suspend_zio_root, zio);
1642	}
1643
1644	mutex_exit(&spa->spa_suspend_lock);
1645}
1646
1647int
1648zio_resume(spa_t *spa)
1649{
1650	zio_t *pio;
1651
1652	/*
1653	 * Reexecute all previously suspended i/o.
1654	 */
1655	mutex_enter(&spa->spa_suspend_lock);
1656	spa->spa_suspended = B_FALSE;
1657	cv_broadcast(&spa->spa_suspend_cv);
1658	pio = spa->spa_suspend_zio_root;
1659	spa->spa_suspend_zio_root = NULL;
1660	mutex_exit(&spa->spa_suspend_lock);
1661
1662	if (pio == NULL)
1663		return (0);
1664
1665	zio_reexecute(pio);
1666	return (zio_wait(pio));
1667}
1668
1669void
1670zio_resume_wait(spa_t *spa)
1671{
1672	mutex_enter(&spa->spa_suspend_lock);
1673	while (spa_suspended(spa))
1674		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1675	mutex_exit(&spa->spa_suspend_lock);
1676}
1677
1678/*
1679 * ==========================================================================
1680 * Gang blocks.
1681 *
1682 * A gang block is a collection of small blocks that looks to the DMU
1683 * like one large block.  When zio_dva_allocate() cannot find a block
1684 * of the requested size, due to either severe fragmentation or the pool
1685 * being nearly full, it calls zio_write_gang_block() to construct the
1686 * block from smaller fragments.
1687 *
1688 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1689 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1690 * an indirect block: it's an array of block pointers.  It consumes
1691 * only one sector and hence is allocatable regardless of fragmentation.
1692 * The gang header's bps point to its gang members, which hold the data.
1693 *
1694 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1695 * as the verifier to ensure uniqueness of the SHA256 checksum.
1696 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1697 * not the gang header.  This ensures that data block signatures (needed for
1698 * deduplication) are independent of how the block is physically stored.
1699 *
1700 * Gang blocks can be nested: a gang member may itself be a gang block.
1701 * Thus every gang block is a tree in which root and all interior nodes are
1702 * gang headers, and the leaves are normal blocks that contain user data.
1703 * The root of the gang tree is called the gang leader.
1704 *
1705 * To perform any operation (read, rewrite, free, claim) on a gang block,
1706 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1707 * in the io_gang_tree field of the original logical i/o by recursively
1708 * reading the gang leader and all gang headers below it.  This yields
1709 * an in-core tree containing the contents of every gang header and the
1710 * bps for every constituent of the gang block.
1711 *
1712 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1713 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1714 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1715 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1716 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1717 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1718 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1719 * of the gang header plus zio_checksum_compute() of the data to update the
1720 * gang header's blk_cksum as described above.
1721 *
1722 * The two-phase assemble/issue model solves the problem of partial failure --
1723 * what if you'd freed part of a gang block but then couldn't read the
1724 * gang header for another part?  Assembling the entire gang tree first
1725 * ensures that all the necessary gang header I/O has succeeded before
1726 * starting the actual work of free, claim, or write.  Once the gang tree
1727 * is assembled, free and claim are in-memory operations that cannot fail.
1728 *
1729 * In the event that a gang write fails, zio_dva_unallocate() walks the
1730 * gang tree to immediately free (i.e. insert back into the space map)
1731 * everything we've allocated.  This ensures that we don't get ENOSPC
1732 * errors during repeated suspend/resume cycles due to a flaky device.
1733 *
1734 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1735 * the gang tree, we won't modify the block, so we can safely defer the free
1736 * (knowing that the block is still intact).  If we *can* assemble the gang
1737 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1738 * each constituent bp and we can allocate a new block on the next sync pass.
1739 *
1740 * In all cases, the gang tree allows complete recovery from partial failure.
1741 * ==========================================================================
1742 */
1743
1744static zio_t *
1745zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1746{
1747	if (gn != NULL)
1748		return (pio);
1749
1750	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1751	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1752	    &pio->io_bookmark));
1753}
1754
1755zio_t *
1756zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1757{
1758	zio_t *zio;
1759
1760	if (gn != NULL) {
1761		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1762		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1763		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1764		/*
1765		 * As we rewrite each gang header, the pipeline will compute
1766		 * a new gang block header checksum for it; but no one will
1767		 * compute a new data checksum, so we do that here.  The one
1768		 * exception is the gang leader: the pipeline already computed
1769		 * its data checksum because that stage precedes gang assembly.
1770		 * (Presently, nothing actually uses interior data checksums;
1771		 * this is just good hygiene.)
1772		 */
1773		if (gn != pio->io_gang_leader->io_gang_tree) {
1774			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1775			    data, BP_GET_PSIZE(bp));
1776		}
1777		/*
1778		 * If we are here to damage data for testing purposes,
1779		 * leave the GBH alone so that we can detect the damage.
1780		 */
1781		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1782			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1783	} else {
1784		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1785		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1786		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1787	}
1788
1789	return (zio);
1790}
1791
1792/* ARGSUSED */
1793zio_t *
1794zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1795{
1796	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1797	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1798	    ZIO_GANG_CHILD_FLAGS(pio)));
1799}
1800
1801/* ARGSUSED */
1802zio_t *
1803zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1804{
1805	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1806	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1807}
1808
1809static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1810	NULL,
1811	zio_read_gang,
1812	zio_rewrite_gang,
1813	zio_free_gang,
1814	zio_claim_gang,
1815	NULL
1816};
1817
1818static void zio_gang_tree_assemble_done(zio_t *zio);
1819
1820static zio_gang_node_t *
1821zio_gang_node_alloc(zio_gang_node_t **gnpp)
1822{
1823	zio_gang_node_t *gn;
1824
1825	ASSERT(*gnpp == NULL);
1826
1827	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1828	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1829	*gnpp = gn;
1830
1831	return (gn);
1832}
1833
1834static void
1835zio_gang_node_free(zio_gang_node_t **gnpp)
1836{
1837	zio_gang_node_t *gn = *gnpp;
1838
1839	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1840		ASSERT(gn->gn_child[g] == NULL);
1841
1842	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1843	kmem_free(gn, sizeof (*gn));
1844	*gnpp = NULL;
1845}
1846
1847static void
1848zio_gang_tree_free(zio_gang_node_t **gnpp)
1849{
1850	zio_gang_node_t *gn = *gnpp;
1851
1852	if (gn == NULL)
1853		return;
1854
1855	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1856		zio_gang_tree_free(&gn->gn_child[g]);
1857
1858	zio_gang_node_free(gnpp);
1859}
1860
1861static void
1862zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1863{
1864	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1865
1866	ASSERT(gio->io_gang_leader == gio);
1867	ASSERT(BP_IS_GANG(bp));
1868
1869	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1870	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1871	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1872}
1873
1874static void
1875zio_gang_tree_assemble_done(zio_t *zio)
1876{
1877	zio_t *gio = zio->io_gang_leader;
1878	zio_gang_node_t *gn = zio->io_private;
1879	blkptr_t *bp = zio->io_bp;
1880
1881	ASSERT(gio == zio_unique_parent(zio));
1882	ASSERT(zio->io_child_count == 0);
1883
1884	if (zio->io_error)
1885		return;
1886
1887	if (BP_SHOULD_BYTESWAP(bp))
1888		byteswap_uint64_array(zio->io_data, zio->io_size);
1889
1890	ASSERT(zio->io_data == gn->gn_gbh);
1891	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1892	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1893
1894	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1895		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1896		if (!BP_IS_GANG(gbp))
1897			continue;
1898		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1899	}
1900}
1901
1902static void
1903zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1904{
1905	zio_t *gio = pio->io_gang_leader;
1906	zio_t *zio;
1907
1908	ASSERT(BP_IS_GANG(bp) == !!gn);
1909	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1910	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1911
1912	/*
1913	 * If you're a gang header, your data is in gn->gn_gbh.
1914	 * If you're a gang member, your data is in 'data' and gn == NULL.
1915	 */
1916	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1917
1918	if (gn != NULL) {
1919		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1920
1921		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1922			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1923			if (BP_IS_HOLE(gbp))
1924				continue;
1925			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1926			data = (char *)data + BP_GET_PSIZE(gbp);
1927		}
1928	}
1929
1930	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1931		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1932
1933	if (zio != pio)
1934		zio_nowait(zio);
1935}
1936
1937static int
1938zio_gang_assemble(zio_t *zio)
1939{
1940	blkptr_t *bp = zio->io_bp;
1941
1942	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1943	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1944
1945	zio->io_gang_leader = zio;
1946
1947	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1948
1949	return (ZIO_PIPELINE_CONTINUE);
1950}
1951
1952static int
1953zio_gang_issue(zio_t *zio)
1954{
1955	blkptr_t *bp = zio->io_bp;
1956
1957	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1958		return (ZIO_PIPELINE_STOP);
1959
1960	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1961	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1962
1963	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1964		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1965	else
1966		zio_gang_tree_free(&zio->io_gang_tree);
1967
1968	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1969
1970	return (ZIO_PIPELINE_CONTINUE);
1971}
1972
1973static void
1974zio_write_gang_member_ready(zio_t *zio)
1975{
1976	zio_t *pio = zio_unique_parent(zio);
1977	zio_t *gio = zio->io_gang_leader;
1978	dva_t *cdva = zio->io_bp->blk_dva;
1979	dva_t *pdva = pio->io_bp->blk_dva;
1980	uint64_t asize;
1981
1982	if (BP_IS_HOLE(zio->io_bp))
1983		return;
1984
1985	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1986
1987	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1988	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1989	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1990	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1991	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1992
1993	mutex_enter(&pio->io_lock);
1994	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1995		ASSERT(DVA_GET_GANG(&pdva[d]));
1996		asize = DVA_GET_ASIZE(&pdva[d]);
1997		asize += DVA_GET_ASIZE(&cdva[d]);
1998		DVA_SET_ASIZE(&pdva[d], asize);
1999	}
2000	mutex_exit(&pio->io_lock);
2001}
2002
2003static int
2004zio_write_gang_block(zio_t *pio)
2005{
2006	spa_t *spa = pio->io_spa;
2007	blkptr_t *bp = pio->io_bp;
2008	zio_t *gio = pio->io_gang_leader;
2009	zio_t *zio;
2010	zio_gang_node_t *gn, **gnpp;
2011	zio_gbh_phys_t *gbh;
2012	uint64_t txg = pio->io_txg;
2013	uint64_t resid = pio->io_size;
2014	uint64_t lsize;
2015	int copies = gio->io_prop.zp_copies;
2016	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2017	zio_prop_t zp;
2018	int error;
2019
2020	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2021	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2022	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2023	if (error) {
2024		pio->io_error = error;
2025		return (ZIO_PIPELINE_CONTINUE);
2026	}
2027
2028	if (pio == gio) {
2029		gnpp = &gio->io_gang_tree;
2030	} else {
2031		gnpp = pio->io_private;
2032		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2033	}
2034
2035	gn = zio_gang_node_alloc(gnpp);
2036	gbh = gn->gn_gbh;
2037	bzero(gbh, SPA_GANGBLOCKSIZE);
2038
2039	/*
2040	 * Create the gang header.
2041	 */
2042	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2043	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2044
2045	/*
2046	 * Create and nowait the gang children.
2047	 */
2048	for (int g = 0; resid != 0; resid -= lsize, g++) {
2049		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2050		    SPA_MINBLOCKSIZE);
2051		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2052
2053		zp.zp_checksum = gio->io_prop.zp_checksum;
2054		zp.zp_compress = ZIO_COMPRESS_OFF;
2055		zp.zp_type = DMU_OT_NONE;
2056		zp.zp_level = 0;
2057		zp.zp_copies = gio->io_prop.zp_copies;
2058		zp.zp_dedup = B_FALSE;
2059		zp.zp_dedup_verify = B_FALSE;
2060		zp.zp_nopwrite = B_FALSE;
2061
2062		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2063		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2064		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2065		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2066		    &pio->io_bookmark));
2067	}
2068
2069	/*
2070	 * Set pio's pipeline to just wait for zio to finish.
2071	 */
2072	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2073
2074	zio_nowait(zio);
2075
2076	return (ZIO_PIPELINE_CONTINUE);
2077}
2078
2079/*
2080 * The zio_nop_write stage in the pipeline determines if allocating a
2081 * new bp is necessary.  The nopwrite feature can handle writes in
2082 * either syncing or open context (i.e. zil writes) and as a result is
2083 * mutually exclusive with dedup.
2084 *
2085 * By leveraging a cryptographically secure checksum, such as SHA256, we
2086 * can compare the checksums of the new data and the old to determine if
2087 * allocating a new block is required.  Note that our requirements for
2088 * cryptographic strength are fairly weak: there can't be any accidental
2089 * hash collisions, but we don't need to be secure against intentional
2090 * (malicious) collisions.  To trigger a nopwrite, you have to be able
2091 * to write the file to begin with, and triggering an incorrect (hash
2092 * collision) nopwrite is no worse than simply writing to the file.
2093 * That said, there are no known attacks against the checksum algorithms
2094 * used for nopwrite, assuming that the salt and the checksums
2095 * themselves remain secret.
2096 */
2097static int
2098zio_nop_write(zio_t *zio)
2099{
2100	blkptr_t *bp = zio->io_bp;
2101	blkptr_t *bp_orig = &zio->io_bp_orig;
2102	zio_prop_t *zp = &zio->io_prop;
2103
2104	ASSERT(BP_GET_LEVEL(bp) == 0);
2105	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2106	ASSERT(zp->zp_nopwrite);
2107	ASSERT(!zp->zp_dedup);
2108	ASSERT(zio->io_bp_override == NULL);
2109	ASSERT(IO_IS_ALLOCATING(zio));
2110
2111	/*
2112	 * Check to see if the original bp and the new bp have matching
2113	 * characteristics (i.e. same checksum, compression algorithms, etc).
2114	 * If they don't then just continue with the pipeline which will
2115	 * allocate a new bp.
2116	 */
2117	if (BP_IS_HOLE(bp_orig) ||
2118	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2119	    ZCHECKSUM_FLAG_NOPWRITE) ||
2120	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2121	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2122	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2123	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2124		return (ZIO_PIPELINE_CONTINUE);
2125
2126	/*
2127	 * If the checksums match then reset the pipeline so that we
2128	 * avoid allocating a new bp and issuing any I/O.
2129	 */
2130	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2131		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2132		    ZCHECKSUM_FLAG_NOPWRITE);
2133		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2134		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2135		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2136		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2137		    sizeof (uint64_t)) == 0);
2138
2139		*bp = *bp_orig;
2140		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2141		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2142	}
2143
2144	return (ZIO_PIPELINE_CONTINUE);
2145}
2146
2147/*
2148 * ==========================================================================
2149 * Dedup
2150 * ==========================================================================
2151 */
2152static void
2153zio_ddt_child_read_done(zio_t *zio)
2154{
2155	blkptr_t *bp = zio->io_bp;
2156	ddt_entry_t *dde = zio->io_private;
2157	ddt_phys_t *ddp;
2158	zio_t *pio = zio_unique_parent(zio);
2159
2160	mutex_enter(&pio->io_lock);
2161	ddp = ddt_phys_select(dde, bp);
2162	if (zio->io_error == 0)
2163		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2164	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2165		dde->dde_repair_data = zio->io_data;
2166	else
2167		zio_buf_free(zio->io_data, zio->io_size);
2168	mutex_exit(&pio->io_lock);
2169}
2170
2171static int
2172zio_ddt_read_start(zio_t *zio)
2173{
2174	blkptr_t *bp = zio->io_bp;
2175
2176	ASSERT(BP_GET_DEDUP(bp));
2177	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2178	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2179
2180	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2181		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2182		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2183		ddt_phys_t *ddp = dde->dde_phys;
2184		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2185		blkptr_t blk;
2186
2187		ASSERT(zio->io_vsd == NULL);
2188		zio->io_vsd = dde;
2189
2190		if (ddp_self == NULL)
2191			return (ZIO_PIPELINE_CONTINUE);
2192
2193		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2194			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2195				continue;
2196			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2197			    &blk);
2198			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2199			    zio_buf_alloc(zio->io_size), zio->io_size,
2200			    zio_ddt_child_read_done, dde, zio->io_priority,
2201			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2202			    &zio->io_bookmark));
2203		}
2204		return (ZIO_PIPELINE_CONTINUE);
2205	}
2206
2207	zio_nowait(zio_read(zio, zio->io_spa, bp,
2208	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2209	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2210
2211	return (ZIO_PIPELINE_CONTINUE);
2212}
2213
2214static int
2215zio_ddt_read_done(zio_t *zio)
2216{
2217	blkptr_t *bp = zio->io_bp;
2218
2219	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2220		return (ZIO_PIPELINE_STOP);
2221
2222	ASSERT(BP_GET_DEDUP(bp));
2223	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2224	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2225
2226	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2227		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2228		ddt_entry_t *dde = zio->io_vsd;
2229		if (ddt == NULL) {
2230			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2231			return (ZIO_PIPELINE_CONTINUE);
2232		}
2233		if (dde == NULL) {
2234			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2235			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2236			return (ZIO_PIPELINE_STOP);
2237		}
2238		if (dde->dde_repair_data != NULL) {
2239			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2240			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2241		}
2242		ddt_repair_done(ddt, dde);
2243		zio->io_vsd = NULL;
2244	}
2245
2246	ASSERT(zio->io_vsd == NULL);
2247
2248	return (ZIO_PIPELINE_CONTINUE);
2249}
2250
2251static boolean_t
2252zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2253{
2254	spa_t *spa = zio->io_spa;
2255
2256	/*
2257	 * Note: we compare the original data, not the transformed data,
2258	 * because when zio->io_bp is an override bp, we will not have
2259	 * pushed the I/O transforms.  That's an important optimization
2260	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2261	 */
2262	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2263		zio_t *lio = dde->dde_lead_zio[p];
2264
2265		if (lio != NULL) {
2266			return (lio->io_orig_size != zio->io_orig_size ||
2267			    bcmp(zio->io_orig_data, lio->io_orig_data,
2268			    zio->io_orig_size) != 0);
2269		}
2270	}
2271
2272	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2273		ddt_phys_t *ddp = &dde->dde_phys[p];
2274
2275		if (ddp->ddp_phys_birth != 0) {
2276			arc_buf_t *abuf = NULL;
2277			arc_flags_t aflags = ARC_FLAG_WAIT;
2278			blkptr_t blk = *zio->io_bp;
2279			int error;
2280
2281			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2282
2283			ddt_exit(ddt);
2284
2285			error = arc_read(NULL, spa, &blk,
2286			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2287			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2288			    &aflags, &zio->io_bookmark);
2289
2290			if (error == 0) {
2291				if (arc_buf_size(abuf) != zio->io_orig_size ||
2292				    bcmp(abuf->b_data, zio->io_orig_data,
2293				    zio->io_orig_size) != 0)
2294					error = SET_ERROR(EEXIST);
2295				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2296			}
2297
2298			ddt_enter(ddt);
2299			return (error != 0);
2300		}
2301	}
2302
2303	return (B_FALSE);
2304}
2305
2306static void
2307zio_ddt_child_write_ready(zio_t *zio)
2308{
2309	int p = zio->io_prop.zp_copies;
2310	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2311	ddt_entry_t *dde = zio->io_private;
2312	ddt_phys_t *ddp = &dde->dde_phys[p];
2313	zio_t *pio;
2314
2315	if (zio->io_error)
2316		return;
2317
2318	ddt_enter(ddt);
2319
2320	ASSERT(dde->dde_lead_zio[p] == zio);
2321
2322	ddt_phys_fill(ddp, zio->io_bp);
2323
2324	while ((pio = zio_walk_parents(zio)) != NULL)
2325		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2326
2327	ddt_exit(ddt);
2328}
2329
2330static void
2331zio_ddt_child_write_done(zio_t *zio)
2332{
2333	int p = zio->io_prop.zp_copies;
2334	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2335	ddt_entry_t *dde = zio->io_private;
2336	ddt_phys_t *ddp = &dde->dde_phys[p];
2337
2338	ddt_enter(ddt);
2339
2340	ASSERT(ddp->ddp_refcnt == 0);
2341	ASSERT(dde->dde_lead_zio[p] == zio);
2342	dde->dde_lead_zio[p] = NULL;
2343
2344	if (zio->io_error == 0) {
2345		while (zio_walk_parents(zio) != NULL)
2346			ddt_phys_addref(ddp);
2347	} else {
2348		ddt_phys_clear(ddp);
2349	}
2350
2351	ddt_exit(ddt);
2352}
2353
2354static void
2355zio_ddt_ditto_write_done(zio_t *zio)
2356{
2357	int p = DDT_PHYS_DITTO;
2358	zio_prop_t *zp = &zio->io_prop;
2359	blkptr_t *bp = zio->io_bp;
2360	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2361	ddt_entry_t *dde = zio->io_private;
2362	ddt_phys_t *ddp = &dde->dde_phys[p];
2363	ddt_key_t *ddk = &dde->dde_key;
2364
2365	ddt_enter(ddt);
2366
2367	ASSERT(ddp->ddp_refcnt == 0);
2368	ASSERT(dde->dde_lead_zio[p] == zio);
2369	dde->dde_lead_zio[p] = NULL;
2370
2371	if (zio->io_error == 0) {
2372		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2373		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2374		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2375		if (ddp->ddp_phys_birth != 0)
2376			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2377		ddt_phys_fill(ddp, bp);
2378	}
2379
2380	ddt_exit(ddt);
2381}
2382
2383static int
2384zio_ddt_write(zio_t *zio)
2385{
2386	spa_t *spa = zio->io_spa;
2387	blkptr_t *bp = zio->io_bp;
2388	uint64_t txg = zio->io_txg;
2389	zio_prop_t *zp = &zio->io_prop;
2390	int p = zp->zp_copies;
2391	int ditto_copies;
2392	zio_t *cio = NULL;
2393	zio_t *dio = NULL;
2394	ddt_t *ddt = ddt_select(spa, bp);
2395	ddt_entry_t *dde;
2396	ddt_phys_t *ddp;
2397
2398	ASSERT(BP_GET_DEDUP(bp));
2399	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2400	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2401
2402	ddt_enter(ddt);
2403	dde = ddt_lookup(ddt, bp, B_TRUE);
2404	ddp = &dde->dde_phys[p];
2405
2406	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2407		/*
2408		 * If we're using a weak checksum, upgrade to a strong checksum
2409		 * and try again.  If we're already using a strong checksum,
2410		 * we can't resolve it, so just convert to an ordinary write.
2411		 * (And automatically e-mail a paper to Nature?)
2412		 */
2413		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2414		    ZCHECKSUM_FLAG_DEDUP)) {
2415			zp->zp_checksum = spa_dedup_checksum(spa);
2416			zio_pop_transforms(zio);
2417			zio->io_stage = ZIO_STAGE_OPEN;
2418			BP_ZERO(bp);
2419		} else {
2420			zp->zp_dedup = B_FALSE;
2421		}
2422		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2423		ddt_exit(ddt);
2424		return (ZIO_PIPELINE_CONTINUE);
2425	}
2426
2427	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2428	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2429
2430	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2431	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2432		zio_prop_t czp = *zp;
2433
2434		czp.zp_copies = ditto_copies;
2435
2436		/*
2437		 * If we arrived here with an override bp, we won't have run
2438		 * the transform stack, so we won't have the data we need to
2439		 * generate a child i/o.  So, toss the override bp and restart.
2440		 * This is safe, because using the override bp is just an
2441		 * optimization; and it's rare, so the cost doesn't matter.
2442		 */
2443		if (zio->io_bp_override) {
2444			zio_pop_transforms(zio);
2445			zio->io_stage = ZIO_STAGE_OPEN;
2446			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2447			zio->io_bp_override = NULL;
2448			BP_ZERO(bp);
2449			ddt_exit(ddt);
2450			return (ZIO_PIPELINE_CONTINUE);
2451		}
2452
2453		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2454		    zio->io_orig_size, &czp, NULL, NULL,
2455		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2456		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2457
2458		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2459		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2460	}
2461
2462	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2463		if (ddp->ddp_phys_birth != 0)
2464			ddt_bp_fill(ddp, bp, txg);
2465		if (dde->dde_lead_zio[p] != NULL)
2466			zio_add_child(zio, dde->dde_lead_zio[p]);
2467		else
2468			ddt_phys_addref(ddp);
2469	} else if (zio->io_bp_override) {
2470		ASSERT(bp->blk_birth == txg);
2471		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2472		ddt_phys_fill(ddp, bp);
2473		ddt_phys_addref(ddp);
2474	} else {
2475		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2476		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2477		    zio_ddt_child_write_done, dde, zio->io_priority,
2478		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2479
2480		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2481		dde->dde_lead_zio[p] = cio;
2482	}
2483
2484	ddt_exit(ddt);
2485
2486	if (cio)
2487		zio_nowait(cio);
2488	if (dio)
2489		zio_nowait(dio);
2490
2491	return (ZIO_PIPELINE_CONTINUE);
2492}
2493
2494ddt_entry_t *freedde; /* for debugging */
2495
2496static int
2497zio_ddt_free(zio_t *zio)
2498{
2499	spa_t *spa = zio->io_spa;
2500	blkptr_t *bp = zio->io_bp;
2501	ddt_t *ddt = ddt_select(spa, bp);
2502	ddt_entry_t *dde;
2503	ddt_phys_t *ddp;
2504
2505	ASSERT(BP_GET_DEDUP(bp));
2506	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2507
2508	ddt_enter(ddt);
2509	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2510	ddp = ddt_phys_select(dde, bp);
2511	ddt_phys_decref(ddp);
2512	ddt_exit(ddt);
2513
2514	return (ZIO_PIPELINE_CONTINUE);
2515}
2516
2517/*
2518 * ==========================================================================
2519 * Allocate and free blocks
2520 * ==========================================================================
2521 */
2522static int
2523zio_dva_allocate(zio_t *zio)
2524{
2525	spa_t *spa = zio->io_spa;
2526	metaslab_class_t *mc = spa_normal_class(spa);
2527	blkptr_t *bp = zio->io_bp;
2528	int error;
2529	int flags = 0;
2530
2531	if (zio->io_gang_leader == NULL) {
2532		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2533		zio->io_gang_leader = zio;
2534	}
2535
2536	ASSERT(BP_IS_HOLE(bp));
2537	ASSERT0(BP_GET_NDVAS(bp));
2538	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2539	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2540	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2541
2542	/*
2543	 * The dump device does not support gang blocks so allocation on
2544	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2545	 * the "fast" gang feature.
2546	 */
2547	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2548	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2549	    METASLAB_GANG_CHILD : 0;
2550	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2551	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2552
2553	if (error) {
2554		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2555		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2556		    error);
2557		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2558			return (zio_write_gang_block(zio));
2559		zio->io_error = error;
2560	}
2561
2562	return (ZIO_PIPELINE_CONTINUE);
2563}
2564
2565static int
2566zio_dva_free(zio_t *zio)
2567{
2568	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2569
2570	return (ZIO_PIPELINE_CONTINUE);
2571}
2572
2573static int
2574zio_dva_claim(zio_t *zio)
2575{
2576	int error;
2577
2578	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2579	if (error)
2580		zio->io_error = error;
2581
2582	return (ZIO_PIPELINE_CONTINUE);
2583}
2584
2585/*
2586 * Undo an allocation.  This is used by zio_done() when an I/O fails
2587 * and we want to give back the block we just allocated.
2588 * This handles both normal blocks and gang blocks.
2589 */
2590static void
2591zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2592{
2593	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2594	ASSERT(zio->io_bp_override == NULL);
2595
2596	if (!BP_IS_HOLE(bp))
2597		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2598
2599	if (gn != NULL) {
2600		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2601			zio_dva_unallocate(zio, gn->gn_child[g],
2602			    &gn->gn_gbh->zg_blkptr[g]);
2603		}
2604	}
2605}
2606
2607/*
2608 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2609 */
2610int
2611zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2612    uint64_t size, boolean_t use_slog)
2613{
2614	int error = 1;
2615
2616	ASSERT(txg > spa_syncing_txg(spa));
2617
2618	/*
2619	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2620	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2621	 * when allocating them.
2622	 */
2623	if (use_slog) {
2624		error = metaslab_alloc(spa, spa_log_class(spa), size,
2625		    new_bp, 1, txg, old_bp,
2626		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2627	}
2628
2629	if (error) {
2630		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2631		    new_bp, 1, txg, old_bp,
2632		    METASLAB_HINTBP_AVOID);
2633	}
2634
2635	if (error == 0) {
2636		BP_SET_LSIZE(new_bp, size);
2637		BP_SET_PSIZE(new_bp, size);
2638		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2639		BP_SET_CHECKSUM(new_bp,
2640		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2641		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2642		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2643		BP_SET_LEVEL(new_bp, 0);
2644		BP_SET_DEDUP(new_bp, 0);
2645		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2646	}
2647
2648	return (error);
2649}
2650
2651/*
2652 * Free an intent log block.
2653 */
2654void
2655zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2656{
2657	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2658	ASSERT(!BP_IS_GANG(bp));
2659
2660	zio_free(spa, txg, bp);
2661}
2662
2663/*
2664 * ==========================================================================
2665 * Read, write and delete to physical devices
2666 * ==========================================================================
2667 */
2668
2669
2670/*
2671 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2672 * stops after this stage and will resume upon I/O completion.
2673 * However, there are instances where the vdev layer may need to
2674 * continue the pipeline when an I/O was not issued. Since the I/O
2675 * that was sent to the vdev layer might be different than the one
2676 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2677 * force the underlying vdev layers to call either zio_execute() or
2678 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2679 */
2680static int
2681zio_vdev_io_start(zio_t *zio)
2682{
2683	vdev_t *vd = zio->io_vd;
2684	uint64_t align;
2685	spa_t *spa = zio->io_spa;
2686	int ret;
2687
2688	ASSERT(zio->io_error == 0);
2689	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2690
2691	if (vd == NULL) {
2692		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2693			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2694
2695		/*
2696		 * The mirror_ops handle multiple DVAs in a single BP.
2697		 */
2698		vdev_mirror_ops.vdev_op_io_start(zio);
2699		return (ZIO_PIPELINE_STOP);
2700	}
2701
2702	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2703	    zio->io_priority == ZIO_PRIORITY_NOW) {
2704		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2705		return (ZIO_PIPELINE_CONTINUE);
2706	}
2707
2708	/*
2709	 * We keep track of time-sensitive I/Os so that the scan thread
2710	 * can quickly react to certain workloads.  In particular, we care
2711	 * about non-scrubbing, top-level reads and writes with the following
2712	 * characteristics:
2713	 *	- synchronous writes of user data to non-slog devices
2714	 *	- any reads of user data
2715	 * When these conditions are met, adjust the timestamp of spa_last_io
2716	 * which allows the scan thread to adjust its workload accordingly.
2717	 */
2718	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2719	    vd == vd->vdev_top && !vd->vdev_islog &&
2720	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2721	    zio->io_txg != spa_syncing_txg(spa)) {
2722		uint64_t old = spa->spa_last_io;
2723		uint64_t new = ddi_get_lbolt64();
2724		if (old != new)
2725			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2726	}
2727
2728	align = 1ULL << vd->vdev_top->vdev_ashift;
2729
2730	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2731	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2732	    P2PHASE(zio->io_size, align) != 0) {
2733		/* Transform logical writes to be a full physical block size. */
2734		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2735		char *abuf = NULL;
2736		if (zio->io_type == ZIO_TYPE_READ ||
2737		    zio->io_type == ZIO_TYPE_WRITE)
2738			abuf = zio_buf_alloc(asize);
2739		ASSERT(vd == vd->vdev_top);
2740		if (zio->io_type == ZIO_TYPE_WRITE) {
2741			bcopy(zio->io_data, abuf, zio->io_size);
2742			bzero(abuf + zio->io_size, asize - zio->io_size);
2743		}
2744		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2745		    zio_subblock);
2746	}
2747
2748	/*
2749	 * If this is not a physical io, make sure that it is properly aligned
2750	 * before proceeding.
2751	 */
2752	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2753		ASSERT0(P2PHASE(zio->io_offset, align));
2754		ASSERT0(P2PHASE(zio->io_size, align));
2755	} else {
2756		/*
2757		 * For physical writes, we allow 512b aligned writes and assume
2758		 * the device will perform a read-modify-write as necessary.
2759		 */
2760		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2761		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2762	}
2763
2764	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2765
2766	/*
2767	 * If this is a repair I/O, and there's no self-healing involved --
2768	 * that is, we're just resilvering what we expect to resilver --
2769	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2770	 * This prevents spurious resilvering with nested replication.
2771	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2772	 * A is out of date, we'll read from C+D, then use the data to
2773	 * resilver A+B -- but we don't actually want to resilver B, just A.
2774	 * The top-level mirror has no way to know this, so instead we just
2775	 * discard unnecessary repairs as we work our way down the vdev tree.
2776	 * The same logic applies to any form of nested replication:
2777	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2778	 */
2779	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2780	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2781	    zio->io_txg != 0 &&	/* not a delegated i/o */
2782	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2783		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2784		zio_vdev_io_bypass(zio);
2785		return (ZIO_PIPELINE_CONTINUE);
2786	}
2787
2788	if (vd->vdev_ops->vdev_op_leaf) {
2789		switch (zio->io_type) {
2790		case ZIO_TYPE_READ:
2791			if (vdev_cache_read(zio))
2792				return (ZIO_PIPELINE_CONTINUE);
2793			/* FALLTHROUGH */
2794		case ZIO_TYPE_WRITE:
2795		case ZIO_TYPE_FREE:
2796			if ((zio = vdev_queue_io(zio)) == NULL)
2797				return (ZIO_PIPELINE_STOP);
2798
2799			if (!vdev_accessible(vd, zio)) {
2800				zio->io_error = SET_ERROR(ENXIO);
2801				zio_interrupt(zio);
2802				return (ZIO_PIPELINE_STOP);
2803			}
2804			break;
2805		}
2806		/*
2807		 * Note that we ignore repair writes for TRIM because they can
2808		 * conflict with normal writes. This isn't an issue because, by
2809		 * definition, we only repair blocks that aren't freed.
2810		 */
2811		if (zio->io_type == ZIO_TYPE_WRITE &&
2812		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2813		    !trim_map_write_start(zio))
2814			return (ZIO_PIPELINE_STOP);
2815	}
2816
2817	vd->vdev_ops->vdev_op_io_start(zio);
2818	return (ZIO_PIPELINE_STOP);
2819}
2820
2821static int
2822zio_vdev_io_done(zio_t *zio)
2823{
2824	vdev_t *vd = zio->io_vd;
2825	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2826	boolean_t unexpected_error = B_FALSE;
2827
2828	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2829		return (ZIO_PIPELINE_STOP);
2830
2831	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2832	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2833
2834	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2835	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2836	    zio->io_type == ZIO_TYPE_FREE)) {
2837
2838		if (zio->io_type == ZIO_TYPE_WRITE &&
2839		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2840			trim_map_write_done(zio);
2841
2842		vdev_queue_io_done(zio);
2843
2844		if (zio->io_type == ZIO_TYPE_WRITE)
2845			vdev_cache_write(zio);
2846
2847		if (zio_injection_enabled && zio->io_error == 0)
2848			zio->io_error = zio_handle_device_injection(vd,
2849			    zio, EIO);
2850
2851		if (zio_injection_enabled && zio->io_error == 0)
2852			zio->io_error = zio_handle_label_injection(zio, EIO);
2853
2854		if (zio->io_error) {
2855			if (zio->io_error == ENOTSUP &&
2856			    zio->io_type == ZIO_TYPE_FREE) {
2857				/* Not all devices support TRIM. */
2858			} else if (!vdev_accessible(vd, zio)) {
2859				zio->io_error = SET_ERROR(ENXIO);
2860			} else {
2861				unexpected_error = B_TRUE;
2862			}
2863		}
2864	}
2865
2866	ops->vdev_op_io_done(zio);
2867
2868	if (unexpected_error)
2869		VERIFY(vdev_probe(vd, zio) == NULL);
2870
2871	return (ZIO_PIPELINE_CONTINUE);
2872}
2873
2874/*
2875 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2876 * disk, and use that to finish the checksum ereport later.
2877 */
2878static void
2879zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2880    const void *good_buf)
2881{
2882	/* no processing needed */
2883	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2884}
2885
2886/*ARGSUSED*/
2887void
2888zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2889{
2890	void *buf = zio_buf_alloc(zio->io_size);
2891
2892	bcopy(zio->io_data, buf, zio->io_size);
2893
2894	zcr->zcr_cbinfo = zio->io_size;
2895	zcr->zcr_cbdata = buf;
2896	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2897	zcr->zcr_free = zio_buf_free;
2898}
2899
2900static int
2901zio_vdev_io_assess(zio_t *zio)
2902{
2903	vdev_t *vd = zio->io_vd;
2904
2905	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2906		return (ZIO_PIPELINE_STOP);
2907
2908	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2909		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2910
2911	if (zio->io_vsd != NULL) {
2912		zio->io_vsd_ops->vsd_free(zio);
2913		zio->io_vsd = NULL;
2914	}
2915
2916	if (zio_injection_enabled && zio->io_error == 0)
2917		zio->io_error = zio_handle_fault_injection(zio, EIO);
2918
2919	if (zio->io_type == ZIO_TYPE_FREE &&
2920	    zio->io_priority != ZIO_PRIORITY_NOW) {
2921		switch (zio->io_error) {
2922		case 0:
2923			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2924			ZIO_TRIM_STAT_BUMP(success);
2925			break;
2926		case EOPNOTSUPP:
2927			ZIO_TRIM_STAT_BUMP(unsupported);
2928			break;
2929		default:
2930			ZIO_TRIM_STAT_BUMP(failed);
2931			break;
2932		}
2933	}
2934
2935	/*
2936	 * If the I/O failed, determine whether we should attempt to retry it.
2937	 *
2938	 * On retry, we cut in line in the issue queue, since we don't want
2939	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2940	 */
2941	if (zio->io_error && vd == NULL &&
2942	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2943		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2944		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2945		zio->io_error = 0;
2946		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2947		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2948		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2949		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2950		    zio_requeue_io_start_cut_in_line);
2951		return (ZIO_PIPELINE_STOP);
2952	}
2953
2954	/*
2955	 * If we got an error on a leaf device, convert it to ENXIO
2956	 * if the device is not accessible at all.
2957	 */
2958	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2959	    !vdev_accessible(vd, zio))
2960		zio->io_error = SET_ERROR(ENXIO);
2961
2962	/*
2963	 * If we can't write to an interior vdev (mirror or RAID-Z),
2964	 * set vdev_cant_write so that we stop trying to allocate from it.
2965	 */
2966	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2967	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2968		vd->vdev_cant_write = B_TRUE;
2969	}
2970
2971	if (zio->io_error)
2972		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2973
2974	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2975	    zio->io_physdone != NULL) {
2976		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2977		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2978		zio->io_physdone(zio->io_logical);
2979	}
2980
2981	return (ZIO_PIPELINE_CONTINUE);
2982}
2983
2984void
2985zio_vdev_io_reissue(zio_t *zio)
2986{
2987	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2988	ASSERT(zio->io_error == 0);
2989
2990	zio->io_stage >>= 1;
2991}
2992
2993void
2994zio_vdev_io_redone(zio_t *zio)
2995{
2996	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2997
2998	zio->io_stage >>= 1;
2999}
3000
3001void
3002zio_vdev_io_bypass(zio_t *zio)
3003{
3004	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3005	ASSERT(zio->io_error == 0);
3006
3007	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3008	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3009}
3010
3011/*
3012 * ==========================================================================
3013 * Generate and verify checksums
3014 * ==========================================================================
3015 */
3016static int
3017zio_checksum_generate(zio_t *zio)
3018{
3019	blkptr_t *bp = zio->io_bp;
3020	enum zio_checksum checksum;
3021
3022	if (bp == NULL) {
3023		/*
3024		 * This is zio_write_phys().
3025		 * We're either generating a label checksum, or none at all.
3026		 */
3027		checksum = zio->io_prop.zp_checksum;
3028
3029		if (checksum == ZIO_CHECKSUM_OFF)
3030			return (ZIO_PIPELINE_CONTINUE);
3031
3032		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3033	} else {
3034		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3035			ASSERT(!IO_IS_ALLOCATING(zio));
3036			checksum = ZIO_CHECKSUM_GANG_HEADER;
3037		} else {
3038			checksum = BP_GET_CHECKSUM(bp);
3039		}
3040	}
3041
3042	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3043
3044	return (ZIO_PIPELINE_CONTINUE);
3045}
3046
3047static int
3048zio_checksum_verify(zio_t *zio)
3049{
3050	zio_bad_cksum_t info;
3051	blkptr_t *bp = zio->io_bp;
3052	int error;
3053
3054	ASSERT(zio->io_vd != NULL);
3055
3056	if (bp == NULL) {
3057		/*
3058		 * This is zio_read_phys().
3059		 * We're either verifying a label checksum, or nothing at all.
3060		 */
3061		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3062			return (ZIO_PIPELINE_CONTINUE);
3063
3064		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3065	}
3066
3067	if ((error = zio_checksum_error(zio, &info)) != 0) {
3068		zio->io_error = error;
3069		if (error == ECKSUM &&
3070		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3071			zfs_ereport_start_checksum(zio->io_spa,
3072			    zio->io_vd, zio, zio->io_offset,
3073			    zio->io_size, NULL, &info);
3074		}
3075	}
3076
3077	return (ZIO_PIPELINE_CONTINUE);
3078}
3079
3080/*
3081 * Called by RAID-Z to ensure we don't compute the checksum twice.
3082 */
3083void
3084zio_checksum_verified(zio_t *zio)
3085{
3086	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3087}
3088
3089/*
3090 * ==========================================================================
3091 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3092 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3093 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3094 * indicate errors that are specific to one I/O, and most likely permanent.
3095 * Any other error is presumed to be worse because we weren't expecting it.
3096 * ==========================================================================
3097 */
3098int
3099zio_worst_error(int e1, int e2)
3100{
3101	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3102	int r1, r2;
3103
3104	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3105		if (e1 == zio_error_rank[r1])
3106			break;
3107
3108	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3109		if (e2 == zio_error_rank[r2])
3110			break;
3111
3112	return (r1 > r2 ? e1 : e2);
3113}
3114
3115/*
3116 * ==========================================================================
3117 * I/O completion
3118 * ==========================================================================
3119 */
3120static int
3121zio_ready(zio_t *zio)
3122{
3123	blkptr_t *bp = zio->io_bp;
3124	zio_t *pio, *pio_next;
3125
3126	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3127	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3128		return (ZIO_PIPELINE_STOP);
3129
3130	if (zio->io_ready) {
3131		ASSERT(IO_IS_ALLOCATING(zio));
3132		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3133		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3134		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3135
3136		zio->io_ready(zio);
3137	}
3138
3139	if (bp != NULL && bp != &zio->io_bp_copy)
3140		zio->io_bp_copy = *bp;
3141
3142	if (zio->io_error)
3143		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3144
3145	mutex_enter(&zio->io_lock);
3146	zio->io_state[ZIO_WAIT_READY] = 1;
3147	pio = zio_walk_parents(zio);
3148	mutex_exit(&zio->io_lock);
3149
3150	/*
3151	 * As we notify zio's parents, new parents could be added.
3152	 * New parents go to the head of zio's io_parent_list, however,
3153	 * so we will (correctly) not notify them.  The remainder of zio's
3154	 * io_parent_list, from 'pio_next' onward, cannot change because
3155	 * all parents must wait for us to be done before they can be done.
3156	 */
3157	for (; pio != NULL; pio = pio_next) {
3158		pio_next = zio_walk_parents(zio);
3159		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3160	}
3161
3162	if (zio->io_flags & ZIO_FLAG_NODATA) {
3163		if (BP_IS_GANG(bp)) {
3164			zio->io_flags &= ~ZIO_FLAG_NODATA;
3165		} else {
3166			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3167			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3168		}
3169	}
3170
3171	if (zio_injection_enabled &&
3172	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3173		zio_handle_ignored_writes(zio);
3174
3175	return (ZIO_PIPELINE_CONTINUE);
3176}
3177
3178static int
3179zio_done(zio_t *zio)
3180{
3181	spa_t *spa = zio->io_spa;
3182	zio_t *lio = zio->io_logical;
3183	blkptr_t *bp = zio->io_bp;
3184	vdev_t *vd = zio->io_vd;
3185	uint64_t psize = zio->io_size;
3186	zio_t *pio, *pio_next;
3187
3188	/*
3189	 * If our children haven't all completed,
3190	 * wait for them and then repeat this pipeline stage.
3191	 */
3192	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3193	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3194	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3195	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3196		return (ZIO_PIPELINE_STOP);
3197
3198	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3199		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3200			ASSERT(zio->io_children[c][w] == 0);
3201
3202	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3203		ASSERT(bp->blk_pad[0] == 0);
3204		ASSERT(bp->blk_pad[1] == 0);
3205		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3206		    (bp == zio_unique_parent(zio)->io_bp));
3207		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3208		    zio->io_bp_override == NULL &&
3209		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3210			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3211			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3212			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3213			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3214		}
3215		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3216			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3217	}
3218
3219	/*
3220	 * If there were child vdev/gang/ddt errors, they apply to us now.
3221	 */
3222	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3223	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3224	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3225
3226	/*
3227	 * If the I/O on the transformed data was successful, generate any
3228	 * checksum reports now while we still have the transformed data.
3229	 */
3230	if (zio->io_error == 0) {
3231		while (zio->io_cksum_report != NULL) {
3232			zio_cksum_report_t *zcr = zio->io_cksum_report;
3233			uint64_t align = zcr->zcr_align;
3234			uint64_t asize = P2ROUNDUP(psize, align);
3235			char *abuf = zio->io_data;
3236
3237			if (asize != psize) {
3238				abuf = zio_buf_alloc(asize);
3239				bcopy(zio->io_data, abuf, psize);
3240				bzero(abuf + psize, asize - psize);
3241			}
3242
3243			zio->io_cksum_report = zcr->zcr_next;
3244			zcr->zcr_next = NULL;
3245			zcr->zcr_finish(zcr, abuf);
3246			zfs_ereport_free_checksum(zcr);
3247
3248			if (asize != psize)
3249				zio_buf_free(abuf, asize);
3250		}
3251	}
3252
3253	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3254
3255	vdev_stat_update(zio, psize);
3256
3257	if (zio->io_error) {
3258		/*
3259		 * If this I/O is attached to a particular vdev,
3260		 * generate an error message describing the I/O failure
3261		 * at the block level.  We ignore these errors if the
3262		 * device is currently unavailable.
3263		 */
3264		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3265			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3266
3267		if ((zio->io_error == EIO || !(zio->io_flags &
3268		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3269		    zio == lio) {
3270			/*
3271			 * For logical I/O requests, tell the SPA to log the
3272			 * error and generate a logical data ereport.
3273			 */
3274			spa_log_error(spa, zio);
3275			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3276			    0, 0);
3277		}
3278	}
3279
3280	if (zio->io_error && zio == lio) {
3281		/*
3282		 * Determine whether zio should be reexecuted.  This will
3283		 * propagate all the way to the root via zio_notify_parent().
3284		 */
3285		ASSERT(vd == NULL && bp != NULL);
3286		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3287
3288		if (IO_IS_ALLOCATING(zio) &&
3289		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3290			if (zio->io_error != ENOSPC)
3291				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3292			else
3293				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3294		}
3295
3296		if ((zio->io_type == ZIO_TYPE_READ ||
3297		    zio->io_type == ZIO_TYPE_FREE) &&
3298		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3299		    zio->io_error == ENXIO &&
3300		    spa_load_state(spa) == SPA_LOAD_NONE &&
3301		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3302			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3303
3304		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3305			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3306
3307		/*
3308		 * Here is a possibly good place to attempt to do
3309		 * either combinatorial reconstruction or error correction
3310		 * based on checksums.  It also might be a good place
3311		 * to send out preliminary ereports before we suspend
3312		 * processing.
3313		 */
3314	}
3315
3316	/*
3317	 * If there were logical child errors, they apply to us now.
3318	 * We defer this until now to avoid conflating logical child
3319	 * errors with errors that happened to the zio itself when
3320	 * updating vdev stats and reporting FMA events above.
3321	 */
3322	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3323
3324	if ((zio->io_error || zio->io_reexecute) &&
3325	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3326	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3327		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3328
3329	zio_gang_tree_free(&zio->io_gang_tree);
3330
3331	/*
3332	 * Godfather I/Os should never suspend.
3333	 */
3334	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3335	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3336		zio->io_reexecute = 0;
3337
3338	if (zio->io_reexecute) {
3339		/*
3340		 * This is a logical I/O that wants to reexecute.
3341		 *
3342		 * Reexecute is top-down.  When an i/o fails, if it's not
3343		 * the root, it simply notifies its parent and sticks around.
3344		 * The parent, seeing that it still has children in zio_done(),
3345		 * does the same.  This percolates all the way up to the root.
3346		 * The root i/o will reexecute or suspend the entire tree.
3347		 *
3348		 * This approach ensures that zio_reexecute() honors
3349		 * all the original i/o dependency relationships, e.g.
3350		 * parents not executing until children are ready.
3351		 */
3352		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3353
3354		zio->io_gang_leader = NULL;
3355
3356		mutex_enter(&zio->io_lock);
3357		zio->io_state[ZIO_WAIT_DONE] = 1;
3358		mutex_exit(&zio->io_lock);
3359
3360		/*
3361		 * "The Godfather" I/O monitors its children but is
3362		 * not a true parent to them. It will track them through
3363		 * the pipeline but severs its ties whenever they get into
3364		 * trouble (e.g. suspended). This allows "The Godfather"
3365		 * I/O to return status without blocking.
3366		 */
3367		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3368			zio_link_t *zl = zio->io_walk_link;
3369			pio_next = zio_walk_parents(zio);
3370
3371			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3372			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3373				zio_remove_child(pio, zio, zl);
3374				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3375			}
3376		}
3377
3378		if ((pio = zio_unique_parent(zio)) != NULL) {
3379			/*
3380			 * We're not a root i/o, so there's nothing to do
3381			 * but notify our parent.  Don't propagate errors
3382			 * upward since we haven't permanently failed yet.
3383			 */
3384			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3385			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3386			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3387		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3388			/*
3389			 * We'd fail again if we reexecuted now, so suspend
3390			 * until conditions improve (e.g. device comes online).
3391			 */
3392			zio_suspend(spa, zio);
3393		} else {
3394			/*
3395			 * Reexecution is potentially a huge amount of work.
3396			 * Hand it off to the otherwise-unused claim taskq.
3397			 */
3398#if defined(illumos) || !defined(_KERNEL)
3399			ASSERT(zio->io_tqent.tqent_next == NULL);
3400#else
3401			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3402#endif
3403			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3404			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3405			    0, &zio->io_tqent);
3406		}
3407		return (ZIO_PIPELINE_STOP);
3408	}
3409
3410	ASSERT(zio->io_child_count == 0);
3411	ASSERT(zio->io_reexecute == 0);
3412	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3413
3414	/*
3415	 * Report any checksum errors, since the I/O is complete.
3416	 */
3417	while (zio->io_cksum_report != NULL) {
3418		zio_cksum_report_t *zcr = zio->io_cksum_report;
3419		zio->io_cksum_report = zcr->zcr_next;
3420		zcr->zcr_next = NULL;
3421		zcr->zcr_finish(zcr, NULL);
3422		zfs_ereport_free_checksum(zcr);
3423	}
3424
3425	/*
3426	 * It is the responsibility of the done callback to ensure that this
3427	 * particular zio is no longer discoverable for adoption, and as
3428	 * such, cannot acquire any new parents.
3429	 */
3430	if (zio->io_done)
3431		zio->io_done(zio);
3432
3433	mutex_enter(&zio->io_lock);
3434	zio->io_state[ZIO_WAIT_DONE] = 1;
3435	mutex_exit(&zio->io_lock);
3436
3437	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3438		zio_link_t *zl = zio->io_walk_link;
3439		pio_next = zio_walk_parents(zio);
3440		zio_remove_child(pio, zio, zl);
3441		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3442	}
3443
3444	if (zio->io_waiter != NULL) {
3445		mutex_enter(&zio->io_lock);
3446		zio->io_executor = NULL;
3447		cv_broadcast(&zio->io_cv);
3448		mutex_exit(&zio->io_lock);
3449	} else {
3450		zio_destroy(zio);
3451	}
3452
3453	return (ZIO_PIPELINE_STOP);
3454}
3455
3456/*
3457 * ==========================================================================
3458 * I/O pipeline definition
3459 * ==========================================================================
3460 */
3461static zio_pipe_stage_t *zio_pipeline[] = {
3462	NULL,
3463	zio_read_bp_init,
3464	zio_free_bp_init,
3465	zio_issue_async,
3466	zio_write_bp_init,
3467	zio_checksum_generate,
3468	zio_nop_write,
3469	zio_ddt_read_start,
3470	zio_ddt_read_done,
3471	zio_ddt_write,
3472	zio_ddt_free,
3473	zio_gang_assemble,
3474	zio_gang_issue,
3475	zio_dva_allocate,
3476	zio_dva_free,
3477	zio_dva_claim,
3478	zio_ready,
3479	zio_vdev_io_start,
3480	zio_vdev_io_done,
3481	zio_vdev_io_assess,
3482	zio_checksum_verify,
3483	zio_done
3484};
3485
3486
3487
3488
3489/*
3490 * Compare two zbookmark_phys_t's to see which we would reach first in a
3491 * pre-order traversal of the object tree.
3492 *
3493 * This is simple in every case aside from the meta-dnode object. For all other
3494 * objects, we traverse them in order (object 1 before object 2, and so on).
3495 * However, all of these objects are traversed while traversing object 0, since
3496 * the data it points to is the list of objects.  Thus, we need to convert to a
3497 * canonical representation so we can compare meta-dnode bookmarks to
3498 * non-meta-dnode bookmarks.
3499 *
3500 * We do this by calculating "equivalents" for each field of the zbookmark.
3501 * zbookmarks outside of the meta-dnode use their own object and level, and
3502 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3503 * blocks this bookmark refers to) by multiplying their blkid by their span
3504 * (the number of L0 blocks contained within one block at their level).
3505 * zbookmarks inside the meta-dnode calculate their object equivalent
3506 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3507 * level + 1<<31 (any value larger than a level could ever be) for their level.
3508 * This causes them to always compare before a bookmark in their object
3509 * equivalent, compare appropriately to bookmarks in other objects, and to
3510 * compare appropriately to other bookmarks in the meta-dnode.
3511 */
3512int
3513zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3514    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3515{
3516	/*
3517	 * These variables represent the "equivalent" values for the zbookmark,
3518	 * after converting zbookmarks inside the meta dnode to their
3519	 * normal-object equivalents.
3520	 */
3521	uint64_t zb1obj, zb2obj;
3522	uint64_t zb1L0, zb2L0;
3523	uint64_t zb1level, zb2level;
3524
3525	if (zb1->zb_object == zb2->zb_object &&
3526	    zb1->zb_level == zb2->zb_level &&
3527	    zb1->zb_blkid == zb2->zb_blkid)
3528		return (0);
3529
3530	/*
3531	 * BP_SPANB calculates the span in blocks.
3532	 */
3533	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3534	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3535
3536	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3537		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3538		zb1L0 = 0;
3539		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3540	} else {
3541		zb1obj = zb1->zb_object;
3542		zb1level = zb1->zb_level;
3543	}
3544
3545	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3546		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3547		zb2L0 = 0;
3548		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3549	} else {
3550		zb2obj = zb2->zb_object;
3551		zb2level = zb2->zb_level;
3552	}
3553
3554	/* Now that we have a canonical representation, do the comparison. */
3555	if (zb1obj != zb2obj)
3556		return (zb1obj < zb2obj ? -1 : 1);
3557	else if (zb1L0 != zb2L0)
3558		return (zb1L0 < zb2L0 ? -1 : 1);
3559	else if (zb1level != zb2level)
3560		return (zb1level > zb2level ? -1 : 1);
3561	/*
3562	 * This can (theoretically) happen if the bookmarks have the same object
3563	 * and level, but different blkids, if the block sizes are not the same.
3564	 * There is presently no way to change the indirect block sizes
3565	 */
3566	return (0);
3567}
3568
3569/*
3570 *  This function checks the following: given that last_block is the place that
3571 *  our traversal stopped last time, does that guarantee that we've visited
3572 *  every node under subtree_root?  Therefore, we can't just use the raw output
3573 *  of zbookmark_compare.  We have to pass in a modified version of
3574 *  subtree_root; by incrementing the block id, and then checking whether
3575 *  last_block is before or equal to that, we can tell whether or not having
3576 *  visited last_block implies that all of subtree_root's children have been
3577 *  visited.
3578 */
3579boolean_t
3580zbookmark_subtree_completed(const dnode_phys_t *dnp,
3581    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3582{
3583	zbookmark_phys_t mod_zb = *subtree_root;
3584	mod_zb.zb_blkid++;
3585	ASSERT(last_block->zb_level == 0);
3586
3587	/* The objset_phys_t isn't before anything. */
3588	if (dnp == NULL)
3589		return (B_FALSE);
3590
3591	/*
3592	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3593	 * data block size in sectors, because that variable is only used if
3594	 * the bookmark refers to a block in the meta-dnode.  Since we don't
3595	 * know without examining it what object it refers to, and there's no
3596	 * harm in passing in this value in other cases, we always pass it in.
3597	 *
3598	 * We pass in 0 for the indirect block size shift because zb2 must be
3599	 * level 0.  The indirect block size is only used to calculate the span
3600	 * of the bookmark, but since the bookmark must be level 0, the span is
3601	 * always 1, so the math works out.
3602	 *
3603	 * If you make changes to how the zbookmark_compare code works, be sure
3604	 * to make sure that this code still works afterwards.
3605	 */
3606	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3607	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3608	    last_block) <= 0);
3609}
3610