zio.c revision 277575
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/sysmacros.h>
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/txg.h>
32#include <sys/spa_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio_impl.h>
35#include <sys/zio_compress.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/ddt.h>
40#include <sys/trim_map.h>
41#include <sys/blkptr.h>
42#include <sys/zfeature.h>
43
44SYSCTL_DECL(_vfs_zfs);
45SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
46#if defined(__amd64__)
47static int zio_use_uma = 1;
48#else
49static int zio_use_uma = 0;
50#endif
51TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
52SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
53    "Use uma(9) for ZIO allocations");
54static int zio_exclude_metadata = 0;
55TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
56SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
57    "Exclude metadata buffers from dumps as well");
58
59zio_trim_stats_t zio_trim_stats = {
60	{ "bytes",		KSTAT_DATA_UINT64,
61	  "Number of bytes successfully TRIMmed" },
62	{ "success",		KSTAT_DATA_UINT64,
63	  "Number of successful TRIM requests" },
64	{ "unsupported",	KSTAT_DATA_UINT64,
65	  "Number of TRIM requests that failed because TRIM is not supported" },
66	{ "failed",		KSTAT_DATA_UINT64,
67	  "Number of TRIM requests that failed for reasons other than not supported" },
68};
69
70static kstat_t *zio_trim_ksp;
71
72/*
73 * ==========================================================================
74 * I/O type descriptions
75 * ==========================================================================
76 */
77const char *zio_type_name[ZIO_TYPES] = {
78	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
79	"zio_ioctl"
80};
81
82/*
83 * ==========================================================================
84 * I/O kmem caches
85 * ==========================================================================
86 */
87kmem_cache_t *zio_cache;
88kmem_cache_t *zio_link_cache;
89kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
90kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
91
92#ifdef _KERNEL
93extern vmem_t *zio_alloc_arena;
94#endif
95
96/*
97 * The following actions directly effect the spa's sync-to-convergence logic.
98 * The values below define the sync pass when we start performing the action.
99 * Care should be taken when changing these values as they directly impact
100 * spa_sync() performance. Tuning these values may introduce subtle performance
101 * pathologies and should only be done in the context of performance analysis.
102 * These tunables will eventually be removed and replaced with #defines once
103 * enough analysis has been done to determine optimal values.
104 *
105 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
106 * regular blocks are not deferred.
107 */
108int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
109TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
110SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
111    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
112int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
113TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
114SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
115    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
116int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
117TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
118SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
119    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
120
121/*
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
124 */
125#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126
127boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
128
129#ifdef ZFS_DEBUG
130int zio_buf_debug_limit = 16384;
131#else
132int zio_buf_debug_limit = 0;
133#endif
134
135void
136zio_init(void)
137{
138	size_t c;
139	zio_cache = kmem_cache_create("zio_cache",
140	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
141	zio_link_cache = kmem_cache_create("zio_link_cache",
142	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
143	if (!zio_use_uma)
144		goto out;
145
146	/*
147	 * For small buffers, we want a cache for each multiple of
148	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
149	 * for each quarter-power of 2.
150	 */
151	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
152		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
153		size_t p2 = size;
154		size_t align = 0;
155		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
156
157		while (!ISP2(p2))
158			p2 &= p2 - 1;
159
160#ifdef illumos
161#ifndef _KERNEL
162		/*
163		 * If we are using watchpoints, put each buffer on its own page,
164		 * to eliminate the performance overhead of trapping to the
165		 * kernel when modifying a non-watched buffer that shares the
166		 * page with a watched buffer.
167		 */
168		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
169			continue;
170#endif
171#endif /* illumos */
172		if (size <= 4 * SPA_MINBLOCKSIZE) {
173			align = SPA_MINBLOCKSIZE;
174		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
175			align = MIN(p2 >> 2, PAGESIZE);
176		}
177
178		if (align != 0) {
179			char name[36];
180			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
181			zio_buf_cache[c] = kmem_cache_create(name, size,
182			    align, NULL, NULL, NULL, NULL, NULL, cflags);
183
184			/*
185			 * Since zio_data bufs do not appear in crash dumps, we
186			 * pass KMC_NOTOUCH so that no allocator metadata is
187			 * stored with the buffers.
188			 */
189			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190			zio_data_buf_cache[c] = kmem_cache_create(name, size,
191			    align, NULL, NULL, NULL, NULL, NULL,
192			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
193		}
194	}
195
196	while (--c != 0) {
197		ASSERT(zio_buf_cache[c] != NULL);
198		if (zio_buf_cache[c - 1] == NULL)
199			zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201		ASSERT(zio_data_buf_cache[c] != NULL);
202		if (zio_data_buf_cache[c - 1] == NULL)
203			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204	}
205out:
206
207	zio_inject_init();
208
209	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
210	    KSTAT_TYPE_NAMED,
211	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
212	    KSTAT_FLAG_VIRTUAL);
213
214	if (zio_trim_ksp != NULL) {
215		zio_trim_ksp->ks_data = &zio_trim_stats;
216		kstat_install(zio_trim_ksp);
217	}
218}
219
220void
221zio_fini(void)
222{
223	size_t c;
224	kmem_cache_t *last_cache = NULL;
225	kmem_cache_t *last_data_cache = NULL;
226
227	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
228		if (zio_buf_cache[c] != last_cache) {
229			last_cache = zio_buf_cache[c];
230			kmem_cache_destroy(zio_buf_cache[c]);
231		}
232		zio_buf_cache[c] = NULL;
233
234		if (zio_data_buf_cache[c] != last_data_cache) {
235			last_data_cache = zio_data_buf_cache[c];
236			kmem_cache_destroy(zio_data_buf_cache[c]);
237		}
238		zio_data_buf_cache[c] = NULL;
239	}
240
241	kmem_cache_destroy(zio_link_cache);
242	kmem_cache_destroy(zio_cache);
243
244	zio_inject_fini();
245
246	if (zio_trim_ksp != NULL) {
247		kstat_delete(zio_trim_ksp);
248		zio_trim_ksp = NULL;
249	}
250}
251
252/*
253 * ==========================================================================
254 * Allocate and free I/O buffers
255 * ==========================================================================
256 */
257
258/*
259 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
260 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
261 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
262 * excess / transient data in-core during a crashdump.
263 */
264void *
265zio_buf_alloc(size_t size)
266{
267	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
269
270	ASSERT3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271
272	if (zio_use_uma)
273		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274	else
275		return (kmem_alloc(size, KM_SLEEP|flags));
276}
277
278/*
279 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
280 * crashdump if the kernel panics.  This exists so that we will limit the amount
281 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
282 * of kernel heap dumped to disk when the kernel panics)
283 */
284void *
285zio_data_buf_alloc(size_t size)
286{
287	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
288
289	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
290
291	if (zio_use_uma)
292		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
293	else
294		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
295}
296
297void
298zio_buf_free(void *buf, size_t size)
299{
300	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
301
302	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
303
304	if (zio_use_uma)
305		kmem_cache_free(zio_buf_cache[c], buf);
306	else
307		kmem_free(buf, size);
308}
309
310void
311zio_data_buf_free(void *buf, size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		kmem_cache_free(zio_data_buf_cache[c], buf);
319	else
320		kmem_free(buf, size);
321}
322
323/*
324 * ==========================================================================
325 * Push and pop I/O transform buffers
326 * ==========================================================================
327 */
328static void
329zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
330	zio_transform_func_t *transform)
331{
332	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
333
334	zt->zt_orig_data = zio->io_data;
335	zt->zt_orig_size = zio->io_size;
336	zt->zt_bufsize = bufsize;
337	zt->zt_transform = transform;
338
339	zt->zt_next = zio->io_transform_stack;
340	zio->io_transform_stack = zt;
341
342	zio->io_data = data;
343	zio->io_size = size;
344}
345
346static void
347zio_pop_transforms(zio_t *zio)
348{
349	zio_transform_t *zt;
350
351	while ((zt = zio->io_transform_stack) != NULL) {
352		if (zt->zt_transform != NULL)
353			zt->zt_transform(zio,
354			    zt->zt_orig_data, zt->zt_orig_size);
355
356		if (zt->zt_bufsize != 0)
357			zio_buf_free(zio->io_data, zt->zt_bufsize);
358
359		zio->io_data = zt->zt_orig_data;
360		zio->io_size = zt->zt_orig_size;
361		zio->io_transform_stack = zt->zt_next;
362
363		kmem_free(zt, sizeof (zio_transform_t));
364	}
365}
366
367/*
368 * ==========================================================================
369 * I/O transform callbacks for subblocks and decompression
370 * ==========================================================================
371 */
372static void
373zio_subblock(zio_t *zio, void *data, uint64_t size)
374{
375	ASSERT(zio->io_size > size);
376
377	if (zio->io_type == ZIO_TYPE_READ)
378		bcopy(zio->io_data, data, size);
379}
380
381static void
382zio_decompress(zio_t *zio, void *data, uint64_t size)
383{
384	if (zio->io_error == 0 &&
385	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
386	    zio->io_data, data, zio->io_size, size) != 0)
387		zio->io_error = SET_ERROR(EIO);
388}
389
390/*
391 * ==========================================================================
392 * I/O parent/child relationships and pipeline interlocks
393 * ==========================================================================
394 */
395/*
396 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
397 *        continue calling these functions until they return NULL.
398 *        Otherwise, the next caller will pick up the list walk in
399 *        some indeterminate state.  (Otherwise every caller would
400 *        have to pass in a cookie to keep the state represented by
401 *        io_walk_link, which gets annoying.)
402 */
403zio_t *
404zio_walk_parents(zio_t *cio)
405{
406	zio_link_t *zl = cio->io_walk_link;
407	list_t *pl = &cio->io_parent_list;
408
409	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
410	cio->io_walk_link = zl;
411
412	if (zl == NULL)
413		return (NULL);
414
415	ASSERT(zl->zl_child == cio);
416	return (zl->zl_parent);
417}
418
419zio_t *
420zio_walk_children(zio_t *pio)
421{
422	zio_link_t *zl = pio->io_walk_link;
423	list_t *cl = &pio->io_child_list;
424
425	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
426	pio->io_walk_link = zl;
427
428	if (zl == NULL)
429		return (NULL);
430
431	ASSERT(zl->zl_parent == pio);
432	return (zl->zl_child);
433}
434
435zio_t *
436zio_unique_parent(zio_t *cio)
437{
438	zio_t *pio = zio_walk_parents(cio);
439
440	VERIFY(zio_walk_parents(cio) == NULL);
441	return (pio);
442}
443
444void
445zio_add_child(zio_t *pio, zio_t *cio)
446{
447	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
448
449	/*
450	 * Logical I/Os can have logical, gang, or vdev children.
451	 * Gang I/Os can have gang or vdev children.
452	 * Vdev I/Os can only have vdev children.
453	 * The following ASSERT captures all of these constraints.
454	 */
455	ASSERT(cio->io_child_type <= pio->io_child_type);
456
457	zl->zl_parent = pio;
458	zl->zl_child = cio;
459
460	mutex_enter(&cio->io_lock);
461	mutex_enter(&pio->io_lock);
462
463	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
464
465	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
466		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
467
468	list_insert_head(&pio->io_child_list, zl);
469	list_insert_head(&cio->io_parent_list, zl);
470
471	pio->io_child_count++;
472	cio->io_parent_count++;
473
474	mutex_exit(&pio->io_lock);
475	mutex_exit(&cio->io_lock);
476}
477
478static void
479zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
480{
481	ASSERT(zl->zl_parent == pio);
482	ASSERT(zl->zl_child == cio);
483
484	mutex_enter(&cio->io_lock);
485	mutex_enter(&pio->io_lock);
486
487	list_remove(&pio->io_child_list, zl);
488	list_remove(&cio->io_parent_list, zl);
489
490	pio->io_child_count--;
491	cio->io_parent_count--;
492
493	mutex_exit(&pio->io_lock);
494	mutex_exit(&cio->io_lock);
495
496	kmem_cache_free(zio_link_cache, zl);
497}
498
499static boolean_t
500zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
501{
502	uint64_t *countp = &zio->io_children[child][wait];
503	boolean_t waiting = B_FALSE;
504
505	mutex_enter(&zio->io_lock);
506	ASSERT(zio->io_stall == NULL);
507	if (*countp != 0) {
508		zio->io_stage >>= 1;
509		zio->io_stall = countp;
510		waiting = B_TRUE;
511	}
512	mutex_exit(&zio->io_lock);
513
514	return (waiting);
515}
516
517static void
518zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
519{
520	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
521	int *errorp = &pio->io_child_error[zio->io_child_type];
522
523	mutex_enter(&pio->io_lock);
524	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
525		*errorp = zio_worst_error(*errorp, zio->io_error);
526	pio->io_reexecute |= zio->io_reexecute;
527	ASSERT3U(*countp, >, 0);
528
529	(*countp)--;
530
531	if (*countp == 0 && pio->io_stall == countp) {
532		pio->io_stall = NULL;
533		mutex_exit(&pio->io_lock);
534		zio_execute(pio);
535	} else {
536		mutex_exit(&pio->io_lock);
537	}
538}
539
540static void
541zio_inherit_child_errors(zio_t *zio, enum zio_child c)
542{
543	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
544		zio->io_error = zio->io_child_error[c];
545}
546
547/*
548 * ==========================================================================
549 * Create the various types of I/O (read, write, free, etc)
550 * ==========================================================================
551 */
552static zio_t *
553zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
554    void *data, uint64_t size, zio_done_func_t *done, void *private,
555    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
556    vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb,
557    enum zio_stage stage, enum zio_stage pipeline)
558{
559	zio_t *zio;
560
561	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
562	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
563	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
564
565	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
566	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
567	ASSERT(vd || stage == ZIO_STAGE_OPEN);
568
569	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
570	bzero(zio, sizeof (zio_t));
571
572	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
573	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
574
575	list_create(&zio->io_parent_list, sizeof (zio_link_t),
576	    offsetof(zio_link_t, zl_parent_node));
577	list_create(&zio->io_child_list, sizeof (zio_link_t),
578	    offsetof(zio_link_t, zl_child_node));
579
580	if (vd != NULL)
581		zio->io_child_type = ZIO_CHILD_VDEV;
582	else if (flags & ZIO_FLAG_GANG_CHILD)
583		zio->io_child_type = ZIO_CHILD_GANG;
584	else if (flags & ZIO_FLAG_DDT_CHILD)
585		zio->io_child_type = ZIO_CHILD_DDT;
586	else
587		zio->io_child_type = ZIO_CHILD_LOGICAL;
588
589	if (bp != NULL) {
590		zio->io_bp = (blkptr_t *)bp;
591		zio->io_bp_copy = *bp;
592		zio->io_bp_orig = *bp;
593		if (type != ZIO_TYPE_WRITE ||
594		    zio->io_child_type == ZIO_CHILD_DDT)
595			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
596		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
597			zio->io_logical = zio;
598		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
599			pipeline |= ZIO_GANG_STAGES;
600	}
601
602	zio->io_spa = spa;
603	zio->io_txg = txg;
604	zio->io_done = done;
605	zio->io_private = private;
606	zio->io_type = type;
607	zio->io_priority = priority;
608	zio->io_vd = vd;
609	zio->io_offset = offset;
610	zio->io_orig_data = zio->io_data = data;
611	zio->io_orig_size = zio->io_size = size;
612	zio->io_orig_flags = zio->io_flags = flags;
613	zio->io_orig_stage = zio->io_stage = stage;
614	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
615
616	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
618
619	if (zb != NULL)
620		zio->io_bookmark = *zb;
621
622	if (pio != NULL) {
623		if (zio->io_logical == NULL)
624			zio->io_logical = pio->io_logical;
625		if (zio->io_child_type == ZIO_CHILD_GANG)
626			zio->io_gang_leader = pio->io_gang_leader;
627		zio_add_child(pio, zio);
628	}
629
630	return (zio);
631}
632
633static void
634zio_destroy(zio_t *zio)
635{
636	list_destroy(&zio->io_parent_list);
637	list_destroy(&zio->io_child_list);
638	mutex_destroy(&zio->io_lock);
639	cv_destroy(&zio->io_cv);
640	kmem_cache_free(zio_cache, zio);
641}
642
643zio_t *
644zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
645    void *private, enum zio_flag flags)
646{
647	zio_t *zio;
648
649	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
650	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
651	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
652
653	return (zio);
654}
655
656zio_t *
657zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
658{
659	return (zio_null(NULL, spa, NULL, done, private, flags));
660}
661
662zio_t *
663zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
664    void *data, uint64_t size, zio_done_func_t *done, void *private,
665    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
666{
667	zio_t *zio;
668
669	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
670	    data, size, done, private,
671	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
672	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
673	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
674
675	return (zio);
676}
677
678zio_t *
679zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
680    void *data, uint64_t size, const zio_prop_t *zp,
681    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
682    void *private,
683    zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
684{
685	zio_t *zio;
686
687	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
688	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
689	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
690	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
691	    DMU_OT_IS_VALID(zp->zp_type) &&
692	    zp->zp_level < 32 &&
693	    zp->zp_copies > 0 &&
694	    zp->zp_copies <= spa_max_replication(spa));
695
696	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
697	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
698	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
699	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
700
701	zio->io_ready = ready;
702	zio->io_physdone = physdone;
703	zio->io_prop = *zp;
704
705	/*
706	 * Data can be NULL if we are going to call zio_write_override() to
707	 * provide the already-allocated BP.  But we may need the data to
708	 * verify a dedup hit (if requested).  In this case, don't try to
709	 * dedup (just take the already-allocated BP verbatim).
710	 */
711	if (data == NULL && zio->io_prop.zp_dedup_verify) {
712		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
713	}
714
715	return (zio);
716}
717
718zio_t *
719zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
720    uint64_t size, zio_done_func_t *done, void *private,
721    zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
722{
723	zio_t *zio;
724
725	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
726	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
727	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
728
729	return (zio);
730}
731
732void
733zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
734{
735	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
736	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
737	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
738	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
739
740	/*
741	 * We must reset the io_prop to match the values that existed
742	 * when the bp was first written by dmu_sync() keeping in mind
743	 * that nopwrite and dedup are mutually exclusive.
744	 */
745	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
746	zio->io_prop.zp_nopwrite = nopwrite;
747	zio->io_prop.zp_copies = copies;
748	zio->io_bp_override = bp;
749}
750
751void
752zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
753{
754
755	/*
756	 * The check for EMBEDDED is a performance optimization.  We
757	 * process the free here (by ignoring it) rather than
758	 * putting it on the list and then processing it in zio_free_sync().
759	 */
760	if (BP_IS_EMBEDDED(bp))
761		return;
762	metaslab_check_free(spa, bp);
763
764	/*
765	 * Frees that are for the currently-syncing txg, are not going to be
766	 * deferred, and which will not need to do a read (i.e. not GANG or
767	 * DEDUP), can be processed immediately.  Otherwise, put them on the
768	 * in-memory list for later processing.
769	 */
770	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
771	    txg != spa->spa_syncing_txg ||
772	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
773		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
774	} else {
775		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
776		    BP_GET_PSIZE(bp), 0)));
777	}
778}
779
780zio_t *
781zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
782    uint64_t size, enum zio_flag flags)
783{
784	zio_t *zio;
785	enum zio_stage stage = ZIO_FREE_PIPELINE;
786
787	ASSERT(!BP_IS_HOLE(bp));
788	ASSERT(spa_syncing_txg(spa) == txg);
789	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
790
791	if (BP_IS_EMBEDDED(bp))
792		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
793
794	metaslab_check_free(spa, bp);
795	arc_freed(spa, bp);
796
797	if (zfs_trim_enabled)
798		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
799		    ZIO_STAGE_VDEV_IO_ASSESS;
800	/*
801	 * GANG and DEDUP blocks can induce a read (for the gang block header,
802	 * or the DDT), so issue them asynchronously so that this thread is
803	 * not tied up.
804	 */
805	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
806		stage |= ZIO_STAGE_ISSUE_ASYNC;
807
808	flags |= ZIO_FLAG_DONT_QUEUE;
809
810	zio = zio_create(pio, spa, txg, bp, NULL, size,
811	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
812	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
813
814	return (zio);
815}
816
817zio_t *
818zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
819    zio_done_func_t *done, void *private, enum zio_flag flags)
820{
821	zio_t *zio;
822
823	dprintf_bp(bp, "claiming in txg %llu", txg);
824
825	if (BP_IS_EMBEDDED(bp))
826		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
827
828	/*
829	 * A claim is an allocation of a specific block.  Claims are needed
830	 * to support immediate writes in the intent log.  The issue is that
831	 * immediate writes contain committed data, but in a txg that was
832	 * *not* committed.  Upon opening the pool after an unclean shutdown,
833	 * the intent log claims all blocks that contain immediate write data
834	 * so that the SPA knows they're in use.
835	 *
836	 * All claims *must* be resolved in the first txg -- before the SPA
837	 * starts allocating blocks -- so that nothing is allocated twice.
838	 * If txg == 0 we just verify that the block is claimable.
839	 */
840	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
841	ASSERT(txg == spa_first_txg(spa) || txg == 0);
842	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
843
844	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
845	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
846	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
847
848	return (zio);
849}
850
851zio_t *
852zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
853    uint64_t size, zio_done_func_t *done, void *private,
854    zio_priority_t priority, enum zio_flag flags)
855{
856	zio_t *zio;
857	int c;
858
859	if (vd->vdev_children == 0) {
860		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
861		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
862		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
863
864		zio->io_cmd = cmd;
865	} else {
866		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
867
868		for (c = 0; c < vd->vdev_children; c++)
869			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
870			    offset, size, done, private, priority, flags));
871	}
872
873	return (zio);
874}
875
876zio_t *
877zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
878    void *data, int checksum, zio_done_func_t *done, void *private,
879    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
880{
881	zio_t *zio;
882
883	ASSERT(vd->vdev_children == 0);
884	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
885	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
886	ASSERT3U(offset + size, <=, vd->vdev_psize);
887
888	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
889	    ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
890	    NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
891
892	zio->io_prop.zp_checksum = checksum;
893
894	return (zio);
895}
896
897zio_t *
898zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
899    void *data, int checksum, zio_done_func_t *done, void *private,
900    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
901{
902	zio_t *zio;
903
904	ASSERT(vd->vdev_children == 0);
905	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
906	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
907	ASSERT3U(offset + size, <=, vd->vdev_psize);
908
909	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
910	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset,
911	    NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
912
913	zio->io_prop.zp_checksum = checksum;
914
915	if (zio_checksum_table[checksum].ci_eck) {
916		/*
917		 * zec checksums are necessarily destructive -- they modify
918		 * the end of the write buffer to hold the verifier/checksum.
919		 * Therefore, we must make a local copy in case the data is
920		 * being written to multiple places in parallel.
921		 */
922		void *wbuf = zio_buf_alloc(size);
923		bcopy(data, wbuf, size);
924		zio_push_transform(zio, wbuf, size, size, NULL);
925	}
926
927	return (zio);
928}
929
930/*
931 * Create a child I/O to do some work for us.
932 */
933zio_t *
934zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
935	void *data, uint64_t size, int type, zio_priority_t priority,
936	enum zio_flag flags, zio_done_func_t *done, void *private)
937{
938	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
939	zio_t *zio;
940
941	ASSERT(vd->vdev_parent ==
942	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
943
944	if (type == ZIO_TYPE_READ && bp != NULL) {
945		/*
946		 * If we have the bp, then the child should perform the
947		 * checksum and the parent need not.  This pushes error
948		 * detection as close to the leaves as possible and
949		 * eliminates redundant checksums in the interior nodes.
950		 */
951		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
952		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
953	}
954
955	/* Not all IO types require vdev io done stage e.g. free */
956	if (!(pio->io_pipeline & ZIO_STAGE_VDEV_IO_DONE))
957		pipeline &= ~ZIO_STAGE_VDEV_IO_DONE;
958
959	if (vd->vdev_children == 0)
960		offset += VDEV_LABEL_START_SIZE;
961
962	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
963
964	/*
965	 * If we've decided to do a repair, the write is not speculative --
966	 * even if the original read was.
967	 */
968	if (flags & ZIO_FLAG_IO_REPAIR)
969		flags &= ~ZIO_FLAG_SPECULATIVE;
970
971	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
972	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
973	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
974
975	zio->io_physdone = pio->io_physdone;
976	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
977		zio->io_logical->io_phys_children++;
978
979	return (zio);
980}
981
982zio_t *
983zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
984	int type, zio_priority_t priority, enum zio_flag flags,
985	zio_done_func_t *done, void *private)
986{
987	zio_t *zio;
988
989	ASSERT(vd->vdev_ops->vdev_op_leaf);
990
991	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
992	    data, size, done, private, type, priority,
993	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
994	    vd, offset, NULL,
995	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
996
997	return (zio);
998}
999
1000void
1001zio_flush(zio_t *zio, vdev_t *vd)
1002{
1003	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
1004	    NULL, NULL, ZIO_PRIORITY_NOW,
1005	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1006}
1007
1008zio_t *
1009zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
1010{
1011
1012	ASSERT(vd->vdev_ops->vdev_op_leaf);
1013
1014	return (zio_create(zio, spa, 0, NULL, NULL, size, NULL, NULL,
1015	    ZIO_TYPE_FREE, ZIO_PRIORITY_TRIM, ZIO_FLAG_DONT_AGGREGATE |
1016	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY,
1017	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PHYS_PIPELINE));
1018}
1019
1020void
1021zio_shrink(zio_t *zio, uint64_t size)
1022{
1023	ASSERT(zio->io_executor == NULL);
1024	ASSERT(zio->io_orig_size == zio->io_size);
1025	ASSERT(size <= zio->io_size);
1026
1027	/*
1028	 * We don't shrink for raidz because of problems with the
1029	 * reconstruction when reading back less than the block size.
1030	 * Note, BP_IS_RAIDZ() assumes no compression.
1031	 */
1032	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1033	if (!BP_IS_RAIDZ(zio->io_bp))
1034		zio->io_orig_size = zio->io_size = size;
1035}
1036
1037/*
1038 * ==========================================================================
1039 * Prepare to read and write logical blocks
1040 * ==========================================================================
1041 */
1042
1043static int
1044zio_read_bp_init(zio_t *zio)
1045{
1046	blkptr_t *bp = zio->io_bp;
1047
1048	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1049	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1050	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1051		uint64_t psize =
1052		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1053		void *cbuf = zio_buf_alloc(psize);
1054
1055		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1056	}
1057
1058	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1059		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1060		decode_embedded_bp_compressed(bp, zio->io_data);
1061	} else {
1062		ASSERT(!BP_IS_EMBEDDED(bp));
1063	}
1064
1065	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1066		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1067
1068	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1069		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1070
1071	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1072		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1073
1074	return (ZIO_PIPELINE_CONTINUE);
1075}
1076
1077static int
1078zio_write_bp_init(zio_t *zio)
1079{
1080	spa_t *spa = zio->io_spa;
1081	zio_prop_t *zp = &zio->io_prop;
1082	enum zio_compress compress = zp->zp_compress;
1083	blkptr_t *bp = zio->io_bp;
1084	uint64_t lsize = zio->io_size;
1085	uint64_t psize = lsize;
1086	int pass = 1;
1087
1088	/*
1089	 * If our children haven't all reached the ready stage,
1090	 * wait for them and then repeat this pipeline stage.
1091	 */
1092	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1093	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1094		return (ZIO_PIPELINE_STOP);
1095
1096	if (!IO_IS_ALLOCATING(zio))
1097		return (ZIO_PIPELINE_CONTINUE);
1098
1099	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1100
1101	if (zio->io_bp_override) {
1102		ASSERT(bp->blk_birth != zio->io_txg);
1103		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1104
1105		*bp = *zio->io_bp_override;
1106		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1107
1108		if (BP_IS_EMBEDDED(bp))
1109			return (ZIO_PIPELINE_CONTINUE);
1110
1111		/*
1112		 * If we've been overridden and nopwrite is set then
1113		 * set the flag accordingly to indicate that a nopwrite
1114		 * has already occurred.
1115		 */
1116		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1117			ASSERT(!zp->zp_dedup);
1118			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1119			return (ZIO_PIPELINE_CONTINUE);
1120		}
1121
1122		ASSERT(!zp->zp_nopwrite);
1123
1124		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1125			return (ZIO_PIPELINE_CONTINUE);
1126
1127		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1128		    zp->zp_dedup_verify);
1129
1130		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1131			BP_SET_DEDUP(bp, 1);
1132			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1133			return (ZIO_PIPELINE_CONTINUE);
1134		}
1135		zio->io_bp_override = NULL;
1136		BP_ZERO(bp);
1137	}
1138
1139	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1140		/*
1141		 * We're rewriting an existing block, which means we're
1142		 * working on behalf of spa_sync().  For spa_sync() to
1143		 * converge, it must eventually be the case that we don't
1144		 * have to allocate new blocks.  But compression changes
1145		 * the blocksize, which forces a reallocate, and makes
1146		 * convergence take longer.  Therefore, after the first
1147		 * few passes, stop compressing to ensure convergence.
1148		 */
1149		pass = spa_sync_pass(spa);
1150
1151		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1152		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1153		ASSERT(!BP_GET_DEDUP(bp));
1154
1155		if (pass >= zfs_sync_pass_dont_compress)
1156			compress = ZIO_COMPRESS_OFF;
1157
1158		/* Make sure someone doesn't change their mind on overwrites */
1159		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1160		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1161	}
1162
1163	if (compress != ZIO_COMPRESS_OFF) {
1164		void *cbuf = zio_buf_alloc(lsize);
1165		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1166		if (psize == 0 || psize == lsize) {
1167			compress = ZIO_COMPRESS_OFF;
1168			zio_buf_free(cbuf, lsize);
1169		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1170		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1171		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1172			encode_embedded_bp_compressed(bp,
1173			    cbuf, compress, lsize, psize);
1174			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1175			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1176			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1177			zio_buf_free(cbuf, lsize);
1178			bp->blk_birth = zio->io_txg;
1179			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1180			ASSERT(spa_feature_is_active(spa,
1181			    SPA_FEATURE_EMBEDDED_DATA));
1182			return (ZIO_PIPELINE_CONTINUE);
1183		} else {
1184			/*
1185			 * Round up compressed size to MINBLOCKSIZE and
1186			 * zero the tail.
1187			 */
1188			size_t rounded =
1189			    P2ROUNDUP(psize, (size_t)SPA_MINBLOCKSIZE);
1190			if (rounded > psize) {
1191				bzero((char *)cbuf + psize, rounded - psize);
1192				psize = rounded;
1193			}
1194			if (psize == lsize) {
1195				compress = ZIO_COMPRESS_OFF;
1196				zio_buf_free(cbuf, lsize);
1197			} else {
1198				zio_push_transform(zio, cbuf,
1199				    psize, lsize, NULL);
1200			}
1201		}
1202	}
1203
1204	/*
1205	 * The final pass of spa_sync() must be all rewrites, but the first
1206	 * few passes offer a trade-off: allocating blocks defers convergence,
1207	 * but newly allocated blocks are sequential, so they can be written
1208	 * to disk faster.  Therefore, we allow the first few passes of
1209	 * spa_sync() to allocate new blocks, but force rewrites after that.
1210	 * There should only be a handful of blocks after pass 1 in any case.
1211	 */
1212	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1213	    BP_GET_PSIZE(bp) == psize &&
1214	    pass >= zfs_sync_pass_rewrite) {
1215		ASSERT(psize != 0);
1216		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1217		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1218		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1219	} else {
1220		BP_ZERO(bp);
1221		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1222	}
1223
1224	if (psize == 0) {
1225		if (zio->io_bp_orig.blk_birth != 0 &&
1226		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1227			BP_SET_LSIZE(bp, lsize);
1228			BP_SET_TYPE(bp, zp->zp_type);
1229			BP_SET_LEVEL(bp, zp->zp_level);
1230			BP_SET_BIRTH(bp, zio->io_txg, 0);
1231		}
1232		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1233	} else {
1234		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1235		BP_SET_LSIZE(bp, lsize);
1236		BP_SET_TYPE(bp, zp->zp_type);
1237		BP_SET_LEVEL(bp, zp->zp_level);
1238		BP_SET_PSIZE(bp, psize);
1239		BP_SET_COMPRESS(bp, compress);
1240		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1241		BP_SET_DEDUP(bp, zp->zp_dedup);
1242		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1243		if (zp->zp_dedup) {
1244			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1245			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1246			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1247		}
1248		if (zp->zp_nopwrite) {
1249			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1250			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1251			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1252		}
1253	}
1254
1255	return (ZIO_PIPELINE_CONTINUE);
1256}
1257
1258static int
1259zio_free_bp_init(zio_t *zio)
1260{
1261	blkptr_t *bp = zio->io_bp;
1262
1263	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1264		if (BP_GET_DEDUP(bp))
1265			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1266	}
1267
1268	return (ZIO_PIPELINE_CONTINUE);
1269}
1270
1271/*
1272 * ==========================================================================
1273 * Execute the I/O pipeline
1274 * ==========================================================================
1275 */
1276
1277static void
1278zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1279{
1280	spa_t *spa = zio->io_spa;
1281	zio_type_t t = zio->io_type;
1282	int flags = (cutinline ? TQ_FRONT : 0);
1283
1284	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1285
1286	/*
1287	 * If we're a config writer or a probe, the normal issue and
1288	 * interrupt threads may all be blocked waiting for the config lock.
1289	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1290	 */
1291	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1292		t = ZIO_TYPE_NULL;
1293
1294	/*
1295	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1296	 */
1297	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1298		t = ZIO_TYPE_NULL;
1299
1300	/*
1301	 * If this is a high priority I/O, then use the high priority taskq if
1302	 * available.
1303	 */
1304	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1305	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1306		q++;
1307
1308	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1309
1310	/*
1311	 * NB: We are assuming that the zio can only be dispatched
1312	 * to a single taskq at a time.  It would be a grievous error
1313	 * to dispatch the zio to another taskq at the same time.
1314	 */
1315#if defined(illumos) || !defined(_KERNEL)
1316	ASSERT(zio->io_tqent.tqent_next == NULL);
1317#else
1318	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1319#endif
1320	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1321	    flags, &zio->io_tqent);
1322}
1323
1324static boolean_t
1325zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1326{
1327	kthread_t *executor = zio->io_executor;
1328	spa_t *spa = zio->io_spa;
1329
1330	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1331		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1332		uint_t i;
1333		for (i = 0; i < tqs->stqs_count; i++) {
1334			if (taskq_member(tqs->stqs_taskq[i], executor))
1335				return (B_TRUE);
1336		}
1337	}
1338
1339	return (B_FALSE);
1340}
1341
1342static int
1343zio_issue_async(zio_t *zio)
1344{
1345	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1346
1347	return (ZIO_PIPELINE_STOP);
1348}
1349
1350void
1351zio_interrupt(zio_t *zio)
1352{
1353	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1354}
1355
1356/*
1357 * Execute the I/O pipeline until one of the following occurs:
1358 *
1359 *	(1) the I/O completes
1360 *	(2) the pipeline stalls waiting for dependent child I/Os
1361 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1362 *	(4) the I/O is delegated by vdev-level caching or aggregation
1363 *	(5) the I/O is deferred due to vdev-level queueing
1364 *	(6) the I/O is handed off to another thread.
1365 *
1366 * In all cases, the pipeline stops whenever there's no CPU work; it never
1367 * burns a thread in cv_wait().
1368 *
1369 * There's no locking on io_stage because there's no legitimate way
1370 * for multiple threads to be attempting to process the same I/O.
1371 */
1372static zio_pipe_stage_t *zio_pipeline[];
1373
1374void
1375zio_execute(zio_t *zio)
1376{
1377	zio->io_executor = curthread;
1378
1379	while (zio->io_stage < ZIO_STAGE_DONE) {
1380		enum zio_stage pipeline = zio->io_pipeline;
1381		enum zio_stage stage = zio->io_stage;
1382		int rv;
1383
1384		ASSERT(!MUTEX_HELD(&zio->io_lock));
1385		ASSERT(ISP2(stage));
1386		ASSERT(zio->io_stall == NULL);
1387
1388		do {
1389			stage <<= 1;
1390		} while ((stage & pipeline) == 0);
1391
1392		ASSERT(stage <= ZIO_STAGE_DONE);
1393
1394		/*
1395		 * If we are in interrupt context and this pipeline stage
1396		 * will grab a config lock that is held across I/O,
1397		 * or may wait for an I/O that needs an interrupt thread
1398		 * to complete, issue async to avoid deadlock.
1399		 *
1400		 * For VDEV_IO_START, we cut in line so that the io will
1401		 * be sent to disk promptly.
1402		 */
1403		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1404		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1405			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1406			    zio_requeue_io_start_cut_in_line : B_FALSE;
1407			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1408			return;
1409		}
1410
1411		zio->io_stage = stage;
1412		rv = zio_pipeline[highbit64(stage) - 1](zio);
1413
1414		if (rv == ZIO_PIPELINE_STOP)
1415			return;
1416
1417		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1418	}
1419}
1420
1421/*
1422 * ==========================================================================
1423 * Initiate I/O, either sync or async
1424 * ==========================================================================
1425 */
1426int
1427zio_wait(zio_t *zio)
1428{
1429	int error;
1430
1431	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1432	ASSERT(zio->io_executor == NULL);
1433
1434	zio->io_waiter = curthread;
1435
1436	zio_execute(zio);
1437
1438	mutex_enter(&zio->io_lock);
1439	while (zio->io_executor != NULL)
1440		cv_wait(&zio->io_cv, &zio->io_lock);
1441	mutex_exit(&zio->io_lock);
1442
1443	error = zio->io_error;
1444	zio_destroy(zio);
1445
1446	return (error);
1447}
1448
1449void
1450zio_nowait(zio_t *zio)
1451{
1452	ASSERT(zio->io_executor == NULL);
1453
1454	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1455	    zio_unique_parent(zio) == NULL) {
1456		/*
1457		 * This is a logical async I/O with no parent to wait for it.
1458		 * We add it to the spa_async_root_zio "Godfather" I/O which
1459		 * will ensure they complete prior to unloading the pool.
1460		 */
1461		spa_t *spa = zio->io_spa;
1462
1463		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1464	}
1465
1466	zio_execute(zio);
1467}
1468
1469/*
1470 * ==========================================================================
1471 * Reexecute or suspend/resume failed I/O
1472 * ==========================================================================
1473 */
1474
1475static void
1476zio_reexecute(zio_t *pio)
1477{
1478	zio_t *cio, *cio_next;
1479
1480	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1481	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1482	ASSERT(pio->io_gang_leader == NULL);
1483	ASSERT(pio->io_gang_tree == NULL);
1484
1485	pio->io_flags = pio->io_orig_flags;
1486	pio->io_stage = pio->io_orig_stage;
1487	pio->io_pipeline = pio->io_orig_pipeline;
1488	pio->io_reexecute = 0;
1489	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1490	pio->io_error = 0;
1491	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1492		pio->io_state[w] = 0;
1493	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1494		pio->io_child_error[c] = 0;
1495
1496	if (IO_IS_ALLOCATING(pio))
1497		BP_ZERO(pio->io_bp);
1498
1499	/*
1500	 * As we reexecute pio's children, new children could be created.
1501	 * New children go to the head of pio's io_child_list, however,
1502	 * so we will (correctly) not reexecute them.  The key is that
1503	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1504	 * cannot be affected by any side effects of reexecuting 'cio'.
1505	 */
1506	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1507		cio_next = zio_walk_children(pio);
1508		mutex_enter(&pio->io_lock);
1509		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1510			pio->io_children[cio->io_child_type][w]++;
1511		mutex_exit(&pio->io_lock);
1512		zio_reexecute(cio);
1513	}
1514
1515	/*
1516	 * Now that all children have been reexecuted, execute the parent.
1517	 * We don't reexecute "The Godfather" I/O here as it's the
1518	 * responsibility of the caller to wait on him.
1519	 */
1520	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1521		zio_execute(pio);
1522}
1523
1524void
1525zio_suspend(spa_t *spa, zio_t *zio)
1526{
1527	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1528		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1529		    "failure and the failure mode property for this pool "
1530		    "is set to panic.", spa_name(spa));
1531
1532	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1533
1534	mutex_enter(&spa->spa_suspend_lock);
1535
1536	if (spa->spa_suspend_zio_root == NULL)
1537		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1538		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1539		    ZIO_FLAG_GODFATHER);
1540
1541	spa->spa_suspended = B_TRUE;
1542
1543	if (zio != NULL) {
1544		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1545		ASSERT(zio != spa->spa_suspend_zio_root);
1546		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1547		ASSERT(zio_unique_parent(zio) == NULL);
1548		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1549		zio_add_child(spa->spa_suspend_zio_root, zio);
1550	}
1551
1552	mutex_exit(&spa->spa_suspend_lock);
1553}
1554
1555int
1556zio_resume(spa_t *spa)
1557{
1558	zio_t *pio;
1559
1560	/*
1561	 * Reexecute all previously suspended i/o.
1562	 */
1563	mutex_enter(&spa->spa_suspend_lock);
1564	spa->spa_suspended = B_FALSE;
1565	cv_broadcast(&spa->spa_suspend_cv);
1566	pio = spa->spa_suspend_zio_root;
1567	spa->spa_suspend_zio_root = NULL;
1568	mutex_exit(&spa->spa_suspend_lock);
1569
1570	if (pio == NULL)
1571		return (0);
1572
1573	zio_reexecute(pio);
1574	return (zio_wait(pio));
1575}
1576
1577void
1578zio_resume_wait(spa_t *spa)
1579{
1580	mutex_enter(&spa->spa_suspend_lock);
1581	while (spa_suspended(spa))
1582		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1583	mutex_exit(&spa->spa_suspend_lock);
1584}
1585
1586/*
1587 * ==========================================================================
1588 * Gang blocks.
1589 *
1590 * A gang block is a collection of small blocks that looks to the DMU
1591 * like one large block.  When zio_dva_allocate() cannot find a block
1592 * of the requested size, due to either severe fragmentation or the pool
1593 * being nearly full, it calls zio_write_gang_block() to construct the
1594 * block from smaller fragments.
1595 *
1596 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1597 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1598 * an indirect block: it's an array of block pointers.  It consumes
1599 * only one sector and hence is allocatable regardless of fragmentation.
1600 * The gang header's bps point to its gang members, which hold the data.
1601 *
1602 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1603 * as the verifier to ensure uniqueness of the SHA256 checksum.
1604 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1605 * not the gang header.  This ensures that data block signatures (needed for
1606 * deduplication) are independent of how the block is physically stored.
1607 *
1608 * Gang blocks can be nested: a gang member may itself be a gang block.
1609 * Thus every gang block is a tree in which root and all interior nodes are
1610 * gang headers, and the leaves are normal blocks that contain user data.
1611 * The root of the gang tree is called the gang leader.
1612 *
1613 * To perform any operation (read, rewrite, free, claim) on a gang block,
1614 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1615 * in the io_gang_tree field of the original logical i/o by recursively
1616 * reading the gang leader and all gang headers below it.  This yields
1617 * an in-core tree containing the contents of every gang header and the
1618 * bps for every constituent of the gang block.
1619 *
1620 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1621 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1622 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1623 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1624 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1625 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1626 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1627 * of the gang header plus zio_checksum_compute() of the data to update the
1628 * gang header's blk_cksum as described above.
1629 *
1630 * The two-phase assemble/issue model solves the problem of partial failure --
1631 * what if you'd freed part of a gang block but then couldn't read the
1632 * gang header for another part?  Assembling the entire gang tree first
1633 * ensures that all the necessary gang header I/O has succeeded before
1634 * starting the actual work of free, claim, or write.  Once the gang tree
1635 * is assembled, free and claim are in-memory operations that cannot fail.
1636 *
1637 * In the event that a gang write fails, zio_dva_unallocate() walks the
1638 * gang tree to immediately free (i.e. insert back into the space map)
1639 * everything we've allocated.  This ensures that we don't get ENOSPC
1640 * errors during repeated suspend/resume cycles due to a flaky device.
1641 *
1642 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1643 * the gang tree, we won't modify the block, so we can safely defer the free
1644 * (knowing that the block is still intact).  If we *can* assemble the gang
1645 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1646 * each constituent bp and we can allocate a new block on the next sync pass.
1647 *
1648 * In all cases, the gang tree allows complete recovery from partial failure.
1649 * ==========================================================================
1650 */
1651
1652static zio_t *
1653zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1654{
1655	if (gn != NULL)
1656		return (pio);
1657
1658	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1659	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1660	    &pio->io_bookmark));
1661}
1662
1663zio_t *
1664zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1665{
1666	zio_t *zio;
1667
1668	if (gn != NULL) {
1669		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1670		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1671		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1672		/*
1673		 * As we rewrite each gang header, the pipeline will compute
1674		 * a new gang block header checksum for it; but no one will
1675		 * compute a new data checksum, so we do that here.  The one
1676		 * exception is the gang leader: the pipeline already computed
1677		 * its data checksum because that stage precedes gang assembly.
1678		 * (Presently, nothing actually uses interior data checksums;
1679		 * this is just good hygiene.)
1680		 */
1681		if (gn != pio->io_gang_leader->io_gang_tree) {
1682			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1683			    data, BP_GET_PSIZE(bp));
1684		}
1685		/*
1686		 * If we are here to damage data for testing purposes,
1687		 * leave the GBH alone so that we can detect the damage.
1688		 */
1689		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1690			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1691	} else {
1692		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1693		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1694		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1695	}
1696
1697	return (zio);
1698}
1699
1700/* ARGSUSED */
1701zio_t *
1702zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1703{
1704	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1705	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1706	    ZIO_GANG_CHILD_FLAGS(pio)));
1707}
1708
1709/* ARGSUSED */
1710zio_t *
1711zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1712{
1713	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1714	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1715}
1716
1717static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1718	NULL,
1719	zio_read_gang,
1720	zio_rewrite_gang,
1721	zio_free_gang,
1722	zio_claim_gang,
1723	NULL
1724};
1725
1726static void zio_gang_tree_assemble_done(zio_t *zio);
1727
1728static zio_gang_node_t *
1729zio_gang_node_alloc(zio_gang_node_t **gnpp)
1730{
1731	zio_gang_node_t *gn;
1732
1733	ASSERT(*gnpp == NULL);
1734
1735	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1736	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1737	*gnpp = gn;
1738
1739	return (gn);
1740}
1741
1742static void
1743zio_gang_node_free(zio_gang_node_t **gnpp)
1744{
1745	zio_gang_node_t *gn = *gnpp;
1746
1747	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1748		ASSERT(gn->gn_child[g] == NULL);
1749
1750	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1751	kmem_free(gn, sizeof (*gn));
1752	*gnpp = NULL;
1753}
1754
1755static void
1756zio_gang_tree_free(zio_gang_node_t **gnpp)
1757{
1758	zio_gang_node_t *gn = *gnpp;
1759
1760	if (gn == NULL)
1761		return;
1762
1763	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1764		zio_gang_tree_free(&gn->gn_child[g]);
1765
1766	zio_gang_node_free(gnpp);
1767}
1768
1769static void
1770zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1771{
1772	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1773
1774	ASSERT(gio->io_gang_leader == gio);
1775	ASSERT(BP_IS_GANG(bp));
1776
1777	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1778	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1779	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1780}
1781
1782static void
1783zio_gang_tree_assemble_done(zio_t *zio)
1784{
1785	zio_t *gio = zio->io_gang_leader;
1786	zio_gang_node_t *gn = zio->io_private;
1787	blkptr_t *bp = zio->io_bp;
1788
1789	ASSERT(gio == zio_unique_parent(zio));
1790	ASSERT(zio->io_child_count == 0);
1791
1792	if (zio->io_error)
1793		return;
1794
1795	if (BP_SHOULD_BYTESWAP(bp))
1796		byteswap_uint64_array(zio->io_data, zio->io_size);
1797
1798	ASSERT(zio->io_data == gn->gn_gbh);
1799	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1800	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1801
1802	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1803		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1804		if (!BP_IS_GANG(gbp))
1805			continue;
1806		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1807	}
1808}
1809
1810static void
1811zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1812{
1813	zio_t *gio = pio->io_gang_leader;
1814	zio_t *zio;
1815
1816	ASSERT(BP_IS_GANG(bp) == !!gn);
1817	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1818	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1819
1820	/*
1821	 * If you're a gang header, your data is in gn->gn_gbh.
1822	 * If you're a gang member, your data is in 'data' and gn == NULL.
1823	 */
1824	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1825
1826	if (gn != NULL) {
1827		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1828
1829		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1830			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1831			if (BP_IS_HOLE(gbp))
1832				continue;
1833			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1834			data = (char *)data + BP_GET_PSIZE(gbp);
1835		}
1836	}
1837
1838	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1839		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1840
1841	if (zio != pio)
1842		zio_nowait(zio);
1843}
1844
1845static int
1846zio_gang_assemble(zio_t *zio)
1847{
1848	blkptr_t *bp = zio->io_bp;
1849
1850	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1851	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1852
1853	zio->io_gang_leader = zio;
1854
1855	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1856
1857	return (ZIO_PIPELINE_CONTINUE);
1858}
1859
1860static int
1861zio_gang_issue(zio_t *zio)
1862{
1863	blkptr_t *bp = zio->io_bp;
1864
1865	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1866		return (ZIO_PIPELINE_STOP);
1867
1868	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1869	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1870
1871	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1872		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1873	else
1874		zio_gang_tree_free(&zio->io_gang_tree);
1875
1876	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1877
1878	return (ZIO_PIPELINE_CONTINUE);
1879}
1880
1881static void
1882zio_write_gang_member_ready(zio_t *zio)
1883{
1884	zio_t *pio = zio_unique_parent(zio);
1885	zio_t *gio = zio->io_gang_leader;
1886	dva_t *cdva = zio->io_bp->blk_dva;
1887	dva_t *pdva = pio->io_bp->blk_dva;
1888	uint64_t asize;
1889
1890	if (BP_IS_HOLE(zio->io_bp))
1891		return;
1892
1893	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1894
1895	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1896	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1897	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1898	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1899	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1900
1901	mutex_enter(&pio->io_lock);
1902	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1903		ASSERT(DVA_GET_GANG(&pdva[d]));
1904		asize = DVA_GET_ASIZE(&pdva[d]);
1905		asize += DVA_GET_ASIZE(&cdva[d]);
1906		DVA_SET_ASIZE(&pdva[d], asize);
1907	}
1908	mutex_exit(&pio->io_lock);
1909}
1910
1911static int
1912zio_write_gang_block(zio_t *pio)
1913{
1914	spa_t *spa = pio->io_spa;
1915	blkptr_t *bp = pio->io_bp;
1916	zio_t *gio = pio->io_gang_leader;
1917	zio_t *zio;
1918	zio_gang_node_t *gn, **gnpp;
1919	zio_gbh_phys_t *gbh;
1920	uint64_t txg = pio->io_txg;
1921	uint64_t resid = pio->io_size;
1922	uint64_t lsize;
1923	int copies = gio->io_prop.zp_copies;
1924	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1925	zio_prop_t zp;
1926	int error;
1927
1928	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1929	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1930	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1931	if (error) {
1932		pio->io_error = error;
1933		return (ZIO_PIPELINE_CONTINUE);
1934	}
1935
1936	if (pio == gio) {
1937		gnpp = &gio->io_gang_tree;
1938	} else {
1939		gnpp = pio->io_private;
1940		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1941	}
1942
1943	gn = zio_gang_node_alloc(gnpp);
1944	gbh = gn->gn_gbh;
1945	bzero(gbh, SPA_GANGBLOCKSIZE);
1946
1947	/*
1948	 * Create the gang header.
1949	 */
1950	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1951	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1952
1953	/*
1954	 * Create and nowait the gang children.
1955	 */
1956	for (int g = 0; resid != 0; resid -= lsize, g++) {
1957		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1958		    SPA_MINBLOCKSIZE);
1959		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1960
1961		zp.zp_checksum = gio->io_prop.zp_checksum;
1962		zp.zp_compress = ZIO_COMPRESS_OFF;
1963		zp.zp_type = DMU_OT_NONE;
1964		zp.zp_level = 0;
1965		zp.zp_copies = gio->io_prop.zp_copies;
1966		zp.zp_dedup = B_FALSE;
1967		zp.zp_dedup_verify = B_FALSE;
1968		zp.zp_nopwrite = B_FALSE;
1969
1970		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1971		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1972		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1973		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1974		    &pio->io_bookmark));
1975	}
1976
1977	/*
1978	 * Set pio's pipeline to just wait for zio to finish.
1979	 */
1980	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1981
1982	zio_nowait(zio);
1983
1984	return (ZIO_PIPELINE_CONTINUE);
1985}
1986
1987/*
1988 * The zio_nop_write stage in the pipeline determines if allocating
1989 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1990 * such as SHA256, we can compare the checksums of the new data and the old
1991 * to determine if allocating a new block is required.  The nopwrite
1992 * feature can handle writes in either syncing or open context (i.e. zil
1993 * writes) and as a result is mutually exclusive with dedup.
1994 */
1995static int
1996zio_nop_write(zio_t *zio)
1997{
1998	blkptr_t *bp = zio->io_bp;
1999	blkptr_t *bp_orig = &zio->io_bp_orig;
2000	zio_prop_t *zp = &zio->io_prop;
2001
2002	ASSERT(BP_GET_LEVEL(bp) == 0);
2003	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2004	ASSERT(zp->zp_nopwrite);
2005	ASSERT(!zp->zp_dedup);
2006	ASSERT(zio->io_bp_override == NULL);
2007	ASSERT(IO_IS_ALLOCATING(zio));
2008
2009	/*
2010	 * Check to see if the original bp and the new bp have matching
2011	 * characteristics (i.e. same checksum, compression algorithms, etc).
2012	 * If they don't then just continue with the pipeline which will
2013	 * allocate a new bp.
2014	 */
2015	if (BP_IS_HOLE(bp_orig) ||
2016	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
2017	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2018	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2019	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2020	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2021		return (ZIO_PIPELINE_CONTINUE);
2022
2023	/*
2024	 * If the checksums match then reset the pipeline so that we
2025	 * avoid allocating a new bp and issuing any I/O.
2026	 */
2027	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2028		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2029		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2030		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2031		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2032		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2033		    sizeof (uint64_t)) == 0);
2034
2035		*bp = *bp_orig;
2036		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2037		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2038	}
2039
2040	return (ZIO_PIPELINE_CONTINUE);
2041}
2042
2043/*
2044 * ==========================================================================
2045 * Dedup
2046 * ==========================================================================
2047 */
2048static void
2049zio_ddt_child_read_done(zio_t *zio)
2050{
2051	blkptr_t *bp = zio->io_bp;
2052	ddt_entry_t *dde = zio->io_private;
2053	ddt_phys_t *ddp;
2054	zio_t *pio = zio_unique_parent(zio);
2055
2056	mutex_enter(&pio->io_lock);
2057	ddp = ddt_phys_select(dde, bp);
2058	if (zio->io_error == 0)
2059		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2060	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2061		dde->dde_repair_data = zio->io_data;
2062	else
2063		zio_buf_free(zio->io_data, zio->io_size);
2064	mutex_exit(&pio->io_lock);
2065}
2066
2067static int
2068zio_ddt_read_start(zio_t *zio)
2069{
2070	blkptr_t *bp = zio->io_bp;
2071
2072	ASSERT(BP_GET_DEDUP(bp));
2073	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2074	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2075
2076	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2077		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2078		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2079		ddt_phys_t *ddp = dde->dde_phys;
2080		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2081		blkptr_t blk;
2082
2083		ASSERT(zio->io_vsd == NULL);
2084		zio->io_vsd = dde;
2085
2086		if (ddp_self == NULL)
2087			return (ZIO_PIPELINE_CONTINUE);
2088
2089		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2090			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2091				continue;
2092			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2093			    &blk);
2094			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2095			    zio_buf_alloc(zio->io_size), zio->io_size,
2096			    zio_ddt_child_read_done, dde, zio->io_priority,
2097			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2098			    &zio->io_bookmark));
2099		}
2100		return (ZIO_PIPELINE_CONTINUE);
2101	}
2102
2103	zio_nowait(zio_read(zio, zio->io_spa, bp,
2104	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2105	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2106
2107	return (ZIO_PIPELINE_CONTINUE);
2108}
2109
2110static int
2111zio_ddt_read_done(zio_t *zio)
2112{
2113	blkptr_t *bp = zio->io_bp;
2114
2115	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2116		return (ZIO_PIPELINE_STOP);
2117
2118	ASSERT(BP_GET_DEDUP(bp));
2119	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2120	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2121
2122	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2123		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2124		ddt_entry_t *dde = zio->io_vsd;
2125		if (ddt == NULL) {
2126			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2127			return (ZIO_PIPELINE_CONTINUE);
2128		}
2129		if (dde == NULL) {
2130			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2131			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2132			return (ZIO_PIPELINE_STOP);
2133		}
2134		if (dde->dde_repair_data != NULL) {
2135			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2136			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2137		}
2138		ddt_repair_done(ddt, dde);
2139		zio->io_vsd = NULL;
2140	}
2141
2142	ASSERT(zio->io_vsd == NULL);
2143
2144	return (ZIO_PIPELINE_CONTINUE);
2145}
2146
2147static boolean_t
2148zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2149{
2150	spa_t *spa = zio->io_spa;
2151
2152	/*
2153	 * Note: we compare the original data, not the transformed data,
2154	 * because when zio->io_bp is an override bp, we will not have
2155	 * pushed the I/O transforms.  That's an important optimization
2156	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2157	 */
2158	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2159		zio_t *lio = dde->dde_lead_zio[p];
2160
2161		if (lio != NULL) {
2162			return (lio->io_orig_size != zio->io_orig_size ||
2163			    bcmp(zio->io_orig_data, lio->io_orig_data,
2164			    zio->io_orig_size) != 0);
2165		}
2166	}
2167
2168	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2169		ddt_phys_t *ddp = &dde->dde_phys[p];
2170
2171		if (ddp->ddp_phys_birth != 0) {
2172			arc_buf_t *abuf = NULL;
2173			uint32_t aflags = ARC_WAIT;
2174			blkptr_t blk = *zio->io_bp;
2175			int error;
2176
2177			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2178
2179			ddt_exit(ddt);
2180
2181			error = arc_read(NULL, spa, &blk,
2182			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2183			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2184			    &aflags, &zio->io_bookmark);
2185
2186			if (error == 0) {
2187				if (arc_buf_size(abuf) != zio->io_orig_size ||
2188				    bcmp(abuf->b_data, zio->io_orig_data,
2189				    zio->io_orig_size) != 0)
2190					error = SET_ERROR(EEXIST);
2191				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2192			}
2193
2194			ddt_enter(ddt);
2195			return (error != 0);
2196		}
2197	}
2198
2199	return (B_FALSE);
2200}
2201
2202static void
2203zio_ddt_child_write_ready(zio_t *zio)
2204{
2205	int p = zio->io_prop.zp_copies;
2206	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2207	ddt_entry_t *dde = zio->io_private;
2208	ddt_phys_t *ddp = &dde->dde_phys[p];
2209	zio_t *pio;
2210
2211	if (zio->io_error)
2212		return;
2213
2214	ddt_enter(ddt);
2215
2216	ASSERT(dde->dde_lead_zio[p] == zio);
2217
2218	ddt_phys_fill(ddp, zio->io_bp);
2219
2220	while ((pio = zio_walk_parents(zio)) != NULL)
2221		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2222
2223	ddt_exit(ddt);
2224}
2225
2226static void
2227zio_ddt_child_write_done(zio_t *zio)
2228{
2229	int p = zio->io_prop.zp_copies;
2230	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2231	ddt_entry_t *dde = zio->io_private;
2232	ddt_phys_t *ddp = &dde->dde_phys[p];
2233
2234	ddt_enter(ddt);
2235
2236	ASSERT(ddp->ddp_refcnt == 0);
2237	ASSERT(dde->dde_lead_zio[p] == zio);
2238	dde->dde_lead_zio[p] = NULL;
2239
2240	if (zio->io_error == 0) {
2241		while (zio_walk_parents(zio) != NULL)
2242			ddt_phys_addref(ddp);
2243	} else {
2244		ddt_phys_clear(ddp);
2245	}
2246
2247	ddt_exit(ddt);
2248}
2249
2250static void
2251zio_ddt_ditto_write_done(zio_t *zio)
2252{
2253	int p = DDT_PHYS_DITTO;
2254	zio_prop_t *zp = &zio->io_prop;
2255	blkptr_t *bp = zio->io_bp;
2256	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2257	ddt_entry_t *dde = zio->io_private;
2258	ddt_phys_t *ddp = &dde->dde_phys[p];
2259	ddt_key_t *ddk = &dde->dde_key;
2260
2261	ddt_enter(ddt);
2262
2263	ASSERT(ddp->ddp_refcnt == 0);
2264	ASSERT(dde->dde_lead_zio[p] == zio);
2265	dde->dde_lead_zio[p] = NULL;
2266
2267	if (zio->io_error == 0) {
2268		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2269		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2270		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2271		if (ddp->ddp_phys_birth != 0)
2272			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2273		ddt_phys_fill(ddp, bp);
2274	}
2275
2276	ddt_exit(ddt);
2277}
2278
2279static int
2280zio_ddt_write(zio_t *zio)
2281{
2282	spa_t *spa = zio->io_spa;
2283	blkptr_t *bp = zio->io_bp;
2284	uint64_t txg = zio->io_txg;
2285	zio_prop_t *zp = &zio->io_prop;
2286	int p = zp->zp_copies;
2287	int ditto_copies;
2288	zio_t *cio = NULL;
2289	zio_t *dio = NULL;
2290	ddt_t *ddt = ddt_select(spa, bp);
2291	ddt_entry_t *dde;
2292	ddt_phys_t *ddp;
2293
2294	ASSERT(BP_GET_DEDUP(bp));
2295	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2296	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2297
2298	ddt_enter(ddt);
2299	dde = ddt_lookup(ddt, bp, B_TRUE);
2300	ddp = &dde->dde_phys[p];
2301
2302	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2303		/*
2304		 * If we're using a weak checksum, upgrade to a strong checksum
2305		 * and try again.  If we're already using a strong checksum,
2306		 * we can't resolve it, so just convert to an ordinary write.
2307		 * (And automatically e-mail a paper to Nature?)
2308		 */
2309		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2310			zp->zp_checksum = spa_dedup_checksum(spa);
2311			zio_pop_transforms(zio);
2312			zio->io_stage = ZIO_STAGE_OPEN;
2313			BP_ZERO(bp);
2314		} else {
2315			zp->zp_dedup = B_FALSE;
2316		}
2317		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2318		ddt_exit(ddt);
2319		return (ZIO_PIPELINE_CONTINUE);
2320	}
2321
2322	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2323	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2324
2325	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2326	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2327		zio_prop_t czp = *zp;
2328
2329		czp.zp_copies = ditto_copies;
2330
2331		/*
2332		 * If we arrived here with an override bp, we won't have run
2333		 * the transform stack, so we won't have the data we need to
2334		 * generate a child i/o.  So, toss the override bp and restart.
2335		 * This is safe, because using the override bp is just an
2336		 * optimization; and it's rare, so the cost doesn't matter.
2337		 */
2338		if (zio->io_bp_override) {
2339			zio_pop_transforms(zio);
2340			zio->io_stage = ZIO_STAGE_OPEN;
2341			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2342			zio->io_bp_override = NULL;
2343			BP_ZERO(bp);
2344			ddt_exit(ddt);
2345			return (ZIO_PIPELINE_CONTINUE);
2346		}
2347
2348		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2349		    zio->io_orig_size, &czp, NULL, NULL,
2350		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2351		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2352
2353		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2354		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2355	}
2356
2357	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2358		if (ddp->ddp_phys_birth != 0)
2359			ddt_bp_fill(ddp, bp, txg);
2360		if (dde->dde_lead_zio[p] != NULL)
2361			zio_add_child(zio, dde->dde_lead_zio[p]);
2362		else
2363			ddt_phys_addref(ddp);
2364	} else if (zio->io_bp_override) {
2365		ASSERT(bp->blk_birth == txg);
2366		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2367		ddt_phys_fill(ddp, bp);
2368		ddt_phys_addref(ddp);
2369	} else {
2370		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2371		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2372		    zio_ddt_child_write_done, dde, zio->io_priority,
2373		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2374
2375		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2376		dde->dde_lead_zio[p] = cio;
2377	}
2378
2379	ddt_exit(ddt);
2380
2381	if (cio)
2382		zio_nowait(cio);
2383	if (dio)
2384		zio_nowait(dio);
2385
2386	return (ZIO_PIPELINE_CONTINUE);
2387}
2388
2389ddt_entry_t *freedde; /* for debugging */
2390
2391static int
2392zio_ddt_free(zio_t *zio)
2393{
2394	spa_t *spa = zio->io_spa;
2395	blkptr_t *bp = zio->io_bp;
2396	ddt_t *ddt = ddt_select(spa, bp);
2397	ddt_entry_t *dde;
2398	ddt_phys_t *ddp;
2399
2400	ASSERT(BP_GET_DEDUP(bp));
2401	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2402
2403	ddt_enter(ddt);
2404	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2405	ddp = ddt_phys_select(dde, bp);
2406	ddt_phys_decref(ddp);
2407	ddt_exit(ddt);
2408
2409	return (ZIO_PIPELINE_CONTINUE);
2410}
2411
2412/*
2413 * ==========================================================================
2414 * Allocate and free blocks
2415 * ==========================================================================
2416 */
2417static int
2418zio_dva_allocate(zio_t *zio)
2419{
2420	spa_t *spa = zio->io_spa;
2421	metaslab_class_t *mc = spa_normal_class(spa);
2422	blkptr_t *bp = zio->io_bp;
2423	int error;
2424	int flags = 0;
2425
2426	if (zio->io_gang_leader == NULL) {
2427		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2428		zio->io_gang_leader = zio;
2429	}
2430
2431	ASSERT(BP_IS_HOLE(bp));
2432	ASSERT0(BP_GET_NDVAS(bp));
2433	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2434	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2435	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2436
2437	/*
2438	 * The dump device does not support gang blocks so allocation on
2439	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2440	 * the "fast" gang feature.
2441	 */
2442	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2443	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2444	    METASLAB_GANG_CHILD : 0;
2445	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2446	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2447
2448	if (error) {
2449		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2450		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2451		    error);
2452		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2453			return (zio_write_gang_block(zio));
2454		zio->io_error = error;
2455	}
2456
2457	return (ZIO_PIPELINE_CONTINUE);
2458}
2459
2460static int
2461zio_dva_free(zio_t *zio)
2462{
2463	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2464
2465	return (ZIO_PIPELINE_CONTINUE);
2466}
2467
2468static int
2469zio_dva_claim(zio_t *zio)
2470{
2471	int error;
2472
2473	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2474	if (error)
2475		zio->io_error = error;
2476
2477	return (ZIO_PIPELINE_CONTINUE);
2478}
2479
2480/*
2481 * Undo an allocation.  This is used by zio_done() when an I/O fails
2482 * and we want to give back the block we just allocated.
2483 * This handles both normal blocks and gang blocks.
2484 */
2485static void
2486zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2487{
2488	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2489	ASSERT(zio->io_bp_override == NULL);
2490
2491	if (!BP_IS_HOLE(bp))
2492		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2493
2494	if (gn != NULL) {
2495		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2496			zio_dva_unallocate(zio, gn->gn_child[g],
2497			    &gn->gn_gbh->zg_blkptr[g]);
2498		}
2499	}
2500}
2501
2502/*
2503 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2504 */
2505int
2506zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2507    uint64_t size, boolean_t use_slog)
2508{
2509	int error = 1;
2510
2511	ASSERT(txg > spa_syncing_txg(spa));
2512
2513	/*
2514	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2515	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2516	 * when allocating them.
2517	 */
2518	if (use_slog) {
2519		error = metaslab_alloc(spa, spa_log_class(spa), size,
2520		    new_bp, 1, txg, old_bp,
2521		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2522	}
2523
2524	if (error) {
2525		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2526		    new_bp, 1, txg, old_bp,
2527		    METASLAB_HINTBP_AVOID);
2528	}
2529
2530	if (error == 0) {
2531		BP_SET_LSIZE(new_bp, size);
2532		BP_SET_PSIZE(new_bp, size);
2533		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2534		BP_SET_CHECKSUM(new_bp,
2535		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2536		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2537		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2538		BP_SET_LEVEL(new_bp, 0);
2539		BP_SET_DEDUP(new_bp, 0);
2540		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2541	}
2542
2543	return (error);
2544}
2545
2546/*
2547 * Free an intent log block.
2548 */
2549void
2550zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2551{
2552	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2553	ASSERT(!BP_IS_GANG(bp));
2554
2555	zio_free(spa, txg, bp);
2556}
2557
2558/*
2559 * ==========================================================================
2560 * Read, write and delete to physical devices
2561 * ==========================================================================
2562 */
2563static int
2564zio_vdev_io_start(zio_t *zio)
2565{
2566	vdev_t *vd = zio->io_vd;
2567	uint64_t align;
2568	spa_t *spa = zio->io_spa;
2569	int ret;
2570
2571	ASSERT(zio->io_error == 0);
2572	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2573
2574	if (vd == NULL) {
2575		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2576			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2577
2578		/*
2579		 * The mirror_ops handle multiple DVAs in a single BP.
2580		 */
2581		return (vdev_mirror_ops.vdev_op_io_start(zio));
2582	}
2583
2584	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE &&
2585	    zio->io_priority == ZIO_PRIORITY_NOW) {
2586		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2587		return (ZIO_PIPELINE_CONTINUE);
2588	}
2589
2590	/*
2591	 * We keep track of time-sensitive I/Os so that the scan thread
2592	 * can quickly react to certain workloads.  In particular, we care
2593	 * about non-scrubbing, top-level reads and writes with the following
2594	 * characteristics:
2595	 * 	- synchronous writes of user data to non-slog devices
2596	 *	- any reads of user data
2597	 * When these conditions are met, adjust the timestamp of spa_last_io
2598	 * which allows the scan thread to adjust its workload accordingly.
2599	 */
2600	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2601	    vd == vd->vdev_top && !vd->vdev_islog &&
2602	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2603	    zio->io_txg != spa_syncing_txg(spa)) {
2604		uint64_t old = spa->spa_last_io;
2605		uint64_t new = ddi_get_lbolt64();
2606		if (old != new)
2607			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2608	}
2609
2610	align = 1ULL << vd->vdev_top->vdev_ashift;
2611
2612	if ((!(zio->io_flags & ZIO_FLAG_PHYSICAL) ||
2613	    (vd->vdev_top->vdev_physical_ashift > SPA_MINBLOCKSHIFT)) &&
2614	    P2PHASE(zio->io_size, align) != 0) {
2615		/* Transform logical writes to be a full physical block size. */
2616		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2617		char *abuf = NULL;
2618		if (zio->io_type == ZIO_TYPE_READ ||
2619		    zio->io_type == ZIO_TYPE_WRITE)
2620			abuf = zio_buf_alloc(asize);
2621		ASSERT(vd == vd->vdev_top);
2622		if (zio->io_type == ZIO_TYPE_WRITE) {
2623			bcopy(zio->io_data, abuf, zio->io_size);
2624			bzero(abuf + zio->io_size, asize - zio->io_size);
2625		}
2626		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2627		    zio_subblock);
2628	}
2629
2630	/*
2631	 * If this is not a physical io, make sure that it is properly aligned
2632	 * before proceeding.
2633	 */
2634	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
2635		ASSERT0(P2PHASE(zio->io_offset, align));
2636		ASSERT0(P2PHASE(zio->io_size, align));
2637	} else {
2638		/*
2639		 * For physical writes, we allow 512b aligned writes and assume
2640		 * the device will perform a read-modify-write as necessary.
2641		 */
2642		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
2643		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
2644	}
2645
2646	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2647
2648	/*
2649	 * If this is a repair I/O, and there's no self-healing involved --
2650	 * that is, we're just resilvering what we expect to resilver --
2651	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2652	 * This prevents spurious resilvering with nested replication.
2653	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2654	 * A is out of date, we'll read from C+D, then use the data to
2655	 * resilver A+B -- but we don't actually want to resilver B, just A.
2656	 * The top-level mirror has no way to know this, so instead we just
2657	 * discard unnecessary repairs as we work our way down the vdev tree.
2658	 * The same logic applies to any form of nested replication:
2659	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2660	 */
2661	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2662	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2663	    zio->io_txg != 0 &&	/* not a delegated i/o */
2664	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2665		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2666		zio_vdev_io_bypass(zio);
2667		return (ZIO_PIPELINE_CONTINUE);
2668	}
2669
2670	if (vd->vdev_ops->vdev_op_leaf) {
2671		switch (zio->io_type) {
2672		case ZIO_TYPE_READ:
2673			if (vdev_cache_read(zio))
2674				return (ZIO_PIPELINE_CONTINUE);
2675			/* FALLTHROUGH */
2676		case ZIO_TYPE_WRITE:
2677		case ZIO_TYPE_FREE:
2678			if ((zio = vdev_queue_io(zio)) == NULL)
2679				return (ZIO_PIPELINE_STOP);
2680
2681			if (!vdev_accessible(vd, zio)) {
2682				zio->io_error = SET_ERROR(ENXIO);
2683				zio_interrupt(zio);
2684				return (ZIO_PIPELINE_STOP);
2685			}
2686			break;
2687		}
2688		/*
2689		 * Note that we ignore repair writes for TRIM because they can
2690		 * conflict with normal writes. This isn't an issue because, by
2691		 * definition, we only repair blocks that aren't freed.
2692		 */
2693		if (zio->io_type == ZIO_TYPE_WRITE &&
2694		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2695		    !trim_map_write_start(zio))
2696			return (ZIO_PIPELINE_STOP);
2697	}
2698
2699	ret = vd->vdev_ops->vdev_op_io_start(zio);
2700	ASSERT(ret == ZIO_PIPELINE_STOP);
2701
2702	return (ret);
2703}
2704
2705static int
2706zio_vdev_io_done(zio_t *zio)
2707{
2708	vdev_t *vd = zio->io_vd;
2709	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2710	boolean_t unexpected_error = B_FALSE;
2711
2712	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2713		return (ZIO_PIPELINE_STOP);
2714
2715	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2716	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2717
2718	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2719	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE ||
2720	    zio->io_type == ZIO_TYPE_FREE)) {
2721
2722		if (zio->io_type == ZIO_TYPE_WRITE &&
2723		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2724			trim_map_write_done(zio);
2725
2726		vdev_queue_io_done(zio);
2727
2728		if (zio->io_type == ZIO_TYPE_WRITE)
2729			vdev_cache_write(zio);
2730
2731		if (zio_injection_enabled && zio->io_error == 0)
2732			zio->io_error = zio_handle_device_injection(vd,
2733			    zio, EIO);
2734
2735		if (zio_injection_enabled && zio->io_error == 0)
2736			zio->io_error = zio_handle_label_injection(zio, EIO);
2737
2738		if (zio->io_error) {
2739			if (zio->io_error == ENOTSUP &&
2740			    zio->io_type == ZIO_TYPE_FREE) {
2741				/* Not all devices support TRIM. */
2742			} else if (!vdev_accessible(vd, zio)) {
2743				zio->io_error = SET_ERROR(ENXIO);
2744			} else {
2745				unexpected_error = B_TRUE;
2746			}
2747		}
2748	}
2749
2750	ops->vdev_op_io_done(zio);
2751
2752	if (unexpected_error)
2753		VERIFY(vdev_probe(vd, zio) == NULL);
2754
2755	return (ZIO_PIPELINE_CONTINUE);
2756}
2757
2758/*
2759 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2760 * disk, and use that to finish the checksum ereport later.
2761 */
2762static void
2763zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2764    const void *good_buf)
2765{
2766	/* no processing needed */
2767	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2768}
2769
2770/*ARGSUSED*/
2771void
2772zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2773{
2774	void *buf = zio_buf_alloc(zio->io_size);
2775
2776	bcopy(zio->io_data, buf, zio->io_size);
2777
2778	zcr->zcr_cbinfo = zio->io_size;
2779	zcr->zcr_cbdata = buf;
2780	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2781	zcr->zcr_free = zio_buf_free;
2782}
2783
2784static int
2785zio_vdev_io_assess(zio_t *zio)
2786{
2787	vdev_t *vd = zio->io_vd;
2788
2789	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2790		return (ZIO_PIPELINE_STOP);
2791
2792	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2793		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2794
2795	if (zio->io_vsd != NULL) {
2796		zio->io_vsd_ops->vsd_free(zio);
2797		zio->io_vsd = NULL;
2798	}
2799
2800	if (zio_injection_enabled && zio->io_error == 0)
2801		zio->io_error = zio_handle_fault_injection(zio, EIO);
2802
2803	if (zio->io_type == ZIO_TYPE_FREE &&
2804	    zio->io_priority != ZIO_PRIORITY_NOW) {
2805		switch (zio->io_error) {
2806		case 0:
2807			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2808			ZIO_TRIM_STAT_BUMP(success);
2809			break;
2810		case EOPNOTSUPP:
2811			ZIO_TRIM_STAT_BUMP(unsupported);
2812			break;
2813		default:
2814			ZIO_TRIM_STAT_BUMP(failed);
2815			break;
2816		}
2817	}
2818
2819	/*
2820	 * If the I/O failed, determine whether we should attempt to retry it.
2821	 *
2822	 * On retry, we cut in line in the issue queue, since we don't want
2823	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2824	 */
2825	if (zio->io_error && vd == NULL &&
2826	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2827		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2828		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2829		zio->io_error = 0;
2830		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2831		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2832		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2833		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2834		    zio_requeue_io_start_cut_in_line);
2835		return (ZIO_PIPELINE_STOP);
2836	}
2837
2838	/*
2839	 * If we got an error on a leaf device, convert it to ENXIO
2840	 * if the device is not accessible at all.
2841	 */
2842	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2843	    !vdev_accessible(vd, zio))
2844		zio->io_error = SET_ERROR(ENXIO);
2845
2846	/*
2847	 * If we can't write to an interior vdev (mirror or RAID-Z),
2848	 * set vdev_cant_write so that we stop trying to allocate from it.
2849	 */
2850	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2851	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2852		vd->vdev_cant_write = B_TRUE;
2853	}
2854
2855	if (zio->io_error)
2856		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2857
2858	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2859	    zio->io_physdone != NULL) {
2860		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2861		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2862		zio->io_physdone(zio->io_logical);
2863	}
2864
2865	return (ZIO_PIPELINE_CONTINUE);
2866}
2867
2868void
2869zio_vdev_io_reissue(zio_t *zio)
2870{
2871	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2872	ASSERT(zio->io_error == 0);
2873
2874	zio->io_stage >>= 1;
2875}
2876
2877void
2878zio_vdev_io_redone(zio_t *zio)
2879{
2880	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2881
2882	zio->io_stage >>= 1;
2883}
2884
2885void
2886zio_vdev_io_bypass(zio_t *zio)
2887{
2888	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2889	ASSERT(zio->io_error == 0);
2890
2891	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2892	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2893}
2894
2895/*
2896 * ==========================================================================
2897 * Generate and verify checksums
2898 * ==========================================================================
2899 */
2900static int
2901zio_checksum_generate(zio_t *zio)
2902{
2903	blkptr_t *bp = zio->io_bp;
2904	enum zio_checksum checksum;
2905
2906	if (bp == NULL) {
2907		/*
2908		 * This is zio_write_phys().
2909		 * We're either generating a label checksum, or none at all.
2910		 */
2911		checksum = zio->io_prop.zp_checksum;
2912
2913		if (checksum == ZIO_CHECKSUM_OFF)
2914			return (ZIO_PIPELINE_CONTINUE);
2915
2916		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2917	} else {
2918		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2919			ASSERT(!IO_IS_ALLOCATING(zio));
2920			checksum = ZIO_CHECKSUM_GANG_HEADER;
2921		} else {
2922			checksum = BP_GET_CHECKSUM(bp);
2923		}
2924	}
2925
2926	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2927
2928	return (ZIO_PIPELINE_CONTINUE);
2929}
2930
2931static int
2932zio_checksum_verify(zio_t *zio)
2933{
2934	zio_bad_cksum_t info;
2935	blkptr_t *bp = zio->io_bp;
2936	int error;
2937
2938	ASSERT(zio->io_vd != NULL);
2939
2940	if (bp == NULL) {
2941		/*
2942		 * This is zio_read_phys().
2943		 * We're either verifying a label checksum, or nothing at all.
2944		 */
2945		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2946			return (ZIO_PIPELINE_CONTINUE);
2947
2948		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2949	}
2950
2951	if ((error = zio_checksum_error(zio, &info)) != 0) {
2952		zio->io_error = error;
2953		if (error == ECKSUM &&
2954		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2955			zfs_ereport_start_checksum(zio->io_spa,
2956			    zio->io_vd, zio, zio->io_offset,
2957			    zio->io_size, NULL, &info);
2958		}
2959	}
2960
2961	return (ZIO_PIPELINE_CONTINUE);
2962}
2963
2964/*
2965 * Called by RAID-Z to ensure we don't compute the checksum twice.
2966 */
2967void
2968zio_checksum_verified(zio_t *zio)
2969{
2970	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2971}
2972
2973/*
2974 * ==========================================================================
2975 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2976 * An error of 0 indicates success.  ENXIO indicates whole-device failure,
2977 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2978 * indicate errors that are specific to one I/O, and most likely permanent.
2979 * Any other error is presumed to be worse because we weren't expecting it.
2980 * ==========================================================================
2981 */
2982int
2983zio_worst_error(int e1, int e2)
2984{
2985	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2986	int r1, r2;
2987
2988	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2989		if (e1 == zio_error_rank[r1])
2990			break;
2991
2992	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2993		if (e2 == zio_error_rank[r2])
2994			break;
2995
2996	return (r1 > r2 ? e1 : e2);
2997}
2998
2999/*
3000 * ==========================================================================
3001 * I/O completion
3002 * ==========================================================================
3003 */
3004static int
3005zio_ready(zio_t *zio)
3006{
3007	blkptr_t *bp = zio->io_bp;
3008	zio_t *pio, *pio_next;
3009
3010	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3011	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3012		return (ZIO_PIPELINE_STOP);
3013
3014	if (zio->io_ready) {
3015		ASSERT(IO_IS_ALLOCATING(zio));
3016		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3017		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3018		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3019
3020		zio->io_ready(zio);
3021	}
3022
3023	if (bp != NULL && bp != &zio->io_bp_copy)
3024		zio->io_bp_copy = *bp;
3025
3026	if (zio->io_error)
3027		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3028
3029	mutex_enter(&zio->io_lock);
3030	zio->io_state[ZIO_WAIT_READY] = 1;
3031	pio = zio_walk_parents(zio);
3032	mutex_exit(&zio->io_lock);
3033
3034	/*
3035	 * As we notify zio's parents, new parents could be added.
3036	 * New parents go to the head of zio's io_parent_list, however,
3037	 * so we will (correctly) not notify them.  The remainder of zio's
3038	 * io_parent_list, from 'pio_next' onward, cannot change because
3039	 * all parents must wait for us to be done before they can be done.
3040	 */
3041	for (; pio != NULL; pio = pio_next) {
3042		pio_next = zio_walk_parents(zio);
3043		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3044	}
3045
3046	if (zio->io_flags & ZIO_FLAG_NODATA) {
3047		if (BP_IS_GANG(bp)) {
3048			zio->io_flags &= ~ZIO_FLAG_NODATA;
3049		} else {
3050			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
3051			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3052		}
3053	}
3054
3055	if (zio_injection_enabled &&
3056	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3057		zio_handle_ignored_writes(zio);
3058
3059	return (ZIO_PIPELINE_CONTINUE);
3060}
3061
3062static int
3063zio_done(zio_t *zio)
3064{
3065	spa_t *spa = zio->io_spa;
3066	zio_t *lio = zio->io_logical;
3067	blkptr_t *bp = zio->io_bp;
3068	vdev_t *vd = zio->io_vd;
3069	uint64_t psize = zio->io_size;
3070	zio_t *pio, *pio_next;
3071
3072	/*
3073	 * If our children haven't all completed,
3074	 * wait for them and then repeat this pipeline stage.
3075	 */
3076	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3077	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3078	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3079	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3080		return (ZIO_PIPELINE_STOP);
3081
3082	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3083		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3084			ASSERT(zio->io_children[c][w] == 0);
3085
3086	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3087		ASSERT(bp->blk_pad[0] == 0);
3088		ASSERT(bp->blk_pad[1] == 0);
3089		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3090		    (bp == zio_unique_parent(zio)->io_bp));
3091		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3092		    zio->io_bp_override == NULL &&
3093		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3094			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3095			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3096			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3097			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3098		}
3099		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3100			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3101	}
3102
3103	/*
3104	 * If there were child vdev/gang/ddt errors, they apply to us now.
3105	 */
3106	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3107	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3108	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3109
3110	/*
3111	 * If the I/O on the transformed data was successful, generate any
3112	 * checksum reports now while we still have the transformed data.
3113	 */
3114	if (zio->io_error == 0) {
3115		while (zio->io_cksum_report != NULL) {
3116			zio_cksum_report_t *zcr = zio->io_cksum_report;
3117			uint64_t align = zcr->zcr_align;
3118			uint64_t asize = P2ROUNDUP(psize, align);
3119			char *abuf = zio->io_data;
3120
3121			if (asize != psize) {
3122				abuf = zio_buf_alloc(asize);
3123				bcopy(zio->io_data, abuf, psize);
3124				bzero(abuf + psize, asize - psize);
3125			}
3126
3127			zio->io_cksum_report = zcr->zcr_next;
3128			zcr->zcr_next = NULL;
3129			zcr->zcr_finish(zcr, abuf);
3130			zfs_ereport_free_checksum(zcr);
3131
3132			if (asize != psize)
3133				zio_buf_free(abuf, asize);
3134		}
3135	}
3136
3137	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3138
3139	vdev_stat_update(zio, psize);
3140
3141	if (zio->io_error) {
3142		/*
3143		 * If this I/O is attached to a particular vdev,
3144		 * generate an error message describing the I/O failure
3145		 * at the block level.  We ignore these errors if the
3146		 * device is currently unavailable.
3147		 */
3148		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3149			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3150
3151		if ((zio->io_error == EIO || !(zio->io_flags &
3152		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3153		    zio == lio) {
3154			/*
3155			 * For logical I/O requests, tell the SPA to log the
3156			 * error and generate a logical data ereport.
3157			 */
3158			spa_log_error(spa, zio);
3159			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3160			    0, 0);
3161		}
3162	}
3163
3164	if (zio->io_error && zio == lio) {
3165		/*
3166		 * Determine whether zio should be reexecuted.  This will
3167		 * propagate all the way to the root via zio_notify_parent().
3168		 */
3169		ASSERT(vd == NULL && bp != NULL);
3170		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3171
3172		if (IO_IS_ALLOCATING(zio) &&
3173		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3174			if (zio->io_error != ENOSPC)
3175				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3176			else
3177				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3178		}
3179
3180		if ((zio->io_type == ZIO_TYPE_READ ||
3181		    zio->io_type == ZIO_TYPE_FREE) &&
3182		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3183		    zio->io_error == ENXIO &&
3184		    spa_load_state(spa) == SPA_LOAD_NONE &&
3185		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3186			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3187
3188		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3189			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3190
3191		/*
3192		 * Here is a possibly good place to attempt to do
3193		 * either combinatorial reconstruction or error correction
3194		 * based on checksums.  It also might be a good place
3195		 * to send out preliminary ereports before we suspend
3196		 * processing.
3197		 */
3198	}
3199
3200	/*
3201	 * If there were logical child errors, they apply to us now.
3202	 * We defer this until now to avoid conflating logical child
3203	 * errors with errors that happened to the zio itself when
3204	 * updating vdev stats and reporting FMA events above.
3205	 */
3206	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3207
3208	if ((zio->io_error || zio->io_reexecute) &&
3209	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3210	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3211		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3212
3213	zio_gang_tree_free(&zio->io_gang_tree);
3214
3215	/*
3216	 * Godfather I/Os should never suspend.
3217	 */
3218	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3219	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3220		zio->io_reexecute = 0;
3221
3222	if (zio->io_reexecute) {
3223		/*
3224		 * This is a logical I/O that wants to reexecute.
3225		 *
3226		 * Reexecute is top-down.  When an i/o fails, if it's not
3227		 * the root, it simply notifies its parent and sticks around.
3228		 * The parent, seeing that it still has children in zio_done(),
3229		 * does the same.  This percolates all the way up to the root.
3230		 * The root i/o will reexecute or suspend the entire tree.
3231		 *
3232		 * This approach ensures that zio_reexecute() honors
3233		 * all the original i/o dependency relationships, e.g.
3234		 * parents not executing until children are ready.
3235		 */
3236		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3237
3238		zio->io_gang_leader = NULL;
3239
3240		mutex_enter(&zio->io_lock);
3241		zio->io_state[ZIO_WAIT_DONE] = 1;
3242		mutex_exit(&zio->io_lock);
3243
3244		/*
3245		 * "The Godfather" I/O monitors its children but is
3246		 * not a true parent to them. It will track them through
3247		 * the pipeline but severs its ties whenever they get into
3248		 * trouble (e.g. suspended). This allows "The Godfather"
3249		 * I/O to return status without blocking.
3250		 */
3251		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3252			zio_link_t *zl = zio->io_walk_link;
3253			pio_next = zio_walk_parents(zio);
3254
3255			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3256			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3257				zio_remove_child(pio, zio, zl);
3258				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3259			}
3260		}
3261
3262		if ((pio = zio_unique_parent(zio)) != NULL) {
3263			/*
3264			 * We're not a root i/o, so there's nothing to do
3265			 * but notify our parent.  Don't propagate errors
3266			 * upward since we haven't permanently failed yet.
3267			 */
3268			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3269			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3270			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3271		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3272			/*
3273			 * We'd fail again if we reexecuted now, so suspend
3274			 * until conditions improve (e.g. device comes online).
3275			 */
3276			zio_suspend(spa, zio);
3277		} else {
3278			/*
3279			 * Reexecution is potentially a huge amount of work.
3280			 * Hand it off to the otherwise-unused claim taskq.
3281			 */
3282#if defined(illumos) || !defined(_KERNEL)
3283			ASSERT(zio->io_tqent.tqent_next == NULL);
3284#else
3285			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3286#endif
3287			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3288			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3289			    0, &zio->io_tqent);
3290		}
3291		return (ZIO_PIPELINE_STOP);
3292	}
3293
3294	ASSERT(zio->io_child_count == 0);
3295	ASSERT(zio->io_reexecute == 0);
3296	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3297
3298	/*
3299	 * Report any checksum errors, since the I/O is complete.
3300	 */
3301	while (zio->io_cksum_report != NULL) {
3302		zio_cksum_report_t *zcr = zio->io_cksum_report;
3303		zio->io_cksum_report = zcr->zcr_next;
3304		zcr->zcr_next = NULL;
3305		zcr->zcr_finish(zcr, NULL);
3306		zfs_ereport_free_checksum(zcr);
3307	}
3308
3309	/*
3310	 * It is the responsibility of the done callback to ensure that this
3311	 * particular zio is no longer discoverable for adoption, and as
3312	 * such, cannot acquire any new parents.
3313	 */
3314	if (zio->io_done)
3315		zio->io_done(zio);
3316
3317	mutex_enter(&zio->io_lock);
3318	zio->io_state[ZIO_WAIT_DONE] = 1;
3319	mutex_exit(&zio->io_lock);
3320
3321	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3322		zio_link_t *zl = zio->io_walk_link;
3323		pio_next = zio_walk_parents(zio);
3324		zio_remove_child(pio, zio, zl);
3325		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3326	}
3327
3328	if (zio->io_waiter != NULL) {
3329		mutex_enter(&zio->io_lock);
3330		zio->io_executor = NULL;
3331		cv_broadcast(&zio->io_cv);
3332		mutex_exit(&zio->io_lock);
3333	} else {
3334		zio_destroy(zio);
3335	}
3336
3337	return (ZIO_PIPELINE_STOP);
3338}
3339
3340/*
3341 * ==========================================================================
3342 * I/O pipeline definition
3343 * ==========================================================================
3344 */
3345static zio_pipe_stage_t *zio_pipeline[] = {
3346	NULL,
3347	zio_read_bp_init,
3348	zio_free_bp_init,
3349	zio_issue_async,
3350	zio_write_bp_init,
3351	zio_checksum_generate,
3352	zio_nop_write,
3353	zio_ddt_read_start,
3354	zio_ddt_read_done,
3355	zio_ddt_write,
3356	zio_ddt_free,
3357	zio_gang_assemble,
3358	zio_gang_issue,
3359	zio_dva_allocate,
3360	zio_dva_free,
3361	zio_dva_claim,
3362	zio_ready,
3363	zio_vdev_io_start,
3364	zio_vdev_io_done,
3365	zio_vdev_io_assess,
3366	zio_checksum_verify,
3367	zio_done
3368};
3369
3370/* dnp is the dnode for zb1->zb_object */
3371boolean_t
3372zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_phys_t *zb1,
3373    const zbookmark_phys_t *zb2)
3374{
3375	uint64_t zb1nextL0, zb2thisobj;
3376
3377	ASSERT(zb1->zb_objset == zb2->zb_objset);
3378	ASSERT(zb2->zb_level == 0);
3379
3380	/* The objset_phys_t isn't before anything. */
3381	if (dnp == NULL)
3382		return (B_FALSE);
3383
3384	zb1nextL0 = (zb1->zb_blkid + 1) <<
3385	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3386
3387	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3388	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3389
3390	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3391		uint64_t nextobj = zb1nextL0 *
3392		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3393		return (nextobj <= zb2thisobj);
3394	}
3395
3396	if (zb1->zb_object < zb2thisobj)
3397		return (B_TRUE);
3398	if (zb1->zb_object > zb2thisobj)
3399		return (B_FALSE);
3400	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3401		return (B_FALSE);
3402	return (zb1nextL0 <= zb2->zb_blkid);
3403}
3404