zio.c revision 288543
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/sysmacros.h>
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/txg.h>
32#include <sys/spa_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio_impl.h>
35#include <sys/zio_compress.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/ddt.h>
40#include <sys/trim_map.h>
41#include <sys/blkptr.h>
42#include <sys/zfeature.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
46#if defined(__amd64__)
47static int zio_use_uma = 1;
48#else
49static int zio_use_uma = 0;
50#endif
51TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
52SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
53    "Use uma(9) for ZIO allocations");
54static int zio_exclude_metadata = 0;
55TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82/*
83 * ==========================================================================
84 * I/O kmem caches
85 * ==========================================================================
86 */
87kmem_cache_t *zio_cache;
88kmem_cache_t *zio_link_cache;
89kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91
92#ifdef _KERNEL
93extern vmem_t *zio_alloc_arena;
94#endif
95
96/*
97 * The following actions directly effect the spa's sync-to-convergence logic.
98 * The values below define the sync pass when we start performing the action.
99 * Care should be taken when changing these values as they directly impact
100 * spa_sync() performance. Tuning these values may introduce subtle performance
101 * pathologies and should only be done in the context of performance analysis.
102 * These tunables will eventually be removed and replaced with #defines once
103 * enough analysis has been done to determine optimal values.
104 *
105 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
106 * regular blocks are not deferred.
107 */
108int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
109TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
110SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
111    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
112int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
113TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
114SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
115    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
116int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
117TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
118SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
119    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
120
121/*
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
124 */
125#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126
127boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
128
129#ifdef ZFS_DEBUG
130int zio_buf_debug_limit = 16384;
131#else
132int zio_buf_debug_limit = 0;
133#endif
134
135void
136zio_init(void)
137{
138	size_t c;
139	zio_cache = kmem_cache_create("zio_cache",
140	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
141	zio_link_cache = kmem_cache_create("zio_link_cache",
142	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
143	if (!zio_use_uma)
144		goto out;
145
146	/*
147	 * For small buffers, we want a cache for each multiple of
148	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
149	 * for each quarter-power of 2.
150	 */
151	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
152		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
153		size_t p2 = size;
154		size_t align = 0;
155		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
156
157		while (!ISP2(p2))
158			p2 &= p2 - 1;
159
160#ifdef illumos
161#ifndef _KERNEL
162		/*
163		 * If we are using watchpoints, put each buffer on its own page,
164		 * to eliminate the performance overhead of trapping to the
165		 * kernel when modifying a non-watched buffer that shares the
166		 * page with a watched buffer.
167		 */
168		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
169			continue;
170#endif
171#endif /* illumos */
172		if (size <= 4 * SPA_MINBLOCKSIZE) {
173			align = SPA_MINBLOCKSIZE;
174		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
175			align = MIN(p2 >> 2, PAGESIZE);
176		}
177
178		if (align != 0) {
179			char name[36];
180			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
181			zio_buf_cache[c] = kmem_cache_create(name, size,
182			    align, NULL, NULL, NULL, NULL, NULL, cflags);
183
184			/*
185			 * Since zio_data bufs do not appear in crash dumps, we
186			 * pass KMC_NOTOUCH so that no allocator metadata is
187			 * stored with the buffers.
188			 */
189			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190			zio_data_buf_cache[c] = kmem_cache_create(name, size,
191			    align, NULL, NULL, NULL, NULL, NULL,
192			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
193		}
194	}
195
196	while (--c != 0) {
197		ASSERT(zio_buf_cache[c] != NULL);
198		if (zio_buf_cache[c - 1] == NULL)
199			zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201		ASSERT(zio_data_buf_cache[c] != NULL);
202		if (zio_data_buf_cache[c - 1] == NULL)
203			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204	}
205out:
206
207	zio_inject_init();
208
209	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
210	    KSTAT_TYPE_NAMED,
211	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
212	    KSTAT_FLAG_VIRTUAL);
213
214	if (zio_trim_ksp != NULL) {
215		zio_trim_ksp->ks_data = &zio_trim_stats;
216		kstat_install(zio_trim_ksp);
217	}
218}
219
220void
221zio_fini(void)
222{
223	size_t c;
224	kmem_cache_t *last_cache = NULL;
225	kmem_cache_t *last_data_cache = NULL;
226
227	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
228		if (zio_buf_cache[c] != last_cache) {
229			last_cache = zio_buf_cache[c];
230			kmem_cache_destroy(zio_buf_cache[c]);
231		}
232		zio_buf_cache[c] = NULL;
233
234		if (zio_data_buf_cache[c] != last_data_cache) {
235			last_data_cache = zio_data_buf_cache[c];
236			kmem_cache_destroy(zio_data_buf_cache[c]);
237		}
238		zio_data_buf_cache[c] = NULL;
239	}
240
241	kmem_cache_destroy(zio_link_cache);
242	kmem_cache_destroy(zio_cache);
243
244	zio_inject_fini();
245
246	if (zio_trim_ksp != NULL) {
247		kstat_delete(zio_trim_ksp);
248		zio_trim_ksp = NULL;
249	}
250}
251
252/*
253 * ==========================================================================
254 * Allocate and free I/O buffers
255 * ==========================================================================
256 */
257
258/*
259 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
260 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
261 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
262 * excess / transient data in-core during a crashdump.
263 */
264void *
265zio_buf_alloc(size_t size)
266{
267	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
269
270	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271
272	if (zio_use_uma)
273		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274	else
275		return (kmem_alloc(size, KM_SLEEP|flags));
276}
277
278/*
279 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
280 * crashdump if the kernel panics.  This exists so that we will limit the amount
281 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
282 * of kernel heap dumped to disk when the kernel panics)
283 */
284void *
285zio_data_buf_alloc(size_t size)
286{
287	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
288
289	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
290
291	if (zio_use_uma)
292		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
293	else
294		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
295}
296
297void
298zio_buf_free(void *buf, size_t size)
299{
300	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
301
302	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
303
304	if (zio_use_uma)
305		kmem_cache_free(zio_buf_cache[c], buf);
306	else
307		kmem_free(buf, size);
308}
309
310void
311zio_data_buf_free(void *buf, size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		kmem_cache_free(zio_data_buf_cache[c], buf);
319	else
320		kmem_free(buf, size);
321}
322
323/*
324 * ==========================================================================
325 * Push and pop I/O transform buffers
326 * ==========================================================================
327 */
328static void
329zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
330	zio_transform_func_t *transform)
331{
332	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
333
334	zt->zt_orig_data = zio->io_data;
335	zt->zt_orig_size = zio->io_size;
336	zt->zt_bufsize = bufsize;
337	zt->zt_transform = transform;
338
339	zt->zt_next = zio->io_transform_stack;
340	zio->io_transform_stack = zt;
341
342	zio->io_data = data;
343	zio->io_size = size;
344}
345
346static void
347zio_pop_transforms(zio_t *zio)
348{
349	zio_transform_t *zt;
350
351	while ((zt = zio->io_transform_stack) != NULL) {
352		if (zt->zt_transform != NULL)
353			zt->zt_transform(zio,
354			    zt->zt_orig_data, zt->zt_orig_size);
355
356		if (zt->zt_bufsize != 0)
357			zio_buf_free(zio->io_data, zt->zt_bufsize);
358
359		zio->io_data = zt->zt_orig_data;
360		zio->io_size = zt->zt_orig_size;
361		zio->io_transform_stack = zt->zt_next;
362
363		kmem_free(zt, sizeof (zio_transform_t));
364	}
365}
366
367/*
368 * ==========================================================================
369 * I/O transform callbacks for subblocks and decompression
370 * ==========================================================================
371 */
372static void
373zio_subblock(zio_t *zio, void *data, uint64_t size)
374{
375	ASSERT(zio->io_size > size);
376
377	if (zio->io_type == ZIO_TYPE_READ)
378		bcopy(zio->io_data, data, size);
379}
380
381static void
382zio_decompress(zio_t *zio, void *data, uint64_t size)
383{
384	if (zio->io_error == 0 &&
385	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
386	    zio->io_data, data, zio->io_size, size) != 0)
387		zio->io_error = SET_ERROR(EIO);
388}
389
390/*
391 * ==========================================================================
392 * I/O parent/child relationships and pipeline interlocks
393 * ==========================================================================
394 */
395/*
396 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
397 *        continue calling these functions until they return NULL.
398 *        Otherwise, the next caller will pick up the list walk in
399 *        some indeterminate state.  (Otherwise every caller would
400 *        have to pass in a cookie to keep the state represented by
401 *        io_walk_link, which gets annoying.)
402 */
403zio_t *
404zio_walk_parents(zio_t *cio)
405{
406	zio_link_t *zl = cio->io_walk_link;
407	list_t *pl = &cio->io_parent_list;
408
409	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
410	cio->io_walk_link = zl;
411
412	if (zl == NULL)
413		return (NULL);
414
415	ASSERT(zl->zl_child == cio);
416	return (zl->zl_parent);
417}
418
419zio_t *
420zio_walk_children(zio_t *pio)
421{
422	zio_link_t *zl = pio->io_walk_link;
423	list_t *cl = &pio->io_child_list;
424
425	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
426	pio->io_walk_link = zl;
427
428	if (zl == NULL)
429		return (NULL);
430
431	ASSERT(zl->zl_parent == pio);
432	return (zl->zl_child);
433}
434
435zio_t *
436zio_unique_parent(zio_t *cio)
437{
438	zio_t *pio = zio_walk_parents(cio);
439
440	VERIFY(zio_walk_parents(cio) == NULL);
441	return (pio);
442}
443
444void
445zio_add_child(zio_t *pio, zio_t *cio)
446{
447	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
448
449	/*
450	 * Logical I/Os can have logical, gang, or vdev children.
451	 * Gang I/Os can have gang or vdev children.
452	 * Vdev I/Os can only have vdev children.
453	 * The following ASSERT captures all of these constraints.
454	 */
455	ASSERT(cio->io_child_type <= pio->io_child_type);
456
457	zl->zl_parent = pio;
458	zl->zl_child = cio;
459
460	mutex_enter(&cio->io_lock);
461	mutex_enter(&pio->io_lock);
462
463	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
464
465	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
466		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
467
468	list_insert_head(&pio->io_child_list, zl);
469	list_insert_head(&cio->io_parent_list, zl);
470
471	pio->io_child_count++;
472	cio->io_parent_count++;
473
474	mutex_exit(&pio->io_lock);
475	mutex_exit(&cio->io_lock);
476}
477
478static void
479zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
480{
481	ASSERT(zl->zl_parent == pio);
482	ASSERT(zl->zl_child == cio);
483
484	mutex_enter(&cio->io_lock);
485	mutex_enter(&pio->io_lock);
486
487	list_remove(&pio->io_child_list, zl);
488	list_remove(&cio->io_parent_list, zl);
489
490	pio->io_child_count--;
491	cio->io_parent_count--;
492
493	mutex_exit(&pio->io_lock);
494	mutex_exit(&cio->io_lock);
495
496	kmem_cache_free(zio_link_cache, zl);
497}
498
499static boolean_t
500zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
501{
502	uint64_t *countp = &zio->io_children[child][wait];
503	boolean_t waiting = B_FALSE;
504
505	mutex_enter(&zio->io_lock);
506	ASSERT(zio->io_stall == NULL);
507	if (*countp != 0) {
508		zio->io_stage >>= 1;
509		zio->io_stall = countp;
510		waiting = B_TRUE;
511	}
512	mutex_exit(&zio->io_lock);
513
514	return (waiting);
515}
516
517static void
518zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
519{
520	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
521	int *errorp = &pio->io_child_error[zio->io_child_type];
522
523	mutex_enter(&pio->io_lock);
524	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
525		*errorp = zio_worst_error(*errorp, zio->io_error);
526	pio->io_reexecute |= zio->io_reexecute;
527	ASSERT3U(*countp, >, 0);
528
529	(*countp)--;
530
531	if (*countp == 0 && pio->io_stall == countp) {
532		pio->io_stall = NULL;
533		mutex_exit(&pio->io_lock);
534		zio_execute(pio);
535	} else {
536		mutex_exit(&pio->io_lock);
537	}
538}
539
540static void
541zio_inherit_child_errors(zio_t *zio, enum zio_child c)
542{
543	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
544		zio->io_error = zio->io_child_error[c];
545}
546
547/*
548 * ==========================================================================
549 * Create the various types of I/O (read, write, free, etc)
550 * ==========================================================================
551 */
552static zio_t *
553zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
554    void *data, uint64_t size, zio_done_func_t *done, void *private,
555    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
556    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
557    enum zio_stage stage, enum zio_stage pipeline)
558{
559	zio_t *zio;
560
561	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
562	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
563	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
564
565	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
566	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
567	ASSERT(vd || stage == ZIO_STAGE_OPEN);
568
569	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
570	bzero(zio, sizeof (zio_t));
571
572	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
573	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
574
575	list_create(&zio->io_parent_list, sizeof (zio_link_t),
576	    offsetof(zio_link_t, zl_parent_node));
577	list_create(&zio->io_child_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_child_node));
579
580	if (vd != NULL)
581		zio->io_child_type = ZIO_CHILD_VDEV;
582	else if (flags & ZIO_FLAG_GANG_CHILD)
583		zio->io_child_type = ZIO_CHILD_GANG;
584	else if (flags & ZIO_FLAG_DDT_CHILD)
585		zio->io_child_type = ZIO_CHILD_DDT;
586	else
587		zio->io_child_type = ZIO_CHILD_LOGICAL;
588
589	if (bp != NULL) {
590		zio->io_bp = (blkptr_t *)bp;
591		zio->io_bp_copy = *bp;
592		zio->io_bp_orig = *bp;
593		if (type != ZIO_TYPE_WRITE ||
594		    zio->io_child_type == ZIO_CHILD_DDT)
595			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
596		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
597			zio->io_logical = zio;
598		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
599			pipeline |= ZIO_GANG_STAGES;
600	}
601
602	zio->io_spa = spa;
603	zio->io_txg = txg;
604	zio->io_done = done;
605	zio->io_private = private;
606	zio->io_type = type;
607	zio->io_priority = priority;
608	zio->io_vd = vd;
609	zio->io_offset = offset;
610	zio->io_orig_data = zio->io_data = data;
611	zio->io_orig_size = zio->io_size = size;
612	zio->io_orig_flags = zio->io_flags = flags;
613	zio->io_orig_stage = zio->io_stage = stage;
614	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
615
616	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618
619	if (zb != NULL)
620		zio->io_bookmark = *zb;
621
622	if (pio != NULL) {
623		if (zio->io_logical == NULL)
624			zio->io_logical = pio->io_logical;
625		if (zio->io_child_type == ZIO_CHILD_GANG)
626			zio->io_gang_leader = pio->io_gang_leader;
627		zio_add_child(pio, zio);
628	}
629
630	return (zio);
631}
632
633static void
634zio_destroy(zio_t *zio)
635{
636	list_destroy(&zio->io_parent_list);
637	list_destroy(&zio->io_child_list);
638	mutex_destroy(&zio->io_lock);
639	cv_destroy(&zio->io_cv);
640	kmem_cache_free(zio_cache, zio);
641}
642
643zio_t *
644zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
645    void *private, enum zio_flag flags)
646{
647	zio_t *zio;
648
649	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
650	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
651	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
652
653	return (zio);
654}
655
656zio_t *
657zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
658{
659	return (zio_null(NULL, spa, NULL, done, private, flags));
660}
661
662void
663zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
664{
665	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
666		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
667		    bp, (longlong_t)BP_GET_TYPE(bp));
668	}
669	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
670	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
671		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
672		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
673	}
674	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
675	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
676		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
677		    bp, (longlong_t)BP_GET_COMPRESS(bp));
678	}
679	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
680		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
681		    bp, (longlong_t)BP_GET_LSIZE(bp));
682	}
683	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
684		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
685		    bp, (longlong_t)BP_GET_PSIZE(bp));
686	}
687
688	if (BP_IS_EMBEDDED(bp)) {
689		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
690			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
691			    bp, (longlong_t)BPE_GET_ETYPE(bp));
692		}
693	}
694
695	/*
696	 * Pool-specific checks.
697	 *
698	 * Note: it would be nice to verify that the blk_birth and
699	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
700	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
701	 * that are in the log) to be arbitrarily large.
702	 */
703	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
704		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
705		if (vdevid >= spa->spa_root_vdev->vdev_children) {
706			zfs_panic_recover("blkptr at %p DVA %u has invalid "
707			    "VDEV %llu",
708			    bp, i, (longlong_t)vdevid);
709			continue;
710		}
711		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
712		if (vd == NULL) {
713			zfs_panic_recover("blkptr at %p DVA %u has invalid "
714			    "VDEV %llu",
715			    bp, i, (longlong_t)vdevid);
716			continue;
717		}
718		if (vd->vdev_ops == &vdev_hole_ops) {
719			zfs_panic_recover("blkptr at %p DVA %u has hole "
720			    "VDEV %llu",
721			    bp, i, (longlong_t)vdevid);
722			continue;
723		}
724		if (vd->vdev_ops == &vdev_missing_ops) {
725			/*
726			 * "missing" vdevs are valid during import, but we
727			 * don't have their detailed info (e.g. asize), so
728			 * we can't perform any more checks on them.
729			 */
730			continue;
731		}
732		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
733		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
734		if (BP_IS_GANG(bp))
735			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
736		if (offset + asize > vd->vdev_asize) {
737			zfs_panic_recover("blkptr at %p DVA %u has invalid "
738			    "OFFSET %llu",
739			    bp, i, (longlong_t)offset);
740		}
741	}
742}
743
744zio_t *
745zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
746    void *data, uint64_t size, zio_done_func_t *done, void *private,
747    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
748{
749	zio_t *zio;
750
751	zfs_blkptr_verify(spa, bp);
752
753	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
754	    data, size, done, private,
755	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
756	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
757	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
758
759	return (zio);
760}
761
762zio_t *
763zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
764    void *data, uint64_t size, const zio_prop_t *zp,
765    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
766    void *private,
767    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
768{
769	zio_t *zio;
770
771	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
772	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
773	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
774	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
775	    DMU_OT_IS_VALID(zp->zp_type) &&
776	    zp->zp_level < 32 &&
777	    zp->zp_copies > 0 &&
778	    zp->zp_copies <= spa_max_replication(spa));
779
780	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
781	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
782	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
783	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
784
785	zio->io_ready = ready;
786	zio->io_physdone = physdone;
787	zio->io_prop = *zp;
788
789	/*
790	 * Data can be NULL if we are going to call zio_write_override() to
791	 * provide the already-allocated BP.  But we may need the data to
792	 * verify a dedup hit (if requested).  In this case, don't try to
793	 * dedup (just take the already-allocated BP verbatim).
794	 */
795	if (data == NULL && zio->io_prop.zp_dedup_verify) {
796		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
797	}
798
799	return (zio);
800}
801
802zio_t *
803zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
804    uint64_t size, zio_done_func_t *done, void *private,
805    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
806{
807	zio_t *zio;
808
809	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
810	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
811	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
812
813	return (zio);
814}
815
816void
817zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
818{
819	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
820	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
821	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
822	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
823
824	/*
825	 * We must reset the io_prop to match the values that existed
826	 * when the bp was first written by dmu_sync() keeping in mind
827	 * that nopwrite and dedup are mutually exclusive.
828	 */
829	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
830	zio->io_prop.zp_nopwrite = nopwrite;
831	zio->io_prop.zp_copies = copies;
832	zio->io_bp_override = bp;
833}
834
835void
836zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
837{
838
839	/*
840	 * The check for EMBEDDED is a performance optimization.  We
841	 * process the free here (by ignoring it) rather than
842	 * putting it on the list and then processing it in zio_free_sync().
843	 */
844	if (BP_IS_EMBEDDED(bp))
845		return;
846	metaslab_check_free(spa, bp);
847
848	/*
849	 * Frees that are for the currently-syncing txg, are not going to be
850	 * deferred, and which will not need to do a read (i.e. not GANG or
851	 * DEDUP), can be processed immediately.  Otherwise, put them on the
852	 * in-memory list for later processing.
853	 */
854	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
855	    txg != spa->spa_syncing_txg ||
856	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
857		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
858	} else {
859		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
860		    BP_GET_PSIZE(bp), 0)));
861	}
862}
863
864zio_t *
865zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
866    uint64_t size, enum zio_flag flags)
867{
868	zio_t *zio;
869	enum zio_stage stage = ZIO_FREE_PIPELINE;
870
871	ASSERT(!BP_IS_HOLE(bp));
872	ASSERT(spa_syncing_txg(spa) == txg);
873	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
874
875	if (BP_IS_EMBEDDED(bp))
876		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
877
878	metaslab_check_free(spa, bp);
879	arc_freed(spa, bp);
880
881	if (zfs_trim_enabled)
882		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
883		    ZIO_STAGE_VDEV_IO_ASSESS;
884	/*
885	 * GANG and DEDUP blocks can induce a read (for the gang block header,
886	 * or the DDT), so issue them asynchronously so that this thread is
887	 * not tied up.
888	 */
889	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
890		stage |= ZIO_STAGE_ISSUE_ASYNC;
891
892	flags |= ZIO_FLAG_DONT_QUEUE;
893
894	zio = zio_create(pio, spa, txg, bp, NULL, size,
895	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
896	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
897
898	return (zio);
899}
900
901zio_t *
902zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
903    zio_done_func_t *done, void *private, enum zio_flag flags)
904{
905	zio_t *zio;
906
907	dprintf_bp(bp, "claiming in txg %llu", txg);
908
909	if (BP_IS_EMBEDDED(bp))
910		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
911
912	/*
913	 * A claim is an allocation of a specific block.  Claims are needed
914	 * to support immediate writes in the intent log.  The issue is that
915	 * immediate writes contain committed data, but in a txg that was
916	 * *not* committed.  Upon opening the pool after an unclean shutdown,
917	 * the intent log claims all blocks that contain immediate write data
918	 * so that the SPA knows they're in use.
919	 *
920	 * All claims *must* be resolved in the first txg -- before the SPA
921	 * starts allocating blocks -- so that nothing is allocated twice.
922	 * If txg == 0 we just verify that the block is claimable.
923	 */
924	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
925	ASSERT(txg == spa_first_txg(spa) || txg == 0);
926	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
927
928	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
929	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
930	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
931
932	return (zio);
933}
934
935zio_t *
936zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
937    uint64_t size, zio_done_func_t *done, void *private,
938    zio_priority_t priority, enum zio_flag flags)
939{
940	zio_t *zio;
941	int c;
942
943	if (vd->vdev_children == 0) {
944		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
945		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
946		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
947
948		zio->io_cmd = cmd;
949	} else {
950		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
951
952		for (c = 0; c < vd->vdev_children; c++)
953			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
954			    offset, size, done, private, priority, flags));
955	}
956
957	return (zio);
958}
959
960zio_t *
961zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
962    void *data, int checksum, zio_done_func_t *done, void *private,
963    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
964{
965	zio_t *zio;
966
967	ASSERT(vd->vdev_children == 0);
968	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
969	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
970	ASSERT3U(offset + size, <=, vd->vdev_psize);
971
972	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
973	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
974	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
975
976	zio->io_prop.zp_checksum = checksum;
977
978	return (zio);
979}
980
981zio_t *
982zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
983    void *data, int checksum, zio_done_func_t *done, void *private,
984    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
985{
986	zio_t *zio;
987
988	ASSERT(vd->vdev_children == 0);
989	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
990	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
991	ASSERT3U(offset + size, <=, vd->vdev_psize);
992
993	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
994	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
995	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
996
997	zio->io_prop.zp_checksum = checksum;
998
999	if (zio_checksum_table[checksum].ci_eck) {
1000		/*
1001		 * zec checksums are necessarily destructive -- they modify
1002		 * the end of the write buffer to hold the verifier/checksum.
1003		 * Therefore, we must make a local copy in case the data is
1004		 * being written to multiple places in parallel.
1005		 */
1006		void *wbuf = zio_buf_alloc(size);
1007		bcopy(data, wbuf, size);
1008		zio_push_transform(zio, wbuf, size, size, NULL);
1009	}
1010
1011	return (zio);
1012}
1013
1014/*
1015 * Create a child I/O to do some work for us.
1016 */
1017zio_t *
1018zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1019	void *data, uint64_t size, int type, zio_priority_t priority,
1020	enum zio_flag flags, zio_done_func_t *done, void *private)
1021{
1022	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1023	zio_t *zio;
1024
1025	ASSERT(vd->vdev_parent ==
1026	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1027
1028	if (type == ZIO_TYPE_READ && bp != NULL) {
1029		/*
1030		 * If we have the bp, then the child should perform the
1031		 * checksum and the parent need not.  This pushes error
1032		 * detection as close to the leaves as possible and
1033		 * eliminates redundant checksums in the interior nodes.
1034		 */
1035		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1036		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1037	}
1038
1039	/* Not all IO types require vdev io done stage e.g. free */
1040	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1041		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1042
1043	if (vd->vdev_children == 0)
1044		offset += VDEV_LABEL_START_SIZE;
1045
1046	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1047
1048	/*
1049	 * If we've decided to do a repair, the write is not speculative --
1050	 * even if the original read was.
1051	 */
1052	if (flags & ZIO_FLAG_IO_REPAIR)
1053		flags &= ~ZIO_FLAG_SPECULATIVE;
1054
1055	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1056	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1057	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1058
1059	zio->io_physdone = pio->io_physdone;
1060	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1061		zio->io_logical->io_phys_children++;
1062
1063	return (zio);
1064}
1065
1066zio_t *
1067zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1068	int type, zio_priority_t priority, enum zio_flag flags,
1069	zio_done_func_t *done, void *private)
1070{
1071	zio_t *zio;
1072
1073	ASSERT(vd->vdev_ops->vdev_op_leaf);
1074
1075	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1076	    data, size, done, private, type, priority,
1077	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1078	    vd, offset, NULL,
1079	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1080
1081	return (zio);
1082}
1083
1084void
1085zio_flush(zio_t *zio, vdev_t *vd)
1086{
1087	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1088	    NULL, NULL, ZIO_PRIORITY_NOW,
1089	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1090}
1091
1092zio_t *
1093zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1094{
1095
1096	ASSERT(vd->vdev_ops->vdev_op_leaf);
1097
1098	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1099	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1100	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1101	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1102}
1103
1104void
1105zio_shrink(zio_t *zio, uint64_t size)
1106{
1107	ASSERT(zio->io_executor == NULL);
1108	ASSERT(zio->io_orig_size == zio->io_size);
1109	ASSERT(size <= zio->io_size);
1110
1111	/*
1112	 * We don't shrink for raidz because of problems with the
1113	 * reconstruction when reading back less than the block size.
1114	 * Note, BP_IS_RAIDZ() assumes no compression.
1115	 */
1116	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1117	if (!BP_IS_RAIDZ(zio->io_bp))
1118		zio->io_orig_size = zio->io_size = size;
1119}
1120
1121/*
1122 * ==========================================================================
1123 * Prepare to read and write logical blocks
1124 * ==========================================================================
1125 */
1126
1127static int
1128zio_read_bp_init(zio_t *zio)
1129{
1130	blkptr_t *bp = zio->io_bp;
1131
1132	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1133	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1134	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1135		uint64_t psize =
1136		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1137		void *cbuf = zio_buf_alloc(psize);
1138
1139		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1140	}
1141
1142	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1143		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1144		decode_embedded_bp_compressed(bp, zio->io_data);
1145	} else {
1146		ASSERT(!BP_IS_EMBEDDED(bp));
1147	}
1148
1149	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1150		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1151
1152	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1153		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1154
1155	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1156		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1157
1158	return (ZIO_PIPELINE_CONTINUE);
1159}
1160
1161static int
1162zio_write_bp_init(zio_t *zio)
1163{
1164	spa_t *spa = zio->io_spa;
1165	zio_prop_t *zp = &zio->io_prop;
1166	enum zio_compress compress = zp->zp_compress;
1167	blkptr_t *bp = zio->io_bp;
1168	uint64_t lsize = zio->io_size;
1169	uint64_t psize = lsize;
1170	int pass = 1;
1171
1172	/*
1173	 * If our children haven't all reached the ready stage,
1174	 * wait for them and then repeat this pipeline stage.
1175	 */
1176	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1177	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1178		return (ZIO_PIPELINE_STOP);
1179
1180	if (!IO_IS_ALLOCATING(zio))
1181		return (ZIO_PIPELINE_CONTINUE);
1182
1183	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1184
1185	if (zio->io_bp_override) {
1186		ASSERT(bp->blk_birth != zio->io_txg);
1187		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1188
1189		*bp = *zio->io_bp_override;
1190		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1191
1192		if (BP_IS_EMBEDDED(bp))
1193			return (ZIO_PIPELINE_CONTINUE);
1194
1195		/*
1196		 * If we've been overridden and nopwrite is set then
1197		 * set the flag accordingly to indicate that a nopwrite
1198		 * has already occurred.
1199		 */
1200		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1201			ASSERT(!zp->zp_dedup);
1202			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1203			return (ZIO_PIPELINE_CONTINUE);
1204		}
1205
1206		ASSERT(!zp->zp_nopwrite);
1207
1208		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1209			return (ZIO_PIPELINE_CONTINUE);
1210
1211		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1212		    zp->zp_dedup_verify);
1213
1214		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1215			BP_SET_DEDUP(bp, 1);
1216			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1217			return (ZIO_PIPELINE_CONTINUE);
1218		}
1219	}
1220
1221	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1222		/*
1223		 * We're rewriting an existing block, which means we're
1224		 * working on behalf of spa_sync().  For spa_sync() to
1225		 * converge, it must eventually be the case that we don't
1226		 * have to allocate new blocks.  But compression changes
1227		 * the blocksize, which forces a reallocate, and makes
1228		 * convergence take longer.  Therefore, after the first
1229		 * few passes, stop compressing to ensure convergence.
1230		 */
1231		pass = spa_sync_pass(spa);
1232
1233		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1234		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1235		ASSERT(!BP_GET_DEDUP(bp));
1236
1237		if (pass >= zfs_sync_pass_dont_compress)
1238			compress = ZIO_COMPRESS_OFF;
1239
1240		/* Make sure someone doesn't change their mind on overwrites */
1241		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1242		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1243	}
1244
1245	if (compress != ZIO_COMPRESS_OFF) {
1246		void *cbuf = zio_buf_alloc(lsize);
1247		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1248		if (psize == 0 || psize == lsize) {
1249			compress = ZIO_COMPRESS_OFF;
1250			zio_buf_free(cbuf, lsize);
1251		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1252		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1253		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1254			encode_embedded_bp_compressed(bp,
1255			    cbuf, compress, lsize, psize);
1256			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1257			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1258			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1259			zio_buf_free(cbuf, lsize);
1260			bp->blk_birth = zio->io_txg;
1261			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1262			ASSERT(spa_feature_is_active(spa,
1263			    SPA_FEATURE_EMBEDDED_DATA));
1264			return (ZIO_PIPELINE_CONTINUE);
1265		} else {
1266			/*
1267			 * Round up compressed size up to the ashift
1268			 * of the smallest-ashift device, and zero the tail.
1269			 * This ensures that the compressed size of the BP
1270			 * (and thus compressratio property) are correct,
1271			 * in that we charge for the padding used to fill out
1272			 * the last sector.
1273			 */
1274			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1275			size_t rounded = (size_t)P2ROUNDUP(psize,
1276			    1ULL << spa->spa_min_ashift);
1277			if (rounded >= lsize) {
1278				compress = ZIO_COMPRESS_OFF;
1279				zio_buf_free(cbuf, lsize);
1280				psize = lsize;
1281			} else {
1282				bzero((char *)cbuf + psize, rounded - psize);
1283				psize = rounded;
1284				zio_push_transform(zio, cbuf,
1285				    psize, lsize, NULL);
1286			}
1287		}
1288	}
1289
1290	/*
1291	 * The final pass of spa_sync() must be all rewrites, but the first
1292	 * few passes offer a trade-off: allocating blocks defers convergence,
1293	 * but newly allocated blocks are sequential, so they can be written
1294	 * to disk faster.  Therefore, we allow the first few passes of
1295	 * spa_sync() to allocate new blocks, but force rewrites after that.
1296	 * There should only be a handful of blocks after pass 1 in any case.
1297	 */
1298	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1299	    BP_GET_PSIZE(bp) == psize &&
1300	    pass >= zfs_sync_pass_rewrite) {
1301		ASSERT(psize != 0);
1302		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1303		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1304		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1305	} else {
1306		BP_ZERO(bp);
1307		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1308	}
1309
1310	if (psize == 0) {
1311		if (zio->io_bp_orig.blk_birth != 0 &&
1312		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1313			BP_SET_LSIZE(bp, lsize);
1314			BP_SET_TYPE(bp, zp->zp_type);
1315			BP_SET_LEVEL(bp, zp->zp_level);
1316			BP_SET_BIRTH(bp, zio->io_txg, 0);
1317		}
1318		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1319	} else {
1320		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1321		BP_SET_LSIZE(bp, lsize);
1322		BP_SET_TYPE(bp, zp->zp_type);
1323		BP_SET_LEVEL(bp, zp->zp_level);
1324		BP_SET_PSIZE(bp, psize);
1325		BP_SET_COMPRESS(bp, compress);
1326		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1327		BP_SET_DEDUP(bp, zp->zp_dedup);
1328		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1329		if (zp->zp_dedup) {
1330			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1331			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1332			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1333		}
1334		if (zp->zp_nopwrite) {
1335			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1336			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1337			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1338		}
1339	}
1340
1341	return (ZIO_PIPELINE_CONTINUE);
1342}
1343
1344static int
1345zio_free_bp_init(zio_t *zio)
1346{
1347	blkptr_t *bp = zio->io_bp;
1348
1349	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1350		if (BP_GET_DEDUP(bp))
1351			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1352	}
1353
1354	return (ZIO_PIPELINE_CONTINUE);
1355}
1356
1357/*
1358 * ==========================================================================
1359 * Execute the I/O pipeline
1360 * ==========================================================================
1361 */
1362
1363static void
1364zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1365{
1366	spa_t *spa = zio->io_spa;
1367	zio_type_t t = zio->io_type;
1368	int flags = (cutinline ? TQ_FRONT : 0);
1369
1370	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1371
1372	/*
1373	 * If we're a config writer or a probe, the normal issue and
1374	 * interrupt threads may all be blocked waiting for the config lock.
1375	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1376	 */
1377	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1378		t = ZIO_TYPE_NULL;
1379
1380	/*
1381	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1382	 */
1383	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1384		t = ZIO_TYPE_NULL;
1385
1386	/*
1387	 * If this is a high priority I/O, then use the high priority taskq if
1388	 * available.
1389	 */
1390	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1391	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1392		q++;
1393
1394	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1395
1396	/*
1397	 * NB: We are assuming that the zio can only be dispatched
1398	 * to a single taskq at a time.  It would be a grievous error
1399	 * to dispatch the zio to another taskq at the same time.
1400	 */
1401#if defined(illumos) || !defined(_KERNEL)
1402	ASSERT(zio->io_tqent.tqent_next == NULL);
1403#else
1404	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1405#endif
1406	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1407	    flags, &zio->io_tqent);
1408}
1409
1410static boolean_t
1411zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1412{
1413	kthread_t *executor = zio->io_executor;
1414	spa_t *spa = zio->io_spa;
1415
1416	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1417		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1418		uint_t i;
1419		for (i = 0; i < tqs->stqs_count; i++) {
1420			if (taskq_member(tqs->stqs_taskq[i], executor))
1421				return (B_TRUE);
1422		}
1423	}
1424
1425	return (B_FALSE);
1426}
1427
1428static int
1429zio_issue_async(zio_t *zio)
1430{
1431	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1432
1433	return (ZIO_PIPELINE_STOP);
1434}
1435
1436void
1437zio_interrupt(zio_t *zio)
1438{
1439	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1440}
1441
1442/*
1443 * Execute the I/O pipeline until one of the following occurs:
1444 *
1445 *	(1) the I/O completes
1446 *	(2) the pipeline stalls waiting for dependent child I/Os
1447 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1448 *	(4) the I/O is delegated by vdev-level caching or aggregation
1449 *	(5) the I/O is deferred due to vdev-level queueing
1450 *	(6) the I/O is handed off to another thread.
1451 *
1452 * In all cases, the pipeline stops whenever there's no CPU work; it never
1453 * burns a thread in cv_wait().
1454 *
1455 * There's no locking on io_stage because there's no legitimate way
1456 * for multiple threads to be attempting to process the same I/O.
1457 */
1458static zio_pipe_stage_t *zio_pipeline[];
1459
1460void
1461zio_execute(zio_t *zio)
1462{
1463	zio->io_executor = curthread;
1464
1465	while (zio->io_stage < ZIO_STAGE_DONE) {
1466		enum zio_stage pipeline = zio->io_pipeline;
1467		enum zio_stage stage = zio->io_stage;
1468		int rv;
1469
1470		ASSERT(!MUTEX_HELD(&zio->io_lock));
1471		ASSERT(ISP2(stage));
1472		ASSERT(zio->io_stall == NULL);
1473
1474		do {
1475			stage <<= 1;
1476		} while ((stage & pipeline) == 0);
1477
1478		ASSERT(stage <= ZIO_STAGE_DONE);
1479
1480		/*
1481		 * If we are in interrupt context and this pipeline stage
1482		 * will grab a config lock that is held across I/O,
1483		 * or may wait for an I/O that needs an interrupt thread
1484		 * to complete, issue async to avoid deadlock.
1485		 *
1486		 * For VDEV_IO_START, we cut in line so that the io will
1487		 * be sent to disk promptly.
1488		 */
1489		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1490		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1491			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1492			    zio_requeue_io_start_cut_in_line : B_FALSE;
1493			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1494			return;
1495		}
1496
1497		zio->io_stage = stage;
1498		rv = zio_pipeline[highbit64(stage) - 1](zio);
1499
1500		if (rv == ZIO_PIPELINE_STOP)
1501			return;
1502
1503		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1504	}
1505}
1506
1507/*
1508 * ==========================================================================
1509 * Initiate I/O, either sync or async
1510 * ==========================================================================
1511 */
1512int
1513zio_wait(zio_t *zio)
1514{
1515	int error;
1516
1517	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1518	ASSERT(zio->io_executor == NULL);
1519
1520	zio->io_waiter = curthread;
1521
1522	zio_execute(zio);
1523
1524	mutex_enter(&zio->io_lock);
1525	while (zio->io_executor != NULL)
1526		cv_wait(&zio->io_cv, &zio->io_lock);
1527	mutex_exit(&zio->io_lock);
1528
1529	error = zio->io_error;
1530	zio_destroy(zio);
1531
1532	return (error);
1533}
1534
1535void
1536zio_nowait(zio_t *zio)
1537{
1538	ASSERT(zio->io_executor == NULL);
1539
1540	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1541	    zio_unique_parent(zio) == NULL) {
1542		/*
1543		 * This is a logical async I/O with no parent to wait for it.
1544		 * We add it to the spa_async_root_zio "Godfather" I/O which
1545		 * will ensure they complete prior to unloading the pool.
1546		 */
1547		spa_t *spa = zio->io_spa;
1548
1549		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1550	}
1551
1552	zio_execute(zio);
1553}
1554
1555/*
1556 * ==========================================================================
1557 * Reexecute or suspend/resume failed I/O
1558 * ==========================================================================
1559 */
1560
1561static void
1562zio_reexecute(zio_t *pio)
1563{
1564	zio_t *cio, *cio_next;
1565
1566	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1567	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1568	ASSERT(pio->io_gang_leader == NULL);
1569	ASSERT(pio->io_gang_tree == NULL);
1570
1571	pio->io_flags = pio->io_orig_flags;
1572	pio->io_stage = pio->io_orig_stage;
1573	pio->io_pipeline = pio->io_orig_pipeline;
1574	pio->io_reexecute = 0;
1575	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1576	pio->io_error = 0;
1577	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1578		pio->io_state[w] = 0;
1579	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1580		pio->io_child_error[c] = 0;
1581
1582	if (IO_IS_ALLOCATING(pio))
1583		BP_ZERO(pio->io_bp);
1584
1585	/*
1586	 * As we reexecute pio's children, new children could be created.
1587	 * New children go to the head of pio's io_child_list, however,
1588	 * so we will (correctly) not reexecute them.  The key is that
1589	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1590	 * cannot be affected by any side effects of reexecuting 'cio'.
1591	 */
1592	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1593		cio_next = zio_walk_children(pio);
1594		mutex_enter(&pio->io_lock);
1595		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1596			pio->io_children[cio->io_child_type][w]++;
1597		mutex_exit(&pio->io_lock);
1598		zio_reexecute(cio);
1599	}
1600
1601	/*
1602	 * Now that all children have been reexecuted, execute the parent.
1603	 * We don't reexecute "The Godfather" I/O here as it's the
1604	 * responsibility of the caller to wait on him.
1605	 */
1606	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1607		zio_execute(pio);
1608}
1609
1610void
1611zio_suspend(spa_t *spa, zio_t *zio)
1612{
1613	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1614		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1615		    "failure and the failure mode property for this pool "
1616		    "is set to panic.", spa_name(spa));
1617
1618	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1619
1620	mutex_enter(&spa->spa_suspend_lock);
1621
1622	if (spa->spa_suspend_zio_root == NULL)
1623		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1624		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1625		    ZIO_FLAG_GODFATHER);
1626
1627	spa->spa_suspended = B_TRUE;
1628
1629	if (zio != NULL) {
1630		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1631		ASSERT(zio != spa->spa_suspend_zio_root);
1632		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1633		ASSERT(zio_unique_parent(zio) == NULL);
1634		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1635		zio_add_child(spa->spa_suspend_zio_root, zio);
1636	}
1637
1638	mutex_exit(&spa->spa_suspend_lock);
1639}
1640
1641int
1642zio_resume(spa_t *spa)
1643{
1644	zio_t *pio;
1645
1646	/*
1647	 * Reexecute all previously suspended i/o.
1648	 */
1649	mutex_enter(&spa->spa_suspend_lock);
1650	spa->spa_suspended = B_FALSE;
1651	cv_broadcast(&spa->spa_suspend_cv);
1652	pio = spa->spa_suspend_zio_root;
1653	spa->spa_suspend_zio_root = NULL;
1654	mutex_exit(&spa->spa_suspend_lock);
1655
1656	if (pio == NULL)
1657		return (0);
1658
1659	zio_reexecute(pio);
1660	return (zio_wait(pio));
1661}
1662
1663void
1664zio_resume_wait(spa_t *spa)
1665{
1666	mutex_enter(&spa->spa_suspend_lock);
1667	while (spa_suspended(spa))
1668		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1669	mutex_exit(&spa->spa_suspend_lock);
1670}
1671
1672/*
1673 * ==========================================================================
1674 * Gang blocks.
1675 *
1676 * A gang block is a collection of small blocks that looks to the DMU
1677 * like one large block.  When zio_dva_allocate() cannot find a block
1678 * of the requested size, due to either severe fragmentation or the pool
1679 * being nearly full, it calls zio_write_gang_block() to construct the
1680 * block from smaller fragments.
1681 *
1682 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1683 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1684 * an indirect block: it's an array of block pointers.  It consumes
1685 * only one sector and hence is allocatable regardless of fragmentation.
1686 * The gang header's bps point to its gang members, which hold the data.
1687 *
1688 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1689 * as the verifier to ensure uniqueness of the SHA256 checksum.
1690 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1691 * not the gang header.  This ensures that data block signatures (needed for
1692 * deduplication) are independent of how the block is physically stored.
1693 *
1694 * Gang blocks can be nested: a gang member may itself be a gang block.
1695 * Thus every gang block is a tree in which root and all interior nodes are
1696 * gang headers, and the leaves are normal blocks that contain user data.
1697 * The root of the gang tree is called the gang leader.
1698 *
1699 * To perform any operation (read, rewrite, free, claim) on a gang block,
1700 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1701 * in the io_gang_tree field of the original logical i/o by recursively
1702 * reading the gang leader and all gang headers below it.  This yields
1703 * an in-core tree containing the contents of every gang header and the
1704 * bps for every constituent of the gang block.
1705 *
1706 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1707 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1708 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1709 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1710 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1711 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1712 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1713 * of the gang header plus zio_checksum_compute() of the data to update the
1714 * gang header's blk_cksum as described above.
1715 *
1716 * The two-phase assemble/issue model solves the problem of partial failure --
1717 * what if you'd freed part of a gang block but then couldn't read the
1718 * gang header for another part?  Assembling the entire gang tree first
1719 * ensures that all the necessary gang header I/O has succeeded before
1720 * starting the actual work of free, claim, or write.  Once the gang tree
1721 * is assembled, free and claim are in-memory operations that cannot fail.
1722 *
1723 * In the event that a gang write fails, zio_dva_unallocate() walks the
1724 * gang tree to immediately free (i.e. insert back into the space map)
1725 * everything we've allocated.  This ensures that we don't get ENOSPC
1726 * errors during repeated suspend/resume cycles due to a flaky device.
1727 *
1728 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1729 * the gang tree, we won't modify the block, so we can safely defer the free
1730 * (knowing that the block is still intact).  If we *can* assemble the gang
1731 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1732 * each constituent bp and we can allocate a new block on the next sync pass.
1733 *
1734 * In all cases, the gang tree allows complete recovery from partial failure.
1735 * ==========================================================================
1736 */
1737
1738static zio_t *
1739zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1740{
1741	if (gn != NULL)
1742		return (pio);
1743
1744	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1745	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1746	    &pio->io_bookmark));
1747}
1748
1749zio_t *
1750zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1751{
1752	zio_t *zio;
1753
1754	if (gn != NULL) {
1755		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1756		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1757		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1758		/*
1759		 * As we rewrite each gang header, the pipeline will compute
1760		 * a new gang block header checksum for it; but no one will
1761		 * compute a new data checksum, so we do that here.  The one
1762		 * exception is the gang leader: the pipeline already computed
1763		 * its data checksum because that stage precedes gang assembly.
1764		 * (Presently, nothing actually uses interior data checksums;
1765		 * this is just good hygiene.)
1766		 */
1767		if (gn != pio->io_gang_leader->io_gang_tree) {
1768			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1769			    data, BP_GET_PSIZE(bp));
1770		}
1771		/*
1772		 * If we are here to damage data for testing purposes,
1773		 * leave the GBH alone so that we can detect the damage.
1774		 */
1775		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1776			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1777	} else {
1778		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1779		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1780		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1781	}
1782
1783	return (zio);
1784}
1785
1786/* ARGSUSED */
1787zio_t *
1788zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1789{
1790	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1791	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1792	    ZIO_GANG_CHILD_FLAGS(pio)));
1793}
1794
1795/* ARGSUSED */
1796zio_t *
1797zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1798{
1799	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1800	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1801}
1802
1803static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1804	NULL,
1805	zio_read_gang,
1806	zio_rewrite_gang,
1807	zio_free_gang,
1808	zio_claim_gang,
1809	NULL
1810};
1811
1812static void zio_gang_tree_assemble_done(zio_t *zio);
1813
1814static zio_gang_node_t *
1815zio_gang_node_alloc(zio_gang_node_t **gnpp)
1816{
1817	zio_gang_node_t *gn;
1818
1819	ASSERT(*gnpp == NULL);
1820
1821	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1822	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1823	*gnpp = gn;
1824
1825	return (gn);
1826}
1827
1828static void
1829zio_gang_node_free(zio_gang_node_t **gnpp)
1830{
1831	zio_gang_node_t *gn = *gnpp;
1832
1833	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1834		ASSERT(gn->gn_child[g] == NULL);
1835
1836	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1837	kmem_free(gn, sizeof (*gn));
1838	*gnpp = NULL;
1839}
1840
1841static void
1842zio_gang_tree_free(zio_gang_node_t **gnpp)
1843{
1844	zio_gang_node_t *gn = *gnpp;
1845
1846	if (gn == NULL)
1847		return;
1848
1849	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1850		zio_gang_tree_free(&gn->gn_child[g]);
1851
1852	zio_gang_node_free(gnpp);
1853}
1854
1855static void
1856zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1857{
1858	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1859
1860	ASSERT(gio->io_gang_leader == gio);
1861	ASSERT(BP_IS_GANG(bp));
1862
1863	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1864	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1865	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1866}
1867
1868static void
1869zio_gang_tree_assemble_done(zio_t *zio)
1870{
1871	zio_t *gio = zio->io_gang_leader;
1872	zio_gang_node_t *gn = zio->io_private;
1873	blkptr_t *bp = zio->io_bp;
1874
1875	ASSERT(gio == zio_unique_parent(zio));
1876	ASSERT(zio->io_child_count == 0);
1877
1878	if (zio->io_error)
1879		return;
1880
1881	if (BP_SHOULD_BYTESWAP(bp))
1882		byteswap_uint64_array(zio->io_data, zio->io_size);
1883
1884	ASSERT(zio->io_data == gn->gn_gbh);
1885	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1886	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1887
1888	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1889		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1890		if (!BP_IS_GANG(gbp))
1891			continue;
1892		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1893	}
1894}
1895
1896static void
1897zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1898{
1899	zio_t *gio = pio->io_gang_leader;
1900	zio_t *zio;
1901
1902	ASSERT(BP_IS_GANG(bp) == !!gn);
1903	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1904	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1905
1906	/*
1907	 * If you're a gang header, your data is in gn->gn_gbh.
1908	 * If you're a gang member, your data is in 'data' and gn == NULL.
1909	 */
1910	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1911
1912	if (gn != NULL) {
1913		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1914
1915		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1916			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1917			if (BP_IS_HOLE(gbp))
1918				continue;
1919			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1920			data = (char *)data + BP_GET_PSIZE(gbp);
1921		}
1922	}
1923
1924	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1925		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1926
1927	if (zio != pio)
1928		zio_nowait(zio);
1929}
1930
1931static int
1932zio_gang_assemble(zio_t *zio)
1933{
1934	blkptr_t *bp = zio->io_bp;
1935
1936	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1937	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1938
1939	zio->io_gang_leader = zio;
1940
1941	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1942
1943	return (ZIO_PIPELINE_CONTINUE);
1944}
1945
1946static int
1947zio_gang_issue(zio_t *zio)
1948{
1949	blkptr_t *bp = zio->io_bp;
1950
1951	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1952		return (ZIO_PIPELINE_STOP);
1953
1954	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1955	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1956
1957	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1958		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1959	else
1960		zio_gang_tree_free(&zio->io_gang_tree);
1961
1962	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1963
1964	return (ZIO_PIPELINE_CONTINUE);
1965}
1966
1967static void
1968zio_write_gang_member_ready(zio_t *zio)
1969{
1970	zio_t *pio = zio_unique_parent(zio);
1971	zio_t *gio = zio->io_gang_leader;
1972	dva_t *cdva = zio->io_bp->blk_dva;
1973	dva_t *pdva = pio->io_bp->blk_dva;
1974	uint64_t asize;
1975
1976	if (BP_IS_HOLE(zio->io_bp))
1977		return;
1978
1979	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1980
1981	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1982	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1983	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1984	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1985	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1986
1987	mutex_enter(&pio->io_lock);
1988	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1989		ASSERT(DVA_GET_GANG(&pdva[d]));
1990		asize = DVA_GET_ASIZE(&pdva[d]);
1991		asize += DVA_GET_ASIZE(&cdva[d]);
1992		DVA_SET_ASIZE(&pdva[d], asize);
1993	}
1994	mutex_exit(&pio->io_lock);
1995}
1996
1997static int
1998zio_write_gang_block(zio_t *pio)
1999{
2000	spa_t *spa = pio->io_spa;
2001	blkptr_t *bp = pio->io_bp;
2002	zio_t *gio = pio->io_gang_leader;
2003	zio_t *zio;
2004	zio_gang_node_t *gn, **gnpp;
2005	zio_gbh_phys_t *gbh;
2006	uint64_t txg = pio->io_txg;
2007	uint64_t resid = pio->io_size;
2008	uint64_t lsize;
2009	int copies = gio->io_prop.zp_copies;
2010	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2011	zio_prop_t zp;
2012	int error;
2013
2014	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2015	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2016	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2017	if (error) {
2018		pio->io_error = error;
2019		return (ZIO_PIPELINE_CONTINUE);
2020	}
2021
2022	if (pio == gio) {
2023		gnpp = &gio->io_gang_tree;
2024	} else {
2025		gnpp = pio->io_private;
2026		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2027	}
2028
2029	gn = zio_gang_node_alloc(gnpp);
2030	gbh = gn->gn_gbh;
2031	bzero(gbh, SPA_GANGBLOCKSIZE);
2032
2033	/*
2034	 * Create the gang header.
2035	 */
2036	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2037	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2038
2039	/*
2040	 * Create and nowait the gang children.
2041	 */
2042	for (int g = 0; resid != 0; resid -= lsize, g++) {
2043		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2044		    SPA_MINBLOCKSIZE);
2045		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2046
2047		zp.zp_checksum = gio->io_prop.zp_checksum;
2048		zp.zp_compress = ZIO_COMPRESS_OFF;
2049		zp.zp_type = DMU_OT_NONE;
2050		zp.zp_level = 0;
2051		zp.zp_copies = gio->io_prop.zp_copies;
2052		zp.zp_dedup = B_FALSE;
2053		zp.zp_dedup_verify = B_FALSE;
2054		zp.zp_nopwrite = B_FALSE;
2055
2056		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2057		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2058		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2059		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2060		    &pio->io_bookmark));
2061	}
2062
2063	/*
2064	 * Set pio's pipeline to just wait for zio to finish.
2065	 */
2066	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2067
2068	zio_nowait(zio);
2069
2070	return (ZIO_PIPELINE_CONTINUE);
2071}
2072
2073/*
2074 * The zio_nop_write stage in the pipeline determines if allocating
2075 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
2076 * such as SHA256, we can compare the checksums of the new data and the old
2077 * to determine if allocating a new block is required.  The nopwrite
2078 * feature can handle writes in either syncing or open context (i.e. zil
2079 * writes) and as a result is mutually exclusive with dedup.
2080 */
2081static int
2082zio_nop_write(zio_t *zio)
2083{
2084	blkptr_t *bp = zio->io_bp;
2085	blkptr_t *bp_orig = &zio->io_bp_orig;
2086	zio_prop_t *zp = &zio->io_prop;
2087
2088	ASSERT(BP_GET_LEVEL(bp) == 0);
2089	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2090	ASSERT(zp->zp_nopwrite);
2091	ASSERT(!zp->zp_dedup);
2092	ASSERT(zio->io_bp_override == NULL);
2093	ASSERT(IO_IS_ALLOCATING(zio));
2094
2095	/*
2096	 * Check to see if the original bp and the new bp have matching
2097	 * characteristics (i.e. same checksum, compression algorithms, etc).
2098	 * If they don't then just continue with the pipeline which will
2099	 * allocate a new bp.
2100	 */
2101	if (BP_IS_HOLE(bp_orig) ||
2102	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2103	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2104	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2105	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2106	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2107		return (ZIO_PIPELINE_CONTINUE);
2108
2109	/*
2110	 * If the checksums match then reset the pipeline so that we
2111	 * avoid allocating a new bp and issuing any I/O.
2112	 */
2113	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2114		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2115		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2116		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2117		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2118		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2119		    sizeof (uint64_t)) == 0);
2120
2121		*bp = *bp_orig;
2122		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2123		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2124	}
2125
2126	return (ZIO_PIPELINE_CONTINUE);
2127}
2128
2129/*
2130 * ==========================================================================
2131 * Dedup
2132 * ==========================================================================
2133 */
2134static void
2135zio_ddt_child_read_done(zio_t *zio)
2136{
2137	blkptr_t *bp = zio->io_bp;
2138	ddt_entry_t *dde = zio->io_private;
2139	ddt_phys_t *ddp;
2140	zio_t *pio = zio_unique_parent(zio);
2141
2142	mutex_enter(&pio->io_lock);
2143	ddp = ddt_phys_select(dde, bp);
2144	if (zio->io_error == 0)
2145		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2146	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2147		dde->dde_repair_data = zio->io_data;
2148	else
2149		zio_buf_free(zio->io_data, zio->io_size);
2150	mutex_exit(&pio->io_lock);
2151}
2152
2153static int
2154zio_ddt_read_start(zio_t *zio)
2155{
2156	blkptr_t *bp = zio->io_bp;
2157
2158	ASSERT(BP_GET_DEDUP(bp));
2159	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2160	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2161
2162	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2163		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2164		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2165		ddt_phys_t *ddp = dde->dde_phys;
2166		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2167		blkptr_t blk;
2168
2169		ASSERT(zio->io_vsd == NULL);
2170		zio->io_vsd = dde;
2171
2172		if (ddp_self == NULL)
2173			return (ZIO_PIPELINE_CONTINUE);
2174
2175		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2176			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2177				continue;
2178			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2179			    &blk);
2180			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2181			    zio_buf_alloc(zio->io_size), zio->io_size,
2182			    zio_ddt_child_read_done, dde, zio->io_priority,
2183			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2184			    &zio->io_bookmark));
2185		}
2186		return (ZIO_PIPELINE_CONTINUE);
2187	}
2188
2189	zio_nowait(zio_read(zio, zio->io_spa, bp,
2190	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2191	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2192
2193	return (ZIO_PIPELINE_CONTINUE);
2194}
2195
2196static int
2197zio_ddt_read_done(zio_t *zio)
2198{
2199	blkptr_t *bp = zio->io_bp;
2200
2201	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2202		return (ZIO_PIPELINE_STOP);
2203
2204	ASSERT(BP_GET_DEDUP(bp));
2205	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2206	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2207
2208	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2209		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2210		ddt_entry_t *dde = zio->io_vsd;
2211		if (ddt == NULL) {
2212			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2213			return (ZIO_PIPELINE_CONTINUE);
2214		}
2215		if (dde == NULL) {
2216			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2217			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2218			return (ZIO_PIPELINE_STOP);
2219		}
2220		if (dde->dde_repair_data != NULL) {
2221			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2222			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2223		}
2224		ddt_repair_done(ddt, dde);
2225		zio->io_vsd = NULL;
2226	}
2227
2228	ASSERT(zio->io_vsd == NULL);
2229
2230	return (ZIO_PIPELINE_CONTINUE);
2231}
2232
2233static boolean_t
2234zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2235{
2236	spa_t *spa = zio->io_spa;
2237
2238	/*
2239	 * Note: we compare the original data, not the transformed data,
2240	 * because when zio->io_bp is an override bp, we will not have
2241	 * pushed the I/O transforms.  That's an important optimization
2242	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2243	 */
2244	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2245		zio_t *lio = dde->dde_lead_zio[p];
2246
2247		if (lio != NULL) {
2248			return (lio->io_orig_size != zio->io_orig_size ||
2249			    bcmp(zio->io_orig_data, lio->io_orig_data,
2250			    zio->io_orig_size) != 0);
2251		}
2252	}
2253
2254	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2255		ddt_phys_t *ddp = &dde->dde_phys[p];
2256
2257		if (ddp->ddp_phys_birth != 0) {
2258			arc_buf_t *abuf = NULL;
2259			arc_flags_t aflags = ARC_FLAG_WAIT;
2260			blkptr_t blk = *zio->io_bp;
2261			int error;
2262
2263			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2264
2265			ddt_exit(ddt);
2266
2267			error = arc_read(NULL, spa, &blk,
2268			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2269			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2270			    &aflags, &zio->io_bookmark);
2271
2272			if (error == 0) {
2273				if (arc_buf_size(abuf) != zio->io_orig_size ||
2274				    bcmp(abuf->b_data, zio->io_orig_data,
2275				    zio->io_orig_size) != 0)
2276					error = SET_ERROR(EEXIST);
2277				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2278			}
2279
2280			ddt_enter(ddt);
2281			return (error != 0);
2282		}
2283	}
2284
2285	return (B_FALSE);
2286}
2287
2288static void
2289zio_ddt_child_write_ready(zio_t *zio)
2290{
2291	int p = zio->io_prop.zp_copies;
2292	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2293	ddt_entry_t *dde = zio->io_private;
2294	ddt_phys_t *ddp = &dde->dde_phys[p];
2295	zio_t *pio;
2296
2297	if (zio->io_error)
2298		return;
2299
2300	ddt_enter(ddt);
2301
2302	ASSERT(dde->dde_lead_zio[p] == zio);
2303
2304	ddt_phys_fill(ddp, zio->io_bp);
2305
2306	while ((pio = zio_walk_parents(zio)) != NULL)
2307		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2308
2309	ddt_exit(ddt);
2310}
2311
2312static void
2313zio_ddt_child_write_done(zio_t *zio)
2314{
2315	int p = zio->io_prop.zp_copies;
2316	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2317	ddt_entry_t *dde = zio->io_private;
2318	ddt_phys_t *ddp = &dde->dde_phys[p];
2319
2320	ddt_enter(ddt);
2321
2322	ASSERT(ddp->ddp_refcnt == 0);
2323	ASSERT(dde->dde_lead_zio[p] == zio);
2324	dde->dde_lead_zio[p] = NULL;
2325
2326	if (zio->io_error == 0) {
2327		while (zio_walk_parents(zio) != NULL)
2328			ddt_phys_addref(ddp);
2329	} else {
2330		ddt_phys_clear(ddp);
2331	}
2332
2333	ddt_exit(ddt);
2334}
2335
2336static void
2337zio_ddt_ditto_write_done(zio_t *zio)
2338{
2339	int p = DDT_PHYS_DITTO;
2340	zio_prop_t *zp = &zio->io_prop;
2341	blkptr_t *bp = zio->io_bp;
2342	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2343	ddt_entry_t *dde = zio->io_private;
2344	ddt_phys_t *ddp = &dde->dde_phys[p];
2345	ddt_key_t *ddk = &dde->dde_key;
2346
2347	ddt_enter(ddt);
2348
2349	ASSERT(ddp->ddp_refcnt == 0);
2350	ASSERT(dde->dde_lead_zio[p] == zio);
2351	dde->dde_lead_zio[p] = NULL;
2352
2353	if (zio->io_error == 0) {
2354		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2355		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2356		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2357		if (ddp->ddp_phys_birth != 0)
2358			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2359		ddt_phys_fill(ddp, bp);
2360	}
2361
2362	ddt_exit(ddt);
2363}
2364
2365static int
2366zio_ddt_write(zio_t *zio)
2367{
2368	spa_t *spa = zio->io_spa;
2369	blkptr_t *bp = zio->io_bp;
2370	uint64_t txg = zio->io_txg;
2371	zio_prop_t *zp = &zio->io_prop;
2372	int p = zp->zp_copies;
2373	int ditto_copies;
2374	zio_t *cio = NULL;
2375	zio_t *dio = NULL;
2376	ddt_t *ddt = ddt_select(spa, bp);
2377	ddt_entry_t *dde;
2378	ddt_phys_t *ddp;
2379
2380	ASSERT(BP_GET_DEDUP(bp));
2381	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2382	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2383
2384	ddt_enter(ddt);
2385	dde = ddt_lookup(ddt, bp, B_TRUE);
2386	ddp = &dde->dde_phys[p];
2387
2388	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2389		/*
2390		 * If we're using a weak checksum, upgrade to a strong checksum
2391		 * and try again.  If we're already using a strong checksum,
2392		 * we can't resolve it, so just convert to an ordinary write.
2393		 * (And automatically e-mail a paper to Nature?)
2394		 */
2395		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2396			zp->zp_checksum = spa_dedup_checksum(spa);
2397			zio_pop_transforms(zio);
2398			zio->io_stage = ZIO_STAGE_OPEN;
2399			BP_ZERO(bp);
2400		} else {
2401			zp->zp_dedup = B_FALSE;
2402		}
2403		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2404		ddt_exit(ddt);
2405		return (ZIO_PIPELINE_CONTINUE);
2406	}
2407
2408	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2409	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2410
2411	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2412	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2413		zio_prop_t czp = *zp;
2414
2415		czp.zp_copies = ditto_copies;
2416
2417		/*
2418		 * If we arrived here with an override bp, we won't have run
2419		 * the transform stack, so we won't have the data we need to
2420		 * generate a child i/o.  So, toss the override bp and restart.
2421		 * This is safe, because using the override bp is just an
2422		 * optimization; and it's rare, so the cost doesn't matter.
2423		 */
2424		if (zio->io_bp_override) {
2425			zio_pop_transforms(zio);
2426			zio->io_stage = ZIO_STAGE_OPEN;
2427			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2428			zio->io_bp_override = NULL;
2429			BP_ZERO(bp);
2430			ddt_exit(ddt);
2431			return (ZIO_PIPELINE_CONTINUE);
2432		}
2433
2434		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2435		    zio->io_orig_size, &czp, NULL, NULL,
2436		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2437		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2438
2439		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2440		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2441	}
2442
2443	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2444		if (ddp->ddp_phys_birth != 0)
2445			ddt_bp_fill(ddp, bp, txg);
2446		if (dde->dde_lead_zio[p] != NULL)
2447			zio_add_child(zio, dde->dde_lead_zio[p]);
2448		else
2449			ddt_phys_addref(ddp);
2450	} else if (zio->io_bp_override) {
2451		ASSERT(bp->blk_birth == txg);
2452		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2453		ddt_phys_fill(ddp, bp);
2454		ddt_phys_addref(ddp);
2455	} else {
2456		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2457		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2458		    zio_ddt_child_write_done, dde, zio->io_priority,
2459		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2460
2461		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2462		dde->dde_lead_zio[p] = cio;
2463	}
2464
2465	ddt_exit(ddt);
2466
2467	if (cio)
2468		zio_nowait(cio);
2469	if (dio)
2470		zio_nowait(dio);
2471
2472	return (ZIO_PIPELINE_CONTINUE);
2473}
2474
2475ddt_entry_t *freedde; /* for debugging */
2476
2477static int
2478zio_ddt_free(zio_t *zio)
2479{
2480	spa_t *spa = zio->io_spa;
2481	blkptr_t *bp = zio->io_bp;
2482	ddt_t *ddt = ddt_select(spa, bp);
2483	ddt_entry_t *dde;
2484	ddt_phys_t *ddp;
2485
2486	ASSERT(BP_GET_DEDUP(bp));
2487	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2488
2489	ddt_enter(ddt);
2490	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2491	ddp = ddt_phys_select(dde, bp);
2492	ddt_phys_decref(ddp);
2493	ddt_exit(ddt);
2494
2495	return (ZIO_PIPELINE_CONTINUE);
2496}
2497
2498/*
2499 * ==========================================================================
2500 * Allocate and free blocks
2501 * ==========================================================================
2502 */
2503static int
2504zio_dva_allocate(zio_t *zio)
2505{
2506	spa_t *spa = zio->io_spa;
2507	metaslab_class_t *mc = spa_normal_class(spa);
2508	blkptr_t *bp = zio->io_bp;
2509	int error;
2510	int flags = 0;
2511
2512	if (zio->io_gang_leader == NULL) {
2513		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2514		zio->io_gang_leader = zio;
2515	}
2516
2517	ASSERT(BP_IS_HOLE(bp));
2518	ASSERT0(BP_GET_NDVAS(bp));
2519	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2520	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2521	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2522
2523	/*
2524	 * The dump device does not support gang blocks so allocation on
2525	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2526	 * the "fast" gang feature.
2527	 */
2528	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2529	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2530	    METASLAB_GANG_CHILD : 0;
2531	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2532	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2533
2534	if (error) {
2535		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2536		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2537		    error);
2538		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2539			return (zio_write_gang_block(zio));
2540		zio->io_error = error;
2541	}
2542
2543	return (ZIO_PIPELINE_CONTINUE);
2544}
2545
2546static int
2547zio_dva_free(zio_t *zio)
2548{
2549	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2550
2551	return (ZIO_PIPELINE_CONTINUE);
2552}
2553
2554static int
2555zio_dva_claim(zio_t *zio)
2556{
2557	int error;
2558
2559	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2560	if (error)
2561		zio->io_error = error;
2562
2563	return (ZIO_PIPELINE_CONTINUE);
2564}
2565
2566/*
2567 * Undo an allocation.  This is used by zio_done() when an I/O fails
2568 * and we want to give back the block we just allocated.
2569 * This handles both normal blocks and gang blocks.
2570 */
2571static void
2572zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2573{
2574	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2575	ASSERT(zio->io_bp_override == NULL);
2576
2577	if (!BP_IS_HOLE(bp))
2578		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2579
2580	if (gn != NULL) {
2581		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2582			zio_dva_unallocate(zio, gn->gn_child[g],
2583			    &gn->gn_gbh->zg_blkptr[g]);
2584		}
2585	}
2586}
2587
2588/*
2589 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2590 */
2591int
2592zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2593    uint64_t size, boolean_t use_slog)
2594{
2595	int error = 1;
2596
2597	ASSERT(txg > spa_syncing_txg(spa));
2598
2599	/*
2600	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2601	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2602	 * when allocating them.
2603	 */
2604	if (use_slog) {
2605		error = metaslab_alloc(spa, spa_log_class(spa), size,
2606		    new_bp, 1, txg, old_bp,
2607		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2608	}
2609
2610	if (error) {
2611		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2612		    new_bp, 1, txg, old_bp,
2613		    METASLAB_HINTBP_AVOID);
2614	}
2615
2616	if (error == 0) {
2617		BP_SET_LSIZE(new_bp, size);
2618		BP_SET_PSIZE(new_bp, size);
2619		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2620		BP_SET_CHECKSUM(new_bp,
2621		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2622		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2623		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2624		BP_SET_LEVEL(new_bp, 0);
2625		BP_SET_DEDUP(new_bp, 0);
2626		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2627	}
2628
2629	return (error);
2630}
2631
2632/*
2633 * Free an intent log block.
2634 */
2635void
2636zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2637{
2638	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2639	ASSERT(!BP_IS_GANG(bp));
2640
2641	zio_free(spa, txg, bp);
2642}
2643
2644/*
2645 * ==========================================================================
2646 * Read, write and delete to physical devices
2647 * ==========================================================================
2648 */
2649static int
2650zio_vdev_io_start(zio_t *zio)
2651{
2652	vdev_t *vd = zio->io_vd;
2653	uint64_t align;
2654	spa_t *spa = zio->io_spa;
2655	int ret;
2656
2657	ASSERT(zio->io_error == 0);
2658	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2659
2660	if (vd == NULL) {
2661		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2662			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2663
2664		/*
2665		 * The mirror_ops handle multiple DVAs in a single BP.
2666		 */
2667		return (vdev_mirror_ops.vdev_op_io_start(zio));
2668	}
2669
2670	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2671	    zio->io_priority == ZIO_PRIORITY_NOW) {
2672		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2673		return (ZIO_PIPELINE_CONTINUE);
2674	}
2675
2676	/*
2677	 * We keep track of time-sensitive I/Os so that the scan thread
2678	 * can quickly react to certain workloads.  In particular, we care
2679	 * about non-scrubbing, top-level reads and writes with the following
2680	 * characteristics:
2681	 * 	- synchronous writes of user data to non-slog devices
2682	 *	- any reads of user data
2683	 * When these conditions are met, adjust the timestamp of spa_last_io
2684	 * which allows the scan thread to adjust its workload accordingly.
2685	 */
2686	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2687	    vd == vd->vdev_top && !vd->vdev_islog &&
2688	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2689	    zio->io_txg != spa_syncing_txg(spa)) {
2690		uint64_t old = spa->spa_last_io;
2691		uint64_t new = ddi_get_lbolt64();
2692		if (old != new)
2693			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2694	}
2695
2696	align = 1ULL << vd->vdev_top->vdev_ashift;
2697
2698	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2699	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2700	    P2PHASE(zio->io_size, align) != 0) {
2701		/* Transform logical writes to be a full physical block size. */
2702		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2703		char *abuf = NULL;
2704		if (zio->io_type == ZIO_TYPE_READ ||
2705		    zio->io_type == ZIO_TYPE_WRITE)
2706			abuf = zio_buf_alloc(asize);
2707		ASSERT(vd == vd->vdev_top);
2708		if (zio->io_type == ZIO_TYPE_WRITE) {
2709			bcopy(zio->io_data, abuf, zio->io_size);
2710			bzero(abuf + zio->io_size, asize - zio->io_size);
2711		}
2712		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2713		    zio_subblock);
2714	}
2715
2716	/*
2717	 * If this is not a physical io, make sure that it is properly aligned
2718	 * before proceeding.
2719	 */
2720	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2721		ASSERT0(P2PHASE(zio->io_offset, align));
2722		ASSERT0(P2PHASE(zio->io_size, align));
2723	} else {
2724		/*
2725		 * For physical writes, we allow 512b aligned writes and assume
2726		 * the device will perform a read-modify-write as necessary.
2727		 */
2728		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2729		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2730	}
2731
2732	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2733
2734	/*
2735	 * If this is a repair I/O, and there's no self-healing involved --
2736	 * that is, we're just resilvering what we expect to resilver --
2737	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2738	 * This prevents spurious resilvering with nested replication.
2739	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2740	 * A is out of date, we'll read from C+D, then use the data to
2741	 * resilver A+B -- but we don't actually want to resilver B, just A.
2742	 * The top-level mirror has no way to know this, so instead we just
2743	 * discard unnecessary repairs as we work our way down the vdev tree.
2744	 * The same logic applies to any form of nested replication:
2745	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2746	 */
2747	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2748	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2749	    zio->io_txg != 0 &&	/* not a delegated i/o */
2750	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2751		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2752		zio_vdev_io_bypass(zio);
2753		return (ZIO_PIPELINE_CONTINUE);
2754	}
2755
2756	if (vd->vdev_ops->vdev_op_leaf) {
2757		switch (zio->io_type) {
2758		case ZIO_TYPE_READ:
2759			if (vdev_cache_read(zio))
2760				return (ZIO_PIPELINE_CONTINUE);
2761			/* FALLTHROUGH */
2762		case ZIO_TYPE_WRITE:
2763		case ZIO_TYPE_FREE:
2764			if ((zio = vdev_queue_io(zio)) == NULL)
2765				return (ZIO_PIPELINE_STOP);
2766
2767			if (!vdev_accessible(vd, zio)) {
2768				zio->io_error = SET_ERROR(ENXIO);
2769				zio_interrupt(zio);
2770				return (ZIO_PIPELINE_STOP);
2771			}
2772			break;
2773		}
2774		/*
2775		 * Note that we ignore repair writes for TRIM because they can
2776		 * conflict with normal writes. This isn't an issue because, by
2777		 * definition, we only repair blocks that aren't freed.
2778		 */
2779		if (zio->io_type == ZIO_TYPE_WRITE &&
2780		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2781		    !trim_map_write_start(zio))
2782			return (ZIO_PIPELINE_STOP);
2783	}
2784
2785	ret = vd->vdev_ops->vdev_op_io_start(zio);
2786	ASSERT(ret == ZIO_PIPELINE_STOP);
2787
2788	return (ret);
2789}
2790
2791static int
2792zio_vdev_io_done(zio_t *zio)
2793{
2794	vdev_t *vd = zio->io_vd;
2795	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2796	boolean_t unexpected_error = B_FALSE;
2797
2798	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2799		return (ZIO_PIPELINE_STOP);
2800
2801	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2802	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2803
2804	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2805	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2806	    zio->io_type == ZIO_TYPE_FREE)) {
2807
2808		if (zio->io_type == ZIO_TYPE_WRITE &&
2809		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2810			trim_map_write_done(zio);
2811
2812		vdev_queue_io_done(zio);
2813
2814		if (zio->io_type == ZIO_TYPE_WRITE)
2815			vdev_cache_write(zio);
2816
2817		if (zio_injection_enabled && zio->io_error == 0)
2818			zio->io_error = zio_handle_device_injection(vd,
2819			    zio, EIO);
2820
2821		if (zio_injection_enabled && zio->io_error == 0)
2822			zio->io_error = zio_handle_label_injection(zio, EIO);
2823
2824		if (zio->io_error) {
2825			if (zio->io_error == ENOTSUP &&
2826			    zio->io_type == ZIO_TYPE_FREE) {
2827				/* Not all devices support TRIM. */
2828			} else if (!vdev_accessible(vd, zio)) {
2829				zio->io_error = SET_ERROR(ENXIO);
2830			} else {
2831				unexpected_error = B_TRUE;
2832			}
2833		}
2834	}
2835
2836	ops->vdev_op_io_done(zio);
2837
2838	if (unexpected_error)
2839		VERIFY(vdev_probe(vd, zio) == NULL);
2840
2841	return (ZIO_PIPELINE_CONTINUE);
2842}
2843
2844/*
2845 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2846 * disk, and use that to finish the checksum ereport later.
2847 */
2848static void
2849zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2850    const void *good_buf)
2851{
2852	/* no processing needed */
2853	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2854}
2855
2856/*ARGSUSED*/
2857void
2858zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2859{
2860	void *buf = zio_buf_alloc(zio->io_size);
2861
2862	bcopy(zio->io_data, buf, zio->io_size);
2863
2864	zcr->zcr_cbinfo = zio->io_size;
2865	zcr->zcr_cbdata = buf;
2866	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2867	zcr->zcr_free = zio_buf_free;
2868}
2869
2870static int
2871zio_vdev_io_assess(zio_t *zio)
2872{
2873	vdev_t *vd = zio->io_vd;
2874
2875	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2876		return (ZIO_PIPELINE_STOP);
2877
2878	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2879		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2880
2881	if (zio->io_vsd != NULL) {
2882		zio->io_vsd_ops->vsd_free(zio);
2883		zio->io_vsd = NULL;
2884	}
2885
2886	if (zio_injection_enabled && zio->io_error == 0)
2887		zio->io_error = zio_handle_fault_injection(zio, EIO);
2888
2889	if (zio->io_type == ZIO_TYPE_FREE &&
2890	    zio->io_priority != ZIO_PRIORITY_NOW) {
2891		switch (zio->io_error) {
2892		case 0:
2893			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2894			ZIO_TRIM_STAT_BUMP(success);
2895			break;
2896		case EOPNOTSUPP:
2897			ZIO_TRIM_STAT_BUMP(unsupported);
2898			break;
2899		default:
2900			ZIO_TRIM_STAT_BUMP(failed);
2901			break;
2902		}
2903	}
2904
2905	/*
2906	 * If the I/O failed, determine whether we should attempt to retry it.
2907	 *
2908	 * On retry, we cut in line in the issue queue, since we don't want
2909	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2910	 */
2911	if (zio->io_error && vd == NULL &&
2912	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2913		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2914		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2915		zio->io_error = 0;
2916		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2917		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2918		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2919		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2920		    zio_requeue_io_start_cut_in_line);
2921		return (ZIO_PIPELINE_STOP);
2922	}
2923
2924	/*
2925	 * If we got an error on a leaf device, convert it to ENXIO
2926	 * if the device is not accessible at all.
2927	 */
2928	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2929	    !vdev_accessible(vd, zio))
2930		zio->io_error = SET_ERROR(ENXIO);
2931
2932	/*
2933	 * If we can't write to an interior vdev (mirror or RAID-Z),
2934	 * set vdev_cant_write so that we stop trying to allocate from it.
2935	 */
2936	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2937	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2938		vd->vdev_cant_write = B_TRUE;
2939	}
2940
2941	if (zio->io_error)
2942		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2943
2944	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2945	    zio->io_physdone != NULL) {
2946		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2947		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2948		zio->io_physdone(zio->io_logical);
2949	}
2950
2951	return (ZIO_PIPELINE_CONTINUE);
2952}
2953
2954void
2955zio_vdev_io_reissue(zio_t *zio)
2956{
2957	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2958	ASSERT(zio->io_error == 0);
2959
2960	zio->io_stage >>= 1;
2961}
2962
2963void
2964zio_vdev_io_redone(zio_t *zio)
2965{
2966	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2967
2968	zio->io_stage >>= 1;
2969}
2970
2971void
2972zio_vdev_io_bypass(zio_t *zio)
2973{
2974	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2975	ASSERT(zio->io_error == 0);
2976
2977	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2978	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2979}
2980
2981/*
2982 * ==========================================================================
2983 * Generate and verify checksums
2984 * ==========================================================================
2985 */
2986static int
2987zio_checksum_generate(zio_t *zio)
2988{
2989	blkptr_t *bp = zio->io_bp;
2990	enum zio_checksum checksum;
2991
2992	if (bp == NULL) {
2993		/*
2994		 * This is zio_write_phys().
2995		 * We're either generating a label checksum, or none at all.
2996		 */
2997		checksum = zio->io_prop.zp_checksum;
2998
2999		if (checksum == ZIO_CHECKSUM_OFF)
3000			return (ZIO_PIPELINE_CONTINUE);
3001
3002		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3003	} else {
3004		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3005			ASSERT(!IO_IS_ALLOCATING(zio));
3006			checksum = ZIO_CHECKSUM_GANG_HEADER;
3007		} else {
3008			checksum = BP_GET_CHECKSUM(bp);
3009		}
3010	}
3011
3012	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3013
3014	return (ZIO_PIPELINE_CONTINUE);
3015}
3016
3017static int
3018zio_checksum_verify(zio_t *zio)
3019{
3020	zio_bad_cksum_t info;
3021	blkptr_t *bp = zio->io_bp;
3022	int error;
3023
3024	ASSERT(zio->io_vd != NULL);
3025
3026	if (bp == NULL) {
3027		/*
3028		 * This is zio_read_phys().
3029		 * We're either verifying a label checksum, or nothing at all.
3030		 */
3031		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3032			return (ZIO_PIPELINE_CONTINUE);
3033
3034		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3035	}
3036
3037	if ((error = zio_checksum_error(zio, &info)) != 0) {
3038		zio->io_error = error;
3039		if (error == ECKSUM &&
3040		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3041			zfs_ereport_start_checksum(zio->io_spa,
3042			    zio->io_vd, zio, zio->io_offset,
3043			    zio->io_size, NULL, &info);
3044		}
3045	}
3046
3047	return (ZIO_PIPELINE_CONTINUE);
3048}
3049
3050/*
3051 * Called by RAID-Z to ensure we don't compute the checksum twice.
3052 */
3053void
3054zio_checksum_verified(zio_t *zio)
3055{
3056	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3057}
3058
3059/*
3060 * ==========================================================================
3061 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3062 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3063 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3064 * indicate errors that are specific to one I/O, and most likely permanent.
3065 * Any other error is presumed to be worse because we weren't expecting it.
3066 * ==========================================================================
3067 */
3068int
3069zio_worst_error(int e1, int e2)
3070{
3071	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3072	int r1, r2;
3073
3074	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3075		if (e1 == zio_error_rank[r1])
3076			break;
3077
3078	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3079		if (e2 == zio_error_rank[r2])
3080			break;
3081
3082	return (r1 > r2 ? e1 : e2);
3083}
3084
3085/*
3086 * ==========================================================================
3087 * I/O completion
3088 * ==========================================================================
3089 */
3090static int
3091zio_ready(zio_t *zio)
3092{
3093	blkptr_t *bp = zio->io_bp;
3094	zio_t *pio, *pio_next;
3095
3096	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3097	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3098		return (ZIO_PIPELINE_STOP);
3099
3100	if (zio->io_ready) {
3101		ASSERT(IO_IS_ALLOCATING(zio));
3102		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3103		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3104		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3105
3106		zio->io_ready(zio);
3107	}
3108
3109	if (bp != NULL && bp != &zio->io_bp_copy)
3110		zio->io_bp_copy = *bp;
3111
3112	if (zio->io_error)
3113		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3114
3115	mutex_enter(&zio->io_lock);
3116	zio->io_state[ZIO_WAIT_READY] = 1;
3117	pio = zio_walk_parents(zio);
3118	mutex_exit(&zio->io_lock);
3119
3120	/*
3121	 * As we notify zio's parents, new parents could be added.
3122	 * New parents go to the head of zio's io_parent_list, however,
3123	 * so we will (correctly) not notify them.  The remainder of zio's
3124	 * io_parent_list, from 'pio_next' onward, cannot change because
3125	 * all parents must wait for us to be done before they can be done.
3126	 */
3127	for (; pio != NULL; pio = pio_next) {
3128		pio_next = zio_walk_parents(zio);
3129		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3130	}
3131
3132	if (zio->io_flags & ZIO_FLAG_NODATA) {
3133		if (BP_IS_GANG(bp)) {
3134			zio->io_flags &= ~ZIO_FLAG_NODATA;
3135		} else {
3136			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3137			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3138		}
3139	}
3140
3141	if (zio_injection_enabled &&
3142	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3143		zio_handle_ignored_writes(zio);
3144
3145	return (ZIO_PIPELINE_CONTINUE);
3146}
3147
3148static int
3149zio_done(zio_t *zio)
3150{
3151	spa_t *spa = zio->io_spa;
3152	zio_t *lio = zio->io_logical;
3153	blkptr_t *bp = zio->io_bp;
3154	vdev_t *vd = zio->io_vd;
3155	uint64_t psize = zio->io_size;
3156	zio_t *pio, *pio_next;
3157
3158	/*
3159	 * If our children haven't all completed,
3160	 * wait for them and then repeat this pipeline stage.
3161	 */
3162	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3163	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3164	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3165	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3166		return (ZIO_PIPELINE_STOP);
3167
3168	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3169		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3170			ASSERT(zio->io_children[c][w] == 0);
3171
3172	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3173		ASSERT(bp->blk_pad[0] == 0);
3174		ASSERT(bp->blk_pad[1] == 0);
3175		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3176		    (bp == zio_unique_parent(zio)->io_bp));
3177		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3178		    zio->io_bp_override == NULL &&
3179		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3180			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3181			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3182			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3183			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3184		}
3185		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3186			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3187	}
3188
3189	/*
3190	 * If there were child vdev/gang/ddt errors, they apply to us now.
3191	 */
3192	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3193	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3194	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3195
3196	/*
3197	 * If the I/O on the transformed data was successful, generate any
3198	 * checksum reports now while we still have the transformed data.
3199	 */
3200	if (zio->io_error == 0) {
3201		while (zio->io_cksum_report != NULL) {
3202			zio_cksum_report_t *zcr = zio->io_cksum_report;
3203			uint64_t align = zcr->zcr_align;
3204			uint64_t asize = P2ROUNDUP(psize, align);
3205			char *abuf = zio->io_data;
3206
3207			if (asize != psize) {
3208				abuf = zio_buf_alloc(asize);
3209				bcopy(zio->io_data, abuf, psize);
3210				bzero(abuf + psize, asize - psize);
3211			}
3212
3213			zio->io_cksum_report = zcr->zcr_next;
3214			zcr->zcr_next = NULL;
3215			zcr->zcr_finish(zcr, abuf);
3216			zfs_ereport_free_checksum(zcr);
3217
3218			if (asize != psize)
3219				zio_buf_free(abuf, asize);
3220		}
3221	}
3222
3223	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3224
3225	vdev_stat_update(zio, psize);
3226
3227	if (zio->io_error) {
3228		/*
3229		 * If this I/O is attached to a particular vdev,
3230		 * generate an error message describing the I/O failure
3231		 * at the block level.  We ignore these errors if the
3232		 * device is currently unavailable.
3233		 */
3234		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3235			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3236
3237		if ((zio->io_error == EIO || !(zio->io_flags &
3238		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3239		    zio == lio) {
3240			/*
3241			 * For logical I/O requests, tell the SPA to log the
3242			 * error and generate a logical data ereport.
3243			 */
3244			spa_log_error(spa, zio);
3245			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3246			    0, 0);
3247		}
3248	}
3249
3250	if (zio->io_error && zio == lio) {
3251		/*
3252		 * Determine whether zio should be reexecuted.  This will
3253		 * propagate all the way to the root via zio_notify_parent().
3254		 */
3255		ASSERT(vd == NULL && bp != NULL);
3256		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3257
3258		if (IO_IS_ALLOCATING(zio) &&
3259		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3260			if (zio->io_error != ENOSPC)
3261				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3262			else
3263				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3264		}
3265
3266		if ((zio->io_type == ZIO_TYPE_READ ||
3267		    zio->io_type == ZIO_TYPE_FREE) &&
3268		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3269		    zio->io_error == ENXIO &&
3270		    spa_load_state(spa) == SPA_LOAD_NONE &&
3271		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3272			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3273
3274		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3275			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3276
3277		/*
3278		 * Here is a possibly good place to attempt to do
3279		 * either combinatorial reconstruction or error correction
3280		 * based on checksums.  It also might be a good place
3281		 * to send out preliminary ereports before we suspend
3282		 * processing.
3283		 */
3284	}
3285
3286	/*
3287	 * If there were logical child errors, they apply to us now.
3288	 * We defer this until now to avoid conflating logical child
3289	 * errors with errors that happened to the zio itself when
3290	 * updating vdev stats and reporting FMA events above.
3291	 */
3292	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3293
3294	if ((zio->io_error || zio->io_reexecute) &&
3295	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3296	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3297		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3298
3299	zio_gang_tree_free(&zio->io_gang_tree);
3300
3301	/*
3302	 * Godfather I/Os should never suspend.
3303	 */
3304	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3305	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3306		zio->io_reexecute = 0;
3307
3308	if (zio->io_reexecute) {
3309		/*
3310		 * This is a logical I/O that wants to reexecute.
3311		 *
3312		 * Reexecute is top-down.  When an i/o fails, if it's not
3313		 * the root, it simply notifies its parent and sticks around.
3314		 * The parent, seeing that it still has children in zio_done(),
3315		 * does the same.  This percolates all the way up to the root.
3316		 * The root i/o will reexecute or suspend the entire tree.
3317		 *
3318		 * This approach ensures that zio_reexecute() honors
3319		 * all the original i/o dependency relationships, e.g.
3320		 * parents not executing until children are ready.
3321		 */
3322		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3323
3324		zio->io_gang_leader = NULL;
3325
3326		mutex_enter(&zio->io_lock);
3327		zio->io_state[ZIO_WAIT_DONE] = 1;
3328		mutex_exit(&zio->io_lock);
3329
3330		/*
3331		 * "The Godfather" I/O monitors its children but is
3332		 * not a true parent to them. It will track them through
3333		 * the pipeline but severs its ties whenever they get into
3334		 * trouble (e.g. suspended). This allows "The Godfather"
3335		 * I/O to return status without blocking.
3336		 */
3337		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3338			zio_link_t *zl = zio->io_walk_link;
3339			pio_next = zio_walk_parents(zio);
3340
3341			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3342			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3343				zio_remove_child(pio, zio, zl);
3344				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3345			}
3346		}
3347
3348		if ((pio = zio_unique_parent(zio)) != NULL) {
3349			/*
3350			 * We're not a root i/o, so there's nothing to do
3351			 * but notify our parent.  Don't propagate errors
3352			 * upward since we haven't permanently failed yet.
3353			 */
3354			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3355			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3356			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3357		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3358			/*
3359			 * We'd fail again if we reexecuted now, so suspend
3360			 * until conditions improve (e.g. device comes online).
3361			 */
3362			zio_suspend(spa, zio);
3363		} else {
3364			/*
3365			 * Reexecution is potentially a huge amount of work.
3366			 * Hand it off to the otherwise-unused claim taskq.
3367			 */
3368#if defined(illumos) || !defined(_KERNEL)
3369			ASSERT(zio->io_tqent.tqent_next == NULL);
3370#else
3371			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3372#endif
3373			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3374			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3375			    0, &zio->io_tqent);
3376		}
3377		return (ZIO_PIPELINE_STOP);
3378	}
3379
3380	ASSERT(zio->io_child_count == 0);
3381	ASSERT(zio->io_reexecute == 0);
3382	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3383
3384	/*
3385	 * Report any checksum errors, since the I/O is complete.
3386	 */
3387	while (zio->io_cksum_report != NULL) {
3388		zio_cksum_report_t *zcr = zio->io_cksum_report;
3389		zio->io_cksum_report = zcr->zcr_next;
3390		zcr->zcr_next = NULL;
3391		zcr->zcr_finish(zcr, NULL);
3392		zfs_ereport_free_checksum(zcr);
3393	}
3394
3395	/*
3396	 * It is the responsibility of the done callback to ensure that this
3397	 * particular zio is no longer discoverable for adoption, and as
3398	 * such, cannot acquire any new parents.
3399	 */
3400	if (zio->io_done)
3401		zio->io_done(zio);
3402
3403	mutex_enter(&zio->io_lock);
3404	zio->io_state[ZIO_WAIT_DONE] = 1;
3405	mutex_exit(&zio->io_lock);
3406
3407	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3408		zio_link_t *zl = zio->io_walk_link;
3409		pio_next = zio_walk_parents(zio);
3410		zio_remove_child(pio, zio, zl);
3411		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3412	}
3413
3414	if (zio->io_waiter != NULL) {
3415		mutex_enter(&zio->io_lock);
3416		zio->io_executor = NULL;
3417		cv_broadcast(&zio->io_cv);
3418		mutex_exit(&zio->io_lock);
3419	} else {
3420		zio_destroy(zio);
3421	}
3422
3423	return (ZIO_PIPELINE_STOP);
3424}
3425
3426/*
3427 * ==========================================================================
3428 * I/O pipeline definition
3429 * ==========================================================================
3430 */
3431static zio_pipe_stage_t *zio_pipeline[] = {
3432	NULL,
3433	zio_read_bp_init,
3434	zio_free_bp_init,
3435	zio_issue_async,
3436	zio_write_bp_init,
3437	zio_checksum_generate,
3438	zio_nop_write,
3439	zio_ddt_read_start,
3440	zio_ddt_read_done,
3441	zio_ddt_write,
3442	zio_ddt_free,
3443	zio_gang_assemble,
3444	zio_gang_issue,
3445	zio_dva_allocate,
3446	zio_dva_free,
3447	zio_dva_claim,
3448	zio_ready,
3449	zio_vdev_io_start,
3450	zio_vdev_io_done,
3451	zio_vdev_io_assess,
3452	zio_checksum_verify,
3453	zio_done
3454};
3455
3456/* dnp is the dnode for zb1->zb_object */
3457boolean_t
3458zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3459    const zbookmark_phys_t *zb2)
3460{
3461	uint64_t zb1nextL0, zb2thisobj;
3462
3463	ASSERT(zb1->zb_objset == zb2->zb_objset);
3464	ASSERT(zb2->zb_level == 0);
3465
3466	/* The objset_phys_t isn't before anything. */
3467	if (dnp == NULL)
3468		return (B_FALSE);
3469
3470	zb1nextL0 = (zb1->zb_blkid + 1) <<
3471	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3472
3473	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3474	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3475
3476	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3477		uint64_t nextobj = zb1nextL0 *
3478		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3479		return (nextobj <= zb2thisobj);
3480	}
3481
3482	if (zb1->zb_object < zb2thisobj)
3483		return (B_TRUE);
3484	if (zb1->zb_object > zb2thisobj)
3485		return (B_FALSE);
3486	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3487		return (B_FALSE);
3488	return (zb1nextL0 <= zb2->zb_blkid);
3489}
3490