zio.c revision 277586
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/sysmacros.h>
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/txg.h>
32#include <sys/spa_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio_impl.h>
35#include <sys/zio_compress.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/ddt.h>
40#include <sys/trim_map.h>
41#include <sys/blkptr.h>
42#include <sys/zfeature.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
46#if defined(__amd64__)
47static int zio_use_uma = 1;
48#else
49static int zio_use_uma = 0;
50#endif
51TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
52SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
53    "Use uma(9) for ZIO allocations");
54static int zio_exclude_metadata = 0;
55TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82/*
83 * ==========================================================================
84 * I/O kmem caches
85 * ==========================================================================
86 */
87kmem_cache_t *zio_cache;
88kmem_cache_t *zio_link_cache;
89kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91
92#ifdef _KERNEL
93extern vmem_t *zio_alloc_arena;
94#endif
95
96/*
97 * The following actions directly effect the spa's sync-to-convergence logic.
98 * The values below define the sync pass when we start performing the action.
99 * Care should be taken when changing these values as they directly impact
100 * spa_sync() performance. Tuning these values may introduce subtle performance
101 * pathologies and should only be done in the context of performance analysis.
102 * These tunables will eventually be removed and replaced with #defines once
103 * enough analysis has been done to determine optimal values.
104 *
105 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
106 * regular blocks are not deferred.
107 */
108int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
109TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
110SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
111    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
112int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
113TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
114SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
115    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
116int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
117TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
118SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
119    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
120
121/*
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
124 */
125#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126
127boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
128
129#ifdef ZFS_DEBUG
130int zio_buf_debug_limit = 16384;
131#else
132int zio_buf_debug_limit = 0;
133#endif
134
135void
136zio_init(void)
137{
138	size_t c;
139	zio_cache = kmem_cache_create("zio_cache",
140	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
141	zio_link_cache = kmem_cache_create("zio_link_cache",
142	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
143	if (!zio_use_uma)
144		goto out;
145
146	/*
147	 * For small buffers, we want a cache for each multiple of
148	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
149	 * for each quarter-power of 2.
150	 */
151	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
152		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
153		size_t p2 = size;
154		size_t align = 0;
155		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
156
157		while (!ISP2(p2))
158			p2 &= p2 - 1;
159
160#ifdef illumos
161#ifndef _KERNEL
162		/*
163		 * If we are using watchpoints, put each buffer on its own page,
164		 * to eliminate the performance overhead of trapping to the
165		 * kernel when modifying a non-watched buffer that shares the
166		 * page with a watched buffer.
167		 */
168		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
169			continue;
170#endif
171#endif /* illumos */
172		if (size <= 4 * SPA_MINBLOCKSIZE) {
173			align = SPA_MINBLOCKSIZE;
174		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
175			align = MIN(p2 >> 2, PAGESIZE);
176		}
177
178		if (align != 0) {
179			char name[36];
180			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
181			zio_buf_cache[c] = kmem_cache_create(name, size,
182			    align, NULL, NULL, NULL, NULL, NULL, cflags);
183
184			/*
185			 * Since zio_data bufs do not appear in crash dumps, we
186			 * pass KMC_NOTOUCH so that no allocator metadata is
187			 * stored with the buffers.
188			 */
189			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190			zio_data_buf_cache[c] = kmem_cache_create(name, size,
191			    align, NULL, NULL, NULL, NULL, NULL,
192			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
193		}
194	}
195
196	while (--c != 0) {
197		ASSERT(zio_buf_cache[c] != NULL);
198		if (zio_buf_cache[c - 1] == NULL)
199			zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201		ASSERT(zio_data_buf_cache[c] != NULL);
202		if (zio_data_buf_cache[c - 1] == NULL)
203			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204	}
205out:
206
207	zio_inject_init();
208
209	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
210	    KSTAT_TYPE_NAMED,
211	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
212	    KSTAT_FLAG_VIRTUAL);
213
214	if (zio_trim_ksp != NULL) {
215		zio_trim_ksp->ks_data = &zio_trim_stats;
216		kstat_install(zio_trim_ksp);
217	}
218}
219
220void
221zio_fini(void)
222{
223	size_t c;
224	kmem_cache_t *last_cache = NULL;
225	kmem_cache_t *last_data_cache = NULL;
226
227	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
228		if (zio_buf_cache[c] != last_cache) {
229			last_cache = zio_buf_cache[c];
230			kmem_cache_destroy(zio_buf_cache[c]);
231		}
232		zio_buf_cache[c] = NULL;
233
234		if (zio_data_buf_cache[c] != last_data_cache) {
235			last_data_cache = zio_data_buf_cache[c];
236			kmem_cache_destroy(zio_data_buf_cache[c]);
237		}
238		zio_data_buf_cache[c] = NULL;
239	}
240
241	kmem_cache_destroy(zio_link_cache);
242	kmem_cache_destroy(zio_cache);
243
244	zio_inject_fini();
245
246	if (zio_trim_ksp != NULL) {
247		kstat_delete(zio_trim_ksp);
248		zio_trim_ksp = NULL;
249	}
250}
251
252/*
253 * ==========================================================================
254 * Allocate and free I/O buffers
255 * ==========================================================================
256 */
257
258/*
259 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
260 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
261 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
262 * excess / transient data in-core during a crashdump.
263 */
264void *
265zio_buf_alloc(size_t size)
266{
267	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
269
270	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271
272	if (zio_use_uma)
273		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274	else
275		return (kmem_alloc(size, KM_SLEEP|flags));
276}
277
278/*
279 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
280 * crashdump if the kernel panics.  This exists so that we will limit the amount
281 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
282 * of kernel heap dumped to disk when the kernel panics)
283 */
284void *
285zio_data_buf_alloc(size_t size)
286{
287	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
288
289	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
290
291	if (zio_use_uma)
292		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
293	else
294		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
295}
296
297void
298zio_buf_free(void *buf, size_t size)
299{
300	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
301
302	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
303
304	if (zio_use_uma)
305		kmem_cache_free(zio_buf_cache[c], buf);
306	else
307		kmem_free(buf, size);
308}
309
310void
311zio_data_buf_free(void *buf, size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		kmem_cache_free(zio_data_buf_cache[c], buf);
319	else
320		kmem_free(buf, size);
321}
322
323/*
324 * ==========================================================================
325 * Push and pop I/O transform buffers
326 * ==========================================================================
327 */
328static void
329zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
330	zio_transform_func_t *transform)
331{
332	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
333
334	zt->zt_orig_data = zio->io_data;
335	zt->zt_orig_size = zio->io_size;
336	zt->zt_bufsize = bufsize;
337	zt->zt_transform = transform;
338
339	zt->zt_next = zio->io_transform_stack;
340	zio->io_transform_stack = zt;
341
342	zio->io_data = data;
343	zio->io_size = size;
344}
345
346static void
347zio_pop_transforms(zio_t *zio)
348{
349	zio_transform_t *zt;
350
351	while ((zt = zio->io_transform_stack) != NULL) {
352		if (zt->zt_transform != NULL)
353			zt->zt_transform(zio,
354			    zt->zt_orig_data, zt->zt_orig_size);
355
356		if (zt->zt_bufsize != 0)
357			zio_buf_free(zio->io_data, zt->zt_bufsize);
358
359		zio->io_data = zt->zt_orig_data;
360		zio->io_size = zt->zt_orig_size;
361		zio->io_transform_stack = zt->zt_next;
362
363		kmem_free(zt, sizeof (zio_transform_t));
364	}
365}
366
367/*
368 * ==========================================================================
369 * I/O transform callbacks for subblocks and decompression
370 * ==========================================================================
371 */
372static void
373zio_subblock(zio_t *zio, void *data, uint64_t size)
374{
375	ASSERT(zio->io_size > size);
376
377	if (zio->io_type == ZIO_TYPE_READ)
378		bcopy(zio->io_data, data, size);
379}
380
381static void
382zio_decompress(zio_t *zio, void *data, uint64_t size)
383{
384	if (zio->io_error == 0 &&
385	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
386	    zio->io_data, data, zio->io_size, size) != 0)
387		zio->io_error = SET_ERROR(EIO);
388}
389
390/*
391 * ==========================================================================
392 * I/O parent/child relationships and pipeline interlocks
393 * ==========================================================================
394 */
395/*
396 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
397 *        continue calling these functions until they return NULL.
398 *        Otherwise, the next caller will pick up the list walk in
399 *        some indeterminate state.  (Otherwise every caller would
400 *        have to pass in a cookie to keep the state represented by
401 *        io_walk_link, which gets annoying.)
402 */
403zio_t *
404zio_walk_parents(zio_t *cio)
405{
406	zio_link_t *zl = cio->io_walk_link;
407	list_t *pl = &cio->io_parent_list;
408
409	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
410	cio->io_walk_link = zl;
411
412	if (zl == NULL)
413		return (NULL);
414
415	ASSERT(zl->zl_child == cio);
416	return (zl->zl_parent);
417}
418
419zio_t *
420zio_walk_children(zio_t *pio)
421{
422	zio_link_t *zl = pio->io_walk_link;
423	list_t *cl = &pio->io_child_list;
424
425	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
426	pio->io_walk_link = zl;
427
428	if (zl == NULL)
429		return (NULL);
430
431	ASSERT(zl->zl_parent == pio);
432	return (zl->zl_child);
433}
434
435zio_t *
436zio_unique_parent(zio_t *cio)
437{
438	zio_t *pio = zio_walk_parents(cio);
439
440	VERIFY(zio_walk_parents(cio) == NULL);
441	return (pio);
442}
443
444void
445zio_add_child(zio_t *pio, zio_t *cio)
446{
447	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
448
449	/*
450	 * Logical I/Os can have logical, gang, or vdev children.
451	 * Gang I/Os can have gang or vdev children.
452	 * Vdev I/Os can only have vdev children.
453	 * The following ASSERT captures all of these constraints.
454	 */
455	ASSERT(cio->io_child_type <= pio->io_child_type);
456
457	zl->zl_parent = pio;
458	zl->zl_child = cio;
459
460	mutex_enter(&cio->io_lock);
461	mutex_enter(&pio->io_lock);
462
463	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
464
465	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
466		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
467
468	list_insert_head(&pio->io_child_list, zl);
469	list_insert_head(&cio->io_parent_list, zl);
470
471	pio->io_child_count++;
472	cio->io_parent_count++;
473
474	mutex_exit(&pio->io_lock);
475	mutex_exit(&cio->io_lock);
476}
477
478static void
479zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
480{
481	ASSERT(zl->zl_parent == pio);
482	ASSERT(zl->zl_child == cio);
483
484	mutex_enter(&cio->io_lock);
485	mutex_enter(&pio->io_lock);
486
487	list_remove(&pio->io_child_list, zl);
488	list_remove(&cio->io_parent_list, zl);
489
490	pio->io_child_count--;
491	cio->io_parent_count--;
492
493	mutex_exit(&pio->io_lock);
494	mutex_exit(&cio->io_lock);
495
496	kmem_cache_free(zio_link_cache, zl);
497}
498
499static boolean_t
500zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
501{
502	uint64_t *countp = &zio->io_children[child][wait];
503	boolean_t waiting = B_FALSE;
504
505	mutex_enter(&zio->io_lock);
506	ASSERT(zio->io_stall == NULL);
507	if (*countp != 0) {
508		zio->io_stage >>= 1;
509		zio->io_stall = countp;
510		waiting = B_TRUE;
511	}
512	mutex_exit(&zio->io_lock);
513
514	return (waiting);
515}
516
517static void
518zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
519{
520	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
521	int *errorp = &pio->io_child_error[zio->io_child_type];
522
523	mutex_enter(&pio->io_lock);
524	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
525		*errorp = zio_worst_error(*errorp, zio->io_error);
526	pio->io_reexecute |= zio->io_reexecute;
527	ASSERT3U(*countp, >, 0);
528
529	(*countp)--;
530
531	if (*countp == 0 && pio->io_stall == countp) {
532		pio->io_stall = NULL;
533		mutex_exit(&pio->io_lock);
534		zio_execute(pio);
535	} else {
536		mutex_exit(&pio->io_lock);
537	}
538}
539
540static void
541zio_inherit_child_errors(zio_t *zio, enum zio_child c)
542{
543	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
544		zio->io_error = zio->io_child_error[c];
545}
546
547/*
548 * ==========================================================================
549 * Create the various types of I/O (read, write, free, etc)
550 * ==========================================================================
551 */
552static zio_t *
553zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
554    void *data, uint64_t size, zio_done_func_t *done, void *private,
555    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
556    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
557    enum zio_stage stage, enum zio_stage pipeline)
558{
559	zio_t *zio;
560
561	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
562	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
563	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
564
565	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
566	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
567	ASSERT(vd || stage == ZIO_STAGE_OPEN);
568
569	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
570	bzero(zio, sizeof (zio_t));
571
572	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
573	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
574
575	list_create(&zio->io_parent_list, sizeof (zio_link_t),
576	    offsetof(zio_link_t, zl_parent_node));
577	list_create(&zio->io_child_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_child_node));
579
580	if (vd != NULL)
581		zio->io_child_type = ZIO_CHILD_VDEV;
582	else if (flags & ZIO_FLAG_GANG_CHILD)
583		zio->io_child_type = ZIO_CHILD_GANG;
584	else if (flags & ZIO_FLAG_DDT_CHILD)
585		zio->io_child_type = ZIO_CHILD_DDT;
586	else
587		zio->io_child_type = ZIO_CHILD_LOGICAL;
588
589	if (bp != NULL) {
590		zio->io_bp = (blkptr_t *)bp;
591		zio->io_bp_copy = *bp;
592		zio->io_bp_orig = *bp;
593		if (type != ZIO_TYPE_WRITE ||
594		    zio->io_child_type == ZIO_CHILD_DDT)
595			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
596		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
597			zio->io_logical = zio;
598		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
599			pipeline |= ZIO_GANG_STAGES;
600	}
601
602	zio->io_spa = spa;
603	zio->io_txg = txg;
604	zio->io_done = done;
605	zio->io_private = private;
606	zio->io_type = type;
607	zio->io_priority = priority;
608	zio->io_vd = vd;
609	zio->io_offset = offset;
610	zio->io_orig_data = zio->io_data = data;
611	zio->io_orig_size = zio->io_size = size;
612	zio->io_orig_flags = zio->io_flags = flags;
613	zio->io_orig_stage = zio->io_stage = stage;
614	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
615
616	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618
619	if (zb != NULL)
620		zio->io_bookmark = *zb;
621
622	if (pio != NULL) {
623		if (zio->io_logical == NULL)
624			zio->io_logical = pio->io_logical;
625		if (zio->io_child_type == ZIO_CHILD_GANG)
626			zio->io_gang_leader = pio->io_gang_leader;
627		zio_add_child(pio, zio);
628	}
629
630	return (zio);
631}
632
633static void
634zio_destroy(zio_t *zio)
635{
636	list_destroy(&zio->io_parent_list);
637	list_destroy(&zio->io_child_list);
638	mutex_destroy(&zio->io_lock);
639	cv_destroy(&zio->io_cv);
640	kmem_cache_free(zio_cache, zio);
641}
642
643zio_t *
644zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
645    void *private, enum zio_flag flags)
646{
647	zio_t *zio;
648
649	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
650	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
651	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
652
653	return (zio);
654}
655
656zio_t *
657zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
658{
659	return (zio_null(NULL, spa, NULL, done, private, flags));
660}
661
662void
663zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
664{
665	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
666		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
667		    bp, (longlong_t)BP_GET_TYPE(bp));
668	}
669	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
670	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
671		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
672		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
673	}
674	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
675	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
676		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
677		    bp, (longlong_t)BP_GET_COMPRESS(bp));
678	}
679	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
680		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
681		    bp, (longlong_t)BP_GET_LSIZE(bp));
682	}
683	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
684		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
685		    bp, (longlong_t)BP_GET_PSIZE(bp));
686	}
687
688	if (BP_IS_EMBEDDED(bp)) {
689		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
690			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
691			    bp, (longlong_t)BPE_GET_ETYPE(bp));
692		}
693	}
694
695	/*
696	 * Pool-specific checks.
697	 *
698	 * Note: it would be nice to verify that the blk_birth and
699	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
700	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
701	 * that are in the log) to be arbitrarily large.
702	 */
703	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
704		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
705		if (vdevid >= spa->spa_root_vdev->vdev_children) {
706			zfs_panic_recover("blkptr at %p DVA %u has invalid "
707			    "VDEV %llu",
708			    bp, i, (longlong_t)vdevid);
709		}
710		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
711		if (vd == NULL) {
712			zfs_panic_recover("blkptr at %p DVA %u has invalid "
713			    "VDEV %llu",
714			    bp, i, (longlong_t)vdevid);
715		}
716		if (vd->vdev_ops == &vdev_hole_ops) {
717			zfs_panic_recover("blkptr at %p DVA %u has hole "
718			    "VDEV %llu",
719			    bp, i, (longlong_t)vdevid);
720
721		}
722		if (vd->vdev_ops == &vdev_missing_ops) {
723			/*
724			 * "missing" vdevs are valid during import, but we
725			 * don't have their detailed info (e.g. asize), so
726			 * we can't perform any more checks on them.
727			 */
728			continue;
729		}
730		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
731		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
732		if (BP_IS_GANG(bp))
733			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
734		if (offset + asize > vd->vdev_asize) {
735			zfs_panic_recover("blkptr at %p DVA %u has invalid "
736			    "OFFSET %llu",
737			    bp, i, (longlong_t)offset);
738		}
739	}
740}
741
742zio_t *
743zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
744    void *data, uint64_t size, zio_done_func_t *done, void *private,
745    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
746{
747	zio_t *zio;
748
749	zfs_blkptr_verify(spa, bp);
750
751	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
752	    data, size, done, private,
753	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
754	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
755	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
756
757	return (zio);
758}
759
760zio_t *
761zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
762    void *data, uint64_t size, const zio_prop_t *zp,
763    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
764    void *private,
765    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
766{
767	zio_t *zio;
768
769	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
770	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
771	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
772	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
773	    DMU_OT_IS_VALID(zp->zp_type) &&
774	    zp->zp_level < 32 &&
775	    zp->zp_copies > 0 &&
776	    zp->zp_copies <= spa_max_replication(spa));
777
778	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
779	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
780	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
781	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
782
783	zio->io_ready = ready;
784	zio->io_physdone = physdone;
785	zio->io_prop = *zp;
786
787	/*
788	 * Data can be NULL if we are going to call zio_write_override() to
789	 * provide the already-allocated BP.  But we may need the data to
790	 * verify a dedup hit (if requested).  In this case, don't try to
791	 * dedup (just take the already-allocated BP verbatim).
792	 */
793	if (data == NULL && zio->io_prop.zp_dedup_verify) {
794		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
795	}
796
797	return (zio);
798}
799
800zio_t *
801zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
802    uint64_t size, zio_done_func_t *done, void *private,
803    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
804{
805	zio_t *zio;
806
807	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
808	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
809	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
810
811	return (zio);
812}
813
814void
815zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
816{
817	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
818	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
819	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
820	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
821
822	/*
823	 * We must reset the io_prop to match the values that existed
824	 * when the bp was first written by dmu_sync() keeping in mind
825	 * that nopwrite and dedup are mutually exclusive.
826	 */
827	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
828	zio->io_prop.zp_nopwrite = nopwrite;
829	zio->io_prop.zp_copies = copies;
830	zio->io_bp_override = bp;
831}
832
833void
834zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
835{
836
837	/*
838	 * The check for EMBEDDED is a performance optimization.  We
839	 * process the free here (by ignoring it) rather than
840	 * putting it on the list and then processing it in zio_free_sync().
841	 */
842	if (BP_IS_EMBEDDED(bp))
843		return;
844	metaslab_check_free(spa, bp);
845
846	/*
847	 * Frees that are for the currently-syncing txg, are not going to be
848	 * deferred, and which will not need to do a read (i.e. not GANG or
849	 * DEDUP), can be processed immediately.  Otherwise, put them on the
850	 * in-memory list for later processing.
851	 */
852	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
853	    txg != spa->spa_syncing_txg ||
854	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
855		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
856	} else {
857		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
858		    BP_GET_PSIZE(bp), 0)));
859	}
860}
861
862zio_t *
863zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
864    uint64_t size, enum zio_flag flags)
865{
866	zio_t *zio;
867	enum zio_stage stage = ZIO_FREE_PIPELINE;
868
869	ASSERT(!BP_IS_HOLE(bp));
870	ASSERT(spa_syncing_txg(spa) == txg);
871	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
872
873	if (BP_IS_EMBEDDED(bp))
874		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
875
876	metaslab_check_free(spa, bp);
877	arc_freed(spa, bp);
878
879	if (zfs_trim_enabled)
880		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
881		    ZIO_STAGE_VDEV_IO_ASSESS;
882	/*
883	 * GANG and DEDUP blocks can induce a read (for the gang block header,
884	 * or the DDT), so issue them asynchronously so that this thread is
885	 * not tied up.
886	 */
887	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
888		stage |= ZIO_STAGE_ISSUE_ASYNC;
889
890	flags |= ZIO_FLAG_DONT_QUEUE;
891
892	zio = zio_create(pio, spa, txg, bp, NULL, size,
893	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
894	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
895
896	return (zio);
897}
898
899zio_t *
900zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
901    zio_done_func_t *done, void *private, enum zio_flag flags)
902{
903	zio_t *zio;
904
905	dprintf_bp(bp, "claiming in txg %llu", txg);
906
907	if (BP_IS_EMBEDDED(bp))
908		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
909
910	/*
911	 * A claim is an allocation of a specific block.  Claims are needed
912	 * to support immediate writes in the intent log.  The issue is that
913	 * immediate writes contain committed data, but in a txg that was
914	 * *not* committed.  Upon opening the pool after an unclean shutdown,
915	 * the intent log claims all blocks that contain immediate write data
916	 * so that the SPA knows they're in use.
917	 *
918	 * All claims *must* be resolved in the first txg -- before the SPA
919	 * starts allocating blocks -- so that nothing is allocated twice.
920	 * If txg == 0 we just verify that the block is claimable.
921	 */
922	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
923	ASSERT(txg == spa_first_txg(spa) || txg == 0);
924	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
925
926	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
927	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
928	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
929
930	return (zio);
931}
932
933zio_t *
934zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
935    uint64_t size, zio_done_func_t *done, void *private,
936    zio_priority_t priority, enum zio_flag flags)
937{
938	zio_t *zio;
939	int c;
940
941	if (vd->vdev_children == 0) {
942		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
943		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
944		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
945
946		zio->io_cmd = cmd;
947	} else {
948		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
949
950		for (c = 0; c < vd->vdev_children; c++)
951			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
952			    offset, size, done, private, priority, flags));
953	}
954
955	return (zio);
956}
957
958zio_t *
959zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
960    void *data, int checksum, zio_done_func_t *done, void *private,
961    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
962{
963	zio_t *zio;
964
965	ASSERT(vd->vdev_children == 0);
966	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
967	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
968	ASSERT3U(offset + size, <=, vd->vdev_psize);
969
970	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
971	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
972	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
973
974	zio->io_prop.zp_checksum = checksum;
975
976	return (zio);
977}
978
979zio_t *
980zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
981    void *data, int checksum, zio_done_func_t *done, void *private,
982    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
983{
984	zio_t *zio;
985
986	ASSERT(vd->vdev_children == 0);
987	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
988	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
989	ASSERT3U(offset + size, <=, vd->vdev_psize);
990
991	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
992	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
993	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
994
995	zio->io_prop.zp_checksum = checksum;
996
997	if (zio_checksum_table[checksum].ci_eck) {
998		/*
999		 * zec checksums are necessarily destructive -- they modify
1000		 * the end of the write buffer to hold the verifier/checksum.
1001		 * Therefore, we must make a local copy in case the data is
1002		 * being written to multiple places in parallel.
1003		 */
1004		void *wbuf = zio_buf_alloc(size);
1005		bcopy(data, wbuf, size);
1006		zio_push_transform(zio, wbuf, size, size, NULL);
1007	}
1008
1009	return (zio);
1010}
1011
1012/*
1013 * Create a child I/O to do some work for us.
1014 */
1015zio_t *
1016zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1017	void *data, uint64_t size, int type, zio_priority_t priority,
1018	enum zio_flag flags, zio_done_func_t *done, void *private)
1019{
1020	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1021	zio_t *zio;
1022
1023	ASSERT(vd->vdev_parent ==
1024	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1025
1026	if (type == ZIO_TYPE_READ && bp != NULL) {
1027		/*
1028		 * If we have the bp, then the child should perform the
1029		 * checksum and the parent need not.  This pushes error
1030		 * detection as close to the leaves as possible and
1031		 * eliminates redundant checksums in the interior nodes.
1032		 */
1033		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1034		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1035	}
1036
1037	/* Not all IO types require vdev io done stage e.g. free */
1038	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
1039		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
1040
1041	if (vd->vdev_children == 0)
1042		offset += VDEV_LABEL_START_SIZE;
1043
1044	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1045
1046	/*
1047	 * If we've decided to do a repair, the write is not speculative --
1048	 * even if the original read was.
1049	 */
1050	if (flags & ZIO_FLAG_IO_REPAIR)
1051		flags &= ~ZIO_FLAG_SPECULATIVE;
1052
1053	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
1054	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1055	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1056
1057	zio->io_physdone = pio->io_physdone;
1058	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1059		zio->io_logical->io_phys_children++;
1060
1061	return (zio);
1062}
1063
1064zio_t *
1065zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
1066	int type, zio_priority_t priority, enum zio_flag flags,
1067	zio_done_func_t *done, void *private)
1068{
1069	zio_t *zio;
1070
1071	ASSERT(vd->vdev_ops->vdev_op_leaf);
1072
1073	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1074	    data, size, done, private, type, priority,
1075	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1076	    vd, offset, NULL,
1077	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1078
1079	return (zio);
1080}
1081
1082void
1083zio_flush(zio_t *zio, vdev_t *vd)
1084{
1085	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1086	    NULL, NULL, ZIO_PRIORITY_NOW,
1087	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1088}
1089
1090zio_t *
1091zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1092{
1093
1094	ASSERT(vd->vdev_ops->vdev_op_leaf);
1095
1096	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1097	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1098	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1099	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1100}
1101
1102void
1103zio_shrink(zio_t *zio, uint64_t size)
1104{
1105	ASSERT(zio->io_executor == NULL);
1106	ASSERT(zio->io_orig_size == zio->io_size);
1107	ASSERT(size <= zio->io_size);
1108
1109	/*
1110	 * We don't shrink for raidz because of problems with the
1111	 * reconstruction when reading back less than the block size.
1112	 * Note, BP_IS_RAIDZ() assumes no compression.
1113	 */
1114	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1115	if (!BP_IS_RAIDZ(zio->io_bp))
1116		zio->io_orig_size = zio->io_size = size;
1117}
1118
1119/*
1120 * ==========================================================================
1121 * Prepare to read and write logical blocks
1122 * ==========================================================================
1123 */
1124
1125static int
1126zio_read_bp_init(zio_t *zio)
1127{
1128	blkptr_t *bp = zio->io_bp;
1129
1130	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1131	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1132	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1133		uint64_t psize =
1134		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1135		void *cbuf = zio_buf_alloc(psize);
1136
1137		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1138	}
1139
1140	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1141		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1142		decode_embedded_bp_compressed(bp, zio->io_data);
1143	} else {
1144		ASSERT(!BP_IS_EMBEDDED(bp));
1145	}
1146
1147	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1148		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1149
1150	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1151		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1152
1153	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1154		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1155
1156	return (ZIO_PIPELINE_CONTINUE);
1157}
1158
1159static int
1160zio_write_bp_init(zio_t *zio)
1161{
1162	spa_t *spa = zio->io_spa;
1163	zio_prop_t *zp = &zio->io_prop;
1164	enum zio_compress compress = zp->zp_compress;
1165	blkptr_t *bp = zio->io_bp;
1166	uint64_t lsize = zio->io_size;
1167	uint64_t psize = lsize;
1168	int pass = 1;
1169
1170	/*
1171	 * If our children haven't all reached the ready stage,
1172	 * wait for them and then repeat this pipeline stage.
1173	 */
1174	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1175	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1176		return (ZIO_PIPELINE_STOP);
1177
1178	if (!IO_IS_ALLOCATING(zio))
1179		return (ZIO_PIPELINE_CONTINUE);
1180
1181	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1182
1183	if (zio->io_bp_override) {
1184		ASSERT(bp->blk_birth != zio->io_txg);
1185		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1186
1187		*bp = *zio->io_bp_override;
1188		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1189
1190		if (BP_IS_EMBEDDED(bp))
1191			return (ZIO_PIPELINE_CONTINUE);
1192
1193		/*
1194		 * If we've been overridden and nopwrite is set then
1195		 * set the flag accordingly to indicate that a nopwrite
1196		 * has already occurred.
1197		 */
1198		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1199			ASSERT(!zp->zp_dedup);
1200			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1201			return (ZIO_PIPELINE_CONTINUE);
1202		}
1203
1204		ASSERT(!zp->zp_nopwrite);
1205
1206		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1207			return (ZIO_PIPELINE_CONTINUE);
1208
1209		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1210		    zp->zp_dedup_verify);
1211
1212		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1213			BP_SET_DEDUP(bp, 1);
1214			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1215			return (ZIO_PIPELINE_CONTINUE);
1216		}
1217		zio->io_bp_override = NULL;
1218		BP_ZERO(bp);
1219	}
1220
1221	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1222		/*
1223		 * We're rewriting an existing block, which means we're
1224		 * working on behalf of spa_sync().  For spa_sync() to
1225		 * converge, it must eventually be the case that we don't
1226		 * have to allocate new blocks.  But compression changes
1227		 * the blocksize, which forces a reallocate, and makes
1228		 * convergence take longer.  Therefore, after the first
1229		 * few passes, stop compressing to ensure convergence.
1230		 */
1231		pass = spa_sync_pass(spa);
1232
1233		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1234		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1235		ASSERT(!BP_GET_DEDUP(bp));
1236
1237		if (pass >= zfs_sync_pass_dont_compress)
1238			compress = ZIO_COMPRESS_OFF;
1239
1240		/* Make sure someone doesn't change their mind on overwrites */
1241		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1242		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1243	}
1244
1245	if (compress != ZIO_COMPRESS_OFF) {
1246		void *cbuf = zio_buf_alloc(lsize);
1247		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1248		if (psize == 0 || psize == lsize) {
1249			compress = ZIO_COMPRESS_OFF;
1250			zio_buf_free(cbuf, lsize);
1251		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1252		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1253		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1254			encode_embedded_bp_compressed(bp,
1255			    cbuf, compress, lsize, psize);
1256			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1257			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1258			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1259			zio_buf_free(cbuf, lsize);
1260			bp->blk_birth = zio->io_txg;
1261			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1262			ASSERT(spa_feature_is_active(spa,
1263			    SPA_FEATURE_EMBEDDED_DATA));
1264			return (ZIO_PIPELINE_CONTINUE);
1265		} else {
1266			/*
1267			 * Round up compressed size to MINBLOCKSIZE and
1268			 * zero the tail.
1269			 */
1270			size_t rounded =
1271			    P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1272			if (rounded > psize) {
1273				bzero((char *)cbuf + psize, rounded - psize);
1274				psize = rounded;
1275			}
1276			if (psize == lsize) {
1277				compress = ZIO_COMPRESS_OFF;
1278				zio_buf_free(cbuf, lsize);
1279			} else {
1280				zio_push_transform(zio, cbuf,
1281				    psize, lsize, NULL);
1282			}
1283		}
1284	}
1285
1286	/*
1287	 * The final pass of spa_sync() must be all rewrites, but the first
1288	 * few passes offer a trade-off: allocating blocks defers convergence,
1289	 * but newly allocated blocks are sequential, so they can be written
1290	 * to disk faster.  Therefore, we allow the first few passes of
1291	 * spa_sync() to allocate new blocks, but force rewrites after that.
1292	 * There should only be a handful of blocks after pass 1 in any case.
1293	 */
1294	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1295	    BP_GET_PSIZE(bp) == psize &&
1296	    pass >= zfs_sync_pass_rewrite) {
1297		ASSERT(psize != 0);
1298		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1299		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1300		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1301	} else {
1302		BP_ZERO(bp);
1303		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1304	}
1305
1306	if (psize == 0) {
1307		if (zio->io_bp_orig.blk_birth != 0 &&
1308		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1309			BP_SET_LSIZE(bp, lsize);
1310			BP_SET_TYPE(bp, zp->zp_type);
1311			BP_SET_LEVEL(bp, zp->zp_level);
1312			BP_SET_BIRTH(bp, zio->io_txg, 0);
1313		}
1314		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1315	} else {
1316		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1317		BP_SET_LSIZE(bp, lsize);
1318		BP_SET_TYPE(bp, zp->zp_type);
1319		BP_SET_LEVEL(bp, zp->zp_level);
1320		BP_SET_PSIZE(bp, psize);
1321		BP_SET_COMPRESS(bp, compress);
1322		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1323		BP_SET_DEDUP(bp, zp->zp_dedup);
1324		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1325		if (zp->zp_dedup) {
1326			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1327			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1328			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1329		}
1330		if (zp->zp_nopwrite) {
1331			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1332			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1333			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1334		}
1335	}
1336
1337	return (ZIO_PIPELINE_CONTINUE);
1338}
1339
1340static int
1341zio_free_bp_init(zio_t *zio)
1342{
1343	blkptr_t *bp = zio->io_bp;
1344
1345	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1346		if (BP_GET_DEDUP(bp))
1347			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1348	}
1349
1350	return (ZIO_PIPELINE_CONTINUE);
1351}
1352
1353/*
1354 * ==========================================================================
1355 * Execute the I/O pipeline
1356 * ==========================================================================
1357 */
1358
1359static void
1360zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1361{
1362	spa_t *spa = zio->io_spa;
1363	zio_type_t t = zio->io_type;
1364	int flags = (cutinline ? TQ_FRONT : 0);
1365
1366	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1367
1368	/*
1369	 * If we're a config writer or a probe, the normal issue and
1370	 * interrupt threads may all be blocked waiting for the config lock.
1371	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1372	 */
1373	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1374		t = ZIO_TYPE_NULL;
1375
1376	/*
1377	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1378	 */
1379	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1380		t = ZIO_TYPE_NULL;
1381
1382	/*
1383	 * If this is a high priority I/O, then use the high priority taskq if
1384	 * available.
1385	 */
1386	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1387	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1388		q++;
1389
1390	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1391
1392	/*
1393	 * NB: We are assuming that the zio can only be dispatched
1394	 * to a single taskq at a time.  It would be a grievous error
1395	 * to dispatch the zio to another taskq at the same time.
1396	 */
1397#if defined(illumos) || !defined(_KERNEL)
1398	ASSERT(zio->io_tqent.tqent_next == NULL);
1399#else
1400	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1401#endif
1402	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1403	    flags, &zio->io_tqent);
1404}
1405
1406static boolean_t
1407zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1408{
1409	kthread_t *executor = zio->io_executor;
1410	spa_t *spa = zio->io_spa;
1411
1412	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1413		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1414		uint_t i;
1415		for (i = 0; i < tqs->stqs_count; i++) {
1416			if (taskq_member(tqs->stqs_taskq[i], executor))
1417				return (B_TRUE);
1418		}
1419	}
1420
1421	return (B_FALSE);
1422}
1423
1424static int
1425zio_issue_async(zio_t *zio)
1426{
1427	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1428
1429	return (ZIO_PIPELINE_STOP);
1430}
1431
1432void
1433zio_interrupt(zio_t *zio)
1434{
1435	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1436}
1437
1438/*
1439 * Execute the I/O pipeline until one of the following occurs:
1440 *
1441 *	(1) the I/O completes
1442 *	(2) the pipeline stalls waiting for dependent child I/Os
1443 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1444 *	(4) the I/O is delegated by vdev-level caching or aggregation
1445 *	(5) the I/O is deferred due to vdev-level queueing
1446 *	(6) the I/O is handed off to another thread.
1447 *
1448 * In all cases, the pipeline stops whenever there's no CPU work; it never
1449 * burns a thread in cv_wait().
1450 *
1451 * There's no locking on io_stage because there's no legitimate way
1452 * for multiple threads to be attempting to process the same I/O.
1453 */
1454static zio_pipe_stage_t *zio_pipeline[];
1455
1456void
1457zio_execute(zio_t *zio)
1458{
1459	zio->io_executor = curthread;
1460
1461	while (zio->io_stage < ZIO_STAGE_DONE) {
1462		enum zio_stage pipeline = zio->io_pipeline;
1463		enum zio_stage stage = zio->io_stage;
1464		int rv;
1465
1466		ASSERT(!MUTEX_HELD(&zio->io_lock));
1467		ASSERT(ISP2(stage));
1468		ASSERT(zio->io_stall == NULL);
1469
1470		do {
1471			stage <<= 1;
1472		} while ((stage & pipeline) == 0);
1473
1474		ASSERT(stage <= ZIO_STAGE_DONE);
1475
1476		/*
1477		 * If we are in interrupt context and this pipeline stage
1478		 * will grab a config lock that is held across I/O,
1479		 * or may wait for an I/O that needs an interrupt thread
1480		 * to complete, issue async to avoid deadlock.
1481		 *
1482		 * For VDEV_IO_START, we cut in line so that the io will
1483		 * be sent to disk promptly.
1484		 */
1485		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1486		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1487			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1488			    zio_requeue_io_start_cut_in_line : B_FALSE;
1489			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1490			return;
1491		}
1492
1493		zio->io_stage = stage;
1494		rv = zio_pipeline[highbit64(stage) - 1](zio);
1495
1496		if (rv == ZIO_PIPELINE_STOP)
1497			return;
1498
1499		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1500	}
1501}
1502
1503/*
1504 * ==========================================================================
1505 * Initiate I/O, either sync or async
1506 * ==========================================================================
1507 */
1508int
1509zio_wait(zio_t *zio)
1510{
1511	int error;
1512
1513	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1514	ASSERT(zio->io_executor == NULL);
1515
1516	zio->io_waiter = curthread;
1517
1518	zio_execute(zio);
1519
1520	mutex_enter(&zio->io_lock);
1521	while (zio->io_executor != NULL)
1522		cv_wait(&zio->io_cv, &zio->io_lock);
1523	mutex_exit(&zio->io_lock);
1524
1525	error = zio->io_error;
1526	zio_destroy(zio);
1527
1528	return (error);
1529}
1530
1531void
1532zio_nowait(zio_t *zio)
1533{
1534	ASSERT(zio->io_executor == NULL);
1535
1536	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1537	    zio_unique_parent(zio) == NULL) {
1538		/*
1539		 * This is a logical async I/O with no parent to wait for it.
1540		 * We add it to the spa_async_root_zio "Godfather" I/O which
1541		 * will ensure they complete prior to unloading the pool.
1542		 */
1543		spa_t *spa = zio->io_spa;
1544
1545		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1546	}
1547
1548	zio_execute(zio);
1549}
1550
1551/*
1552 * ==========================================================================
1553 * Reexecute or suspend/resume failed I/O
1554 * ==========================================================================
1555 */
1556
1557static void
1558zio_reexecute(zio_t *pio)
1559{
1560	zio_t *cio, *cio_next;
1561
1562	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1563	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1564	ASSERT(pio->io_gang_leader == NULL);
1565	ASSERT(pio->io_gang_tree == NULL);
1566
1567	pio->io_flags = pio->io_orig_flags;
1568	pio->io_stage = pio->io_orig_stage;
1569	pio->io_pipeline = pio->io_orig_pipeline;
1570	pio->io_reexecute = 0;
1571	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1572	pio->io_error = 0;
1573	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1574		pio->io_state[w] = 0;
1575	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1576		pio->io_child_error[c] = 0;
1577
1578	if (IO_IS_ALLOCATING(pio))
1579		BP_ZERO(pio->io_bp);
1580
1581	/*
1582	 * As we reexecute pio's children, new children could be created.
1583	 * New children go to the head of pio's io_child_list, however,
1584	 * so we will (correctly) not reexecute them.  The key is that
1585	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1586	 * cannot be affected by any side effects of reexecuting 'cio'.
1587	 */
1588	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1589		cio_next = zio_walk_children(pio);
1590		mutex_enter(&pio->io_lock);
1591		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1592			pio->io_children[cio->io_child_type][w]++;
1593		mutex_exit(&pio->io_lock);
1594		zio_reexecute(cio);
1595	}
1596
1597	/*
1598	 * Now that all children have been reexecuted, execute the parent.
1599	 * We don't reexecute "The Godfather" I/O here as it's the
1600	 * responsibility of the caller to wait on him.
1601	 */
1602	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1603		zio_execute(pio);
1604}
1605
1606void
1607zio_suspend(spa_t *spa, zio_t *zio)
1608{
1609	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1610		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1611		    "failure and the failure mode property for this pool "
1612		    "is set to panic.", spa_name(spa));
1613
1614	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1615
1616	mutex_enter(&spa->spa_suspend_lock);
1617
1618	if (spa->spa_suspend_zio_root == NULL)
1619		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1620		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1621		    ZIO_FLAG_GODFATHER);
1622
1623	spa->spa_suspended = B_TRUE;
1624
1625	if (zio != NULL) {
1626		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1627		ASSERT(zio != spa->spa_suspend_zio_root);
1628		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1629		ASSERT(zio_unique_parent(zio) == NULL);
1630		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1631		zio_add_child(spa->spa_suspend_zio_root, zio);
1632	}
1633
1634	mutex_exit(&spa->spa_suspend_lock);
1635}
1636
1637int
1638zio_resume(spa_t *spa)
1639{
1640	zio_t *pio;
1641
1642	/*
1643	 * Reexecute all previously suspended i/o.
1644	 */
1645	mutex_enter(&spa->spa_suspend_lock);
1646	spa->spa_suspended = B_FALSE;
1647	cv_broadcast(&spa->spa_suspend_cv);
1648	pio = spa->spa_suspend_zio_root;
1649	spa->spa_suspend_zio_root = NULL;
1650	mutex_exit(&spa->spa_suspend_lock);
1651
1652	if (pio == NULL)
1653		return (0);
1654
1655	zio_reexecute(pio);
1656	return (zio_wait(pio));
1657}
1658
1659void
1660zio_resume_wait(spa_t *spa)
1661{
1662	mutex_enter(&spa->spa_suspend_lock);
1663	while (spa_suspended(spa))
1664		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1665	mutex_exit(&spa->spa_suspend_lock);
1666}
1667
1668/*
1669 * ==========================================================================
1670 * Gang blocks.
1671 *
1672 * A gang block is a collection of small blocks that looks to the DMU
1673 * like one large block.  When zio_dva_allocate() cannot find a block
1674 * of the requested size, due to either severe fragmentation or the pool
1675 * being nearly full, it calls zio_write_gang_block() to construct the
1676 * block from smaller fragments.
1677 *
1678 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1679 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1680 * an indirect block: it's an array of block pointers.  It consumes
1681 * only one sector and hence is allocatable regardless of fragmentation.
1682 * The gang header's bps point to its gang members, which hold the data.
1683 *
1684 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1685 * as the verifier to ensure uniqueness of the SHA256 checksum.
1686 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1687 * not the gang header.  This ensures that data block signatures (needed for
1688 * deduplication) are independent of how the block is physically stored.
1689 *
1690 * Gang blocks can be nested: a gang member may itself be a gang block.
1691 * Thus every gang block is a tree in which root and all interior nodes are
1692 * gang headers, and the leaves are normal blocks that contain user data.
1693 * The root of the gang tree is called the gang leader.
1694 *
1695 * To perform any operation (read, rewrite, free, claim) on a gang block,
1696 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1697 * in the io_gang_tree field of the original logical i/o by recursively
1698 * reading the gang leader and all gang headers below it.  This yields
1699 * an in-core tree containing the contents of every gang header and the
1700 * bps for every constituent of the gang block.
1701 *
1702 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1703 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1704 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1705 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1706 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1707 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1708 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1709 * of the gang header plus zio_checksum_compute() of the data to update the
1710 * gang header's blk_cksum as described above.
1711 *
1712 * The two-phase assemble/issue model solves the problem of partial failure --
1713 * what if you'd freed part of a gang block but then couldn't read the
1714 * gang header for another part?  Assembling the entire gang tree first
1715 * ensures that all the necessary gang header I/O has succeeded before
1716 * starting the actual work of free, claim, or write.  Once the gang tree
1717 * is assembled, free and claim are in-memory operations that cannot fail.
1718 *
1719 * In the event that a gang write fails, zio_dva_unallocate() walks the
1720 * gang tree to immediately free (i.e. insert back into the space map)
1721 * everything we've allocated.  This ensures that we don't get ENOSPC
1722 * errors during repeated suspend/resume cycles due to a flaky device.
1723 *
1724 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1725 * the gang tree, we won't modify the block, so we can safely defer the free
1726 * (knowing that the block is still intact).  If we *can* assemble the gang
1727 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1728 * each constituent bp and we can allocate a new block on the next sync pass.
1729 *
1730 * In all cases, the gang tree allows complete recovery from partial failure.
1731 * ==========================================================================
1732 */
1733
1734static zio_t *
1735zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1736{
1737	if (gn != NULL)
1738		return (pio);
1739
1740	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1741	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1742	    &pio->io_bookmark));
1743}
1744
1745zio_t *
1746zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1747{
1748	zio_t *zio;
1749
1750	if (gn != NULL) {
1751		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1752		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1753		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1754		/*
1755		 * As we rewrite each gang header, the pipeline will compute
1756		 * a new gang block header checksum for it; but no one will
1757		 * compute a new data checksum, so we do that here.  The one
1758		 * exception is the gang leader: the pipeline already computed
1759		 * its data checksum because that stage precedes gang assembly.
1760		 * (Presently, nothing actually uses interior data checksums;
1761		 * this is just good hygiene.)
1762		 */
1763		if (gn != pio->io_gang_leader->io_gang_tree) {
1764			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1765			    data, BP_GET_PSIZE(bp));
1766		}
1767		/*
1768		 * If we are here to damage data for testing purposes,
1769		 * leave the GBH alone so that we can detect the damage.
1770		 */
1771		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1772			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1773	} else {
1774		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1775		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1776		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1777	}
1778
1779	return (zio);
1780}
1781
1782/* ARGSUSED */
1783zio_t *
1784zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1785{
1786	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1787	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1788	    ZIO_GANG_CHILD_FLAGS(pio)));
1789}
1790
1791/* ARGSUSED */
1792zio_t *
1793zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1794{
1795	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1796	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1797}
1798
1799static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1800	NULL,
1801	zio_read_gang,
1802	zio_rewrite_gang,
1803	zio_free_gang,
1804	zio_claim_gang,
1805	NULL
1806};
1807
1808static void zio_gang_tree_assemble_done(zio_t *zio);
1809
1810static zio_gang_node_t *
1811zio_gang_node_alloc(zio_gang_node_t **gnpp)
1812{
1813	zio_gang_node_t *gn;
1814
1815	ASSERT(*gnpp == NULL);
1816
1817	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1818	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1819	*gnpp = gn;
1820
1821	return (gn);
1822}
1823
1824static void
1825zio_gang_node_free(zio_gang_node_t **gnpp)
1826{
1827	zio_gang_node_t *gn = *gnpp;
1828
1829	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1830		ASSERT(gn->gn_child[g] == NULL);
1831
1832	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1833	kmem_free(gn, sizeof (*gn));
1834	*gnpp = NULL;
1835}
1836
1837static void
1838zio_gang_tree_free(zio_gang_node_t **gnpp)
1839{
1840	zio_gang_node_t *gn = *gnpp;
1841
1842	if (gn == NULL)
1843		return;
1844
1845	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1846		zio_gang_tree_free(&gn->gn_child[g]);
1847
1848	zio_gang_node_free(gnpp);
1849}
1850
1851static void
1852zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1853{
1854	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1855
1856	ASSERT(gio->io_gang_leader == gio);
1857	ASSERT(BP_IS_GANG(bp));
1858
1859	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1860	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1861	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1862}
1863
1864static void
1865zio_gang_tree_assemble_done(zio_t *zio)
1866{
1867	zio_t *gio = zio->io_gang_leader;
1868	zio_gang_node_t *gn = zio->io_private;
1869	blkptr_t *bp = zio->io_bp;
1870
1871	ASSERT(gio == zio_unique_parent(zio));
1872	ASSERT(zio->io_child_count == 0);
1873
1874	if (zio->io_error)
1875		return;
1876
1877	if (BP_SHOULD_BYTESWAP(bp))
1878		byteswap_uint64_array(zio->io_data, zio->io_size);
1879
1880	ASSERT(zio->io_data == gn->gn_gbh);
1881	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1882	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1883
1884	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1885		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1886		if (!BP_IS_GANG(gbp))
1887			continue;
1888		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1889	}
1890}
1891
1892static void
1893zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1894{
1895	zio_t *gio = pio->io_gang_leader;
1896	zio_t *zio;
1897
1898	ASSERT(BP_IS_GANG(bp) == !!gn);
1899	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1900	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1901
1902	/*
1903	 * If you're a gang header, your data is in gn->gn_gbh.
1904	 * If you're a gang member, your data is in 'data' and gn == NULL.
1905	 */
1906	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1907
1908	if (gn != NULL) {
1909		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1910
1911		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1912			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1913			if (BP_IS_HOLE(gbp))
1914				continue;
1915			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1916			data = (char *)data + BP_GET_PSIZE(gbp);
1917		}
1918	}
1919
1920	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1921		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1922
1923	if (zio != pio)
1924		zio_nowait(zio);
1925}
1926
1927static int
1928zio_gang_assemble(zio_t *zio)
1929{
1930	blkptr_t *bp = zio->io_bp;
1931
1932	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1933	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1934
1935	zio->io_gang_leader = zio;
1936
1937	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1938
1939	return (ZIO_PIPELINE_CONTINUE);
1940}
1941
1942static int
1943zio_gang_issue(zio_t *zio)
1944{
1945	blkptr_t *bp = zio->io_bp;
1946
1947	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1948		return (ZIO_PIPELINE_STOP);
1949
1950	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1951	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1952
1953	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1954		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1955	else
1956		zio_gang_tree_free(&zio->io_gang_tree);
1957
1958	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1959
1960	return (ZIO_PIPELINE_CONTINUE);
1961}
1962
1963static void
1964zio_write_gang_member_ready(zio_t *zio)
1965{
1966	zio_t *pio = zio_unique_parent(zio);
1967	zio_t *gio = zio->io_gang_leader;
1968	dva_t *cdva = zio->io_bp->blk_dva;
1969	dva_t *pdva = pio->io_bp->blk_dva;
1970	uint64_t asize;
1971
1972	if (BP_IS_HOLE(zio->io_bp))
1973		return;
1974
1975	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1976
1977	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1978	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1979	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1980	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1981	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1982
1983	mutex_enter(&pio->io_lock);
1984	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1985		ASSERT(DVA_GET_GANG(&pdva[d]));
1986		asize = DVA_GET_ASIZE(&pdva[d]);
1987		asize += DVA_GET_ASIZE(&cdva[d]);
1988		DVA_SET_ASIZE(&pdva[d], asize);
1989	}
1990	mutex_exit(&pio->io_lock);
1991}
1992
1993static int
1994zio_write_gang_block(zio_t *pio)
1995{
1996	spa_t *spa = pio->io_spa;
1997	blkptr_t *bp = pio->io_bp;
1998	zio_t *gio = pio->io_gang_leader;
1999	zio_t *zio;
2000	zio_gang_node_t *gn, **gnpp;
2001	zio_gbh_phys_t *gbh;
2002	uint64_t txg = pio->io_txg;
2003	uint64_t resid = pio->io_size;
2004	uint64_t lsize;
2005	int copies = gio->io_prop.zp_copies;
2006	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2007	zio_prop_t zp;
2008	int error;
2009
2010	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
2011	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
2012	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2013	if (error) {
2014		pio->io_error = error;
2015		return (ZIO_PIPELINE_CONTINUE);
2016	}
2017
2018	if (pio == gio) {
2019		gnpp = &gio->io_gang_tree;
2020	} else {
2021		gnpp = pio->io_private;
2022		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2023	}
2024
2025	gn = zio_gang_node_alloc(gnpp);
2026	gbh = gn->gn_gbh;
2027	bzero(gbh, SPA_GANGBLOCKSIZE);
2028
2029	/*
2030	 * Create the gang header.
2031	 */
2032	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
2033	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2034
2035	/*
2036	 * Create and nowait the gang children.
2037	 */
2038	for (int g = 0; resid != 0; resid -= lsize, g++) {
2039		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2040		    SPA_MINBLOCKSIZE);
2041		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2042
2043		zp.zp_checksum = gio->io_prop.zp_checksum;
2044		zp.zp_compress = ZIO_COMPRESS_OFF;
2045		zp.zp_type = DMU_OT_NONE;
2046		zp.zp_level = 0;
2047		zp.zp_copies = gio->io_prop.zp_copies;
2048		zp.zp_dedup = B_FALSE;
2049		zp.zp_dedup_verify = B_FALSE;
2050		zp.zp_nopwrite = B_FALSE;
2051
2052		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2053		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
2054		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
2055		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2056		    &pio->io_bookmark));
2057	}
2058
2059	/*
2060	 * Set pio's pipeline to just wait for zio to finish.
2061	 */
2062	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2063
2064	zio_nowait(zio);
2065
2066	return (ZIO_PIPELINE_CONTINUE);
2067}
2068
2069/*
2070 * The zio_nop_write stage in the pipeline determines if allocating
2071 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
2072 * such as SHA256, we can compare the checksums of the new data and the old
2073 * to determine if allocating a new block is required.  The nopwrite
2074 * feature can handle writes in either syncing or open context (i.e. zil
2075 * writes) and as a result is mutually exclusive with dedup.
2076 */
2077static int
2078zio_nop_write(zio_t *zio)
2079{
2080	blkptr_t *bp = zio->io_bp;
2081	blkptr_t *bp_orig = &zio->io_bp_orig;
2082	zio_prop_t *zp = &zio->io_prop;
2083
2084	ASSERT(BP_GET_LEVEL(bp) == 0);
2085	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2086	ASSERT(zp->zp_nopwrite);
2087	ASSERT(!zp->zp_dedup);
2088	ASSERT(zio->io_bp_override == NULL);
2089	ASSERT(IO_IS_ALLOCATING(zio));
2090
2091	/*
2092	 * Check to see if the original bp and the new bp have matching
2093	 * characteristics (i.e. same checksum, compression algorithms, etc).
2094	 * If they don't then just continue with the pipeline which will
2095	 * allocate a new bp.
2096	 */
2097	if (BP_IS_HOLE(bp_orig) ||
2098	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2099	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2100	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2101	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2102	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2103		return (ZIO_PIPELINE_CONTINUE);
2104
2105	/*
2106	 * If the checksums match then reset the pipeline so that we
2107	 * avoid allocating a new bp and issuing any I/O.
2108	 */
2109	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2110		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2111		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2112		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2113		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2114		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2115		    sizeof (uint64_t)) == 0);
2116
2117		*bp = *bp_orig;
2118		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2119		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2120	}
2121
2122	return (ZIO_PIPELINE_CONTINUE);
2123}
2124
2125/*
2126 * ==========================================================================
2127 * Dedup
2128 * ==========================================================================
2129 */
2130static void
2131zio_ddt_child_read_done(zio_t *zio)
2132{
2133	blkptr_t *bp = zio->io_bp;
2134	ddt_entry_t *dde = zio->io_private;
2135	ddt_phys_t *ddp;
2136	zio_t *pio = zio_unique_parent(zio);
2137
2138	mutex_enter(&pio->io_lock);
2139	ddp = ddt_phys_select(dde, bp);
2140	if (zio->io_error == 0)
2141		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2142	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2143		dde->dde_repair_data = zio->io_data;
2144	else
2145		zio_buf_free(zio->io_data, zio->io_size);
2146	mutex_exit(&pio->io_lock);
2147}
2148
2149static int
2150zio_ddt_read_start(zio_t *zio)
2151{
2152	blkptr_t *bp = zio->io_bp;
2153
2154	ASSERT(BP_GET_DEDUP(bp));
2155	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2156	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2157
2158	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2159		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2160		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2161		ddt_phys_t *ddp = dde->dde_phys;
2162		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2163		blkptr_t blk;
2164
2165		ASSERT(zio->io_vsd == NULL);
2166		zio->io_vsd = dde;
2167
2168		if (ddp_self == NULL)
2169			return (ZIO_PIPELINE_CONTINUE);
2170
2171		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2172			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2173				continue;
2174			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2175			    &blk);
2176			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2177			    zio_buf_alloc(zio->io_size), zio->io_size,
2178			    zio_ddt_child_read_done, dde, zio->io_priority,
2179			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2180			    &zio->io_bookmark));
2181		}
2182		return (ZIO_PIPELINE_CONTINUE);
2183	}
2184
2185	zio_nowait(zio_read(zio, zio->io_spa, bp,
2186	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2187	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2188
2189	return (ZIO_PIPELINE_CONTINUE);
2190}
2191
2192static int
2193zio_ddt_read_done(zio_t *zio)
2194{
2195	blkptr_t *bp = zio->io_bp;
2196
2197	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2198		return (ZIO_PIPELINE_STOP);
2199
2200	ASSERT(BP_GET_DEDUP(bp));
2201	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2202	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2203
2204	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2205		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2206		ddt_entry_t *dde = zio->io_vsd;
2207		if (ddt == NULL) {
2208			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2209			return (ZIO_PIPELINE_CONTINUE);
2210		}
2211		if (dde == NULL) {
2212			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2213			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2214			return (ZIO_PIPELINE_STOP);
2215		}
2216		if (dde->dde_repair_data != NULL) {
2217			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2218			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2219		}
2220		ddt_repair_done(ddt, dde);
2221		zio->io_vsd = NULL;
2222	}
2223
2224	ASSERT(zio->io_vsd == NULL);
2225
2226	return (ZIO_PIPELINE_CONTINUE);
2227}
2228
2229static boolean_t
2230zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2231{
2232	spa_t *spa = zio->io_spa;
2233
2234	/*
2235	 * Note: we compare the original data, not the transformed data,
2236	 * because when zio->io_bp is an override bp, we will not have
2237	 * pushed the I/O transforms.  That's an important optimization
2238	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2239	 */
2240	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2241		zio_t *lio = dde->dde_lead_zio[p];
2242
2243		if (lio != NULL) {
2244			return (lio->io_orig_size != zio->io_orig_size ||
2245			    bcmp(zio->io_orig_data, lio->io_orig_data,
2246			    zio->io_orig_size) != 0);
2247		}
2248	}
2249
2250	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2251		ddt_phys_t *ddp = &dde->dde_phys[p];
2252
2253		if (ddp->ddp_phys_birth != 0) {
2254			arc_buf_t *abuf = NULL;
2255			arc_flags_t aflags = ARC_FLAG_WAIT;
2256			blkptr_t blk = *zio->io_bp;
2257			int error;
2258
2259			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2260
2261			ddt_exit(ddt);
2262
2263			error = arc_read(NULL, spa, &blk,
2264			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2265			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2266			    &aflags, &zio->io_bookmark);
2267
2268			if (error == 0) {
2269				if (arc_buf_size(abuf) != zio->io_orig_size ||
2270				    bcmp(abuf->b_data, zio->io_orig_data,
2271				    zio->io_orig_size) != 0)
2272					error = SET_ERROR(EEXIST);
2273				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2274			}
2275
2276			ddt_enter(ddt);
2277			return (error != 0);
2278		}
2279	}
2280
2281	return (B_FALSE);
2282}
2283
2284static void
2285zio_ddt_child_write_ready(zio_t *zio)
2286{
2287	int p = zio->io_prop.zp_copies;
2288	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2289	ddt_entry_t *dde = zio->io_private;
2290	ddt_phys_t *ddp = &dde->dde_phys[p];
2291	zio_t *pio;
2292
2293	if (zio->io_error)
2294		return;
2295
2296	ddt_enter(ddt);
2297
2298	ASSERT(dde->dde_lead_zio[p] == zio);
2299
2300	ddt_phys_fill(ddp, zio->io_bp);
2301
2302	while ((pio = zio_walk_parents(zio)) != NULL)
2303		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2304
2305	ddt_exit(ddt);
2306}
2307
2308static void
2309zio_ddt_child_write_done(zio_t *zio)
2310{
2311	int p = zio->io_prop.zp_copies;
2312	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2313	ddt_entry_t *dde = zio->io_private;
2314	ddt_phys_t *ddp = &dde->dde_phys[p];
2315
2316	ddt_enter(ddt);
2317
2318	ASSERT(ddp->ddp_refcnt == 0);
2319	ASSERT(dde->dde_lead_zio[p] == zio);
2320	dde->dde_lead_zio[p] = NULL;
2321
2322	if (zio->io_error == 0) {
2323		while (zio_walk_parents(zio) != NULL)
2324			ddt_phys_addref(ddp);
2325	} else {
2326		ddt_phys_clear(ddp);
2327	}
2328
2329	ddt_exit(ddt);
2330}
2331
2332static void
2333zio_ddt_ditto_write_done(zio_t *zio)
2334{
2335	int p = DDT_PHYS_DITTO;
2336	zio_prop_t *zp = &zio->io_prop;
2337	blkptr_t *bp = zio->io_bp;
2338	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2339	ddt_entry_t *dde = zio->io_private;
2340	ddt_phys_t *ddp = &dde->dde_phys[p];
2341	ddt_key_t *ddk = &dde->dde_key;
2342
2343	ddt_enter(ddt);
2344
2345	ASSERT(ddp->ddp_refcnt == 0);
2346	ASSERT(dde->dde_lead_zio[p] == zio);
2347	dde->dde_lead_zio[p] = NULL;
2348
2349	if (zio->io_error == 0) {
2350		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2351		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2352		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2353		if (ddp->ddp_phys_birth != 0)
2354			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2355		ddt_phys_fill(ddp, bp);
2356	}
2357
2358	ddt_exit(ddt);
2359}
2360
2361static int
2362zio_ddt_write(zio_t *zio)
2363{
2364	spa_t *spa = zio->io_spa;
2365	blkptr_t *bp = zio->io_bp;
2366	uint64_t txg = zio->io_txg;
2367	zio_prop_t *zp = &zio->io_prop;
2368	int p = zp->zp_copies;
2369	int ditto_copies;
2370	zio_t *cio = NULL;
2371	zio_t *dio = NULL;
2372	ddt_t *ddt = ddt_select(spa, bp);
2373	ddt_entry_t *dde;
2374	ddt_phys_t *ddp;
2375
2376	ASSERT(BP_GET_DEDUP(bp));
2377	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2378	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2379
2380	ddt_enter(ddt);
2381	dde = ddt_lookup(ddt, bp, B_TRUE);
2382	ddp = &dde->dde_phys[p];
2383
2384	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2385		/*
2386		 * If we're using a weak checksum, upgrade to a strong checksum
2387		 * and try again.  If we're already using a strong checksum,
2388		 * we can't resolve it, so just convert to an ordinary write.
2389		 * (And automatically e-mail a paper to Nature?)
2390		 */
2391		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2392			zp->zp_checksum = spa_dedup_checksum(spa);
2393			zio_pop_transforms(zio);
2394			zio->io_stage = ZIO_STAGE_OPEN;
2395			BP_ZERO(bp);
2396		} else {
2397			zp->zp_dedup = B_FALSE;
2398		}
2399		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2400		ddt_exit(ddt);
2401		return (ZIO_PIPELINE_CONTINUE);
2402	}
2403
2404	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2405	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2406
2407	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2408	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2409		zio_prop_t czp = *zp;
2410
2411		czp.zp_copies = ditto_copies;
2412
2413		/*
2414		 * If we arrived here with an override bp, we won't have run
2415		 * the transform stack, so we won't have the data we need to
2416		 * generate a child i/o.  So, toss the override bp and restart.
2417		 * This is safe, because using the override bp is just an
2418		 * optimization; and it's rare, so the cost doesn't matter.
2419		 */
2420		if (zio->io_bp_override) {
2421			zio_pop_transforms(zio);
2422			zio->io_stage = ZIO_STAGE_OPEN;
2423			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2424			zio->io_bp_override = NULL;
2425			BP_ZERO(bp);
2426			ddt_exit(ddt);
2427			return (ZIO_PIPELINE_CONTINUE);
2428		}
2429
2430		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2431		    zio->io_orig_size, &czp, NULL, NULL,
2432		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2433		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2434
2435		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2436		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2437	}
2438
2439	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2440		if (ddp->ddp_phys_birth != 0)
2441			ddt_bp_fill(ddp, bp, txg);
2442		if (dde->dde_lead_zio[p] != NULL)
2443			zio_add_child(zio, dde->dde_lead_zio[p]);
2444		else
2445			ddt_phys_addref(ddp);
2446	} else if (zio->io_bp_override) {
2447		ASSERT(bp->blk_birth == txg);
2448		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2449		ddt_phys_fill(ddp, bp);
2450		ddt_phys_addref(ddp);
2451	} else {
2452		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2453		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2454		    zio_ddt_child_write_done, dde, zio->io_priority,
2455		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2456
2457		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2458		dde->dde_lead_zio[p] = cio;
2459	}
2460
2461	ddt_exit(ddt);
2462
2463	if (cio)
2464		zio_nowait(cio);
2465	if (dio)
2466		zio_nowait(dio);
2467
2468	return (ZIO_PIPELINE_CONTINUE);
2469}
2470
2471ddt_entry_t *freedde; /* for debugging */
2472
2473static int
2474zio_ddt_free(zio_t *zio)
2475{
2476	spa_t *spa = zio->io_spa;
2477	blkptr_t *bp = zio->io_bp;
2478	ddt_t *ddt = ddt_select(spa, bp);
2479	ddt_entry_t *dde;
2480	ddt_phys_t *ddp;
2481
2482	ASSERT(BP_GET_DEDUP(bp));
2483	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2484
2485	ddt_enter(ddt);
2486	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2487	ddp = ddt_phys_select(dde, bp);
2488	ddt_phys_decref(ddp);
2489	ddt_exit(ddt);
2490
2491	return (ZIO_PIPELINE_CONTINUE);
2492}
2493
2494/*
2495 * ==========================================================================
2496 * Allocate and free blocks
2497 * ==========================================================================
2498 */
2499static int
2500zio_dva_allocate(zio_t *zio)
2501{
2502	spa_t *spa = zio->io_spa;
2503	metaslab_class_t *mc = spa_normal_class(spa);
2504	blkptr_t *bp = zio->io_bp;
2505	int error;
2506	int flags = 0;
2507
2508	if (zio->io_gang_leader == NULL) {
2509		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2510		zio->io_gang_leader = zio;
2511	}
2512
2513	ASSERT(BP_IS_HOLE(bp));
2514	ASSERT0(BP_GET_NDVAS(bp));
2515	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2516	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2517	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2518
2519	/*
2520	 * The dump device does not support gang blocks so allocation on
2521	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2522	 * the "fast" gang feature.
2523	 */
2524	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2525	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2526	    METASLAB_GANG_CHILD : 0;
2527	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2528	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2529
2530	if (error) {
2531		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2532		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2533		    error);
2534		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2535			return (zio_write_gang_block(zio));
2536		zio->io_error = error;
2537	}
2538
2539	return (ZIO_PIPELINE_CONTINUE);
2540}
2541
2542static int
2543zio_dva_free(zio_t *zio)
2544{
2545	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2546
2547	return (ZIO_PIPELINE_CONTINUE);
2548}
2549
2550static int
2551zio_dva_claim(zio_t *zio)
2552{
2553	int error;
2554
2555	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2556	if (error)
2557		zio->io_error = error;
2558
2559	return (ZIO_PIPELINE_CONTINUE);
2560}
2561
2562/*
2563 * Undo an allocation.  This is used by zio_done() when an I/O fails
2564 * and we want to give back the block we just allocated.
2565 * This handles both normal blocks and gang blocks.
2566 */
2567static void
2568zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2569{
2570	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2571	ASSERT(zio->io_bp_override == NULL);
2572
2573	if (!BP_IS_HOLE(bp))
2574		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2575
2576	if (gn != NULL) {
2577		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2578			zio_dva_unallocate(zio, gn->gn_child[g],
2579			    &gn->gn_gbh->zg_blkptr[g]);
2580		}
2581	}
2582}
2583
2584/*
2585 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2586 */
2587int
2588zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2589    uint64_t size, boolean_t use_slog)
2590{
2591	int error = 1;
2592
2593	ASSERT(txg > spa_syncing_txg(spa));
2594
2595	/*
2596	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2597	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2598	 * when allocating them.
2599	 */
2600	if (use_slog) {
2601		error = metaslab_alloc(spa, spa_log_class(spa), size,
2602		    new_bp, 1, txg, old_bp,
2603		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2604	}
2605
2606	if (error) {
2607		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2608		    new_bp, 1, txg, old_bp,
2609		    METASLAB_HINTBP_AVOID);
2610	}
2611
2612	if (error == 0) {
2613		BP_SET_LSIZE(new_bp, size);
2614		BP_SET_PSIZE(new_bp, size);
2615		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2616		BP_SET_CHECKSUM(new_bp,
2617		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2618		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2619		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2620		BP_SET_LEVEL(new_bp, 0);
2621		BP_SET_DEDUP(new_bp, 0);
2622		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2623	}
2624
2625	return (error);
2626}
2627
2628/*
2629 * Free an intent log block.
2630 */
2631void
2632zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2633{
2634	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2635	ASSERT(!BP_IS_GANG(bp));
2636
2637	zio_free(spa, txg, bp);
2638}
2639
2640/*
2641 * ==========================================================================
2642 * Read, write and delete to physical devices
2643 * ==========================================================================
2644 */
2645static int
2646zio_vdev_io_start(zio_t *zio)
2647{
2648	vdev_t *vd = zio->io_vd;
2649	uint64_t align;
2650	spa_t *spa = zio->io_spa;
2651	int ret;
2652
2653	ASSERT(zio->io_error == 0);
2654	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2655
2656	if (vd == NULL) {
2657		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2658			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2659
2660		/*
2661		 * The mirror_ops handle multiple DVAs in a single BP.
2662		 */
2663		return (vdev_mirror_ops.vdev_op_io_start(zio));
2664	}
2665
2666	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2667	    zio->io_priority == ZIO_PRIORITY_NOW) {
2668		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2669		return (ZIO_PIPELINE_CONTINUE);
2670	}
2671
2672	/*
2673	 * We keep track of time-sensitive I/Os so that the scan thread
2674	 * can quickly react to certain workloads.  In particular, we care
2675	 * about non-scrubbing, top-level reads and writes with the following
2676	 * characteristics:
2677	 * 	- synchronous writes of user data to non-slog devices
2678	 *	- any reads of user data
2679	 * When these conditions are met, adjust the timestamp of spa_last_io
2680	 * which allows the scan thread to adjust its workload accordingly.
2681	 */
2682	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2683	    vd == vd->vdev_top && !vd->vdev_islog &&
2684	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2685	    zio->io_txg != spa_syncing_txg(spa)) {
2686		uint64_t old = spa->spa_last_io;
2687		uint64_t new = ddi_get_lbolt64();
2688		if (old != new)
2689			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2690	}
2691
2692	align = 1ULL << vd->vdev_top->vdev_ashift;
2693
2694	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2695	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2696	    P2PHASE(zio->io_size, align) != 0) {
2697		/* Transform logical writes to be a full physical block size. */
2698		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2699		char *abuf = NULL;
2700		if (zio->io_type == ZIO_TYPE_READ ||
2701		    zio->io_type == ZIO_TYPE_WRITE)
2702			abuf = zio_buf_alloc(asize);
2703		ASSERT(vd == vd->vdev_top);
2704		if (zio->io_type == ZIO_TYPE_WRITE) {
2705			bcopy(zio->io_data, abuf, zio->io_size);
2706			bzero(abuf + zio->io_size, asize - zio->io_size);
2707		}
2708		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2709		    zio_subblock);
2710	}
2711
2712	/*
2713	 * If this is not a physical io, make sure that it is properly aligned
2714	 * before proceeding.
2715	 */
2716	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2717		ASSERT0(P2PHASE(zio->io_offset, align));
2718		ASSERT0(P2PHASE(zio->io_size, align));
2719	} else {
2720		/*
2721		 * For physical writes, we allow 512b aligned writes and assume
2722		 * the device will perform a read-modify-write as necessary.
2723		 */
2724		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2725		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2726	}
2727
2728	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2729
2730	/*
2731	 * If this is a repair I/O, and there's no self-healing involved --
2732	 * that is, we're just resilvering what we expect to resilver --
2733	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2734	 * This prevents spurious resilvering with nested replication.
2735	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2736	 * A is out of date, we'll read from C+D, then use the data to
2737	 * resilver A+B -- but we don't actually want to resilver B, just A.
2738	 * The top-level mirror has no way to know this, so instead we just
2739	 * discard unnecessary repairs as we work our way down the vdev tree.
2740	 * The same logic applies to any form of nested replication:
2741	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2742	 */
2743	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2744	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2745	    zio->io_txg != 0 &&	/* not a delegated i/o */
2746	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2747		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2748		zio_vdev_io_bypass(zio);
2749		return (ZIO_PIPELINE_CONTINUE);
2750	}
2751
2752	if (vd->vdev_ops->vdev_op_leaf) {
2753		switch (zio->io_type) {
2754		case ZIO_TYPE_READ:
2755			if (vdev_cache_read(zio))
2756				return (ZIO_PIPELINE_CONTINUE);
2757			/* FALLTHROUGH */
2758		case ZIO_TYPE_WRITE:
2759		case ZIO_TYPE_FREE:
2760			if ((zio = vdev_queue_io(zio)) == NULL)
2761				return (ZIO_PIPELINE_STOP);
2762
2763			if (!vdev_accessible(vd, zio)) {
2764				zio->io_error = SET_ERROR(ENXIO);
2765				zio_interrupt(zio);
2766				return (ZIO_PIPELINE_STOP);
2767			}
2768			break;
2769		}
2770		/*
2771		 * Note that we ignore repair writes for TRIM because they can
2772		 * conflict with normal writes. This isn't an issue because, by
2773		 * definition, we only repair blocks that aren't freed.
2774		 */
2775		if (zio->io_type == ZIO_TYPE_WRITE &&
2776		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2777		    !trim_map_write_start(zio))
2778			return (ZIO_PIPELINE_STOP);
2779	}
2780
2781	ret = vd->vdev_ops->vdev_op_io_start(zio);
2782	ASSERT(ret == ZIO_PIPELINE_STOP);
2783
2784	return (ret);
2785}
2786
2787static int
2788zio_vdev_io_done(zio_t *zio)
2789{
2790	vdev_t *vd = zio->io_vd;
2791	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2792	boolean_t unexpected_error = B_FALSE;
2793
2794	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2795		return (ZIO_PIPELINE_STOP);
2796
2797	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2798	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2799
2800	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2801	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2802	    zio->io_type == ZIO_TYPE_FREE)) {
2803
2804		if (zio->io_type == ZIO_TYPE_WRITE &&
2805		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2806			trim_map_write_done(zio);
2807
2808		vdev_queue_io_done(zio);
2809
2810		if (zio->io_type == ZIO_TYPE_WRITE)
2811			vdev_cache_write(zio);
2812
2813		if (zio_injection_enabled && zio->io_error == 0)
2814			zio->io_error = zio_handle_device_injection(vd,
2815			    zio, EIO);
2816
2817		if (zio_injection_enabled && zio->io_error == 0)
2818			zio->io_error = zio_handle_label_injection(zio, EIO);
2819
2820		if (zio->io_error) {
2821			if (zio->io_error == ENOTSUP &&
2822			    zio->io_type == ZIO_TYPE_FREE) {
2823				/* Not all devices support TRIM. */
2824			} else if (!vdev_accessible(vd, zio)) {
2825				zio->io_error = SET_ERROR(ENXIO);
2826			} else {
2827				unexpected_error = B_TRUE;
2828			}
2829		}
2830	}
2831
2832	ops->vdev_op_io_done(zio);
2833
2834	if (unexpected_error)
2835		VERIFY(vdev_probe(vd, zio) == NULL);
2836
2837	return (ZIO_PIPELINE_CONTINUE);
2838}
2839
2840/*
2841 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2842 * disk, and use that to finish the checksum ereport later.
2843 */
2844static void
2845zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2846    const void *good_buf)
2847{
2848	/* no processing needed */
2849	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2850}
2851
2852/*ARGSUSED*/
2853void
2854zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2855{
2856	void *buf = zio_buf_alloc(zio->io_size);
2857
2858	bcopy(zio->io_data, buf, zio->io_size);
2859
2860	zcr->zcr_cbinfo = zio->io_size;
2861	zcr->zcr_cbdata = buf;
2862	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2863	zcr->zcr_free = zio_buf_free;
2864}
2865
2866static int
2867zio_vdev_io_assess(zio_t *zio)
2868{
2869	vdev_t *vd = zio->io_vd;
2870
2871	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2872		return (ZIO_PIPELINE_STOP);
2873
2874	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2875		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2876
2877	if (zio->io_vsd != NULL) {
2878		zio->io_vsd_ops->vsd_free(zio);
2879		zio->io_vsd = NULL;
2880	}
2881
2882	if (zio_injection_enabled && zio->io_error == 0)
2883		zio->io_error = zio_handle_fault_injection(zio, EIO);
2884
2885	if (zio->io_type == ZIO_TYPE_FREE &&
2886	    zio->io_priority != ZIO_PRIORITY_NOW) {
2887		switch (zio->io_error) {
2888		case 0:
2889			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2890			ZIO_TRIM_STAT_BUMP(success);
2891			break;
2892		case EOPNOTSUPP:
2893			ZIO_TRIM_STAT_BUMP(unsupported);
2894			break;
2895		default:
2896			ZIO_TRIM_STAT_BUMP(failed);
2897			break;
2898		}
2899	}
2900
2901	/*
2902	 * If the I/O failed, determine whether we should attempt to retry it.
2903	 *
2904	 * On retry, we cut in line in the issue queue, since we don't want
2905	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2906	 */
2907	if (zio->io_error && vd == NULL &&
2908	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2909		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2910		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2911		zio->io_error = 0;
2912		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2913		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2914		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2915		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2916		    zio_requeue_io_start_cut_in_line);
2917		return (ZIO_PIPELINE_STOP);
2918	}
2919
2920	/*
2921	 * If we got an error on a leaf device, convert it to ENXIO
2922	 * if the device is not accessible at all.
2923	 */
2924	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2925	    !vdev_accessible(vd, zio))
2926		zio->io_error = SET_ERROR(ENXIO);
2927
2928	/*
2929	 * If we can't write to an interior vdev (mirror or RAID-Z),
2930	 * set vdev_cant_write so that we stop trying to allocate from it.
2931	 */
2932	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2933	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2934		vd->vdev_cant_write = B_TRUE;
2935	}
2936
2937	if (zio->io_error)
2938		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2939
2940	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2941	    zio->io_physdone != NULL) {
2942		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2943		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2944		zio->io_physdone(zio->io_logical);
2945	}
2946
2947	return (ZIO_PIPELINE_CONTINUE);
2948}
2949
2950void
2951zio_vdev_io_reissue(zio_t *zio)
2952{
2953	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2954	ASSERT(zio->io_error == 0);
2955
2956	zio->io_stage >>= 1;
2957}
2958
2959void
2960zio_vdev_io_redone(zio_t *zio)
2961{
2962	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2963
2964	zio->io_stage >>= 1;
2965}
2966
2967void
2968zio_vdev_io_bypass(zio_t *zio)
2969{
2970	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2971	ASSERT(zio->io_error == 0);
2972
2973	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2974	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2975}
2976
2977/*
2978 * ==========================================================================
2979 * Generate and verify checksums
2980 * ==========================================================================
2981 */
2982static int
2983zio_checksum_generate(zio_t *zio)
2984{
2985	blkptr_t *bp = zio->io_bp;
2986	enum zio_checksum checksum;
2987
2988	if (bp == NULL) {
2989		/*
2990		 * This is zio_write_phys().
2991		 * We're either generating a label checksum, or none at all.
2992		 */
2993		checksum = zio->io_prop.zp_checksum;
2994
2995		if (checksum == ZIO_CHECKSUM_OFF)
2996			return (ZIO_PIPELINE_CONTINUE);
2997
2998		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2999	} else {
3000		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3001			ASSERT(!IO_IS_ALLOCATING(zio));
3002			checksum = ZIO_CHECKSUM_GANG_HEADER;
3003		} else {
3004			checksum = BP_GET_CHECKSUM(bp);
3005		}
3006	}
3007
3008	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
3009
3010	return (ZIO_PIPELINE_CONTINUE);
3011}
3012
3013static int
3014zio_checksum_verify(zio_t *zio)
3015{
3016	zio_bad_cksum_t info;
3017	blkptr_t *bp = zio->io_bp;
3018	int error;
3019
3020	ASSERT(zio->io_vd != NULL);
3021
3022	if (bp == NULL) {
3023		/*
3024		 * This is zio_read_phys().
3025		 * We're either verifying a label checksum, or nothing at all.
3026		 */
3027		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3028			return (ZIO_PIPELINE_CONTINUE);
3029
3030		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3031	}
3032
3033	if ((error = zio_checksum_error(zio, &info)) != 0) {
3034		zio->io_error = error;
3035		if (error == ECKSUM &&
3036		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3037			zfs_ereport_start_checksum(zio->io_spa,
3038			    zio->io_vd, zio, zio->io_offset,
3039			    zio->io_size, NULL, &info);
3040		}
3041	}
3042
3043	return (ZIO_PIPELINE_CONTINUE);
3044}
3045
3046/*
3047 * Called by RAID-Z to ensure we don't compute the checksum twice.
3048 */
3049void
3050zio_checksum_verified(zio_t *zio)
3051{
3052	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3053}
3054
3055/*
3056 * ==========================================================================
3057 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3058 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3059 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3060 * indicate errors that are specific to one I/O, and most likely permanent.
3061 * Any other error is presumed to be worse because we weren't expecting it.
3062 * ==========================================================================
3063 */
3064int
3065zio_worst_error(int e1, int e2)
3066{
3067	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3068	int r1, r2;
3069
3070	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3071		if (e1 == zio_error_rank[r1])
3072			break;
3073
3074	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3075		if (e2 == zio_error_rank[r2])
3076			break;
3077
3078	return (r1 > r2 ? e1 : e2);
3079}
3080
3081/*
3082 * ==========================================================================
3083 * I/O completion
3084 * ==========================================================================
3085 */
3086static int
3087zio_ready(zio_t *zio)
3088{
3089	blkptr_t *bp = zio->io_bp;
3090	zio_t *pio, *pio_next;
3091
3092	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3093	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3094		return (ZIO_PIPELINE_STOP);
3095
3096	if (zio->io_ready) {
3097		ASSERT(IO_IS_ALLOCATING(zio));
3098		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3099		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3100		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3101
3102		zio->io_ready(zio);
3103	}
3104
3105	if (bp != NULL && bp != &zio->io_bp_copy)
3106		zio->io_bp_copy = *bp;
3107
3108	if (zio->io_error)
3109		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3110
3111	mutex_enter(&zio->io_lock);
3112	zio->io_state[ZIO_WAIT_READY] = 1;
3113	pio = zio_walk_parents(zio);
3114	mutex_exit(&zio->io_lock);
3115
3116	/*
3117	 * As we notify zio's parents, new parents could be added.
3118	 * New parents go to the head of zio's io_parent_list, however,
3119	 * so we will (correctly) not notify them.  The remainder of zio's
3120	 * io_parent_list, from 'pio_next' onward, cannot change because
3121	 * all parents must wait for us to be done before they can be done.
3122	 */
3123	for (; pio != NULL; pio = pio_next) {
3124		pio_next = zio_walk_parents(zio);
3125		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3126	}
3127
3128	if (zio->io_flags & ZIO_FLAG_NODATA) {
3129		if (BP_IS_GANG(bp)) {
3130			zio->io_flags &= ~ZIO_FLAG_NODATA;
3131		} else {
3132			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3133			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3134		}
3135	}
3136
3137	if (zio_injection_enabled &&
3138	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3139		zio_handle_ignored_writes(zio);
3140
3141	return (ZIO_PIPELINE_CONTINUE);
3142}
3143
3144static int
3145zio_done(zio_t *zio)
3146{
3147	spa_t *spa = zio->io_spa;
3148	zio_t *lio = zio->io_logical;
3149	blkptr_t *bp = zio->io_bp;
3150	vdev_t *vd = zio->io_vd;
3151	uint64_t psize = zio->io_size;
3152	zio_t *pio, *pio_next;
3153
3154	/*
3155	 * If our children haven't all completed,
3156	 * wait for them and then repeat this pipeline stage.
3157	 */
3158	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3159	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3160	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3161	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3162		return (ZIO_PIPELINE_STOP);
3163
3164	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3165		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3166			ASSERT(zio->io_children[c][w] == 0);
3167
3168	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3169		ASSERT(bp->blk_pad[0] == 0);
3170		ASSERT(bp->blk_pad[1] == 0);
3171		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3172		    (bp == zio_unique_parent(zio)->io_bp));
3173		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3174		    zio->io_bp_override == NULL &&
3175		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3176			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3177			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3178			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3179			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3180		}
3181		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3182			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3183	}
3184
3185	/*
3186	 * If there were child vdev/gang/ddt errors, they apply to us now.
3187	 */
3188	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3189	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3190	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3191
3192	/*
3193	 * If the I/O on the transformed data was successful, generate any
3194	 * checksum reports now while we still have the transformed data.
3195	 */
3196	if (zio->io_error == 0) {
3197		while (zio->io_cksum_report != NULL) {
3198			zio_cksum_report_t *zcr = zio->io_cksum_report;
3199			uint64_t align = zcr->zcr_align;
3200			uint64_t asize = P2ROUNDUP(psize, align);
3201			char *abuf = zio->io_data;
3202
3203			if (asize != psize) {
3204				abuf = zio_buf_alloc(asize);
3205				bcopy(zio->io_data, abuf, psize);
3206				bzero(abuf + psize, asize - psize);
3207			}
3208
3209			zio->io_cksum_report = zcr->zcr_next;
3210			zcr->zcr_next = NULL;
3211			zcr->zcr_finish(zcr, abuf);
3212			zfs_ereport_free_checksum(zcr);
3213
3214			if (asize != psize)
3215				zio_buf_free(abuf, asize);
3216		}
3217	}
3218
3219	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3220
3221	vdev_stat_update(zio, psize);
3222
3223	if (zio->io_error) {
3224		/*
3225		 * If this I/O is attached to a particular vdev,
3226		 * generate an error message describing the I/O failure
3227		 * at the block level.  We ignore these errors if the
3228		 * device is currently unavailable.
3229		 */
3230		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3231			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3232
3233		if ((zio->io_error == EIO || !(zio->io_flags &
3234		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3235		    zio == lio) {
3236			/*
3237			 * For logical I/O requests, tell the SPA to log the
3238			 * error and generate a logical data ereport.
3239			 */
3240			spa_log_error(spa, zio);
3241			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3242			    0, 0);
3243		}
3244	}
3245
3246	if (zio->io_error && zio == lio) {
3247		/*
3248		 * Determine whether zio should be reexecuted.  This will
3249		 * propagate all the way to the root via zio_notify_parent().
3250		 */
3251		ASSERT(vd == NULL && bp != NULL);
3252		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3253
3254		if (IO_IS_ALLOCATING(zio) &&
3255		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3256			if (zio->io_error != ENOSPC)
3257				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3258			else
3259				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3260		}
3261
3262		if ((zio->io_type == ZIO_TYPE_READ ||
3263		    zio->io_type == ZIO_TYPE_FREE) &&
3264		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3265		    zio->io_error == ENXIO &&
3266		    spa_load_state(spa) == SPA_LOAD_NONE &&
3267		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3268			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3269
3270		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3271			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3272
3273		/*
3274		 * Here is a possibly good place to attempt to do
3275		 * either combinatorial reconstruction or error correction
3276		 * based on checksums.  It also might be a good place
3277		 * to send out preliminary ereports before we suspend
3278		 * processing.
3279		 */
3280	}
3281
3282	/*
3283	 * If there were logical child errors, they apply to us now.
3284	 * We defer this until now to avoid conflating logical child
3285	 * errors with errors that happened to the zio itself when
3286	 * updating vdev stats and reporting FMA events above.
3287	 */
3288	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3289
3290	if ((zio->io_error || zio->io_reexecute) &&
3291	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3292	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3293		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3294
3295	zio_gang_tree_free(&zio->io_gang_tree);
3296
3297	/*
3298	 * Godfather I/Os should never suspend.
3299	 */
3300	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3301	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3302		zio->io_reexecute = 0;
3303
3304	if (zio->io_reexecute) {
3305		/*
3306		 * This is a logical I/O that wants to reexecute.
3307		 *
3308		 * Reexecute is top-down.  When an i/o fails, if it's not
3309		 * the root, it simply notifies its parent and sticks around.
3310		 * The parent, seeing that it still has children in zio_done(),
3311		 * does the same.  This percolates all the way up to the root.
3312		 * The root i/o will reexecute or suspend the entire tree.
3313		 *
3314		 * This approach ensures that zio_reexecute() honors
3315		 * all the original i/o dependency relationships, e.g.
3316		 * parents not executing until children are ready.
3317		 */
3318		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3319
3320		zio->io_gang_leader = NULL;
3321
3322		mutex_enter(&zio->io_lock);
3323		zio->io_state[ZIO_WAIT_DONE] = 1;
3324		mutex_exit(&zio->io_lock);
3325
3326		/*
3327		 * "The Godfather" I/O monitors its children but is
3328		 * not a true parent to them. It will track them through
3329		 * the pipeline but severs its ties whenever they get into
3330		 * trouble (e.g. suspended). This allows "The Godfather"
3331		 * I/O to return status without blocking.
3332		 */
3333		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3334			zio_link_t *zl = zio->io_walk_link;
3335			pio_next = zio_walk_parents(zio);
3336
3337			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3338			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3339				zio_remove_child(pio, zio, zl);
3340				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3341			}
3342		}
3343
3344		if ((pio = zio_unique_parent(zio)) != NULL) {
3345			/*
3346			 * We're not a root i/o, so there's nothing to do
3347			 * but notify our parent.  Don't propagate errors
3348			 * upward since we haven't permanently failed yet.
3349			 */
3350			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3351			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3352			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3353		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3354			/*
3355			 * We'd fail again if we reexecuted now, so suspend
3356			 * until conditions improve (e.g. device comes online).
3357			 */
3358			zio_suspend(spa, zio);
3359		} else {
3360			/*
3361			 * Reexecution is potentially a huge amount of work.
3362			 * Hand it off to the otherwise-unused claim taskq.
3363			 */
3364#if defined(illumos) || !defined(_KERNEL)
3365			ASSERT(zio->io_tqent.tqent_next == NULL);
3366#else
3367			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3368#endif
3369			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3370			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3371			    0, &zio->io_tqent);
3372		}
3373		return (ZIO_PIPELINE_STOP);
3374	}
3375
3376	ASSERT(zio->io_child_count == 0);
3377	ASSERT(zio->io_reexecute == 0);
3378	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3379
3380	/*
3381	 * Report any checksum errors, since the I/O is complete.
3382	 */
3383	while (zio->io_cksum_report != NULL) {
3384		zio_cksum_report_t *zcr = zio->io_cksum_report;
3385		zio->io_cksum_report = zcr->zcr_next;
3386		zcr->zcr_next = NULL;
3387		zcr->zcr_finish(zcr, NULL);
3388		zfs_ereport_free_checksum(zcr);
3389	}
3390
3391	/*
3392	 * It is the responsibility of the done callback to ensure that this
3393	 * particular zio is no longer discoverable for adoption, and as
3394	 * such, cannot acquire any new parents.
3395	 */
3396	if (zio->io_done)
3397		zio->io_done(zio);
3398
3399	mutex_enter(&zio->io_lock);
3400	zio->io_state[ZIO_WAIT_DONE] = 1;
3401	mutex_exit(&zio->io_lock);
3402
3403	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3404		zio_link_t *zl = zio->io_walk_link;
3405		pio_next = zio_walk_parents(zio);
3406		zio_remove_child(pio, zio, zl);
3407		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3408	}
3409
3410	if (zio->io_waiter != NULL) {
3411		mutex_enter(&zio->io_lock);
3412		zio->io_executor = NULL;
3413		cv_broadcast(&zio->io_cv);
3414		mutex_exit(&zio->io_lock);
3415	} else {
3416		zio_destroy(zio);
3417	}
3418
3419	return (ZIO_PIPELINE_STOP);
3420}
3421
3422/*
3423 * ==========================================================================
3424 * I/O pipeline definition
3425 * ==========================================================================
3426 */
3427static zio_pipe_stage_t *zio_pipeline[] = {
3428	NULL,
3429	zio_read_bp_init,
3430	zio_free_bp_init,
3431	zio_issue_async,
3432	zio_write_bp_init,
3433	zio_checksum_generate,
3434	zio_nop_write,
3435	zio_ddt_read_start,
3436	zio_ddt_read_done,
3437	zio_ddt_write,
3438	zio_ddt_free,
3439	zio_gang_assemble,
3440	zio_gang_issue,
3441	zio_dva_allocate,
3442	zio_dva_free,
3443	zio_dva_claim,
3444	zio_ready,
3445	zio_vdev_io_start,
3446	zio_vdev_io_done,
3447	zio_vdev_io_assess,
3448	zio_checksum_verify,
3449	zio_done
3450};
3451
3452/* dnp is the dnode for zb1->zb_object */
3453boolean_t
3454zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3455    const zbookmark_phys_t *zb2)
3456{
3457	uint64_t zb1nextL0, zb2thisobj;
3458
3459	ASSERT(zb1->zb_objset == zb2->zb_objset);
3460	ASSERT(zb2->zb_level == 0);
3461
3462	/* The objset_phys_t isn't before anything. */
3463	if (dnp == NULL)
3464		return (B_FALSE);
3465
3466	zb1nextL0 = (zb1->zb_blkid + 1) <<
3467	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3468
3469	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3470	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3471
3472	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3473		uint64_t nextobj = zb1nextL0 *
3474		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3475		return (nextobj <= zb2thisobj);
3476	}
3477
3478	if (zb1->zb_object < zb2thisobj)
3479		return (B_TRUE);
3480	if (zb1->zb_object > zb2thisobj)
3481		return (B_FALSE);
3482	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3483		return (B_FALSE);
3484	return (zb1nextL0 <= zb2->zb_blkid);
3485}
3486