zio.c revision 277618
17582Sppunegov/*
211833Sctornqvi * CDDL HEADER START
37582Sppunegov *
47582Sppunegov * The contents of this file are subject to the terms of the
57582Sppunegov * Common Development and Distribution License (the "License").
67582Sppunegov * You may not use this file except in compliance with the License.
77582Sppunegov *
87582Sppunegov * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97582Sppunegov * or http://www.opensolaris.org/os/licensing.
107582Sppunegov * See the License for the specific language governing permissions
117582Sppunegov * and limitations under the License.
127582Sppunegov *
137582Sppunegov * When distributing Covered Code, include this CDDL HEADER in each
147582Sppunegov * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157582Sppunegov * If applicable, add the following below this CDDL HEADER, with the
167582Sppunegov * fields enclosed by brackets "[]" replaced with your own identifying
177582Sppunegov * information: Portions Copyright [yyyy] [name of copyright owner]
187582Sppunegov *
197582Sppunegov * CDDL HEADER END
207582Sppunegov */
217582Sppunegov/*
227582Sppunegov * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
237582Sppunegov * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
247582Sppunegov * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
257582Sppunegov */
2611707Stpivovarova
2711833Sctornqvi#include <sys/sysmacros.h>
2810551Schegar#include <sys/zfs_context.h>
298013Sykantser#include <sys/fm/fs/zfs.h>
3011707Stpivovarova#include <sys/spa.h>
3111833Sctornqvi#include <sys/txg.h>
3211707Stpivovarova#include <sys/spa_impl.h>
3310978Sneliasso#include <sys/vdev_impl.h>
347582Sppunegov#include <sys/zio_impl.h>
3511707Stpivovarova#include <sys/zio_compress.h>
3611707Stpivovarova#include <sys/zio_checksum.h>
3711707Stpivovarova#include <sys/dmu_objset.h>
3811707Stpivovarova#include <sys/arc.h>
397582Sppunegov#include <sys/ddt.h>
4011534Siignatyev#include <sys/trim_map.h>
4111707Stpivovarova#include <sys/blkptr.h>
4211707Stpivovarova#include <sys/zfeature.h>
4311707Stpivovarova
4411707StpivovarovaSYSCTL_DECL(_vfs_zfs);
4511534SiignatyevSYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
4611534Siignatyev#if defined(__amd64__)
4711534Siignatyevstatic int zio_use_uma = 1;
487582Sppunegov#else
497582Sppunegovstatic int zio_use_uma = 0;
507582Sppunegov#endif
517582SppunegovTUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
527582SppunegovSYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
537582Sppunegov    "Use uma(9) for ZIO allocations");
547582Sppunegovstatic int zio_exclude_metadata = 0;
557582SppunegovTUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
567582SppunegovSYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
577582Sppunegov    "Exclude metadata buffers from dumps as well");
587582Sppunegov
597582Sppunegovzio_trim_stats_t zio_trim_stats = {
607582Sppunegov	{ "bytes",		KSTAT_DATA_UINT64,
617582Sppunegov	  "Number of bytes successfully TRIMmed" },
627582Sppunegov	{ "success",		KSTAT_DATA_UINT64,
637582Sppunegov	  "Number of successful TRIM requests" },
647582Sppunegov	{ "unsupported",	KSTAT_DATA_UINT64,
657582Sppunegov	  "Number of TRIM requests that failed because TRIM is not supported" },
667582Sppunegov	{ "failed",		KSTAT_DATA_UINT64,
6711707Stpivovarova	  "Number of TRIM requests that failed for reasons other than not supported" },
6811707Stpivovarova};
6911707Stpivovarova
7011707Stpivovarovastatic kstat_t *zio_trim_ksp;
7111707Stpivovarova
7211707Stpivovarova/*
7311707Stpivovarova * ==========================================================================
7411707Stpivovarova * I/O type descriptions
7511707Stpivovarova * ==========================================================================
7611707Stpivovarova */
7711707Stpivovarovaconst char *zio_type_name[ZIO_TYPES] = {
7811707Stpivovarova	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
7911707Stpivovarova	"zio_ioctl"
8011707Stpivovarova};
8111707Stpivovarova
8211707Stpivovarova/*
8311707Stpivovarova * ==========================================================================
8411707Stpivovarova * I/O kmem caches
8511707Stpivovarova * ==========================================================================
867582Sppunegov */
8711707Stpivovarovakmem_cache_t *zio_cache;
8811707Stpivovarovakmem_cache_t *zio_link_cache;
897582Sppunegovkmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
9011707Stpivovarovakmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
9111707Stpivovarova
9211707Stpivovarova#ifdef _KERNEL
937582Sppunegovextern vmem_t *zio_alloc_arena;
947582Sppunegov#endif
9511707Stpivovarova
9611707Stpivovarova/*
9711707Stpivovarova * The following actions directly effect the spa's sync-to-convergence logic.
987582Sppunegov * The values below define the sync pass when we start performing the action.
997582Sppunegov * Care should be taken when changing these values as they directly impact
10011707Stpivovarova * spa_sync() performance. Tuning these values may introduce subtle performance
10111707Stpivovarova * pathologies and should only be done in the context of performance analysis.
10211707Stpivovarova * These tunables will eventually be removed and replaced with #defines once
1037582Sppunegov * enough analysis has been done to determine optimal values.
1047582Sppunegov *
10511707Stpivovarova * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
10611707Stpivovarova * regular blocks are not deferred.
10711707Stpivovarova */
10811707Stpivovarovaint zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
1097582SppunegovTUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
1107582SppunegovSYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
11111707Stpivovarova    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
11211707Stpivovarovaint zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
11311707StpivovarovaTUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
11411707StpivovarovaSYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
11511707Stpivovarova    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
11611707Stpivovarovaint zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
11711707StpivovarovaTUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
11811707StpivovarovaSYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
11911707Stpivovarova    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
1207582Sppunegov
12111707Stpivovarova/*
12211707Stpivovarova * An allocating zio is one that either currently has the DVA allocate
12311707Stpivovarova * stage set or will have it later in its lifetime.
1247582Sppunegov */
12511707Stpivovarova#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
12611707Stpivovarova
12711707Stpivovarovaboolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
1287582Sppunegov
12911707Stpivovarova#ifdef ZFS_DEBUG
13011707Stpivovarovaint zio_buf_debug_limit = 16384;
13111707Stpivovarova#else
1327582Sppunegovint zio_buf_debug_limit = 0;
13311707Stpivovarova#endif
13411707Stpivovarova
13511707Stpivovarovavoid
13611707Stpivovarovazio_init(void)
13711707Stpivovarova{
13811707Stpivovarova	size_t c;
13911707Stpivovarova	zio_cache = kmem_cache_create("zio_cache",
1407582Sppunegov	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
14111707Stpivovarova	zio_link_cache = kmem_cache_create("zio_link_cache",
14211707Stpivovarova	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
14311707Stpivovarova	if (!zio_use_uma)
1447582Sppunegov		goto out;
14511707Stpivovarova
14611707Stpivovarova	/*
14711707Stpivovarova	 * For small buffers, we want a cache for each multiple of
14811707Stpivovarova	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
14911707Stpivovarova	 * for each quarter-power of 2.
15011707Stpivovarova	 */
15111707Stpivovarova	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
1527582Sppunegov		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
15311707Stpivovarova		size_t p2 = size;
15411707Stpivovarova		size_t align = 0;
15511707Stpivovarova		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
1567582Sppunegov
15711707Stpivovarova		while (!ISP2(p2))
15811707Stpivovarova			p2 &= p2 - 1;
15911707Stpivovarova
1607582Sppunegov#ifdef illumos
16111707Stpivovarova#ifndef _KERNEL
16211707Stpivovarova		/*
16311707Stpivovarova		 * If we are using watchpoints, put each buffer on its own page,
1647582Sppunegov		 * to eliminate the performance overhead of trapping to the
16511707Stpivovarova		 * kernel when modifying a non-watched buffer that shares the
16611707Stpivovarova		 * page with a watched buffer.
16711707Stpivovarova		 */
16811707Stpivovarova		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
16911707Stpivovarova			continue;
17011707Stpivovarova#endif
17111707Stpivovarova#endif /* illumos */
1727582Sppunegov		if (size <= 4 * SPA_MINBLOCKSIZE) {
17311707Stpivovarova			align = SPA_MINBLOCKSIZE;
17411707Stpivovarova		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
17511707Stpivovarova			align = MIN(p2 >> 2, PAGESIZE);
17611707Stpivovarova		}
17711707Stpivovarova
17811707Stpivovarova		if (align != 0) {
17911707Stpivovarova			char name[36];
18011707Stpivovarova			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
18111707Stpivovarova			zio_buf_cache[c] = kmem_cache_create(name, size,
1827582Sppunegov			    align, NULL, NULL, NULL, NULL, NULL, cflags);
18311707Stpivovarova
18411707Stpivovarova			/*
18511707Stpivovarova			 * Since zio_data bufs do not appear in crash dumps, we
18611707Stpivovarova			 * pass KMC_NOTOUCH so that no allocator metadata is
1877582Sppunegov			 * stored with the buffers.
18811707Stpivovarova			 */
18911707Stpivovarova			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
19011707Stpivovarova			zio_data_buf_cache[c] = kmem_cache_create(name, size,
19111707Stpivovarova			    align, NULL, NULL, NULL, NULL, NULL,
1927582Sppunegov			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
19311707Stpivovarova		}
19411707Stpivovarova	}
19511707Stpivovarova
19611707Stpivovarova	while (--c != 0) {
19711707Stpivovarova		ASSERT(zio_buf_cache[c] != NULL);
19811707Stpivovarova		if (zio_buf_cache[c - 1] == NULL)
19911707Stpivovarova			zio_buf_cache[c - 1] = zio_buf_cache[c];
20011707Stpivovarova
2017582Sppunegov		ASSERT(zio_data_buf_cache[c] != NULL);
2027582Sppunegov		if (zio_data_buf_cache[c - 1] == NULL)
20311707Stpivovarova			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204	}
205out:
206
207	zio_inject_init();
208
209	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
210	    KSTAT_TYPE_NAMED,
211	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
212	    KSTAT_FLAG_VIRTUAL);
213
214	if (zio_trim_ksp != NULL) {
215		zio_trim_ksp->ks_data = &zio_trim_stats;
216		kstat_install(zio_trim_ksp);
217	}
218}
219
220void
221zio_fini(void)
222{
223	size_t c;
224	kmem_cache_t *last_cache = NULL;
225	kmem_cache_t *last_data_cache = NULL;
226
227	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
228		if (zio_buf_cache[c] != last_cache) {
229			last_cache = zio_buf_cache[c];
230			kmem_cache_destroy(zio_buf_cache[c]);
231		}
232		zio_buf_cache[c] = NULL;
233
234		if (zio_data_buf_cache[c] != last_data_cache) {
235			last_data_cache = zio_data_buf_cache[c];
236			kmem_cache_destroy(zio_data_buf_cache[c]);
237		}
238		zio_data_buf_cache[c] = NULL;
239	}
240
241	kmem_cache_destroy(zio_link_cache);
242	kmem_cache_destroy(zio_cache);
243
244	zio_inject_fini();
245
246	if (zio_trim_ksp != NULL) {
247		kstat_delete(zio_trim_ksp);
248		zio_trim_ksp = NULL;
249	}
250}
251
252/*
253 * ==========================================================================
254 * Allocate and free I/O buffers
255 * ==========================================================================
256 */
257
258/*
259 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
260 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
261 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
262 * excess / transient data in-core during a crashdump.
263 */
264void *
265zio_buf_alloc(size_t size)
266{
267	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
269
270	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271
272	if (zio_use_uma)
273		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274	else
275		return (kmem_alloc(size, KM_SLEEP|flags));
276}
277
278/*
279 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
280 * crashdump if the kernel panics.  This exists so that we will limit the amount
281 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
282 * of kernel heap dumped to disk when the kernel panics)
283 */
284void *
285zio_data_buf_alloc(size_t size)
286{
287	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
288
289	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
290
291	if (zio_use_uma)
292		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
293	else
294		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
295}
296
297void
298zio_buf_free(void *buf, size_t size)
299{
300	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
301
302	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
303
304	if (zio_use_uma)
305		kmem_cache_free(zio_buf_cache[c], buf);
306	else
307		kmem_free(buf, size);
308}
309
310void
311zio_data_buf_free(void *buf, size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		kmem_cache_free(zio_data_buf_cache[c], buf);
319	else
320		kmem_free(buf, size);
321}
322
323/*
324 * ==========================================================================
325 * Push and pop I/O transform buffers
326 * ==========================================================================
327 */
328static void
329zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
330	zio_transform_func_t *transform)
331{
332	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
333
334	zt->zt_orig_data = zio->io_data;
335	zt->zt_orig_size = zio->io_size;
336	zt->zt_bufsize = bufsize;
337	zt->zt_transform = transform;
338
339	zt->zt_next = zio->io_transform_stack;
340	zio->io_transform_stack = zt;
341
342	zio->io_data = data;
343	zio->io_size = size;
344}
345
346static void
347zio_pop_transforms(zio_t *zio)
348{
349	zio_transform_t *zt;
350
351	while ((zt = zio->io_transform_stack) != NULL) {
352		if (zt->zt_transform != NULL)
353			zt->zt_transform(zio,
354			    zt->zt_orig_data, zt->zt_orig_size);
355
356		if (zt->zt_bufsize != 0)
357			zio_buf_free(zio->io_data, zt->zt_bufsize);
358
359		zio->io_data = zt->zt_orig_data;
360		zio->io_size = zt->zt_orig_size;
361		zio->io_transform_stack = zt->zt_next;
362
363		kmem_free(zt, sizeof (zio_transform_t));
364	}
365}
366
367/*
368 * ==========================================================================
369 * I/O transform callbacks for subblocks and decompression
370 * ==========================================================================
371 */
372static void
373zio_subblock(zio_t *zio, void *data, uint64_t size)
374{
375	ASSERT(zio->io_size > size);
376
377	if (zio->io_type == ZIO_TYPE_READ)
378		bcopy(zio->io_data, data, size);
379}
380
381static void
382zio_decompress(zio_t *zio, void *data, uint64_t size)
383{
384	if (zio->io_error == 0 &&
385	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
386	    zio->io_data, data, zio->io_size, size) != 0)
387		zio->io_error = SET_ERROR(EIO);
388}
389
390/*
391 * ==========================================================================
392 * I/O parent/child relationships and pipeline interlocks
393 * ==========================================================================
394 */
395/*
396 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
397 *        continue calling these functions until they return NULL.
398 *        Otherwise, the next caller will pick up the list walk in
399 *        some indeterminate state.  (Otherwise every caller would
400 *        have to pass in a cookie to keep the state represented by
401 *        io_walk_link, which gets annoying.)
402 */
403zio_t *
404zio_walk_parents(zio_t *cio)
405{
406	zio_link_t *zl = cio->io_walk_link;
407	list_t *pl = &cio->io_parent_list;
408
409	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
410	cio->io_walk_link = zl;
411
412	if (zl == NULL)
413		return (NULL);
414
415	ASSERT(zl->zl_child == cio);
416	return (zl->zl_parent);
417}
418
419zio_t *
420zio_walk_children(zio_t *pio)
421{
422	zio_link_t *zl = pio->io_walk_link;
423	list_t *cl = &pio->io_child_list;
424
425	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
426	pio->io_walk_link = zl;
427
428	if (zl == NULL)
429		return (NULL);
430
431	ASSERT(zl->zl_parent == pio);
432	return (zl->zl_child);
433}
434
435zio_t *
436zio_unique_parent(zio_t *cio)
437{
438	zio_t *pio = zio_walk_parents(cio);
439
440	VERIFY(zio_walk_parents(cio) == NULL);
441	return (pio);
442}
443
444void
445zio_add_child(zio_t *pio, zio_t *cio)
446{
447	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
448
449	/*
450	 * Logical I/Os can have logical, gang, or vdev children.
451	 * Gang I/Os can have gang or vdev children.
452	 * Vdev I/Os can only have vdev children.
453	 * The following ASSERT captures all of these constraints.
454	 */
455	ASSERT(cio->io_child_type <= pio->io_child_type);
456
457	zl->zl_parent = pio;
458	zl->zl_child = cio;
459
460	mutex_enter(&cio->io_lock);
461	mutex_enter(&pio->io_lock);
462
463	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
464
465	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
466		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
467
468	list_insert_head(&pio->io_child_list, zl);
469	list_insert_head(&cio->io_parent_list, zl);
470
471	pio->io_child_count++;
472	cio->io_parent_count++;
473
474	mutex_exit(&pio->io_lock);
475	mutex_exit(&cio->io_lock);
476}
477
478static void
479zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
480{
481	ASSERT(zl->zl_parent == pio);
482	ASSERT(zl->zl_child == cio);
483
484	mutex_enter(&cio->io_lock);
485	mutex_enter(&pio->io_lock);
486
487	list_remove(&pio->io_child_list, zl);
488	list_remove(&cio->io_parent_list, zl);
489
490	pio->io_child_count--;
491	cio->io_parent_count--;
492
493	mutex_exit(&pio->io_lock);
494	mutex_exit(&cio->io_lock);
495
496	kmem_cache_free(zio_link_cache, zl);
497}
498
499static boolean_t
500zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
501{
502	uint64_t *countp = &zio->io_children[child][wait];
503	boolean_t waiting = B_FALSE;
504
505	mutex_enter(&zio->io_lock);
506	ASSERT(zio->io_stall == NULL);
507	if (*countp != 0) {
508		zio->io_stage >>= 1;
509		zio->io_stall = countp;
510		waiting = B_TRUE;
511	}
512	mutex_exit(&zio->io_lock);
513
514	return (waiting);
515}
516
517static void
518zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
519{
520	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
521	int *errorp = &pio->io_child_error[zio->io_child_type];
522
523	mutex_enter(&pio->io_lock);
524	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
525		*errorp = zio_worst_error(*errorp, zio->io_error);
526	pio->io_reexecute |= zio->io_reexecute;
527	ASSERT3U(*countp, >, 0);
528
529	(*countp)--;
530
531	if (*countp == 0 && pio->io_stall == countp) {
532		pio->io_stall = NULL;
533		mutex_exit(&pio->io_lock);
534		zio_execute(pio);
535	} else {
536		mutex_exit(&pio->io_lock);
537	}
538}
539
540static void
541zio_inherit_child_errors(zio_t *zio, enum zio_child c)
542{
543	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
544		zio->io_error = zio->io_child_error[c];
545}
546
547/*
548 * ==========================================================================
549 * Create the various types of I/O (read, write, free, etc)
550 * ==========================================================================
551 */
552static zio_t *
553zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
554    void *data, uint64_t size, zio_done_func_t *done, void *private,
555    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
556    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
557    enum zio_stage stage, enum zio_stage pipeline)
558{
559	zio_t *zio;
560
561	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
562	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
563	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
564
565	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
566	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
567	ASSERT(vd || stage == ZIO_STAGE_OPEN);
568
569	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
570	bzero(zio, sizeof (zio_t));
571
572	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
573	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
574
575	list_create(&zio->io_parent_list, sizeof (zio_link_t),
576	    offsetof(zio_link_t, zl_parent_node));
577	list_create(&zio->io_child_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_child_node));
579
580	if (vd != NULL)
581		zio->io_child_type = ZIO_CHILD_VDEV;
582	else if (flags & ZIO_FLAG_GANG_CHILD)
583		zio->io_child_type = ZIO_CHILD_GANG;
584	else if (flags & ZIO_FLAG_DDT_CHILD)
585		zio->io_child_type = ZIO_CHILD_DDT;
586	else
587		zio->io_child_type = ZIO_CHILD_LOGICAL;
588
589	if (bp != NULL) {
590		zio->io_bp = (blkptr_t *)bp;
591		zio->io_bp_copy = *bp;
592		zio->io_bp_orig = *bp;
593		if (type != ZIO_TYPE_WRITE ||
594		    zio->io_child_type == ZIO_CHILD_DDT)
595			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
596		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
597			zio->io_logical = zio;
598		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
599			pipeline |= ZIO_GANG_STAGES;
600	}
601
602	zio->io_spa = spa;
603	zio->io_txg = txg;
604	zio->io_done = done;
605	zio->io_private = private;
606	zio->io_type = type;
607	zio->io_priority = priority;
608	zio->io_vd = vd;
609	zio->io_offset = offset;
610	zio->io_orig_data = zio->io_data = data;
611	zio->io_orig_size = zio->io_size = size;
612	zio->io_orig_flags = zio->io_flags = flags;
613	zio->io_orig_stage = zio->io_stage = stage;
614	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
615
616	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618
619	if (zb != NULL)
620		zio->io_bookmark = *zb;
621
622	if (pio != NULL) {
623		if (zio->io_logical == NULL)
624			zio->io_logical = pio->io_logical;
625		if (zio->io_child_type == ZIO_CHILD_GANG)
626			zio->io_gang_leader = pio->io_gang_leader;
627		zio_add_child(pio, zio);
628	}
629
630	return (zio);
631}
632
633static void
634zio_destroy(zio_t *zio)
635{
636	list_destroy(&zio->io_parent_list);
637	list_destroy(&zio->io_child_list);
638	mutex_destroy(&zio->io_lock);
639	cv_destroy(&zio->io_cv);
640	kmem_cache_free(zio_cache, zio);
641}
642
643zio_t *
644zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
645    void *private, enum zio_flag flags)
646{
647	zio_t *zio;
648
649	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
650	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
651	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
652
653	return (zio);
654}
655
656zio_t *
657zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
658{
659	return (zio_null(NULL, spa, NULL, done, private, flags));
660}
661
662void
663zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
664{
665	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
666		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
667		    bp, (longlong_t)BP_GET_TYPE(bp));
668	}
669	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
670	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
671		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
672		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
673	}
674	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
675	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
676		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
677		    bp, (longlong_t)BP_GET_COMPRESS(bp));
678	}
679	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
680		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
681		    bp, (longlong_t)BP_GET_LSIZE(bp));
682	}
683	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
684		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
685		    bp, (longlong_t)BP_GET_PSIZE(bp));
686	}
687
688	if (BP_IS_EMBEDDED(bp)) {
689		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
690			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
691			    bp, (longlong_t)BPE_GET_ETYPE(bp));
692		}
693	}
694
695	/*
696	 * Pool-specific checks.
697	 *
698	 * Note: it would be nice to verify that the blk_birth and
699	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
700	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
701	 * that are in the log) to be arbitrarily large.
702	 */
703	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
704		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
705		if (vdevid >= spa->spa_root_vdev->vdev_children) {
706			zfs_panic_recover("blkptr at %p DVA %u has invalid "
707			    "VDEV %llu",
708			    bp, i, (longlong_t)vdevid);
709			continue;
710		}
711		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
712		if (vd == NULL) {
713			zfs_panic_recover("blkptr at %p DVA %u has invalid "
714			    "VDEV %llu",
715			    bp, i, (longlong_t)vdevid);
716			continue;
717		}
718		if (vd->vdev_ops == &vdev_hole_ops) {
719			zfs_panic_recover("blkptr at %p DVA %u has hole "
720			    "VDEV %llu",
721			    bp, i, (longlong_t)vdevid);
722			continue;
723		}
724		if (vd->vdev_ops == &vdev_missing_ops) {
725			/*
726			 * "missing" vdevs are valid during import, but we
727			 * don't have their detailed info (e.g. asize), so
728			 * we can't perform any more checks on them.
729			 */
730			continue;
731		}
732		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
733		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
734		if (BP_IS_GANG(bp))
735			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
736		if (offset + asize > vd->vdev_asize) {
737			zfs_panic_recover("blkptr at %p DVA %u has invalid "
738			    "OFFSET %llu",
739			    bp, i, (longlong_t)offset);
740		}
741	}
742}
743
744zio_t *
745zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
746    void *data, uint64_t size, zio_done_func_t *done, void *private,
747    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
748{
749	zio_t *zio;
750
751	zfs_blkptr_verify(spa, bp);
752
753	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
754	    data, size, done, private,
755	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
756	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
757	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
758
759	return (zio);
760}
761
762zio_t *
763zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
764    void *data, uint64_t size, const zio_prop_t *zp,
765    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
766    void *private,
767    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
768{
769	zio_t *zio;
770
771	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
772	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
773	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
774	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
775	    DMU_OT_IS_VALID(zp->zp_type) &&
776	    zp->zp_level < 32 &&
777	    zp->zp_copies > 0 &&
778	    zp->zp_copies <= spa_max_replication(spa));
779
780	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
781	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
782	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
783	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
784
785	zio->io_ready = ready;
786	zio->io_physdone = physdone;
787	zio->io_prop = *zp;
788
789	/*
790	 * Data can be NULL if we are going to call zio_write_override() to
791	 * provide the already-allocated BP.  But we may need the data to
792	 * verify a dedup hit (if requested).  In this case, don't try to
793	 * dedup (just take the already-allocated BP verbatim).
794	 */
795	if (data == NULL && zio->io_prop.zp_dedup_verify) {
796		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
797	}
798
799	return (zio);
800}
801
802zio_t *
803zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
804    uint64_t size, zio_done_func_t *done, void *private,
805    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
806{
807	zio_t *zio;
808
809	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
810	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
811	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
812
813	return (zio);
814}
815
816void
817zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
818{
819	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
820	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
821	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
822	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
823
824	/*
825	 * We must reset the io_prop to match the values that existed
826	 * when the bp was first written by dmu_sync() keeping in mind
827	 * that nopwrite and dedup are mutually exclusive.
828	 */
829	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
830	zio->io_prop.zp_nopwrite = nopwrite;
831	zio->io_prop.zp_copies = copies;
832	zio->io_bp_override = bp;
833}
834
835void
836zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
837{
838
839	/*
840	 * The check for EMBEDDED is a performance optimization.  We
841	 * process the free here (by ignoring it) rather than
842	 * putting it on the list and then processing it in zio_free_sync().
843	 */
844	if (BP_IS_EMBEDDED(bp))
845		return;
846	metaslab_check_free(spa, bp);
847
848	/*
849	 * Frees that are for the currently-syncing txg, are not going to be
850	 * deferred, and which will not need to do a read (i.e. not GANG or
851	 * DEDUP), can be processed immediately.  Otherwise, put them on the
852	 * in-memory list for later processing.
853	 */
854	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
855	    txg != spa->spa_syncing_txg ||
856	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
857		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
858	} else {
859		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
860		    BP_GET_PSIZE(bp), 0)));
861	}
862}
863
864zio_t *
865zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
866    uint64_t size, enum zio_flag flags)
867{
868	zio_t *zio;
869	enum zio_stage stage = ZIO_FREE_PIPELINE;
870
871	ASSERT(!BP_IS_HOLE(bp));
872	ASSERT(spa_syncing_txg(spa) == txg);
873	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
874
875	if (BP_IS_EMBEDDED(bp))
876		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
877
878	metaslab_check_free(spa, bp);
879	arc_freed(spa, bp);
880
881	if (zfs_trim_enabled)
882		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
883		    ZIO_STAGE_VDEV_IO_ASSESS;
884	/*
885	 * GANG and DEDUP blocks can induce a read (for the gang block header,
886	 * or the DDT), so issue them asynchronously so that this thread is
887	 * not tied up.
888	 */
889	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
890		stage |= ZIO_STAGE_ISSUE_ASYNC;
891
892	flags |= ZIO_FLAG_DONT_QUEUE;
893
894	zio = zio_create(pio, spa, txg, bp, NULL, size,
895	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
896	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
897
898	return (zio);
899}
900
901zio_t *
902zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
903    zio_done_func_t *done, void *private, enum zio_flag flags)
904{
905	zio_t *zio;
906
907	dprintf_bp(bp, "claiming in txg %llu", txg);
908
909	if (BP_IS_EMBEDDED(bp))
910		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
911
912	/*
913	 * A claim is an allocation of a specific block.  Claims are needed
914	 * to support immediate writes in the intent log.  The issue is that
915	 * immediate writes contain committed data, but in a txg that was
916	 * *not* committed.  Upon opening the pool after an unclean shutdown,
917	 * the intent log claims all blocks that contain immediate write data
918	 * so that the SPA knows they're in use.
919	 *
920	 * All claims *must* be resolved in the first txg -- before the SPA
921	 * starts allocating blocks -- so that nothing is allocated twice.
922	 * If txg == 0 we just verify that the block is claimable.
923	 */
924	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
925	ASSERT(txg == spa_first_txg(spa) || txg == 0);
926	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
927
928	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
929	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
930	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
931
932	return (zio);
933}
934
935zio_t *
936zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
937    uint64_t size, zio_done_func_t *done, void *private,
938    zio_priority_t priority, enum zio_flag flags)
939{
940	zio_t *zio;
941	int c;
942
943	if (vd->vdev_children == 0) {
944		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
945		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
946		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
947
948		zio->io_cmd = cmd;
949	} else {
950		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
951
952		for (c = 0; c < vd->vdev_children; c++)
953			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
954			    offset, size, done, private, priority, flags));
955	}
956
957	return (zio);
958}
959
960zio_t *
961zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
962    void *data, int checksum, zio_done_func_t *done, void *private,
963    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
964{
965	zio_t *zio;
966
967	ASSERT(vd->vdev_children == 0);
968	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
969	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
970	ASSERT3U(offset + size, <=, vd->vdev_psize);
971
972	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
973	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
974	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
975
976	zio->io_prop.zp_checksum = checksum;
977
978	return (zio);
979}
980
981zio_t *
982zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
983    void *data, int checksum, zio_done_func_t *done, void *private,
984    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
985{
986	zio_t *zio;
987
988	ASSERT(vd->vdev_children == 0);
989	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
990	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
991	ASSERT3U(offset + size, <=, vd->vdev_psize);
992
993	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
994	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
995	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
996
997	zio->io_prop.zp_checksum = checksum;
998
999	if (zio_checksum_table[checksum].ci_eck) {
1000		/*
1001		 * zec checksums are necessarily destructive -- they modify
1002		 * the end of the write buffer to hold the verifier/checksum.
1003		 * Therefore, we must make a local copy in case the data is
1004		 * being written to multiple places in parallel.
1005		 */
1006		void *wbuf = zio_buf_alloc(size);
1007		bcopy(data, wbuf, size);
1008		zio_push_transform(zio, wbuf, size, size, NULL);
1009	}
1010
1011	return (zio);
1012}
1013
1014/*
1015 * Create a child I/O to do some work for us.
1016 */
1017zio_t *
1018zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1019	void *data, uint64_t size, int type, zio_priority_t priority,
1020	enum zio_flag flags, zio_done_func_t *done, void *private)
1021{
1022	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1023	zio_t *zio;
1024
1025	ASSERT(vd->vdev_parent ==
1026	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1027
1028	if (type == ZIO_TYPE_READ && bp != NULL) {
1029		/*
1030		 * If we have the bp, then the child should perform the
1031		 * checksum and the parent need not.  This pushes error
1032		 * detection as close to the leaves as possible and
1033		 * eliminates redundant checksums in the interior nodes.
1034		 */
1035		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1036		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1037	}
1038
1039	/* Not all IO types require vdev io done stage e.g. free */
1040	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1041		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1042
1043	if (vd->vdev_children == 0)
1044		offset += VDEV_LABEL_START_SIZE;
1045
1046	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1047
1048	/*
1049	 * If we've decided to do a repair, the write is not speculative --
1050	 * even if the original read was.
1051	 */
1052	if (flags & ZIO_FLAG_IO_REPAIR)
1053		flags &= ~ZIO_FLAG_SPECULATIVE;
1054
1055	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1056	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1057	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1058
1059	zio->io_physdone = pio->io_physdone;
1060	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1061		zio->io_logical->io_phys_children++;
1062
1063	return (zio);
1064}
1065
1066zio_t *
1067zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1068	int type, zio_priority_t priority, enum zio_flag flags,
1069	zio_done_func_t *done, void *private)
1070{
1071	zio_t *zio;
1072
1073	ASSERT(vd->vdev_ops->vdev_op_leaf);
1074
1075	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1076	    data, size, done, private, type, priority,
1077	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1078	    vd, offset, NULL,
1079	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1080
1081	return (zio);
1082}
1083
1084void
1085zio_flush(zio_t *zio, vdev_t *vd)
1086{
1087	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1088	    NULL, NULL, ZIO_PRIORITY_NOW,
1089	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1090}
1091
1092zio_t *
1093zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1094{
1095
1096	ASSERT(vd->vdev_ops->vdev_op_leaf);
1097
1098	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1099	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1100	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1101	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1102}
1103
1104void
1105zio_shrink(zio_t *zio, uint64_t size)
1106{
1107	ASSERT(zio->io_executor == NULL);
1108	ASSERT(zio->io_orig_size == zio->io_size);
1109	ASSERT(size <= zio->io_size);
1110
1111	/*
1112	 * We don't shrink for raidz because of problems with the
1113	 * reconstruction when reading back less than the block size.
1114	 * Note, BP_IS_RAIDZ() assumes no compression.
1115	 */
1116	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1117	if (!BP_IS_RAIDZ(zio->io_bp))
1118		zio->io_orig_size = zio->io_size = size;
1119}
1120
1121/*
1122 * ==========================================================================
1123 * Prepare to read and write logical blocks
1124 * ==========================================================================
1125 */
1126
1127static int
1128zio_read_bp_init(zio_t *zio)
1129{
1130	blkptr_t *bp = zio->io_bp;
1131
1132	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1133	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1134	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1135		uint64_t psize =
1136		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1137		void *cbuf = zio_buf_alloc(psize);
1138
1139		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1140	}
1141
1142	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1143		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1144		decode_embedded_bp_compressed(bp, zio->io_data);
1145	} else {
1146		ASSERT(!BP_IS_EMBEDDED(bp));
1147	}
1148
1149	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1150		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1151
1152	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1153		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1154
1155	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1156		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1157
1158	return (ZIO_PIPELINE_CONTINUE);
1159}
1160
1161static int
1162zio_write_bp_init(zio_t *zio)
1163{
1164	spa_t *spa = zio->io_spa;
1165	zio_prop_t *zp = &zio->io_prop;
1166	enum zio_compress compress = zp->zp_compress;
1167	blkptr_t *bp = zio->io_bp;
1168	uint64_t lsize = zio->io_size;
1169	uint64_t psize = lsize;
1170	int pass = 1;
1171
1172	/*
1173	 * If our children haven't all reached the ready stage,
1174	 * wait for them and then repeat this pipeline stage.
1175	 */
1176	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1177	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1178		return (ZIO_PIPELINE_STOP);
1179
1180	if (!IO_IS_ALLOCATING(zio))
1181		return (ZIO_PIPELINE_CONTINUE);
1182
1183	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1184
1185	if (zio->io_bp_override) {
1186		ASSERT(bp->blk_birth != zio->io_txg);
1187		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1188
1189		*bp = *zio->io_bp_override;
1190		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1191
1192		if (BP_IS_EMBEDDED(bp))
1193			return (ZIO_PIPELINE_CONTINUE);
1194
1195		/*
1196		 * If we've been overridden and nopwrite is set then
1197		 * set the flag accordingly to indicate that a nopwrite
1198		 * has already occurred.
1199		 */
1200		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1201			ASSERT(!zp->zp_dedup);
1202			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1203			return (ZIO_PIPELINE_CONTINUE);
1204		}
1205
1206		ASSERT(!zp->zp_nopwrite);
1207
1208		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1209			return (ZIO_PIPELINE_CONTINUE);
1210
1211		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1212		    zp->zp_dedup_verify);
1213
1214		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1215			BP_SET_DEDUP(bp, 1);
1216			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1217			return (ZIO_PIPELINE_CONTINUE);
1218		}
1219		zio->io_bp_override = NULL;
1220		BP_ZERO(bp);
1221	}
1222
1223	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1224		/*
1225		 * We're rewriting an existing block, which means we're
1226		 * working on behalf of spa_sync().  For spa_sync() to
1227		 * converge, it must eventually be the case that we don't
1228		 * have to allocate new blocks.  But compression changes
1229		 * the blocksize, which forces a reallocate, and makes
1230		 * convergence take longer.  Therefore, after the first
1231		 * few passes, stop compressing to ensure convergence.
1232		 */
1233		pass = spa_sync_pass(spa);
1234
1235		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1236		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1237		ASSERT(!BP_GET_DEDUP(bp));
1238
1239		if (pass >= zfs_sync_pass_dont_compress)
1240			compress = ZIO_COMPRESS_OFF;
1241
1242		/* Make sure someone doesn't change their mind on overwrites */
1243		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1244		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1245	}
1246
1247	if (compress != ZIO_COMPRESS_OFF) {
1248		void *cbuf = zio_buf_alloc(lsize);
1249		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1250		if (psize == 0 || psize == lsize) {
1251			compress = ZIO_COMPRESS_OFF;
1252			zio_buf_free(cbuf, lsize);
1253		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1254		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1255		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1256			encode_embedded_bp_compressed(bp,
1257			    cbuf, compress, lsize, psize);
1258			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1259			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1260			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1261			zio_buf_free(cbuf, lsize);
1262			bp->blk_birth = zio->io_txg;
1263			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1264			ASSERT(spa_feature_is_active(spa,
1265			    SPA_FEATURE_EMBEDDED_DATA));
1266			return (ZIO_PIPELINE_CONTINUE);
1267		} else {
1268			/*
1269			 * Round up compressed size to MINBLOCKSIZE and
1270			 * zero the tail.
1271			 */
1272			size_t rounded =
1273			    P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1274			if (rounded > psize) {
1275				bzero((char *)cbuf + psize, rounded - psize);
1276				psize = rounded;
1277			}
1278			if (psize == lsize) {
1279				compress = ZIO_COMPRESS_OFF;
1280				zio_buf_free(cbuf, lsize);
1281			} else {
1282				zio_push_transform(zio, cbuf,
1283				    psize, lsize, NULL);
1284			}
1285		}
1286	}
1287
1288	/*
1289	 * The final pass of spa_sync() must be all rewrites, but the first
1290	 * few passes offer a trade-off: allocating blocks defers convergence,
1291	 * but newly allocated blocks are sequential, so they can be written
1292	 * to disk faster.  Therefore, we allow the first few passes of
1293	 * spa_sync() to allocate new blocks, but force rewrites after that.
1294	 * There should only be a handful of blocks after pass 1 in any case.
1295	 */
1296	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1297	    BP_GET_PSIZE(bp) == psize &&
1298	    pass >= zfs_sync_pass_rewrite) {
1299		ASSERT(psize != 0);
1300		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1301		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1302		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1303	} else {
1304		BP_ZERO(bp);
1305		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1306	}
1307
1308	if (psize == 0) {
1309		if (zio->io_bp_orig.blk_birth != 0 &&
1310		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1311			BP_SET_LSIZE(bp, lsize);
1312			BP_SET_TYPE(bp, zp->zp_type);
1313			BP_SET_LEVEL(bp, zp->zp_level);
1314			BP_SET_BIRTH(bp, zio->io_txg, 0);
1315		}
1316		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1317	} else {
1318		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1319		BP_SET_LSIZE(bp, lsize);
1320		BP_SET_TYPE(bp, zp->zp_type);
1321		BP_SET_LEVEL(bp, zp->zp_level);
1322		BP_SET_PSIZE(bp, psize);
1323		BP_SET_COMPRESS(bp, compress);
1324		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1325		BP_SET_DEDUP(bp, zp->zp_dedup);
1326		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1327		if (zp->zp_dedup) {
1328			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1329			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1330			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1331		}
1332		if (zp->zp_nopwrite) {
1333			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1334			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1335			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1336		}
1337	}
1338
1339	return (ZIO_PIPELINE_CONTINUE);
1340}
1341
1342static int
1343zio_free_bp_init(zio_t *zio)
1344{
1345	blkptr_t *bp = zio->io_bp;
1346
1347	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1348		if (BP_GET_DEDUP(bp))
1349			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1350	}
1351
1352	return (ZIO_PIPELINE_CONTINUE);
1353}
1354
1355/*
1356 * ==========================================================================
1357 * Execute the I/O pipeline
1358 * ==========================================================================
1359 */
1360
1361static void
1362zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1363{
1364	spa_t *spa = zio->io_spa;
1365	zio_type_t t = zio->io_type;
1366	int flags = (cutinline ? TQ_FRONT : 0);
1367
1368	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1369
1370	/*
1371	 * If we're a config writer or a probe, the normal issue and
1372	 * interrupt threads may all be blocked waiting for the config lock.
1373	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1374	 */
1375	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1376		t = ZIO_TYPE_NULL;
1377
1378	/*
1379	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1380	 */
1381	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1382		t = ZIO_TYPE_NULL;
1383
1384	/*
1385	 * If this is a high priority I/O, then use the high priority taskq if
1386	 * available.
1387	 */
1388	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1389	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1390		q++;
1391
1392	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1393
1394	/*
1395	 * NB: We are assuming that the zio can only be dispatched
1396	 * to a single taskq at a time.  It would be a grievous error
1397	 * to dispatch the zio to another taskq at the same time.
1398	 */
1399#if defined(illumos) || !defined(_KERNEL)
1400	ASSERT(zio->io_tqent.tqent_next == NULL);
1401#else
1402	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1403#endif
1404	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1405	    flags, &zio->io_tqent);
1406}
1407
1408static boolean_t
1409zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1410{
1411	kthread_t *executor = zio->io_executor;
1412	spa_t *spa = zio->io_spa;
1413
1414	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1415		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1416		uint_t i;
1417		for (i = 0; i < tqs->stqs_count; i++) {
1418			if (taskq_member(tqs->stqs_taskq[i], executor))
1419				return (B_TRUE);
1420		}
1421	}
1422
1423	return (B_FALSE);
1424}
1425
1426static int
1427zio_issue_async(zio_t *zio)
1428{
1429	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1430
1431	return (ZIO_PIPELINE_STOP);
1432}
1433
1434void
1435zio_interrupt(zio_t *zio)
1436{
1437	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1438}
1439
1440/*
1441 * Execute the I/O pipeline until one of the following occurs:
1442 *
1443 *	(1) the I/O completes
1444 *	(2) the pipeline stalls waiting for dependent child I/Os
1445 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1446 *	(4) the I/O is delegated by vdev-level caching or aggregation
1447 *	(5) the I/O is deferred due to vdev-level queueing
1448 *	(6) the I/O is handed off to another thread.
1449 *
1450 * In all cases, the pipeline stops whenever there's no CPU work; it never
1451 * burns a thread in cv_wait().
1452 *
1453 * There's no locking on io_stage because there's no legitimate way
1454 * for multiple threads to be attempting to process the same I/O.
1455 */
1456static zio_pipe_stage_t *zio_pipeline[];
1457
1458void
1459zio_execute(zio_t *zio)
1460{
1461	zio->io_executor = curthread;
1462
1463	while (zio->io_stage < ZIO_STAGE_DONE) {
1464		enum zio_stage pipeline = zio->io_pipeline;
1465		enum zio_stage stage = zio->io_stage;
1466		int rv;
1467
1468		ASSERT(!MUTEX_HELD(&zio->io_lock));
1469		ASSERT(ISP2(stage));
1470		ASSERT(zio->io_stall == NULL);
1471
1472		do {
1473			stage <<= 1;
1474		} while ((stage & pipeline) == 0);
1475
1476		ASSERT(stage <= ZIO_STAGE_DONE);
1477
1478		/*
1479		 * If we are in interrupt context and this pipeline stage
1480		 * will grab a config lock that is held across I/O,
1481		 * or may wait for an I/O that needs an interrupt thread
1482		 * to complete, issue async to avoid deadlock.
1483		 *
1484		 * For VDEV_IO_START, we cut in line so that the io will
1485		 * be sent to disk promptly.
1486		 */
1487		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1488		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1489			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1490			    zio_requeue_io_start_cut_in_line : B_FALSE;
1491			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1492			return;
1493		}
1494
1495		zio->io_stage = stage;
1496		rv = zio_pipeline[highbit64(stage) - 1](zio);
1497
1498		if (rv == ZIO_PIPELINE_STOP)
1499			return;
1500
1501		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1502	}
1503}
1504
1505/*
1506 * ==========================================================================
1507 * Initiate I/O, either sync or async
1508 * ==========================================================================
1509 */
1510int
1511zio_wait(zio_t *zio)
1512{
1513	int error;
1514
1515	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1516	ASSERT(zio->io_executor == NULL);
1517
1518	zio->io_waiter = curthread;
1519
1520	zio_execute(zio);
1521
1522	mutex_enter(&zio->io_lock);
1523	while (zio->io_executor != NULL)
1524		cv_wait(&zio->io_cv, &zio->io_lock);
1525	mutex_exit(&zio->io_lock);
1526
1527	error = zio->io_error;
1528	zio_destroy(zio);
1529
1530	return (error);
1531}
1532
1533void
1534zio_nowait(zio_t *zio)
1535{
1536	ASSERT(zio->io_executor == NULL);
1537
1538	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1539	    zio_unique_parent(zio) == NULL) {
1540		/*
1541		 * This is a logical async I/O with no parent to wait for it.
1542		 * We add it to the spa_async_root_zio "Godfather" I/O which
1543		 * will ensure they complete prior to unloading the pool.
1544		 */
1545		spa_t *spa = zio->io_spa;
1546
1547		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1548	}
1549
1550	zio_execute(zio);
1551}
1552
1553/*
1554 * ==========================================================================
1555 * Reexecute or suspend/resume failed I/O
1556 * ==========================================================================
1557 */
1558
1559static void
1560zio_reexecute(zio_t *pio)
1561{
1562	zio_t *cio, *cio_next;
1563
1564	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1565	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1566	ASSERT(pio->io_gang_leader == NULL);
1567	ASSERT(pio->io_gang_tree == NULL);
1568
1569	pio->io_flags = pio->io_orig_flags;
1570	pio->io_stage = pio->io_orig_stage;
1571	pio->io_pipeline = pio->io_orig_pipeline;
1572	pio->io_reexecute = 0;
1573	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1574	pio->io_error = 0;
1575	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1576		pio->io_state[w] = 0;
1577	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1578		pio->io_child_error[c] = 0;
1579
1580	if (IO_IS_ALLOCATING(pio))
1581		BP_ZERO(pio->io_bp);
1582
1583	/*
1584	 * As we reexecute pio's children, new children could be created.
1585	 * New children go to the head of pio's io_child_list, however,
1586	 * so we will (correctly) not reexecute them.  The key is that
1587	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1588	 * cannot be affected by any side effects of reexecuting 'cio'.
1589	 */
1590	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1591		cio_next = zio_walk_children(pio);
1592		mutex_enter(&pio->io_lock);
1593		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1594			pio->io_children[cio->io_child_type][w]++;
1595		mutex_exit(&pio->io_lock);
1596		zio_reexecute(cio);
1597	}
1598
1599	/*
1600	 * Now that all children have been reexecuted, execute the parent.
1601	 * We don't reexecute "The Godfather" I/O here as it's the
1602	 * responsibility of the caller to wait on him.
1603	 */
1604	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1605		zio_execute(pio);
1606}
1607
1608void
1609zio_suspend(spa_t *spa, zio_t *zio)
1610{
1611	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1612		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1613		    "failure and the failure mode property for this pool "
1614		    "is set to panic.", spa_name(spa));
1615
1616	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1617
1618	mutex_enter(&spa->spa_suspend_lock);
1619
1620	if (spa->spa_suspend_zio_root == NULL)
1621		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1622		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1623		    ZIO_FLAG_GODFATHER);
1624
1625	spa->spa_suspended = B_TRUE;
1626
1627	if (zio != NULL) {
1628		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1629		ASSERT(zio != spa->spa_suspend_zio_root);
1630		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1631		ASSERT(zio_unique_parent(zio) == NULL);
1632		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1633		zio_add_child(spa->spa_suspend_zio_root, zio);
1634	}
1635
1636	mutex_exit(&spa->spa_suspend_lock);
1637}
1638
1639int
1640zio_resume(spa_t *spa)
1641{
1642	zio_t *pio;
1643
1644	/*
1645	 * Reexecute all previously suspended i/o.
1646	 */
1647	mutex_enter(&spa->spa_suspend_lock);
1648	spa->spa_suspended = B_FALSE;
1649	cv_broadcast(&spa->spa_suspend_cv);
1650	pio = spa->spa_suspend_zio_root;
1651	spa->spa_suspend_zio_root = NULL;
1652	mutex_exit(&spa->spa_suspend_lock);
1653
1654	if (pio == NULL)
1655		return (0);
1656
1657	zio_reexecute(pio);
1658	return (zio_wait(pio));
1659}
1660
1661void
1662zio_resume_wait(spa_t *spa)
1663{
1664	mutex_enter(&spa->spa_suspend_lock);
1665	while (spa_suspended(spa))
1666		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1667	mutex_exit(&spa->spa_suspend_lock);
1668}
1669
1670/*
1671 * ==========================================================================
1672 * Gang blocks.
1673 *
1674 * A gang block is a collection of small blocks that looks to the DMU
1675 * like one large block.  When zio_dva_allocate() cannot find a block
1676 * of the requested size, due to either severe fragmentation or the pool
1677 * being nearly full, it calls zio_write_gang_block() to construct the
1678 * block from smaller fragments.
1679 *
1680 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1681 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1682 * an indirect block: it's an array of block pointers.  It consumes
1683 * only one sector and hence is allocatable regardless of fragmentation.
1684 * The gang header's bps point to its gang members, which hold the data.
1685 *
1686 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1687 * as the verifier to ensure uniqueness of the SHA256 checksum.
1688 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1689 * not the gang header.  This ensures that data block signatures (needed for
1690 * deduplication) are independent of how the block is physically stored.
1691 *
1692 * Gang blocks can be nested: a gang member may itself be a gang block.
1693 * Thus every gang block is a tree in which root and all interior nodes are
1694 * gang headers, and the leaves are normal blocks that contain user data.
1695 * The root of the gang tree is called the gang leader.
1696 *
1697 * To perform any operation (read, rewrite, free, claim) on a gang block,
1698 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1699 * in the io_gang_tree field of the original logical i/o by recursively
1700 * reading the gang leader and all gang headers below it.  This yields
1701 * an in-core tree containing the contents of every gang header and the
1702 * bps for every constituent of the gang block.
1703 *
1704 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1705 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1706 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1707 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1708 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1709 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1710 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1711 * of the gang header plus zio_checksum_compute() of the data to update the
1712 * gang header's blk_cksum as described above.
1713 *
1714 * The two-phase assemble/issue model solves the problem of partial failure --
1715 * what if you'd freed part of a gang block but then couldn't read the
1716 * gang header for another part?  Assembling the entire gang tree first
1717 * ensures that all the necessary gang header I/O has succeeded before
1718 * starting the actual work of free, claim, or write.  Once the gang tree
1719 * is assembled, free and claim are in-memory operations that cannot fail.
1720 *
1721 * In the event that a gang write fails, zio_dva_unallocate() walks the
1722 * gang tree to immediately free (i.e. insert back into the space map)
1723 * everything we've allocated.  This ensures that we don't get ENOSPC
1724 * errors during repeated suspend/resume cycles due to a flaky device.
1725 *
1726 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1727 * the gang tree, we won't modify the block, so we can safely defer the free
1728 * (knowing that the block is still intact).  If we *can* assemble the gang
1729 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1730 * each constituent bp and we can allocate a new block on the next sync pass.
1731 *
1732 * In all cases, the gang tree allows complete recovery from partial failure.
1733 * ==========================================================================
1734 */
1735
1736static zio_t *
1737zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1738{
1739	if (gn != NULL)
1740		return (pio);
1741
1742	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1743	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1744	    &pio->io_bookmark));
1745}
1746
1747zio_t *
1748zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1749{
1750	zio_t *zio;
1751
1752	if (gn != NULL) {
1753		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1754		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1755		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1756		/*
1757		 * As we rewrite each gang header, the pipeline will compute
1758		 * a new gang block header checksum for it; but no one will
1759		 * compute a new data checksum, so we do that here.  The one
1760		 * exception is the gang leader: the pipeline already computed
1761		 * its data checksum because that stage precedes gang assembly.
1762		 * (Presently, nothing actually uses interior data checksums;
1763		 * this is just good hygiene.)
1764		 */
1765		if (gn != pio->io_gang_leader->io_gang_tree) {
1766			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1767			    data, BP_GET_PSIZE(bp));
1768		}
1769		/*
1770		 * If we are here to damage data for testing purposes,
1771		 * leave the GBH alone so that we can detect the damage.
1772		 */
1773		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1774			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1775	} else {
1776		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1777		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1778		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1779	}
1780
1781	return (zio);
1782}
1783
1784/* ARGSUSED */
1785zio_t *
1786zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1787{
1788	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1789	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1790	    ZIO_GANG_CHILD_FLAGS(pio)));
1791}
1792
1793/* ARGSUSED */
1794zio_t *
1795zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1796{
1797	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1798	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1799}
1800
1801static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1802	NULL,
1803	zio_read_gang,
1804	zio_rewrite_gang,
1805	zio_free_gang,
1806	zio_claim_gang,
1807	NULL
1808};
1809
1810static void zio_gang_tree_assemble_done(zio_t *zio);
1811
1812static zio_gang_node_t *
1813zio_gang_node_alloc(zio_gang_node_t **gnpp)
1814{
1815	zio_gang_node_t *gn;
1816
1817	ASSERT(*gnpp == NULL);
1818
1819	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1820	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1821	*gnpp = gn;
1822
1823	return (gn);
1824}
1825
1826static void
1827zio_gang_node_free(zio_gang_node_t **gnpp)
1828{
1829	zio_gang_node_t *gn = *gnpp;
1830
1831	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1832		ASSERT(gn->gn_child[g] == NULL);
1833
1834	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1835	kmem_free(gn, sizeof (*gn));
1836	*gnpp = NULL;
1837}
1838
1839static void
1840zio_gang_tree_free(zio_gang_node_t **gnpp)
1841{
1842	zio_gang_node_t *gn = *gnpp;
1843
1844	if (gn == NULL)
1845		return;
1846
1847	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1848		zio_gang_tree_free(&gn->gn_child[g]);
1849
1850	zio_gang_node_free(gnpp);
1851}
1852
1853static void
1854zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1855{
1856	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1857
1858	ASSERT(gio->io_gang_leader == gio);
1859	ASSERT(BP_IS_GANG(bp));
1860
1861	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1862	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1863	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1864}
1865
1866static void
1867zio_gang_tree_assemble_done(zio_t *zio)
1868{
1869	zio_t *gio = zio->io_gang_leader;
1870	zio_gang_node_t *gn = zio->io_private;
1871	blkptr_t *bp = zio->io_bp;
1872
1873	ASSERT(gio == zio_unique_parent(zio));
1874	ASSERT(zio->io_child_count == 0);
1875
1876	if (zio->io_error)
1877		return;
1878
1879	if (BP_SHOULD_BYTESWAP(bp))
1880		byteswap_uint64_array(zio->io_data, zio->io_size);
1881
1882	ASSERT(zio->io_data == gn->gn_gbh);
1883	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1884	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1885
1886	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1887		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1888		if (!BP_IS_GANG(gbp))
1889			continue;
1890		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1891	}
1892}
1893
1894static void
1895zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1896{
1897	zio_t *gio = pio->io_gang_leader;
1898	zio_t *zio;
1899
1900	ASSERT(BP_IS_GANG(bp) == !!gn);
1901	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1902	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1903
1904	/*
1905	 * If you're a gang header, your data is in gn->gn_gbh.
1906	 * If you're a gang member, your data is in 'data' and gn == NULL.
1907	 */
1908	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1909
1910	if (gn != NULL) {
1911		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1912
1913		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1914			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1915			if (BP_IS_HOLE(gbp))
1916				continue;
1917			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1918			data = (char *)data + BP_GET_PSIZE(gbp);
1919		}
1920	}
1921
1922	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1923		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1924
1925	if (zio != pio)
1926		zio_nowait(zio);
1927}
1928
1929static int
1930zio_gang_assemble(zio_t *zio)
1931{
1932	blkptr_t *bp = zio->io_bp;
1933
1934	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1935	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1936
1937	zio->io_gang_leader = zio;
1938
1939	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1940
1941	return (ZIO_PIPELINE_CONTINUE);
1942}
1943
1944static int
1945zio_gang_issue(zio_t *zio)
1946{
1947	blkptr_t *bp = zio->io_bp;
1948
1949	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1950		return (ZIO_PIPELINE_STOP);
1951
1952	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1953	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1954
1955	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1956		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1957	else
1958		zio_gang_tree_free(&zio->io_gang_tree);
1959
1960	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1961
1962	return (ZIO_PIPELINE_CONTINUE);
1963}
1964
1965static void
1966zio_write_gang_member_ready(zio_t *zio)
1967{
1968	zio_t *pio = zio_unique_parent(zio);
1969	zio_t *gio = zio->io_gang_leader;
1970	dva_t *cdva = zio->io_bp->blk_dva;
1971	dva_t *pdva = pio->io_bp->blk_dva;
1972	uint64_t asize;
1973
1974	if (BP_IS_HOLE(zio->io_bp))
1975		return;
1976
1977	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1978
1979	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1980	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1981	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1982	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1983	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1984
1985	mutex_enter(&pio->io_lock);
1986	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1987		ASSERT(DVA_GET_GANG(&pdva[d]));
1988		asize = DVA_GET_ASIZE(&pdva[d]);
1989		asize += DVA_GET_ASIZE(&cdva[d]);
1990		DVA_SET_ASIZE(&pdva[d], asize);
1991	}
1992	mutex_exit(&pio->io_lock);
1993}
1994
1995static int
1996zio_write_gang_block(zio_t *pio)
1997{
1998	spa_t *spa = pio->io_spa;
1999	blkptr_t *bp = pio->io_bp;
2000	zio_t *gio = pio->io_gang_leader;
2001	zio_t *zio;
2002	zio_gang_node_t *gn, **gnpp;
2003	zio_gbh_phys_t *gbh;
2004	uint64_t txg = pio->io_txg;
2005	uint64_t resid = pio->io_size;
2006	uint64_t lsize;
2007	int copies = gio->io_prop.zp_copies;
2008	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2009	zio_prop_t zp;
2010	int error;
2011
2012	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2013	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2014	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2015	if (error) {
2016		pio->io_error = error;
2017		return (ZIO_PIPELINE_CONTINUE);
2018	}
2019
2020	if (pio == gio) {
2021		gnpp = &gio->io_gang_tree;
2022	} else {
2023		gnpp = pio->io_private;
2024		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2025	}
2026
2027	gn = zio_gang_node_alloc(gnpp);
2028	gbh = gn->gn_gbh;
2029	bzero(gbh, SPA_GANGBLOCKSIZE);
2030
2031	/*
2032	 * Create the gang header.
2033	 */
2034	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2035	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2036
2037	/*
2038	 * Create and nowait the gang children.
2039	 */
2040	for (int g = 0; resid != 0; resid -= lsize, g++) {
2041		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2042		    SPA_MINBLOCKSIZE);
2043		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2044
2045		zp.zp_checksum = gio->io_prop.zp_checksum;
2046		zp.zp_compress = ZIO_COMPRESS_OFF;
2047		zp.zp_type = DMU_OT_NONE;
2048		zp.zp_level = 0;
2049		zp.zp_copies = gio->io_prop.zp_copies;
2050		zp.zp_dedup = B_FALSE;
2051		zp.zp_dedup_verify = B_FALSE;
2052		zp.zp_nopwrite = B_FALSE;
2053
2054		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2055		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2056		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2057		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2058		    &pio->io_bookmark));
2059	}
2060
2061	/*
2062	 * Set pio's pipeline to just wait for zio to finish.
2063	 */
2064	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2065
2066	zio_nowait(zio);
2067
2068	return (ZIO_PIPELINE_CONTINUE);
2069}
2070
2071/*
2072 * The zio_nop_write stage in the pipeline determines if allocating
2073 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
2074 * such as SHA256, we can compare the checksums of the new data and the old
2075 * to determine if allocating a new block is required.  The nopwrite
2076 * feature can handle writes in either syncing or open context (i.e. zil
2077 * writes) and as a result is mutually exclusive with dedup.
2078 */
2079static int
2080zio_nop_write(zio_t *zio)
2081{
2082	blkptr_t *bp = zio->io_bp;
2083	blkptr_t *bp_orig = &zio->io_bp_orig;
2084	zio_prop_t *zp = &zio->io_prop;
2085
2086	ASSERT(BP_GET_LEVEL(bp) == 0);
2087	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2088	ASSERT(zp->zp_nopwrite);
2089	ASSERT(!zp->zp_dedup);
2090	ASSERT(zio->io_bp_override == NULL);
2091	ASSERT(IO_IS_ALLOCATING(zio));
2092
2093	/*
2094	 * Check to see if the original bp and the new bp have matching
2095	 * characteristics (i.e. same checksum, compression algorithms, etc).
2096	 * If they don't then just continue with the pipeline which will
2097	 * allocate a new bp.
2098	 */
2099	if (BP_IS_HOLE(bp_orig) ||
2100	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2101	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2102	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2103	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2104	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2105		return (ZIO_PIPELINE_CONTINUE);
2106
2107	/*
2108	 * If the checksums match then reset the pipeline so that we
2109	 * avoid allocating a new bp and issuing any I/O.
2110	 */
2111	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2112		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2113		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2114		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2115		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2116		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2117		    sizeof (uint64_t)) == 0);
2118
2119		*bp = *bp_orig;
2120		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2121		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2122	}
2123
2124	return (ZIO_PIPELINE_CONTINUE);
2125}
2126
2127/*
2128 * ==========================================================================
2129 * Dedup
2130 * ==========================================================================
2131 */
2132static void
2133zio_ddt_child_read_done(zio_t *zio)
2134{
2135	blkptr_t *bp = zio->io_bp;
2136	ddt_entry_t *dde = zio->io_private;
2137	ddt_phys_t *ddp;
2138	zio_t *pio = zio_unique_parent(zio);
2139
2140	mutex_enter(&pio->io_lock);
2141	ddp = ddt_phys_select(dde, bp);
2142	if (zio->io_error == 0)
2143		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2144	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2145		dde->dde_repair_data = zio->io_data;
2146	else
2147		zio_buf_free(zio->io_data, zio->io_size);
2148	mutex_exit(&pio->io_lock);
2149}
2150
2151static int
2152zio_ddt_read_start(zio_t *zio)
2153{
2154	blkptr_t *bp = zio->io_bp;
2155
2156	ASSERT(BP_GET_DEDUP(bp));
2157	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2158	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2159
2160	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2161		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2162		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2163		ddt_phys_t *ddp = dde->dde_phys;
2164		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2165		blkptr_t blk;
2166
2167		ASSERT(zio->io_vsd == NULL);
2168		zio->io_vsd = dde;
2169
2170		if (ddp_self == NULL)
2171			return (ZIO_PIPELINE_CONTINUE);
2172
2173		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2174			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2175				continue;
2176			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2177			    &blk);
2178			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2179			    zio_buf_alloc(zio->io_size), zio->io_size,
2180			    zio_ddt_child_read_done, dde, zio->io_priority,
2181			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2182			    &zio->io_bookmark));
2183		}
2184		return (ZIO_PIPELINE_CONTINUE);
2185	}
2186
2187	zio_nowait(zio_read(zio, zio->io_spa, bp,
2188	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2189	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2190
2191	return (ZIO_PIPELINE_CONTINUE);
2192}
2193
2194static int
2195zio_ddt_read_done(zio_t *zio)
2196{
2197	blkptr_t *bp = zio->io_bp;
2198
2199	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2200		return (ZIO_PIPELINE_STOP);
2201
2202	ASSERT(BP_GET_DEDUP(bp));
2203	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2204	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2205
2206	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2207		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2208		ddt_entry_t *dde = zio->io_vsd;
2209		if (ddt == NULL) {
2210			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2211			return (ZIO_PIPELINE_CONTINUE);
2212		}
2213		if (dde == NULL) {
2214			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2215			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2216			return (ZIO_PIPELINE_STOP);
2217		}
2218		if (dde->dde_repair_data != NULL) {
2219			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2220			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2221		}
2222		ddt_repair_done(ddt, dde);
2223		zio->io_vsd = NULL;
2224	}
2225
2226	ASSERT(zio->io_vsd == NULL);
2227
2228	return (ZIO_PIPELINE_CONTINUE);
2229}
2230
2231static boolean_t
2232zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2233{
2234	spa_t *spa = zio->io_spa;
2235
2236	/*
2237	 * Note: we compare the original data, not the transformed data,
2238	 * because when zio->io_bp is an override bp, we will not have
2239	 * pushed the I/O transforms.  That's an important optimization
2240	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2241	 */
2242	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2243		zio_t *lio = dde->dde_lead_zio[p];
2244
2245		if (lio != NULL) {
2246			return (lio->io_orig_size != zio->io_orig_size ||
2247			    bcmp(zio->io_orig_data, lio->io_orig_data,
2248			    zio->io_orig_size) != 0);
2249		}
2250	}
2251
2252	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2253		ddt_phys_t *ddp = &dde->dde_phys[p];
2254
2255		if (ddp->ddp_phys_birth != 0) {
2256			arc_buf_t *abuf = NULL;
2257			arc_flags_t aflags = ARC_FLAG_WAIT;
2258			blkptr_t blk = *zio->io_bp;
2259			int error;
2260
2261			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2262
2263			ddt_exit(ddt);
2264
2265			error = arc_read(NULL, spa, &blk,
2266			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2267			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2268			    &aflags, &zio->io_bookmark);
2269
2270			if (error == 0) {
2271				if (arc_buf_size(abuf) != zio->io_orig_size ||
2272				    bcmp(abuf->b_data, zio->io_orig_data,
2273				    zio->io_orig_size) != 0)
2274					error = SET_ERROR(EEXIST);
2275				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2276			}
2277
2278			ddt_enter(ddt);
2279			return (error != 0);
2280		}
2281	}
2282
2283	return (B_FALSE);
2284}
2285
2286static void
2287zio_ddt_child_write_ready(zio_t *zio)
2288{
2289	int p = zio->io_prop.zp_copies;
2290	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2291	ddt_entry_t *dde = zio->io_private;
2292	ddt_phys_t *ddp = &dde->dde_phys[p];
2293	zio_t *pio;
2294
2295	if (zio->io_error)
2296		return;
2297
2298	ddt_enter(ddt);
2299
2300	ASSERT(dde->dde_lead_zio[p] == zio);
2301
2302	ddt_phys_fill(ddp, zio->io_bp);
2303
2304	while ((pio = zio_walk_parents(zio)) != NULL)
2305		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2306
2307	ddt_exit(ddt);
2308}
2309
2310static void
2311zio_ddt_child_write_done(zio_t *zio)
2312{
2313	int p = zio->io_prop.zp_copies;
2314	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2315	ddt_entry_t *dde = zio->io_private;
2316	ddt_phys_t *ddp = &dde->dde_phys[p];
2317
2318	ddt_enter(ddt);
2319
2320	ASSERT(ddp->ddp_refcnt == 0);
2321	ASSERT(dde->dde_lead_zio[p] == zio);
2322	dde->dde_lead_zio[p] = NULL;
2323
2324	if (zio->io_error == 0) {
2325		while (zio_walk_parents(zio) != NULL)
2326			ddt_phys_addref(ddp);
2327	} else {
2328		ddt_phys_clear(ddp);
2329	}
2330
2331	ddt_exit(ddt);
2332}
2333
2334static void
2335zio_ddt_ditto_write_done(zio_t *zio)
2336{
2337	int p = DDT_PHYS_DITTO;
2338	zio_prop_t *zp = &zio->io_prop;
2339	blkptr_t *bp = zio->io_bp;
2340	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2341	ddt_entry_t *dde = zio->io_private;
2342	ddt_phys_t *ddp = &dde->dde_phys[p];
2343	ddt_key_t *ddk = &dde->dde_key;
2344
2345	ddt_enter(ddt);
2346
2347	ASSERT(ddp->ddp_refcnt == 0);
2348	ASSERT(dde->dde_lead_zio[p] == zio);
2349	dde->dde_lead_zio[p] = NULL;
2350
2351	if (zio->io_error == 0) {
2352		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2353		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2354		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2355		if (ddp->ddp_phys_birth != 0)
2356			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2357		ddt_phys_fill(ddp, bp);
2358	}
2359
2360	ddt_exit(ddt);
2361}
2362
2363static int
2364zio_ddt_write(zio_t *zio)
2365{
2366	spa_t *spa = zio->io_spa;
2367	blkptr_t *bp = zio->io_bp;
2368	uint64_t txg = zio->io_txg;
2369	zio_prop_t *zp = &zio->io_prop;
2370	int p = zp->zp_copies;
2371	int ditto_copies;
2372	zio_t *cio = NULL;
2373	zio_t *dio = NULL;
2374	ddt_t *ddt = ddt_select(spa, bp);
2375	ddt_entry_t *dde;
2376	ddt_phys_t *ddp;
2377
2378	ASSERT(BP_GET_DEDUP(bp));
2379	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2380	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2381
2382	ddt_enter(ddt);
2383	dde = ddt_lookup(ddt, bp, B_TRUE);
2384	ddp = &dde->dde_phys[p];
2385
2386	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2387		/*
2388		 * If we're using a weak checksum, upgrade to a strong checksum
2389		 * and try again.  If we're already using a strong checksum,
2390		 * we can't resolve it, so just convert to an ordinary write.
2391		 * (And automatically e-mail a paper to Nature?)
2392		 */
2393		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2394			zp->zp_checksum = spa_dedup_checksum(spa);
2395			zio_pop_transforms(zio);
2396			zio->io_stage = ZIO_STAGE_OPEN;
2397			BP_ZERO(bp);
2398		} else {
2399			zp->zp_dedup = B_FALSE;
2400		}
2401		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2402		ddt_exit(ddt);
2403		return (ZIO_PIPELINE_CONTINUE);
2404	}
2405
2406	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2407	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2408
2409	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2410	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2411		zio_prop_t czp = *zp;
2412
2413		czp.zp_copies = ditto_copies;
2414
2415		/*
2416		 * If we arrived here with an override bp, we won't have run
2417		 * the transform stack, so we won't have the data we need to
2418		 * generate a child i/o.  So, toss the override bp and restart.
2419		 * This is safe, because using the override bp is just an
2420		 * optimization; and it's rare, so the cost doesn't matter.
2421		 */
2422		if (zio->io_bp_override) {
2423			zio_pop_transforms(zio);
2424			zio->io_stage = ZIO_STAGE_OPEN;
2425			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2426			zio->io_bp_override = NULL;
2427			BP_ZERO(bp);
2428			ddt_exit(ddt);
2429			return (ZIO_PIPELINE_CONTINUE);
2430		}
2431
2432		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2433		    zio->io_orig_size, &czp, NULL, NULL,
2434		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2435		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2436
2437		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2438		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2439	}
2440
2441	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2442		if (ddp->ddp_phys_birth != 0)
2443			ddt_bp_fill(ddp, bp, txg);
2444		if (dde->dde_lead_zio[p] != NULL)
2445			zio_add_child(zio, dde->dde_lead_zio[p]);
2446		else
2447			ddt_phys_addref(ddp);
2448	} else if (zio->io_bp_override) {
2449		ASSERT(bp->blk_birth == txg);
2450		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2451		ddt_phys_fill(ddp, bp);
2452		ddt_phys_addref(ddp);
2453	} else {
2454		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2455		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2456		    zio_ddt_child_write_done, dde, zio->io_priority,
2457		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2458
2459		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2460		dde->dde_lead_zio[p] = cio;
2461	}
2462
2463	ddt_exit(ddt);
2464
2465	if (cio)
2466		zio_nowait(cio);
2467	if (dio)
2468		zio_nowait(dio);
2469
2470	return (ZIO_PIPELINE_CONTINUE);
2471}
2472
2473ddt_entry_t *freedde; /* for debugging */
2474
2475static int
2476zio_ddt_free(zio_t *zio)
2477{
2478	spa_t *spa = zio->io_spa;
2479	blkptr_t *bp = zio->io_bp;
2480	ddt_t *ddt = ddt_select(spa, bp);
2481	ddt_entry_t *dde;
2482	ddt_phys_t *ddp;
2483
2484	ASSERT(BP_GET_DEDUP(bp));
2485	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2486
2487	ddt_enter(ddt);
2488	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2489	ddp = ddt_phys_select(dde, bp);
2490	ddt_phys_decref(ddp);
2491	ddt_exit(ddt);
2492
2493	return (ZIO_PIPELINE_CONTINUE);
2494}
2495
2496/*
2497 * ==========================================================================
2498 * Allocate and free blocks
2499 * ==========================================================================
2500 */
2501static int
2502zio_dva_allocate(zio_t *zio)
2503{
2504	spa_t *spa = zio->io_spa;
2505	metaslab_class_t *mc = spa_normal_class(spa);
2506	blkptr_t *bp = zio->io_bp;
2507	int error;
2508	int flags = 0;
2509
2510	if (zio->io_gang_leader == NULL) {
2511		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2512		zio->io_gang_leader = zio;
2513	}
2514
2515	ASSERT(BP_IS_HOLE(bp));
2516	ASSERT0(BP_GET_NDVAS(bp));
2517	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2518	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2519	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2520
2521	/*
2522	 * The dump device does not support gang blocks so allocation on
2523	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2524	 * the "fast" gang feature.
2525	 */
2526	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2527	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2528	    METASLAB_GANG_CHILD : 0;
2529	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2530	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2531
2532	if (error) {
2533		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2534		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2535		    error);
2536		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2537			return (zio_write_gang_block(zio));
2538		zio->io_error = error;
2539	}
2540
2541	return (ZIO_PIPELINE_CONTINUE);
2542}
2543
2544static int
2545zio_dva_free(zio_t *zio)
2546{
2547	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2548
2549	return (ZIO_PIPELINE_CONTINUE);
2550}
2551
2552static int
2553zio_dva_claim(zio_t *zio)
2554{
2555	int error;
2556
2557	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2558	if (error)
2559		zio->io_error = error;
2560
2561	return (ZIO_PIPELINE_CONTINUE);
2562}
2563
2564/*
2565 * Undo an allocation.  This is used by zio_done() when an I/O fails
2566 * and we want to give back the block we just allocated.
2567 * This handles both normal blocks and gang blocks.
2568 */
2569static void
2570zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2571{
2572	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2573	ASSERT(zio->io_bp_override == NULL);
2574
2575	if (!BP_IS_HOLE(bp))
2576		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2577
2578	if (gn != NULL) {
2579		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2580			zio_dva_unallocate(zio, gn->gn_child[g],
2581			    &gn->gn_gbh->zg_blkptr[g]);
2582		}
2583	}
2584}
2585
2586/*
2587 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2588 */
2589int
2590zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2591    uint64_t size, boolean_t use_slog)
2592{
2593	int error = 1;
2594
2595	ASSERT(txg > spa_syncing_txg(spa));
2596
2597	/*
2598	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2599	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2600	 * when allocating them.
2601	 */
2602	if (use_slog) {
2603		error = metaslab_alloc(spa, spa_log_class(spa), size,
2604		    new_bp, 1, txg, old_bp,
2605		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2606	}
2607
2608	if (error) {
2609		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2610		    new_bp, 1, txg, old_bp,
2611		    METASLAB_HINTBP_AVOID);
2612	}
2613
2614	if (error == 0) {
2615		BP_SET_LSIZE(new_bp, size);
2616		BP_SET_PSIZE(new_bp, size);
2617		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2618		BP_SET_CHECKSUM(new_bp,
2619		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2620		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2621		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2622		BP_SET_LEVEL(new_bp, 0);
2623		BP_SET_DEDUP(new_bp, 0);
2624		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2625	}
2626
2627	return (error);
2628}
2629
2630/*
2631 * Free an intent log block.
2632 */
2633void
2634zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2635{
2636	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2637	ASSERT(!BP_IS_GANG(bp));
2638
2639	zio_free(spa, txg, bp);
2640}
2641
2642/*
2643 * ==========================================================================
2644 * Read, write and delete to physical devices
2645 * ==========================================================================
2646 */
2647static int
2648zio_vdev_io_start(zio_t *zio)
2649{
2650	vdev_t *vd = zio->io_vd;
2651	uint64_t align;
2652	spa_t *spa = zio->io_spa;
2653	int ret;
2654
2655	ASSERT(zio->io_error == 0);
2656	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2657
2658	if (vd == NULL) {
2659		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2660			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2661
2662		/*
2663		 * The mirror_ops handle multiple DVAs in a single BP.
2664		 */
2665		return (vdev_mirror_ops.vdev_op_io_start(zio));
2666	}
2667
2668	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2669	    zio->io_priority == ZIO_PRIORITY_NOW) {
2670		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2671		return (ZIO_PIPELINE_CONTINUE);
2672	}
2673
2674	/*
2675	 * We keep track of time-sensitive I/Os so that the scan thread
2676	 * can quickly react to certain workloads.  In particular, we care
2677	 * about non-scrubbing, top-level reads and writes with the following
2678	 * characteristics:
2679	 * 	- synchronous writes of user data to non-slog devices
2680	 *	- any reads of user data
2681	 * When these conditions are met, adjust the timestamp of spa_last_io
2682	 * which allows the scan thread to adjust its workload accordingly.
2683	 */
2684	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2685	    vd == vd->vdev_top && !vd->vdev_islog &&
2686	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2687	    zio->io_txg != spa_syncing_txg(spa)) {
2688		uint64_t old = spa->spa_last_io;
2689		uint64_t new = ddi_get_lbolt64();
2690		if (old != new)
2691			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2692	}
2693
2694	align = 1ULL << vd->vdev_top->vdev_ashift;
2695
2696	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2697	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2698	    P2PHASE(zio->io_size, align) != 0) {
2699		/* Transform logical writes to be a full physical block size. */
2700		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2701		char *abuf = NULL;
2702		if (zio->io_type == ZIO_TYPE_READ ||
2703		    zio->io_type == ZIO_TYPE_WRITE)
2704			abuf = zio_buf_alloc(asize);
2705		ASSERT(vd == vd->vdev_top);
2706		if (zio->io_type == ZIO_TYPE_WRITE) {
2707			bcopy(zio->io_data, abuf, zio->io_size);
2708			bzero(abuf + zio->io_size, asize - zio->io_size);
2709		}
2710		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2711		    zio_subblock);
2712	}
2713
2714	/*
2715	 * If this is not a physical io, make sure that it is properly aligned
2716	 * before proceeding.
2717	 */
2718	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2719		ASSERT0(P2PHASE(zio->io_offset, align));
2720		ASSERT0(P2PHASE(zio->io_size, align));
2721	} else {
2722		/*
2723		 * For physical writes, we allow 512b aligned writes and assume
2724		 * the device will perform a read-modify-write as necessary.
2725		 */
2726		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2727		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2728	}
2729
2730	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2731
2732	/*
2733	 * If this is a repair I/O, and there's no self-healing involved --
2734	 * that is, we're just resilvering what we expect to resilver --
2735	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2736	 * This prevents spurious resilvering with nested replication.
2737	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2738	 * A is out of date, we'll read from C+D, then use the data to
2739	 * resilver A+B -- but we don't actually want to resilver B, just A.
2740	 * The top-level mirror has no way to know this, so instead we just
2741	 * discard unnecessary repairs as we work our way down the vdev tree.
2742	 * The same logic applies to any form of nested replication:
2743	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2744	 */
2745	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2746	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2747	    zio->io_txg != 0 &&	/* not a delegated i/o */
2748	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2749		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2750		zio_vdev_io_bypass(zio);
2751		return (ZIO_PIPELINE_CONTINUE);
2752	}
2753
2754	if (vd->vdev_ops->vdev_op_leaf) {
2755		switch (zio->io_type) {
2756		case ZIO_TYPE_READ:
2757			if (vdev_cache_read(zio))
2758				return (ZIO_PIPELINE_CONTINUE);
2759			/* FALLTHROUGH */
2760		case ZIO_TYPE_WRITE:
2761		case ZIO_TYPE_FREE:
2762			if ((zio = vdev_queue_io(zio)) == NULL)
2763				return (ZIO_PIPELINE_STOP);
2764
2765			if (!vdev_accessible(vd, zio)) {
2766				zio->io_error = SET_ERROR(ENXIO);
2767				zio_interrupt(zio);
2768				return (ZIO_PIPELINE_STOP);
2769			}
2770			break;
2771		}
2772		/*
2773		 * Note that we ignore repair writes for TRIM because they can
2774		 * conflict with normal writes. This isn't an issue because, by
2775		 * definition, we only repair blocks that aren't freed.
2776		 */
2777		if (zio->io_type == ZIO_TYPE_WRITE &&
2778		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2779		    !trim_map_write_start(zio))
2780			return (ZIO_PIPELINE_STOP);
2781	}
2782
2783	ret = vd->vdev_ops->vdev_op_io_start(zio);
2784	ASSERT(ret == ZIO_PIPELINE_STOP);
2785
2786	return (ret);
2787}
2788
2789static int
2790zio_vdev_io_done(zio_t *zio)
2791{
2792	vdev_t *vd = zio->io_vd;
2793	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2794	boolean_t unexpected_error = B_FALSE;
2795
2796	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2797		return (ZIO_PIPELINE_STOP);
2798
2799	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2800	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2801
2802	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2803	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2804	    zio->io_type == ZIO_TYPE_FREE)) {
2805
2806		if (zio->io_type == ZIO_TYPE_WRITE &&
2807		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2808			trim_map_write_done(zio);
2809
2810		vdev_queue_io_done(zio);
2811
2812		if (zio->io_type == ZIO_TYPE_WRITE)
2813			vdev_cache_write(zio);
2814
2815		if (zio_injection_enabled && zio->io_error == 0)
2816			zio->io_error = zio_handle_device_injection(vd,
2817			    zio, EIO);
2818
2819		if (zio_injection_enabled && zio->io_error == 0)
2820			zio->io_error = zio_handle_label_injection(zio, EIO);
2821
2822		if (zio->io_error) {
2823			if (zio->io_error == ENOTSUP &&
2824			    zio->io_type == ZIO_TYPE_FREE) {
2825				/* Not all devices support TRIM. */
2826			} else if (!vdev_accessible(vd, zio)) {
2827				zio->io_error = SET_ERROR(ENXIO);
2828			} else {
2829				unexpected_error = B_TRUE;
2830			}
2831		}
2832	}
2833
2834	ops->vdev_op_io_done(zio);
2835
2836	if (unexpected_error)
2837		VERIFY(vdev_probe(vd, zio) == NULL);
2838
2839	return (ZIO_PIPELINE_CONTINUE);
2840}
2841
2842/*
2843 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2844 * disk, and use that to finish the checksum ereport later.
2845 */
2846static void
2847zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2848    const void *good_buf)
2849{
2850	/* no processing needed */
2851	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2852}
2853
2854/*ARGSUSED*/
2855void
2856zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2857{
2858	void *buf = zio_buf_alloc(zio->io_size);
2859
2860	bcopy(zio->io_data, buf, zio->io_size);
2861
2862	zcr->zcr_cbinfo = zio->io_size;
2863	zcr->zcr_cbdata = buf;
2864	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2865	zcr->zcr_free = zio_buf_free;
2866}
2867
2868static int
2869zio_vdev_io_assess(zio_t *zio)
2870{
2871	vdev_t *vd = zio->io_vd;
2872
2873	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2874		return (ZIO_PIPELINE_STOP);
2875
2876	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2877		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2878
2879	if (zio->io_vsd != NULL) {
2880		zio->io_vsd_ops->vsd_free(zio);
2881		zio->io_vsd = NULL;
2882	}
2883
2884	if (zio_injection_enabled && zio->io_error == 0)
2885		zio->io_error = zio_handle_fault_injection(zio, EIO);
2886
2887	if (zio->io_type == ZIO_TYPE_FREE &&
2888	    zio->io_priority != ZIO_PRIORITY_NOW) {
2889		switch (zio->io_error) {
2890		case 0:
2891			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2892			ZIO_TRIM_STAT_BUMP(success);
2893			break;
2894		case EOPNOTSUPP:
2895			ZIO_TRIM_STAT_BUMP(unsupported);
2896			break;
2897		default:
2898			ZIO_TRIM_STAT_BUMP(failed);
2899			break;
2900		}
2901	}
2902
2903	/*
2904	 * If the I/O failed, determine whether we should attempt to retry it.
2905	 *
2906	 * On retry, we cut in line in the issue queue, since we don't want
2907	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2908	 */
2909	if (zio->io_error && vd == NULL &&
2910	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2911		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2912		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2913		zio->io_error = 0;
2914		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2915		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2916		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2917		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2918		    zio_requeue_io_start_cut_in_line);
2919		return (ZIO_PIPELINE_STOP);
2920	}
2921
2922	/*
2923	 * If we got an error on a leaf device, convert it to ENXIO
2924	 * if the device is not accessible at all.
2925	 */
2926	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2927	    !vdev_accessible(vd, zio))
2928		zio->io_error = SET_ERROR(ENXIO);
2929
2930	/*
2931	 * If we can't write to an interior vdev (mirror or RAID-Z),
2932	 * set vdev_cant_write so that we stop trying to allocate from it.
2933	 */
2934	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2935	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2936		vd->vdev_cant_write = B_TRUE;
2937	}
2938
2939	if (zio->io_error)
2940		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2941
2942	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2943	    zio->io_physdone != NULL) {
2944		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2945		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2946		zio->io_physdone(zio->io_logical);
2947	}
2948
2949	return (ZIO_PIPELINE_CONTINUE);
2950}
2951
2952void
2953zio_vdev_io_reissue(zio_t *zio)
2954{
2955	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2956	ASSERT(zio->io_error == 0);
2957
2958	zio->io_stage >>= 1;
2959}
2960
2961void
2962zio_vdev_io_redone(zio_t *zio)
2963{
2964	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2965
2966	zio->io_stage >>= 1;
2967}
2968
2969void
2970zio_vdev_io_bypass(zio_t *zio)
2971{
2972	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2973	ASSERT(zio->io_error == 0);
2974
2975	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2976	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2977}
2978
2979/*
2980 * ==========================================================================
2981 * Generate and verify checksums
2982 * ==========================================================================
2983 */
2984static int
2985zio_checksum_generate(zio_t *zio)
2986{
2987	blkptr_t *bp = zio->io_bp;
2988	enum zio_checksum checksum;
2989
2990	if (bp == NULL) {
2991		/*
2992		 * This is zio_write_phys().
2993		 * We're either generating a label checksum, or none at all.
2994		 */
2995		checksum = zio->io_prop.zp_checksum;
2996
2997		if (checksum == ZIO_CHECKSUM_OFF)
2998			return (ZIO_PIPELINE_CONTINUE);
2999
3000		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3001	} else {
3002		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3003			ASSERT(!IO_IS_ALLOCATING(zio));
3004			checksum = ZIO_CHECKSUM_GANG_HEADER;
3005		} else {
3006			checksum = BP_GET_CHECKSUM(bp);
3007		}
3008	}
3009
3010	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3011
3012	return (ZIO_PIPELINE_CONTINUE);
3013}
3014
3015static int
3016zio_checksum_verify(zio_t *zio)
3017{
3018	zio_bad_cksum_t info;
3019	blkptr_t *bp = zio->io_bp;
3020	int error;
3021
3022	ASSERT(zio->io_vd != NULL);
3023
3024	if (bp == NULL) {
3025		/*
3026		 * This is zio_read_phys().
3027		 * We're either verifying a label checksum, or nothing at all.
3028		 */
3029		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3030			return (ZIO_PIPELINE_CONTINUE);
3031
3032		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3033	}
3034
3035	if ((error = zio_checksum_error(zio, &info)) != 0) {
3036		zio->io_error = error;
3037		if (error == ECKSUM &&
3038		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3039			zfs_ereport_start_checksum(zio->io_spa,
3040			    zio->io_vd, zio, zio->io_offset,
3041			    zio->io_size, NULL, &info);
3042		}
3043	}
3044
3045	return (ZIO_PIPELINE_CONTINUE);
3046}
3047
3048/*
3049 * Called by RAID-Z to ensure we don't compute the checksum twice.
3050 */
3051void
3052zio_checksum_verified(zio_t *zio)
3053{
3054	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3055}
3056
3057/*
3058 * ==========================================================================
3059 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3060 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3061 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3062 * indicate errors that are specific to one I/O, and most likely permanent.
3063 * Any other error is presumed to be worse because we weren't expecting it.
3064 * ==========================================================================
3065 */
3066int
3067zio_worst_error(int e1, int e2)
3068{
3069	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3070	int r1, r2;
3071
3072	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3073		if (e1 == zio_error_rank[r1])
3074			break;
3075
3076	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3077		if (e2 == zio_error_rank[r2])
3078			break;
3079
3080	return (r1 > r2 ? e1 : e2);
3081}
3082
3083/*
3084 * ==========================================================================
3085 * I/O completion
3086 * ==========================================================================
3087 */
3088static int
3089zio_ready(zio_t *zio)
3090{
3091	blkptr_t *bp = zio->io_bp;
3092	zio_t *pio, *pio_next;
3093
3094	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3095	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3096		return (ZIO_PIPELINE_STOP);
3097
3098	if (zio->io_ready) {
3099		ASSERT(IO_IS_ALLOCATING(zio));
3100		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3101		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3102		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3103
3104		zio->io_ready(zio);
3105	}
3106
3107	if (bp != NULL && bp != &zio->io_bp_copy)
3108		zio->io_bp_copy = *bp;
3109
3110	if (zio->io_error)
3111		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3112
3113	mutex_enter(&zio->io_lock);
3114	zio->io_state[ZIO_WAIT_READY] = 1;
3115	pio = zio_walk_parents(zio);
3116	mutex_exit(&zio->io_lock);
3117
3118	/*
3119	 * As we notify zio's parents, new parents could be added.
3120	 * New parents go to the head of zio's io_parent_list, however,
3121	 * so we will (correctly) not notify them.  The remainder of zio's
3122	 * io_parent_list, from 'pio_next' onward, cannot change because
3123	 * all parents must wait for us to be done before they can be done.
3124	 */
3125	for (; pio != NULL; pio = pio_next) {
3126		pio_next = zio_walk_parents(zio);
3127		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3128	}
3129
3130	if (zio->io_flags & ZIO_FLAG_NODATA) {
3131		if (BP_IS_GANG(bp)) {
3132			zio->io_flags &= ~ZIO_FLAG_NODATA;
3133		} else {
3134			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3135			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3136		}
3137	}
3138
3139	if (zio_injection_enabled &&
3140	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3141		zio_handle_ignored_writes(zio);
3142
3143	return (ZIO_PIPELINE_CONTINUE);
3144}
3145
3146static int
3147zio_done(zio_t *zio)
3148{
3149	spa_t *spa = zio->io_spa;
3150	zio_t *lio = zio->io_logical;
3151	blkptr_t *bp = zio->io_bp;
3152	vdev_t *vd = zio->io_vd;
3153	uint64_t psize = zio->io_size;
3154	zio_t *pio, *pio_next;
3155
3156	/*
3157	 * If our children haven't all completed,
3158	 * wait for them and then repeat this pipeline stage.
3159	 */
3160	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3161	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3162	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3163	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3164		return (ZIO_PIPELINE_STOP);
3165
3166	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3167		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3168			ASSERT(zio->io_children[c][w] == 0);
3169
3170	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3171		ASSERT(bp->blk_pad[0] == 0);
3172		ASSERT(bp->blk_pad[1] == 0);
3173		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3174		    (bp == zio_unique_parent(zio)->io_bp));
3175		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3176		    zio->io_bp_override == NULL &&
3177		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3178			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3179			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3180			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3181			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3182		}
3183		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3184			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3185	}
3186
3187	/*
3188	 * If there were child vdev/gang/ddt errors, they apply to us now.
3189	 */
3190	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3191	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3192	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3193
3194	/*
3195	 * If the I/O on the transformed data was successful, generate any
3196	 * checksum reports now while we still have the transformed data.
3197	 */
3198	if (zio->io_error == 0) {
3199		while (zio->io_cksum_report != NULL) {
3200			zio_cksum_report_t *zcr = zio->io_cksum_report;
3201			uint64_t align = zcr->zcr_align;
3202			uint64_t asize = P2ROUNDUP(psize, align);
3203			char *abuf = zio->io_data;
3204
3205			if (asize != psize) {
3206				abuf = zio_buf_alloc(asize);
3207				bcopy(zio->io_data, abuf, psize);
3208				bzero(abuf + psize, asize - psize);
3209			}
3210
3211			zio->io_cksum_report = zcr->zcr_next;
3212			zcr->zcr_next = NULL;
3213			zcr->zcr_finish(zcr, abuf);
3214			zfs_ereport_free_checksum(zcr);
3215
3216			if (asize != psize)
3217				zio_buf_free(abuf, asize);
3218		}
3219	}
3220
3221	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3222
3223	vdev_stat_update(zio, psize);
3224
3225	if (zio->io_error) {
3226		/*
3227		 * If this I/O is attached to a particular vdev,
3228		 * generate an error message describing the I/O failure
3229		 * at the block level.  We ignore these errors if the
3230		 * device is currently unavailable.
3231		 */
3232		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3233			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3234
3235		if ((zio->io_error == EIO || !(zio->io_flags &
3236		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3237		    zio == lio) {
3238			/*
3239			 * For logical I/O requests, tell the SPA to log the
3240			 * error and generate a logical data ereport.
3241			 */
3242			spa_log_error(spa, zio);
3243			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3244			    0, 0);
3245		}
3246	}
3247
3248	if (zio->io_error && zio == lio) {
3249		/*
3250		 * Determine whether zio should be reexecuted.  This will
3251		 * propagate all the way to the root via zio_notify_parent().
3252		 */
3253		ASSERT(vd == NULL && bp != NULL);
3254		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3255
3256		if (IO_IS_ALLOCATING(zio) &&
3257		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3258			if (zio->io_error != ENOSPC)
3259				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3260			else
3261				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3262		}
3263
3264		if ((zio->io_type == ZIO_TYPE_READ ||
3265		    zio->io_type == ZIO_TYPE_FREE) &&
3266		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3267		    zio->io_error == ENXIO &&
3268		    spa_load_state(spa) == SPA_LOAD_NONE &&
3269		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3270			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3271
3272		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3273			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3274
3275		/*
3276		 * Here is a possibly good place to attempt to do
3277		 * either combinatorial reconstruction or error correction
3278		 * based on checksums.  It also might be a good place
3279		 * to send out preliminary ereports before we suspend
3280		 * processing.
3281		 */
3282	}
3283
3284	/*
3285	 * If there were logical child errors, they apply to us now.
3286	 * We defer this until now to avoid conflating logical child
3287	 * errors with errors that happened to the zio itself when
3288	 * updating vdev stats and reporting FMA events above.
3289	 */
3290	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3291
3292	if ((zio->io_error || zio->io_reexecute) &&
3293	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3294	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3295		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3296
3297	zio_gang_tree_free(&zio->io_gang_tree);
3298
3299	/*
3300	 * Godfather I/Os should never suspend.
3301	 */
3302	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3303	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3304		zio->io_reexecute = 0;
3305
3306	if (zio->io_reexecute) {
3307		/*
3308		 * This is a logical I/O that wants to reexecute.
3309		 *
3310		 * Reexecute is top-down.  When an i/o fails, if it's not
3311		 * the root, it simply notifies its parent and sticks around.
3312		 * The parent, seeing that it still has children in zio_done(),
3313		 * does the same.  This percolates all the way up to the root.
3314		 * The root i/o will reexecute or suspend the entire tree.
3315		 *
3316		 * This approach ensures that zio_reexecute() honors
3317		 * all the original i/o dependency relationships, e.g.
3318		 * parents not executing until children are ready.
3319		 */
3320		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3321
3322		zio->io_gang_leader = NULL;
3323
3324		mutex_enter(&zio->io_lock);
3325		zio->io_state[ZIO_WAIT_DONE] = 1;
3326		mutex_exit(&zio->io_lock);
3327
3328		/*
3329		 * "The Godfather" I/O monitors its children but is
3330		 * not a true parent to them. It will track them through
3331		 * the pipeline but severs its ties whenever they get into
3332		 * trouble (e.g. suspended). This allows "The Godfather"
3333		 * I/O to return status without blocking.
3334		 */
3335		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3336			zio_link_t *zl = zio->io_walk_link;
3337			pio_next = zio_walk_parents(zio);
3338
3339			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3340			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3341				zio_remove_child(pio, zio, zl);
3342				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3343			}
3344		}
3345
3346		if ((pio = zio_unique_parent(zio)) != NULL) {
3347			/*
3348			 * We're not a root i/o, so there's nothing to do
3349			 * but notify our parent.  Don't propagate errors
3350			 * upward since we haven't permanently failed yet.
3351			 */
3352			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3353			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3354			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3355		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3356			/*
3357			 * We'd fail again if we reexecuted now, so suspend
3358			 * until conditions improve (e.g. device comes online).
3359			 */
3360			zio_suspend(spa, zio);
3361		} else {
3362			/*
3363			 * Reexecution is potentially a huge amount of work.
3364			 * Hand it off to the otherwise-unused claim taskq.
3365			 */
3366#if defined(illumos) || !defined(_KERNEL)
3367			ASSERT(zio->io_tqent.tqent_next == NULL);
3368#else
3369			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3370#endif
3371			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3372			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3373			    0, &zio->io_tqent);
3374		}
3375		return (ZIO_PIPELINE_STOP);
3376	}
3377
3378	ASSERT(zio->io_child_count == 0);
3379	ASSERT(zio->io_reexecute == 0);
3380	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3381
3382	/*
3383	 * Report any checksum errors, since the I/O is complete.
3384	 */
3385	while (zio->io_cksum_report != NULL) {
3386		zio_cksum_report_t *zcr = zio->io_cksum_report;
3387		zio->io_cksum_report = zcr->zcr_next;
3388		zcr->zcr_next = NULL;
3389		zcr->zcr_finish(zcr, NULL);
3390		zfs_ereport_free_checksum(zcr);
3391	}
3392
3393	/*
3394	 * It is the responsibility of the done callback to ensure that this
3395	 * particular zio is no longer discoverable for adoption, and as
3396	 * such, cannot acquire any new parents.
3397	 */
3398	if (zio->io_done)
3399		zio->io_done(zio);
3400
3401	mutex_enter(&zio->io_lock);
3402	zio->io_state[ZIO_WAIT_DONE] = 1;
3403	mutex_exit(&zio->io_lock);
3404
3405	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3406		zio_link_t *zl = zio->io_walk_link;
3407		pio_next = zio_walk_parents(zio);
3408		zio_remove_child(pio, zio, zl);
3409		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3410	}
3411
3412	if (zio->io_waiter != NULL) {
3413		mutex_enter(&zio->io_lock);
3414		zio->io_executor = NULL;
3415		cv_broadcast(&zio->io_cv);
3416		mutex_exit(&zio->io_lock);
3417	} else {
3418		zio_destroy(zio);
3419	}
3420
3421	return (ZIO_PIPELINE_STOP);
3422}
3423
3424/*
3425 * ==========================================================================
3426 * I/O pipeline definition
3427 * ==========================================================================
3428 */
3429static zio_pipe_stage_t *zio_pipeline[] = {
3430	NULL,
3431	zio_read_bp_init,
3432	zio_free_bp_init,
3433	zio_issue_async,
3434	zio_write_bp_init,
3435	zio_checksum_generate,
3436	zio_nop_write,
3437	zio_ddt_read_start,
3438	zio_ddt_read_done,
3439	zio_ddt_write,
3440	zio_ddt_free,
3441	zio_gang_assemble,
3442	zio_gang_issue,
3443	zio_dva_allocate,
3444	zio_dva_free,
3445	zio_dva_claim,
3446	zio_ready,
3447	zio_vdev_io_start,
3448	zio_vdev_io_done,
3449	zio_vdev_io_assess,
3450	zio_checksum_verify,
3451	zio_done
3452};
3453
3454/* dnp is the dnode for zb1->zb_object */
3455boolean_t
3456zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3457    const zbookmark_phys_t *zb2)
3458{
3459	uint64_t zb1nextL0, zb2thisobj;
3460
3461	ASSERT(zb1->zb_objset == zb2->zb_objset);
3462	ASSERT(zb2->zb_level == 0);
3463
3464	/* The objset_phys_t isn't before anything. */
3465	if (dnp == NULL)
3466		return (B_FALSE);
3467
3468	zb1nextL0 = (zb1->zb_blkid + 1) <<
3469	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3470
3471	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3472	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3473
3474	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3475		uint64_t nextobj = zb1nextL0 *
3476		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3477		return (nextobj <= zb2thisobj);
3478	}
3479
3480	if (zb1->zb_object < zb2thisobj)
3481		return (B_TRUE);
3482	if (zb1->zb_object > zb2thisobj)
3483		return (B_FALSE);
3484	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3485		return (B_FALSE);
3486	return (zb1nextL0 <= zb2->zb_blkid);
3487}
3488