zio.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/sysmacros.h>
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/txg.h>
32#include <sys/spa_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio_impl.h>
35#include <sys/zio_compress.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/ddt.h>
40#include <sys/trim_map.h>
41#include <sys/blkptr.h>
42#include <sys/zfeature.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
46#if defined(__amd64__)
47static int zio_use_uma = 1;
48#else
49static int zio_use_uma = 0;
50#endif
51TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
52SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
53    "Use uma(9) for ZIO allocations");
54static int zio_exclude_metadata = 0;
55TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82/*
83 * ==========================================================================
84 * I/O kmem caches
85 * ==========================================================================
86 */
87kmem_cache_t *zio_cache;
88kmem_cache_t *zio_link_cache;
89kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91
92#ifdef _KERNEL
93extern vmem_t *zio_alloc_arena;
94#endif
95
96#define	BP_SPANB(indblkshift, level) \
97	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
98#define	COMPARE_META_LEVEL	0x80000000ul
99/*
100 * The following actions directly effect the spa's sync-to-convergence logic.
101 * The values below define the sync pass when we start performing the action.
102 * Care should be taken when changing these values as they directly impact
103 * spa_sync() performance. Tuning these values may introduce subtle performance
104 * pathologies and should only be done in the context of performance analysis.
105 * These tunables will eventually be removed and replaced with #defines once
106 * enough analysis has been done to determine optimal values.
107 *
108 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
109 * regular blocks are not deferred.
110 */
111int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
112TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
113SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
114    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
115int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
116TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
117SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
118    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
119int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
120TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
121SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
122    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
123
124/*
125 * An allocating zio is one that either currently has the DVA allocate
126 * stage set or will have it later in its lifetime.
127 */
128#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
129
130boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
131
132#ifdef ZFS_DEBUG
133int zio_buf_debug_limit = 16384;
134#else
135int zio_buf_debug_limit = 0;
136#endif
137
138void
139zio_init(void)
140{
141	size_t c;
142	zio_cache = kmem_cache_create("zio_cache",
143	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
144	zio_link_cache = kmem_cache_create("zio_link_cache",
145	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
146	if (!zio_use_uma)
147		goto out;
148
149	/*
150	 * For small buffers, we want a cache for each multiple of
151	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
152	 * for each quarter-power of 2.
153	 */
154	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
155		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
156		size_t p2 = size;
157		size_t align = 0;
158		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
159
160		while (!ISP2(p2))
161			p2 &= p2 - 1;
162
163#ifdef illumos
164#ifndef _KERNEL
165		/*
166		 * If we are using watchpoints, put each buffer on its own page,
167		 * to eliminate the performance overhead of trapping to the
168		 * kernel when modifying a non-watched buffer that shares the
169		 * page with a watched buffer.
170		 */
171		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
172			continue;
173#endif
174#endif /* illumos */
175		if (size <= 4 * SPA_MINBLOCKSIZE) {
176			align = SPA_MINBLOCKSIZE;
177		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
178			align = MIN(p2 >> 2, PAGESIZE);
179		}
180
181		if (align != 0) {
182			char name[36];
183			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
184			zio_buf_cache[c] = kmem_cache_create(name, size,
185			    align, NULL, NULL, NULL, NULL, NULL, cflags);
186
187			/*
188			 * Since zio_data bufs do not appear in crash dumps, we
189			 * pass KMC_NOTOUCH so that no allocator metadata is
190			 * stored with the buffers.
191			 */
192			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
193			zio_data_buf_cache[c] = kmem_cache_create(name, size,
194			    align, NULL, NULL, NULL, NULL, NULL,
195			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
196		}
197	}
198
199	while (--c != 0) {
200		ASSERT(zio_buf_cache[c] != NULL);
201		if (zio_buf_cache[c - 1] == NULL)
202			zio_buf_cache[c - 1] = zio_buf_cache[c];
203
204		ASSERT(zio_data_buf_cache[c] != NULL);
205		if (zio_data_buf_cache[c - 1] == NULL)
206			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
207	}
208out:
209
210	zio_inject_init();
211
212	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
213	    KSTAT_TYPE_NAMED,
214	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
215	    KSTAT_FLAG_VIRTUAL);
216
217	if (zio_trim_ksp != NULL) {
218		zio_trim_ksp->ks_data = &zio_trim_stats;
219		kstat_install(zio_trim_ksp);
220	}
221}
222
223void
224zio_fini(void)
225{
226	size_t c;
227	kmem_cache_t *last_cache = NULL;
228	kmem_cache_t *last_data_cache = NULL;
229
230	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
231		if (zio_buf_cache[c] != last_cache) {
232			last_cache = zio_buf_cache[c];
233			kmem_cache_destroy(zio_buf_cache[c]);
234		}
235		zio_buf_cache[c] = NULL;
236
237		if (zio_data_buf_cache[c] != last_data_cache) {
238			last_data_cache = zio_data_buf_cache[c];
239			kmem_cache_destroy(zio_data_buf_cache[c]);
240		}
241		zio_data_buf_cache[c] = NULL;
242	}
243
244	kmem_cache_destroy(zio_link_cache);
245	kmem_cache_destroy(zio_cache);
246
247	zio_inject_fini();
248
249	if (zio_trim_ksp != NULL) {
250		kstat_delete(zio_trim_ksp);
251		zio_trim_ksp = NULL;
252	}
253}
254
255/*
256 * ==========================================================================
257 * Allocate and free I/O buffers
258 * ==========================================================================
259 */
260
261/*
262 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
263 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
264 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
265 * excess / transient data in-core during a crashdump.
266 */
267void *
268zio_buf_alloc(size_t size)
269{
270	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
271	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
272
273	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
274
275	if (zio_use_uma)
276		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
277	else
278		return (kmem_alloc(size, KM_SLEEP|flags));
279}
280
281/*
282 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
283 * crashdump if the kernel panics.  This exists so that we will limit the amount
284 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
285 * of kernel heap dumped to disk when the kernel panics)
286 */
287void *
288zio_data_buf_alloc(size_t size)
289{
290	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
291
292	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
293
294	if (zio_use_uma)
295		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
296	else
297		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
298}
299
300void
301zio_buf_free(void *buf, size_t size)
302{
303	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
304
305	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
306
307	if (zio_use_uma)
308		kmem_cache_free(zio_buf_cache[c], buf);
309	else
310		kmem_free(buf, size);
311}
312
313void
314zio_data_buf_free(void *buf, size_t size)
315{
316	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
317
318	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
319
320	if (zio_use_uma)
321		kmem_cache_free(zio_data_buf_cache[c], buf);
322	else
323		kmem_free(buf, size);
324}
325
326/*
327 * ==========================================================================
328 * Push and pop I/O transform buffers
329 * ==========================================================================
330 */
331static void
332zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
333	zio_transform_func_t *transform)
334{
335	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
336
337	zt->zt_orig_data = zio->io_data;
338	zt->zt_orig_size = zio->io_size;
339	zt->zt_bufsize = bufsize;
340	zt->zt_transform = transform;
341
342	zt->zt_next = zio->io_transform_stack;
343	zio->io_transform_stack = zt;
344
345	zio->io_data = data;
346	zio->io_size = size;
347}
348
349static void
350zio_pop_transforms(zio_t *zio)
351{
352	zio_transform_t *zt;
353
354	while ((zt = zio->io_transform_stack) != NULL) {
355		if (zt->zt_transform != NULL)
356			zt->zt_transform(zio,
357			    zt->zt_orig_data, zt->zt_orig_size);
358
359		if (zt->zt_bufsize != 0)
360			zio_buf_free(zio->io_data, zt->zt_bufsize);
361
362		zio->io_data = zt->zt_orig_data;
363		zio->io_size = zt->zt_orig_size;
364		zio->io_transform_stack = zt->zt_next;
365
366		kmem_free(zt, sizeof (zio_transform_t));
367	}
368}
369
370/*
371 * ==========================================================================
372 * I/O transform callbacks for subblocks and decompression
373 * ==========================================================================
374 */
375static void
376zio_subblock(zio_t *zio, void *data, uint64_t size)
377{
378	ASSERT(zio->io_size > size);
379
380	if (zio->io_type == ZIO_TYPE_READ)
381		bcopy(zio->io_data, data, size);
382}
383
384static void
385zio_decompress(zio_t *zio, void *data, uint64_t size)
386{
387	if (zio->io_error == 0 &&
388	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
389	    zio->io_data, data, zio->io_size, size) != 0)
390		zio->io_error = SET_ERROR(EIO);
391}
392
393/*
394 * ==========================================================================
395 * I/O parent/child relationships and pipeline interlocks
396 * ==========================================================================
397 */
398/*
399 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
400 *        continue calling these functions until they return NULL.
401 *        Otherwise, the next caller will pick up the list walk in
402 *        some indeterminate state.  (Otherwise every caller would
403 *        have to pass in a cookie to keep the state represented by
404 *        io_walk_link, which gets annoying.)
405 */
406zio_t *
407zio_walk_parents(zio_t *cio)
408{
409	zio_link_t *zl = cio->io_walk_link;
410	list_t *pl = &cio->io_parent_list;
411
412	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
413	cio->io_walk_link = zl;
414
415	if (zl == NULL)
416		return (NULL);
417
418	ASSERT(zl->zl_child == cio);
419	return (zl->zl_parent);
420}
421
422zio_t *
423zio_walk_children(zio_t *pio)
424{
425	zio_link_t *zl = pio->io_walk_link;
426	list_t *cl = &pio->io_child_list;
427
428	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
429	pio->io_walk_link = zl;
430
431	if (zl == NULL)
432		return (NULL);
433
434	ASSERT(zl->zl_parent == pio);
435	return (zl->zl_child);
436}
437
438zio_t *
439zio_unique_parent(zio_t *cio)
440{
441	zio_t *pio = zio_walk_parents(cio);
442
443	VERIFY(zio_walk_parents(cio) == NULL);
444	return (pio);
445}
446
447void
448zio_add_child(zio_t *pio, zio_t *cio)
449{
450	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
451
452	/*
453	 * Logical I/Os can have logical, gang, or vdev children.
454	 * Gang I/Os can have gang or vdev children.
455	 * Vdev I/Os can only have vdev children.
456	 * The following ASSERT captures all of these constraints.
457	 */
458	ASSERT(cio->io_child_type <= pio->io_child_type);
459
460	zl->zl_parent = pio;
461	zl->zl_child = cio;
462
463	mutex_enter(&cio->io_lock);
464	mutex_enter(&pio->io_lock);
465
466	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
467
468	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
469		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
470
471	list_insert_head(&pio->io_child_list, zl);
472	list_insert_head(&cio->io_parent_list, zl);
473
474	pio->io_child_count++;
475	cio->io_parent_count++;
476
477	mutex_exit(&pio->io_lock);
478	mutex_exit(&cio->io_lock);
479}
480
481static void
482zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
483{
484	ASSERT(zl->zl_parent == pio);
485	ASSERT(zl->zl_child == cio);
486
487	mutex_enter(&cio->io_lock);
488	mutex_enter(&pio->io_lock);
489
490	list_remove(&pio->io_child_list, zl);
491	list_remove(&cio->io_parent_list, zl);
492
493	pio->io_child_count--;
494	cio->io_parent_count--;
495
496	mutex_exit(&pio->io_lock);
497	mutex_exit(&cio->io_lock);
498
499	kmem_cache_free(zio_link_cache, zl);
500}
501
502static boolean_t
503zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
504{
505	uint64_t *countp = &zio->io_children[child][wait];
506	boolean_t waiting = B_FALSE;
507
508	mutex_enter(&zio->io_lock);
509	ASSERT(zio->io_stall == NULL);
510	if (*countp != 0) {
511		zio->io_stage >>= 1;
512		zio->io_stall = countp;
513		waiting = B_TRUE;
514	}
515	mutex_exit(&zio->io_lock);
516
517	return (waiting);
518}
519
520static void
521zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
522{
523	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
524	int *errorp = &pio->io_child_error[zio->io_child_type];
525
526	mutex_enter(&pio->io_lock);
527	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
528		*errorp = zio_worst_error(*errorp, zio->io_error);
529	pio->io_reexecute |= zio->io_reexecute;
530	ASSERT3U(*countp, >, 0);
531
532	(*countp)--;
533
534	if (*countp == 0 && pio->io_stall == countp) {
535		pio->io_stall = NULL;
536		mutex_exit(&pio->io_lock);
537		zio_execute(pio);
538	} else {
539		mutex_exit(&pio->io_lock);
540	}
541}
542
543static void
544zio_inherit_child_errors(zio_t *zio, enum zio_child c)
545{
546	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
547		zio->io_error = zio->io_child_error[c];
548}
549
550/*
551 * ==========================================================================
552 * Create the various types of I/O (read, write, free, etc)
553 * ==========================================================================
554 */
555static zio_t *
556zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
557    void *data, uint64_t size, zio_done_func_t *done, void *private,
558    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
559    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
560    enum zio_stage stage, enum zio_stage pipeline)
561{
562	zio_t *zio;
563
564	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
565	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
566	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
567
568	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
569	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
570	ASSERT(vd || stage == ZIO_STAGE_OPEN);
571
572	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
573	bzero(zio, sizeof (zio_t));
574
575	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
576	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
577
578	list_create(&zio->io_parent_list, sizeof (zio_link_t),
579	    offsetof(zio_link_t, zl_parent_node));
580	list_create(&zio->io_child_list, sizeof (zio_link_t),
581	    offsetof(zio_link_t, zl_child_node));
582
583	if (vd != NULL)
584		zio->io_child_type = ZIO_CHILD_VDEV;
585	else if (flags & ZIO_FLAG_GANG_CHILD)
586		zio->io_child_type = ZIO_CHILD_GANG;
587	else if (flags & ZIO_FLAG_DDT_CHILD)
588		zio->io_child_type = ZIO_CHILD_DDT;
589	else
590		zio->io_child_type = ZIO_CHILD_LOGICAL;
591
592	if (bp != NULL) {
593		zio->io_bp = (blkptr_t *)bp;
594		zio->io_bp_copy = *bp;
595		zio->io_bp_orig = *bp;
596		if (type != ZIO_TYPE_WRITE ||
597		    zio->io_child_type == ZIO_CHILD_DDT)
598			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
599		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
600			zio->io_logical = zio;
601		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
602			pipeline |= ZIO_GANG_STAGES;
603	}
604
605	zio->io_spa = spa;
606	zio->io_txg = txg;
607	zio->io_done = done;
608	zio->io_private = private;
609	zio->io_type = type;
610	zio->io_priority = priority;
611	zio->io_vd = vd;
612	zio->io_offset = offset;
613	zio->io_orig_data = zio->io_data = data;
614	zio->io_orig_size = zio->io_size = size;
615	zio->io_orig_flags = zio->io_flags = flags;
616	zio->io_orig_stage = zio->io_stage = stage;
617	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
618
619	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
620	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
621
622	if (zb != NULL)
623		zio->io_bookmark = *zb;
624
625	if (pio != NULL) {
626		if (zio->io_logical == NULL)
627			zio->io_logical = pio->io_logical;
628		if (zio->io_child_type == ZIO_CHILD_GANG)
629			zio->io_gang_leader = pio->io_gang_leader;
630		zio_add_child(pio, zio);
631	}
632
633	return (zio);
634}
635
636static void
637zio_destroy(zio_t *zio)
638{
639	list_destroy(&zio->io_parent_list);
640	list_destroy(&zio->io_child_list);
641	mutex_destroy(&zio->io_lock);
642	cv_destroy(&zio->io_cv);
643	kmem_cache_free(zio_cache, zio);
644}
645
646zio_t *
647zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
648    void *private, enum zio_flag flags)
649{
650	zio_t *zio;
651
652	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
653	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
654	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
655
656	return (zio);
657}
658
659zio_t *
660zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
661{
662	return (zio_null(NULL, spa, NULL, done, private, flags));
663}
664
665void
666zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
667{
668	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
669		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
670		    bp, (longlong_t)BP_GET_TYPE(bp));
671	}
672	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
673	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
674		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
675		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
676	}
677	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
678	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
679		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
680		    bp, (longlong_t)BP_GET_COMPRESS(bp));
681	}
682	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
683		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
684		    bp, (longlong_t)BP_GET_LSIZE(bp));
685	}
686	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
687		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
688		    bp, (longlong_t)BP_GET_PSIZE(bp));
689	}
690
691	if (BP_IS_EMBEDDED(bp)) {
692		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
693			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
694			    bp, (longlong_t)BPE_GET_ETYPE(bp));
695		}
696	}
697
698	/*
699	 * Pool-specific checks.
700	 *
701	 * Note: it would be nice to verify that the blk_birth and
702	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
703	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
704	 * that are in the log) to be arbitrarily large.
705	 */
706	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
707		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
708		if (vdevid >= spa->spa_root_vdev->vdev_children) {
709			zfs_panic_recover("blkptr at %p DVA %u has invalid "
710			    "VDEV %llu",
711			    bp, i, (longlong_t)vdevid);
712			continue;
713		}
714		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
715		if (vd == NULL) {
716			zfs_panic_recover("blkptr at %p DVA %u has invalid "
717			    "VDEV %llu",
718			    bp, i, (longlong_t)vdevid);
719			continue;
720		}
721		if (vd->vdev_ops == &vdev_hole_ops) {
722			zfs_panic_recover("blkptr at %p DVA %u has hole "
723			    "VDEV %llu",
724			    bp, i, (longlong_t)vdevid);
725			continue;
726		}
727		if (vd->vdev_ops == &vdev_missing_ops) {
728			/*
729			 * "missing" vdevs are valid during import, but we
730			 * don't have their detailed info (e.g. asize), so
731			 * we can't perform any more checks on them.
732			 */
733			continue;
734		}
735		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
736		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
737		if (BP_IS_GANG(bp))
738			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
739		if (offset + asize > vd->vdev_asize) {
740			zfs_panic_recover("blkptr at %p DVA %u has invalid "
741			    "OFFSET %llu",
742			    bp, i, (longlong_t)offset);
743		}
744	}
745}
746
747zio_t *
748zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
749    void *data, uint64_t size, zio_done_func_t *done, void *private,
750    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
751{
752	zio_t *zio;
753
754	zfs_blkptr_verify(spa, bp);
755
756	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
757	    data, size, done, private,
758	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
759	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
760	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
761
762	return (zio);
763}
764
765zio_t *
766zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
767    void *data, uint64_t size, const zio_prop_t *zp,
768    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
769    void *private,
770    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
771{
772	zio_t *zio;
773
774	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
775	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
776	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
777	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
778	    DMU_OT_IS_VALID(zp->zp_type) &&
779	    zp->zp_level < 32 &&
780	    zp->zp_copies > 0 &&
781	    zp->zp_copies <= spa_max_replication(spa));
782
783	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
784	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
785	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
786	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
787
788	zio->io_ready = ready;
789	zio->io_physdone = physdone;
790	zio->io_prop = *zp;
791
792	/*
793	 * Data can be NULL if we are going to call zio_write_override() to
794	 * provide the already-allocated BP.  But we may need the data to
795	 * verify a dedup hit (if requested).  In this case, don't try to
796	 * dedup (just take the already-allocated BP verbatim).
797	 */
798	if (data == NULL && zio->io_prop.zp_dedup_verify) {
799		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
800	}
801
802	return (zio);
803}
804
805zio_t *
806zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
807    uint64_t size, zio_done_func_t *done, void *private,
808    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
809{
810	zio_t *zio;
811
812	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
813	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
814	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
815
816	return (zio);
817}
818
819void
820zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
821{
822	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
823	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
824	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
825	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
826
827	/*
828	 * We must reset the io_prop to match the values that existed
829	 * when the bp was first written by dmu_sync() keeping in mind
830	 * that nopwrite and dedup are mutually exclusive.
831	 */
832	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
833	zio->io_prop.zp_nopwrite = nopwrite;
834	zio->io_prop.zp_copies = copies;
835	zio->io_bp_override = bp;
836}
837
838void
839zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
840{
841
842	/*
843	 * The check for EMBEDDED is a performance optimization.  We
844	 * process the free here (by ignoring it) rather than
845	 * putting it on the list and then processing it in zio_free_sync().
846	 */
847	if (BP_IS_EMBEDDED(bp))
848		return;
849	metaslab_check_free(spa, bp);
850
851	/*
852	 * Frees that are for the currently-syncing txg, are not going to be
853	 * deferred, and which will not need to do a read (i.e. not GANG or
854	 * DEDUP), can be processed immediately.  Otherwise, put them on the
855	 * in-memory list for later processing.
856	 */
857	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
858	    txg != spa->spa_syncing_txg ||
859	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
860		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
861	} else {
862		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
863		    BP_GET_PSIZE(bp), 0)));
864	}
865}
866
867zio_t *
868zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
869    uint64_t size, enum zio_flag flags)
870{
871	zio_t *zio;
872	enum zio_stage stage = ZIO_FREE_PIPELINE;
873
874	ASSERT(!BP_IS_HOLE(bp));
875	ASSERT(spa_syncing_txg(spa) == txg);
876	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
877
878	if (BP_IS_EMBEDDED(bp))
879		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
880
881	metaslab_check_free(spa, bp);
882	arc_freed(spa, bp);
883
884	if (zfs_trim_enabled)
885		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
886		    ZIO_STAGE_VDEV_IO_ASSESS;
887	/*
888	 * GANG and DEDUP blocks can induce a read (for the gang block header,
889	 * or the DDT), so issue them asynchronously so that this thread is
890	 * not tied up.
891	 */
892	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
893		stage |= ZIO_STAGE_ISSUE_ASYNC;
894
895	flags |= ZIO_FLAG_DONT_QUEUE;
896
897	zio = zio_create(pio, spa, txg, bp, NULL, size,
898	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
899	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
900
901	return (zio);
902}
903
904zio_t *
905zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
906    zio_done_func_t *done, void *private, enum zio_flag flags)
907{
908	zio_t *zio;
909
910	dprintf_bp(bp, "claiming in txg %llu", txg);
911
912	if (BP_IS_EMBEDDED(bp))
913		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
914
915	/*
916	 * A claim is an allocation of a specific block.  Claims are needed
917	 * to support immediate writes in the intent log.  The issue is that
918	 * immediate writes contain committed data, but in a txg that was
919	 * *not* committed.  Upon opening the pool after an unclean shutdown,
920	 * the intent log claims all blocks that contain immediate write data
921	 * so that the SPA knows they're in use.
922	 *
923	 * All claims *must* be resolved in the first txg -- before the SPA
924	 * starts allocating blocks -- so that nothing is allocated twice.
925	 * If txg == 0 we just verify that the block is claimable.
926	 */
927	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
928	ASSERT(txg == spa_first_txg(spa) || txg == 0);
929	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
930
931	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
932	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
933	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
934
935	return (zio);
936}
937
938zio_t *
939zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
940    uint64_t size, zio_done_func_t *done, void *private,
941    zio_priority_t priority, enum zio_flag flags)
942{
943	zio_t *zio;
944	int c;
945
946	if (vd->vdev_children == 0) {
947		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
948		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
949		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
950
951		zio->io_cmd = cmd;
952	} else {
953		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
954
955		for (c = 0; c < vd->vdev_children; c++)
956			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
957			    offset, size, done, private, priority, flags));
958	}
959
960	return (zio);
961}
962
963zio_t *
964zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
965    void *data, int checksum, zio_done_func_t *done, void *private,
966    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
967{
968	zio_t *zio;
969
970	ASSERT(vd->vdev_children == 0);
971	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
972	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
973	ASSERT3U(offset + size, <=, vd->vdev_psize);
974
975	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
976	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
977	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
978
979	zio->io_prop.zp_checksum = checksum;
980
981	return (zio);
982}
983
984zio_t *
985zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
986    void *data, int checksum, zio_done_func_t *done, void *private,
987    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
988{
989	zio_t *zio;
990
991	ASSERT(vd->vdev_children == 0);
992	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
993	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
994	ASSERT3U(offset + size, <=, vd->vdev_psize);
995
996	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
997	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
998	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
999
1000	zio->io_prop.zp_checksum = checksum;
1001
1002	if (zio_checksum_table[checksum].ci_eck) {
1003		/*
1004		 * zec checksums are necessarily destructive -- they modify
1005		 * the end of the write buffer to hold the verifier/checksum.
1006		 * Therefore, we must make a local copy in case the data is
1007		 * being written to multiple places in parallel.
1008		 */
1009		void *wbuf = zio_buf_alloc(size);
1010		bcopy(data, wbuf, size);
1011		zio_push_transform(zio, wbuf, size, size, NULL);
1012	}
1013
1014	return (zio);
1015}
1016
1017/*
1018 * Create a child I/O to do some work for us.
1019 */
1020zio_t *
1021zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1022	void *data, uint64_t size, int type, zio_priority_t priority,
1023	enum zio_flag flags, zio_done_func_t *done, void *private)
1024{
1025	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1026	zio_t *zio;
1027
1028	ASSERT(vd->vdev_parent ==
1029	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1030
1031	if (type == ZIO_TYPE_READ && bp != NULL) {
1032		/*
1033		 * If we have the bp, then the child should perform the
1034		 * checksum and the parent need not.  This pushes error
1035		 * detection as close to the leaves as possible and
1036		 * eliminates redundant checksums in the interior nodes.
1037		 */
1038		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1039		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1040	}
1041
1042	/* Not all IO types require vdev io done stage e.g. free */
1043	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1044		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1045
1046	if (vd->vdev_children == 0)
1047		offset += VDEV_LABEL_START_SIZE;
1048
1049	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1050
1051	/*
1052	 * If we've decided to do a repair, the write is not speculative --
1053	 * even if the original read was.
1054	 */
1055	if (flags & ZIO_FLAG_IO_REPAIR)
1056		flags &= ~ZIO_FLAG_SPECULATIVE;
1057
1058	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1059	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1060	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1061
1062	zio->io_physdone = pio->io_physdone;
1063	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1064		zio->io_logical->io_phys_children++;
1065
1066	return (zio);
1067}
1068
1069zio_t *
1070zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1071	int type, zio_priority_t priority, enum zio_flag flags,
1072	zio_done_func_t *done, void *private)
1073{
1074	zio_t *zio;
1075
1076	ASSERT(vd->vdev_ops->vdev_op_leaf);
1077
1078	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1079	    data, size, done, private, type, priority,
1080	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1081	    vd, offset, NULL,
1082	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1083
1084	return (zio);
1085}
1086
1087void
1088zio_flush(zio_t *zio, vdev_t *vd)
1089{
1090	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1091	    NULL, NULL, ZIO_PRIORITY_NOW,
1092	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1093}
1094
1095zio_t *
1096zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1097{
1098
1099	ASSERT(vd->vdev_ops->vdev_op_leaf);
1100
1101	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1102	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1103	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1104	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1105}
1106
1107void
1108zio_shrink(zio_t *zio, uint64_t size)
1109{
1110	ASSERT(zio->io_executor == NULL);
1111	ASSERT(zio->io_orig_size == zio->io_size);
1112	ASSERT(size <= zio->io_size);
1113
1114	/*
1115	 * We don't shrink for raidz because of problems with the
1116	 * reconstruction when reading back less than the block size.
1117	 * Note, BP_IS_RAIDZ() assumes no compression.
1118	 */
1119	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1120	if (!BP_IS_RAIDZ(zio->io_bp))
1121		zio->io_orig_size = zio->io_size = size;
1122}
1123
1124/*
1125 * ==========================================================================
1126 * Prepare to read and write logical blocks
1127 * ==========================================================================
1128 */
1129
1130static int
1131zio_read_bp_init(zio_t *zio)
1132{
1133	blkptr_t *bp = zio->io_bp;
1134
1135	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1136	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1137	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1138		uint64_t psize =
1139		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1140		void *cbuf = zio_buf_alloc(psize);
1141
1142		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1143	}
1144
1145	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1146		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1147		decode_embedded_bp_compressed(bp, zio->io_data);
1148	} else {
1149		ASSERT(!BP_IS_EMBEDDED(bp));
1150	}
1151
1152	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1153		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1154
1155	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1156		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1157
1158	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1159		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1160
1161	return (ZIO_PIPELINE_CONTINUE);
1162}
1163
1164static int
1165zio_write_bp_init(zio_t *zio)
1166{
1167	spa_t *spa = zio->io_spa;
1168	zio_prop_t *zp = &zio->io_prop;
1169	enum zio_compress compress = zp->zp_compress;
1170	blkptr_t *bp = zio->io_bp;
1171	uint64_t lsize = zio->io_size;
1172	uint64_t psize = lsize;
1173	int pass = 1;
1174
1175	/*
1176	 * If our children haven't all reached the ready stage,
1177	 * wait for them and then repeat this pipeline stage.
1178	 */
1179	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1180	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1181		return (ZIO_PIPELINE_STOP);
1182
1183	if (!IO_IS_ALLOCATING(zio))
1184		return (ZIO_PIPELINE_CONTINUE);
1185
1186	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1187
1188	if (zio->io_bp_override) {
1189		ASSERT(bp->blk_birth != zio->io_txg);
1190		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1191
1192		*bp = *zio->io_bp_override;
1193		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1194
1195		if (BP_IS_EMBEDDED(bp))
1196			return (ZIO_PIPELINE_CONTINUE);
1197
1198		/*
1199		 * If we've been overridden and nopwrite is set then
1200		 * set the flag accordingly to indicate that a nopwrite
1201		 * has already occurred.
1202		 */
1203		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1204			ASSERT(!zp->zp_dedup);
1205			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1206			return (ZIO_PIPELINE_CONTINUE);
1207		}
1208
1209		ASSERT(!zp->zp_nopwrite);
1210
1211		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1212			return (ZIO_PIPELINE_CONTINUE);
1213
1214		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1215		    zp->zp_dedup_verify);
1216
1217		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1218			BP_SET_DEDUP(bp, 1);
1219			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1220			return (ZIO_PIPELINE_CONTINUE);
1221		}
1222	}
1223
1224	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1225		/*
1226		 * We're rewriting an existing block, which means we're
1227		 * working on behalf of spa_sync().  For spa_sync() to
1228		 * converge, it must eventually be the case that we don't
1229		 * have to allocate new blocks.  But compression changes
1230		 * the blocksize, which forces a reallocate, and makes
1231		 * convergence take longer.  Therefore, after the first
1232		 * few passes, stop compressing to ensure convergence.
1233		 */
1234		pass = spa_sync_pass(spa);
1235
1236		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1237		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1238		ASSERT(!BP_GET_DEDUP(bp));
1239
1240		if (pass >= zfs_sync_pass_dont_compress)
1241			compress = ZIO_COMPRESS_OFF;
1242
1243		/* Make sure someone doesn't change their mind on overwrites */
1244		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1245		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1246	}
1247
1248	if (compress != ZIO_COMPRESS_OFF) {
1249		void *cbuf = zio_buf_alloc(lsize);
1250		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1251		if (psize == 0 || psize == lsize) {
1252			compress = ZIO_COMPRESS_OFF;
1253			zio_buf_free(cbuf, lsize);
1254		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1255		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1256		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1257			encode_embedded_bp_compressed(bp,
1258			    cbuf, compress, lsize, psize);
1259			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1260			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1261			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1262			zio_buf_free(cbuf, lsize);
1263			bp->blk_birth = zio->io_txg;
1264			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1265			ASSERT(spa_feature_is_active(spa,
1266			    SPA_FEATURE_EMBEDDED_DATA));
1267			return (ZIO_PIPELINE_CONTINUE);
1268		} else {
1269			/*
1270			 * Round up compressed size up to the ashift
1271			 * of the smallest-ashift device, and zero the tail.
1272			 * This ensures that the compressed size of the BP
1273			 * (and thus compressratio property) are correct,
1274			 * in that we charge for the padding used to fill out
1275			 * the last sector.
1276			 */
1277			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1278			size_t rounded = (size_t)P2ROUNDUP(psize,
1279			    1ULL << spa->spa_min_ashift);
1280			if (rounded >= lsize) {
1281				compress = ZIO_COMPRESS_OFF;
1282				zio_buf_free(cbuf, lsize);
1283				psize = lsize;
1284			} else {
1285				bzero((char *)cbuf + psize, rounded - psize);
1286				psize = rounded;
1287				zio_push_transform(zio, cbuf,
1288				    psize, lsize, NULL);
1289			}
1290		}
1291	}
1292
1293	/*
1294	 * The final pass of spa_sync() must be all rewrites, but the first
1295	 * few passes offer a trade-off: allocating blocks defers convergence,
1296	 * but newly allocated blocks are sequential, so they can be written
1297	 * to disk faster.  Therefore, we allow the first few passes of
1298	 * spa_sync() to allocate new blocks, but force rewrites after that.
1299	 * There should only be a handful of blocks after pass 1 in any case.
1300	 */
1301	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1302	    BP_GET_PSIZE(bp) == psize &&
1303	    pass >= zfs_sync_pass_rewrite) {
1304		ASSERT(psize != 0);
1305		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1306		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1307		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1308	} else {
1309		BP_ZERO(bp);
1310		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1311	}
1312
1313	if (psize == 0) {
1314		if (zio->io_bp_orig.blk_birth != 0 &&
1315		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1316			BP_SET_LSIZE(bp, lsize);
1317			BP_SET_TYPE(bp, zp->zp_type);
1318			BP_SET_LEVEL(bp, zp->zp_level);
1319			BP_SET_BIRTH(bp, zio->io_txg, 0);
1320		}
1321		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1322	} else {
1323		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1324		BP_SET_LSIZE(bp, lsize);
1325		BP_SET_TYPE(bp, zp->zp_type);
1326		BP_SET_LEVEL(bp, zp->zp_level);
1327		BP_SET_PSIZE(bp, psize);
1328		BP_SET_COMPRESS(bp, compress);
1329		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1330		BP_SET_DEDUP(bp, zp->zp_dedup);
1331		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1332		if (zp->zp_dedup) {
1333			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1334			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1335			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1336		}
1337		if (zp->zp_nopwrite) {
1338			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1339			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1340			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1341		}
1342	}
1343
1344	return (ZIO_PIPELINE_CONTINUE);
1345}
1346
1347static int
1348zio_free_bp_init(zio_t *zio)
1349{
1350	blkptr_t *bp = zio->io_bp;
1351
1352	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1353		if (BP_GET_DEDUP(bp))
1354			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1355	}
1356
1357	return (ZIO_PIPELINE_CONTINUE);
1358}
1359
1360/*
1361 * ==========================================================================
1362 * Execute the I/O pipeline
1363 * ==========================================================================
1364 */
1365
1366static void
1367zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1368{
1369	spa_t *spa = zio->io_spa;
1370	zio_type_t t = zio->io_type;
1371	int flags = (cutinline ? TQ_FRONT : 0);
1372
1373	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1374
1375	/*
1376	 * If we're a config writer or a probe, the normal issue and
1377	 * interrupt threads may all be blocked waiting for the config lock.
1378	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1379	 */
1380	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1381		t = ZIO_TYPE_NULL;
1382
1383	/*
1384	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1385	 */
1386	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1387		t = ZIO_TYPE_NULL;
1388
1389	/*
1390	 * If this is a high priority I/O, then use the high priority taskq if
1391	 * available.
1392	 */
1393	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1394	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1395		q++;
1396
1397	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1398
1399	/*
1400	 * NB: We are assuming that the zio can only be dispatched
1401	 * to a single taskq at a time.  It would be a grievous error
1402	 * to dispatch the zio to another taskq at the same time.
1403	 */
1404#if defined(illumos) || !defined(_KERNEL)
1405	ASSERT(zio->io_tqent.tqent_next == NULL);
1406#else
1407	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1408#endif
1409	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1410	    flags, &zio->io_tqent);
1411}
1412
1413static boolean_t
1414zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1415{
1416	kthread_t *executor = zio->io_executor;
1417	spa_t *spa = zio->io_spa;
1418
1419	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1420		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1421		uint_t i;
1422		for (i = 0; i < tqs->stqs_count; i++) {
1423			if (taskq_member(tqs->stqs_taskq[i], executor))
1424				return (B_TRUE);
1425		}
1426	}
1427
1428	return (B_FALSE);
1429}
1430
1431static int
1432zio_issue_async(zio_t *zio)
1433{
1434	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1435
1436	return (ZIO_PIPELINE_STOP);
1437}
1438
1439void
1440zio_interrupt(zio_t *zio)
1441{
1442	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1443}
1444
1445/*
1446 * Execute the I/O pipeline until one of the following occurs:
1447 *
1448 *	(1) the I/O completes
1449 *	(2) the pipeline stalls waiting for dependent child I/Os
1450 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1451 *	(4) the I/O is delegated by vdev-level caching or aggregation
1452 *	(5) the I/O is deferred due to vdev-level queueing
1453 *	(6) the I/O is handed off to another thread.
1454 *
1455 * In all cases, the pipeline stops whenever there's no CPU work; it never
1456 * burns a thread in cv_wait().
1457 *
1458 * There's no locking on io_stage because there's no legitimate way
1459 * for multiple threads to be attempting to process the same I/O.
1460 */
1461static zio_pipe_stage_t *zio_pipeline[];
1462
1463void
1464zio_execute(zio_t *zio)
1465{
1466	zio->io_executor = curthread;
1467
1468	while (zio->io_stage < ZIO_STAGE_DONE) {
1469		enum zio_stage pipeline = zio->io_pipeline;
1470		enum zio_stage stage = zio->io_stage;
1471		int rv;
1472
1473		ASSERT(!MUTEX_HELD(&zio->io_lock));
1474		ASSERT(ISP2(stage));
1475		ASSERT(zio->io_stall == NULL);
1476
1477		do {
1478			stage <<= 1;
1479		} while ((stage & pipeline) == 0);
1480
1481		ASSERT(stage <= ZIO_STAGE_DONE);
1482
1483		/*
1484		 * If we are in interrupt context and this pipeline stage
1485		 * will grab a config lock that is held across I/O,
1486		 * or may wait for an I/O that needs an interrupt thread
1487		 * to complete, issue async to avoid deadlock.
1488		 *
1489		 * For VDEV_IO_START, we cut in line so that the io will
1490		 * be sent to disk promptly.
1491		 */
1492		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1493		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1494			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1495			    zio_requeue_io_start_cut_in_line : B_FALSE;
1496			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1497			return;
1498		}
1499
1500		zio->io_stage = stage;
1501		rv = zio_pipeline[highbit64(stage) - 1](zio);
1502
1503		if (rv == ZIO_PIPELINE_STOP)
1504			return;
1505
1506		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1507	}
1508}
1509
1510/*
1511 * ==========================================================================
1512 * Initiate I/O, either sync or async
1513 * ==========================================================================
1514 */
1515int
1516zio_wait(zio_t *zio)
1517{
1518	int error;
1519
1520	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1521	ASSERT(zio->io_executor == NULL);
1522
1523	zio->io_waiter = curthread;
1524
1525	zio_execute(zio);
1526
1527	mutex_enter(&zio->io_lock);
1528	while (zio->io_executor != NULL)
1529		cv_wait(&zio->io_cv, &zio->io_lock);
1530	mutex_exit(&zio->io_lock);
1531
1532	error = zio->io_error;
1533	zio_destroy(zio);
1534
1535	return (error);
1536}
1537
1538void
1539zio_nowait(zio_t *zio)
1540{
1541	ASSERT(zio->io_executor == NULL);
1542
1543	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1544	    zio_unique_parent(zio) == NULL) {
1545		/*
1546		 * This is a logical async I/O with no parent to wait for it.
1547		 * We add it to the spa_async_root_zio "Godfather" I/O which
1548		 * will ensure they complete prior to unloading the pool.
1549		 */
1550		spa_t *spa = zio->io_spa;
1551
1552		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1553	}
1554
1555	zio_execute(zio);
1556}
1557
1558/*
1559 * ==========================================================================
1560 * Reexecute or suspend/resume failed I/O
1561 * ==========================================================================
1562 */
1563
1564static void
1565zio_reexecute(zio_t *pio)
1566{
1567	zio_t *cio, *cio_next;
1568
1569	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1570	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1571	ASSERT(pio->io_gang_leader == NULL);
1572	ASSERT(pio->io_gang_tree == NULL);
1573
1574	pio->io_flags = pio->io_orig_flags;
1575	pio->io_stage = pio->io_orig_stage;
1576	pio->io_pipeline = pio->io_orig_pipeline;
1577	pio->io_reexecute = 0;
1578	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1579	pio->io_error = 0;
1580	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1581		pio->io_state[w] = 0;
1582	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1583		pio->io_child_error[c] = 0;
1584
1585	if (IO_IS_ALLOCATING(pio))
1586		BP_ZERO(pio->io_bp);
1587
1588	/*
1589	 * As we reexecute pio's children, new children could be created.
1590	 * New children go to the head of pio's io_child_list, however,
1591	 * so we will (correctly) not reexecute them.  The key is that
1592	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1593	 * cannot be affected by any side effects of reexecuting 'cio'.
1594	 */
1595	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1596		cio_next = zio_walk_children(pio);
1597		mutex_enter(&pio->io_lock);
1598		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1599			pio->io_children[cio->io_child_type][w]++;
1600		mutex_exit(&pio->io_lock);
1601		zio_reexecute(cio);
1602	}
1603
1604	/*
1605	 * Now that all children have been reexecuted, execute the parent.
1606	 * We don't reexecute "The Godfather" I/O here as it's the
1607	 * responsibility of the caller to wait on him.
1608	 */
1609	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1610		zio_execute(pio);
1611}
1612
1613void
1614zio_suspend(spa_t *spa, zio_t *zio)
1615{
1616	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1617		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1618		    "failure and the failure mode property for this pool "
1619		    "is set to panic.", spa_name(spa));
1620
1621	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1622
1623	mutex_enter(&spa->spa_suspend_lock);
1624
1625	if (spa->spa_suspend_zio_root == NULL)
1626		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1627		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1628		    ZIO_FLAG_GODFATHER);
1629
1630	spa->spa_suspended = B_TRUE;
1631
1632	if (zio != NULL) {
1633		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1634		ASSERT(zio != spa->spa_suspend_zio_root);
1635		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1636		ASSERT(zio_unique_parent(zio) == NULL);
1637		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1638		zio_add_child(spa->spa_suspend_zio_root, zio);
1639	}
1640
1641	mutex_exit(&spa->spa_suspend_lock);
1642}
1643
1644int
1645zio_resume(spa_t *spa)
1646{
1647	zio_t *pio;
1648
1649	/*
1650	 * Reexecute all previously suspended i/o.
1651	 */
1652	mutex_enter(&spa->spa_suspend_lock);
1653	spa->spa_suspended = B_FALSE;
1654	cv_broadcast(&spa->spa_suspend_cv);
1655	pio = spa->spa_suspend_zio_root;
1656	spa->spa_suspend_zio_root = NULL;
1657	mutex_exit(&spa->spa_suspend_lock);
1658
1659	if (pio == NULL)
1660		return (0);
1661
1662	zio_reexecute(pio);
1663	return (zio_wait(pio));
1664}
1665
1666void
1667zio_resume_wait(spa_t *spa)
1668{
1669	mutex_enter(&spa->spa_suspend_lock);
1670	while (spa_suspended(spa))
1671		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1672	mutex_exit(&spa->spa_suspend_lock);
1673}
1674
1675/*
1676 * ==========================================================================
1677 * Gang blocks.
1678 *
1679 * A gang block is a collection of small blocks that looks to the DMU
1680 * like one large block.  When zio_dva_allocate() cannot find a block
1681 * of the requested size, due to either severe fragmentation or the pool
1682 * being nearly full, it calls zio_write_gang_block() to construct the
1683 * block from smaller fragments.
1684 *
1685 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1686 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1687 * an indirect block: it's an array of block pointers.  It consumes
1688 * only one sector and hence is allocatable regardless of fragmentation.
1689 * The gang header's bps point to its gang members, which hold the data.
1690 *
1691 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1692 * as the verifier to ensure uniqueness of the SHA256 checksum.
1693 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1694 * not the gang header.  This ensures that data block signatures (needed for
1695 * deduplication) are independent of how the block is physically stored.
1696 *
1697 * Gang blocks can be nested: a gang member may itself be a gang block.
1698 * Thus every gang block is a tree in which root and all interior nodes are
1699 * gang headers, and the leaves are normal blocks that contain user data.
1700 * The root of the gang tree is called the gang leader.
1701 *
1702 * To perform any operation (read, rewrite, free, claim) on a gang block,
1703 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1704 * in the io_gang_tree field of the original logical i/o by recursively
1705 * reading the gang leader and all gang headers below it.  This yields
1706 * an in-core tree containing the contents of every gang header and the
1707 * bps for every constituent of the gang block.
1708 *
1709 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1710 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1711 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1712 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1713 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1714 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1715 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1716 * of the gang header plus zio_checksum_compute() of the data to update the
1717 * gang header's blk_cksum as described above.
1718 *
1719 * The two-phase assemble/issue model solves the problem of partial failure --
1720 * what if you'd freed part of a gang block but then couldn't read the
1721 * gang header for another part?  Assembling the entire gang tree first
1722 * ensures that all the necessary gang header I/O has succeeded before
1723 * starting the actual work of free, claim, or write.  Once the gang tree
1724 * is assembled, free and claim are in-memory operations that cannot fail.
1725 *
1726 * In the event that a gang write fails, zio_dva_unallocate() walks the
1727 * gang tree to immediately free (i.e. insert back into the space map)
1728 * everything we've allocated.  This ensures that we don't get ENOSPC
1729 * errors during repeated suspend/resume cycles due to a flaky device.
1730 *
1731 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1732 * the gang tree, we won't modify the block, so we can safely defer the free
1733 * (knowing that the block is still intact).  If we *can* assemble the gang
1734 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1735 * each constituent bp and we can allocate a new block on the next sync pass.
1736 *
1737 * In all cases, the gang tree allows complete recovery from partial failure.
1738 * ==========================================================================
1739 */
1740
1741static zio_t *
1742zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1743{
1744	if (gn != NULL)
1745		return (pio);
1746
1747	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1748	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1749	    &pio->io_bookmark));
1750}
1751
1752zio_t *
1753zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1754{
1755	zio_t *zio;
1756
1757	if (gn != NULL) {
1758		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1759		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1760		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1761		/*
1762		 * As we rewrite each gang header, the pipeline will compute
1763		 * a new gang block header checksum for it; but no one will
1764		 * compute a new data checksum, so we do that here.  The one
1765		 * exception is the gang leader: the pipeline already computed
1766		 * its data checksum because that stage precedes gang assembly.
1767		 * (Presently, nothing actually uses interior data checksums;
1768		 * this is just good hygiene.)
1769		 */
1770		if (gn != pio->io_gang_leader->io_gang_tree) {
1771			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1772			    data, BP_GET_PSIZE(bp));
1773		}
1774		/*
1775		 * If we are here to damage data for testing purposes,
1776		 * leave the GBH alone so that we can detect the damage.
1777		 */
1778		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1779			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1780	} else {
1781		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1782		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1783		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1784	}
1785
1786	return (zio);
1787}
1788
1789/* ARGSUSED */
1790zio_t *
1791zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1792{
1793	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1794	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1795	    ZIO_GANG_CHILD_FLAGS(pio)));
1796}
1797
1798/* ARGSUSED */
1799zio_t *
1800zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1801{
1802	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1803	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1804}
1805
1806static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1807	NULL,
1808	zio_read_gang,
1809	zio_rewrite_gang,
1810	zio_free_gang,
1811	zio_claim_gang,
1812	NULL
1813};
1814
1815static void zio_gang_tree_assemble_done(zio_t *zio);
1816
1817static zio_gang_node_t *
1818zio_gang_node_alloc(zio_gang_node_t **gnpp)
1819{
1820	zio_gang_node_t *gn;
1821
1822	ASSERT(*gnpp == NULL);
1823
1824	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1825	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1826	*gnpp = gn;
1827
1828	return (gn);
1829}
1830
1831static void
1832zio_gang_node_free(zio_gang_node_t **gnpp)
1833{
1834	zio_gang_node_t *gn = *gnpp;
1835
1836	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1837		ASSERT(gn->gn_child[g] == NULL);
1838
1839	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1840	kmem_free(gn, sizeof (*gn));
1841	*gnpp = NULL;
1842}
1843
1844static void
1845zio_gang_tree_free(zio_gang_node_t **gnpp)
1846{
1847	zio_gang_node_t *gn = *gnpp;
1848
1849	if (gn == NULL)
1850		return;
1851
1852	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1853		zio_gang_tree_free(&gn->gn_child[g]);
1854
1855	zio_gang_node_free(gnpp);
1856}
1857
1858static void
1859zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1860{
1861	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1862
1863	ASSERT(gio->io_gang_leader == gio);
1864	ASSERT(BP_IS_GANG(bp));
1865
1866	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1867	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1868	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1869}
1870
1871static void
1872zio_gang_tree_assemble_done(zio_t *zio)
1873{
1874	zio_t *gio = zio->io_gang_leader;
1875	zio_gang_node_t *gn = zio->io_private;
1876	blkptr_t *bp = zio->io_bp;
1877
1878	ASSERT(gio == zio_unique_parent(zio));
1879	ASSERT(zio->io_child_count == 0);
1880
1881	if (zio->io_error)
1882		return;
1883
1884	if (BP_SHOULD_BYTESWAP(bp))
1885		byteswap_uint64_array(zio->io_data, zio->io_size);
1886
1887	ASSERT(zio->io_data == gn->gn_gbh);
1888	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1889	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1890
1891	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1892		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1893		if (!BP_IS_GANG(gbp))
1894			continue;
1895		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1896	}
1897}
1898
1899static void
1900zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1901{
1902	zio_t *gio = pio->io_gang_leader;
1903	zio_t *zio;
1904
1905	ASSERT(BP_IS_GANG(bp) == !!gn);
1906	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1907	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1908
1909	/*
1910	 * If you're a gang header, your data is in gn->gn_gbh.
1911	 * If you're a gang member, your data is in 'data' and gn == NULL.
1912	 */
1913	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1914
1915	if (gn != NULL) {
1916		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1917
1918		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1919			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1920			if (BP_IS_HOLE(gbp))
1921				continue;
1922			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1923			data = (char *)data + BP_GET_PSIZE(gbp);
1924		}
1925	}
1926
1927	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1928		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1929
1930	if (zio != pio)
1931		zio_nowait(zio);
1932}
1933
1934static int
1935zio_gang_assemble(zio_t *zio)
1936{
1937	blkptr_t *bp = zio->io_bp;
1938
1939	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1940	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1941
1942	zio->io_gang_leader = zio;
1943
1944	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1945
1946	return (ZIO_PIPELINE_CONTINUE);
1947}
1948
1949static int
1950zio_gang_issue(zio_t *zio)
1951{
1952	blkptr_t *bp = zio->io_bp;
1953
1954	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1955		return (ZIO_PIPELINE_STOP);
1956
1957	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1958	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1959
1960	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1961		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1962	else
1963		zio_gang_tree_free(&zio->io_gang_tree);
1964
1965	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1966
1967	return (ZIO_PIPELINE_CONTINUE);
1968}
1969
1970static void
1971zio_write_gang_member_ready(zio_t *zio)
1972{
1973	zio_t *pio = zio_unique_parent(zio);
1974	zio_t *gio = zio->io_gang_leader;
1975	dva_t *cdva = zio->io_bp->blk_dva;
1976	dva_t *pdva = pio->io_bp->blk_dva;
1977	uint64_t asize;
1978
1979	if (BP_IS_HOLE(zio->io_bp))
1980		return;
1981
1982	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1983
1984	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1985	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1986	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1987	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1988	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1989
1990	mutex_enter(&pio->io_lock);
1991	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1992		ASSERT(DVA_GET_GANG(&pdva[d]));
1993		asize = DVA_GET_ASIZE(&pdva[d]);
1994		asize += DVA_GET_ASIZE(&cdva[d]);
1995		DVA_SET_ASIZE(&pdva[d], asize);
1996	}
1997	mutex_exit(&pio->io_lock);
1998}
1999
2000static int
2001zio_write_gang_block(zio_t *pio)
2002{
2003	spa_t *spa = pio->io_spa;
2004	blkptr_t *bp = pio->io_bp;
2005	zio_t *gio = pio->io_gang_leader;
2006	zio_t *zio;
2007	zio_gang_node_t *gn, **gnpp;
2008	zio_gbh_phys_t *gbh;
2009	uint64_t txg = pio->io_txg;
2010	uint64_t resid = pio->io_size;
2011	uint64_t lsize;
2012	int copies = gio->io_prop.zp_copies;
2013	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2014	zio_prop_t zp;
2015	int error;
2016
2017	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2018	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2019	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2020	if (error) {
2021		pio->io_error = error;
2022		return (ZIO_PIPELINE_CONTINUE);
2023	}
2024
2025	if (pio == gio) {
2026		gnpp = &gio->io_gang_tree;
2027	} else {
2028		gnpp = pio->io_private;
2029		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2030	}
2031
2032	gn = zio_gang_node_alloc(gnpp);
2033	gbh = gn->gn_gbh;
2034	bzero(gbh, SPA_GANGBLOCKSIZE);
2035
2036	/*
2037	 * Create the gang header.
2038	 */
2039	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2040	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2041
2042	/*
2043	 * Create and nowait the gang children.
2044	 */
2045	for (int g = 0; resid != 0; resid -= lsize, g++) {
2046		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2047		    SPA_MINBLOCKSIZE);
2048		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2049
2050		zp.zp_checksum = gio->io_prop.zp_checksum;
2051		zp.zp_compress = ZIO_COMPRESS_OFF;
2052		zp.zp_type = DMU_OT_NONE;
2053		zp.zp_level = 0;
2054		zp.zp_copies = gio->io_prop.zp_copies;
2055		zp.zp_dedup = B_FALSE;
2056		zp.zp_dedup_verify = B_FALSE;
2057		zp.zp_nopwrite = B_FALSE;
2058
2059		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2060		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2061		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2062		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2063		    &pio->io_bookmark));
2064	}
2065
2066	/*
2067	 * Set pio's pipeline to just wait for zio to finish.
2068	 */
2069	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2070
2071	zio_nowait(zio);
2072
2073	return (ZIO_PIPELINE_CONTINUE);
2074}
2075
2076/*
2077 * The zio_nop_write stage in the pipeline determines if allocating
2078 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
2079 * such as SHA256, we can compare the checksums of the new data and the old
2080 * to determine if allocating a new block is required.  The nopwrite
2081 * feature can handle writes in either syncing or open context (i.e. zil
2082 * writes) and as a result is mutually exclusive with dedup.
2083 */
2084static int
2085zio_nop_write(zio_t *zio)
2086{
2087	blkptr_t *bp = zio->io_bp;
2088	blkptr_t *bp_orig = &zio->io_bp_orig;
2089	zio_prop_t *zp = &zio->io_prop;
2090
2091	ASSERT(BP_GET_LEVEL(bp) == 0);
2092	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2093	ASSERT(zp->zp_nopwrite);
2094	ASSERT(!zp->zp_dedup);
2095	ASSERT(zio->io_bp_override == NULL);
2096	ASSERT(IO_IS_ALLOCATING(zio));
2097
2098	/*
2099	 * Check to see if the original bp and the new bp have matching
2100	 * characteristics (i.e. same checksum, compression algorithms, etc).
2101	 * If they don't then just continue with the pipeline which will
2102	 * allocate a new bp.
2103	 */
2104	if (BP_IS_HOLE(bp_orig) ||
2105	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2106	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2107	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2108	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2109	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2110		return (ZIO_PIPELINE_CONTINUE);
2111
2112	/*
2113	 * If the checksums match then reset the pipeline so that we
2114	 * avoid allocating a new bp and issuing any I/O.
2115	 */
2116	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2117		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2118		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2119		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2120		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2121		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2122		    sizeof (uint64_t)) == 0);
2123
2124		*bp = *bp_orig;
2125		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2126		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2127	}
2128
2129	return (ZIO_PIPELINE_CONTINUE);
2130}
2131
2132/*
2133 * ==========================================================================
2134 * Dedup
2135 * ==========================================================================
2136 */
2137static void
2138zio_ddt_child_read_done(zio_t *zio)
2139{
2140	blkptr_t *bp = zio->io_bp;
2141	ddt_entry_t *dde = zio->io_private;
2142	ddt_phys_t *ddp;
2143	zio_t *pio = zio_unique_parent(zio);
2144
2145	mutex_enter(&pio->io_lock);
2146	ddp = ddt_phys_select(dde, bp);
2147	if (zio->io_error == 0)
2148		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2149	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2150		dde->dde_repair_data = zio->io_data;
2151	else
2152		zio_buf_free(zio->io_data, zio->io_size);
2153	mutex_exit(&pio->io_lock);
2154}
2155
2156static int
2157zio_ddt_read_start(zio_t *zio)
2158{
2159	blkptr_t *bp = zio->io_bp;
2160
2161	ASSERT(BP_GET_DEDUP(bp));
2162	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2163	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2164
2165	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2166		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2167		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2168		ddt_phys_t *ddp = dde->dde_phys;
2169		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2170		blkptr_t blk;
2171
2172		ASSERT(zio->io_vsd == NULL);
2173		zio->io_vsd = dde;
2174
2175		if (ddp_self == NULL)
2176			return (ZIO_PIPELINE_CONTINUE);
2177
2178		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2179			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2180				continue;
2181			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2182			    &blk);
2183			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2184			    zio_buf_alloc(zio->io_size), zio->io_size,
2185			    zio_ddt_child_read_done, dde, zio->io_priority,
2186			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2187			    &zio->io_bookmark));
2188		}
2189		return (ZIO_PIPELINE_CONTINUE);
2190	}
2191
2192	zio_nowait(zio_read(zio, zio->io_spa, bp,
2193	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2194	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2195
2196	return (ZIO_PIPELINE_CONTINUE);
2197}
2198
2199static int
2200zio_ddt_read_done(zio_t *zio)
2201{
2202	blkptr_t *bp = zio->io_bp;
2203
2204	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2205		return (ZIO_PIPELINE_STOP);
2206
2207	ASSERT(BP_GET_DEDUP(bp));
2208	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2209	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2210
2211	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2212		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2213		ddt_entry_t *dde = zio->io_vsd;
2214		if (ddt == NULL) {
2215			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2216			return (ZIO_PIPELINE_CONTINUE);
2217		}
2218		if (dde == NULL) {
2219			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2220			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2221			return (ZIO_PIPELINE_STOP);
2222		}
2223		if (dde->dde_repair_data != NULL) {
2224			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2225			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2226		}
2227		ddt_repair_done(ddt, dde);
2228		zio->io_vsd = NULL;
2229	}
2230
2231	ASSERT(zio->io_vsd == NULL);
2232
2233	return (ZIO_PIPELINE_CONTINUE);
2234}
2235
2236static boolean_t
2237zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2238{
2239	spa_t *spa = zio->io_spa;
2240
2241	/*
2242	 * Note: we compare the original data, not the transformed data,
2243	 * because when zio->io_bp is an override bp, we will not have
2244	 * pushed the I/O transforms.  That's an important optimization
2245	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2246	 */
2247	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2248		zio_t *lio = dde->dde_lead_zio[p];
2249
2250		if (lio != NULL) {
2251			return (lio->io_orig_size != zio->io_orig_size ||
2252			    bcmp(zio->io_orig_data, lio->io_orig_data,
2253			    zio->io_orig_size) != 0);
2254		}
2255	}
2256
2257	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2258		ddt_phys_t *ddp = &dde->dde_phys[p];
2259
2260		if (ddp->ddp_phys_birth != 0) {
2261			arc_buf_t *abuf = NULL;
2262			arc_flags_t aflags = ARC_FLAG_WAIT;
2263			blkptr_t blk = *zio->io_bp;
2264			int error;
2265
2266			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2267
2268			ddt_exit(ddt);
2269
2270			error = arc_read(NULL, spa, &blk,
2271			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2272			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2273			    &aflags, &zio->io_bookmark);
2274
2275			if (error == 0) {
2276				if (arc_buf_size(abuf) != zio->io_orig_size ||
2277				    bcmp(abuf->b_data, zio->io_orig_data,
2278				    zio->io_orig_size) != 0)
2279					error = SET_ERROR(EEXIST);
2280				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2281			}
2282
2283			ddt_enter(ddt);
2284			return (error != 0);
2285		}
2286	}
2287
2288	return (B_FALSE);
2289}
2290
2291static void
2292zio_ddt_child_write_ready(zio_t *zio)
2293{
2294	int p = zio->io_prop.zp_copies;
2295	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2296	ddt_entry_t *dde = zio->io_private;
2297	ddt_phys_t *ddp = &dde->dde_phys[p];
2298	zio_t *pio;
2299
2300	if (zio->io_error)
2301		return;
2302
2303	ddt_enter(ddt);
2304
2305	ASSERT(dde->dde_lead_zio[p] == zio);
2306
2307	ddt_phys_fill(ddp, zio->io_bp);
2308
2309	while ((pio = zio_walk_parents(zio)) != NULL)
2310		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2311
2312	ddt_exit(ddt);
2313}
2314
2315static void
2316zio_ddt_child_write_done(zio_t *zio)
2317{
2318	int p = zio->io_prop.zp_copies;
2319	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2320	ddt_entry_t *dde = zio->io_private;
2321	ddt_phys_t *ddp = &dde->dde_phys[p];
2322
2323	ddt_enter(ddt);
2324
2325	ASSERT(ddp->ddp_refcnt == 0);
2326	ASSERT(dde->dde_lead_zio[p] == zio);
2327	dde->dde_lead_zio[p] = NULL;
2328
2329	if (zio->io_error == 0) {
2330		while (zio_walk_parents(zio) != NULL)
2331			ddt_phys_addref(ddp);
2332	} else {
2333		ddt_phys_clear(ddp);
2334	}
2335
2336	ddt_exit(ddt);
2337}
2338
2339static void
2340zio_ddt_ditto_write_done(zio_t *zio)
2341{
2342	int p = DDT_PHYS_DITTO;
2343	zio_prop_t *zp = &zio->io_prop;
2344	blkptr_t *bp = zio->io_bp;
2345	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2346	ddt_entry_t *dde = zio->io_private;
2347	ddt_phys_t *ddp = &dde->dde_phys[p];
2348	ddt_key_t *ddk = &dde->dde_key;
2349
2350	ddt_enter(ddt);
2351
2352	ASSERT(ddp->ddp_refcnt == 0);
2353	ASSERT(dde->dde_lead_zio[p] == zio);
2354	dde->dde_lead_zio[p] = NULL;
2355
2356	if (zio->io_error == 0) {
2357		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2358		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2359		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2360		if (ddp->ddp_phys_birth != 0)
2361			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2362		ddt_phys_fill(ddp, bp);
2363	}
2364
2365	ddt_exit(ddt);
2366}
2367
2368static int
2369zio_ddt_write(zio_t *zio)
2370{
2371	spa_t *spa = zio->io_spa;
2372	blkptr_t *bp = zio->io_bp;
2373	uint64_t txg = zio->io_txg;
2374	zio_prop_t *zp = &zio->io_prop;
2375	int p = zp->zp_copies;
2376	int ditto_copies;
2377	zio_t *cio = NULL;
2378	zio_t *dio = NULL;
2379	ddt_t *ddt = ddt_select(spa, bp);
2380	ddt_entry_t *dde;
2381	ddt_phys_t *ddp;
2382
2383	ASSERT(BP_GET_DEDUP(bp));
2384	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2385	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2386
2387	ddt_enter(ddt);
2388	dde = ddt_lookup(ddt, bp, B_TRUE);
2389	ddp = &dde->dde_phys[p];
2390
2391	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2392		/*
2393		 * If we're using a weak checksum, upgrade to a strong checksum
2394		 * and try again.  If we're already using a strong checksum,
2395		 * we can't resolve it, so just convert to an ordinary write.
2396		 * (And automatically e-mail a paper to Nature?)
2397		 */
2398		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2399			zp->zp_checksum = spa_dedup_checksum(spa);
2400			zio_pop_transforms(zio);
2401			zio->io_stage = ZIO_STAGE_OPEN;
2402			BP_ZERO(bp);
2403		} else {
2404			zp->zp_dedup = B_FALSE;
2405		}
2406		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2407		ddt_exit(ddt);
2408		return (ZIO_PIPELINE_CONTINUE);
2409	}
2410
2411	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2412	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2413
2414	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2415	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2416		zio_prop_t czp = *zp;
2417
2418		czp.zp_copies = ditto_copies;
2419
2420		/*
2421		 * If we arrived here with an override bp, we won't have run
2422		 * the transform stack, so we won't have the data we need to
2423		 * generate a child i/o.  So, toss the override bp and restart.
2424		 * This is safe, because using the override bp is just an
2425		 * optimization; and it's rare, so the cost doesn't matter.
2426		 */
2427		if (zio->io_bp_override) {
2428			zio_pop_transforms(zio);
2429			zio->io_stage = ZIO_STAGE_OPEN;
2430			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2431			zio->io_bp_override = NULL;
2432			BP_ZERO(bp);
2433			ddt_exit(ddt);
2434			return (ZIO_PIPELINE_CONTINUE);
2435		}
2436
2437		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2438		    zio->io_orig_size, &czp, NULL, NULL,
2439		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2440		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2441
2442		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2443		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2444	}
2445
2446	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2447		if (ddp->ddp_phys_birth != 0)
2448			ddt_bp_fill(ddp, bp, txg);
2449		if (dde->dde_lead_zio[p] != NULL)
2450			zio_add_child(zio, dde->dde_lead_zio[p]);
2451		else
2452			ddt_phys_addref(ddp);
2453	} else if (zio->io_bp_override) {
2454		ASSERT(bp->blk_birth == txg);
2455		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2456		ddt_phys_fill(ddp, bp);
2457		ddt_phys_addref(ddp);
2458	} else {
2459		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2460		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2461		    zio_ddt_child_write_done, dde, zio->io_priority,
2462		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2463
2464		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2465		dde->dde_lead_zio[p] = cio;
2466	}
2467
2468	ddt_exit(ddt);
2469
2470	if (cio)
2471		zio_nowait(cio);
2472	if (dio)
2473		zio_nowait(dio);
2474
2475	return (ZIO_PIPELINE_CONTINUE);
2476}
2477
2478ddt_entry_t *freedde; /* for debugging */
2479
2480static int
2481zio_ddt_free(zio_t *zio)
2482{
2483	spa_t *spa = zio->io_spa;
2484	blkptr_t *bp = zio->io_bp;
2485	ddt_t *ddt = ddt_select(spa, bp);
2486	ddt_entry_t *dde;
2487	ddt_phys_t *ddp;
2488
2489	ASSERT(BP_GET_DEDUP(bp));
2490	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2491
2492	ddt_enter(ddt);
2493	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2494	ddp = ddt_phys_select(dde, bp);
2495	ddt_phys_decref(ddp);
2496	ddt_exit(ddt);
2497
2498	return (ZIO_PIPELINE_CONTINUE);
2499}
2500
2501/*
2502 * ==========================================================================
2503 * Allocate and free blocks
2504 * ==========================================================================
2505 */
2506static int
2507zio_dva_allocate(zio_t *zio)
2508{
2509	spa_t *spa = zio->io_spa;
2510	metaslab_class_t *mc = spa_normal_class(spa);
2511	blkptr_t *bp = zio->io_bp;
2512	int error;
2513	int flags = 0;
2514
2515	if (zio->io_gang_leader == NULL) {
2516		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2517		zio->io_gang_leader = zio;
2518	}
2519
2520	ASSERT(BP_IS_HOLE(bp));
2521	ASSERT0(BP_GET_NDVAS(bp));
2522	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2523	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2524	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2525
2526	/*
2527	 * The dump device does not support gang blocks so allocation on
2528	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2529	 * the "fast" gang feature.
2530	 */
2531	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2532	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2533	    METASLAB_GANG_CHILD : 0;
2534	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2535	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2536
2537	if (error) {
2538		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2539		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2540		    error);
2541		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2542			return (zio_write_gang_block(zio));
2543		zio->io_error = error;
2544	}
2545
2546	return (ZIO_PIPELINE_CONTINUE);
2547}
2548
2549static int
2550zio_dva_free(zio_t *zio)
2551{
2552	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2553
2554	return (ZIO_PIPELINE_CONTINUE);
2555}
2556
2557static int
2558zio_dva_claim(zio_t *zio)
2559{
2560	int error;
2561
2562	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2563	if (error)
2564		zio->io_error = error;
2565
2566	return (ZIO_PIPELINE_CONTINUE);
2567}
2568
2569/*
2570 * Undo an allocation.  This is used by zio_done() when an I/O fails
2571 * and we want to give back the block we just allocated.
2572 * This handles both normal blocks and gang blocks.
2573 */
2574static void
2575zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2576{
2577	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2578	ASSERT(zio->io_bp_override == NULL);
2579
2580	if (!BP_IS_HOLE(bp))
2581		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2582
2583	if (gn != NULL) {
2584		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2585			zio_dva_unallocate(zio, gn->gn_child[g],
2586			    &gn->gn_gbh->zg_blkptr[g]);
2587		}
2588	}
2589}
2590
2591/*
2592 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2593 */
2594int
2595zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2596    uint64_t size, boolean_t use_slog)
2597{
2598	int error = 1;
2599
2600	ASSERT(txg > spa_syncing_txg(spa));
2601
2602	/*
2603	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2604	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2605	 * when allocating them.
2606	 */
2607	if (use_slog) {
2608		error = metaslab_alloc(spa, spa_log_class(spa), size,
2609		    new_bp, 1, txg, old_bp,
2610		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2611	}
2612
2613	if (error) {
2614		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2615		    new_bp, 1, txg, old_bp,
2616		    METASLAB_HINTBP_AVOID);
2617	}
2618
2619	if (error == 0) {
2620		BP_SET_LSIZE(new_bp, size);
2621		BP_SET_PSIZE(new_bp, size);
2622		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2623		BP_SET_CHECKSUM(new_bp,
2624		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2625		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2626		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2627		BP_SET_LEVEL(new_bp, 0);
2628		BP_SET_DEDUP(new_bp, 0);
2629		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2630	}
2631
2632	return (error);
2633}
2634
2635/*
2636 * Free an intent log block.
2637 */
2638void
2639zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2640{
2641	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2642	ASSERT(!BP_IS_GANG(bp));
2643
2644	zio_free(spa, txg, bp);
2645}
2646
2647/*
2648 * ==========================================================================
2649 * Read, write and delete to physical devices
2650 * ==========================================================================
2651 */
2652static int
2653zio_vdev_io_start(zio_t *zio)
2654{
2655	vdev_t *vd = zio->io_vd;
2656	uint64_t align;
2657	spa_t *spa = zio->io_spa;
2658	int ret;
2659
2660	ASSERT(zio->io_error == 0);
2661	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2662
2663	if (vd == NULL) {
2664		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2665			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2666
2667		/*
2668		 * The mirror_ops handle multiple DVAs in a single BP.
2669		 */
2670		return (vdev_mirror_ops.vdev_op_io_start(zio));
2671	}
2672
2673	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2674	    zio->io_priority == ZIO_PRIORITY_NOW) {
2675		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2676		return (ZIO_PIPELINE_CONTINUE);
2677	}
2678
2679	/*
2680	 * We keep track of time-sensitive I/Os so that the scan thread
2681	 * can quickly react to certain workloads.  In particular, we care
2682	 * about non-scrubbing, top-level reads and writes with the following
2683	 * characteristics:
2684	 * 	- synchronous writes of user data to non-slog devices
2685	 *	- any reads of user data
2686	 * When these conditions are met, adjust the timestamp of spa_last_io
2687	 * which allows the scan thread to adjust its workload accordingly.
2688	 */
2689	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2690	    vd == vd->vdev_top && !vd->vdev_islog &&
2691	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2692	    zio->io_txg != spa_syncing_txg(spa)) {
2693		uint64_t old = spa->spa_last_io;
2694		uint64_t new = ddi_get_lbolt64();
2695		if (old != new)
2696			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2697	}
2698
2699	align = 1ULL << vd->vdev_top->vdev_ashift;
2700
2701	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2702	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2703	    P2PHASE(zio->io_size, align) != 0) {
2704		/* Transform logical writes to be a full physical block size. */
2705		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2706		char *abuf = NULL;
2707		if (zio->io_type == ZIO_TYPE_READ ||
2708		    zio->io_type == ZIO_TYPE_WRITE)
2709			abuf = zio_buf_alloc(asize);
2710		ASSERT(vd == vd->vdev_top);
2711		if (zio->io_type == ZIO_TYPE_WRITE) {
2712			bcopy(zio->io_data, abuf, zio->io_size);
2713			bzero(abuf + zio->io_size, asize - zio->io_size);
2714		}
2715		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2716		    zio_subblock);
2717	}
2718
2719	/*
2720	 * If this is not a physical io, make sure that it is properly aligned
2721	 * before proceeding.
2722	 */
2723	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2724		ASSERT0(P2PHASE(zio->io_offset, align));
2725		ASSERT0(P2PHASE(zio->io_size, align));
2726	} else {
2727		/*
2728		 * For physical writes, we allow 512b aligned writes and assume
2729		 * the device will perform a read-modify-write as necessary.
2730		 */
2731		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2732		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2733	}
2734
2735	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2736
2737	/*
2738	 * If this is a repair I/O, and there's no self-healing involved --
2739	 * that is, we're just resilvering what we expect to resilver --
2740	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2741	 * This prevents spurious resilvering with nested replication.
2742	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2743	 * A is out of date, we'll read from C+D, then use the data to
2744	 * resilver A+B -- but we don't actually want to resilver B, just A.
2745	 * The top-level mirror has no way to know this, so instead we just
2746	 * discard unnecessary repairs as we work our way down the vdev tree.
2747	 * The same logic applies to any form of nested replication:
2748	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2749	 */
2750	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2751	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2752	    zio->io_txg != 0 &&	/* not a delegated i/o */
2753	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2754		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2755		zio_vdev_io_bypass(zio);
2756		return (ZIO_PIPELINE_CONTINUE);
2757	}
2758
2759	if (vd->vdev_ops->vdev_op_leaf) {
2760		switch (zio->io_type) {
2761		case ZIO_TYPE_READ:
2762			if (vdev_cache_read(zio))
2763				return (ZIO_PIPELINE_CONTINUE);
2764			/* FALLTHROUGH */
2765		case ZIO_TYPE_WRITE:
2766		case ZIO_TYPE_FREE:
2767			if ((zio = vdev_queue_io(zio)) == NULL)
2768				return (ZIO_PIPELINE_STOP);
2769
2770			if (!vdev_accessible(vd, zio)) {
2771				zio->io_error = SET_ERROR(ENXIO);
2772				zio_interrupt(zio);
2773				return (ZIO_PIPELINE_STOP);
2774			}
2775			break;
2776		}
2777		/*
2778		 * Note that we ignore repair writes for TRIM because they can
2779		 * conflict with normal writes. This isn't an issue because, by
2780		 * definition, we only repair blocks that aren't freed.
2781		 */
2782		if (zio->io_type == ZIO_TYPE_WRITE &&
2783		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2784		    !trim_map_write_start(zio))
2785			return (ZIO_PIPELINE_STOP);
2786	}
2787
2788	ret = vd->vdev_ops->vdev_op_io_start(zio);
2789	ASSERT(ret == ZIO_PIPELINE_STOP);
2790
2791	return (ret);
2792}
2793
2794static int
2795zio_vdev_io_done(zio_t *zio)
2796{
2797	vdev_t *vd = zio->io_vd;
2798	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2799	boolean_t unexpected_error = B_FALSE;
2800
2801	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2802		return (ZIO_PIPELINE_STOP);
2803
2804	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2805	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2806
2807	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2808	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2809	    zio->io_type == ZIO_TYPE_FREE)) {
2810
2811		if (zio->io_type == ZIO_TYPE_WRITE &&
2812		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2813			trim_map_write_done(zio);
2814
2815		vdev_queue_io_done(zio);
2816
2817		if (zio->io_type == ZIO_TYPE_WRITE)
2818			vdev_cache_write(zio);
2819
2820		if (zio_injection_enabled && zio->io_error == 0)
2821			zio->io_error = zio_handle_device_injection(vd,
2822			    zio, EIO);
2823
2824		if (zio_injection_enabled && zio->io_error == 0)
2825			zio->io_error = zio_handle_label_injection(zio, EIO);
2826
2827		if (zio->io_error) {
2828			if (zio->io_error == ENOTSUP &&
2829			    zio->io_type == ZIO_TYPE_FREE) {
2830				/* Not all devices support TRIM. */
2831			} else if (!vdev_accessible(vd, zio)) {
2832				zio->io_error = SET_ERROR(ENXIO);
2833			} else {
2834				unexpected_error = B_TRUE;
2835			}
2836		}
2837	}
2838
2839	ops->vdev_op_io_done(zio);
2840
2841	if (unexpected_error)
2842		VERIFY(vdev_probe(vd, zio) == NULL);
2843
2844	return (ZIO_PIPELINE_CONTINUE);
2845}
2846
2847/*
2848 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2849 * disk, and use that to finish the checksum ereport later.
2850 */
2851static void
2852zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2853    const void *good_buf)
2854{
2855	/* no processing needed */
2856	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2857}
2858
2859/*ARGSUSED*/
2860void
2861zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2862{
2863	void *buf = zio_buf_alloc(zio->io_size);
2864
2865	bcopy(zio->io_data, buf, zio->io_size);
2866
2867	zcr->zcr_cbinfo = zio->io_size;
2868	zcr->zcr_cbdata = buf;
2869	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2870	zcr->zcr_free = zio_buf_free;
2871}
2872
2873static int
2874zio_vdev_io_assess(zio_t *zio)
2875{
2876	vdev_t *vd = zio->io_vd;
2877
2878	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2879		return (ZIO_PIPELINE_STOP);
2880
2881	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2882		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2883
2884	if (zio->io_vsd != NULL) {
2885		zio->io_vsd_ops->vsd_free(zio);
2886		zio->io_vsd = NULL;
2887	}
2888
2889	if (zio_injection_enabled && zio->io_error == 0)
2890		zio->io_error = zio_handle_fault_injection(zio, EIO);
2891
2892	if (zio->io_type == ZIO_TYPE_FREE &&
2893	    zio->io_priority != ZIO_PRIORITY_NOW) {
2894		switch (zio->io_error) {
2895		case 0:
2896			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2897			ZIO_TRIM_STAT_BUMP(success);
2898			break;
2899		case EOPNOTSUPP:
2900			ZIO_TRIM_STAT_BUMP(unsupported);
2901			break;
2902		default:
2903			ZIO_TRIM_STAT_BUMP(failed);
2904			break;
2905		}
2906	}
2907
2908	/*
2909	 * If the I/O failed, determine whether we should attempt to retry it.
2910	 *
2911	 * On retry, we cut in line in the issue queue, since we don't want
2912	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2913	 */
2914	if (zio->io_error && vd == NULL &&
2915	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2916		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2917		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2918		zio->io_error = 0;
2919		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2920		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2921		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2922		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2923		    zio_requeue_io_start_cut_in_line);
2924		return (ZIO_PIPELINE_STOP);
2925	}
2926
2927	/*
2928	 * If we got an error on a leaf device, convert it to ENXIO
2929	 * if the device is not accessible at all.
2930	 */
2931	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2932	    !vdev_accessible(vd, zio))
2933		zio->io_error = SET_ERROR(ENXIO);
2934
2935	/*
2936	 * If we can't write to an interior vdev (mirror or RAID-Z),
2937	 * set vdev_cant_write so that we stop trying to allocate from it.
2938	 */
2939	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2940	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2941		vd->vdev_cant_write = B_TRUE;
2942	}
2943
2944	if (zio->io_error)
2945		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2946
2947	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2948	    zio->io_physdone != NULL) {
2949		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2950		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2951		zio->io_physdone(zio->io_logical);
2952	}
2953
2954	return (ZIO_PIPELINE_CONTINUE);
2955}
2956
2957void
2958zio_vdev_io_reissue(zio_t *zio)
2959{
2960	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2961	ASSERT(zio->io_error == 0);
2962
2963	zio->io_stage >>= 1;
2964}
2965
2966void
2967zio_vdev_io_redone(zio_t *zio)
2968{
2969	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2970
2971	zio->io_stage >>= 1;
2972}
2973
2974void
2975zio_vdev_io_bypass(zio_t *zio)
2976{
2977	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2978	ASSERT(zio->io_error == 0);
2979
2980	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2981	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2982}
2983
2984/*
2985 * ==========================================================================
2986 * Generate and verify checksums
2987 * ==========================================================================
2988 */
2989static int
2990zio_checksum_generate(zio_t *zio)
2991{
2992	blkptr_t *bp = zio->io_bp;
2993	enum zio_checksum checksum;
2994
2995	if (bp == NULL) {
2996		/*
2997		 * This is zio_write_phys().
2998		 * We're either generating a label checksum, or none at all.
2999		 */
3000		checksum = zio->io_prop.zp_checksum;
3001
3002		if (checksum == ZIO_CHECKSUM_OFF)
3003			return (ZIO_PIPELINE_CONTINUE);
3004
3005		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3006	} else {
3007		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3008			ASSERT(!IO_IS_ALLOCATING(zio));
3009			checksum = ZIO_CHECKSUM_GANG_HEADER;
3010		} else {
3011			checksum = BP_GET_CHECKSUM(bp);
3012		}
3013	}
3014
3015	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3016
3017	return (ZIO_PIPELINE_CONTINUE);
3018}
3019
3020static int
3021zio_checksum_verify(zio_t *zio)
3022{
3023	zio_bad_cksum_t info;
3024	blkptr_t *bp = zio->io_bp;
3025	int error;
3026
3027	ASSERT(zio->io_vd != NULL);
3028
3029	if (bp == NULL) {
3030		/*
3031		 * This is zio_read_phys().
3032		 * We're either verifying a label checksum, or nothing at all.
3033		 */
3034		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3035			return (ZIO_PIPELINE_CONTINUE);
3036
3037		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3038	}
3039
3040	if ((error = zio_checksum_error(zio, &info)) != 0) {
3041		zio->io_error = error;
3042		if (error == ECKSUM &&
3043		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3044			zfs_ereport_start_checksum(zio->io_spa,
3045			    zio->io_vd, zio, zio->io_offset,
3046			    zio->io_size, NULL, &info);
3047		}
3048	}
3049
3050	return (ZIO_PIPELINE_CONTINUE);
3051}
3052
3053/*
3054 * Called by RAID-Z to ensure we don't compute the checksum twice.
3055 */
3056void
3057zio_checksum_verified(zio_t *zio)
3058{
3059	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3060}
3061
3062/*
3063 * ==========================================================================
3064 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3065 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3066 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3067 * indicate errors that are specific to one I/O, and most likely permanent.
3068 * Any other error is presumed to be worse because we weren't expecting it.
3069 * ==========================================================================
3070 */
3071int
3072zio_worst_error(int e1, int e2)
3073{
3074	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3075	int r1, r2;
3076
3077	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3078		if (e1 == zio_error_rank[r1])
3079			break;
3080
3081	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3082		if (e2 == zio_error_rank[r2])
3083			break;
3084
3085	return (r1 > r2 ? e1 : e2);
3086}
3087
3088/*
3089 * ==========================================================================
3090 * I/O completion
3091 * ==========================================================================
3092 */
3093static int
3094zio_ready(zio_t *zio)
3095{
3096	blkptr_t *bp = zio->io_bp;
3097	zio_t *pio, *pio_next;
3098
3099	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3100	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3101		return (ZIO_PIPELINE_STOP);
3102
3103	if (zio->io_ready) {
3104		ASSERT(IO_IS_ALLOCATING(zio));
3105		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3106		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3107		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3108
3109		zio->io_ready(zio);
3110	}
3111
3112	if (bp != NULL && bp != &zio->io_bp_copy)
3113		zio->io_bp_copy = *bp;
3114
3115	if (zio->io_error)
3116		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3117
3118	mutex_enter(&zio->io_lock);
3119	zio->io_state[ZIO_WAIT_READY] = 1;
3120	pio = zio_walk_parents(zio);
3121	mutex_exit(&zio->io_lock);
3122
3123	/*
3124	 * As we notify zio's parents, new parents could be added.
3125	 * New parents go to the head of zio's io_parent_list, however,
3126	 * so we will (correctly) not notify them.  The remainder of zio's
3127	 * io_parent_list, from 'pio_next' onward, cannot change because
3128	 * all parents must wait for us to be done before they can be done.
3129	 */
3130	for (; pio != NULL; pio = pio_next) {
3131		pio_next = zio_walk_parents(zio);
3132		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3133	}
3134
3135	if (zio->io_flags & ZIO_FLAG_NODATA) {
3136		if (BP_IS_GANG(bp)) {
3137			zio->io_flags &= ~ZIO_FLAG_NODATA;
3138		} else {
3139			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3140			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3141		}
3142	}
3143
3144	if (zio_injection_enabled &&
3145	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3146		zio_handle_ignored_writes(zio);
3147
3148	return (ZIO_PIPELINE_CONTINUE);
3149}
3150
3151static int
3152zio_done(zio_t *zio)
3153{
3154	spa_t *spa = zio->io_spa;
3155	zio_t *lio = zio->io_logical;
3156	blkptr_t *bp = zio->io_bp;
3157	vdev_t *vd = zio->io_vd;
3158	uint64_t psize = zio->io_size;
3159	zio_t *pio, *pio_next;
3160
3161	/*
3162	 * If our children haven't all completed,
3163	 * wait for them and then repeat this pipeline stage.
3164	 */
3165	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3166	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3167	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3168	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3169		return (ZIO_PIPELINE_STOP);
3170
3171	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3172		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3173			ASSERT(zio->io_children[c][w] == 0);
3174
3175	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3176		ASSERT(bp->blk_pad[0] == 0);
3177		ASSERT(bp->blk_pad[1] == 0);
3178		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3179		    (bp == zio_unique_parent(zio)->io_bp));
3180		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3181		    zio->io_bp_override == NULL &&
3182		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3183			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3184			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3185			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3186			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3187		}
3188		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3189			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3190	}
3191
3192	/*
3193	 * If there were child vdev/gang/ddt errors, they apply to us now.
3194	 */
3195	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3196	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3197	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3198
3199	/*
3200	 * If the I/O on the transformed data was successful, generate any
3201	 * checksum reports now while we still have the transformed data.
3202	 */
3203	if (zio->io_error == 0) {
3204		while (zio->io_cksum_report != NULL) {
3205			zio_cksum_report_t *zcr = zio->io_cksum_report;
3206			uint64_t align = zcr->zcr_align;
3207			uint64_t asize = P2ROUNDUP(psize, align);
3208			char *abuf = zio->io_data;
3209
3210			if (asize != psize) {
3211				abuf = zio_buf_alloc(asize);
3212				bcopy(zio->io_data, abuf, psize);
3213				bzero(abuf + psize, asize - psize);
3214			}
3215
3216			zio->io_cksum_report = zcr->zcr_next;
3217			zcr->zcr_next = NULL;
3218			zcr->zcr_finish(zcr, abuf);
3219			zfs_ereport_free_checksum(zcr);
3220
3221			if (asize != psize)
3222				zio_buf_free(abuf, asize);
3223		}
3224	}
3225
3226	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3227
3228	vdev_stat_update(zio, psize);
3229
3230	if (zio->io_error) {
3231		/*
3232		 * If this I/O is attached to a particular vdev,
3233		 * generate an error message describing the I/O failure
3234		 * at the block level.  We ignore these errors if the
3235		 * device is currently unavailable.
3236		 */
3237		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3238			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3239
3240		if ((zio->io_error == EIO || !(zio->io_flags &
3241		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3242		    zio == lio) {
3243			/*
3244			 * For logical I/O requests, tell the SPA to log the
3245			 * error and generate a logical data ereport.
3246			 */
3247			spa_log_error(spa, zio);
3248			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3249			    0, 0);
3250		}
3251	}
3252
3253	if (zio->io_error && zio == lio) {
3254		/*
3255		 * Determine whether zio should be reexecuted.  This will
3256		 * propagate all the way to the root via zio_notify_parent().
3257		 */
3258		ASSERT(vd == NULL && bp != NULL);
3259		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3260
3261		if (IO_IS_ALLOCATING(zio) &&
3262		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3263			if (zio->io_error != ENOSPC)
3264				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3265			else
3266				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3267		}
3268
3269		if ((zio->io_type == ZIO_TYPE_READ ||
3270		    zio->io_type == ZIO_TYPE_FREE) &&
3271		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3272		    zio->io_error == ENXIO &&
3273		    spa_load_state(spa) == SPA_LOAD_NONE &&
3274		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3275			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3276
3277		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3278			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3279
3280		/*
3281		 * Here is a possibly good place to attempt to do
3282		 * either combinatorial reconstruction or error correction
3283		 * based on checksums.  It also might be a good place
3284		 * to send out preliminary ereports before we suspend
3285		 * processing.
3286		 */
3287	}
3288
3289	/*
3290	 * If there were logical child errors, they apply to us now.
3291	 * We defer this until now to avoid conflating logical child
3292	 * errors with errors that happened to the zio itself when
3293	 * updating vdev stats and reporting FMA events above.
3294	 */
3295	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3296
3297	if ((zio->io_error || zio->io_reexecute) &&
3298	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3299	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3300		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3301
3302	zio_gang_tree_free(&zio->io_gang_tree);
3303
3304	/*
3305	 * Godfather I/Os should never suspend.
3306	 */
3307	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3308	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3309		zio->io_reexecute = 0;
3310
3311	if (zio->io_reexecute) {
3312		/*
3313		 * This is a logical I/O that wants to reexecute.
3314		 *
3315		 * Reexecute is top-down.  When an i/o fails, if it's not
3316		 * the root, it simply notifies its parent and sticks around.
3317		 * The parent, seeing that it still has children in zio_done(),
3318		 * does the same.  This percolates all the way up to the root.
3319		 * The root i/o will reexecute or suspend the entire tree.
3320		 *
3321		 * This approach ensures that zio_reexecute() honors
3322		 * all the original i/o dependency relationships, e.g.
3323		 * parents not executing until children are ready.
3324		 */
3325		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3326
3327		zio->io_gang_leader = NULL;
3328
3329		mutex_enter(&zio->io_lock);
3330		zio->io_state[ZIO_WAIT_DONE] = 1;
3331		mutex_exit(&zio->io_lock);
3332
3333		/*
3334		 * "The Godfather" I/O monitors its children but is
3335		 * not a true parent to them. It will track them through
3336		 * the pipeline but severs its ties whenever they get into
3337		 * trouble (e.g. suspended). This allows "The Godfather"
3338		 * I/O to return status without blocking.
3339		 */
3340		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3341			zio_link_t *zl = zio->io_walk_link;
3342			pio_next = zio_walk_parents(zio);
3343
3344			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3345			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3346				zio_remove_child(pio, zio, zl);
3347				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3348			}
3349		}
3350
3351		if ((pio = zio_unique_parent(zio)) != NULL) {
3352			/*
3353			 * We're not a root i/o, so there's nothing to do
3354			 * but notify our parent.  Don't propagate errors
3355			 * upward since we haven't permanently failed yet.
3356			 */
3357			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3358			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3359			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3360		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3361			/*
3362			 * We'd fail again if we reexecuted now, so suspend
3363			 * until conditions improve (e.g. device comes online).
3364			 */
3365			zio_suspend(spa, zio);
3366		} else {
3367			/*
3368			 * Reexecution is potentially a huge amount of work.
3369			 * Hand it off to the otherwise-unused claim taskq.
3370			 */
3371#if defined(illumos) || !defined(_KERNEL)
3372			ASSERT(zio->io_tqent.tqent_next == NULL);
3373#else
3374			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3375#endif
3376			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3377			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3378			    0, &zio->io_tqent);
3379		}
3380		return (ZIO_PIPELINE_STOP);
3381	}
3382
3383	ASSERT(zio->io_child_count == 0);
3384	ASSERT(zio->io_reexecute == 0);
3385	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3386
3387	/*
3388	 * Report any checksum errors, since the I/O is complete.
3389	 */
3390	while (zio->io_cksum_report != NULL) {
3391		zio_cksum_report_t *zcr = zio->io_cksum_report;
3392		zio->io_cksum_report = zcr->zcr_next;
3393		zcr->zcr_next = NULL;
3394		zcr->zcr_finish(zcr, NULL);
3395		zfs_ereport_free_checksum(zcr);
3396	}
3397
3398	/*
3399	 * It is the responsibility of the done callback to ensure that this
3400	 * particular zio is no longer discoverable for adoption, and as
3401	 * such, cannot acquire any new parents.
3402	 */
3403	if (zio->io_done)
3404		zio->io_done(zio);
3405
3406	mutex_enter(&zio->io_lock);
3407	zio->io_state[ZIO_WAIT_DONE] = 1;
3408	mutex_exit(&zio->io_lock);
3409
3410	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3411		zio_link_t *zl = zio->io_walk_link;
3412		pio_next = zio_walk_parents(zio);
3413		zio_remove_child(pio, zio, zl);
3414		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3415	}
3416
3417	if (zio->io_waiter != NULL) {
3418		mutex_enter(&zio->io_lock);
3419		zio->io_executor = NULL;
3420		cv_broadcast(&zio->io_cv);
3421		mutex_exit(&zio->io_lock);
3422	} else {
3423		zio_destroy(zio);
3424	}
3425
3426	return (ZIO_PIPELINE_STOP);
3427}
3428
3429/*
3430 * ==========================================================================
3431 * I/O pipeline definition
3432 * ==========================================================================
3433 */
3434static zio_pipe_stage_t *zio_pipeline[] = {
3435	NULL,
3436	zio_read_bp_init,
3437	zio_free_bp_init,
3438	zio_issue_async,
3439	zio_write_bp_init,
3440	zio_checksum_generate,
3441	zio_nop_write,
3442	zio_ddt_read_start,
3443	zio_ddt_read_done,
3444	zio_ddt_write,
3445	zio_ddt_free,
3446	zio_gang_assemble,
3447	zio_gang_issue,
3448	zio_dva_allocate,
3449	zio_dva_free,
3450	zio_dva_claim,
3451	zio_ready,
3452	zio_vdev_io_start,
3453	zio_vdev_io_done,
3454	zio_vdev_io_assess,
3455	zio_checksum_verify,
3456	zio_done
3457};
3458
3459
3460
3461
3462/*
3463 * Compare two zbookmark_phys_t's to see which we would reach first in a
3464 * pre-order traversal of the object tree.
3465 *
3466 * This is simple in every case aside from the meta-dnode object. For all other
3467 * objects, we traverse them in order (object 1 before object 2, and so on).
3468 * However, all of these objects are traversed while traversing object 0, since
3469 * the data it points to is the list of objects.  Thus, we need to convert to a
3470 * canonical representation so we can compare meta-dnode bookmarks to
3471 * non-meta-dnode bookmarks.
3472 *
3473 * We do this by calculating "equivalents" for each field of the zbookmark.
3474 * zbookmarks outside of the meta-dnode use their own object and level, and
3475 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3476 * blocks this bookmark refers to) by multiplying their blkid by their span
3477 * (the number of L0 blocks contained within one block at their level).
3478 * zbookmarks inside the meta-dnode calculate their object equivalent
3479 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3480 * level + 1<<31 (any value larger than a level could ever be) for their level.
3481 * This causes them to always compare before a bookmark in their object
3482 * equivalent, compare appropriately to bookmarks in other objects, and to
3483 * compare appropriately to other bookmarks in the meta-dnode.
3484 */
3485int
3486zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3487    const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3488{
3489	/*
3490	 * These variables represent the "equivalent" values for the zbookmark,
3491	 * after converting zbookmarks inside the meta dnode to their
3492	 * normal-object equivalents.
3493	 */
3494	uint64_t zb1obj, zb2obj;
3495	uint64_t zb1L0, zb2L0;
3496	uint64_t zb1level, zb2level;
3497
3498	if (zb1->zb_object == zb2->zb_object &&
3499	    zb1->zb_level == zb2->zb_level &&
3500	    zb1->zb_blkid == zb2->zb_blkid)
3501		return (0);
3502
3503	/*
3504	 * BP_SPANB calculates the span in blocks.
3505	 */
3506	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3507	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3508
3509	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3510		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3511		zb1L0 = 0;
3512		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3513	} else {
3514		zb1obj = zb1->zb_object;
3515		zb1level = zb1->zb_level;
3516	}
3517
3518	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3519		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3520		zb2L0 = 0;
3521		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3522	} else {
3523		zb2obj = zb2->zb_object;
3524		zb2level = zb2->zb_level;
3525	}
3526
3527	/* Now that we have a canonical representation, do the comparison. */
3528	if (zb1obj != zb2obj)
3529		return (zb1obj < zb2obj ? -1 : 1);
3530	else if (zb1L0 != zb2L0)
3531		return (zb1L0 < zb2L0 ? -1 : 1);
3532	else if (zb1level != zb2level)
3533		return (zb1level > zb2level ? -1 : 1);
3534	/*
3535	 * This can (theoretically) happen if the bookmarks have the same object
3536	 * and level, but different blkids, if the block sizes are not the same.
3537	 * There is presently no way to change the indirect block sizes
3538	 */
3539	return (0);
3540}
3541
3542/*
3543 *  This function checks the following: given that last_block is the place that
3544 *  our traversal stopped last time, does that guarantee that we've visited
3545 *  every node under subtree_root?  Therefore, we can't just use the raw output
3546 *  of zbookmark_compare.  We have to pass in a modified version of
3547 *  subtree_root; by incrementing the block id, and then checking whether
3548 *  last_block is before or equal to that, we can tell whether or not having
3549 *  visited last_block implies that all of subtree_root's children have been
3550 *  visited.
3551 */
3552boolean_t
3553zbookmark_subtree_completed(const dnode_phys_t *dnp,
3554    const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3555{
3556	zbookmark_phys_t mod_zb = *subtree_root;
3557	mod_zb.zb_blkid++;
3558	ASSERT(last_block->zb_level == 0);
3559
3560	/* The objset_phys_t isn't before anything. */
3561	if (dnp == NULL)
3562		return (B_FALSE);
3563
3564	/*
3565	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3566	 * data block size in sectors, because that variable is only used if
3567	 * the bookmark refers to a block in the meta-dnode.  Since we don't
3568	 * know without examining it what object it refers to, and there's no
3569	 * harm in passing in this value in other cases, we always pass it in.
3570	 *
3571	 * We pass in 0 for the indirect block size shift because zb2 must be
3572	 * level 0.  The indirect block size is only used to calculate the span
3573	 * of the bookmark, but since the bookmark must be level 0, the span is
3574	 * always 1, so the math works out.
3575	 *
3576	 * If you make changes to how the zbookmark_compare code works, be sure
3577	 * to make sure that this code still works afterwards.
3578	 */
3579	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3580	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3581	    last_block) <= 0);
3582}
3583