zio.c revision 285001
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/sysmacros.h>
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/txg.h>
32#include <sys/spa_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio_impl.h>
35#include <sys/zio_compress.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/ddt.h>
40#include <sys/trim_map.h>
41#include <sys/blkptr.h>
42#include <sys/zfeature.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
46#if defined(__amd64__)
47static int zio_use_uma = 1;
48#else
49static int zio_use_uma = 0;
50#endif
51TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
52SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
53    "Use uma(9) for ZIO allocations");
54static int zio_exclude_metadata = 0;
55TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82/*
83 * ==========================================================================
84 * I/O kmem caches
85 * ==========================================================================
86 */
87kmem_cache_t *zio_cache;
88kmem_cache_t *zio_link_cache;
89kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91
92#ifdef _KERNEL
93extern vmem_t *zio_alloc_arena;
94#endif
95
96/*
97 * The following actions directly effect the spa's sync-to-convergence logic.
98 * The values below define the sync pass when we start performing the action.
99 * Care should be taken when changing these values as they directly impact
100 * spa_sync() performance. Tuning these values may introduce subtle performance
101 * pathologies and should only be done in the context of performance analysis.
102 * These tunables will eventually be removed and replaced with #defines once
103 * enough analysis has been done to determine optimal values.
104 *
105 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
106 * regular blocks are not deferred.
107 */
108int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
109TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
110SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
111    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
112int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
113TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
114SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
115    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
116int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
117TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
118SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
119    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
120
121/*
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
124 */
125#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126
127boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
128
129#ifdef ZFS_DEBUG
130int zio_buf_debug_limit = 16384;
131#else
132int zio_buf_debug_limit = 0;
133#endif
134
135void
136zio_init(void)
137{
138	size_t c;
139	zio_cache = kmem_cache_create("zio_cache",
140	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
141	zio_link_cache = kmem_cache_create("zio_link_cache",
142	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
143	if (!zio_use_uma)
144		goto out;
145
146	/*
147	 * For small buffers, we want a cache for each multiple of
148	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
149	 * for each quarter-power of 2.
150	 */
151	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
152		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
153		size_t p2 = size;
154		size_t align = 0;
155		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
156
157		while (!ISP2(p2))
158			p2 &= p2 - 1;
159
160#ifdef illumos
161#ifndef _KERNEL
162		/*
163		 * If we are using watchpoints, put each buffer on its own page,
164		 * to eliminate the performance overhead of trapping to the
165		 * kernel when modifying a non-watched buffer that shares the
166		 * page with a watched buffer.
167		 */
168		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
169			continue;
170#endif
171#endif /* illumos */
172		if (size <= 4 * SPA_MINBLOCKSIZE) {
173			align = SPA_MINBLOCKSIZE;
174		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
175			align = MIN(p2 >> 2, PAGESIZE);
176		}
177
178		if (align != 0) {
179			char name[36];
180			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
181			zio_buf_cache[c] = kmem_cache_create(name, size,
182			    align, NULL, NULL, NULL, NULL, NULL, cflags);
183
184			/*
185			 * Since zio_data bufs do not appear in crash dumps, we
186			 * pass KMC_NOTOUCH so that no allocator metadata is
187			 * stored with the buffers.
188			 */
189			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190			zio_data_buf_cache[c] = kmem_cache_create(name, size,
191			    align, NULL, NULL, NULL, NULL, NULL,
192			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
193		}
194	}
195
196	while (--c != 0) {
197		ASSERT(zio_buf_cache[c] != NULL);
198		if (zio_buf_cache[c - 1] == NULL)
199			zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201		ASSERT(zio_data_buf_cache[c] != NULL);
202		if (zio_data_buf_cache[c - 1] == NULL)
203			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204	}
205out:
206
207	zio_inject_init();
208
209	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
210	    KSTAT_TYPE_NAMED,
211	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
212	    KSTAT_FLAG_VIRTUAL);
213
214	if (zio_trim_ksp != NULL) {
215		zio_trim_ksp->ks_data = &zio_trim_stats;
216		kstat_install(zio_trim_ksp);
217	}
218}
219
220void
221zio_fini(void)
222{
223	size_t c;
224	kmem_cache_t *last_cache = NULL;
225	kmem_cache_t *last_data_cache = NULL;
226
227	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
228		if (zio_buf_cache[c] != last_cache) {
229			last_cache = zio_buf_cache[c];
230			kmem_cache_destroy(zio_buf_cache[c]);
231		}
232		zio_buf_cache[c] = NULL;
233
234		if (zio_data_buf_cache[c] != last_data_cache) {
235			last_data_cache = zio_data_buf_cache[c];
236			kmem_cache_destroy(zio_data_buf_cache[c]);
237		}
238		zio_data_buf_cache[c] = NULL;
239	}
240
241	kmem_cache_destroy(zio_link_cache);
242	kmem_cache_destroy(zio_cache);
243
244	zio_inject_fini();
245
246	if (zio_trim_ksp != NULL) {
247		kstat_delete(zio_trim_ksp);
248		zio_trim_ksp = NULL;
249	}
250}
251
252/*
253 * ==========================================================================
254 * Allocate and free I/O buffers
255 * ==========================================================================
256 */
257
258/*
259 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
260 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
261 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
262 * excess / transient data in-core during a crashdump.
263 */
264void *
265zio_buf_alloc(size_t size)
266{
267	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
269
270	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271
272	if (zio_use_uma)
273		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274	else
275		return (kmem_alloc(size, KM_SLEEP|flags));
276}
277
278/*
279 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
280 * crashdump if the kernel panics.  This exists so that we will limit the amount
281 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
282 * of kernel heap dumped to disk when the kernel panics)
283 */
284void *
285zio_data_buf_alloc(size_t size)
286{
287	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
288
289	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
290
291	if (zio_use_uma)
292		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
293	else
294		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
295}
296
297void
298zio_buf_free(void *buf, size_t size)
299{
300	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
301
302	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
303
304	if (zio_use_uma)
305		kmem_cache_free(zio_buf_cache[c], buf);
306	else
307		kmem_free(buf, size);
308}
309
310void
311zio_data_buf_free(void *buf, size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		kmem_cache_free(zio_data_buf_cache[c], buf);
319	else
320		kmem_free(buf, size);
321}
322
323/*
324 * ==========================================================================
325 * Push and pop I/O transform buffers
326 * ==========================================================================
327 */
328static void
329zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
330	zio_transform_func_t *transform)
331{
332	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
333
334	zt->zt_orig_data = zio->io_data;
335	zt->zt_orig_size = zio->io_size;
336	zt->zt_bufsize = bufsize;
337	zt->zt_transform = transform;
338
339	zt->zt_next = zio->io_transform_stack;
340	zio->io_transform_stack = zt;
341
342	zio->io_data = data;
343	zio->io_size = size;
344}
345
346static void
347zio_pop_transforms(zio_t *zio)
348{
349	zio_transform_t *zt;
350
351	while ((zt = zio->io_transform_stack) != NULL) {
352		if (zt->zt_transform != NULL)
353			zt->zt_transform(zio,
354			    zt->zt_orig_data, zt->zt_orig_size);
355
356		if (zt->zt_bufsize != 0)
357			zio_buf_free(zio->io_data, zt->zt_bufsize);
358
359		zio->io_data = zt->zt_orig_data;
360		zio->io_size = zt->zt_orig_size;
361		zio->io_transform_stack = zt->zt_next;
362
363		kmem_free(zt, sizeof (zio_transform_t));
364	}
365}
366
367/*
368 * ==========================================================================
369 * I/O transform callbacks for subblocks and decompression
370 * ==========================================================================
371 */
372static void
373zio_subblock(zio_t *zio, void *data, uint64_t size)
374{
375	ASSERT(zio->io_size > size);
376
377	if (zio->io_type == ZIO_TYPE_READ)
378		bcopy(zio->io_data, data, size);
379}
380
381static void
382zio_decompress(zio_t *zio, void *data, uint64_t size)
383{
384	if (zio->io_error == 0 &&
385	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
386	    zio->io_data, data, zio->io_size, size) != 0)
387		zio->io_error = SET_ERROR(EIO);
388}
389
390/*
391 * ==========================================================================
392 * I/O parent/child relationships and pipeline interlocks
393 * ==========================================================================
394 */
395/*
396 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
397 *        continue calling these functions until they return NULL.
398 *        Otherwise, the next caller will pick up the list walk in
399 *        some indeterminate state.  (Otherwise every caller would
400 *        have to pass in a cookie to keep the state represented by
401 *        io_walk_link, which gets annoying.)
402 */
403zio_t *
404zio_walk_parents(zio_t *cio)
405{
406	zio_link_t *zl = cio->io_walk_link;
407	list_t *pl = &cio->io_parent_list;
408
409	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
410	cio->io_walk_link = zl;
411
412	if (zl == NULL)
413		return (NULL);
414
415	ASSERT(zl->zl_child == cio);
416	return (zl->zl_parent);
417}
418
419zio_t *
420zio_walk_children(zio_t *pio)
421{
422	zio_link_t *zl = pio->io_walk_link;
423	list_t *cl = &pio->io_child_list;
424
425	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
426	pio->io_walk_link = zl;
427
428	if (zl == NULL)
429		return (NULL);
430
431	ASSERT(zl->zl_parent == pio);
432	return (zl->zl_child);
433}
434
435zio_t *
436zio_unique_parent(zio_t *cio)
437{
438	zio_t *pio = zio_walk_parents(cio);
439
440	VERIFY(zio_walk_parents(cio) == NULL);
441	return (pio);
442}
443
444void
445zio_add_child(zio_t *pio, zio_t *cio)
446{
447	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
448
449	/*
450	 * Logical I/Os can have logical, gang, or vdev children.
451	 * Gang I/Os can have gang or vdev children.
452	 * Vdev I/Os can only have vdev children.
453	 * The following ASSERT captures all of these constraints.
454	 */
455	ASSERT(cio->io_child_type <= pio->io_child_type);
456
457	zl->zl_parent = pio;
458	zl->zl_child = cio;
459
460	mutex_enter(&cio->io_lock);
461	mutex_enter(&pio->io_lock);
462
463	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
464
465	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
466		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
467
468	list_insert_head(&pio->io_child_list, zl);
469	list_insert_head(&cio->io_parent_list, zl);
470
471	pio->io_child_count++;
472	cio->io_parent_count++;
473
474	mutex_exit(&pio->io_lock);
475	mutex_exit(&cio->io_lock);
476}
477
478static void
479zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
480{
481	ASSERT(zl->zl_parent == pio);
482	ASSERT(zl->zl_child == cio);
483
484	mutex_enter(&cio->io_lock);
485	mutex_enter(&pio->io_lock);
486
487	list_remove(&pio->io_child_list, zl);
488	list_remove(&cio->io_parent_list, zl);
489
490	pio->io_child_count--;
491	cio->io_parent_count--;
492
493	mutex_exit(&pio->io_lock);
494	mutex_exit(&cio->io_lock);
495
496	kmem_cache_free(zio_link_cache, zl);
497}
498
499static boolean_t
500zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
501{
502	uint64_t *countp = &zio->io_children[child][wait];
503	boolean_t waiting = B_FALSE;
504
505	mutex_enter(&zio->io_lock);
506	ASSERT(zio->io_stall == NULL);
507	if (*countp != 0) {
508		zio->io_stage >>= 1;
509		zio->io_stall = countp;
510		waiting = B_TRUE;
511	}
512	mutex_exit(&zio->io_lock);
513
514	return (waiting);
515}
516
517static void
518zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
519{
520	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
521	int *errorp = &pio->io_child_error[zio->io_child_type];
522
523	mutex_enter(&pio->io_lock);
524	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
525		*errorp = zio_worst_error(*errorp, zio->io_error);
526	pio->io_reexecute |= zio->io_reexecute;
527	ASSERT3U(*countp, >, 0);
528
529	(*countp)--;
530
531	if (*countp == 0 && pio->io_stall == countp) {
532		pio->io_stall = NULL;
533		mutex_exit(&pio->io_lock);
534		zio_execute(pio);
535	} else {
536		mutex_exit(&pio->io_lock);
537	}
538}
539
540static void
541zio_inherit_child_errors(zio_t *zio, enum zio_child c)
542{
543	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
544		zio->io_error = zio->io_child_error[c];
545}
546
547/*
548 * ==========================================================================
549 * Create the various types of I/O (read, write, free, etc)
550 * ==========================================================================
551 */
552static zio_t *
553zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
554    void *data, uint64_t size, zio_done_func_t *done, void *private,
555    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
556    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
557    enum zio_stage stage, enum zio_stage pipeline)
558{
559	zio_t *zio;
560
561	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
562	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
563	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
564
565	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
566	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
567	ASSERT(vd || stage == ZIO_STAGE_OPEN);
568
569	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
570	bzero(zio, sizeof (zio_t));
571
572	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
573	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
574
575	list_create(&zio->io_parent_list, sizeof (zio_link_t),
576	    offsetof(zio_link_t, zl_parent_node));
577	list_create(&zio->io_child_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_child_node));
579
580	if (vd != NULL)
581		zio->io_child_type = ZIO_CHILD_VDEV;
582	else if (flags & ZIO_FLAG_GANG_CHILD)
583		zio->io_child_type = ZIO_CHILD_GANG;
584	else if (flags & ZIO_FLAG_DDT_CHILD)
585		zio->io_child_type = ZIO_CHILD_DDT;
586	else
587		zio->io_child_type = ZIO_CHILD_LOGICAL;
588
589	if (bp != NULL) {
590		zio->io_bp = (blkptr_t *)bp;
591		zio->io_bp_copy = *bp;
592		zio->io_bp_orig = *bp;
593		if (type != ZIO_TYPE_WRITE ||
594		    zio->io_child_type == ZIO_CHILD_DDT)
595			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
596		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
597			zio->io_logical = zio;
598		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
599			pipeline |= ZIO_GANG_STAGES;
600	}
601
602	zio->io_spa = spa;
603	zio->io_txg = txg;
604	zio->io_done = done;
605	zio->io_private = private;
606	zio->io_type = type;
607	zio->io_priority = priority;
608	zio->io_vd = vd;
609	zio->io_offset = offset;
610	zio->io_orig_data = zio->io_data = data;
611	zio->io_orig_size = zio->io_size = size;
612	zio->io_orig_flags = zio->io_flags = flags;
613	zio->io_orig_stage = zio->io_stage = stage;
614	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
615
616	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618
619	if (zb != NULL)
620		zio->io_bookmark = *zb;
621
622	if (pio != NULL) {
623		if (zio->io_logical == NULL)
624			zio->io_logical = pio->io_logical;
625		if (zio->io_child_type == ZIO_CHILD_GANG)
626			zio->io_gang_leader = pio->io_gang_leader;
627		zio_add_child(pio, zio);
628	}
629
630	return (zio);
631}
632
633static void
634zio_destroy(zio_t *zio)
635{
636	list_destroy(&zio->io_parent_list);
637	list_destroy(&zio->io_child_list);
638	mutex_destroy(&zio->io_lock);
639	cv_destroy(&zio->io_cv);
640	kmem_cache_free(zio_cache, zio);
641}
642
643zio_t *
644zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
645    void *private, enum zio_flag flags)
646{
647	zio_t *zio;
648
649	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
650	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
651	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
652
653	return (zio);
654}
655
656zio_t *
657zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
658{
659	return (zio_null(NULL, spa, NULL, done, private, flags));
660}
661
662void
663zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
664{
665	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
666		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
667		    bp, (longlong_t)BP_GET_TYPE(bp));
668	}
669	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
670	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
671		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
672		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
673	}
674	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
675	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
676		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
677		    bp, (longlong_t)BP_GET_COMPRESS(bp));
678	}
679	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
680		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
681		    bp, (longlong_t)BP_GET_LSIZE(bp));
682	}
683	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
684		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
685		    bp, (longlong_t)BP_GET_PSIZE(bp));
686	}
687
688	if (BP_IS_EMBEDDED(bp)) {
689		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
690			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
691			    bp, (longlong_t)BPE_GET_ETYPE(bp));
692		}
693	}
694
695	/*
696	 * Pool-specific checks.
697	 *
698	 * Note: it would be nice to verify that the blk_birth and
699	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
700	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
701	 * that are in the log) to be arbitrarily large.
702	 */
703	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
704		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
705		if (vdevid >= spa->spa_root_vdev->vdev_children) {
706			zfs_panic_recover("blkptr at %p DVA %u has invalid "
707			    "VDEV %llu",
708			    bp, i, (longlong_t)vdevid);
709			continue;
710		}
711		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
712		if (vd == NULL) {
713			zfs_panic_recover("blkptr at %p DVA %u has invalid "
714			    "VDEV %llu",
715			    bp, i, (longlong_t)vdevid);
716			continue;
717		}
718		if (vd->vdev_ops == &vdev_hole_ops) {
719			zfs_panic_recover("blkptr at %p DVA %u has hole "
720			    "VDEV %llu",
721			    bp, i, (longlong_t)vdevid);
722			continue;
723		}
724		if (vd->vdev_ops == &vdev_missing_ops) {
725			/*
726			 * "missing" vdevs are valid during import, but we
727			 * don't have their detailed info (e.g. asize), so
728			 * we can't perform any more checks on them.
729			 */
730			continue;
731		}
732		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
733		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
734		if (BP_IS_GANG(bp))
735			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
736		if (offset + asize > vd->vdev_asize) {
737			zfs_panic_recover("blkptr at %p DVA %u has invalid "
738			    "OFFSET %llu",
739			    bp, i, (longlong_t)offset);
740		}
741	}
742}
743
744zio_t *
745zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
746    void *data, uint64_t size, zio_done_func_t *done, void *private,
747    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
748{
749	zio_t *zio;
750
751	zfs_blkptr_verify(spa, bp);
752
753	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
754	    data, size, done, private,
755	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
756	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
757	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
758
759	return (zio);
760}
761
762zio_t *
763zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
764    void *data, uint64_t size, const zio_prop_t *zp,
765    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
766    void *private,
767    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
768{
769	zio_t *zio;
770
771	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
772	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
773	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
774	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
775	    DMU_OT_IS_VALID(zp->zp_type) &&
776	    zp->zp_level < 32 &&
777	    zp->zp_copies > 0 &&
778	    zp->zp_copies <= spa_max_replication(spa));
779
780	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
781	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
782	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
783	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
784
785	zio->io_ready = ready;
786	zio->io_physdone = physdone;
787	zio->io_prop = *zp;
788
789	/*
790	 * Data can be NULL if we are going to call zio_write_override() to
791	 * provide the already-allocated BP.  But we may need the data to
792	 * verify a dedup hit (if requested).  In this case, don't try to
793	 * dedup (just take the already-allocated BP verbatim).
794	 */
795	if (data == NULL && zio->io_prop.zp_dedup_verify) {
796		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
797	}
798
799	return (zio);
800}
801
802zio_t *
803zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
804    uint64_t size, zio_done_func_t *done, void *private,
805    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
806{
807	zio_t *zio;
808
809	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
810	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
811	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
812
813	return (zio);
814}
815
816void
817zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
818{
819	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
820	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
821	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
822	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
823
824	/*
825	 * We must reset the io_prop to match the values that existed
826	 * when the bp was first written by dmu_sync() keeping in mind
827	 * that nopwrite and dedup are mutually exclusive.
828	 */
829	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
830	zio->io_prop.zp_nopwrite = nopwrite;
831	zio->io_prop.zp_copies = copies;
832	zio->io_bp_override = bp;
833}
834
835void
836zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
837{
838
839	/*
840	 * The check for EMBEDDED is a performance optimization.  We
841	 * process the free here (by ignoring it) rather than
842	 * putting it on the list and then processing it in zio_free_sync().
843	 */
844	if (BP_IS_EMBEDDED(bp))
845		return;
846	metaslab_check_free(spa, bp);
847
848	/*
849	 * Frees that are for the currently-syncing txg, are not going to be
850	 * deferred, and which will not need to do a read (i.e. not GANG or
851	 * DEDUP), can be processed immediately.  Otherwise, put them on the
852	 * in-memory list for later processing.
853	 */
854	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
855	    txg != spa->spa_syncing_txg ||
856	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
857		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
858	} else {
859		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
860		    BP_GET_PSIZE(bp), 0)));
861	}
862}
863
864zio_t *
865zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
866    uint64_t size, enum zio_flag flags)
867{
868	zio_t *zio;
869	enum zio_stage stage = ZIO_FREE_PIPELINE;
870
871	ASSERT(!BP_IS_HOLE(bp));
872	ASSERT(spa_syncing_txg(spa) == txg);
873	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
874
875	if (BP_IS_EMBEDDED(bp))
876		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
877
878	metaslab_check_free(spa, bp);
879	arc_freed(spa, bp);
880
881	if (zfs_trim_enabled)
882		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
883		    ZIO_STAGE_VDEV_IO_ASSESS;
884	/*
885	 * GANG and DEDUP blocks can induce a read (for the gang block header,
886	 * or the DDT), so issue them asynchronously so that this thread is
887	 * not tied up.
888	 */
889	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
890		stage |= ZIO_STAGE_ISSUE_ASYNC;
891
892	flags |= ZIO_FLAG_DONT_QUEUE;
893
894	zio = zio_create(pio, spa, txg, bp, NULL, size,
895	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
896	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
897
898	return (zio);
899}
900
901zio_t *
902zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
903    zio_done_func_t *done, void *private, enum zio_flag flags)
904{
905	zio_t *zio;
906
907	dprintf_bp(bp, "claiming in txg %llu", txg);
908
909	if (BP_IS_EMBEDDED(bp))
910		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
911
912	/*
913	 * A claim is an allocation of a specific block.  Claims are needed
914	 * to support immediate writes in the intent log.  The issue is that
915	 * immediate writes contain committed data, but in a txg that was
916	 * *not* committed.  Upon opening the pool after an unclean shutdown,
917	 * the intent log claims all blocks that contain immediate write data
918	 * so that the SPA knows they're in use.
919	 *
920	 * All claims *must* be resolved in the first txg -- before the SPA
921	 * starts allocating blocks -- so that nothing is allocated twice.
922	 * If txg == 0 we just verify that the block is claimable.
923	 */
924	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
925	ASSERT(txg == spa_first_txg(spa) || txg == 0);
926	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
927
928	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
929	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
930	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
931
932	return (zio);
933}
934
935zio_t *
936zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
937    uint64_t size, zio_done_func_t *done, void *private,
938    zio_priority_t priority, enum zio_flag flags)
939{
940	zio_t *zio;
941	int c;
942
943	if (vd->vdev_children == 0) {
944		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
945		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
946		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
947
948		zio->io_cmd = cmd;
949	} else {
950		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
951
952		for (c = 0; c < vd->vdev_children; c++)
953			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
954			    offset, size, done, private, priority, flags));
955	}
956
957	return (zio);
958}
959
960zio_t *
961zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
962    void *data, int checksum, zio_done_func_t *done, void *private,
963    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
964{
965	zio_t *zio;
966
967	ASSERT(vd->vdev_children == 0);
968	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
969	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
970	ASSERT3U(offset + size, <=, vd->vdev_psize);
971
972	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
973	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
974	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
975
976	zio->io_prop.zp_checksum = checksum;
977
978	return (zio);
979}
980
981zio_t *
982zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
983    void *data, int checksum, zio_done_func_t *done, void *private,
984    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
985{
986	zio_t *zio;
987
988	ASSERT(vd->vdev_children == 0);
989	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
990	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
991	ASSERT3U(offset + size, <=, vd->vdev_psize);
992
993	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
994	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
995	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
996
997	zio->io_prop.zp_checksum = checksum;
998
999	if (zio_checksum_table[checksum].ci_eck) {
1000		/*
1001		 * zec checksums are necessarily destructive -- they modify
1002		 * the end of the write buffer to hold the verifier/checksum.
1003		 * Therefore, we must make a local copy in case the data is
1004		 * being written to multiple places in parallel.
1005		 */
1006		void *wbuf = zio_buf_alloc(size);
1007		bcopy(data, wbuf, size);
1008		zio_push_transform(zio, wbuf, size, size, NULL);
1009	}
1010
1011	return (zio);
1012}
1013
1014/*
1015 * Create a child I/O to do some work for us.
1016 */
1017zio_t *
1018zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1019	void *data, uint64_t size, int type, zio_priority_t priority,
1020	enum zio_flag flags, zio_done_func_t *done, void *private)
1021{
1022	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1023	zio_t *zio;
1024
1025	ASSERT(vd->vdev_parent ==
1026	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1027
1028	if (type == ZIO_TYPE_READ && bp != NULL) {
1029		/*
1030		 * If we have the bp, then the child should perform the
1031		 * checksum and the parent need not.  This pushes error
1032		 * detection as close to the leaves as possible and
1033		 * eliminates redundant checksums in the interior nodes.
1034		 */
1035		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1036		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1037	}
1038
1039	/* Not all IO types require vdev io done stage e.g. free */
1040	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1041		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1042
1043	if (vd->vdev_children == 0)
1044		offset += VDEV_LABEL_START_SIZE;
1045
1046	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1047
1048	/*
1049	 * If we've decided to do a repair, the write is not speculative --
1050	 * even if the original read was.
1051	 */
1052	if (flags & ZIO_FLAG_IO_REPAIR)
1053		flags &= ~ZIO_FLAG_SPECULATIVE;
1054
1055	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1056	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1057	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1058
1059	zio->io_physdone = pio->io_physdone;
1060	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1061		zio->io_logical->io_phys_children++;
1062
1063	return (zio);
1064}
1065
1066zio_t *
1067zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1068	int type, zio_priority_t priority, enum zio_flag flags,
1069	zio_done_func_t *done, void *private)
1070{
1071	zio_t *zio;
1072
1073	ASSERT(vd->vdev_ops->vdev_op_leaf);
1074
1075	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1076	    data, size, done, private, type, priority,
1077	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1078	    vd, offset, NULL,
1079	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1080
1081	return (zio);
1082}
1083
1084void
1085zio_flush(zio_t *zio, vdev_t *vd)
1086{
1087	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1088	    NULL, NULL, ZIO_PRIORITY_NOW,
1089	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1090}
1091
1092zio_t *
1093zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1094{
1095
1096	ASSERT(vd->vdev_ops->vdev_op_leaf);
1097
1098	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1099	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1100	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1101	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1102}
1103
1104void
1105zio_shrink(zio_t *zio, uint64_t size)
1106{
1107	ASSERT(zio->io_executor == NULL);
1108	ASSERT(zio->io_orig_size == zio->io_size);
1109	ASSERT(size <= zio->io_size);
1110
1111	/*
1112	 * We don't shrink for raidz because of problems with the
1113	 * reconstruction when reading back less than the block size.
1114	 * Note, BP_IS_RAIDZ() assumes no compression.
1115	 */
1116	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1117	if (!BP_IS_RAIDZ(zio->io_bp))
1118		zio->io_orig_size = zio->io_size = size;
1119}
1120
1121/*
1122 * ==========================================================================
1123 * Prepare to read and write logical blocks
1124 * ==========================================================================
1125 */
1126
1127static int
1128zio_read_bp_init(zio_t *zio)
1129{
1130	blkptr_t *bp = zio->io_bp;
1131
1132	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1133	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1134	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1135		uint64_t psize =
1136		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1137		void *cbuf = zio_buf_alloc(psize);
1138
1139		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1140	}
1141
1142	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1143		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1144		decode_embedded_bp_compressed(bp, zio->io_data);
1145	} else {
1146		ASSERT(!BP_IS_EMBEDDED(bp));
1147	}
1148
1149	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1150		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1151
1152	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1153		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1154
1155	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1156		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1157
1158	return (ZIO_PIPELINE_CONTINUE);
1159}
1160
1161static int
1162zio_write_bp_init(zio_t *zio)
1163{
1164	spa_t *spa = zio->io_spa;
1165	zio_prop_t *zp = &zio->io_prop;
1166	enum zio_compress compress = zp->zp_compress;
1167	blkptr_t *bp = zio->io_bp;
1168	uint64_t lsize = zio->io_size;
1169	uint64_t psize = lsize;
1170	int pass = 1;
1171
1172	/*
1173	 * If our children haven't all reached the ready stage,
1174	 * wait for them and then repeat this pipeline stage.
1175	 */
1176	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1177	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1178		return (ZIO_PIPELINE_STOP);
1179
1180	if (!IO_IS_ALLOCATING(zio))
1181		return (ZIO_PIPELINE_CONTINUE);
1182
1183	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1184
1185	if (zio->io_bp_override) {
1186		ASSERT(bp->blk_birth != zio->io_txg);
1187		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1188
1189		*bp = *zio->io_bp_override;
1190		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1191
1192		if (BP_IS_EMBEDDED(bp))
1193			return (ZIO_PIPELINE_CONTINUE);
1194
1195		/*
1196		 * If we've been overridden and nopwrite is set then
1197		 * set the flag accordingly to indicate that a nopwrite
1198		 * has already occurred.
1199		 */
1200		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1201			ASSERT(!zp->zp_dedup);
1202			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1203			return (ZIO_PIPELINE_CONTINUE);
1204		}
1205
1206		ASSERT(!zp->zp_nopwrite);
1207
1208		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1209			return (ZIO_PIPELINE_CONTINUE);
1210
1211		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1212		    zp->zp_dedup_verify);
1213
1214		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1215			BP_SET_DEDUP(bp, 1);
1216			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1217			return (ZIO_PIPELINE_CONTINUE);
1218		}
1219		zio->io_bp_override = NULL;
1220		BP_ZERO(bp);
1221	}
1222
1223	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1224		/*
1225		 * We're rewriting an existing block, which means we're
1226		 * working on behalf of spa_sync().  For spa_sync() to
1227		 * converge, it must eventually be the case that we don't
1228		 * have to allocate new blocks.  But compression changes
1229		 * the blocksize, which forces a reallocate, and makes
1230		 * convergence take longer.  Therefore, after the first
1231		 * few passes, stop compressing to ensure convergence.
1232		 */
1233		pass = spa_sync_pass(spa);
1234
1235		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1236		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1237		ASSERT(!BP_GET_DEDUP(bp));
1238
1239		if (pass >= zfs_sync_pass_dont_compress)
1240			compress = ZIO_COMPRESS_OFF;
1241
1242		/* Make sure someone doesn't change their mind on overwrites */
1243		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1244		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1245	}
1246
1247	if (compress != ZIO_COMPRESS_OFF) {
1248		void *cbuf = zio_buf_alloc(lsize);
1249		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1250		if (psize == 0 || psize == lsize) {
1251			compress = ZIO_COMPRESS_OFF;
1252			zio_buf_free(cbuf, lsize);
1253		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1254		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1255		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1256			encode_embedded_bp_compressed(bp,
1257			    cbuf, compress, lsize, psize);
1258			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1259			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1260			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1261			zio_buf_free(cbuf, lsize);
1262			bp->blk_birth = zio->io_txg;
1263			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1264			ASSERT(spa_feature_is_active(spa,
1265			    SPA_FEATURE_EMBEDDED_DATA));
1266			return (ZIO_PIPELINE_CONTINUE);
1267		} else {
1268			/*
1269			 * Round up compressed size up to the ashift
1270			 * of the smallest-ashift device, and zero the tail.
1271			 * This ensures that the compressed size of the BP
1272			 * (and thus compressratio property) are correct,
1273			 * in that we charge for the padding used to fill out
1274			 * the last sector.
1275			 */
1276			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1277			size_t rounded = (size_t)P2ROUNDUP(psize,
1278			    1ULL << spa->spa_min_ashift);
1279			if (rounded >= lsize) {
1280				compress = ZIO_COMPRESS_OFF;
1281				zio_buf_free(cbuf, lsize);
1282				psize = lsize;
1283			} else {
1284				bzero((char *)cbuf + psize, rounded - psize);
1285				psize = rounded;
1286				zio_push_transform(zio, cbuf,
1287				    psize, lsize, NULL);
1288			}
1289		}
1290	}
1291
1292	/*
1293	 * The final pass of spa_sync() must be all rewrites, but the first
1294	 * few passes offer a trade-off: allocating blocks defers convergence,
1295	 * but newly allocated blocks are sequential, so they can be written
1296	 * to disk faster.  Therefore, we allow the first few passes of
1297	 * spa_sync() to allocate new blocks, but force rewrites after that.
1298	 * There should only be a handful of blocks after pass 1 in any case.
1299	 */
1300	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1301	    BP_GET_PSIZE(bp) == psize &&
1302	    pass >= zfs_sync_pass_rewrite) {
1303		ASSERT(psize != 0);
1304		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1305		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1306		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1307	} else {
1308		BP_ZERO(bp);
1309		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1310	}
1311
1312	if (psize == 0) {
1313		if (zio->io_bp_orig.blk_birth != 0 &&
1314		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1315			BP_SET_LSIZE(bp, lsize);
1316			BP_SET_TYPE(bp, zp->zp_type);
1317			BP_SET_LEVEL(bp, zp->zp_level);
1318			BP_SET_BIRTH(bp, zio->io_txg, 0);
1319		}
1320		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1321	} else {
1322		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1323		BP_SET_LSIZE(bp, lsize);
1324		BP_SET_TYPE(bp, zp->zp_type);
1325		BP_SET_LEVEL(bp, zp->zp_level);
1326		BP_SET_PSIZE(bp, psize);
1327		BP_SET_COMPRESS(bp, compress);
1328		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1329		BP_SET_DEDUP(bp, zp->zp_dedup);
1330		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1331		if (zp->zp_dedup) {
1332			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1333			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1334			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1335		}
1336		if (zp->zp_nopwrite) {
1337			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1338			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1339			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1340		}
1341	}
1342
1343	return (ZIO_PIPELINE_CONTINUE);
1344}
1345
1346static int
1347zio_free_bp_init(zio_t *zio)
1348{
1349	blkptr_t *bp = zio->io_bp;
1350
1351	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1352		if (BP_GET_DEDUP(bp))
1353			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1354	}
1355
1356	return (ZIO_PIPELINE_CONTINUE);
1357}
1358
1359/*
1360 * ==========================================================================
1361 * Execute the I/O pipeline
1362 * ==========================================================================
1363 */
1364
1365static void
1366zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1367{
1368	spa_t *spa = zio->io_spa;
1369	zio_type_t t = zio->io_type;
1370	int flags = (cutinline ? TQ_FRONT : 0);
1371
1372	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1373
1374	/*
1375	 * If we're a config writer or a probe, the normal issue and
1376	 * interrupt threads may all be blocked waiting for the config lock.
1377	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1378	 */
1379	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1380		t = ZIO_TYPE_NULL;
1381
1382	/*
1383	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1384	 */
1385	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1386		t = ZIO_TYPE_NULL;
1387
1388	/*
1389	 * If this is a high priority I/O, then use the high priority taskq if
1390	 * available.
1391	 */
1392	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1393	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1394		q++;
1395
1396	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1397
1398	/*
1399	 * NB: We are assuming that the zio can only be dispatched
1400	 * to a single taskq at a time.  It would be a grievous error
1401	 * to dispatch the zio to another taskq at the same time.
1402	 */
1403#if defined(illumos) || !defined(_KERNEL)
1404	ASSERT(zio->io_tqent.tqent_next == NULL);
1405#else
1406	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1407#endif
1408	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1409	    flags, &zio->io_tqent);
1410}
1411
1412static boolean_t
1413zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1414{
1415	kthread_t *executor = zio->io_executor;
1416	spa_t *spa = zio->io_spa;
1417
1418	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1419		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1420		uint_t i;
1421		for (i = 0; i < tqs->stqs_count; i++) {
1422			if (taskq_member(tqs->stqs_taskq[i], executor))
1423				return (B_TRUE);
1424		}
1425	}
1426
1427	return (B_FALSE);
1428}
1429
1430static int
1431zio_issue_async(zio_t *zio)
1432{
1433	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1434
1435	return (ZIO_PIPELINE_STOP);
1436}
1437
1438void
1439zio_interrupt(zio_t *zio)
1440{
1441	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1442}
1443
1444/*
1445 * Execute the I/O pipeline until one of the following occurs:
1446 *
1447 *	(1) the I/O completes
1448 *	(2) the pipeline stalls waiting for dependent child I/Os
1449 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1450 *	(4) the I/O is delegated by vdev-level caching or aggregation
1451 *	(5) the I/O is deferred due to vdev-level queueing
1452 *	(6) the I/O is handed off to another thread.
1453 *
1454 * In all cases, the pipeline stops whenever there's no CPU work; it never
1455 * burns a thread in cv_wait().
1456 *
1457 * There's no locking on io_stage because there's no legitimate way
1458 * for multiple threads to be attempting to process the same I/O.
1459 */
1460static zio_pipe_stage_t *zio_pipeline[];
1461
1462void
1463zio_execute(zio_t *zio)
1464{
1465	zio->io_executor = curthread;
1466
1467	while (zio->io_stage < ZIO_STAGE_DONE) {
1468		enum zio_stage pipeline = zio->io_pipeline;
1469		enum zio_stage stage = zio->io_stage;
1470		int rv;
1471
1472		ASSERT(!MUTEX_HELD(&zio->io_lock));
1473		ASSERT(ISP2(stage));
1474		ASSERT(zio->io_stall == NULL);
1475
1476		do {
1477			stage <<= 1;
1478		} while ((stage & pipeline) == 0);
1479
1480		ASSERT(stage <= ZIO_STAGE_DONE);
1481
1482		/*
1483		 * If we are in interrupt context and this pipeline stage
1484		 * will grab a config lock that is held across I/O,
1485		 * or may wait for an I/O that needs an interrupt thread
1486		 * to complete, issue async to avoid deadlock.
1487		 *
1488		 * For VDEV_IO_START, we cut in line so that the io will
1489		 * be sent to disk promptly.
1490		 */
1491		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1492		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1493			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1494			    zio_requeue_io_start_cut_in_line : B_FALSE;
1495			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1496			return;
1497		}
1498
1499		zio->io_stage = stage;
1500		rv = zio_pipeline[highbit64(stage) - 1](zio);
1501
1502		if (rv == ZIO_PIPELINE_STOP)
1503			return;
1504
1505		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1506	}
1507}
1508
1509/*
1510 * ==========================================================================
1511 * Initiate I/O, either sync or async
1512 * ==========================================================================
1513 */
1514int
1515zio_wait(zio_t *zio)
1516{
1517	int error;
1518
1519	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1520	ASSERT(zio->io_executor == NULL);
1521
1522	zio->io_waiter = curthread;
1523
1524	zio_execute(zio);
1525
1526	mutex_enter(&zio->io_lock);
1527	while (zio->io_executor != NULL)
1528		cv_wait(&zio->io_cv, &zio->io_lock);
1529	mutex_exit(&zio->io_lock);
1530
1531	error = zio->io_error;
1532	zio_destroy(zio);
1533
1534	return (error);
1535}
1536
1537void
1538zio_nowait(zio_t *zio)
1539{
1540	ASSERT(zio->io_executor == NULL);
1541
1542	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1543	    zio_unique_parent(zio) == NULL) {
1544		/*
1545		 * This is a logical async I/O with no parent to wait for it.
1546		 * We add it to the spa_async_root_zio "Godfather" I/O which
1547		 * will ensure they complete prior to unloading the pool.
1548		 */
1549		spa_t *spa = zio->io_spa;
1550
1551		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1552	}
1553
1554	zio_execute(zio);
1555}
1556
1557/*
1558 * ==========================================================================
1559 * Reexecute or suspend/resume failed I/O
1560 * ==========================================================================
1561 */
1562
1563static void
1564zio_reexecute(zio_t *pio)
1565{
1566	zio_t *cio, *cio_next;
1567
1568	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1569	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1570	ASSERT(pio->io_gang_leader == NULL);
1571	ASSERT(pio->io_gang_tree == NULL);
1572
1573	pio->io_flags = pio->io_orig_flags;
1574	pio->io_stage = pio->io_orig_stage;
1575	pio->io_pipeline = pio->io_orig_pipeline;
1576	pio->io_reexecute = 0;
1577	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1578	pio->io_error = 0;
1579	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1580		pio->io_state[w] = 0;
1581	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1582		pio->io_child_error[c] = 0;
1583
1584	if (IO_IS_ALLOCATING(pio))
1585		BP_ZERO(pio->io_bp);
1586
1587	/*
1588	 * As we reexecute pio's children, new children could be created.
1589	 * New children go to the head of pio's io_child_list, however,
1590	 * so we will (correctly) not reexecute them.  The key is that
1591	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1592	 * cannot be affected by any side effects of reexecuting 'cio'.
1593	 */
1594	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1595		cio_next = zio_walk_children(pio);
1596		mutex_enter(&pio->io_lock);
1597		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1598			pio->io_children[cio->io_child_type][w]++;
1599		mutex_exit(&pio->io_lock);
1600		zio_reexecute(cio);
1601	}
1602
1603	/*
1604	 * Now that all children have been reexecuted, execute the parent.
1605	 * We don't reexecute "The Godfather" I/O here as it's the
1606	 * responsibility of the caller to wait on him.
1607	 */
1608	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1609		zio_execute(pio);
1610}
1611
1612void
1613zio_suspend(spa_t *spa, zio_t *zio)
1614{
1615	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1616		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1617		    "failure and the failure mode property for this pool "
1618		    "is set to panic.", spa_name(spa));
1619
1620	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1621
1622	mutex_enter(&spa->spa_suspend_lock);
1623
1624	if (spa->spa_suspend_zio_root == NULL)
1625		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1626		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1627		    ZIO_FLAG_GODFATHER);
1628
1629	spa->spa_suspended = B_TRUE;
1630
1631	if (zio != NULL) {
1632		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1633		ASSERT(zio != spa->spa_suspend_zio_root);
1634		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1635		ASSERT(zio_unique_parent(zio) == NULL);
1636		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1637		zio_add_child(spa->spa_suspend_zio_root, zio);
1638	}
1639
1640	mutex_exit(&spa->spa_suspend_lock);
1641}
1642
1643int
1644zio_resume(spa_t *spa)
1645{
1646	zio_t *pio;
1647
1648	/*
1649	 * Reexecute all previously suspended i/o.
1650	 */
1651	mutex_enter(&spa->spa_suspend_lock);
1652	spa->spa_suspended = B_FALSE;
1653	cv_broadcast(&spa->spa_suspend_cv);
1654	pio = spa->spa_suspend_zio_root;
1655	spa->spa_suspend_zio_root = NULL;
1656	mutex_exit(&spa->spa_suspend_lock);
1657
1658	if (pio == NULL)
1659		return (0);
1660
1661	zio_reexecute(pio);
1662	return (zio_wait(pio));
1663}
1664
1665void
1666zio_resume_wait(spa_t *spa)
1667{
1668	mutex_enter(&spa->spa_suspend_lock);
1669	while (spa_suspended(spa))
1670		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1671	mutex_exit(&spa->spa_suspend_lock);
1672}
1673
1674/*
1675 * ==========================================================================
1676 * Gang blocks.
1677 *
1678 * A gang block is a collection of small blocks that looks to the DMU
1679 * like one large block.  When zio_dva_allocate() cannot find a block
1680 * of the requested size, due to either severe fragmentation or the pool
1681 * being nearly full, it calls zio_write_gang_block() to construct the
1682 * block from smaller fragments.
1683 *
1684 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1685 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1686 * an indirect block: it's an array of block pointers.  It consumes
1687 * only one sector and hence is allocatable regardless of fragmentation.
1688 * The gang header's bps point to its gang members, which hold the data.
1689 *
1690 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1691 * as the verifier to ensure uniqueness of the SHA256 checksum.
1692 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1693 * not the gang header.  This ensures that data block signatures (needed for
1694 * deduplication) are independent of how the block is physically stored.
1695 *
1696 * Gang blocks can be nested: a gang member may itself be a gang block.
1697 * Thus every gang block is a tree in which root and all interior nodes are
1698 * gang headers, and the leaves are normal blocks that contain user data.
1699 * The root of the gang tree is called the gang leader.
1700 *
1701 * To perform any operation (read, rewrite, free, claim) on a gang block,
1702 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1703 * in the io_gang_tree field of the original logical i/o by recursively
1704 * reading the gang leader and all gang headers below it.  This yields
1705 * an in-core tree containing the contents of every gang header and the
1706 * bps for every constituent of the gang block.
1707 *
1708 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1709 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1710 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1711 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1712 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1713 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1714 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1715 * of the gang header plus zio_checksum_compute() of the data to update the
1716 * gang header's blk_cksum as described above.
1717 *
1718 * The two-phase assemble/issue model solves the problem of partial failure --
1719 * what if you'd freed part of a gang block but then couldn't read the
1720 * gang header for another part?  Assembling the entire gang tree first
1721 * ensures that all the necessary gang header I/O has succeeded before
1722 * starting the actual work of free, claim, or write.  Once the gang tree
1723 * is assembled, free and claim are in-memory operations that cannot fail.
1724 *
1725 * In the event that a gang write fails, zio_dva_unallocate() walks the
1726 * gang tree to immediately free (i.e. insert back into the space map)
1727 * everything we've allocated.  This ensures that we don't get ENOSPC
1728 * errors during repeated suspend/resume cycles due to a flaky device.
1729 *
1730 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1731 * the gang tree, we won't modify the block, so we can safely defer the free
1732 * (knowing that the block is still intact).  If we *can* assemble the gang
1733 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1734 * each constituent bp and we can allocate a new block on the next sync pass.
1735 *
1736 * In all cases, the gang tree allows complete recovery from partial failure.
1737 * ==========================================================================
1738 */
1739
1740static zio_t *
1741zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1742{
1743	if (gn != NULL)
1744		return (pio);
1745
1746	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1747	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1748	    &pio->io_bookmark));
1749}
1750
1751zio_t *
1752zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1753{
1754	zio_t *zio;
1755
1756	if (gn != NULL) {
1757		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1758		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1759		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1760		/*
1761		 * As we rewrite each gang header, the pipeline will compute
1762		 * a new gang block header checksum for it; but no one will
1763		 * compute a new data checksum, so we do that here.  The one
1764		 * exception is the gang leader: the pipeline already computed
1765		 * its data checksum because that stage precedes gang assembly.
1766		 * (Presently, nothing actually uses interior data checksums;
1767		 * this is just good hygiene.)
1768		 */
1769		if (gn != pio->io_gang_leader->io_gang_tree) {
1770			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1771			    data, BP_GET_PSIZE(bp));
1772		}
1773		/*
1774		 * If we are here to damage data for testing purposes,
1775		 * leave the GBH alone so that we can detect the damage.
1776		 */
1777		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1778			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1779	} else {
1780		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1781		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1782		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1783	}
1784
1785	return (zio);
1786}
1787
1788/* ARGSUSED */
1789zio_t *
1790zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1791{
1792	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1793	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1794	    ZIO_GANG_CHILD_FLAGS(pio)));
1795}
1796
1797/* ARGSUSED */
1798zio_t *
1799zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1800{
1801	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1802	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1803}
1804
1805static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1806	NULL,
1807	zio_read_gang,
1808	zio_rewrite_gang,
1809	zio_free_gang,
1810	zio_claim_gang,
1811	NULL
1812};
1813
1814static void zio_gang_tree_assemble_done(zio_t *zio);
1815
1816static zio_gang_node_t *
1817zio_gang_node_alloc(zio_gang_node_t **gnpp)
1818{
1819	zio_gang_node_t *gn;
1820
1821	ASSERT(*gnpp == NULL);
1822
1823	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1824	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1825	*gnpp = gn;
1826
1827	return (gn);
1828}
1829
1830static void
1831zio_gang_node_free(zio_gang_node_t **gnpp)
1832{
1833	zio_gang_node_t *gn = *gnpp;
1834
1835	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1836		ASSERT(gn->gn_child[g] == NULL);
1837
1838	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1839	kmem_free(gn, sizeof (*gn));
1840	*gnpp = NULL;
1841}
1842
1843static void
1844zio_gang_tree_free(zio_gang_node_t **gnpp)
1845{
1846	zio_gang_node_t *gn = *gnpp;
1847
1848	if (gn == NULL)
1849		return;
1850
1851	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1852		zio_gang_tree_free(&gn->gn_child[g]);
1853
1854	zio_gang_node_free(gnpp);
1855}
1856
1857static void
1858zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1859{
1860	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1861
1862	ASSERT(gio->io_gang_leader == gio);
1863	ASSERT(BP_IS_GANG(bp));
1864
1865	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1866	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1867	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1868}
1869
1870static void
1871zio_gang_tree_assemble_done(zio_t *zio)
1872{
1873	zio_t *gio = zio->io_gang_leader;
1874	zio_gang_node_t *gn = zio->io_private;
1875	blkptr_t *bp = zio->io_bp;
1876
1877	ASSERT(gio == zio_unique_parent(zio));
1878	ASSERT(zio->io_child_count == 0);
1879
1880	if (zio->io_error)
1881		return;
1882
1883	if (BP_SHOULD_BYTESWAP(bp))
1884		byteswap_uint64_array(zio->io_data, zio->io_size);
1885
1886	ASSERT(zio->io_data == gn->gn_gbh);
1887	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1888	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1889
1890	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1891		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1892		if (!BP_IS_GANG(gbp))
1893			continue;
1894		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1895	}
1896}
1897
1898static void
1899zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1900{
1901	zio_t *gio = pio->io_gang_leader;
1902	zio_t *zio;
1903
1904	ASSERT(BP_IS_GANG(bp) == !!gn);
1905	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1906	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1907
1908	/*
1909	 * If you're a gang header, your data is in gn->gn_gbh.
1910	 * If you're a gang member, your data is in 'data' and gn == NULL.
1911	 */
1912	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1913
1914	if (gn != NULL) {
1915		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1916
1917		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1918			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1919			if (BP_IS_HOLE(gbp))
1920				continue;
1921			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1922			data = (char *)data + BP_GET_PSIZE(gbp);
1923		}
1924	}
1925
1926	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1927		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1928
1929	if (zio != pio)
1930		zio_nowait(zio);
1931}
1932
1933static int
1934zio_gang_assemble(zio_t *zio)
1935{
1936	blkptr_t *bp = zio->io_bp;
1937
1938	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1939	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1940
1941	zio->io_gang_leader = zio;
1942
1943	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1944
1945	return (ZIO_PIPELINE_CONTINUE);
1946}
1947
1948static int
1949zio_gang_issue(zio_t *zio)
1950{
1951	blkptr_t *bp = zio->io_bp;
1952
1953	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1954		return (ZIO_PIPELINE_STOP);
1955
1956	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1957	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1958
1959	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1960		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1961	else
1962		zio_gang_tree_free(&zio->io_gang_tree);
1963
1964	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1965
1966	return (ZIO_PIPELINE_CONTINUE);
1967}
1968
1969static void
1970zio_write_gang_member_ready(zio_t *zio)
1971{
1972	zio_t *pio = zio_unique_parent(zio);
1973	zio_t *gio = zio->io_gang_leader;
1974	dva_t *cdva = zio->io_bp->blk_dva;
1975	dva_t *pdva = pio->io_bp->blk_dva;
1976	uint64_t asize;
1977
1978	if (BP_IS_HOLE(zio->io_bp))
1979		return;
1980
1981	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1982
1983	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1984	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1985	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1986	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1987	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1988
1989	mutex_enter(&pio->io_lock);
1990	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1991		ASSERT(DVA_GET_GANG(&pdva[d]));
1992		asize = DVA_GET_ASIZE(&pdva[d]);
1993		asize += DVA_GET_ASIZE(&cdva[d]);
1994		DVA_SET_ASIZE(&pdva[d], asize);
1995	}
1996	mutex_exit(&pio->io_lock);
1997}
1998
1999static int
2000zio_write_gang_block(zio_t *pio)
2001{
2002	spa_t *spa = pio->io_spa;
2003	blkptr_t *bp = pio->io_bp;
2004	zio_t *gio = pio->io_gang_leader;
2005	zio_t *zio;
2006	zio_gang_node_t *gn, **gnpp;
2007	zio_gbh_phys_t *gbh;
2008	uint64_t txg = pio->io_txg;
2009	uint64_t resid = pio->io_size;
2010	uint64_t lsize;
2011	int copies = gio->io_prop.zp_copies;
2012	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2013	zio_prop_t zp;
2014	int error;
2015
2016	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2017	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2018	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2019	if (error) {
2020		pio->io_error = error;
2021		return (ZIO_PIPELINE_CONTINUE);
2022	}
2023
2024	if (pio == gio) {
2025		gnpp = &gio->io_gang_tree;
2026	} else {
2027		gnpp = pio->io_private;
2028		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2029	}
2030
2031	gn = zio_gang_node_alloc(gnpp);
2032	gbh = gn->gn_gbh;
2033	bzero(gbh, SPA_GANGBLOCKSIZE);
2034
2035	/*
2036	 * Create the gang header.
2037	 */
2038	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2039	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2040
2041	/*
2042	 * Create and nowait the gang children.
2043	 */
2044	for (int g = 0; resid != 0; resid -= lsize, g++) {
2045		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2046		    SPA_MINBLOCKSIZE);
2047		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2048
2049		zp.zp_checksum = gio->io_prop.zp_checksum;
2050		zp.zp_compress = ZIO_COMPRESS_OFF;
2051		zp.zp_type = DMU_OT_NONE;
2052		zp.zp_level = 0;
2053		zp.zp_copies = gio->io_prop.zp_copies;
2054		zp.zp_dedup = B_FALSE;
2055		zp.zp_dedup_verify = B_FALSE;
2056		zp.zp_nopwrite = B_FALSE;
2057
2058		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2059		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2060		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2061		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2062		    &pio->io_bookmark));
2063	}
2064
2065	/*
2066	 * Set pio's pipeline to just wait for zio to finish.
2067	 */
2068	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2069
2070	zio_nowait(zio);
2071
2072	return (ZIO_PIPELINE_CONTINUE);
2073}
2074
2075/*
2076 * The zio_nop_write stage in the pipeline determines if allocating
2077 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
2078 * such as SHA256, we can compare the checksums of the new data and the old
2079 * to determine if allocating a new block is required.  The nopwrite
2080 * feature can handle writes in either syncing or open context (i.e. zil
2081 * writes) and as a result is mutually exclusive with dedup.
2082 */
2083static int
2084zio_nop_write(zio_t *zio)
2085{
2086	blkptr_t *bp = zio->io_bp;
2087	blkptr_t *bp_orig = &zio->io_bp_orig;
2088	zio_prop_t *zp = &zio->io_prop;
2089
2090	ASSERT(BP_GET_LEVEL(bp) == 0);
2091	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2092	ASSERT(zp->zp_nopwrite);
2093	ASSERT(!zp->zp_dedup);
2094	ASSERT(zio->io_bp_override == NULL);
2095	ASSERT(IO_IS_ALLOCATING(zio));
2096
2097	/*
2098	 * Check to see if the original bp and the new bp have matching
2099	 * characteristics (i.e. same checksum, compression algorithms, etc).
2100	 * If they don't then just continue with the pipeline which will
2101	 * allocate a new bp.
2102	 */
2103	if (BP_IS_HOLE(bp_orig) ||
2104	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2105	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2106	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2107	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2108	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2109		return (ZIO_PIPELINE_CONTINUE);
2110
2111	/*
2112	 * If the checksums match then reset the pipeline so that we
2113	 * avoid allocating a new bp and issuing any I/O.
2114	 */
2115	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2116		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2117		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2118		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2119		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2120		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2121		    sizeof (uint64_t)) == 0);
2122
2123		*bp = *bp_orig;
2124		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2125		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2126	}
2127
2128	return (ZIO_PIPELINE_CONTINUE);
2129}
2130
2131/*
2132 * ==========================================================================
2133 * Dedup
2134 * ==========================================================================
2135 */
2136static void
2137zio_ddt_child_read_done(zio_t *zio)
2138{
2139	blkptr_t *bp = zio->io_bp;
2140	ddt_entry_t *dde = zio->io_private;
2141	ddt_phys_t *ddp;
2142	zio_t *pio = zio_unique_parent(zio);
2143
2144	mutex_enter(&pio->io_lock);
2145	ddp = ddt_phys_select(dde, bp);
2146	if (zio->io_error == 0)
2147		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2148	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2149		dde->dde_repair_data = zio->io_data;
2150	else
2151		zio_buf_free(zio->io_data, zio->io_size);
2152	mutex_exit(&pio->io_lock);
2153}
2154
2155static int
2156zio_ddt_read_start(zio_t *zio)
2157{
2158	blkptr_t *bp = zio->io_bp;
2159
2160	ASSERT(BP_GET_DEDUP(bp));
2161	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2162	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2163
2164	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2165		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2166		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2167		ddt_phys_t *ddp = dde->dde_phys;
2168		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2169		blkptr_t blk;
2170
2171		ASSERT(zio->io_vsd == NULL);
2172		zio->io_vsd = dde;
2173
2174		if (ddp_self == NULL)
2175			return (ZIO_PIPELINE_CONTINUE);
2176
2177		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2178			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2179				continue;
2180			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2181			    &blk);
2182			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2183			    zio_buf_alloc(zio->io_size), zio->io_size,
2184			    zio_ddt_child_read_done, dde, zio->io_priority,
2185			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2186			    &zio->io_bookmark));
2187		}
2188		return (ZIO_PIPELINE_CONTINUE);
2189	}
2190
2191	zio_nowait(zio_read(zio, zio->io_spa, bp,
2192	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2193	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2194
2195	return (ZIO_PIPELINE_CONTINUE);
2196}
2197
2198static int
2199zio_ddt_read_done(zio_t *zio)
2200{
2201	blkptr_t *bp = zio->io_bp;
2202
2203	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2204		return (ZIO_PIPELINE_STOP);
2205
2206	ASSERT(BP_GET_DEDUP(bp));
2207	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2208	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2209
2210	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2211		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2212		ddt_entry_t *dde = zio->io_vsd;
2213		if (ddt == NULL) {
2214			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2215			return (ZIO_PIPELINE_CONTINUE);
2216		}
2217		if (dde == NULL) {
2218			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2219			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2220			return (ZIO_PIPELINE_STOP);
2221		}
2222		if (dde->dde_repair_data != NULL) {
2223			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2224			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2225		}
2226		ddt_repair_done(ddt, dde);
2227		zio->io_vsd = NULL;
2228	}
2229
2230	ASSERT(zio->io_vsd == NULL);
2231
2232	return (ZIO_PIPELINE_CONTINUE);
2233}
2234
2235static boolean_t
2236zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2237{
2238	spa_t *spa = zio->io_spa;
2239
2240	/*
2241	 * Note: we compare the original data, not the transformed data,
2242	 * because when zio->io_bp is an override bp, we will not have
2243	 * pushed the I/O transforms.  That's an important optimization
2244	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2245	 */
2246	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2247		zio_t *lio = dde->dde_lead_zio[p];
2248
2249		if (lio != NULL) {
2250			return (lio->io_orig_size != zio->io_orig_size ||
2251			    bcmp(zio->io_orig_data, lio->io_orig_data,
2252			    zio->io_orig_size) != 0);
2253		}
2254	}
2255
2256	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2257		ddt_phys_t *ddp = &dde->dde_phys[p];
2258
2259		if (ddp->ddp_phys_birth != 0) {
2260			arc_buf_t *abuf = NULL;
2261			arc_flags_t aflags = ARC_FLAG_WAIT;
2262			blkptr_t blk = *zio->io_bp;
2263			int error;
2264
2265			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2266
2267			ddt_exit(ddt);
2268
2269			error = arc_read(NULL, spa, &blk,
2270			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2271			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2272			    &aflags, &zio->io_bookmark);
2273
2274			if (error == 0) {
2275				if (arc_buf_size(abuf) != zio->io_orig_size ||
2276				    bcmp(abuf->b_data, zio->io_orig_data,
2277				    zio->io_orig_size) != 0)
2278					error = SET_ERROR(EEXIST);
2279				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2280			}
2281
2282			ddt_enter(ddt);
2283			return (error != 0);
2284		}
2285	}
2286
2287	return (B_FALSE);
2288}
2289
2290static void
2291zio_ddt_child_write_ready(zio_t *zio)
2292{
2293	int p = zio->io_prop.zp_copies;
2294	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2295	ddt_entry_t *dde = zio->io_private;
2296	ddt_phys_t *ddp = &dde->dde_phys[p];
2297	zio_t *pio;
2298
2299	if (zio->io_error)
2300		return;
2301
2302	ddt_enter(ddt);
2303
2304	ASSERT(dde->dde_lead_zio[p] == zio);
2305
2306	ddt_phys_fill(ddp, zio->io_bp);
2307
2308	while ((pio = zio_walk_parents(zio)) != NULL)
2309		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2310
2311	ddt_exit(ddt);
2312}
2313
2314static void
2315zio_ddt_child_write_done(zio_t *zio)
2316{
2317	int p = zio->io_prop.zp_copies;
2318	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2319	ddt_entry_t *dde = zio->io_private;
2320	ddt_phys_t *ddp = &dde->dde_phys[p];
2321
2322	ddt_enter(ddt);
2323
2324	ASSERT(ddp->ddp_refcnt == 0);
2325	ASSERT(dde->dde_lead_zio[p] == zio);
2326	dde->dde_lead_zio[p] = NULL;
2327
2328	if (zio->io_error == 0) {
2329		while (zio_walk_parents(zio) != NULL)
2330			ddt_phys_addref(ddp);
2331	} else {
2332		ddt_phys_clear(ddp);
2333	}
2334
2335	ddt_exit(ddt);
2336}
2337
2338static void
2339zio_ddt_ditto_write_done(zio_t *zio)
2340{
2341	int p = DDT_PHYS_DITTO;
2342	zio_prop_t *zp = &zio->io_prop;
2343	blkptr_t *bp = zio->io_bp;
2344	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2345	ddt_entry_t *dde = zio->io_private;
2346	ddt_phys_t *ddp = &dde->dde_phys[p];
2347	ddt_key_t *ddk = &dde->dde_key;
2348
2349	ddt_enter(ddt);
2350
2351	ASSERT(ddp->ddp_refcnt == 0);
2352	ASSERT(dde->dde_lead_zio[p] == zio);
2353	dde->dde_lead_zio[p] = NULL;
2354
2355	if (zio->io_error == 0) {
2356		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2357		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2358		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2359		if (ddp->ddp_phys_birth != 0)
2360			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2361		ddt_phys_fill(ddp, bp);
2362	}
2363
2364	ddt_exit(ddt);
2365}
2366
2367static int
2368zio_ddt_write(zio_t *zio)
2369{
2370	spa_t *spa = zio->io_spa;
2371	blkptr_t *bp = zio->io_bp;
2372	uint64_t txg = zio->io_txg;
2373	zio_prop_t *zp = &zio->io_prop;
2374	int p = zp->zp_copies;
2375	int ditto_copies;
2376	zio_t *cio = NULL;
2377	zio_t *dio = NULL;
2378	ddt_t *ddt = ddt_select(spa, bp);
2379	ddt_entry_t *dde;
2380	ddt_phys_t *ddp;
2381
2382	ASSERT(BP_GET_DEDUP(bp));
2383	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2384	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2385
2386	ddt_enter(ddt);
2387	dde = ddt_lookup(ddt, bp, B_TRUE);
2388	ddp = &dde->dde_phys[p];
2389
2390	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2391		/*
2392		 * If we're using a weak checksum, upgrade to a strong checksum
2393		 * and try again.  If we're already using a strong checksum,
2394		 * we can't resolve it, so just convert to an ordinary write.
2395		 * (And automatically e-mail a paper to Nature?)
2396		 */
2397		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2398			zp->zp_checksum = spa_dedup_checksum(spa);
2399			zio_pop_transforms(zio);
2400			zio->io_stage = ZIO_STAGE_OPEN;
2401			BP_ZERO(bp);
2402		} else {
2403			zp->zp_dedup = B_FALSE;
2404		}
2405		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2406		ddt_exit(ddt);
2407		return (ZIO_PIPELINE_CONTINUE);
2408	}
2409
2410	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2411	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2412
2413	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2414	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2415		zio_prop_t czp = *zp;
2416
2417		czp.zp_copies = ditto_copies;
2418
2419		/*
2420		 * If we arrived here with an override bp, we won't have run
2421		 * the transform stack, so we won't have the data we need to
2422		 * generate a child i/o.  So, toss the override bp and restart.
2423		 * This is safe, because using the override bp is just an
2424		 * optimization; and it's rare, so the cost doesn't matter.
2425		 */
2426		if (zio->io_bp_override) {
2427			zio_pop_transforms(zio);
2428			zio->io_stage = ZIO_STAGE_OPEN;
2429			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2430			zio->io_bp_override = NULL;
2431			BP_ZERO(bp);
2432			ddt_exit(ddt);
2433			return (ZIO_PIPELINE_CONTINUE);
2434		}
2435
2436		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2437		    zio->io_orig_size, &czp, NULL, NULL,
2438		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2439		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2440
2441		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2442		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2443	}
2444
2445	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2446		if (ddp->ddp_phys_birth != 0)
2447			ddt_bp_fill(ddp, bp, txg);
2448		if (dde->dde_lead_zio[p] != NULL)
2449			zio_add_child(zio, dde->dde_lead_zio[p]);
2450		else
2451			ddt_phys_addref(ddp);
2452	} else if (zio->io_bp_override) {
2453		ASSERT(bp->blk_birth == txg);
2454		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2455		ddt_phys_fill(ddp, bp);
2456		ddt_phys_addref(ddp);
2457	} else {
2458		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2459		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2460		    zio_ddt_child_write_done, dde, zio->io_priority,
2461		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2462
2463		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2464		dde->dde_lead_zio[p] = cio;
2465	}
2466
2467	ddt_exit(ddt);
2468
2469	if (cio)
2470		zio_nowait(cio);
2471	if (dio)
2472		zio_nowait(dio);
2473
2474	return (ZIO_PIPELINE_CONTINUE);
2475}
2476
2477ddt_entry_t *freedde; /* for debugging */
2478
2479static int
2480zio_ddt_free(zio_t *zio)
2481{
2482	spa_t *spa = zio->io_spa;
2483	blkptr_t *bp = zio->io_bp;
2484	ddt_t *ddt = ddt_select(spa, bp);
2485	ddt_entry_t *dde;
2486	ddt_phys_t *ddp;
2487
2488	ASSERT(BP_GET_DEDUP(bp));
2489	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2490
2491	ddt_enter(ddt);
2492	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2493	ddp = ddt_phys_select(dde, bp);
2494	ddt_phys_decref(ddp);
2495	ddt_exit(ddt);
2496
2497	return (ZIO_PIPELINE_CONTINUE);
2498}
2499
2500/*
2501 * ==========================================================================
2502 * Allocate and free blocks
2503 * ==========================================================================
2504 */
2505static int
2506zio_dva_allocate(zio_t *zio)
2507{
2508	spa_t *spa = zio->io_spa;
2509	metaslab_class_t *mc = spa_normal_class(spa);
2510	blkptr_t *bp = zio->io_bp;
2511	int error;
2512	int flags = 0;
2513
2514	if (zio->io_gang_leader == NULL) {
2515		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2516		zio->io_gang_leader = zio;
2517	}
2518
2519	ASSERT(BP_IS_HOLE(bp));
2520	ASSERT0(BP_GET_NDVAS(bp));
2521	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2522	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2523	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2524
2525	/*
2526	 * The dump device does not support gang blocks so allocation on
2527	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2528	 * the "fast" gang feature.
2529	 */
2530	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2531	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2532	    METASLAB_GANG_CHILD : 0;
2533	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2534	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2535
2536	if (error) {
2537		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2538		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2539		    error);
2540		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2541			return (zio_write_gang_block(zio));
2542		zio->io_error = error;
2543	}
2544
2545	return (ZIO_PIPELINE_CONTINUE);
2546}
2547
2548static int
2549zio_dva_free(zio_t *zio)
2550{
2551	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2552
2553	return (ZIO_PIPELINE_CONTINUE);
2554}
2555
2556static int
2557zio_dva_claim(zio_t *zio)
2558{
2559	int error;
2560
2561	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2562	if (error)
2563		zio->io_error = error;
2564
2565	return (ZIO_PIPELINE_CONTINUE);
2566}
2567
2568/*
2569 * Undo an allocation.  This is used by zio_done() when an I/O fails
2570 * and we want to give back the block we just allocated.
2571 * This handles both normal blocks and gang blocks.
2572 */
2573static void
2574zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2575{
2576	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2577	ASSERT(zio->io_bp_override == NULL);
2578
2579	if (!BP_IS_HOLE(bp))
2580		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2581
2582	if (gn != NULL) {
2583		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2584			zio_dva_unallocate(zio, gn->gn_child[g],
2585			    &gn->gn_gbh->zg_blkptr[g]);
2586		}
2587	}
2588}
2589
2590/*
2591 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2592 */
2593int
2594zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2595    uint64_t size, boolean_t use_slog)
2596{
2597	int error = 1;
2598
2599	ASSERT(txg > spa_syncing_txg(spa));
2600
2601	/*
2602	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2603	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2604	 * when allocating them.
2605	 */
2606	if (use_slog) {
2607		error = metaslab_alloc(spa, spa_log_class(spa), size,
2608		    new_bp, 1, txg, old_bp,
2609		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2610	}
2611
2612	if (error) {
2613		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2614		    new_bp, 1, txg, old_bp,
2615		    METASLAB_HINTBP_AVOID);
2616	}
2617
2618	if (error == 0) {
2619		BP_SET_LSIZE(new_bp, size);
2620		BP_SET_PSIZE(new_bp, size);
2621		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2622		BP_SET_CHECKSUM(new_bp,
2623		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2624		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2625		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2626		BP_SET_LEVEL(new_bp, 0);
2627		BP_SET_DEDUP(new_bp, 0);
2628		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2629	}
2630
2631	return (error);
2632}
2633
2634/*
2635 * Free an intent log block.
2636 */
2637void
2638zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2639{
2640	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2641	ASSERT(!BP_IS_GANG(bp));
2642
2643	zio_free(spa, txg, bp);
2644}
2645
2646/*
2647 * ==========================================================================
2648 * Read, write and delete to physical devices
2649 * ==========================================================================
2650 */
2651static int
2652zio_vdev_io_start(zio_t *zio)
2653{
2654	vdev_t *vd = zio->io_vd;
2655	uint64_t align;
2656	spa_t *spa = zio->io_spa;
2657	int ret;
2658
2659	ASSERT(zio->io_error == 0);
2660	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2661
2662	if (vd == NULL) {
2663		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2664			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2665
2666		/*
2667		 * The mirror_ops handle multiple DVAs in a single BP.
2668		 */
2669		return (vdev_mirror_ops.vdev_op_io_start(zio));
2670	}
2671
2672	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2673	    zio->io_priority == ZIO_PRIORITY_NOW) {
2674		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2675		return (ZIO_PIPELINE_CONTINUE);
2676	}
2677
2678	/*
2679	 * We keep track of time-sensitive I/Os so that the scan thread
2680	 * can quickly react to certain workloads.  In particular, we care
2681	 * about non-scrubbing, top-level reads and writes with the following
2682	 * characteristics:
2683	 * 	- synchronous writes of user data to non-slog devices
2684	 *	- any reads of user data
2685	 * When these conditions are met, adjust the timestamp of spa_last_io
2686	 * which allows the scan thread to adjust its workload accordingly.
2687	 */
2688	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2689	    vd == vd->vdev_top && !vd->vdev_islog &&
2690	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2691	    zio->io_txg != spa_syncing_txg(spa)) {
2692		uint64_t old = spa->spa_last_io;
2693		uint64_t new = ddi_get_lbolt64();
2694		if (old != new)
2695			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2696	}
2697
2698	align = 1ULL << vd->vdev_top->vdev_ashift;
2699
2700	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2701	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2702	    P2PHASE(zio->io_size, align) != 0) {
2703		/* Transform logical writes to be a full physical block size. */
2704		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2705		char *abuf = NULL;
2706		if (zio->io_type == ZIO_TYPE_READ ||
2707		    zio->io_type == ZIO_TYPE_WRITE)
2708			abuf = zio_buf_alloc(asize);
2709		ASSERT(vd == vd->vdev_top);
2710		if (zio->io_type == ZIO_TYPE_WRITE) {
2711			bcopy(zio->io_data, abuf, zio->io_size);
2712			bzero(abuf + zio->io_size, asize - zio->io_size);
2713		}
2714		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2715		    zio_subblock);
2716	}
2717
2718	/*
2719	 * If this is not a physical io, make sure that it is properly aligned
2720	 * before proceeding.
2721	 */
2722	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2723		ASSERT0(P2PHASE(zio->io_offset, align));
2724		ASSERT0(P2PHASE(zio->io_size, align));
2725	} else {
2726		/*
2727		 * For physical writes, we allow 512b aligned writes and assume
2728		 * the device will perform a read-modify-write as necessary.
2729		 */
2730		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2731		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2732	}
2733
2734	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2735
2736	/*
2737	 * If this is a repair I/O, and there's no self-healing involved --
2738	 * that is, we're just resilvering what we expect to resilver --
2739	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2740	 * This prevents spurious resilvering with nested replication.
2741	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2742	 * A is out of date, we'll read from C+D, then use the data to
2743	 * resilver A+B -- but we don't actually want to resilver B, just A.
2744	 * The top-level mirror has no way to know this, so instead we just
2745	 * discard unnecessary repairs as we work our way down the vdev tree.
2746	 * The same logic applies to any form of nested replication:
2747	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2748	 */
2749	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2750	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2751	    zio->io_txg != 0 &&	/* not a delegated i/o */
2752	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2753		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2754		zio_vdev_io_bypass(zio);
2755		return (ZIO_PIPELINE_CONTINUE);
2756	}
2757
2758	if (vd->vdev_ops->vdev_op_leaf) {
2759		switch (zio->io_type) {
2760		case ZIO_TYPE_READ:
2761			if (vdev_cache_read(zio))
2762				return (ZIO_PIPELINE_CONTINUE);
2763			/* FALLTHROUGH */
2764		case ZIO_TYPE_WRITE:
2765		case ZIO_TYPE_FREE:
2766			if ((zio = vdev_queue_io(zio)) == NULL)
2767				return (ZIO_PIPELINE_STOP);
2768
2769			if (!vdev_accessible(vd, zio)) {
2770				zio->io_error = SET_ERROR(ENXIO);
2771				zio_interrupt(zio);
2772				return (ZIO_PIPELINE_STOP);
2773			}
2774			break;
2775		}
2776		/*
2777		 * Note that we ignore repair writes for TRIM because they can
2778		 * conflict with normal writes. This isn't an issue because, by
2779		 * definition, we only repair blocks that aren't freed.
2780		 */
2781		if (zio->io_type == ZIO_TYPE_WRITE &&
2782		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2783		    !trim_map_write_start(zio))
2784			return (ZIO_PIPELINE_STOP);
2785	}
2786
2787	ret = vd->vdev_ops->vdev_op_io_start(zio);
2788	ASSERT(ret == ZIO_PIPELINE_STOP);
2789
2790	return (ret);
2791}
2792
2793static int
2794zio_vdev_io_done(zio_t *zio)
2795{
2796	vdev_t *vd = zio->io_vd;
2797	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2798	boolean_t unexpected_error = B_FALSE;
2799
2800	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2801		return (ZIO_PIPELINE_STOP);
2802
2803	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2804	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2805
2806	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2807	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2808	    zio->io_type == ZIO_TYPE_FREE)) {
2809
2810		if (zio->io_type == ZIO_TYPE_WRITE &&
2811		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2812			trim_map_write_done(zio);
2813
2814		vdev_queue_io_done(zio);
2815
2816		if (zio->io_type == ZIO_TYPE_WRITE)
2817			vdev_cache_write(zio);
2818
2819		if (zio_injection_enabled && zio->io_error == 0)
2820			zio->io_error = zio_handle_device_injection(vd,
2821			    zio, EIO);
2822
2823		if (zio_injection_enabled && zio->io_error == 0)
2824			zio->io_error = zio_handle_label_injection(zio, EIO);
2825
2826		if (zio->io_error) {
2827			if (zio->io_error == ENOTSUP &&
2828			    zio->io_type == ZIO_TYPE_FREE) {
2829				/* Not all devices support TRIM. */
2830			} else if (!vdev_accessible(vd, zio)) {
2831				zio->io_error = SET_ERROR(ENXIO);
2832			} else {
2833				unexpected_error = B_TRUE;
2834			}
2835		}
2836	}
2837
2838	ops->vdev_op_io_done(zio);
2839
2840	if (unexpected_error)
2841		VERIFY(vdev_probe(vd, zio) == NULL);
2842
2843	return (ZIO_PIPELINE_CONTINUE);
2844}
2845
2846/*
2847 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2848 * disk, and use that to finish the checksum ereport later.
2849 */
2850static void
2851zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2852    const void *good_buf)
2853{
2854	/* no processing needed */
2855	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2856}
2857
2858/*ARGSUSED*/
2859void
2860zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2861{
2862	void *buf = zio_buf_alloc(zio->io_size);
2863
2864	bcopy(zio->io_data, buf, zio->io_size);
2865
2866	zcr->zcr_cbinfo = zio->io_size;
2867	zcr->zcr_cbdata = buf;
2868	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2869	zcr->zcr_free = zio_buf_free;
2870}
2871
2872static int
2873zio_vdev_io_assess(zio_t *zio)
2874{
2875	vdev_t *vd = zio->io_vd;
2876
2877	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2878		return (ZIO_PIPELINE_STOP);
2879
2880	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2881		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2882
2883	if (zio->io_vsd != NULL) {
2884		zio->io_vsd_ops->vsd_free(zio);
2885		zio->io_vsd = NULL;
2886	}
2887
2888	if (zio_injection_enabled && zio->io_error == 0)
2889		zio->io_error = zio_handle_fault_injection(zio, EIO);
2890
2891	if (zio->io_type == ZIO_TYPE_FREE &&
2892	    zio->io_priority != ZIO_PRIORITY_NOW) {
2893		switch (zio->io_error) {
2894		case 0:
2895			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2896			ZIO_TRIM_STAT_BUMP(success);
2897			break;
2898		case EOPNOTSUPP:
2899			ZIO_TRIM_STAT_BUMP(unsupported);
2900			break;
2901		default:
2902			ZIO_TRIM_STAT_BUMP(failed);
2903			break;
2904		}
2905	}
2906
2907	/*
2908	 * If the I/O failed, determine whether we should attempt to retry it.
2909	 *
2910	 * On retry, we cut in line in the issue queue, since we don't want
2911	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2912	 */
2913	if (zio->io_error && vd == NULL &&
2914	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2915		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2916		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2917		zio->io_error = 0;
2918		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2919		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2920		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2921		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2922		    zio_requeue_io_start_cut_in_line);
2923		return (ZIO_PIPELINE_STOP);
2924	}
2925
2926	/*
2927	 * If we got an error on a leaf device, convert it to ENXIO
2928	 * if the device is not accessible at all.
2929	 */
2930	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2931	    !vdev_accessible(vd, zio))
2932		zio->io_error = SET_ERROR(ENXIO);
2933
2934	/*
2935	 * If we can't write to an interior vdev (mirror or RAID-Z),
2936	 * set vdev_cant_write so that we stop trying to allocate from it.
2937	 */
2938	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2939	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2940		vd->vdev_cant_write = B_TRUE;
2941	}
2942
2943	if (zio->io_error)
2944		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2945
2946	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2947	    zio->io_physdone != NULL) {
2948		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2949		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2950		zio->io_physdone(zio->io_logical);
2951	}
2952
2953	return (ZIO_PIPELINE_CONTINUE);
2954}
2955
2956void
2957zio_vdev_io_reissue(zio_t *zio)
2958{
2959	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2960	ASSERT(zio->io_error == 0);
2961
2962	zio->io_stage >>= 1;
2963}
2964
2965void
2966zio_vdev_io_redone(zio_t *zio)
2967{
2968	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2969
2970	zio->io_stage >>= 1;
2971}
2972
2973void
2974zio_vdev_io_bypass(zio_t *zio)
2975{
2976	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2977	ASSERT(zio->io_error == 0);
2978
2979	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2980	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2981}
2982
2983/*
2984 * ==========================================================================
2985 * Generate and verify checksums
2986 * ==========================================================================
2987 */
2988static int
2989zio_checksum_generate(zio_t *zio)
2990{
2991	blkptr_t *bp = zio->io_bp;
2992	enum zio_checksum checksum;
2993
2994	if (bp == NULL) {
2995		/*
2996		 * This is zio_write_phys().
2997		 * We're either generating a label checksum, or none at all.
2998		 */
2999		checksum = zio->io_prop.zp_checksum;
3000
3001		if (checksum == ZIO_CHECKSUM_OFF)
3002			return (ZIO_PIPELINE_CONTINUE);
3003
3004		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3005	} else {
3006		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3007			ASSERT(!IO_IS_ALLOCATING(zio));
3008			checksum = ZIO_CHECKSUM_GANG_HEADER;
3009		} else {
3010			checksum = BP_GET_CHECKSUM(bp);
3011		}
3012	}
3013
3014	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3015
3016	return (ZIO_PIPELINE_CONTINUE);
3017}
3018
3019static int
3020zio_checksum_verify(zio_t *zio)
3021{
3022	zio_bad_cksum_t info;
3023	blkptr_t *bp = zio->io_bp;
3024	int error;
3025
3026	ASSERT(zio->io_vd != NULL);
3027
3028	if (bp == NULL) {
3029		/*
3030		 * This is zio_read_phys().
3031		 * We're either verifying a label checksum, or nothing at all.
3032		 */
3033		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3034			return (ZIO_PIPELINE_CONTINUE);
3035
3036		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3037	}
3038
3039	if ((error = zio_checksum_error(zio, &info)) != 0) {
3040		zio->io_error = error;
3041		if (error == ECKSUM &&
3042		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3043			zfs_ereport_start_checksum(zio->io_spa,
3044			    zio->io_vd, zio, zio->io_offset,
3045			    zio->io_size, NULL, &info);
3046		}
3047	}
3048
3049	return (ZIO_PIPELINE_CONTINUE);
3050}
3051
3052/*
3053 * Called by RAID-Z to ensure we don't compute the checksum twice.
3054 */
3055void
3056zio_checksum_verified(zio_t *zio)
3057{
3058	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3059}
3060
3061/*
3062 * ==========================================================================
3063 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3064 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3065 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3066 * indicate errors that are specific to one I/O, and most likely permanent.
3067 * Any other error is presumed to be worse because we weren't expecting it.
3068 * ==========================================================================
3069 */
3070int
3071zio_worst_error(int e1, int e2)
3072{
3073	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3074	int r1, r2;
3075
3076	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3077		if (e1 == zio_error_rank[r1])
3078			break;
3079
3080	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3081		if (e2 == zio_error_rank[r2])
3082			break;
3083
3084	return (r1 > r2 ? e1 : e2);
3085}
3086
3087/*
3088 * ==========================================================================
3089 * I/O completion
3090 * ==========================================================================
3091 */
3092static int
3093zio_ready(zio_t *zio)
3094{
3095	blkptr_t *bp = zio->io_bp;
3096	zio_t *pio, *pio_next;
3097
3098	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3099	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3100		return (ZIO_PIPELINE_STOP);
3101
3102	if (zio->io_ready) {
3103		ASSERT(IO_IS_ALLOCATING(zio));
3104		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3105		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3106		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3107
3108		zio->io_ready(zio);
3109	}
3110
3111	if (bp != NULL && bp != &zio->io_bp_copy)
3112		zio->io_bp_copy = *bp;
3113
3114	if (zio->io_error)
3115		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3116
3117	mutex_enter(&zio->io_lock);
3118	zio->io_state[ZIO_WAIT_READY] = 1;
3119	pio = zio_walk_parents(zio);
3120	mutex_exit(&zio->io_lock);
3121
3122	/*
3123	 * As we notify zio's parents, new parents could be added.
3124	 * New parents go to the head of zio's io_parent_list, however,
3125	 * so we will (correctly) not notify them.  The remainder of zio's
3126	 * io_parent_list, from 'pio_next' onward, cannot change because
3127	 * all parents must wait for us to be done before they can be done.
3128	 */
3129	for (; pio != NULL; pio = pio_next) {
3130		pio_next = zio_walk_parents(zio);
3131		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3132	}
3133
3134	if (zio->io_flags & ZIO_FLAG_NODATA) {
3135		if (BP_IS_GANG(bp)) {
3136			zio->io_flags &= ~ZIO_FLAG_NODATA;
3137		} else {
3138			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3139			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3140		}
3141	}
3142
3143	if (zio_injection_enabled &&
3144	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3145		zio_handle_ignored_writes(zio);
3146
3147	return (ZIO_PIPELINE_CONTINUE);
3148}
3149
3150static int
3151zio_done(zio_t *zio)
3152{
3153	spa_t *spa = zio->io_spa;
3154	zio_t *lio = zio->io_logical;
3155	blkptr_t *bp = zio->io_bp;
3156	vdev_t *vd = zio->io_vd;
3157	uint64_t psize = zio->io_size;
3158	zio_t *pio, *pio_next;
3159
3160	/*
3161	 * If our children haven't all completed,
3162	 * wait for them and then repeat this pipeline stage.
3163	 */
3164	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3165	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3166	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3167	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3168		return (ZIO_PIPELINE_STOP);
3169
3170	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3171		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3172			ASSERT(zio->io_children[c][w] == 0);
3173
3174	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3175		ASSERT(bp->blk_pad[0] == 0);
3176		ASSERT(bp->blk_pad[1] == 0);
3177		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3178		    (bp == zio_unique_parent(zio)->io_bp));
3179		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3180		    zio->io_bp_override == NULL &&
3181		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3182			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3183			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3184			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3185			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3186		}
3187		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3188			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3189	}
3190
3191	/*
3192	 * If there were child vdev/gang/ddt errors, they apply to us now.
3193	 */
3194	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3195	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3196	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3197
3198	/*
3199	 * If the I/O on the transformed data was successful, generate any
3200	 * checksum reports now while we still have the transformed data.
3201	 */
3202	if (zio->io_error == 0) {
3203		while (zio->io_cksum_report != NULL) {
3204			zio_cksum_report_t *zcr = zio->io_cksum_report;
3205			uint64_t align = zcr->zcr_align;
3206			uint64_t asize = P2ROUNDUP(psize, align);
3207			char *abuf = zio->io_data;
3208
3209			if (asize != psize) {
3210				abuf = zio_buf_alloc(asize);
3211				bcopy(zio->io_data, abuf, psize);
3212				bzero(abuf + psize, asize - psize);
3213			}
3214
3215			zio->io_cksum_report = zcr->zcr_next;
3216			zcr->zcr_next = NULL;
3217			zcr->zcr_finish(zcr, abuf);
3218			zfs_ereport_free_checksum(zcr);
3219
3220			if (asize != psize)
3221				zio_buf_free(abuf, asize);
3222		}
3223	}
3224
3225	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3226
3227	vdev_stat_update(zio, psize);
3228
3229	if (zio->io_error) {
3230		/*
3231		 * If this I/O is attached to a particular vdev,
3232		 * generate an error message describing the I/O failure
3233		 * at the block level.  We ignore these errors if the
3234		 * device is currently unavailable.
3235		 */
3236		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3237			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3238
3239		if ((zio->io_error == EIO || !(zio->io_flags &
3240		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3241		    zio == lio) {
3242			/*
3243			 * For logical I/O requests, tell the SPA to log the
3244			 * error and generate a logical data ereport.
3245			 */
3246			spa_log_error(spa, zio);
3247			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3248			    0, 0);
3249		}
3250	}
3251
3252	if (zio->io_error && zio == lio) {
3253		/*
3254		 * Determine whether zio should be reexecuted.  This will
3255		 * propagate all the way to the root via zio_notify_parent().
3256		 */
3257		ASSERT(vd == NULL && bp != NULL);
3258		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3259
3260		if (IO_IS_ALLOCATING(zio) &&
3261		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3262			if (zio->io_error != ENOSPC)
3263				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3264			else
3265				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3266		}
3267
3268		if ((zio->io_type == ZIO_TYPE_READ ||
3269		    zio->io_type == ZIO_TYPE_FREE) &&
3270		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3271		    zio->io_error == ENXIO &&
3272		    spa_load_state(spa) == SPA_LOAD_NONE &&
3273		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3274			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3275
3276		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3277			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3278
3279		/*
3280		 * Here is a possibly good place to attempt to do
3281		 * either combinatorial reconstruction or error correction
3282		 * based on checksums.  It also might be a good place
3283		 * to send out preliminary ereports before we suspend
3284		 * processing.
3285		 */
3286	}
3287
3288	/*
3289	 * If there were logical child errors, they apply to us now.
3290	 * We defer this until now to avoid conflating logical child
3291	 * errors with errors that happened to the zio itself when
3292	 * updating vdev stats and reporting FMA events above.
3293	 */
3294	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3295
3296	if ((zio->io_error || zio->io_reexecute) &&
3297	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3298	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3299		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3300
3301	zio_gang_tree_free(&zio->io_gang_tree);
3302
3303	/*
3304	 * Godfather I/Os should never suspend.
3305	 */
3306	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3307	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3308		zio->io_reexecute = 0;
3309
3310	if (zio->io_reexecute) {
3311		/*
3312		 * This is a logical I/O that wants to reexecute.
3313		 *
3314		 * Reexecute is top-down.  When an i/o fails, if it's not
3315		 * the root, it simply notifies its parent and sticks around.
3316		 * The parent, seeing that it still has children in zio_done(),
3317		 * does the same.  This percolates all the way up to the root.
3318		 * The root i/o will reexecute or suspend the entire tree.
3319		 *
3320		 * This approach ensures that zio_reexecute() honors
3321		 * all the original i/o dependency relationships, e.g.
3322		 * parents not executing until children are ready.
3323		 */
3324		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3325
3326		zio->io_gang_leader = NULL;
3327
3328		mutex_enter(&zio->io_lock);
3329		zio->io_state[ZIO_WAIT_DONE] = 1;
3330		mutex_exit(&zio->io_lock);
3331
3332		/*
3333		 * "The Godfather" I/O monitors its children but is
3334		 * not a true parent to them. It will track them through
3335		 * the pipeline but severs its ties whenever they get into
3336		 * trouble (e.g. suspended). This allows "The Godfather"
3337		 * I/O to return status without blocking.
3338		 */
3339		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3340			zio_link_t *zl = zio->io_walk_link;
3341			pio_next = zio_walk_parents(zio);
3342
3343			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3344			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3345				zio_remove_child(pio, zio, zl);
3346				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3347			}
3348		}
3349
3350		if ((pio = zio_unique_parent(zio)) != NULL) {
3351			/*
3352			 * We're not a root i/o, so there's nothing to do
3353			 * but notify our parent.  Don't propagate errors
3354			 * upward since we haven't permanently failed yet.
3355			 */
3356			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3357			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3358			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3359		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3360			/*
3361			 * We'd fail again if we reexecuted now, so suspend
3362			 * until conditions improve (e.g. device comes online).
3363			 */
3364			zio_suspend(spa, zio);
3365		} else {
3366			/*
3367			 * Reexecution is potentially a huge amount of work.
3368			 * Hand it off to the otherwise-unused claim taskq.
3369			 */
3370#if defined(illumos) || !defined(_KERNEL)
3371			ASSERT(zio->io_tqent.tqent_next == NULL);
3372#else
3373			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3374#endif
3375			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3376			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3377			    0, &zio->io_tqent);
3378		}
3379		return (ZIO_PIPELINE_STOP);
3380	}
3381
3382	ASSERT(zio->io_child_count == 0);
3383	ASSERT(zio->io_reexecute == 0);
3384	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3385
3386	/*
3387	 * Report any checksum errors, since the I/O is complete.
3388	 */
3389	while (zio->io_cksum_report != NULL) {
3390		zio_cksum_report_t *zcr = zio->io_cksum_report;
3391		zio->io_cksum_report = zcr->zcr_next;
3392		zcr->zcr_next = NULL;
3393		zcr->zcr_finish(zcr, NULL);
3394		zfs_ereport_free_checksum(zcr);
3395	}
3396
3397	/*
3398	 * It is the responsibility of the done callback to ensure that this
3399	 * particular zio is no longer discoverable for adoption, and as
3400	 * such, cannot acquire any new parents.
3401	 */
3402	if (zio->io_done)
3403		zio->io_done(zio);
3404
3405	mutex_enter(&zio->io_lock);
3406	zio->io_state[ZIO_WAIT_DONE] = 1;
3407	mutex_exit(&zio->io_lock);
3408
3409	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3410		zio_link_t *zl = zio->io_walk_link;
3411		pio_next = zio_walk_parents(zio);
3412		zio_remove_child(pio, zio, zl);
3413		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3414	}
3415
3416	if (zio->io_waiter != NULL) {
3417		mutex_enter(&zio->io_lock);
3418		zio->io_executor = NULL;
3419		cv_broadcast(&zio->io_cv);
3420		mutex_exit(&zio->io_lock);
3421	} else {
3422		zio_destroy(zio);
3423	}
3424
3425	return (ZIO_PIPELINE_STOP);
3426}
3427
3428/*
3429 * ==========================================================================
3430 * I/O pipeline definition
3431 * ==========================================================================
3432 */
3433static zio_pipe_stage_t *zio_pipeline[] = {
3434	NULL,
3435	zio_read_bp_init,
3436	zio_free_bp_init,
3437	zio_issue_async,
3438	zio_write_bp_init,
3439	zio_checksum_generate,
3440	zio_nop_write,
3441	zio_ddt_read_start,
3442	zio_ddt_read_done,
3443	zio_ddt_write,
3444	zio_ddt_free,
3445	zio_gang_assemble,
3446	zio_gang_issue,
3447	zio_dva_allocate,
3448	zio_dva_free,
3449	zio_dva_claim,
3450	zio_ready,
3451	zio_vdev_io_start,
3452	zio_vdev_io_done,
3453	zio_vdev_io_assess,
3454	zio_checksum_verify,
3455	zio_done
3456};
3457
3458/* dnp is the dnode for zb1->zb_object */
3459boolean_t
3460zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3461    const zbookmark_phys_t *zb2)
3462{
3463	uint64_t zb1nextL0, zb2thisobj;
3464
3465	ASSERT(zb1->zb_objset == zb2->zb_objset);
3466	ASSERT(zb2->zb_level == 0);
3467
3468	/* The objset_phys_t isn't before anything. */
3469	if (dnp == NULL)
3470		return (B_FALSE);
3471
3472	zb1nextL0 = (zb1->zb_blkid + 1) <<
3473	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3474
3475	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3476	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3477
3478	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3479		uint64_t nextobj = zb1nextL0 *
3480		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3481		return (nextobj <= zb2thisobj);
3482	}
3483
3484	if (zb1->zb_object < zb2thisobj)
3485		return (B_TRUE);
3486	if (zb1->zb_object > zb2thisobj)
3487		return (B_FALSE);
3488	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3489		return (B_FALSE);
3490	return (zb1nextL0 <= zb2->zb_blkid);
3491}
3492