zio.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/fm/fs/zfs.h>
29#include <sys/spa.h>
30#include <sys/txg.h>
31#include <sys/spa_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio_impl.h>
34#include <sys/zio_compress.h>
35#include <sys/zio_checksum.h>
36#include <sys/dmu_objset.h>
37#include <sys/arc.h>
38#include <sys/ddt.h>
39#include <sys/trim_map.h>
40
41SYSCTL_DECL(_vfs_zfs);
42SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
43#if defined(__amd64__)
44static int zio_use_uma = 1;
45#else
46static int zio_use_uma = 0;
47#endif
48TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
49SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
50    "Use uma(9) for ZIO allocations");
51static int zio_exclude_metadata = 0;
52TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
53SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
54    "Exclude metadata buffers from dumps as well");
55
56zio_trim_stats_t zio_trim_stats = {
57	{ "bytes",		KSTAT_DATA_UINT64,
58	  "Number of bytes successfully TRIMmed" },
59	{ "success",		KSTAT_DATA_UINT64,
60	  "Number of successful TRIM requests" },
61	{ "unsupported",	KSTAT_DATA_UINT64,
62	  "Number of TRIM requests that failed because TRIM is not supported" },
63	{ "failed",		KSTAT_DATA_UINT64,
64	  "Number of TRIM requests that failed for reasons other than not supported" },
65};
66
67static kstat_t *zio_trim_ksp;
68
69/*
70 * ==========================================================================
71 * I/O type descriptions
72 * ==========================================================================
73 */
74const char *zio_type_name[ZIO_TYPES] = {
75	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
76	"zio_ioctl"
77};
78
79/*
80 * ==========================================================================
81 * I/O kmem caches
82 * ==========================================================================
83 */
84kmem_cache_t *zio_cache;
85kmem_cache_t *zio_link_cache;
86kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
87kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
88
89#ifdef _KERNEL
90extern vmem_t *zio_alloc_arena;
91#endif
92extern int zfs_mg_alloc_failures;
93
94/*
95 * The following actions directly effect the spa's sync-to-convergence logic.
96 * The values below define the sync pass when we start performing the action.
97 * Care should be taken when changing these values as they directly impact
98 * spa_sync() performance. Tuning these values may introduce subtle performance
99 * pathologies and should only be done in the context of performance analysis.
100 * These tunables will eventually be removed and replaced with #defines once
101 * enough analysis has been done to determine optimal values.
102 *
103 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
104 * regular blocks are not deferred.
105 */
106int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
107TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
108SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
109    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
110int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
111TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
112SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
113    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
114int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
115TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
116SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
117    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
118
119/*
120 * An allocating zio is one that either currently has the DVA allocate
121 * stage set or will have it later in its lifetime.
122 */
123#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
124
125boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
126
127#ifdef ZFS_DEBUG
128int zio_buf_debug_limit = 16384;
129#else
130int zio_buf_debug_limit = 0;
131#endif
132
133void
134zio_init(void)
135{
136	size_t c;
137	zio_cache = kmem_cache_create("zio_cache",
138	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
139	zio_link_cache = kmem_cache_create("zio_link_cache",
140	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
141	if (!zio_use_uma)
142		goto out;
143
144	/*
145	 * For small buffers, we want a cache for each multiple of
146	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
147	 * for each quarter-power of 2.  For large buffers, we want
148	 * a cache for each multiple of PAGESIZE.
149	 */
150	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
151		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
152		size_t p2 = size;
153		size_t align = 0;
154		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
155
156		while (p2 & (p2 - 1))
157			p2 &= p2 - 1;
158
159#ifdef illumos
160#ifndef _KERNEL
161		/*
162		 * If we are using watchpoints, put each buffer on its own page,
163		 * to eliminate the performance overhead of trapping to the
164		 * kernel when modifying a non-watched buffer that shares the
165		 * page with a watched buffer.
166		 */
167		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
168			continue;
169#endif
170#endif /* illumos */
171		if (size <= 4 * SPA_MINBLOCKSIZE) {
172			align = SPA_MINBLOCKSIZE;
173		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
174			align = PAGESIZE;
175		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
176			align = p2 >> 2;
177		}
178
179		if (align != 0) {
180			char name[36];
181			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
182			zio_buf_cache[c] = kmem_cache_create(name, size,
183			    align, NULL, NULL, NULL, NULL, NULL, cflags);
184
185			/*
186			 * Since zio_data bufs do not appear in crash dumps, we
187			 * pass KMC_NOTOUCH so that no allocator metadata is
188			 * stored with the buffers.
189			 */
190			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
191			zio_data_buf_cache[c] = kmem_cache_create(name, size,
192			    align, NULL, NULL, NULL, NULL, NULL,
193			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
194		}
195	}
196
197	while (--c != 0) {
198		ASSERT(zio_buf_cache[c] != NULL);
199		if (zio_buf_cache[c - 1] == NULL)
200			zio_buf_cache[c - 1] = zio_buf_cache[c];
201
202		ASSERT(zio_data_buf_cache[c] != NULL);
203		if (zio_data_buf_cache[c - 1] == NULL)
204			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
205	}
206out:
207
208	/*
209	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
210	 * to fail 3 times per txg or 8 failures, whichever is greater.
211	 */
212	if (zfs_mg_alloc_failures == 0)
213		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
214	else if (zfs_mg_alloc_failures < 8)
215		zfs_mg_alloc_failures = 8;
216
217	zio_inject_init();
218
219	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
220	    KSTAT_TYPE_NAMED,
221	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
222	    KSTAT_FLAG_VIRTUAL);
223
224	if (zio_trim_ksp != NULL) {
225		zio_trim_ksp->ks_data = &zio_trim_stats;
226		kstat_install(zio_trim_ksp);
227	}
228}
229
230void
231zio_fini(void)
232{
233	size_t c;
234	kmem_cache_t *last_cache = NULL;
235	kmem_cache_t *last_data_cache = NULL;
236
237	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
238		if (zio_buf_cache[c] != last_cache) {
239			last_cache = zio_buf_cache[c];
240			kmem_cache_destroy(zio_buf_cache[c]);
241		}
242		zio_buf_cache[c] = NULL;
243
244		if (zio_data_buf_cache[c] != last_data_cache) {
245			last_data_cache = zio_data_buf_cache[c];
246			kmem_cache_destroy(zio_data_buf_cache[c]);
247		}
248		zio_data_buf_cache[c] = NULL;
249	}
250
251	kmem_cache_destroy(zio_link_cache);
252	kmem_cache_destroy(zio_cache);
253
254	zio_inject_fini();
255
256	if (zio_trim_ksp != NULL) {
257		kstat_delete(zio_trim_ksp);
258		zio_trim_ksp = NULL;
259	}
260}
261
262/*
263 * ==========================================================================
264 * Allocate and free I/O buffers
265 * ==========================================================================
266 */
267
268/*
269 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
270 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
271 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
272 * excess / transient data in-core during a crashdump.
273 */
274void *
275zio_buf_alloc(size_t size)
276{
277	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
279
280	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
281
282	if (zio_use_uma)
283		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
284	else
285		return (kmem_alloc(size, KM_SLEEP|flags));
286}
287
288/*
289 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
290 * crashdump if the kernel panics.  This exists so that we will limit the amount
291 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
292 * of kernel heap dumped to disk when the kernel panics)
293 */
294void *
295zio_data_buf_alloc(size_t size)
296{
297	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
298
299	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
300
301	if (zio_use_uma)
302		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
303	else
304		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
305}
306
307void
308zio_buf_free(void *buf, size_t size)
309{
310	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
311
312	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
313
314	if (zio_use_uma)
315		kmem_cache_free(zio_buf_cache[c], buf);
316	else
317		kmem_free(buf, size);
318}
319
320void
321zio_data_buf_free(void *buf, size_t size)
322{
323	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
324
325	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
326
327	if (zio_use_uma)
328		kmem_cache_free(zio_data_buf_cache[c], buf);
329	else
330		kmem_free(buf, size);
331}
332
333/*
334 * ==========================================================================
335 * Push and pop I/O transform buffers
336 * ==========================================================================
337 */
338static void
339zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
340	zio_transform_func_t *transform)
341{
342	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
343
344	zt->zt_orig_data = zio->io_data;
345	zt->zt_orig_size = zio->io_size;
346	zt->zt_bufsize = bufsize;
347	zt->zt_transform = transform;
348
349	zt->zt_next = zio->io_transform_stack;
350	zio->io_transform_stack = zt;
351
352	zio->io_data = data;
353	zio->io_size = size;
354}
355
356static void
357zio_pop_transforms(zio_t *zio)
358{
359	zio_transform_t *zt;
360
361	while ((zt = zio->io_transform_stack) != NULL) {
362		if (zt->zt_transform != NULL)
363			zt->zt_transform(zio,
364			    zt->zt_orig_data, zt->zt_orig_size);
365
366		if (zt->zt_bufsize != 0)
367			zio_buf_free(zio->io_data, zt->zt_bufsize);
368
369		zio->io_data = zt->zt_orig_data;
370		zio->io_size = zt->zt_orig_size;
371		zio->io_transform_stack = zt->zt_next;
372
373		kmem_free(zt, sizeof (zio_transform_t));
374	}
375}
376
377/*
378 * ==========================================================================
379 * I/O transform callbacks for subblocks and decompression
380 * ==========================================================================
381 */
382static void
383zio_subblock(zio_t *zio, void *data, uint64_t size)
384{
385	ASSERT(zio->io_size > size);
386
387	if (zio->io_type == ZIO_TYPE_READ)
388		bcopy(zio->io_data, data, size);
389}
390
391static void
392zio_decompress(zio_t *zio, void *data, uint64_t size)
393{
394	if (zio->io_error == 0 &&
395	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
396	    zio->io_data, data, zio->io_size, size) != 0)
397		zio->io_error = SET_ERROR(EIO);
398}
399
400/*
401 * ==========================================================================
402 * I/O parent/child relationships and pipeline interlocks
403 * ==========================================================================
404 */
405/*
406 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
407 *        continue calling these functions until they return NULL.
408 *        Otherwise, the next caller will pick up the list walk in
409 *        some indeterminate state.  (Otherwise every caller would
410 *        have to pass in a cookie to keep the state represented by
411 *        io_walk_link, which gets annoying.)
412 */
413zio_t *
414zio_walk_parents(zio_t *cio)
415{
416	zio_link_t *zl = cio->io_walk_link;
417	list_t *pl = &cio->io_parent_list;
418
419	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
420	cio->io_walk_link = zl;
421
422	if (zl == NULL)
423		return (NULL);
424
425	ASSERT(zl->zl_child == cio);
426	return (zl->zl_parent);
427}
428
429zio_t *
430zio_walk_children(zio_t *pio)
431{
432	zio_link_t *zl = pio->io_walk_link;
433	list_t *cl = &pio->io_child_list;
434
435	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
436	pio->io_walk_link = zl;
437
438	if (zl == NULL)
439		return (NULL);
440
441	ASSERT(zl->zl_parent == pio);
442	return (zl->zl_child);
443}
444
445zio_t *
446zio_unique_parent(zio_t *cio)
447{
448	zio_t *pio = zio_walk_parents(cio);
449
450	VERIFY(zio_walk_parents(cio) == NULL);
451	return (pio);
452}
453
454void
455zio_add_child(zio_t *pio, zio_t *cio)
456{
457	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
458
459	/*
460	 * Logical I/Os can have logical, gang, or vdev children.
461	 * Gang I/Os can have gang or vdev children.
462	 * Vdev I/Os can only have vdev children.
463	 * The following ASSERT captures all of these constraints.
464	 */
465	ASSERT(cio->io_child_type <= pio->io_child_type);
466
467	zl->zl_parent = pio;
468	zl->zl_child = cio;
469
470	mutex_enter(&cio->io_lock);
471	mutex_enter(&pio->io_lock);
472
473	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
474
475	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
476		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
477
478	list_insert_head(&pio->io_child_list, zl);
479	list_insert_head(&cio->io_parent_list, zl);
480
481	pio->io_child_count++;
482	cio->io_parent_count++;
483
484	mutex_exit(&pio->io_lock);
485	mutex_exit(&cio->io_lock);
486}
487
488static void
489zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
490{
491	ASSERT(zl->zl_parent == pio);
492	ASSERT(zl->zl_child == cio);
493
494	mutex_enter(&cio->io_lock);
495	mutex_enter(&pio->io_lock);
496
497	list_remove(&pio->io_child_list, zl);
498	list_remove(&cio->io_parent_list, zl);
499
500	pio->io_child_count--;
501	cio->io_parent_count--;
502
503	mutex_exit(&pio->io_lock);
504	mutex_exit(&cio->io_lock);
505
506	kmem_cache_free(zio_link_cache, zl);
507}
508
509static boolean_t
510zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
511{
512	uint64_t *countp = &zio->io_children[child][wait];
513	boolean_t waiting = B_FALSE;
514
515	mutex_enter(&zio->io_lock);
516	ASSERT(zio->io_stall == NULL);
517	if (*countp != 0) {
518		zio->io_stage >>= 1;
519		zio->io_stall = countp;
520		waiting = B_TRUE;
521	}
522	mutex_exit(&zio->io_lock);
523
524	return (waiting);
525}
526
527static void
528zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
529{
530	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
531	int *errorp = &pio->io_child_error[zio->io_child_type];
532
533	mutex_enter(&pio->io_lock);
534	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
535		*errorp = zio_worst_error(*errorp, zio->io_error);
536	pio->io_reexecute |= zio->io_reexecute;
537	ASSERT3U(*countp, >, 0);
538
539	(*countp)--;
540
541	if (*countp == 0 && pio->io_stall == countp) {
542		pio->io_stall = NULL;
543		mutex_exit(&pio->io_lock);
544		zio_execute(pio);
545	} else {
546		mutex_exit(&pio->io_lock);
547	}
548}
549
550static void
551zio_inherit_child_errors(zio_t *zio, enum zio_child c)
552{
553	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
554		zio->io_error = zio->io_child_error[c];
555}
556
557/*
558 * ==========================================================================
559 * Create the various types of I/O (read, write, free, etc)
560 * ==========================================================================
561 */
562static zio_t *
563zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
564    void *data, uint64_t size, zio_done_func_t *done, void *private,
565    zio_type_t type, zio_priority_t priority, enum zio_flag flags,
566    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
567    enum zio_stage stage, enum zio_stage pipeline)
568{
569	zio_t *zio;
570
571	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
572	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
573	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
574
575	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
576	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
577	ASSERT(vd || stage == ZIO_STAGE_OPEN);
578
579	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
580	bzero(zio, sizeof (zio_t));
581
582	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
583	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
584
585	list_create(&zio->io_parent_list, sizeof (zio_link_t),
586	    offsetof(zio_link_t, zl_parent_node));
587	list_create(&zio->io_child_list, sizeof (zio_link_t),
588	    offsetof(zio_link_t, zl_child_node));
589
590	if (vd != NULL)
591		zio->io_child_type = ZIO_CHILD_VDEV;
592	else if (flags & ZIO_FLAG_GANG_CHILD)
593		zio->io_child_type = ZIO_CHILD_GANG;
594	else if (flags & ZIO_FLAG_DDT_CHILD)
595		zio->io_child_type = ZIO_CHILD_DDT;
596	else
597		zio->io_child_type = ZIO_CHILD_LOGICAL;
598
599	if (bp != NULL) {
600		zio->io_bp = (blkptr_t *)bp;
601		zio->io_bp_copy = *bp;
602		zio->io_bp_orig = *bp;
603		if (type != ZIO_TYPE_WRITE ||
604		    zio->io_child_type == ZIO_CHILD_DDT)
605			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
606		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
607			zio->io_logical = zio;
608		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
609			pipeline |= ZIO_GANG_STAGES;
610	}
611
612	zio->io_spa = spa;
613	zio->io_txg = txg;
614	zio->io_done = done;
615	zio->io_private = private;
616	zio->io_type = type;
617	zio->io_priority = priority;
618	zio->io_vd = vd;
619	zio->io_offset = offset;
620	zio->io_orig_data = zio->io_data = data;
621	zio->io_orig_size = zio->io_size = size;
622	zio->io_orig_flags = zio->io_flags = flags;
623	zio->io_orig_stage = zio->io_stage = stage;
624	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
625
626	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
627	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
628
629	if (zb != NULL)
630		zio->io_bookmark = *zb;
631
632	if (pio != NULL) {
633		if (zio->io_logical == NULL)
634			zio->io_logical = pio->io_logical;
635		if (zio->io_child_type == ZIO_CHILD_GANG)
636			zio->io_gang_leader = pio->io_gang_leader;
637		zio_add_child(pio, zio);
638	}
639
640	return (zio);
641}
642
643static void
644zio_destroy(zio_t *zio)
645{
646	list_destroy(&zio->io_parent_list);
647	list_destroy(&zio->io_child_list);
648	mutex_destroy(&zio->io_lock);
649	cv_destroy(&zio->io_cv);
650	kmem_cache_free(zio_cache, zio);
651}
652
653zio_t *
654zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
655    void *private, enum zio_flag flags)
656{
657	zio_t *zio;
658
659	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
660	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
661	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
662
663	return (zio);
664}
665
666zio_t *
667zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
668{
669	return (zio_null(NULL, spa, NULL, done, private, flags));
670}
671
672zio_t *
673zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
674    void *data, uint64_t size, zio_done_func_t *done, void *private,
675    zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
676{
677	zio_t *zio;
678
679	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
680	    data, size, done, private,
681	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
682	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
683	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
684
685	return (zio);
686}
687
688zio_t *
689zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
690    void *data, uint64_t size, const zio_prop_t *zp,
691    zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
692    void *private,
693    zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
694{
695	zio_t *zio;
696
697	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
698	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
699	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
700	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
701	    DMU_OT_IS_VALID(zp->zp_type) &&
702	    zp->zp_level < 32 &&
703	    zp->zp_copies > 0 &&
704	    zp->zp_copies <= spa_max_replication(spa));
705
706	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
707	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
708	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
709	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
710
711	zio->io_ready = ready;
712	zio->io_physdone = physdone;
713	zio->io_prop = *zp;
714
715	return (zio);
716}
717
718zio_t *
719zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
720    uint64_t size, zio_done_func_t *done, void *private,
721    zio_priority_t priority, enum zio_flag flags, zbookmark_t *zb)
722{
723	zio_t *zio;
724
725	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
726	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
727	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
728
729	return (zio);
730}
731
732void
733zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
734{
735	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
736	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
737	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
738	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
739
740	/*
741	 * We must reset the io_prop to match the values that existed
742	 * when the bp was first written by dmu_sync() keeping in mind
743	 * that nopwrite and dedup are mutually exclusive.
744	 */
745	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
746	zio->io_prop.zp_nopwrite = nopwrite;
747	zio->io_prop.zp_copies = copies;
748	zio->io_bp_override = bp;
749}
750
751void
752zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
753{
754	metaslab_check_free(spa, bp);
755
756	/*
757	 * Frees that are for the currently-syncing txg, are not going to be
758	 * deferred, and which will not need to do a read (i.e. not GANG or
759	 * DEDUP), can be processed immediately.  Otherwise, put them on the
760	 * in-memory list for later processing.
761	 */
762	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
763	    txg != spa->spa_syncing_txg ||
764	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
765		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
766	} else {
767		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
768		    BP_GET_PSIZE(bp), 0)));
769	}
770}
771
772zio_t *
773zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
774    uint64_t size, enum zio_flag flags)
775{
776	zio_t *zio;
777	enum zio_stage stage = ZIO_FREE_PIPELINE;
778
779	dprintf_bp(bp, "freeing in txg %llu, pass %u",
780	    (longlong_t)txg, spa->spa_sync_pass);
781
782	ASSERT(!BP_IS_HOLE(bp));
783	ASSERT(spa_syncing_txg(spa) == txg);
784	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
785
786	metaslab_check_free(spa, bp);
787	arc_freed(spa, bp);
788
789	if (zfs_trim_enabled)
790		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
791		    ZIO_STAGE_VDEV_IO_ASSESS;
792	/*
793	 * GANG and DEDUP blocks can induce a read (for the gang block header,
794	 * or the DDT), so issue them asynchronously so that this thread is
795	 * not tied up.
796	 */
797	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
798		stage |= ZIO_STAGE_ISSUE_ASYNC;
799
800	zio = zio_create(pio, spa, txg, bp, NULL, size,
801	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
802	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
803
804	return (zio);
805}
806
807zio_t *
808zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
809    zio_done_func_t *done, void *private, enum zio_flag flags)
810{
811	zio_t *zio;
812
813	/*
814	 * A claim is an allocation of a specific block.  Claims are needed
815	 * to support immediate writes in the intent log.  The issue is that
816	 * immediate writes contain committed data, but in a txg that was
817	 * *not* committed.  Upon opening the pool after an unclean shutdown,
818	 * the intent log claims all blocks that contain immediate write data
819	 * so that the SPA knows they're in use.
820	 *
821	 * All claims *must* be resolved in the first txg -- before the SPA
822	 * starts allocating blocks -- so that nothing is allocated twice.
823	 * If txg == 0 we just verify that the block is claimable.
824	 */
825	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
826	ASSERT(txg == spa_first_txg(spa) || txg == 0);
827	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
828
829	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
830	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
831	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
832
833	return (zio);
834}
835
836zio_t *
837zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
838    uint64_t size, zio_done_func_t *done, void *private,
839    enum zio_flag flags)
840{
841	zio_t *zio;
842	int c;
843
844	if (vd->vdev_children == 0) {
845		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
846		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, offset, NULL,
847		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
848
849		zio->io_cmd = cmd;
850	} else {
851		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
852
853		for (c = 0; c < vd->vdev_children; c++)
854			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
855			    offset, size, done, private, flags));
856	}
857
858	return (zio);
859}
860
861zio_t *
862zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
863    void *data, int checksum, zio_done_func_t *done, void *private,
864    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
865{
866	zio_t *zio;
867
868	ASSERT(vd->vdev_children == 0);
869	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
870	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
871	ASSERT3U(offset + size, <=, vd->vdev_psize);
872
873	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
874	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
875	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
876
877	zio->io_prop.zp_checksum = checksum;
878
879	return (zio);
880}
881
882zio_t *
883zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
884    void *data, int checksum, zio_done_func_t *done, void *private,
885    zio_priority_t priority, enum zio_flag flags, boolean_t labels)
886{
887	zio_t *zio;
888
889	ASSERT(vd->vdev_children == 0);
890	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
891	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
892	ASSERT3U(offset + size, <=, vd->vdev_psize);
893
894	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
895	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
896	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
897
898	zio->io_prop.zp_checksum = checksum;
899
900	if (zio_checksum_table[checksum].ci_eck) {
901		/*
902		 * zec checksums are necessarily destructive -- they modify
903		 * the end of the write buffer to hold the verifier/checksum.
904		 * Therefore, we must make a local copy in case the data is
905		 * being written to multiple places in parallel.
906		 */
907		void *wbuf = zio_buf_alloc(size);
908		bcopy(data, wbuf, size);
909		zio_push_transform(zio, wbuf, size, size, NULL);
910	}
911
912	return (zio);
913}
914
915/*
916 * Create a child I/O to do some work for us.
917 */
918zio_t *
919zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
920	void *data, uint64_t size, int type, zio_priority_t priority,
921	enum zio_flag flags, zio_done_func_t *done, void *private)
922{
923	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
924	zio_t *zio;
925
926	ASSERT(vd->vdev_parent ==
927	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
928
929	if (type == ZIO_TYPE_READ && bp != NULL) {
930		/*
931		 * If we have the bp, then the child should perform the
932		 * checksum and the parent need not.  This pushes error
933		 * detection as close to the leaves as possible and
934		 * eliminates redundant checksums in the interior nodes.
935		 */
936		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
937		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
938	}
939
940	if (vd->vdev_children == 0)
941		offset += VDEV_LABEL_START_SIZE;
942
943	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
944
945	/*
946	 * If we've decided to do a repair, the write is not speculative --
947	 * even if the original read was.
948	 */
949	if (flags & ZIO_FLAG_IO_REPAIR)
950		flags &= ~ZIO_FLAG_SPECULATIVE;
951
952	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
953	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
954	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
955
956	zio->io_physdone = pio->io_physdone;
957	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
958		zio->io_logical->io_phys_children++;
959
960	return (zio);
961}
962
963zio_t *
964zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
965	int type, zio_priority_t priority, enum zio_flag flags,
966	zio_done_func_t *done, void *private)
967{
968	zio_t *zio;
969
970	ASSERT(vd->vdev_ops->vdev_op_leaf);
971
972	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
973	    data, size, done, private, type, priority,
974	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
975	    vd, offset, NULL,
976	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
977
978	return (zio);
979}
980
981void
982zio_flush(zio_t *zio, vdev_t *vd)
983{
984	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
985	    NULL, NULL,
986	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
987}
988
989zio_t *
990zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
991{
992
993	ASSERT(vd->vdev_ops->vdev_op_leaf);
994
995	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
996	    NULL, NULL,
997	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
998}
999
1000void
1001zio_shrink(zio_t *zio, uint64_t size)
1002{
1003	ASSERT(zio->io_executor == NULL);
1004	ASSERT(zio->io_orig_size == zio->io_size);
1005	ASSERT(size <= zio->io_size);
1006
1007	/*
1008	 * We don't shrink for raidz because of problems with the
1009	 * reconstruction when reading back less than the block size.
1010	 * Note, BP_IS_RAIDZ() assumes no compression.
1011	 */
1012	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1013	if (!BP_IS_RAIDZ(zio->io_bp))
1014		zio->io_orig_size = zio->io_size = size;
1015}
1016
1017/*
1018 * ==========================================================================
1019 * Prepare to read and write logical blocks
1020 * ==========================================================================
1021 */
1022
1023static int
1024zio_read_bp_init(zio_t *zio)
1025{
1026	blkptr_t *bp = zio->io_bp;
1027
1028	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1029	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1030	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1031		uint64_t psize = BP_GET_PSIZE(bp);
1032		void *cbuf = zio_buf_alloc(psize);
1033
1034		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1035	}
1036
1037	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1038		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1039
1040	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1041		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1042
1043	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1044		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1045
1046	return (ZIO_PIPELINE_CONTINUE);
1047}
1048
1049static int
1050zio_write_bp_init(zio_t *zio)
1051{
1052	spa_t *spa = zio->io_spa;
1053	zio_prop_t *zp = &zio->io_prop;
1054	enum zio_compress compress = zp->zp_compress;
1055	blkptr_t *bp = zio->io_bp;
1056	uint64_t lsize = zio->io_size;
1057	uint64_t psize = lsize;
1058	int pass = 1;
1059
1060	/*
1061	 * If our children haven't all reached the ready stage,
1062	 * wait for them and then repeat this pipeline stage.
1063	 */
1064	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1065	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1066		return (ZIO_PIPELINE_STOP);
1067
1068	if (!IO_IS_ALLOCATING(zio))
1069		return (ZIO_PIPELINE_CONTINUE);
1070
1071	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1072
1073	if (zio->io_bp_override) {
1074		ASSERT(bp->blk_birth != zio->io_txg);
1075		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1076
1077		*bp = *zio->io_bp_override;
1078		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1079
1080		/*
1081		 * If we've been overridden and nopwrite is set then
1082		 * set the flag accordingly to indicate that a nopwrite
1083		 * has already occurred.
1084		 */
1085		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1086			ASSERT(!zp->zp_dedup);
1087			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1088			return (ZIO_PIPELINE_CONTINUE);
1089		}
1090
1091		ASSERT(!zp->zp_nopwrite);
1092
1093		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1094			return (ZIO_PIPELINE_CONTINUE);
1095
1096		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1097		    zp->zp_dedup_verify);
1098
1099		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1100			BP_SET_DEDUP(bp, 1);
1101			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1102			return (ZIO_PIPELINE_CONTINUE);
1103		}
1104		zio->io_bp_override = NULL;
1105		BP_ZERO(bp);
1106	}
1107
1108	if (bp->blk_birth == zio->io_txg) {
1109		/*
1110		 * We're rewriting an existing block, which means we're
1111		 * working on behalf of spa_sync().  For spa_sync() to
1112		 * converge, it must eventually be the case that we don't
1113		 * have to allocate new blocks.  But compression changes
1114		 * the blocksize, which forces a reallocate, and makes
1115		 * convergence take longer.  Therefore, after the first
1116		 * few passes, stop compressing to ensure convergence.
1117		 */
1118		pass = spa_sync_pass(spa);
1119
1120		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1121		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1122		ASSERT(!BP_GET_DEDUP(bp));
1123
1124		if (pass >= zfs_sync_pass_dont_compress)
1125			compress = ZIO_COMPRESS_OFF;
1126
1127		/* Make sure someone doesn't change their mind on overwrites */
1128		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1129		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1130	}
1131
1132	if (compress != ZIO_COMPRESS_OFF) {
1133		metaslab_class_t *mc = spa_normal_class(spa);
1134		void *cbuf = zio_buf_alloc(lsize);
1135		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize,
1136		    (size_t)metaslab_class_get_minblocksize(mc));
1137		if (psize == 0 || psize == lsize) {
1138			compress = ZIO_COMPRESS_OFF;
1139			zio_buf_free(cbuf, lsize);
1140		} else {
1141			ASSERT(psize < lsize);
1142			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1143		}
1144	}
1145
1146	/*
1147	 * The final pass of spa_sync() must be all rewrites, but the first
1148	 * few passes offer a trade-off: allocating blocks defers convergence,
1149	 * but newly allocated blocks are sequential, so they can be written
1150	 * to disk faster.  Therefore, we allow the first few passes of
1151	 * spa_sync() to allocate new blocks, but force rewrites after that.
1152	 * There should only be a handful of blocks after pass 1 in any case.
1153	 */
1154	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1155	    pass >= zfs_sync_pass_rewrite) {
1156		ASSERT(psize != 0);
1157		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1158		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1159		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1160	} else {
1161		BP_ZERO(bp);
1162		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1163	}
1164
1165	if (psize == 0) {
1166		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1167	} else {
1168		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1169		BP_SET_LSIZE(bp, lsize);
1170		BP_SET_PSIZE(bp, psize);
1171		BP_SET_COMPRESS(bp, compress);
1172		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1173		BP_SET_TYPE(bp, zp->zp_type);
1174		BP_SET_LEVEL(bp, zp->zp_level);
1175		BP_SET_DEDUP(bp, zp->zp_dedup);
1176		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1177		if (zp->zp_dedup) {
1178			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1179			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1180			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1181		}
1182		if (zp->zp_nopwrite) {
1183			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1184			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1185			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1186		}
1187	}
1188
1189	return (ZIO_PIPELINE_CONTINUE);
1190}
1191
1192static int
1193zio_free_bp_init(zio_t *zio)
1194{
1195	blkptr_t *bp = zio->io_bp;
1196
1197	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1198		if (BP_GET_DEDUP(bp))
1199			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1200	}
1201
1202	return (ZIO_PIPELINE_CONTINUE);
1203}
1204
1205/*
1206 * ==========================================================================
1207 * Execute the I/O pipeline
1208 * ==========================================================================
1209 */
1210
1211static void
1212zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1213{
1214	spa_t *spa = zio->io_spa;
1215	zio_type_t t = zio->io_type;
1216	int flags = (cutinline ? TQ_FRONT : 0);
1217
1218	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1219
1220	/*
1221	 * If we're a config writer or a probe, the normal issue and
1222	 * interrupt threads may all be blocked waiting for the config lock.
1223	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1224	 */
1225	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1226		t = ZIO_TYPE_NULL;
1227
1228	/*
1229	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1230	 */
1231	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1232		t = ZIO_TYPE_NULL;
1233
1234	/*
1235	 * If this is a high priority I/O, then use the high priority taskq if
1236	 * available.
1237	 */
1238	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1239	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1240		q++;
1241
1242	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1243
1244	/*
1245	 * NB: We are assuming that the zio can only be dispatched
1246	 * to a single taskq at a time.  It would be a grievous error
1247	 * to dispatch the zio to another taskq at the same time.
1248	 */
1249#if defined(illumos) || !defined(_KERNEL)
1250	ASSERT(zio->io_tqent.tqent_next == NULL);
1251#else
1252	ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
1253#endif
1254	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1255	    flags, &zio->io_tqent);
1256}
1257
1258static boolean_t
1259zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1260{
1261	kthread_t *executor = zio->io_executor;
1262	spa_t *spa = zio->io_spa;
1263
1264	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1265		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1266		uint_t i;
1267		for (i = 0; i < tqs->stqs_count; i++) {
1268			if (taskq_member(tqs->stqs_taskq[i], executor))
1269				return (B_TRUE);
1270		}
1271	}
1272
1273	return (B_FALSE);
1274}
1275
1276static int
1277zio_issue_async(zio_t *zio)
1278{
1279	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1280
1281	return (ZIO_PIPELINE_STOP);
1282}
1283
1284void
1285zio_interrupt(zio_t *zio)
1286{
1287	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1288}
1289
1290/*
1291 * Execute the I/O pipeline until one of the following occurs:
1292 *
1293 *	(1) the I/O completes
1294 *	(2) the pipeline stalls waiting for dependent child I/Os
1295 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1296 *	(4) the I/O is delegated by vdev-level caching or aggregation
1297 *	(5) the I/O is deferred due to vdev-level queueing
1298 *	(6) the I/O is handed off to another thread.
1299 *
1300 * In all cases, the pipeline stops whenever there's no CPU work; it never
1301 * burns a thread in cv_wait().
1302 *
1303 * There's no locking on io_stage because there's no legitimate way
1304 * for multiple threads to be attempting to process the same I/O.
1305 */
1306static zio_pipe_stage_t *zio_pipeline[];
1307
1308void
1309zio_execute(zio_t *zio)
1310{
1311	zio->io_executor = curthread;
1312
1313	while (zio->io_stage < ZIO_STAGE_DONE) {
1314		enum zio_stage pipeline = zio->io_pipeline;
1315		enum zio_stage stage = zio->io_stage;
1316		int rv;
1317
1318		ASSERT(!MUTEX_HELD(&zio->io_lock));
1319		ASSERT(ISP2(stage));
1320		ASSERT(zio->io_stall == NULL);
1321
1322		do {
1323			stage <<= 1;
1324		} while ((stage & pipeline) == 0);
1325
1326		ASSERT(stage <= ZIO_STAGE_DONE);
1327
1328		/*
1329		 * If we are in interrupt context and this pipeline stage
1330		 * will grab a config lock that is held across I/O,
1331		 * or may wait for an I/O that needs an interrupt thread
1332		 * to complete, issue async to avoid deadlock.
1333		 *
1334		 * For VDEV_IO_START, we cut in line so that the io will
1335		 * be sent to disk promptly.
1336		 */
1337		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1338		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1339			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1340			    zio_requeue_io_start_cut_in_line : B_FALSE;
1341			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1342			return;
1343		}
1344
1345		zio->io_stage = stage;
1346		rv = zio_pipeline[highbit(stage) - 1](zio);
1347
1348		if (rv == ZIO_PIPELINE_STOP)
1349			return;
1350
1351		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1352	}
1353}
1354
1355/*
1356 * ==========================================================================
1357 * Initiate I/O, either sync or async
1358 * ==========================================================================
1359 */
1360int
1361zio_wait(zio_t *zio)
1362{
1363	int error;
1364
1365	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1366	ASSERT(zio->io_executor == NULL);
1367
1368	zio->io_waiter = curthread;
1369
1370	zio_execute(zio);
1371
1372	mutex_enter(&zio->io_lock);
1373	while (zio->io_executor != NULL)
1374		cv_wait(&zio->io_cv, &zio->io_lock);
1375	mutex_exit(&zio->io_lock);
1376
1377	error = zio->io_error;
1378	zio_destroy(zio);
1379
1380	return (error);
1381}
1382
1383void
1384zio_nowait(zio_t *zio)
1385{
1386	ASSERT(zio->io_executor == NULL);
1387
1388	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1389	    zio_unique_parent(zio) == NULL) {
1390		/*
1391		 * This is a logical async I/O with no parent to wait for it.
1392		 * We add it to the spa_async_root_zio "Godfather" I/O which
1393		 * will ensure they complete prior to unloading the pool.
1394		 */
1395		spa_t *spa = zio->io_spa;
1396
1397		zio_add_child(spa->spa_async_zio_root, zio);
1398	}
1399
1400	zio_execute(zio);
1401}
1402
1403/*
1404 * ==========================================================================
1405 * Reexecute or suspend/resume failed I/O
1406 * ==========================================================================
1407 */
1408
1409static void
1410zio_reexecute(zio_t *pio)
1411{
1412	zio_t *cio, *cio_next;
1413
1414	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1415	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1416	ASSERT(pio->io_gang_leader == NULL);
1417	ASSERT(pio->io_gang_tree == NULL);
1418
1419	pio->io_flags = pio->io_orig_flags;
1420	pio->io_stage = pio->io_orig_stage;
1421	pio->io_pipeline = pio->io_orig_pipeline;
1422	pio->io_reexecute = 0;
1423	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1424	pio->io_error = 0;
1425	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1426		pio->io_state[w] = 0;
1427	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1428		pio->io_child_error[c] = 0;
1429
1430	if (IO_IS_ALLOCATING(pio))
1431		BP_ZERO(pio->io_bp);
1432
1433	/*
1434	 * As we reexecute pio's children, new children could be created.
1435	 * New children go to the head of pio's io_child_list, however,
1436	 * so we will (correctly) not reexecute them.  The key is that
1437	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1438	 * cannot be affected by any side effects of reexecuting 'cio'.
1439	 */
1440	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1441		cio_next = zio_walk_children(pio);
1442		mutex_enter(&pio->io_lock);
1443		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1444			pio->io_children[cio->io_child_type][w]++;
1445		mutex_exit(&pio->io_lock);
1446		zio_reexecute(cio);
1447	}
1448
1449	/*
1450	 * Now that all children have been reexecuted, execute the parent.
1451	 * We don't reexecute "The Godfather" I/O here as it's the
1452	 * responsibility of the caller to wait on him.
1453	 */
1454	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1455		zio_execute(pio);
1456}
1457
1458void
1459zio_suspend(spa_t *spa, zio_t *zio)
1460{
1461	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1462		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1463		    "failure and the failure mode property for this pool "
1464		    "is set to panic.", spa_name(spa));
1465
1466	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1467
1468	mutex_enter(&spa->spa_suspend_lock);
1469
1470	if (spa->spa_suspend_zio_root == NULL)
1471		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1472		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1473		    ZIO_FLAG_GODFATHER);
1474
1475	spa->spa_suspended = B_TRUE;
1476
1477	if (zio != NULL) {
1478		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1479		ASSERT(zio != spa->spa_suspend_zio_root);
1480		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1481		ASSERT(zio_unique_parent(zio) == NULL);
1482		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1483		zio_add_child(spa->spa_suspend_zio_root, zio);
1484	}
1485
1486	mutex_exit(&spa->spa_suspend_lock);
1487}
1488
1489int
1490zio_resume(spa_t *spa)
1491{
1492	zio_t *pio;
1493
1494	/*
1495	 * Reexecute all previously suspended i/o.
1496	 */
1497	mutex_enter(&spa->spa_suspend_lock);
1498	spa->spa_suspended = B_FALSE;
1499	cv_broadcast(&spa->spa_suspend_cv);
1500	pio = spa->spa_suspend_zio_root;
1501	spa->spa_suspend_zio_root = NULL;
1502	mutex_exit(&spa->spa_suspend_lock);
1503
1504	if (pio == NULL)
1505		return (0);
1506
1507	zio_reexecute(pio);
1508	return (zio_wait(pio));
1509}
1510
1511void
1512zio_resume_wait(spa_t *spa)
1513{
1514	mutex_enter(&spa->spa_suspend_lock);
1515	while (spa_suspended(spa))
1516		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1517	mutex_exit(&spa->spa_suspend_lock);
1518}
1519
1520/*
1521 * ==========================================================================
1522 * Gang blocks.
1523 *
1524 * A gang block is a collection of small blocks that looks to the DMU
1525 * like one large block.  When zio_dva_allocate() cannot find a block
1526 * of the requested size, due to either severe fragmentation or the pool
1527 * being nearly full, it calls zio_write_gang_block() to construct the
1528 * block from smaller fragments.
1529 *
1530 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1531 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1532 * an indirect block: it's an array of block pointers.  It consumes
1533 * only one sector and hence is allocatable regardless of fragmentation.
1534 * The gang header's bps point to its gang members, which hold the data.
1535 *
1536 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1537 * as the verifier to ensure uniqueness of the SHA256 checksum.
1538 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1539 * not the gang header.  This ensures that data block signatures (needed for
1540 * deduplication) are independent of how the block is physically stored.
1541 *
1542 * Gang blocks can be nested: a gang member may itself be a gang block.
1543 * Thus every gang block is a tree in which root and all interior nodes are
1544 * gang headers, and the leaves are normal blocks that contain user data.
1545 * The root of the gang tree is called the gang leader.
1546 *
1547 * To perform any operation (read, rewrite, free, claim) on a gang block,
1548 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1549 * in the io_gang_tree field of the original logical i/o by recursively
1550 * reading the gang leader and all gang headers below it.  This yields
1551 * an in-core tree containing the contents of every gang header and the
1552 * bps for every constituent of the gang block.
1553 *
1554 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1555 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1556 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1557 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1558 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1559 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1560 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1561 * of the gang header plus zio_checksum_compute() of the data to update the
1562 * gang header's blk_cksum as described above.
1563 *
1564 * The two-phase assemble/issue model solves the problem of partial failure --
1565 * what if you'd freed part of a gang block but then couldn't read the
1566 * gang header for another part?  Assembling the entire gang tree first
1567 * ensures that all the necessary gang header I/O has succeeded before
1568 * starting the actual work of free, claim, or write.  Once the gang tree
1569 * is assembled, free and claim are in-memory operations that cannot fail.
1570 *
1571 * In the event that a gang write fails, zio_dva_unallocate() walks the
1572 * gang tree to immediately free (i.e. insert back into the space map)
1573 * everything we've allocated.  This ensures that we don't get ENOSPC
1574 * errors during repeated suspend/resume cycles due to a flaky device.
1575 *
1576 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1577 * the gang tree, we won't modify the block, so we can safely defer the free
1578 * (knowing that the block is still intact).  If we *can* assemble the gang
1579 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1580 * each constituent bp and we can allocate a new block on the next sync pass.
1581 *
1582 * In all cases, the gang tree allows complete recovery from partial failure.
1583 * ==========================================================================
1584 */
1585
1586static zio_t *
1587zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1588{
1589	if (gn != NULL)
1590		return (pio);
1591
1592	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1593	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1594	    &pio->io_bookmark));
1595}
1596
1597zio_t *
1598zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1599{
1600	zio_t *zio;
1601
1602	if (gn != NULL) {
1603		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1604		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1605		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1606		/*
1607		 * As we rewrite each gang header, the pipeline will compute
1608		 * a new gang block header checksum for it; but no one will
1609		 * compute a new data checksum, so we do that here.  The one
1610		 * exception is the gang leader: the pipeline already computed
1611		 * its data checksum because that stage precedes gang assembly.
1612		 * (Presently, nothing actually uses interior data checksums;
1613		 * this is just good hygiene.)
1614		 */
1615		if (gn != pio->io_gang_leader->io_gang_tree) {
1616			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1617			    data, BP_GET_PSIZE(bp));
1618		}
1619		/*
1620		 * If we are here to damage data for testing purposes,
1621		 * leave the GBH alone so that we can detect the damage.
1622		 */
1623		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1624			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1625	} else {
1626		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1627		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1628		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1629	}
1630
1631	return (zio);
1632}
1633
1634/* ARGSUSED */
1635zio_t *
1636zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1637{
1638	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1639	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1640	    ZIO_GANG_CHILD_FLAGS(pio)));
1641}
1642
1643/* ARGSUSED */
1644zio_t *
1645zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1646{
1647	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1648	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1649}
1650
1651static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1652	NULL,
1653	zio_read_gang,
1654	zio_rewrite_gang,
1655	zio_free_gang,
1656	zio_claim_gang,
1657	NULL
1658};
1659
1660static void zio_gang_tree_assemble_done(zio_t *zio);
1661
1662static zio_gang_node_t *
1663zio_gang_node_alloc(zio_gang_node_t **gnpp)
1664{
1665	zio_gang_node_t *gn;
1666
1667	ASSERT(*gnpp == NULL);
1668
1669	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1670	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1671	*gnpp = gn;
1672
1673	return (gn);
1674}
1675
1676static void
1677zio_gang_node_free(zio_gang_node_t **gnpp)
1678{
1679	zio_gang_node_t *gn = *gnpp;
1680
1681	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1682		ASSERT(gn->gn_child[g] == NULL);
1683
1684	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1685	kmem_free(gn, sizeof (*gn));
1686	*gnpp = NULL;
1687}
1688
1689static void
1690zio_gang_tree_free(zio_gang_node_t **gnpp)
1691{
1692	zio_gang_node_t *gn = *gnpp;
1693
1694	if (gn == NULL)
1695		return;
1696
1697	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1698		zio_gang_tree_free(&gn->gn_child[g]);
1699
1700	zio_gang_node_free(gnpp);
1701}
1702
1703static void
1704zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1705{
1706	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1707
1708	ASSERT(gio->io_gang_leader == gio);
1709	ASSERT(BP_IS_GANG(bp));
1710
1711	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1712	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1713	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1714}
1715
1716static void
1717zio_gang_tree_assemble_done(zio_t *zio)
1718{
1719	zio_t *gio = zio->io_gang_leader;
1720	zio_gang_node_t *gn = zio->io_private;
1721	blkptr_t *bp = zio->io_bp;
1722
1723	ASSERT(gio == zio_unique_parent(zio));
1724	ASSERT(zio->io_child_count == 0);
1725
1726	if (zio->io_error)
1727		return;
1728
1729	if (BP_SHOULD_BYTESWAP(bp))
1730		byteswap_uint64_array(zio->io_data, zio->io_size);
1731
1732	ASSERT(zio->io_data == gn->gn_gbh);
1733	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1734	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1735
1736	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1737		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1738		if (!BP_IS_GANG(gbp))
1739			continue;
1740		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1741	}
1742}
1743
1744static void
1745zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1746{
1747	zio_t *gio = pio->io_gang_leader;
1748	zio_t *zio;
1749
1750	ASSERT(BP_IS_GANG(bp) == !!gn);
1751	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1752	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1753
1754	/*
1755	 * If you're a gang header, your data is in gn->gn_gbh.
1756	 * If you're a gang member, your data is in 'data' and gn == NULL.
1757	 */
1758	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1759
1760	if (gn != NULL) {
1761		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1762
1763		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1764			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1765			if (BP_IS_HOLE(gbp))
1766				continue;
1767			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1768			data = (char *)data + BP_GET_PSIZE(gbp);
1769		}
1770	}
1771
1772	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1773		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1774
1775	if (zio != pio)
1776		zio_nowait(zio);
1777}
1778
1779static int
1780zio_gang_assemble(zio_t *zio)
1781{
1782	blkptr_t *bp = zio->io_bp;
1783
1784	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1785	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1786
1787	zio->io_gang_leader = zio;
1788
1789	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1790
1791	return (ZIO_PIPELINE_CONTINUE);
1792}
1793
1794static int
1795zio_gang_issue(zio_t *zio)
1796{
1797	blkptr_t *bp = zio->io_bp;
1798
1799	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1800		return (ZIO_PIPELINE_STOP);
1801
1802	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1803	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1804
1805	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1806		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1807	else
1808		zio_gang_tree_free(&zio->io_gang_tree);
1809
1810	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1811
1812	return (ZIO_PIPELINE_CONTINUE);
1813}
1814
1815static void
1816zio_write_gang_member_ready(zio_t *zio)
1817{
1818	zio_t *pio = zio_unique_parent(zio);
1819	zio_t *gio = zio->io_gang_leader;
1820	dva_t *cdva = zio->io_bp->blk_dva;
1821	dva_t *pdva = pio->io_bp->blk_dva;
1822	uint64_t asize;
1823
1824	if (BP_IS_HOLE(zio->io_bp))
1825		return;
1826
1827	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1828
1829	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1830	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1831	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1832	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1833	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1834
1835	mutex_enter(&pio->io_lock);
1836	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1837		ASSERT(DVA_GET_GANG(&pdva[d]));
1838		asize = DVA_GET_ASIZE(&pdva[d]);
1839		asize += DVA_GET_ASIZE(&cdva[d]);
1840		DVA_SET_ASIZE(&pdva[d], asize);
1841	}
1842	mutex_exit(&pio->io_lock);
1843}
1844
1845static int
1846zio_write_gang_block(zio_t *pio)
1847{
1848	spa_t *spa = pio->io_spa;
1849	blkptr_t *bp = pio->io_bp;
1850	zio_t *gio = pio->io_gang_leader;
1851	zio_t *zio;
1852	zio_gang_node_t *gn, **gnpp;
1853	zio_gbh_phys_t *gbh;
1854	uint64_t txg = pio->io_txg;
1855	uint64_t resid = pio->io_size;
1856	uint64_t lsize;
1857	int copies = gio->io_prop.zp_copies;
1858	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1859	zio_prop_t zp;
1860	int error;
1861
1862	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1863	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1864	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1865	if (error) {
1866		pio->io_error = error;
1867		return (ZIO_PIPELINE_CONTINUE);
1868	}
1869
1870	if (pio == gio) {
1871		gnpp = &gio->io_gang_tree;
1872	} else {
1873		gnpp = pio->io_private;
1874		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1875	}
1876
1877	gn = zio_gang_node_alloc(gnpp);
1878	gbh = gn->gn_gbh;
1879	bzero(gbh, SPA_GANGBLOCKSIZE);
1880
1881	/*
1882	 * Create the gang header.
1883	 */
1884	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1885	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1886
1887	/*
1888	 * Create and nowait the gang children.
1889	 */
1890	for (int g = 0; resid != 0; resid -= lsize, g++) {
1891		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1892		    SPA_MINBLOCKSIZE);
1893		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1894
1895		zp.zp_checksum = gio->io_prop.zp_checksum;
1896		zp.zp_compress = ZIO_COMPRESS_OFF;
1897		zp.zp_type = DMU_OT_NONE;
1898		zp.zp_level = 0;
1899		zp.zp_copies = gio->io_prop.zp_copies;
1900		zp.zp_dedup = B_FALSE;
1901		zp.zp_dedup_verify = B_FALSE;
1902		zp.zp_nopwrite = B_FALSE;
1903
1904		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1905		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1906		    zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1907		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1908		    &pio->io_bookmark));
1909	}
1910
1911	/*
1912	 * Set pio's pipeline to just wait for zio to finish.
1913	 */
1914	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1915
1916	zio_nowait(zio);
1917
1918	return (ZIO_PIPELINE_CONTINUE);
1919}
1920
1921/*
1922 * The zio_nop_write stage in the pipeline determines if allocating
1923 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1924 * such as SHA256, we can compare the checksums of the new data and the old
1925 * to determine if allocating a new block is required.  The nopwrite
1926 * feature can handle writes in either syncing or open context (i.e. zil
1927 * writes) and as a result is mutually exclusive with dedup.
1928 */
1929static int
1930zio_nop_write(zio_t *zio)
1931{
1932	blkptr_t *bp = zio->io_bp;
1933	blkptr_t *bp_orig = &zio->io_bp_orig;
1934	zio_prop_t *zp = &zio->io_prop;
1935
1936	ASSERT(BP_GET_LEVEL(bp) == 0);
1937	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1938	ASSERT(zp->zp_nopwrite);
1939	ASSERT(!zp->zp_dedup);
1940	ASSERT(zio->io_bp_override == NULL);
1941	ASSERT(IO_IS_ALLOCATING(zio));
1942
1943	/*
1944	 * Check to see if the original bp and the new bp have matching
1945	 * characteristics (i.e. same checksum, compression algorithms, etc).
1946	 * If they don't then just continue with the pipeline which will
1947	 * allocate a new bp.
1948	 */
1949	if (BP_IS_HOLE(bp_orig) ||
1950	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1951	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1952	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1953	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1954	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1955		return (ZIO_PIPELINE_CONTINUE);
1956
1957	/*
1958	 * If the checksums match then reset the pipeline so that we
1959	 * avoid allocating a new bp and issuing any I/O.
1960	 */
1961	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1962		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1963		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1964		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1965		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1966		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1967		    sizeof (uint64_t)) == 0);
1968
1969		*bp = *bp_orig;
1970		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1971		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1972	}
1973
1974	return (ZIO_PIPELINE_CONTINUE);
1975}
1976
1977/*
1978 * ==========================================================================
1979 * Dedup
1980 * ==========================================================================
1981 */
1982static void
1983zio_ddt_child_read_done(zio_t *zio)
1984{
1985	blkptr_t *bp = zio->io_bp;
1986	ddt_entry_t *dde = zio->io_private;
1987	ddt_phys_t *ddp;
1988	zio_t *pio = zio_unique_parent(zio);
1989
1990	mutex_enter(&pio->io_lock);
1991	ddp = ddt_phys_select(dde, bp);
1992	if (zio->io_error == 0)
1993		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1994	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1995		dde->dde_repair_data = zio->io_data;
1996	else
1997		zio_buf_free(zio->io_data, zio->io_size);
1998	mutex_exit(&pio->io_lock);
1999}
2000
2001static int
2002zio_ddt_read_start(zio_t *zio)
2003{
2004	blkptr_t *bp = zio->io_bp;
2005
2006	ASSERT(BP_GET_DEDUP(bp));
2007	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2008	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2009
2010	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2011		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2012		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2013		ddt_phys_t *ddp = dde->dde_phys;
2014		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2015		blkptr_t blk;
2016
2017		ASSERT(zio->io_vsd == NULL);
2018		zio->io_vsd = dde;
2019
2020		if (ddp_self == NULL)
2021			return (ZIO_PIPELINE_CONTINUE);
2022
2023		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2024			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2025				continue;
2026			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2027			    &blk);
2028			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2029			    zio_buf_alloc(zio->io_size), zio->io_size,
2030			    zio_ddt_child_read_done, dde, zio->io_priority,
2031			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2032			    &zio->io_bookmark));
2033		}
2034		return (ZIO_PIPELINE_CONTINUE);
2035	}
2036
2037	zio_nowait(zio_read(zio, zio->io_spa, bp,
2038	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2039	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2040
2041	return (ZIO_PIPELINE_CONTINUE);
2042}
2043
2044static int
2045zio_ddt_read_done(zio_t *zio)
2046{
2047	blkptr_t *bp = zio->io_bp;
2048
2049	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2050		return (ZIO_PIPELINE_STOP);
2051
2052	ASSERT(BP_GET_DEDUP(bp));
2053	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2054	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2055
2056	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2057		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2058		ddt_entry_t *dde = zio->io_vsd;
2059		if (ddt == NULL) {
2060			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2061			return (ZIO_PIPELINE_CONTINUE);
2062		}
2063		if (dde == NULL) {
2064			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2065			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2066			return (ZIO_PIPELINE_STOP);
2067		}
2068		if (dde->dde_repair_data != NULL) {
2069			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2070			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2071		}
2072		ddt_repair_done(ddt, dde);
2073		zio->io_vsd = NULL;
2074	}
2075
2076	ASSERT(zio->io_vsd == NULL);
2077
2078	return (ZIO_PIPELINE_CONTINUE);
2079}
2080
2081static boolean_t
2082zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2083{
2084	spa_t *spa = zio->io_spa;
2085
2086	/*
2087	 * Note: we compare the original data, not the transformed data,
2088	 * because when zio->io_bp is an override bp, we will not have
2089	 * pushed the I/O transforms.  That's an important optimization
2090	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2091	 */
2092	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2093		zio_t *lio = dde->dde_lead_zio[p];
2094
2095		if (lio != NULL) {
2096			return (lio->io_orig_size != zio->io_orig_size ||
2097			    bcmp(zio->io_orig_data, lio->io_orig_data,
2098			    zio->io_orig_size) != 0);
2099		}
2100	}
2101
2102	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2103		ddt_phys_t *ddp = &dde->dde_phys[p];
2104
2105		if (ddp->ddp_phys_birth != 0) {
2106			arc_buf_t *abuf = NULL;
2107			uint32_t aflags = ARC_WAIT;
2108			blkptr_t blk = *zio->io_bp;
2109			int error;
2110
2111			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2112
2113			ddt_exit(ddt);
2114
2115			error = arc_read(NULL, spa, &blk,
2116			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2117			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2118			    &aflags, &zio->io_bookmark);
2119
2120			if (error == 0) {
2121				if (arc_buf_size(abuf) != zio->io_orig_size ||
2122				    bcmp(abuf->b_data, zio->io_orig_data,
2123				    zio->io_orig_size) != 0)
2124					error = SET_ERROR(EEXIST);
2125				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2126			}
2127
2128			ddt_enter(ddt);
2129			return (error != 0);
2130		}
2131	}
2132
2133	return (B_FALSE);
2134}
2135
2136static void
2137zio_ddt_child_write_ready(zio_t *zio)
2138{
2139	int p = zio->io_prop.zp_copies;
2140	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2141	ddt_entry_t *dde = zio->io_private;
2142	ddt_phys_t *ddp = &dde->dde_phys[p];
2143	zio_t *pio;
2144
2145	if (zio->io_error)
2146		return;
2147
2148	ddt_enter(ddt);
2149
2150	ASSERT(dde->dde_lead_zio[p] == zio);
2151
2152	ddt_phys_fill(ddp, zio->io_bp);
2153
2154	while ((pio = zio_walk_parents(zio)) != NULL)
2155		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2156
2157	ddt_exit(ddt);
2158}
2159
2160static void
2161zio_ddt_child_write_done(zio_t *zio)
2162{
2163	int p = zio->io_prop.zp_copies;
2164	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2165	ddt_entry_t *dde = zio->io_private;
2166	ddt_phys_t *ddp = &dde->dde_phys[p];
2167
2168	ddt_enter(ddt);
2169
2170	ASSERT(ddp->ddp_refcnt == 0);
2171	ASSERT(dde->dde_lead_zio[p] == zio);
2172	dde->dde_lead_zio[p] = NULL;
2173
2174	if (zio->io_error == 0) {
2175		while (zio_walk_parents(zio) != NULL)
2176			ddt_phys_addref(ddp);
2177	} else {
2178		ddt_phys_clear(ddp);
2179	}
2180
2181	ddt_exit(ddt);
2182}
2183
2184static void
2185zio_ddt_ditto_write_done(zio_t *zio)
2186{
2187	int p = DDT_PHYS_DITTO;
2188	zio_prop_t *zp = &zio->io_prop;
2189	blkptr_t *bp = zio->io_bp;
2190	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2191	ddt_entry_t *dde = zio->io_private;
2192	ddt_phys_t *ddp = &dde->dde_phys[p];
2193	ddt_key_t *ddk = &dde->dde_key;
2194
2195	ddt_enter(ddt);
2196
2197	ASSERT(ddp->ddp_refcnt == 0);
2198	ASSERT(dde->dde_lead_zio[p] == zio);
2199	dde->dde_lead_zio[p] = NULL;
2200
2201	if (zio->io_error == 0) {
2202		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2203		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2204		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2205		if (ddp->ddp_phys_birth != 0)
2206			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2207		ddt_phys_fill(ddp, bp);
2208	}
2209
2210	ddt_exit(ddt);
2211}
2212
2213static int
2214zio_ddt_write(zio_t *zio)
2215{
2216	spa_t *spa = zio->io_spa;
2217	blkptr_t *bp = zio->io_bp;
2218	uint64_t txg = zio->io_txg;
2219	zio_prop_t *zp = &zio->io_prop;
2220	int p = zp->zp_copies;
2221	int ditto_copies;
2222	zio_t *cio = NULL;
2223	zio_t *dio = NULL;
2224	ddt_t *ddt = ddt_select(spa, bp);
2225	ddt_entry_t *dde;
2226	ddt_phys_t *ddp;
2227
2228	ASSERT(BP_GET_DEDUP(bp));
2229	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2230	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2231
2232	ddt_enter(ddt);
2233	dde = ddt_lookup(ddt, bp, B_TRUE);
2234	ddp = &dde->dde_phys[p];
2235
2236	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2237		/*
2238		 * If we're using a weak checksum, upgrade to a strong checksum
2239		 * and try again.  If we're already using a strong checksum,
2240		 * we can't resolve it, so just convert to an ordinary write.
2241		 * (And automatically e-mail a paper to Nature?)
2242		 */
2243		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2244			zp->zp_checksum = spa_dedup_checksum(spa);
2245			zio_pop_transforms(zio);
2246			zio->io_stage = ZIO_STAGE_OPEN;
2247			BP_ZERO(bp);
2248		} else {
2249			zp->zp_dedup = B_FALSE;
2250		}
2251		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2252		ddt_exit(ddt);
2253		return (ZIO_PIPELINE_CONTINUE);
2254	}
2255
2256	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2257	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2258
2259	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2260	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2261		zio_prop_t czp = *zp;
2262
2263		czp.zp_copies = ditto_copies;
2264
2265		/*
2266		 * If we arrived here with an override bp, we won't have run
2267		 * the transform stack, so we won't have the data we need to
2268		 * generate a child i/o.  So, toss the override bp and restart.
2269		 * This is safe, because using the override bp is just an
2270		 * optimization; and it's rare, so the cost doesn't matter.
2271		 */
2272		if (zio->io_bp_override) {
2273			zio_pop_transforms(zio);
2274			zio->io_stage = ZIO_STAGE_OPEN;
2275			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2276			zio->io_bp_override = NULL;
2277			BP_ZERO(bp);
2278			ddt_exit(ddt);
2279			return (ZIO_PIPELINE_CONTINUE);
2280		}
2281
2282		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2283		    zio->io_orig_size, &czp, NULL, NULL,
2284		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2285		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2286
2287		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2288		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2289	}
2290
2291	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2292		if (ddp->ddp_phys_birth != 0)
2293			ddt_bp_fill(ddp, bp, txg);
2294		if (dde->dde_lead_zio[p] != NULL)
2295			zio_add_child(zio, dde->dde_lead_zio[p]);
2296		else
2297			ddt_phys_addref(ddp);
2298	} else if (zio->io_bp_override) {
2299		ASSERT(bp->blk_birth == txg);
2300		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2301		ddt_phys_fill(ddp, bp);
2302		ddt_phys_addref(ddp);
2303	} else {
2304		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2305		    zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2306		    zio_ddt_child_write_done, dde, zio->io_priority,
2307		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2308
2309		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2310		dde->dde_lead_zio[p] = cio;
2311	}
2312
2313	ddt_exit(ddt);
2314
2315	if (cio)
2316		zio_nowait(cio);
2317	if (dio)
2318		zio_nowait(dio);
2319
2320	return (ZIO_PIPELINE_CONTINUE);
2321}
2322
2323ddt_entry_t *freedde; /* for debugging */
2324
2325static int
2326zio_ddt_free(zio_t *zio)
2327{
2328	spa_t *spa = zio->io_spa;
2329	blkptr_t *bp = zio->io_bp;
2330	ddt_t *ddt = ddt_select(spa, bp);
2331	ddt_entry_t *dde;
2332	ddt_phys_t *ddp;
2333
2334	ASSERT(BP_GET_DEDUP(bp));
2335	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2336
2337	ddt_enter(ddt);
2338	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2339	ddp = ddt_phys_select(dde, bp);
2340	ddt_phys_decref(ddp);
2341	ddt_exit(ddt);
2342
2343	return (ZIO_PIPELINE_CONTINUE);
2344}
2345
2346/*
2347 * ==========================================================================
2348 * Allocate and free blocks
2349 * ==========================================================================
2350 */
2351static int
2352zio_dva_allocate(zio_t *zio)
2353{
2354	spa_t *spa = zio->io_spa;
2355	metaslab_class_t *mc = spa_normal_class(spa);
2356	blkptr_t *bp = zio->io_bp;
2357	int error;
2358	int flags = 0;
2359
2360	if (zio->io_gang_leader == NULL) {
2361		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2362		zio->io_gang_leader = zio;
2363	}
2364
2365	ASSERT(BP_IS_HOLE(bp));
2366	ASSERT0(BP_GET_NDVAS(bp));
2367	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2368	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2369	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2370
2371	/*
2372	 * The dump device does not support gang blocks so allocation on
2373	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2374	 * the "fast" gang feature.
2375	 */
2376	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2377	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2378	    METASLAB_GANG_CHILD : 0;
2379	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2380	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2381
2382	if (error) {
2383		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2384		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2385		    error);
2386		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2387			return (zio_write_gang_block(zio));
2388		zio->io_error = error;
2389	}
2390
2391	return (ZIO_PIPELINE_CONTINUE);
2392}
2393
2394static int
2395zio_dva_free(zio_t *zio)
2396{
2397	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2398
2399	return (ZIO_PIPELINE_CONTINUE);
2400}
2401
2402static int
2403zio_dva_claim(zio_t *zio)
2404{
2405	int error;
2406
2407	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2408	if (error)
2409		zio->io_error = error;
2410
2411	return (ZIO_PIPELINE_CONTINUE);
2412}
2413
2414/*
2415 * Undo an allocation.  This is used by zio_done() when an I/O fails
2416 * and we want to give back the block we just allocated.
2417 * This handles both normal blocks and gang blocks.
2418 */
2419static void
2420zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2421{
2422	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2423	ASSERT(zio->io_bp_override == NULL);
2424
2425	if (!BP_IS_HOLE(bp))
2426		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2427
2428	if (gn != NULL) {
2429		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2430			zio_dva_unallocate(zio, gn->gn_child[g],
2431			    &gn->gn_gbh->zg_blkptr[g]);
2432		}
2433	}
2434}
2435
2436/*
2437 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2438 */
2439int
2440zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2441    uint64_t size, boolean_t use_slog)
2442{
2443	int error = 1;
2444
2445	ASSERT(txg > spa_syncing_txg(spa));
2446
2447	/*
2448	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2449	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2450	 * when allocating them.
2451	 */
2452	if (use_slog) {
2453		error = metaslab_alloc(spa, spa_log_class(spa), size,
2454		    new_bp, 1, txg, old_bp,
2455		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2456	}
2457
2458	if (error) {
2459		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2460		    new_bp, 1, txg, old_bp,
2461		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2462	}
2463
2464	if (error == 0) {
2465		BP_SET_LSIZE(new_bp, size);
2466		BP_SET_PSIZE(new_bp, size);
2467		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2468		BP_SET_CHECKSUM(new_bp,
2469		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2470		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2471		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2472		BP_SET_LEVEL(new_bp, 0);
2473		BP_SET_DEDUP(new_bp, 0);
2474		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2475	}
2476
2477	return (error);
2478}
2479
2480/*
2481 * Free an intent log block.
2482 */
2483void
2484zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2485{
2486	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2487	ASSERT(!BP_IS_GANG(bp));
2488
2489	zio_free(spa, txg, bp);
2490}
2491
2492/*
2493 * ==========================================================================
2494 * Read, write and delete to physical devices
2495 * ==========================================================================
2496 */
2497static int
2498zio_vdev_io_start(zio_t *zio)
2499{
2500	vdev_t *vd = zio->io_vd;
2501	uint64_t align;
2502	spa_t *spa = zio->io_spa;
2503
2504	ASSERT(zio->io_error == 0);
2505	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2506
2507	if (vd == NULL) {
2508		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2509			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2510
2511		/*
2512		 * The mirror_ops handle multiple DVAs in a single BP.
2513		 */
2514		return (vdev_mirror_ops.vdev_op_io_start(zio));
2515	}
2516
2517	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2518		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2519		return (ZIO_PIPELINE_CONTINUE);
2520	}
2521
2522	/*
2523	 * We keep track of time-sensitive I/Os so that the scan thread
2524	 * can quickly react to certain workloads.  In particular, we care
2525	 * about non-scrubbing, top-level reads and writes with the following
2526	 * characteristics:
2527	 * 	- synchronous writes of user data to non-slog devices
2528	 *	- any reads of user data
2529	 * When these conditions are met, adjust the timestamp of spa_last_io
2530	 * which allows the scan thread to adjust its workload accordingly.
2531	 */
2532	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2533	    vd == vd->vdev_top && !vd->vdev_islog &&
2534	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2535	    zio->io_txg != spa_syncing_txg(spa)) {
2536		uint64_t old = spa->spa_last_io;
2537		uint64_t new = ddi_get_lbolt64();
2538		if (old != new)
2539			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2540	}
2541
2542	align = 1ULL << vd->vdev_top->vdev_ashift;
2543
2544	if (P2PHASE(zio->io_size, align) != 0) {
2545		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2546		char *abuf = NULL;
2547		if (zio->io_type == ZIO_TYPE_READ ||
2548		    zio->io_type == ZIO_TYPE_WRITE)
2549			abuf = zio_buf_alloc(asize);
2550		ASSERT(vd == vd->vdev_top);
2551		if (zio->io_type == ZIO_TYPE_WRITE) {
2552			bcopy(zio->io_data, abuf, zio->io_size);
2553			bzero(abuf + zio->io_size, asize - zio->io_size);
2554		}
2555		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2556		    zio_subblock);
2557	}
2558
2559	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2560	ASSERT(P2PHASE(zio->io_size, align) == 0);
2561	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2562
2563	/*
2564	 * If this is a repair I/O, and there's no self-healing involved --
2565	 * that is, we're just resilvering what we expect to resilver --
2566	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2567	 * This prevents spurious resilvering with nested replication.
2568	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2569	 * A is out of date, we'll read from C+D, then use the data to
2570	 * resilver A+B -- but we don't actually want to resilver B, just A.
2571	 * The top-level mirror has no way to know this, so instead we just
2572	 * discard unnecessary repairs as we work our way down the vdev tree.
2573	 * The same logic applies to any form of nested replication:
2574	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2575	 */
2576	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2577	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2578	    zio->io_txg != 0 &&	/* not a delegated i/o */
2579	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2580		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2581		zio_vdev_io_bypass(zio);
2582		return (ZIO_PIPELINE_CONTINUE);
2583	}
2584
2585	if (vd->vdev_ops->vdev_op_leaf &&
2586	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2587
2588		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2589			return (ZIO_PIPELINE_CONTINUE);
2590
2591		if ((zio = vdev_queue_io(zio)) == NULL)
2592			return (ZIO_PIPELINE_STOP);
2593
2594		if (!vdev_accessible(vd, zio)) {
2595			zio->io_error = SET_ERROR(ENXIO);
2596			zio_interrupt(zio);
2597			return (ZIO_PIPELINE_STOP);
2598		}
2599	}
2600
2601	/*
2602	 * Note that we ignore repair writes for TRIM because they can conflict
2603	 * with normal writes. This isn't an issue because, by definition, we
2604	 * only repair blocks that aren't freed.
2605	 */
2606	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2607	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2608		if (!trim_map_write_start(zio))
2609			return (ZIO_PIPELINE_STOP);
2610	}
2611
2612	return (vd->vdev_ops->vdev_op_io_start(zio));
2613}
2614
2615static int
2616zio_vdev_io_done(zio_t *zio)
2617{
2618	vdev_t *vd = zio->io_vd;
2619	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2620	boolean_t unexpected_error = B_FALSE;
2621
2622	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2623		return (ZIO_PIPELINE_STOP);
2624
2625	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2626	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2627
2628	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2629	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2630
2631		if (zio->io_type == ZIO_TYPE_WRITE &&
2632		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2633			trim_map_write_done(zio);
2634
2635		vdev_queue_io_done(zio);
2636
2637		if (zio->io_type == ZIO_TYPE_WRITE)
2638			vdev_cache_write(zio);
2639
2640		if (zio_injection_enabled && zio->io_error == 0)
2641			zio->io_error = zio_handle_device_injection(vd,
2642			    zio, EIO);
2643
2644		if (zio_injection_enabled && zio->io_error == 0)
2645			zio->io_error = zio_handle_label_injection(zio, EIO);
2646
2647		if (zio->io_error) {
2648			if (!vdev_accessible(vd, zio)) {
2649				zio->io_error = SET_ERROR(ENXIO);
2650			} else {
2651				unexpected_error = B_TRUE;
2652			}
2653		}
2654	}
2655
2656	ops->vdev_op_io_done(zio);
2657
2658	if (unexpected_error)
2659		VERIFY(vdev_probe(vd, zio) == NULL);
2660
2661	return (ZIO_PIPELINE_CONTINUE);
2662}
2663
2664/*
2665 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2666 * disk, and use that to finish the checksum ereport later.
2667 */
2668static void
2669zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2670    const void *good_buf)
2671{
2672	/* no processing needed */
2673	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2674}
2675
2676/*ARGSUSED*/
2677void
2678zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2679{
2680	void *buf = zio_buf_alloc(zio->io_size);
2681
2682	bcopy(zio->io_data, buf, zio->io_size);
2683
2684	zcr->zcr_cbinfo = zio->io_size;
2685	zcr->zcr_cbdata = buf;
2686	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2687	zcr->zcr_free = zio_buf_free;
2688}
2689
2690static int
2691zio_vdev_io_assess(zio_t *zio)
2692{
2693	vdev_t *vd = zio->io_vd;
2694
2695	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2696		return (ZIO_PIPELINE_STOP);
2697
2698	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2699		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2700
2701	if (zio->io_vsd != NULL) {
2702		zio->io_vsd_ops->vsd_free(zio);
2703		zio->io_vsd = NULL;
2704	}
2705
2706	if (zio_injection_enabled && zio->io_error == 0)
2707		zio->io_error = zio_handle_fault_injection(zio, EIO);
2708
2709	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2710		switch (zio->io_error) {
2711		case 0:
2712			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2713			ZIO_TRIM_STAT_BUMP(success);
2714			break;
2715		case EOPNOTSUPP:
2716			ZIO_TRIM_STAT_BUMP(unsupported);
2717			break;
2718		default:
2719			ZIO_TRIM_STAT_BUMP(failed);
2720			break;
2721		}
2722
2723	/*
2724	 * If the I/O failed, determine whether we should attempt to retry it.
2725	 *
2726	 * On retry, we cut in line in the issue queue, since we don't want
2727	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2728	 */
2729	if (zio->io_error && vd == NULL &&
2730	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2731		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2732		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2733		zio->io_error = 0;
2734		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2735		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2736		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2737		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2738		    zio_requeue_io_start_cut_in_line);
2739		return (ZIO_PIPELINE_STOP);
2740	}
2741
2742	/*
2743	 * If we got an error on a leaf device, convert it to ENXIO
2744	 * if the device is not accessible at all.
2745	 */
2746	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2747	    !vdev_accessible(vd, zio))
2748		zio->io_error = SET_ERROR(ENXIO);
2749
2750	/*
2751	 * If we can't write to an interior vdev (mirror or RAID-Z),
2752	 * set vdev_cant_write so that we stop trying to allocate from it.
2753	 */
2754	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2755	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2756		vd->vdev_cant_write = B_TRUE;
2757	}
2758
2759	if (zio->io_error)
2760		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2761
2762	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2763	    zio->io_physdone != NULL) {
2764		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2765		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2766		zio->io_physdone(zio->io_logical);
2767	}
2768
2769	return (ZIO_PIPELINE_CONTINUE);
2770}
2771
2772void
2773zio_vdev_io_reissue(zio_t *zio)
2774{
2775	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2776	ASSERT(zio->io_error == 0);
2777
2778	zio->io_stage >>= 1;
2779}
2780
2781void
2782zio_vdev_io_redone(zio_t *zio)
2783{
2784	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2785
2786	zio->io_stage >>= 1;
2787}
2788
2789void
2790zio_vdev_io_bypass(zio_t *zio)
2791{
2792	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2793	ASSERT(zio->io_error == 0);
2794
2795	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2796	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2797}
2798
2799/*
2800 * ==========================================================================
2801 * Generate and verify checksums
2802 * ==========================================================================
2803 */
2804static int
2805zio_checksum_generate(zio_t *zio)
2806{
2807	blkptr_t *bp = zio->io_bp;
2808	enum zio_checksum checksum;
2809
2810	if (bp == NULL) {
2811		/*
2812		 * This is zio_write_phys().
2813		 * We're either generating a label checksum, or none at all.
2814		 */
2815		checksum = zio->io_prop.zp_checksum;
2816
2817		if (checksum == ZIO_CHECKSUM_OFF)
2818			return (ZIO_PIPELINE_CONTINUE);
2819
2820		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2821	} else {
2822		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2823			ASSERT(!IO_IS_ALLOCATING(zio));
2824			checksum = ZIO_CHECKSUM_GANG_HEADER;
2825		} else {
2826			checksum = BP_GET_CHECKSUM(bp);
2827		}
2828	}
2829
2830	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2831
2832	return (ZIO_PIPELINE_CONTINUE);
2833}
2834
2835static int
2836zio_checksum_verify(zio_t *zio)
2837{
2838	zio_bad_cksum_t info;
2839	blkptr_t *bp = zio->io_bp;
2840	int error;
2841
2842	ASSERT(zio->io_vd != NULL);
2843
2844	if (bp == NULL) {
2845		/*
2846		 * This is zio_read_phys().
2847		 * We're either verifying a label checksum, or nothing at all.
2848		 */
2849		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2850			return (ZIO_PIPELINE_CONTINUE);
2851
2852		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2853	}
2854
2855	if ((error = zio_checksum_error(zio, &info)) != 0) {
2856		zio->io_error = error;
2857		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2858			zfs_ereport_start_checksum(zio->io_spa,
2859			    zio->io_vd, zio, zio->io_offset,
2860			    zio->io_size, NULL, &info);
2861		}
2862	}
2863
2864	return (ZIO_PIPELINE_CONTINUE);
2865}
2866
2867/*
2868 * Called by RAID-Z to ensure we don't compute the checksum twice.
2869 */
2870void
2871zio_checksum_verified(zio_t *zio)
2872{
2873	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2874}
2875
2876/*
2877 * ==========================================================================
2878 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2879 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2880 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2881 * indicate errors that are specific to one I/O, and most likely permanent.
2882 * Any other error is presumed to be worse because we weren't expecting it.
2883 * ==========================================================================
2884 */
2885int
2886zio_worst_error(int e1, int e2)
2887{
2888	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2889	int r1, r2;
2890
2891	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2892		if (e1 == zio_error_rank[r1])
2893			break;
2894
2895	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2896		if (e2 == zio_error_rank[r2])
2897			break;
2898
2899	return (r1 > r2 ? e1 : e2);
2900}
2901
2902/*
2903 * ==========================================================================
2904 * I/O completion
2905 * ==========================================================================
2906 */
2907static int
2908zio_ready(zio_t *zio)
2909{
2910	blkptr_t *bp = zio->io_bp;
2911	zio_t *pio, *pio_next;
2912
2913	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2914	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2915		return (ZIO_PIPELINE_STOP);
2916
2917	if (zio->io_ready) {
2918		ASSERT(IO_IS_ALLOCATING(zio));
2919		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2920		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2921		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2922
2923		zio->io_ready(zio);
2924	}
2925
2926	if (bp != NULL && bp != &zio->io_bp_copy)
2927		zio->io_bp_copy = *bp;
2928
2929	if (zio->io_error)
2930		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2931
2932	mutex_enter(&zio->io_lock);
2933	zio->io_state[ZIO_WAIT_READY] = 1;
2934	pio = zio_walk_parents(zio);
2935	mutex_exit(&zio->io_lock);
2936
2937	/*
2938	 * As we notify zio's parents, new parents could be added.
2939	 * New parents go to the head of zio's io_parent_list, however,
2940	 * so we will (correctly) not notify them.  The remainder of zio's
2941	 * io_parent_list, from 'pio_next' onward, cannot change because
2942	 * all parents must wait for us to be done before they can be done.
2943	 */
2944	for (; pio != NULL; pio = pio_next) {
2945		pio_next = zio_walk_parents(zio);
2946		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2947	}
2948
2949	if (zio->io_flags & ZIO_FLAG_NODATA) {
2950		if (BP_IS_GANG(bp)) {
2951			zio->io_flags &= ~ZIO_FLAG_NODATA;
2952		} else {
2953			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2954			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2955		}
2956	}
2957
2958	if (zio_injection_enabled &&
2959	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2960		zio_handle_ignored_writes(zio);
2961
2962	return (ZIO_PIPELINE_CONTINUE);
2963}
2964
2965static int
2966zio_done(zio_t *zio)
2967{
2968	spa_t *spa = zio->io_spa;
2969	zio_t *lio = zio->io_logical;
2970	blkptr_t *bp = zio->io_bp;
2971	vdev_t *vd = zio->io_vd;
2972	uint64_t psize = zio->io_size;
2973	zio_t *pio, *pio_next;
2974
2975	/*
2976	 * If our children haven't all completed,
2977	 * wait for them and then repeat this pipeline stage.
2978	 */
2979	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2980	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2981	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2982	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2983		return (ZIO_PIPELINE_STOP);
2984
2985	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2986		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2987			ASSERT(zio->io_children[c][w] == 0);
2988
2989	if (bp != NULL) {
2990		ASSERT(bp->blk_pad[0] == 0);
2991		ASSERT(bp->blk_pad[1] == 0);
2992		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2993		    (bp == zio_unique_parent(zio)->io_bp));
2994		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2995		    zio->io_bp_override == NULL &&
2996		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2997			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2998			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2999			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3000			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3001		}
3002		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3003			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3004	}
3005
3006	/*
3007	 * If there were child vdev/gang/ddt errors, they apply to us now.
3008	 */
3009	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3010	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3011	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3012
3013	/*
3014	 * If the I/O on the transformed data was successful, generate any
3015	 * checksum reports now while we still have the transformed data.
3016	 */
3017	if (zio->io_error == 0) {
3018		while (zio->io_cksum_report != NULL) {
3019			zio_cksum_report_t *zcr = zio->io_cksum_report;
3020			uint64_t align = zcr->zcr_align;
3021			uint64_t asize = P2ROUNDUP(psize, align);
3022			char *abuf = zio->io_data;
3023
3024			if (asize != psize) {
3025				abuf = zio_buf_alloc(asize);
3026				bcopy(zio->io_data, abuf, psize);
3027				bzero(abuf + psize, asize - psize);
3028			}
3029
3030			zio->io_cksum_report = zcr->zcr_next;
3031			zcr->zcr_next = NULL;
3032			zcr->zcr_finish(zcr, abuf);
3033			zfs_ereport_free_checksum(zcr);
3034
3035			if (asize != psize)
3036				zio_buf_free(abuf, asize);
3037		}
3038	}
3039
3040	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3041
3042	vdev_stat_update(zio, psize);
3043
3044	if (zio->io_error) {
3045		/*
3046		 * If this I/O is attached to a particular vdev,
3047		 * generate an error message describing the I/O failure
3048		 * at the block level.  We ignore these errors if the
3049		 * device is currently unavailable.
3050		 */
3051		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3052			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3053
3054		if ((zio->io_error == EIO || !(zio->io_flags &
3055		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3056		    zio == lio) {
3057			/*
3058			 * For logical I/O requests, tell the SPA to log the
3059			 * error and generate a logical data ereport.
3060			 */
3061			spa_log_error(spa, zio);
3062			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3063			    0, 0);
3064		}
3065	}
3066
3067	if (zio->io_error && zio == lio) {
3068		/*
3069		 * Determine whether zio should be reexecuted.  This will
3070		 * propagate all the way to the root via zio_notify_parent().
3071		 */
3072		ASSERT(vd == NULL && bp != NULL);
3073		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3074
3075		if (IO_IS_ALLOCATING(zio) &&
3076		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3077			if (zio->io_error != ENOSPC)
3078				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3079			else
3080				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3081		}
3082
3083		if ((zio->io_type == ZIO_TYPE_READ ||
3084		    zio->io_type == ZIO_TYPE_FREE) &&
3085		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3086		    zio->io_error == ENXIO &&
3087		    spa_load_state(spa) == SPA_LOAD_NONE &&
3088		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3089			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3090
3091		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3092			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3093
3094		/*
3095		 * Here is a possibly good place to attempt to do
3096		 * either combinatorial reconstruction or error correction
3097		 * based on checksums.  It also might be a good place
3098		 * to send out preliminary ereports before we suspend
3099		 * processing.
3100		 */
3101	}
3102
3103	/*
3104	 * If there were logical child errors, they apply to us now.
3105	 * We defer this until now to avoid conflating logical child
3106	 * errors with errors that happened to the zio itself when
3107	 * updating vdev stats and reporting FMA events above.
3108	 */
3109	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3110
3111	if ((zio->io_error || zio->io_reexecute) &&
3112	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3113	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3114		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3115
3116	zio_gang_tree_free(&zio->io_gang_tree);
3117
3118	/*
3119	 * Godfather I/Os should never suspend.
3120	 */
3121	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3122	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3123		zio->io_reexecute = 0;
3124
3125	if (zio->io_reexecute) {
3126		/*
3127		 * This is a logical I/O that wants to reexecute.
3128		 *
3129		 * Reexecute is top-down.  When an i/o fails, if it's not
3130		 * the root, it simply notifies its parent and sticks around.
3131		 * The parent, seeing that it still has children in zio_done(),
3132		 * does the same.  This percolates all the way up to the root.
3133		 * The root i/o will reexecute or suspend the entire tree.
3134		 *
3135		 * This approach ensures that zio_reexecute() honors
3136		 * all the original i/o dependency relationships, e.g.
3137		 * parents not executing until children are ready.
3138		 */
3139		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3140
3141		zio->io_gang_leader = NULL;
3142
3143		mutex_enter(&zio->io_lock);
3144		zio->io_state[ZIO_WAIT_DONE] = 1;
3145		mutex_exit(&zio->io_lock);
3146
3147		/*
3148		 * "The Godfather" I/O monitors its children but is
3149		 * not a true parent to them. It will track them through
3150		 * the pipeline but severs its ties whenever they get into
3151		 * trouble (e.g. suspended). This allows "The Godfather"
3152		 * I/O to return status without blocking.
3153		 */
3154		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3155			zio_link_t *zl = zio->io_walk_link;
3156			pio_next = zio_walk_parents(zio);
3157
3158			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3159			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3160				zio_remove_child(pio, zio, zl);
3161				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3162			}
3163		}
3164
3165		if ((pio = zio_unique_parent(zio)) != NULL) {
3166			/*
3167			 * We're not a root i/o, so there's nothing to do
3168			 * but notify our parent.  Don't propagate errors
3169			 * upward since we haven't permanently failed yet.
3170			 */
3171			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3172			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3173			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3174		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3175			/*
3176			 * We'd fail again if we reexecuted now, so suspend
3177			 * until conditions improve (e.g. device comes online).
3178			 */
3179			zio_suspend(spa, zio);
3180		} else {
3181			/*
3182			 * Reexecution is potentially a huge amount of work.
3183			 * Hand it off to the otherwise-unused claim taskq.
3184			 */
3185#if defined(illumos) || !defined(_KERNEL)
3186			ASSERT(zio->io_tqent.tqent_next == NULL);
3187#else
3188			ASSERT(zio->io_tqent.tqent_task.ta_pending == 0);
3189#endif
3190			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3191			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3192			    0, &zio->io_tqent);
3193		}
3194		return (ZIO_PIPELINE_STOP);
3195	}
3196
3197	ASSERT(zio->io_child_count == 0);
3198	ASSERT(zio->io_reexecute == 0);
3199	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3200
3201	/*
3202	 * Report any checksum errors, since the I/O is complete.
3203	 */
3204	while (zio->io_cksum_report != NULL) {
3205		zio_cksum_report_t *zcr = zio->io_cksum_report;
3206		zio->io_cksum_report = zcr->zcr_next;
3207		zcr->zcr_next = NULL;
3208		zcr->zcr_finish(zcr, NULL);
3209		zfs_ereport_free_checksum(zcr);
3210	}
3211
3212	/*
3213	 * It is the responsibility of the done callback to ensure that this
3214	 * particular zio is no longer discoverable for adoption, and as
3215	 * such, cannot acquire any new parents.
3216	 */
3217	if (zio->io_done)
3218		zio->io_done(zio);
3219
3220	mutex_enter(&zio->io_lock);
3221	zio->io_state[ZIO_WAIT_DONE] = 1;
3222	mutex_exit(&zio->io_lock);
3223
3224	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3225		zio_link_t *zl = zio->io_walk_link;
3226		pio_next = zio_walk_parents(zio);
3227		zio_remove_child(pio, zio, zl);
3228		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3229	}
3230
3231	if (zio->io_waiter != NULL) {
3232		mutex_enter(&zio->io_lock);
3233		zio->io_executor = NULL;
3234		cv_broadcast(&zio->io_cv);
3235		mutex_exit(&zio->io_lock);
3236	} else {
3237		zio_destroy(zio);
3238	}
3239
3240	return (ZIO_PIPELINE_STOP);
3241}
3242
3243/*
3244 * ==========================================================================
3245 * I/O pipeline definition
3246 * ==========================================================================
3247 */
3248static zio_pipe_stage_t *zio_pipeline[] = {
3249	NULL,
3250	zio_read_bp_init,
3251	zio_free_bp_init,
3252	zio_issue_async,
3253	zio_write_bp_init,
3254	zio_checksum_generate,
3255	zio_nop_write,
3256	zio_ddt_read_start,
3257	zio_ddt_read_done,
3258	zio_ddt_write,
3259	zio_ddt_free,
3260	zio_gang_assemble,
3261	zio_gang_issue,
3262	zio_dva_allocate,
3263	zio_dva_free,
3264	zio_dva_claim,
3265	zio_ready,
3266	zio_vdev_io_start,
3267	zio_vdev_io_done,
3268	zio_vdev_io_assess,
3269	zio_checksum_verify,
3270	zio_done
3271};
3272
3273/* dnp is the dnode for zb1->zb_object */
3274boolean_t
3275zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3276    const zbookmark_t *zb2)
3277{
3278	uint64_t zb1nextL0, zb2thisobj;
3279
3280	ASSERT(zb1->zb_objset == zb2->zb_objset);
3281	ASSERT(zb2->zb_level == 0);
3282
3283	/*
3284	 * A bookmark in the deadlist is considered to be after
3285	 * everything else.
3286	 */
3287	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3288		return (B_TRUE);
3289
3290	/* The objset_phys_t isn't before anything. */
3291	if (dnp == NULL)
3292		return (B_FALSE);
3293
3294	zb1nextL0 = (zb1->zb_blkid + 1) <<
3295	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3296
3297	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3298	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3299
3300	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3301		uint64_t nextobj = zb1nextL0 *
3302		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3303		return (nextobj <= zb2thisobj);
3304	}
3305
3306	if (zb1->zb_object < zb2thisobj)
3307		return (B_TRUE);
3308	if (zb1->zb_object > zb2thisobj)
3309		return (B_FALSE);
3310	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3311		return (B_FALSE);
3312	return (zb1nextL0 <= zb2->zb_blkid);
3313}
3314